
RW Systems Engineering & AD-A2-43 023
)evelopment Division MIIi III fAlll 1H m I!I --,t - , u.

ncremental Software Test Approach for
)oD-STD-2167A Projects

Vichael Springman 91-13790
January 1990 lii i I

I !' Ichno!0g"

v1 XV echn-ology 7 ewrics
STRW Technology SeriesElR1 W Technolh A-"vi C

5RW Technology Series

* TRW Technology Series
TRW Technology Series

Apprrmed for public relIaI;
Di.tribui2v1 Unlm iod~ Shoo~ SerkIsL

Statement A per telecom
Doris Richard ESD-PAM . Jew
Hanscom AFB MA 01731-5000 . ,

NWW 12/2/91 ,0rI. Tat
'1vp., ,~dd []

Incremental Software Test Approach . at I C*
for DOD-STD-3187A Ada Projects

L y _

Michael C. Springman r tv ,,i /
TRW Defense Systems Group " , l t.J ,

Redondo Beach, California - ,

Abstract

One of the key challenges for large Ada software projects is to define and execute an efficient, cost
effective, bounded test program that results in a quality product that meets all customer software re-
quirements. This is particularly challenging in the current climate of Government fixed price contracts.
The Command Center Processing and Display System Replacement (CCPDS-R) project is being devel-
oped entirely in Ada by TRW for the U.S. Air Force on a fixed price basis. To mitigate downstream test
risks, TRW has defined an incremental test approach that satisfies TRW and Government objectives for
informal development/integration testing and for formal requirements verification. Features of Ada are
employed to create a software architecture that supports an incremental test philosophy and contributes
to reduced integration effort and risk. The resulting test approach conforms to DOD-STD-216TA stan-
dards.

Project Background

The CCPDS-R system will provide display information used during emergency conferences by the
National Command Authorities; Chairman, Joint Chiefs of Staff; Commander in Chief North Ameri-
can Aerospace Command; Commander in Chief United States Space Command; Commander in Chief
Strategic Air Command; and other nuclear capable Commanders in Chief. It is the missile warning
element of the new Integrated Attack Warning/Attack Assessment System Architecture developed by
North American Aerospace Defense Command/Air Force Space Command.

The CCPDS-R project is being procured by Headquarters Electronic Systems Division (ESD) at
Hanscom AFB and was awarded to TRW Defense Systems Group in June 1987. The project consists
of three separate subsystems of which the first, identified as the Common Subsystem, is 24 months into
development. The Common Subsystem consists of approximately 360,000 source lines of Ada with a
development schedule of 40 months. When software development for all three subsystems is complete in
1992, over 600,000 Ada source lines plus developed tools and commercial off-the-shelf (COTS) software
will have been delivered to the Air Force. CCPDS-R is characterised as a highly reliable, real-time
distributed system with a sophisticated user interface and stringent performance requirements. All
CCPDS-R software is being developed using DEC's VAX Ada compiler on DEC VAX/VMS machines,
augmented with Rational's R1000 Ada environment. The software will execute on a network of DEC
mainframes and workstations.

CCPDS-R was planned and bid prior to the establishment of DOD-STD-2167A [2167A], so the
software is being developed using a heavily tailored DOD-STD-2167. The 2167 tailoring was done in
parallel with the formulation of DOD-STD-2167A, which has resulted in a CCPDS-R methodology and
documentation set that is consistent with DOD-STD-2167A.

CCPDS-R exhibits the characteristics of a typical large 2167/2167A Ada development project,
including:

1. Large number of software requirements (approximately 2,000)

2. Multiple CSCIs (6 for the Common Subsystem; 15 total)

1 91 10 22 081

3. Large number of 2167A components (approximately 7,000 CSCa/CSUs) and architecture objects

(30 VAX/VMS processes, 110 Ada tasks)

4. Informal test of individual components to test all nominal, off-nominal and boundary conditions

5. Informal integration of tested components into working capability strings

6. Formal requirements verification per Government-approved test plans and test procedures

Test Program Objectives

A successful Ada development project must have an efficient (i.e., cost-effective) test program that
results in a reliable, tested product that meets all customer requirements. The best-designed Ada system
in the world that doesn't meet a customer's test expectations will have difficulty being sold or fielded.
The test program must have clear bounds to the scope of testing; it cannot be open-ended. Both the
contractor and the customer must know when testing is complete. A well-defined, complete, consistent
requirements set that specifies required functionality is essential, and should not specify design solutions
(ref. [Grauling 89]). A cooperative effort by the contractor and the customer is necessary to plan the
test approach early in the program, to execute the plan, and to iterate the plan as needed to incorporate
lessons learned and more efficient techniques. This paper describes an approach being used by CCPDS-R
and provides recommendations for establishing a large-scale Ada test program with the following specific
objectives:

1. Maximize test efficiency by using test cases for multiple purposes (e.g., integration, software in-
stallation, regression, formal qualification)

2. Reduce integration schedule and risk in order to concentrate on the test portion of "integration
and test"

3. Formally verify all requirements to enable timely selloff of the system to the customer

4. Formally verify requirements incrementally to reduce the risk of a single monolithic FQT period

Definition of DOD-STD-2167/2167A Terms

DOD-STD-2167 terminology is being used to describe the static CCPDS-R software structure. The
CCPDS-R definitions are:

Computer Software Configuration Item (CSCI): A collection of TLCSCs, LLCSCs and Units
that can be allocated to a single functional organisation (i.e., skill center) to implement. For
example, CCPDS-R has display, communications, system services, test and simulation, and algo-
rithm CSCIs.

Top Level Computer Software Component (TLCSC): A component which maps directly to Ada
library units or collections of functionally cohesive Ada library units. A TLCSC may contain
nested LLCSCs and Units, and must be separately testable (termed "standalone test", or SAT).
For management purposes, a logically related collection of TLCSCs within a CSCI is termed a
"TLCSC Group".

Lower Level Computer Software Component (LLCSC): A program unit declared within a pro-
gram unit (which could be either a TLCSC or a higher level LLCSC) that is sufficiently complex
to require standalone testing prior to its inclusion in the standalone testing of its parent.

Subordinate Unit: A component of an LLCSC or TLCSC whose standalone test is wholly provided
by the standalone test of its parent program unit. A Unit may also be defined as a library unit as
long as its servies are not shared across TLCSC boundaries.

2

The equivalent 2167A terms are CSCI; Computer Software Component (CSC), which equates
to a TLCSC Group or TLCSC; Computer Software Unit (CSU), which equates to a TLCSC or
LLCSC; and Subordinate Unit. Throughout the rest of this paper, 2167A terminology will be used,
including software document names.

Development Approach Overview

The CCPDS-R software development approach is the initial application of TRW's "Ada Process
Model" [Royce 1989-2], which is based on early definition, demonstration, implementation and test of
incremental capabilities termed builds. DOD-STD-2187 has been tailored for CCPDS-R to accommodate
this process model, including the incremental generation and review of the design and documentation
products. A subsystem build consists of a collection of CSCs from one or more CSCIs which are integrated
to form an incremental set of subsystem capabilities. Each CSCI is developed incrementally, with each
CSCI build having its own preliminary design, detailed design, code and test cycle.

The builds are defined so that the foundation architecture components that are relatively inde-
pendent of the required System Specification capabilities are developed, integrated and tested as early
as possible, while the generally more volatile, application-specific components are allocated to later
builds. The Ada Process Model requires that software capabilities be demonstrated at informal de-
sign walkthrough milestones and at formal review milestones to provide tangible evidence of design
progress. Such reviews involving capability demonstrations provide a much sounder basis than tradi-
tional paper/viewgraph reviews for the customer and the contractor to assess readiness to proceed with
subsequent development activities.

The CCPDS-R software design is described in terms of DEC VAX nodes, VAX/VMS processes, Ada
tasks, and intertask communications circuits and sockets. The Software Architecture Skeleton (SAS) is
defined and baselined early, and consists of the top level executive structure for all processes and tasks
and their interconnecting circuits and sockets. The process and task executives are all instantiated
generics, with the Ada source code produced by a tool which has all the architecture objects described
in a database. The SAS concept enables rapid construction of a complete functioning network, which
facilitates early discovery of design, interface and integration problems [Royce 1989-1].

The primary advantage of Ada in supporting incremental development as defined above is its
support for partial implementations. Separation of specifications and bodies, packages, sophisticated
data typing and Ada's expressiveness and readability provide powerful features which can be exploited
to provide an integrated, uniform development approach. The uniformity gained through the use of
Ada throughout the software development cycle as a representation format is also useful for providing
consistent and insightful development progress metrics for continuous assessment of project status from
multiple perspectives.

The software development phases of the Ada Process Model are:

" Top level architecture design of the foundation software components, resulting in definition of
the System Global Interface (SGI) packages and the Software Architecture Skeleton (SAS). Also
produced is the allocation of software for each CSCI to specific incremental builds to marimise early
availability of functionality and minimise downstream breakage. Preliminary Design Walkthroughs
(PDW-, are conducted during this phase for the contractor and the Government to periodically
review the evolving top level design.

* Top level design for each applications build, which refines the overall top level arthitecture design
and iterates the SAS/SGI architecture as the design progresses. An applications oriented PDW
culminates this phase.

" Detailed design for each build, culminating in a Critica Design Walkthrough (CDW).

* Implementation and informal standalone test of all build components.

• Turnover of completed build components to the I&T organisation for formal baselining and test
activities. The turnover process involves a significant amount of integration by the developers and
testers as the software is built into a functioning configuration.

3

SSR POR CO tCAIPCAv V V7V POR EACH BUILD I& T:

REQUIREMENTS
I I

SYSTEU TOP LEVEL ARCHITECTURE DESIGN I

BUILD I DEVELOPMENT I AT

BUILD 2 DEVELOPMENT I A T

ON AHLO EVELO MENT:o

DUA EDB BUILD K DEVELOPMENT I A T T
IIMPLEIMENTATION a | mIw

I STANOALRONE T
I nNoveIm I

Figure 1: Ad& Software Development Process Model

Test Approach Overview

The CCPDS-R software test approach maps directly into TRW's incremental software development
methodology described above. Complete testing is performed per DOD-STD-2167A, featuring formal
testing at multiple levels and by FQT of integrated CSCIs. The software test program consists of
informal and formal testing (Figure 2). Informal testing is performed by developers and integrators
to ensure (1) that individual components function correctly in a standalone mode and (2) that the
integrated components function correctly in capability strings. Formal testing is the responsibility of
an independent formal test organisation that verifies all software requirements are met. All testing is
performed within a hierarchical structure termed the Ada Testbed (or simply the "testbed").

Ada Testbed Concept

The Ada Testbed provides the software execution environment and the software control environment
for the physical control of all developed and test support software. The testbed is an environment where
developers and testers can work in parallel against an established baseline. Its structure is designed to
eliminate duplication of software among testbed users, minimise the software needed by each testbed
user, and establish a uniform set of controls as the software moves from developer to baseline. The testbed
is hierarchical, and consists of a predefined directory structure at each level, testbed build procedures,
and support tools (Figure 3). Each procedure works within the hierarchy to find source, objects and

4

INFORMAL TEST FORMAL TEST

L DEVELOPMENT ORGANIZATION

ORGANIZATION

I DO I I
ev I

Figure 2: Software Test Approach

executables at the lowest level of the testbed. When a user wishes to access the latest copy of a file, the
teatbed will start at the lowest level and look upward until the file is found.

The build procedures utilise the VAX Ada Compile System (ACS) to provide a uniform method
for compiling, linking and executing all software. ACS is structured around a library system. Every
module that is compiled is placed in an Ada library. The Ada library is used to form sheils around Ads
objects to determine compile order and when modules need to be recompiled. The ACS COMPILE and
RECOMPILE commands are used to automatically compile a module ad all other modules that are
associated with that module. This enables partial builds of the system instead of costly, time consuming
full builds.

The software development organisation controls the lowest levels of the tetbed. The lowest lev-
els are where a developer implements and tests individual components, using higher level components
brought down to the developer's levels as needed. The next higher levels are for turnover integration,
and are controlled by a single individual who coordinates the turnover sequence of components from
individual developer areas and orchestrates the compilation and preliminary integration of the total
set of components. These levels sere as as taging are fox the formal turnover of the software to the
configuration managed baselined upper levels.

The testbed provides the physical configuration control of the baselined software. All changes to
software in the upper baselined levels of the testbed are strictly controlled by the software configuration
control board and a paper trail managed by the configuration management organisation. There is a single
individual authorised to perform testbed builds for new software configurations. All formal turnovers

-- - - - - -

FOUNDATION COMPONENTS NAS) EACH LEVEL:

SW ARCH SKELETON (SAS)

GLOBAL INTERFACES (SGI)

SASEUNED AREA
APPLICATIONS

CMICONThOLLED) LEVELS

TESTBED TOOLS
FORMAL

QUICK FIXES TURNOVER

TURNOVER

INTEGRATION AREA

9W DEVELOPMENT INFORMAL

CONTROLLED TURNOVER
INDIVIDUAL DEVELOPER AREAS

Figure 3: Ada Testbed Approach

and the products of a testbed build are audited by quality assurance personnel using various verification

tools and manual analysis methods.

Informal Tests

Informal tests are performed by software developers and testers to debug individual components,
check functionality at low levels of the architecture, and integrate components into functioning strings.
The emphasis of informal testing is on thoroughly exercising the code through as many possible logic
paths as possible. In a design such as CCPDS-R's message-based architecture, this involves inputting
messages into each Ada task that cover the spectrum of possible input values. These are well-defined
in the Ada System Global Interface (SGI) packages which are constantly visible to all developers and
testers to support local testing. The informal test phases are:

Standalone Test (SAT). Standalone tests are the lowest level of test and are performed by the soft-
ware developers. The term "standalone test" was created because the definition of *CSU test" as
used in DOD-STD-2167A is ambiguous in a hierarchy of Ada "program units". Also, the distinc-
tion between "CSU test" and "CSC integration" as used in DOD-STD-2167A is difficult to define
in the Ada process model. Standalone tests are performed on a CSC or CSU, each of which may
be composed of multiple subordinate program units that are tested in the context of their parent
CSC or CSU.

6

Standalone tests informally verify requirements and test off-nominal and boundary conditions in
the developer's environment. The test procedures are written in Ada (wherever possible), with the
procedures and test results included in the CSC Software Development Files (SDFs) [Springman
1989].

Turnover Integration. The bulk of what is traditionally called software integration is performed dur-
ing the process of compiling, building and checking out the software in the turnover integration
area (Figure 4). This results in a completely integrated, fully functioning set of software being
turned over to the I&T team for exhaustive string testing. The Ada process model requires that
CSC and CSU interfaces be defined and baselined early. These are maintained in System Global
Interface Ada packages that are withed by interfacing CSCs and CSUs. As a build progresses,the developers are constantly compiling against the SGI packages as prototypes are built, the Ada
Design Language (ADL) evolves into Ada, and formal and informal demos are integrated.
Throughout the Ada process model, there is a constant design integration which eliminates an entire
class of interface errors that are normally not found until the I&T team attempts to integrate the
software. This is facilitated by a combination of: (1) using Ada as the design representation as
well as the implementation language; (2) rigid interface control through Ada type checking; and
(3) the demonstration-oriented Ada process model.

INFORMAL
STANDALONE

TESTS

coo TURNOVER
INTEGRATICON
VO sr M INFORMAL
cawvus gv s INTEGRATED
mvuA-wM -- W GIVING TEST

Cm

Figure 4: Software Integration Stages (Each Build)

Integrated String Test (IST). ISTs are performed after the build components have successfully com-
pleted informal SAT testing, have been informally built and integrated in the turnover integration

7

area by the development team, and are turned over to the independent I&T team. These ISTs
are informal, and exercise strings comprised of components from multiple CSCIs that represent a
required system capability. IST includes off-nominal, boundary and stress testing.

Software Reliability Assessment. In parallel with other integration and test activities, software that
is already integrated and functioning is used as the basis for assessing the reliability of the system's
software. This activity concentrates on the foundation components (e.g., Network Architecture
Services and Software Architecture Skeleton for initial assessments, and then adds application
compunents as they are completed. The goal is to execute the software in a stress environment
using varying input scenarios to thoroughly exercise the logic over extended periods of time (e.g.,
overnight). Such testing will uncover errors that are difficult to detect in normal, human-attended
testing, such as errors dependent on timing or input sequencing. By the time FQT has occurred,
the software, especially the foundation components, will have been thoroughly stress tested, to
provide a high degree of confidence in the reliability of the product.

Informal test procedures and results are documented in Software Development Files (SDFs) for
standalone tests and in Test Data Files (TDFs) for integrated string tests and reliability tests. Integration
testing is governed by a "Build Schedule and Content Plan" which defines the specific software contents
of each build and the functional strings to be tested during each IST phase. This plan is closely controlled
by the project so that the test organization is fully prepared for a software turnover.

Formal Tests

Formal tests are the responsibility of an independent test organization. The purpose of formal
software testing is to verify all software requirements. Ideally, all software requirements should be
testable or demonstrable at Formal Qualification Test (FQT) using operationally produced outputs as
success criteria. However, requirements definition is generally far from ideal, and waiting until FQT to
verify the full requirements set is risky for both the contractor and the customer.

Recognizing that requirements vary in level of detail and that a single FQT is too unwieldy for
a major program, an incremental requirements verification approach is being used on CCPDS-R. This
approach verifies requirements at three levels (Standalone Test, Integrated String Test, and FQT),
dependent upon the components and data needed to verify a requirement. In addition, the concept of
implicit testing of lower level requirements at higher level string tests is being employed. The formal
test levels are:

Formal Standalone Test: Verifies requirements at an individual CSU level (e.g., intermediate algo-
rithm results, results not readily observable via operational displays, or detailed design require-
ments). The scope of verification at this level is highly dependent on the amount of detail in the
requirements documents. Formal SAT cases are the responsibility of the independent test organi-
zation. They are specific informal SAT cases whose test procedures sie provided to the customer
for approval. For efficiency, they are executed by the developers of the software being tested, in a
formally configured environment managed by the CM organization, and while being witnessed by
I&T, QA and customer personnel.

Formal ntegrated String Tests Formal ISTs verify requirements satisfied by multiple CSCs and
CSCIs that can be tested or demonstrated using functional strings and operationally produced
outputs for success criteria. These tests are performed by the independent I&T organization when
an aggregate of software capabilities has completed informal SAT and IST tests. Formal ISTs
specifically pertain to SRS requirements and are a subset of the informal ISTs. Formal ISTs are
run in a formally configured environment and are fully witnessed.

Formal Qualification Test (FQT): FQT verifies all software performance requirements and other
requirements not allocatable to prior SAT and IST levels. FQT test cases are generally ISTs rerun
in the FQT configuration. FQT is run using the complete software and hardware configuration in
a formally configured environment and are fully witnessed.

.. . . ' ' , , a I I II I6

Implicit Test: For requirements that are associated with the specifics of the design (e.g., the method
used to access a file that produces outputs visible on a display) or are purely specification entities
(e.g., internal function-to-function interfaces), explicit verification is generally impractical and
unnecessary. Such requirements are verifiable by executing a test that must perform processing
associated with those requirements in order to complete successfully. The requirements allocated
to implicit testing are verified at formal IST and FQT. For test traceability, the test case name
that verified a requirement implicitly is sufficient for test audit purposes.

All formal testing is fully documented in accordance with DOD-STD-2167A. The Software Test
Plan defines the scope of formal testing. Individual Software Test Description and Software Test Report
documents are provided for each formal test level. Requirements are allocated to one of the three levels
described above for verification and are assigned to specific test cases within each level. Test traceability
is maintained in comprehensive Test Verification Matrices, which use traceability inforrmation generated
automatically from the Software Requirements Specifications. Each SRS "shall" requirement is uniquely
labeled by the documentation tools, and the traceability tools carry these labels down through the
design and test documentation. As the SRS traceability changes, so does the rest of the traceability
trail, ensuring that traceability information is always current and consistent.

An overview of a generic development and test schedule is shown in Figure 5. This schedule shows
the time phasing of the development and test activities.

BUILD 1: A N X7 A A
PO-M a%? Puaf ml'

A B T7

BUILD 2: A A
paMat ff botf WY

A
A% Wr V

i~ m mmvI

BUILD N: A A V A

A

Figure 5: Generic Test Activity Schedule

Test Metrics

9

On a large Ada project with thousands of components and software requirements, it is essential to
define and maintain metrics that: (1) bound the scope of the test program; (2) are readily reportable to
management and the customer; and (3) are easily understandable. The test metrics should complement
any development metrics used on the project. Examples of test metrics include:

" Informa] standalone test progress, which measures the number of CSCs that have been stan-
dalone tested by the developers. This metric is part of the overall development progress metric
(the "Tested" columns in Figure 6), which measures the software development team's progress in
complefing a defined set of software. The development is complete when: (1) all Ada Design Lan-
guage (ADL) has been transformed into Ada ("Designed"); (2) all standalone testing is executed
("Tested"); and (3) all documentation has been generated ("Documented"). The "Total KSLOC"
is determined by an Ada metrics tool that counts completed Ada source lines in the specification
and body parts [Boehm/Royce 19881 and "TBD" (To Be Determined) Ada lines identified in ADL
statements (Royce 1989-11. A CSC contributes to the calculation of percent complete for "Tested"
or "Documented" only when informal SAT testing or SDF documentation is 100% complete for the
CSC. It's contribution is weighted by its size in Ads source lines. No partial test or documentation
status is maintained because of the subjectivity of such status assessments.

" Informal IST progress, which measures the iumber of IST test cases and test steps that have
been successfully completed against the plan (Figure 7).

" Software requirements verification progress, which summarizes the actual versus planned
number of requirements verified at each formal test level. Figure 8 shows the CCPDS-R plan and
status, with the six CSCIs as the columns. As shown, the first two SAT phases and the first IST
phase have been completed, with some percentage of the requirements allocated to each of those
phases accepted by the customer (e.g., 69 out of 76 for Build A2 SAT).

" Overall test program status, which provides a comprehensive status -umn-ary based upon
the metrics described abnve and the cost/schedule earned value assessmer s for each test activity.
Figure 9 shows each test phase for which the independent test organizatior is responsible, including
informal ISTs and formal SATs, ISTs and FQT. The metric indicates the percentage of test cases
prepared/executed and reported, with a composite assessment at the bottom. The vertical dashed
line identifies the current date, against which progress is measured. The example indicates that
informal IST3 is slightly behind in test prep/execution and SAT2 is approximately 2 months
behind, resulting in a composite assessment of on schedule for informal IST and approximately 1.5
months behind in the formal verification activities.

" Software Problem Report (SPR) summaries and history, which indicate areas where test
resources should be applied and where problem trends should be addressed. SPR summaries by
test level also indicate the relative value of SAT vs. 1ST vs. formal testing, which can be used to
adapt the test program as trends are discovered.

It is important to track metrics status against a plan. It is progress against the plan that determines
whether or not management attention is required. This requires a realistic plan, which is not always
easy to determine at the start of a test program. The plan must therefore be updated as required to
enable accurate and meaningful status assessment.

CCPDS-R Ada Test Experience and Recommendations

Use of Ada as the CCPDS-R implementation language has had both positive and negative effects
from a test perspective (Table 1). CCPDS-R's Network Architecture Services and Software Architecture
Skeleton [Royce 1989-2] rely upon Ada generics, Ads tasking and Ada interface packaging to create an ar-
chitecture that enables early development, integration, demonstration and test of foundation capabilities.
Interface problems are discovered earlier in the development cycle. The Ada compiler identifies obso-
lescent modules requiring recompilation due to changes to other modules, which speeds up the change
checkout process. Self-documentation features of the Ada language (assuming good naming practices)
result in more documentation being included in the source and in Ada test procedures/drivers.

10

____ ______ Designed _____ Tested Documented

Total Total Complete TBD CM TetdComplete
CSCI SDFs KSLOC (Ada) (ADL) % ADL soAd& KSLOC % SDFs %
NAS 147 18.6 18.6 0 100%_ -.2 18.6 100% 47 100%
SSV 1146 182 182 0 100% 38 126~ W 2 47T6

0CO 17 40.4 39.6 1.8 98%W .7 25.8 63% 12 70%__
TAS 16 9.6 8.3 1.3 86%W .7 9.6 100% 16 100%
CMP 21 10.2 10 .2 98W -338 7 8

CO 9 75.5 57.8 17.7 -76 o 2.2 12.6 1 2 827%
Total 16 336.3 31.A0l4f3.9 23;% 0 8

Planco
Designed/Coded (%Complete) Actual

100

: 0 Legend
70o

10 KSLOC Standalone Tested

% so - MLOC10

40-a
30 50 so

10 2

5 10 1 20 25

Contract Month Contract Month

Figure 6: Overall Development Progress Metric

_------------------ TEST PROCEDURE STEP EXECUTION
emI

- I ILEGEND

I I I I I

: ~ BUILD A2 tST SUMMARY

TEST NO.STEPS .

no As TES CA NA*~f ME& CASE MD STEPS S. COPLETs ~ __________ NO. VECJTE ______E

0- Comm"i We T Ywa ___ 11 10
1AO MEII 21C. a 94 1 w

T RA IM I IIM PaCC 4 ~ 71 1

I0 PII ItI I aI0

I I DATA AWOROOG 1 71 IwE _L -- - - - - PIROO'.WNC T57O 1 46 46 1W

240 8 US-1TAL4 4111 4W 10)

P SIC ----------- ----------- I-----

IS C, 1 RESSUIONTEST TES No. STEPS No.

I4I I NO. EMCT5 ECUTED IW

s ISOI I I NUSVSTEM P'ITIALIAT11ONI 1 2 41
I T 4 3 1 W

In I SIMAU Ifm I AS__ __ _ _

so :o : *.
-------------------------- ~~-~r 8PR VERAICATICII "NAIO REGAESSIONTISTOM~ I5

T~t TT COURI Atrr EiECUTIW a
I 3 4 8 a 7 a S I 1 2 4 U U

Figure 7: Informal Integration Progress Metric

Completed/Total planned
TEST SOURCE NAS SSV DCO TAS CMI CCO TOTAL
Build AO/AI SAT 48/49 5/5 53/54
Build A2 SAT 8/8 10/10 15/15 33/39 3/4 69/76
Build A3 SAT 14 126 58 14 56 4 0/272
Build A4 SAT 58 57 28 0/143
Build A5 SAT 5 0/5
IST 1 75/75 10/10 21/21 106 106
IST 2 59 42 64 82 6 8 0/261
IST 3 16 150 185 40 29 61 0/481

FQT 25 164 217 48 39 82 0/575

TOTAL 238 490 602 225 226 192 228/1973

Requieme ts Total pluaed Requnremn t
VeruiSed Requiremeal Verified 0 •

2000 I

,0o0°° Legend
1600
1400
1200

1000

400

200

S 10 15 20 25 30 36
Contract Month

Figure 8: Formal Requirements Verification Progress Metric

l Legend
(s000.) 1 M/E

BIT1 MAY
hi't1989 TP%= Trs Prep/Lw,.,,

- ~ TR%= %T-s Repewilasl60o4 BIT2 O w 104 o.,aD Te, Prep..-
I - : (C/SCSC+Metuia)

38.3 BIT3 2s ITI

S T BIT4r

36. SAT 1I

SAT2T*I
Itsa SA a

4- STAT3q I I-
149

in IT

iFQT TF: TR %n

COMMON SUBSYSTEM
2036 levepew

AMA, . .ASAAE AA A.

10.. 15 2 0 3, 40
Contract Mosths

Figure 9: Overall Test Program Proqress Metric

12

Table 1: Ada Testing Pros/Cons

Ada Testing Pros Ada Testing Cons
1. Early identification of interface inconsistencies 1. Ada training required for testers and customer
(compiler type checking) reviewers

2. Notification of obsolesced program units requir- 2. Extensive dependencies may result in frequent
ing recompilation recompilation in individual user areas
3. Ada source code and Ada test procedures self- 3. Significant disk space requirements for source
documenting and compiled products
4. Shorter integration timeline (see 1.) 4. Significant software build times (compilation)

Integration occurs constantly as the design evolves and the developers compile their ADL and Ada
against the established global interface packages. Assuming the foundation architecture components
(i.e., NAS and SAS) are integrated and baselined in early builds, applications components in subsequent
builds are integrated relatively easily into the SAS. On CCPDS-R, a small team of 3-4 developers familiar
with the overall software architecture has been able to integrate each build over a period of 1-2 months
to a point where th. test organization can begin working with a functioning testbed. This small team
draws upon specific developer and tester expertise as needed to solve problems that arise during the
integration. The latest build, consisting of over 150,000 Ada source lines, was brought into a functioning
state in about 5 weeks.

On the negative side, Ada consumes significant resources for building and maintaining software
configurations (i.e., testbeds). As incremental builds are completed and the number of files increases,
the build time becomes lengthy and the disk space requirements grow rapidly. Currently, the CCPDS-
R testbed consists of 270,000 source lines, over 6,000 files, testbed tools and build procedures, and
associated standalone test drivers and files. The testbed currently takes 15-20 hours of CPU time on a
VAX 8800 (using a single CPU) to build the complete software architecture, and requires over 600,000
disk blocks (512 bytes each) for storage. Only a portion of the build time (approximately 70%) is used
for compiling and linking source code; the rest is for hierarchical directory searches, file difference checks,
checksum compares, and other testbed functions. Experience to date with the DEC Ada compiler in the
CCPD5-R testbed environment has shown compiler performance in the range of 500-900 source lines
per CPU minute. This performance range reflects the complex and numerous dependencies among the
software components for a system such as CCPDS-R. Testbed improvements are in progress to improve
resource utilization.

Because Ada is used as a uniform representation vehicle throughout the design, implementation
and test of the software, testers and reviewers (including the Customer) must be trained to read and
understand Ada. This may result in higher up-front costs and initial inefficiencies as individuals become
trained. Once trained, though, these individuals are ready to step into any subsequent Ada project with
no problem.

An Ada implementation for a large application has extensive dependencies among modules based
upon how the software is packaged. Care must be taken to avoid constant recompilation of individual
developer and tester components as changes are made to higher level components. While developers
and testers always want the latest software, constant changes to baselined software result in constant
recompiles at lower user levels, which takes time and CPU resources.

The CCPDS-R software architecture involves many requirements and design components. With a
total estimated sise of 350,000 Ada source lines and 2,000 individual software requirements to be verified,
the CCPDS-R test program is definitely an area of cost and schedule uncertainty. Recognising this,
both TRW and the Government have sought to ease the verification burden and spread the Government
review/approval load by verifying requirements incrementally. For detailed design-oriented requirements,
CSU standalone testing using detailed Ada test procedures is necessary, which requires a certain level of
Ada expertise of the Government reviewers. Schedules have been adjusted to accommodate lengthened

13

review/analysis imelines. Also, the concept of "implicit" verification of lower level requirements at
higher level string tests has been defined. The following recommendations and lessons learned have
resulted from CCPDS-R's experience:

" Define the test approach early, and make it a major topic of the Software Development Plan.

" Get the customer involved early in the test program definition and get the customer to commit to
a cost effective, bounded test program. Solicit early feedback and incorporate lessons learned into
the test approach.

* Keep SRS requirements at a true requirements level. The more detailed and design-oriented the
requirements, the more detailed the tests must be, and the more time required of the contractor
and the customer to generate and review/approve the tests.

" Employ a design/development methodology that enables early and continual visibility by test and
customer personnel into the software product. This can be accomplished through: (1) demon-
strations of functionality; (2) early definition/baselining of system products (e.g., displays, report
forms); and (3) incremental testing of software to enable early customer feedback on the adequacy
and scope of testing.

* Devise an Ada software architecture that enables early prototyping and incremental demonstration
of functional capability and integrated string testing. For example, instantiation of generic task
and process executives with task-to-task interfaces enables rapid construction of a working SAS
which can be used to demonstrate applications software.

" Define early software builds to: (1) baseline foundation components; (2) enable test of complete
capabilities early; (3) minimise potential for breakage of earlier builds as later builds are imple-
mented and tested; and (4) set a precedent using a small early build before attempting the larger
later builds.

" Establish a comprehensive configuration management process that supports developers' and testers'
rapid response needs, as well as the project's need to maintain strict configuration control of all
baselined software.

* Prepare test personnel (both contractor' and customer) for an Ads test program so that they can
generate/review detailed Ada test procedures and the software under test.

* Use test metrics to define the scope of the test program and to measure progress against a realistic
plan.

* Define the standards and procedures to be used for the development and test of the software as early
as possible, preferably within 1-2 months of contract start. These should include documentation
formats, naming conventions, header standards, and annotation standards.

SummWy

This paper has discussed a test approach that is being used successfully on CCPDS-R, a large
software project developed completely in Ads. The test approach has been modified and enhanced
significantly as both TRW and the customer better understand the test requirements and implications
of specific test techniques. Tailoring of the approach is necessary as experience is gained from the ear-
lier test phases, and must be encouraged to achieve timely closure of the test process and enable cost
and schedule targets to be met. Ads has proven to be a significant benefit in the incremental devel-
opment/integration/test approach, particularly in enabling rapid integration of software from multiple
CSCIs. This enables earlier, useful integrated string testing as each software build completes develop-
ment and is turned over to I&T, rather than forcing the I&T team to undergo an extended period of
debugging before exercising integrated string tests. More time is available for formal requirements veri-
fication activities, a traditional area of cost and schedule risk on major government software programs.
Ada itself does not guarantee rapid integration. Sound engineering discipline is still required to define
and control the software architecture and interfaces that are expressed in Ada.

14

