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ABSTRACT BACKGROUND

Due to the large number of product, project and There have been many attempts to define measures
people parameters which impact large custom software of software quality in the past 20 years. For many rea-
development efforts, measurement of software product sons, none of these has caught on as accepted practice in
quality is a complex undertaking. Furthermore, the ab- the software industry. Reference [2] discusses many of
solute perspective from which quality is measured (cus- the problems and tradeoffs associated with defining and
tomer satisfaction) is intangible. While we probably measuring software quality. One of the recurring themes
can't say what the absolute quality of a software product in this work was the need for subjectivity and expensive
is, we can determine the relative quality, the adequacy human r-sources in both the collection and interpreta-
of this quality with respect to pragmatic considerations, tion of quality metrics. Furthermore, the concept of a
and identify good and bad trends during development, technology independent set of metrics, although an ac-
While no two software engineers will ever agree on an knowledged desire, was not well understood. Reference
optimum definition of software quality, they will agree [8] provides an excellent discussion of the need for objec-
..at the most important perspective of software qual- tive, measurable software quality metrics which remain

ity is its ease of change. We can call this flexibility, technology independent. Reference [9] defines a corn-
adaptability or some other vague term, but the critical plete company metrics program with actual data that
characteristic of software is that it is soft. The easier provides some valuable experience and lessons learned.
the product is to modify, the easier it is to achieve any Reference [101 describes the most current motivation for
other software quality perspective. measuring software quality: software development pro-

This paper presents objective quality metrics derived cess improvement.
from consistent lifecycle perspectives of rework which, After three+ years of successful software develop-
when used in concert with an evolutionary develop- ment on the Command Center Processing and Display
ment approach, can provide useful insight to produce System - Replacement (CCPDS-R) project using mod-
better quality per unit cost/schedule or to achieve ade- ern Ada software engineering techniques ([121, [13] and
quate quality more efficiently..,,Software rework experi- [15]), TRW has derived a subset of software quality
ence with over 1500 software change orders on the Com- metrics which are measurable, objective, and useful in
mand Center Processing and Display System - Replace- providing a basis for improving downstream quality of
ment (CCPDS-R) project was used both to formulate products and processes. One of the problems with typ-
the metrics definitions and to demonstrate their useful- ical government contracted systems like CCPDS-R is
ness. These metrics can be applied uniformly from mul- that most are one of a kind projects. This characteris-
tiple perspectives (project, subsystem, build, CSCI) to tic provides added complexity to measurement since the
achieve objective comparability. They are automated, experience may be only partially useful between differ-
consistent, and easy to use. Along with subjective inter- ent project domains.
pretation to account for the lifecycle context, objective The metrics presented herein have been formulated
insight into product quality can be achieved early where to be as useful as possible while remaining relatively
correction or improvement can be instigated more effi- domain independent so that comparisons between dif-
ciently. ferent projects are possible. This is not as simple as

Indez Terms- Evolutionary Development, Software it sounds and the literature on software quality metrics
Quality Metrics, Ada, Maintainability, Process Im- reinforces this experience. After many iterations, the
provement. data presented herein has demonstrated objective and

valuable insight in its application to CCPDS-R and it
provided a credible basis for future subsystem planning
as well as a starting point from which better metrics can
be derived.
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Software Quality Metrics Objectives. Software Ada PROCESS MODEL
quality metrics should be simple, easy to use, and hard
to misuse. They should be useful to project manage- An Evolutionary Process Model is fundamental to
ment, stimulate continuous improvement of our devel- this approach for Software Quality Assessment. With-

opment process, and low cost to administer consistently out tangible intermediate products, software quality as-
across different projects. sessment would be ineffective and inaccurate. Conven-

Usefulness. Conventional testing techniques exist tional experience has repeatedly seen projects sequence
for assessing the functionality, reliability and perfor- through highly successful preliminary and critical design
mance of a software product, however, there are no phases (as perceived by conventional Design Review as-

accepted methods for assessing its flexibility (modular- sessment of design quality) only to have the true quality

ity, changeability, or maintainability). While there are problems surface in the integration and test phases with

many other perspectives of quality (e.g., portability, in- little or no time for proper resolution. An Evolution-

teroperability, etc.), our experience in executing an evo- ary Process Model provides a systematic approach for

lutionary development process has demonstrated that achieving early insight into product quality and a uni-

its flexibility aspects are the most important. The eas- form lifecycle measure for its assessment. It also avoids

ier the product is to modify, the easier it is to achieve the inevitable deg:adations in quality due to late break-

any other software quality perspective except perhaps age and rapid fixes which are shoehorned into the prod-
performance. The tradeoff between flexibility and per- uct without adequate software engineering.
formance is highly dependent on the application domain TRW's Ada Process Model is, in simplest terms, a
as well as many other architectural issues and for the uniform application of incremental Ada product evolu-
purposes of this discussion we will assume that prfor- tion coupled with a demonstration-based approach to

mance is achieved through proper hardware selection design review for continuous and insightful thread test-

and that the project is prioritized "software first". A ing and risk management. The techniques employed

:ject which is prioritized more towards performance within this process are derived from the philosophy of
(i.e., 1750A flight program), may not interpret these the Spiral Model [7] with emphasis on an evolution-
metrics in the same fashion as a project prioritized ary design approach. The use of Ada as the life cycle
towards continuous lifecycle modification (i.e., ground language for design evolution provides the vehicle for
based C3 System). This paper will attempt to provide uniformity and provides a basis for consistent software
useful, objective definitions for modularity, changeabil- progress and quality metrics.
ityful, and ective mi init.Teiont o f dulathm etri TRW's Ada Process Model recognizes that all large,ity and maintainability. The intent of this metrics pro- complex software systems will suffer from design break-

gram is to provide a mechanism for quantifying both comple softare sy sti uff erfo e breend-product quality as well as in-progress development age due to early unknowns. It strives to accelerate the
trends toward achieving that quality, resolution of unknowns and correction of design flaws in

a systematic fashion which permits prioritized manage-
Development Language. Ada has proven to support ment of risks. The dominant mechanism for achieving

increased quality and the evolutionary process model in this goal is a disciplined approach to incremental devel-
large software development efforts. Furthermore, Ada s
appears to be the language of choice for the majority are directly aimed at the three main contributors to

of current and future large government projects. While are disec onmy a l the o erhead
thispapr asums tht Aa i th lanuag fo deign software diseconomy of scale: minimizing the overhead

this paper assumes that Ada is the language for design and inaccuracy of interpersonal communications, elimi-
and implementation of software development projects nating rework, and converging requirements stability as
which use these software quality metrics, it should be qikya osbei h ieyl.Teeojcie r

straghtorwad t adat tis pproch o oter an- quickly as possible in the lifecycle. These objectives are
straightforward to adapt this approach to other Ian- ahee y

guages through a suitable redefinition of a Source Line

of Code (SLOC). 1. requiring continuous and early convergence of in-

Development Approach. An evolutionary develop- dividual solutions in a homogeneous life cycle lan-

ment approach as prescribed in the Ada Process Model guage (Ada).

(121 is necessary to maximize the usefulness of these met- 2. eliminating ambiguities and unknowns in the prob-
rics across a broader range of the life cycle. The met- lem statement and the evolving solution as rapidly

rics are derived from controlled configuration baselines. as sate a th e eoling solon s rad

Therefore, an approach with early incremental baselines as icalmthro piitm
will see an increased benefit. As a prerequisite to under-
standing the derivation of the software quality metrics, Although many of the disciplines and techniques pre-
the following section provides an overview of the Ada sented herein can be applied to non-Ada projects, the
Process Model employed on CCPDS-R. expresiveness of Ada as a design and implementation



Process Model Strategy Conventional Counterpart
Uniform Ada Lifecycle Representation = PDL/HOL
Incremental Development ==. Monolithic Development
Design Integration . Integration and Test
Demonstration Based Design Review = Documentation Based Design Review
Total Quality Management r=¢' Quality by Inspection

Figure 1: New Techniques vs. Conventional Techniques

language and support for p. ixial implementation (ab- a simple minded view of "design" as the structural im-
straction) provide a strong platform for creating a uni- plementation or partitioning of software components (in
form approach. terms of function and performance) and definition of

Many of the Ada Process Model strategies (summa- their interfaces. At the highest level of design we could
rized in Figure 1) have been attempted, in part, on other be talking about conventional requirements definition,
software development efforts; however, there are funda- at the lowest level, we are talking about conventional
mental differences in this approach compared to conven- detailed design and coding. Implementation is then the
tional software development models, development of these components to meet their inter-

Uniform Ada Lifecycle Representation. The pri- faces while providing the necessary functional perfor-
mary innovation in the Ada Process Model is the use mance. Regardless of level, the activity being performed
of a single language for the entire software lifecycle, in- is Ada coding. Top level design means coding the top
cluding, to some degree, the requirements phase. All of level components (Ada main programs, task executives,
the remaining techniques rely on the ability to equate global types, global objects, top-level library units ,
design with code so that the only variable during devel- etc.). Lower level design means coding the lower level
opment is the level of abstraction. This provides two program unit specifications and bodies.
essential benefits: The postponement of all coding until after CDR

in conventional software development approaches alsoI. The ability to quantify units of software (de- postponed the primary indicator of design quality: in-
sign/development/test) work in one dimension, tegrability of the interfaces. The Ada Process Model re-
Source Lines of Code (SLOC). While it is certainly quires the early development of a Software Architecti.re
true that SLOC is not a perfect absolute measure Skeleton (SAS) as a vehicle for early interface definition.
of software, with consistent counting rules, it has The SAS essentially corresponds to coding the top level
proven to be the best normalized measure and does components and their interfaces, compiling them, and
provide an objective, consistent basis for assessing providing adequate drivers/stubs so that they can be ex-
relative trends across the project life cycle, ecuted. This early development forces early baselining

of the software interfaces to best effect smooth evolu-2. A formal syntaz and semantics for lifecycle rep-

resentation with automated verification by an Ada tion, early evaluation of design quality and avoidance

compiler. Ada compilation does not provide corn- of downstream breakage. In this process, we have made

plete verification of a component. It does go a integration a design activity rather than a test activity.

long way, however, in verifying configuration con- To a large degree, the Ada language forces integration

sistency, and ensuring a standard, unambiguous through its library rules and consistency of compiled

representation. components. It also supports the concept of separating
structural definition (specifications) from runtime func-

Incremental Development. Although risk manage- tion (bodies). The Ada Process Model expands this
ment through incremental development is emphasized concept further by requiring structural design (SAS)
as a key strategy of the Ada Process Model, it was (or prior to runtime function (executable threads). Demon-
always should have been) a key part of most conven- strations provide a forcing function for broader runtime
tional models. Without a uniform lifecycle language as integration to augment the compile time integration en-
a vehicle for incremental design/code/test, conventional forced by the Ada language.
implementations of incremental development were diffi- Demonstration Based Design Review. Many con-
cult to manage. This management is simplified by the ventional projects built demonstrations or benchmarks
integrated techniques of the Ada Process Model. of standalone design issues (e.g., user system interface,

Design Integration. In this discussion, we will take critical algorithms, etc.) to support design feasibility.



However, the design baseline was represented on paper project context to accommodate the product character-
(PDL, simulations, flowcharts, vugraphs). These rep- istics, the life cycle phase, etc. The software quality as-
resentations were vague, ambiguous and not amenable sessment derived from this objective collection of rework
to configuration control. The degree of freedom in the metrics will require subjective analysis in some cases.
design representations made it very difficult to uncover The subjectivity here is in the fact that we are trying
design flaws of substance, especially for complex sys- to assess quality during development (this requires sub-
tems with concurrent processing. Given the typical jective analysis) using the same metrics used to assess
design review attitude that a design is "innocent un- quality following development (objective analysis). For
til proven guilty", it was quite easy to assert that the example, the volume of rework following product deliv-
design was adequate. This was primarily due to the ery is an objective measure of quality, or lack of quality.
lack of a tangible design representation from which true The amount of rework following the first configuration
design flaws were unambiguously obvious. Under the baseline during development is a subjective measure.
Ada Process Model, design review demonstrations pro- Zero rework might be interpreted as a perfect baseline
vide some proof of innocence and are far more efficient (unlikely), an inadequate test program, or an unambi-
at identifying and resolving design flaws. The subject tious first build. The following paragraphs define some
of the design review is not only a briefing which de- of the foundations in this approach:
scribes the design in human understandable terms, but Software Quality Definition. Software quality is the
also a demonstration of important aspects of the design degree of compliance with the customer ezpectations of
baseline which verify design quality (or lack of quality). function, performance, cost and schedule. This is an

Total Quality Management (TQM). In the Ada incredibly difficult concept to make objective. The
Process Model there are two key advantages for applying only mechanisms available for defining "customer expec-
TQM. The first is the common Ada format throughout tations" are Software Requirements Specifications for
the lifecycle which permits consistent software metrics function and performance, and an approved expendi-
across the software development work force. Although ture plan which quantifies cost and schedule goals (ba-
these metrics don't all pertain to quality (many pertain sically, this corresponds to the "contract"). These two
to progress), they do permit a uniform communications mechanisms are traditionally the lowest quality prod-
vehicle for achieving the desired quality in an efficient ucts produced by a project since they are required to be
manner. Secondly, the demonstrations serve to provide agreed upon with numerous unknowns far too early in
a common goal for the software developers. This "in- the lifecycle. The evolutionary process model and soft-
tegrated product" is a reflection of the complete design ware quality metrics should provide better insight into
at various phases in the life cycle for which all person- the degree of compliance with customer expectations in
nel have ownership. Rather than individually evaluating the above four perspectives.
components which are owned by individuals, the demon- Software Change Order (SCO). A Software Change
strations provide a mechanism for reviewing the team's Order constitutes direction to proceed with changing a
product. This team ownership of the demonstrations is configured software component. This change may be
an important motivation for instilling a TQM attitude, needed to 1) rework a component with bad quality (a

SOFTWARE QUALITY METRICS fix), or 2) rework a component to achieve better quality

APPROACH (an enhancement) or 3) accommodate a customer di-
rected change in requirements. The difference between

In essence, the approach we are taking is similar to the first two types of rework is inherent in the neces-
that of [81 who proposes to measure software quality sity for the change. If the change is required for com-
through the absence of spoilage. While his definitions pliance with product specifications, then the rework is
are purposely vague (to remain technology and project type 1. If the change i; desired for cost-effectiveness,
independent), ours are quite explicit. The key to this increased testability, increased usability, or other effi-
metrics approach is similar to conventional cost esti- ciency reasons (assuming the unchanged component is
mation techniques such as COCOMO [3] where quan- compliant), then the rework is type 2. In both cases,
tifiability and consistency of application are important. the rework should result in increased end product qual-
Note that software cost estimation has subjective inputs ity (requirements compliance per dollar), however, type
and objective outputs. Our approach will define objec- 1 also indicates inadequate quality in a current base-
tive inputs which may require subjective interpretation line. In practice, differentiating between type 1 and
for project context. type 2 may be quite subjective. As discussed later,

Our primary metric for software quality will be re- most of the metrics are insensitive to the categoriza-
work as measured by changed SLOG in configured base- tion, but if the differentiation is consistently applied, it
lines. This metric will also need to be adjusted for can provide useful insight. Conventionally, SCOs were



called Software Problem Reports (SPRs). To avoid con- 2. for custom enumeration types (e.g., system state,
fusion ("problem" has a negative connotation, and not socket names, etc.) and record types each enumer-
all changes are necessarily problems), we have changed ation or field should be listed on a separate line.
the terminology. The software quality metrics collec- (Custom -types usually involve custom design and
tion and analysis will use type 1 and type 2 SCOs in engineering, hence an increased number of SLOC.)
an appropriate manner. Type 3 SCOs need to be sep-
arated since they do not reflect any change in quality, 3. for predefined enumeration types (e.g., keyboard
they do however, redefine the customer expectations. keys, compass directions), enumerations should be
Furthermore, Type 3 SCOs typically reflect a change listed on as few lines as possible without loss of
which is of more global impact thereby requiring vari- readability. (These kinds of types generally require
ous levels of software and system engineering as well as no custom engineering.)
high level regression testing. These types of SCOs will 4. Initialization of composite objects (e.g., records or
not be used in these metrics due to this wide range of arrays) should be listed with one component per
variability. Rather, the data derived from type 1 and line. (Frequently, each of these assignments rep-
type 2 SCOs should provide a solid basis for estimating resents a custom statement, an others clause is
maintainability and the effort required for type 3 SCOs. typically used for the non-custom assignments.)

Source Lines of Code (SLOC). There has always
been a controversy as to whether SLOC provides a Within Ada bodies each semi-colon counts as one SLOC.
good metric for measuring software volume (DeMarco Generic instantiations count one line for each generic
calls this bang). [11] identifies some of the precau- parameter (spec or body).
tions necessary when dealing with SLOC. Upon reading The definition above treats declarative (specifica-
open literature which discusses project productivities tion) design much more sensitively than it does exe-
(SLOC/MM), it is easy to see that there is little, if any, cutable (body) design. It also does not recognize the
"-)parability between projects within the same corn- declarative part of a body as the same importance as
pany no less projects from different companies. [4] iden- a specification part. Although these and other debates
tifies the pros and cons of various measures and comes can surface with respect to the "optimum" definition
to the conclusion that there is nothing better. Every- of a SLOC, the optimum absolute definition is far less
one agrees however, that whatev.er one uses, it must be important than a consistent relative definition.
defined objectively and consistently to be of value for Quality Control Board. The QCB constitutes the
comparison. How we define the absolute unit of SLOC governing body responsible for autho *zing changes to a
is not as important as defining it consistently across all configured baseline product (conventionally known as a
projects and all areas of a specific project. Therefore, configuration control board - CCB). This body is com-
the preferred way to define a SLOC is the following: posed, at a minimum, of the development manager,

customer representative, each product manager, sys-
The number of SLOC for a given set of Ada tems effectiveness representative and the test manager.
program units is defined as the output of a The QCB decides on all proposed changes to configured
SLOC Counting Tool. products and approves all SCOs. The QCB is respon-

sible for collecting the Software Quality metrics, objec-Enforcing this definition is simple to achieve by pro- tively and subjectively analyzing trends, and proposing
viding a portable tool. By accepting certain non- changes to the development process, tools, products or
:ontroversial and simple standards for program unit personnel to improve future quality.
ieaders and program layout the tool can provide more Configured Baseline. A configured baseline consti-
raluable outputs than simply SLOC counts (e.g., static tutes a set of products which are subjected to change
iierarchies, and complexity ratings)- control through a Quality Control Board (QCB). Con-

Ada/COCOMO [51, [6] defines SLOC for Ada pro- figured baselines usually represent intermediate prod-
;rams as: Within an Ada specification part, each car- ucts which have completed design, development, and
iage return counts as one SLOC. Specifications shall informal test and final products which have completed
,e coded with the following standards (rationale is pro- formal test.
ided in italics):

Metrics Derivation1. each parameter of a subprogram declaration be
listed on a separate line (The design of a subpro- The remainder of this paper provides substantial de-
gram interface is done in one place and generally tail in the definition and description of the necessary
the effort associated with the interface design is de- statistics to be collected, the metrics derived from these
pendent on the number of parameters.) statistics and their interpretation. This section provides



a simple overview of how these metrics were derived, the While the values above provide useful end-product
necessity of some of the collected statistics and their rai- objective measures, their intermediate values as a func-
son d'&tre. The following derivations are not an obvious tion of time would also provide insight during the devel-
top down progression, rather, they resulted from sub- opment process into the expected end-product values.
stantial trial and error, numerous dead end analyses, Furthermore. once we have gained some experience with
intuition and heuristics. maintenance of early increments, this experience should

The fundamental hypothesis was that their was sig- be useful for predicting the rework inherent in remaining
nificant information content in the character of rework increments.
being performed over the project lifecycle. The obvi- The above brief derivation is starting to push the
ous raw statistics to collect include number and type limits of our first goal (simplicity) and the following
of software changes, SLOC damaged, and SLOC fixed. sections, on the surface, will appear to be somewhat
The problem was to find the right filtering techniques complex. A few remarks about this are in order. First,
for the raw rework statistics which identify useful trends there will always be a tradeoff between simplicity and
and to uncover objective measures which quantify prod- real insight. Surface insight is usually attained very
uct attributes both during development and as an end- simply, detailed insight requires added knowledge and
product. Our original intent was to provide a quantifi- complex-ity. We have chosen a set of metrics which range
cation of the product's modularity, changeability, and from simple to moderately complex to cover the multiple
maintainability. The first two are intuitively simple to perspectives needed by project management to ensure
define as a function of rework, the third is more subtle: accuracy. It is not necessary to deal with these met-

Modularity (Qod): The average extent of breakage. rics as a complete set. Subsets, or different sets are also

This identifies the need to quantify eztent of break- useful. Secondly, most of the analysis, mathematics and

age (we will use volume of SLOC damaged) and data collection inherent in these metrics should be auto-
number of instances of rework (Number of SCOs). mated so that managers need only interpret the results

In effect we are defining modularity as a measure and understand their basis.

of breakage localization. The above values were determined through exten-
sive analysis, trial and error, and intuition. There are

Changeability (Qc): The average complexity of certainly other metrics derivable from rework statistics
breakage. This identifies the need to quantify corn- which would also provide useful insight. The following
plezity of breakage (we will use effort required to sections provide more detailed descriptions and nota-
resolve) and number of instances of rework (Num- tions for the collected statistics (Table 1), in-progress
ber of SCOs). indicators (Table 2), and end-product quality metrics

Maintainability (QM): Theoretically the maintain- (Table 3). Hypothetical expectations are provided in
ability of a product is related to the productiv- Figure 2 for the in-progress indicators and collected

ity with which the maintenance team can operate. statistics.
Productivities however, are so difficult to compare Collected Statistics
between projects that this definition was intuitively
unsatisfying. If we ratio the productivity of rework Table I identifies the necessary statistics which must be
to the productivity of development, we end up with collected over the lifecycle to implement our proposed
a value which is independent of productivity but yet metrics.
a reflection of the complexity to change a product in Total Source Lines The SLOCT metric tracks the
relation to the complexity to develop it. This nor- estimated total size of the product under devel-
malizes out the project productivity differences and opment. This value may change significantly over
provides a relatively comparable metric. Maintain- the life of the development as early requirements
ability then, will be defined as the ratio of rework unknowns are resolved and as design solutions ma-
productivity and development productivity. Intu- ture. This total should also include reused software
itively, this value identifies a product which can be which is part of the delivered product and subject
changed three times as efficiently (QM = .33) as it to contractor maintenance.
was developed as having a better (lower) maintain-
ability than a product that can be changed twice as Configured SLOC This metric simply tracks the
efficiently (QM = .5) as it was developed, indepen- transition of software components from a ma-
dent of the absolute maintenance productivity real- turing design state into a controlled configura-
ized. The statistics needed to compute these values tion. For any given project, this metric will pro-
are the total development effort, total SLOC, total vide insight into progress and stability of the de-
rework effort and total reworked SLOC. sign/development team. [121 discusses some of the



gram and:
Statistic Definition

EffortE_,.. + Effortimp.o....t, = 
Constant

Total SLOC SLOCT = Total Product SLOC

The actual differentiation between Type 1 and

Configured SLOC SLOCc = Standalone Tested SLOC Type 2 is somewhat subjective. The metrics de-
fined herein are not particularly sensitive to either
type since they rely on the sum of the impacts from

Errors SCO ' = No. of Open Type I SCOs both types. However, the difference between Type
SC0 = No. of Closed Type I SCOs 1 damage and Type 2 damage may provide useful
SCOi = No. of Type I SCOs insight as demonstrated on CCPDS-R.

Open Rework Theoretically, all rework correspondsImprovements SCO' = No. of Open Type 2 SCOs to an increase in quality. Either the rework is
SC02= No. of Closed Type 2 SCOs necessary to remove an instance of "bad" quality
SC0 2 = No. of Type 2 SCOs (SCO1 ), or to enhance a component for life cycle

cost effectiveness (SC0 2 ). The dynamics of the

Open Rework B1 = Damaged SLOC Due to SCOi' rework coupled with the project schedule context
B 2 =Damaged SLOC Due to SCO2 must be evaluated to provide an accurate assess-

ment of quality trends. A certain amount of rework
is a necessity in a large software engineering effort.

Closed Rework F, =SLOC Repaired after SC0 In fact, early rework is considered a sign of healthy
F2 =SLOC Repaired after SCO progress in the evolutionary process model. Con-

tinuous rework, late rework, or zero rework due to
the non-existence of a configured baseline are gen-

Total Rework Ki = F + Bi erally indicators of negative quality. Interpretation
R 2 = F3 + B 2  of this metric requires project context. In general

however, the rework must ultimately go to zero at
product delivery. In order to provide a consistent

Table 1: Collected Raw Data Definitions and automatable collection process, rework is de-
fined as the number of SLOC estimated to change
due to an SCO. The absolute accuracy of the esti-tradeoffs and risk management philosophypiah mates is generally unimportant and since open re-

ent in laying out an incremental build approachn work is tracked with an estimate and closed rework
For projects with reused software, there will be an (see below) is tracked separately with actuals, the
early contribution to SLOCc and thus "immediate values continually correct themselves and remain
progress" and quality metrics as defined below, consistent.

Errors Real errors (type 1 SCOs) constitute an impor- Closed Rework Whereas the breakage metrics esti-
tant metric from which many of the following are
derived. The expectation is that the highest in- mated the damage done, the repair metrics should
cidence of uncovering errors happens immediately identify the actual damage which was fixed. Upon
after the turnover and decreases with time (i.e., the resolution, the corresponding breakage estimate

software matures). should be updated to reflect the actual required re-
pair that remains in the baseline. The actual SLOC

Improvements The other stimulus for changing a fixed will clearly never be absolutely accurate. It
baseline, improvements (type 2 SCOs), are also key will, however, be relatively accurate for assessing
to the assessment of quality and progress towards trends inherent in these metrics. Since fixed can
producing quality. The expectation for improve- take on several different meanings depending on
ments is approximately inversely proportional to what is added, deleted and changed, a consistent
errors, in that as the error rate starts off high and set of guidteline5 is necessary. Changed SLOC will
damps out, the improvements start off low (the fo- increase R, without a change to SLOCC. Added
cus is on errors) and increase. This phenomenon code will increase R, and SLOCC, although not
is basically derived from the assumption that a necessarily in the same proportion. Deleted code
fixed team is working the Test/Maintenance pro- (not typically a problem) with no corresponding



addition could reduce both R1 and SLOCC. A con- Rework Stability The difference between total re-
ventional differences tool with an appropriate pre- work and closed rework provides insight into the

processor which converts properly formatted source trends of resolving issues. The important use of

files into a format which contains no comments and this metric is to ensure that the breakage rate is

1 SLOC per compared record would be the best not outrunning the resolution rate. Figure 2 idn-

method for computing changed SLOC. A simpler tifies an idealized case where the resolution rate

method (and the one used here) would be to simply does not diverge (except for short periods of time)
estimate the magnitude of the fixed SLOC. Given from the breakage rate. Note also that the break-

the volume of changes and the need for only roughly age rate somewhat tracks the SLOCc delivery rate.

accurate data for identifying trends, the accuracy A diverging value of SS would indicate instability

of the raw data is relatively unimportant. of rework activities. A stable value of SS would

indicate systematic and straightforward resolution

In-Progress Indicators activities.

Table 2 defines the in-progress indicators and Fig-
ure 2 identifies relative expectations. It is difficult to de-
fine the absolute expectations for the in-progress metrics SLO LOCr

without comparable data from other projects. Relative
expectations are described in the following paragraphs. /

Indicator Definition

Rework Ratio RR =
SLOCc

Rework Backlog B8 = -B1- 
+

Rework Stability SS= (R 1 + R 2 ) - (F + F2 )

Table 2: In Progress Indicator Definitions

Rework Ratio The sum of the currently broken prod-
uct (B 1 + B 2 ) and the already repaired breakage
(F1 + F 2) corresponds to the mass of the cur- RR

rent product baseline which has needed rework

(RI + R 2 ). The rework ratio (RR) identifies the
current ratio of SLOCc which is expected to un- _,_ BB
dergo rework prior to maturity into an end product. ------

The expectation for RR shown in Figure 2 is to in-
crease to a stable value with minor discontinuities
following the initial delivery of each build.

Rework Backlog The current backlog of rework is Figure 2: In-Progress Indicators Example Expectations
defined as the percentage of the current SLOCc
which is currently in need of repair. In general, one
would expect that the rework backlog should rise to End-Product Quality Metrics

some level and remain stable through the test pro-

gram until it drops off to zero. Large changes from The end-product metrics reflect insight into the

month to month should clearly be investigated, maintainability of the software products with respect



to type 1 and type 2 SCOs. Type 3 SCOs are explic- ity of the integrated product to localize the im-

itly not included since they redefine the inherent target pact of change. To the maximum extent possible,

quality of the system and tend to require more global QCBs should ensure that SCOs are written for sin-

system and software engineering as well as some ma- gle source changes.

jor re-verification of system level requirements. Since
these types of changes are dealt with in extremely di- Changeability This value provides some insight into

verse ways by different customers and projects, they the ease with which the products can be changed.

would tend to cloud the meanings and comparability of While a low number of changes is generally a good

the data. However, the metrics data below should be indicator of a quality process, the magnitude of ef-
very helpful in determining and planning the expected fort per change is sometimes even more important.

effort for implementing type 3 SCOs. Maintainability This value identifies the relative cost

of maintaining the product with respect to its de-

Metric Definition velopment cost. For example, if RE = RS, one

could conclude that the cost of modification is

E-Effosco, + EffGsco, equivalent to the cost of development from scratch
RE = Effo-T.,., (not highly maintainable). A value of QM much

Rework Proportions less than 1 would tend to indicate a very main-
R5 = (5IRT.,., tainable product, at least with respect to develop-

ment cost. Since we would intuitively expect main-

tenance costs of a product to be proportional to its

RMaR, development cost, this ratio provides a fair normal-
Modularit Qization for comparison between different projects.

Since the numerator of QM is in terms of effort

Effavtsco, +E-foatsco, and its denominator is in terms of SLOC, it is a ra-
Changeability QC = sco,+SCO2  tio of productivities (i.e., effort per SLOC). Some

simple mathematical rearrangement will show that

Maintainability 
QM is equivalent to:

Pr'odueiivityM .,, . ._,,
Q M -- TroductivityD .wf.. .

It is difficult to define the expectations for the end-
Table 3: End-Product Quality Metrics Definitions product metrics without comparable data from other

projects. Now that we have solid data for CCPDS-R, we

can form exnectations for future increments of CCPDS-
Rewrn-+ Proportions The RE value identifies the R as well as other projects.

percentage of effort spent in rework compared to The above descriptions identify idealized trends for

the total effort. In essence, it probably provides these metrics. Undoubtedly, real project situations will

the best indicator of productivity. The activities not be ideal. Their differences from ideal, however, are

included in these efforts should only include the important for management and customer to compre-
technical requirements, software engineering, de- hend. Furthermore, the application of these metrics on

sign, development, and functional test. Higher project increments as well as the project as a whole,
level system engineering, management, configura- should be useful.

tion control, verification testing and higher level
system testing should be excluded since these ac- APPLICATION RESULTS
tivities tend to be more a function of the company,

customer or project attributes independent of qual- The Command Center Processing and Display Sys-

ity. The goal here is to normalize the widely varying tem Replacement (CCPDS-R) project will provide dis-

bureaucratic activities out of the metrics. RS pro- play Information used during emergency conferences by

vides a value for comparing with similar projects, the National Command Authorities; Chairman, Joint

future increments, or future projects. Basically, it Chiefs of Staff; Commander in Chief North Ameri-

defines the proportion of the product which had to can Aerospace Command; Commander in Chief United

be reworked in its lifecycle. States Space Command; Commander in Chief Strategic
Air Command; and other nuclear capable Commanders

Modularity This value identifies the average SLOC in Chief. It is the missile warning element of the new In-
broken per SCO which reflects the inherent abil- tegrated Tactical Warning/Attack Assessment System



developed by North American Aerospace Defense Corn- (A3), while less risky, was bulky and a substantial por-

mand Air Force Space "rmmand. tion of the build was produced by (somewhat immature)

The CCPDS-R prject is being procured by Air automated tools. Nevertheless, it was installed in two

Force Systems Command Headquarters Electronic Sys- increments (A31 and A32).

terns Division (ESD) at Hanscom AFB and was awarded SCOs. As expected, the SCO rate is proportional

to TRV Defense Systems Group in June 1987. TRW to the SLOCc rate. The actuals also suggest that the

will build three subsystems. The first, identified as the state of the first two builds was higher quality at delivery

Common Subsystem. is 30 months into development, than the third build. The feeling of the development

The Corn n Subsystem consists of 350,000 source lines managers on the project concurs with this assessment

of Ada with a development schedule of 38 months. It but also added that it was during the A3-A4 timeframe

will be a highly reliable, real-time distributed system when substantial requirements volatility occurred in the

with a sophisticated User Interface and stringent per- user interface and external interface definitions. The

forinance requirements implemented entirely in Ada. number of open SCOs has remained fairly constant with
CCPDS-R Ada risks were originally a very serious con- respect to the number generated and hence indicative
cern. At the time of contract definition, Ada host and that the rework is being resolved in a timely fashion.

target environment, along with Ada trained personnel Rewo-k Resolution. The total rework (RI --- R2) has

availability were questionable. also grown at a rate proportional to SLOCc growth but

The data provided in this paper was collected by its rate of growth is decreasing. Now that the software

manually analyzing 1500+ CCPDS-R SCOs maintained is all configured and turnovers are complete, breakage

online and in hard copy notebooks. Most of the data de- should start damping out rapidly. The lesolved rework
fined in the previous section was available in the SCOs. (F 1 + :) tracked the total rework closely with little,

Each problem description and resolution was evaluated if an, divergence. The last three months indicate that
to determine whether the SCO was type 1 or type 2 and the rite of resolution is exceeding the rate of breakage.

wh,,ther the SCO was relevant to the operational prod- This should indicate to the management team that no

uct (out of the 1500 SCOs, 910 were relevant, the re- serious problems are lurking in the future.

mainder were SCOs for initial turnovers, support tools, Rework Ratio. The rework rate has grown from
test software or commercial software). Furthermore, the initial builds to an apparently stable value of .15.

each SCO opened contained an estimate of the effort This would imply that the initial build was more ma-

to fix and each closed SCO provided the actual (techni- ture at delivery than the second and third builds. With
cal) effort required for the fix. For each relevant SCO, over 98% of the software in SLOCc, this value should
the SLOC breakage estimate was based on experience be expected to be fairly stable and a good predictor of
with the fix, the detailed description of the resolution, future rework. The amount of rework backlog in pro-

the hours of analysis and the hours required for im- portion to SLOCc has remained fairly constant and

plementing the fix. Following the initial definition of implies that the divergence of breakage rate and reso-
these metrics the actual breakage estimates were col- lution rate should correct itself shortly. The situation

lected more rigorously. Wh.le not perfectly accurate in here is that substantial increments are being added to
all cases, these estimates are at least consistent relative SLOCc and an increase in breakage vs resolution is ex-

to each other and given the large sample space, rela- pected since the development team is likely focusing on
tively accurate for the intended use. Again, it is not installing baseline components rather than fixing com-

that important to be absolutely exact when the metrics ponents.
and trends are derived from a large sample and only SCO Effort Distributicns. Figure 4 identifies the

useful to at most 1 or 2 digits of accuracy. distribution of SCOs by the effort required for resolu-

CCPDS-R Common Subsystem Analysis tion. This graphic also suggests that the software is

generally easy to modify. A deeper analysis of the data
Figure 3, Figure 4 and Table 4 provide the actual shows that the majority of complex SCOs occurred in

data to date for the CCPDS-R project. The follow- the more complex early builds.

ing paragraphs discuss the quality metrics results for Rework Proportions. RE (Table 4) defines the per-
the CCPDS-R common subsystem as a whole with con- cent of the development efforts devoted to rework. Since

clusions drawn where applicable. Figure 3 provides we only tracked the technical effort in analyzing and im-

CCPDS-R actuals with the incremental build sequence plementing resolutions, we have compared it to the soft-
(SLOCc) overlayed for comparison, ware development effort devoted to the same, namely,

Configured SLOC. The CCPDS-R installments of the requirements, design, development and test effort.
SLOCc delivered small initial builds (AO/A1 and A2) In both cases we eliminate the cost of management,
with the highest risk components. The middle build facility, secretarial, configuration management, quality
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assurance, and other level of effort administrative ac- the non-trivial errors which creep into a configuration
tivities. Note that we have included the software re- baseline. This value suggests that the software design is
quirements analysis effort since, in our evolutionary ap- flexible but with no basis for comparison, this is purely

proach, there is only a subtle difference between require- conjecture. An additional metric which would be useful

ments and design. Rs defines the percentage of source in assessing modularity would be the number of files
code which has undergone rework. CCPDS-R is cur- affected per change, This would provide insight into the
rently projecting a rework ratio of 14% . locality of change as well as the extent. This information

was not available in the CCPDS-R historical data, but

Metric CCPDS-R Value it is being collected in future data.

Changeability. The average effort per SCO provides

RE = 6.7% a mechanism for comparing the complexities of change.

Rework Proportions As a project average, 16 hours suggests that change is

Rs= 13.5% fairly simple. When change is simple, a project is

likely to increase the amount of change thereby

increasing the inherent quality.

Modularity Qrod = 5 3 SLOC Rework Improvement. Figure 5 identifies how the=53C changeability (Qc) evolved over the project schedule

to date. While conventional experience is that changes

Changeability Qc 15.7 get more expensive with time, CCPDS-R demonstrates
CC. that the cost per change improves with time. This is

consistent with the goals of an evolutionary develop-

Maintainability Q! = .49 ment approach [12] and the promises of a good layered
architecture [13] where the early investment in the foun-
dation components and high risk components pays off

in the remainder of the life cycle with increased ease of

Table 4: End-Product Quality Metrics Definitions change. The trend of this metric would indicate that
the CCPDS-R software design has succeeded in pro-

Modularity. This value characterizes the extent of viding an integrable component set with effective con-
damage expected for the average SCO. A value of 53 trol of breakage. Had the trend of this metric showed

SLOC implies that the average SCO only affected the growth in effort per SCO without stabilization, manage-
equivalent of one program unit. Since most of the trivial ment may be concerned about the design quality and
errors get caught in standalone test and demonstration downstream risks in reworking an increasingly hard to

activities, this value indicates the average impact for change product. Note that Qc metrics do not include
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the cost of downstream re-verification of higher level analysis was performed to analyze the various contribu-

requirements since the broad range of these activities tions to the values in Table 4 by the individual CSCIs.

would corrupt the intent of the metric. Qc has been While the evaluation of this lower level data will not be

purposely defined to reflect the technical risk of change, discussed here in detail, they did uncover some inter-

not the cost of reverifi(ation in a larger context or the esting phenomena which have since been incorporated

management risk. For txample, a late change of minor into the plans of future subsystems. There were signif-

complexity could result in regression test by inspection icant differences in the various CSCI level values which

or a complete reverification of numerous performance provided insight into various levels of quality and the

threads. This range of effort varies with the context of need for perturbations to future plans. The QM varied

the change, the customer/contractor paranoia and a va- from .12 to .85 across 6 CSCIs. For example, relatively

rietv of other issues which are not reflective of the ease low values were observed for algorithm (.12) and display
of change. The technical cost of change is not closed (.27) software where ease of change was a clear design
out however, until this reverification is complete since goal. Higher values were observed for the external com-

it may result in reconsideration. munications software (.51) and system services software

Maintainability. The ratio of RE to Rs character- (.85) where changes in an external message set for exam-

izes the cost of reworking CCPDS-R components com- ple, could result in broader system impacts. The range

pared to developing them from scratch. This value of values clearly identifies the relative difference in risk

along with the change traffic experienced during the associated with changing various aspects of the design.

last phase of the life cycle could be used to predict the The absolute risk associated with these changes is dif-

maintenance productivity expected from the current de- ficult to assess without further data from other similar

velopment productivity being experienced. The overall projects.

change traffic during development should not be used to Global Summary. In general, the CCPDS-R pro-
predict operational maintenance since it is overly biased gram appears to be converging towards a very high qual-
by immature product changes. The FQT phase change ity product with high probability. This assessment is
traffic (likely a lower value than the complete develop- implied from the visible stability in the quality metrics.
ment lifecycle traffic), is a more accurate measure. A The fact that these metrics are stable generally implies
value of .49 seems like a good maintainability rating, that the remaining efforts are Predictable. If the pre-
but further project data would permit a better basis for dictions do not extrapolate to better than required per-

assessment. formance, action can be taken. The key to optimizing

This value requires some caveats in its usage. First, the value of these metrics is to achieve stabilization as

this maintenance productivity was derived from small early as possible so that if predicted performance does
scale maintenance actions (fixes and enhancements) as not match expectations, management can instigate im-
opposed to large scale upgrades where system engi- provement actions as early in the life cycle as possible.
neering and broad redesign may be necessitated. The Some characteristics of CCPDS-R which are important
personnel performing the maintenance actions how- to keep in mind when interpreting the above metrics
ever, were knowledgeable developers which may bias the include:
maintainability compared to the expertise of the mainte-
nance team. This data, like any productivity data, must 1. Many changes incurred by the project were really
be used carefully by people cognizant with its derivation type 3 (true requirements change). However, since
to ensure proper usage. most of these were small it was easier to incorpo-

Functional CSCI Analysis. A complete lower level rate them rather than go through the formal ECP



process. In retrospect, the sum of all these little SUMMARY
changes was quite substantial. By itself, CCPDS-R is perhaps a bad example for

2. These metrics are derived from the development testing these metrics. In general, the project has per-
phase, comparison with other project's mainte- formed as planned and has a high probability of deliver-
nance phase metrics is misleading. The metrics ing a quality product. It would be useful to examine a
available in the final 3 months prior to delivery (as less successful project to illustrate the tendencies which
opposed to the lifecycle averages presented here) every project manager should be looking for as indica-
however, should be fairly comparable. tors of trouble ahead.

None of these metrics by themselves, provides
Operational Concept. The concept of operations for e n dt to m e an as s m vof prot s

enough data to make an assessment of a project's qual-
the software quality metrics program is to provide in- itv. They must be examined as a group in conjunction
sight for the purposes of managing product development with other conventional measures to arrive at an accu-
with minimum interference to the development team. rate assessment. They also do not represent the only
This will be accomplished by integrating the standards set of useful metrics possible from the collected statis-
for metrics collection into the tools and QCB proce- tic on SCOs and rework. There are many other ways
dures. The responsibilities of this initiative are allocated to examine this data and present it for trend analysis.
as follows: With further automation, these other views would be

Software Developers: Follow the core Ada De- simple to produce. The following activities still need to

sign/Development Standards be performed to provide a complete initiative:

Software Development Managers: Follow the 1. Enhance the standard SCO form with definitions,

evolutionary process model, adhere to core software standards and procedures for usage.

quality metrics policy, coordinate with project sys- 2. Enforce a single, portable SLOC Counting Tool
tems effectiveness any project unique policies, in-
terpret systems effectiveness SQM analysis and be 3. Identify Ada standards (which would be manda-
accountable for issues and resolutions. tory across all Ada projects) necessary to guaran-

tee consistent metrics collection across projects and
Corporate Systems Effectiveness: within projects. This primarily involves standards

Define the SQM policy/tools/procedures, evalu- for program unit headers and program layout which
ate project implementations, improve the poli- are not controversial.
cies/tools/procedures and ensure consistent usage
across different projects. This is the same function 4. Develop an SCO data base management system

proposed by [81 as the standards group. with supporting tools for automated collection,
analysis and reporting in the formats defined above

Project Software Engineering: Flowdown the and other, as yet undiscovered, useful formats.
SQM policy/tools/procedures into a project im-
plementation. implement project QCB, SQM col- 5. Define QCB procedures, guidelines for metrics

lection, SQM analysis, SQM reporting, evaluate analysis and candidate reporting formats.

project implementations, and propose candidate 6. Incorporate this initiative into corporate policy.
improvements to the policies/tools/procedures.
Note that we are putting this function in the hands As a conclusion, we should evaluate the approach
of knowledgeable project personnel (as opposed to presented herein with our original goals:
conventional independent QA personnel) since the 1. Simplicity. The number of statistics to be main-
administrators of these metrics should be moti- tained in an SCO database to implement this ap-
vated for effective use through ownership in both proach is 5 (type, estimate of damage in hours
the process and the products. and SLOC, actual hours and actual SLOC to re-

We would foresee SQM metrics reporting on a solve) along with the other required parameters
monthly or quarterly basis depending on project phase, of an SCO. Furthermore, metrics for SLOCc and
size, risks, etc. Furthermore, the entire SQM initiative SLOCT need to be accurately maintained. If auto-
should be relatively dynamic during its infancy as real mated in an online DBMS, the remaining metrics

project applications determine what is most useful and could be computed from various perspectives (e.g.,
feedback is incorporated, by build, by CSCI) in a straightforward manner.

Depending on the extent of discipline already inher-
ent in a project's CCB and development metrics,
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