
*AD-A243 020

TECHNICAL SUPPORT TASK REPORT
FOR THE MODERNIZATION

OF DEFENSE LOGISTICS
STANDARD SYSTEMS

Volume HI: Logistics Gateway Node Prototype
Construction and Operation

Report DL702RI

DTIC
S DECOT499

DC 19 April 1991

William T. James, III

with
Christo G. Andonyadis

John S. Doby

for A be~n~ov~John Lycas

frpiiiiic adsale; its
di -,rifbu icon is unlimnited.

Prepared pursut to Departmoent, of Defense Contract MDA903_90-.
The view" exprse hebre are those of the Logistics Managemsent Institute at
the timse of issue but not necessarily thee. of the Departmnent of Defense.
Permission to quote or reproduce say part - emcpt for Government
purposes - Must be obtained from the Logistics Managemnt Institute.

LOGISTICS MANAGEMENT INSTITUTE
640 Goldsboro Road

Bethesda, Maryland 20817-5M8

91-14451

Form ApprovedREPORT DOCUMENTATION PAGE OPM No. 0704-0188

Publi reputin burden for this collection of informartion Is estimaed to average I hour we response, inclding the time for eviewin Instructions. searchin existing deta sources
gathering, and maintaiuting the data neede, and reviewing the collection of Information. Send comments regaring this burden estimatte or any other aspect of this collection of
Wnormartion including suggestions for reducing this burdn to ahingo Headquarters Servies. Directorate for Information Opeations and Reports. 121S Jefferson Davis Highway. Suite
1204, Arlington, VA 222524302. and to the Office of Information and Regulatory Affairs. Offlice of Management and Budget. Washington. DC 20M0.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 1991 Final

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Technical Support Task Report for the Moderization of Defense Logistics Standard Systems - C MDA903-90-C-0006
Volume II- Logistics Gateway Node Prototype Construction and Operation PE 0902 198D

6. AUTHOR(S)
William T. James, III with Christo G. Andonyadis, John S. Doby, John Lycas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
Logistics Management Institute REPORT NUMBER
6400 Goldsboro Road LMI-DL702RI
Bethesda, MD 208 17-5886

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Logistics Standard Systems Division AGENCY REPORT NUMBER
6301 Little River Turnpike, Suite 210
Alexandria, VA 22312

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
A: Approved for public releese; distribution unlimited

13. ABSTRACT (Maximum 200 words)
This volume details the construction and operation of the Prototype Logistics Gateway Node (LGN) developed for the support task. The
document is written from the perspective of software performance and is intended to assist in understanding and implementing the technical
specification developed for the LGN.

14. SUEJECTTERMS 15. NUMBER OF PAGES
MODELS, EDI Translation, Logistics Gateway Node, LGN, CLGN, Prototype, MODELS Feasibility Test 170

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT U
Unclassified Unclassified UnclassifiedII

NSN 7540401-230-5500 Standard Ferm 298, (Rev. 2-69)
preeabe by ANSI Stt 230IS
29"1

PREFACE

This technical report, in three volumes, is the final report covering more than
2 years of technical activity supporting the Modernization of Defense Logistics
Standard Systems (MODELS) project. The supporting activities included developing
translation tables and the table-driven software for converting current fixed-length
logistics data formats into new variable-length transaction equivalents. They also
included designing and testing prototype hardware and software platforms that
support transaction interchange between logistics sites.

This volume, Logistics Gateway Node Prototype Construction and Operation, is
Volume II of the series. It details the construction and operation of the prototype
logistics gateway nodes (LGNs) developed for the support task. The document is
written from the perspective of software performance. It is provided to assist in
understanding and implementing the technical specification developed for the LGN.

Volume I, Prototype Test Report, is an overview describing the task's purpose,
results, conclusions, and recommendations from the viewpoint of four major support
activities:

* Prototype LGN construction and testing

* Interconnection and control of telecommunicating LGNs

• Electronic data interchange transaction translation and testing

* Network performance simulation and cost modeling.

Volume III, Logistics Gateway Node Technical Specification, presents the
performance requirements for an LGN and central LGN (CLGN) interconnected
within a homogeneous network of LGNs under CLGN control. The specification's
purpose is to describe the technical capabilities necessary for a network of deployed

LGNs to meet the functional capability called for in OSD directives. --.. -..

Ava 0i++ c~OS

Dist Aai , O
A SC c' -'s

iii -i 'c~

LA,-

CONTENTS

Page

Preface .. iii

List of Tables .. ix

List of Figures ... xi

Chapter 1. Background ... 1- 1

Chapter 2. Operating Review 2- 1

Chapter 3. Overview of Requirements 3- 1

Local Connectivity 3- 1
Wide Area Network Connectivity 3- 2
CLGN and LocalLGNs 3- 2
Transaction Processing 3- 2
Throughp ut ... 3-3
Local andRemote Operations and Maintenance 3- 4
Logging Activity 3- 4

Chapter 4. Basic Design Principles 4- 1

Hardware/Software Platform 4- 1
Modular Design 4- 2
Parameterized Subsystem Start-up 4- 5

Chapter 5. Processing Environment 5- 1

Chapter 6. Naming Conventions 6- 1

Configuration Parameters 6- 1
Program Namies 6- 1
Messages6- 2
C-Program Identifiers 6- 2
CProam Named Constants 6- 2C-Application Functions 6- 4

Program Information Files 6- 4
DESQview Mailboxes 6- 4

Chapter 7. Processing Subsystems and Modules 7- 1

The Three States of Module Processing 7- 1
Common Module Procedures 7- 2

V

CONTENTS (Continued)

How a DESQview Process is Invoked

in the Prototype LGN 7- 5

Chapter 8. Local Interface Subsystem 8- 1

Local Interface Module 8- 1

Chapter 9. WAN Interface Subsystem 9- 1

X.25 M odule .. 9- 1
CLGN Polling Module 9-17

Chapter 10. Transaction Processing Subsystem 10- 1

LAN Dequeuing Module 10- 1
DLSS-to-EDI Translation Module 10- 6
WAN Queuing Module 10-24
WAN Dequeuing Module 10-27
EDI-to-DLSS Translation Module 10-30
LAN Dequeuing .. 10-38

Chapter 11. Operations Subsystem 11- 1

System Boot Module 11- 1
Suspend/Restart Module 11- 8
System Monitor Module 11-10
System Utilities Module 11-13
Remote Control Facility 11-15

Chapter 12. Logging and Logistics Data Base Subsystem 12- 1

Logging 12- 1
Data Base Module 12- 1

Chapter 13. LGN Maintenance 13- 1

System Boot Menu 13- 1
General Procedure for Remote Mode 13- 2
Translation Table Updates 13- 3
Module Software Updates 13- 3
Module Configuration File Updates 13- 4
Download Window File Updates 13- 4
Remote Commands 13- 5
File Requests ... 13- 6
LGN Reset ... 13- 6
LGN Shutdown ... 13- 6
Manual LGN Boot 13- 7

vi

CONTENTS (Continued)

Glossary .. Gloss. 1-3

Appendix A. Prototype Logistics Gateway Node Disk Directories .. A-1-A-12

Appendix B. Translator System Functions....................... B-i- B- 5

vii

TABLES

Page

3-1. Operations Tasks 3- 5

3-2. Maintenance Tasks 3- 6

4-1. LGN Development Software 4- 2

6-1 Module Mnemonics 6- 1

6-2. Hungarian Notation Type Prefixes 6- 3

6-3. Additional Hungarian Type Prefixes 6- 3

8-1. Local Interface Start-up Parameters 8- 3

9-1. WAN Interface Boot Parameters 9- 4

9-2. Selected X.25 Initialization Parameters 9- 6

9-3. MODELS Network Protocol Summary 9- 9

10-1. Data Types in EVALDLSS Data Base 10-13

10-2. P-Code Instruction Set 10-15

10-3. WAN Queuing Start-up Parameters 10-25

10-4. WAN Dequeuing Start-up Parameters 10-29

11-1. System Boot Messages 11- 6

13-1. SB Module Options 13- 2

13-2. Frequently Changed Configuration Parameters 13- 5

ix

FIGURES

2- 1. Overall LGN Information Flow.......................... 2- 1

2- 2. Information Flow From Host Through LGN................ 2- 3

2- 3. Information Flow From WAN Through LGN............... 2- 5

7- 1. Module Initialization State Processing.................... 7- 3

7- 2. Module Operational State Processing..................... 7- 4

7- 3. Module Shutdown State Processing...................... 7- 5

7- 4. PIF Structure....................................... 7- 6

8- 1. Local Interface Subsystem.............................. 8- 2

8- 2. Download Window Determination Logic................... 8- 5

9- 1 . WAN Interface Subsystem 9- 2

9- 2. WAN Interface Module Operational State Processing
for Direct-Connect LGN 9- 8

9- 3. WAN Interface Global Information Structure 9-13

9- 4. Dial _Info Global Structure............................ 9-13

9- 5. Inter-LGN Message Structure........................... 9-14

10- 1. Transaction Processing Subsystem.............. 10- 2

10-2. LAN Dequeuing Module.............................. 10- 3

10- 3. Module for DLSS-to-EDl Translation..................... 10- 7

10- 4. Table Interaction for DLSS-to-EDI Translation 10-10

10- 5. EVALDLSS Symbol Table Entry 10-12

10- 6. DLSS2EDI Table Entry............................... 10-13

xi

FIGURES (Continued)

Page

10- 7. System Table Entry and Related Structures 10-17

10- 8. Translog Grammar 10-20

10- 9. WAN Queuing Module 10-24

10-10. WAN Dequeuing Module 10-28

10-11. Module for EDI-to-DLSS Translation 10-31

10-12. EDI Symbol Table Entry 10-34

10-13. EDI2DLSS Table Entities 10-35

10-14. Table Interaction for EDI-to-DLSS Translation 10-36

11- 1. Operations Subsystem 11- 2

11- 2. Boot Entry Process 11- 3

xii

CHAPTER 1

BACKGROUND

The mission of a logistics gateway node (LGN) is to facilitate the two-way

translation of Defense Logistics Standard Systems (DLSS) and electronic data

interchange (EDI) transactions at a particular site; each LGN serves as a

communications interface, or gateway, between the local host computer and an

X.25 wide area network (WAN), to which are attached the other LGNs.

During Phase I of the Modernization of Defense Logistics Standard Systems

(MODELS) test, the LGN was strictly a translator invoked manually from the

keyboard each time a translation was desired. In Phase II, the LGN ran unattended,

except to simulate manually the download of a file from a host. Dial-up,

modem-to-modem communication was added. The various tasks in the Phase II
model ran serially. The Phase HI prototype LGN also operates unattended and

communicates with a local host and the WAN but is different in that it incorporates

multitasking, enabling its component processes to run in parallel.

This volume describes the MODELS Phase HI prototype LGN in considerable

depth, as a supplement to another Logistics Management Institute (LMI) volume of

this report, the Logistics Gateway Node Technical Specification.

1-1

CHAPTER 2

OPERATING REVIEW

The prototype LGN is a front-end processor for a host computer that transmits
and receives DLSS transactions. It functions as an interface point between its host
and an X.25 WAN. A specially configured central LGN (CLGN), eventually to be
sited at the Defense Automatic Addressing System (DAAS) Office (DAASO), serves
as an intermediate processing point for transactions that need to go through DAAS.
During Phase I, a prototype CLGN was configured at LMI.

The path taken by a file of transactions via the LGN is as follows: the file is
downloaded from the host, goes through translation at the LGN, is sent over the
WAN, and arrives at the destination LGN, where it is retranslated. The next, and
final, logical step of uploading to the receiving host was not implemented in the
prototype LGN, as a result f restrictions on accessing the host computers at the test
sites. For those transacti-gns requiring processing by DAAS, two transmissions - an
LGN-to-CLGN transmission, followed by a CLGN-to-LGN one - take place. For
most of the test, all trmnsactions were routed to the CLGN. Figure 2-1 depicts the
overall information flow at this abstract level.

Host -- - 0 0.. ...

4 -" ' " '"

FIG. 2-1. OVERALL LGN INFORMATION FLOW

2-1

The rest of this chapter describes an end-to-end network transmission as
implemented in Phase M. Although the flow of transactions through the system is
described as though it were serial, at any time there may be simultaneous
information flow in various directions and processing stages within an LGN.

Transaction flow begins when the LGN receives a file of outbound DLSS
transactions from its host through a local communications interface tailored to the
host. Figure 2-2 is a high-level view of the flow of information from the host through
the LGN to the WAN. Connection to the host may be constant, or it may be initiated
on a periodic basis by the LGN. LGN start-up parameters determine the frequency
and, to some extent, the nature of the connection to and downloading ot transactions
from the host. The software for connecting and downloading is selected and/or
customized to work with the host's hardware, software, and communications
environment.

Upon successfully downloading a file of DLSS transactions from the host, the
LGN assigns a unique 11-characterl name to the file; an 8-character timestamp that
will stay with the file through all phases of its processing (including retranslation at
the receiving LGN), and a 3-character extension indicating the type of file (e.g., raw
DLSS, filtered DLSS, error file). At each step of LGN processing, any intermediate or
result files produced are assigned a name consisting of the file's 8-character
timestamp plus a specific 3-character extension.

The LGN filters downloaded transactions to select only those appropriate to the
test. The filtering mechanism is sufficiently flexible to handle an expanding set of
filtering criteria. Each transaction that passes the filter is assigned a unique control
number 2 for tracking and for functional source-to-destination verification.
Transactions not passing the filter are written to a temporary log that is overwritten

each time a batch of transactions is filtered, in order to conserve hard disk space (the
prototype LGN does not use erasable media such as Write-Once-Read-Many (WORM)
optical disks). In actual operation, all error log entries would be kept until no longer
needed. Moreover, transactions from the host not passing the filter would be sent
back to the host as well, where they would be corrected or discarded.

1Eleven-character file names are the maximum allowed in MS-DOS.
2The control number is a concatenation of the LGN's unique identifier (a 3-character mnemonic;

e.g., DCS) with a hyphen and a 10-digit sequence number (e.g., DCS-1000000001), identifying any
transaction in the system uniquely.

2-2

LGN
Host Local interface

LAN dequeuing
and filter

DLSS-to-EDI
translation

WAN queuing

, WAN I!

~WAN interface

Note: LAN , local area network.

FIG. 2-2. INFORMATION FLOW FROM HOST THROUGH LGN

Using table-driven logic, the LGN translates the DLSS transactions into EDI
transactions and packages them for transmission on an X.25 WAN. Currently, all
transactions are sent to the CLGN, and an intermittent routing table based on LGN
source is employed at the CLGN. In this simple prototype implementation, each LGN
name is paired with another LGN name; thus, the source LGN for a file of
transactions uniquely determines the file's ultimate destination. This rudimentary
routing logic is used primarily to "complete the circuit" from the source LGN through
the CLGN to the destination LGN. In contrast, an operational or production system's

2-3

routing logic would depend on the type of each transaction and on address-table
entries based on a more complex set of system-based rules.

Once translated to EDI, the transaction file is compressed by the PKware data
compression software (PKARC) and queued for transmission across the WAN. The
compressed file is assigned a unique 11-character name consisting of an 8-character
timestamp and the 3-letter LGN identifier. Embedded within the compressed file is
the original file name, so its timestamp (assigned immediately after downloading
from the host) is retained. As soon as the transaction file is bundled (and the WAN
line is free), the LGN sends the compressed EDI transactions file, using an enhanced
XMODEM file transfer over an X.25 protocol. The LGN looks up the destination
routing identifier code (called the TORIC) in a file that maps the TORIC to the
network address of the LGN serving the TORIC. Although in the prototype system
all transactions go to the CLGN, a generalized mapping file not tailored specifically
to the CLGN is used. If the call or transmission fails, it will be retried at prespecified
intervals for a prespecified number of tries. The progress at each step of the X.25
session, including file transfer statistics, is logged either as an event or as an error,
depending on its success.

The flow of information from the WAN to the receiving LGN, as implemented in
the prototype system, is shown in Figure 2-3. As with sending files, the receiving
LGN logs each step of the file reception, including the network address of the source
LGN (this is a dial-up node if the source LGN is not directly connected to the WAN),
the name of the file received, the elapsed file transfer time, and a breakdown of the
X.25 packets exchanged. The source LGN name is derived from the file name, whose
last three letters are the source LGN's unique mnemonic.3

Once the EDI file is received, the LGN expands the compressed file and
translates each EDI transaction contained within it into the DLSS format. The result
is a DLSS file, an error file, and a compare file that reside on the receiving LGN. The
compare file is the result of a comparison made by the translator between the
original DLSS transactions and the output of the EDI-to-DLSS translation. Because

3During the test, the original DLSS transaction was embedded in the EDI transaction (as one or
more XXX segments), making a before-and-after comparison possible. The original transaction will
not be carried in the production system.

2.4

_LGN

EDI-to-DLSS
translation

[WAN
dequeuing

WAN [WAN[interface

FIG. 2-3. INFORMATION FLOW FROM WAN THROUGH LGN

of security restrictions in effect during the prototype operation, as well as other

practical considerations, the resultant DLSS file is not uploaded to the host.

At each step within the LGN, the status of processing is written to an event and

error log. There is one log per module; each log contains both event and error

messages, which are distinguishable by their formats. This arrangement allows a

file of transactions to be tracked from end to end and provides an audit trail for files,

but not at the transaction level. (Such will not be the case, of course, in a production

LGN; in it, end-to-end serialization and logging of all transactions will enable full

auditing down to the transaction level.)

Periodically, the log files are sent to the CLGN and subsequently cleared; this
operation is initiated via remote commands from the CLGN. Other ad hoc tasks

carried out remotely from the CLGN include table and file updates, file requests,

system commands (performed at the LGN), and module suspend and restart.

2-5

For the most part, the prototype CLGN,4 located at LI, operates like any other
LGN, with these differences:

" The biggest difference is that, at the prototype CLGN (1) EDI transactions
are retranslated to DLSS; (2) the resulting DLSS transactions are translated
back to EDI, and then (3) the EDI transaction file is forwarded to its final
destination LGN.5 This process is carried out to simulate (roughly) the
retranslation of certain transactions required of a production CLGN.
Because of time restrictions on development, the prototype CLGN does not
preserve transaction control numbers during retranslation from DLSS to
EDI; rather, new control numbers are assigned to each transaction.
Likewise, the prototype CLGN does not compare incoming EDI transactions
with the retranslated EDI transactions.

* If the destination of a final EDI transaction file cannot be determined, the
file resides on the hard disk at the CLGN; in this respect, the prototype
CLGN acts as an entrepot for certain transactions.

* File names for intermediate and result files produced by the various modules
follow a slightly different naming convention to preserve the source LGN
name, which is embedded in all the CLGN intermediate and result file
names. This method for associating a source LGN with a file is a stopgap; in
the production CLGN, the unique transaction identifier and the more
complete logs must provide for much more certain tracking of any
transaction's source LGN.

* The prototype CLGN is able to perform certain remote operations, such as
table updates, remote system commands, and module suspends and restarts,
that an ordinary LGN cannot. Furthermore, remote LGNs are restricted to
WAN communication between themselves and the CLGN, whereas the
CLGN can communicate with any other LGN. This restriction may be less
stringent in a production system: direct LGN-to-LGN communication may
be allowable when specified conditions are matched in the LGN routing
table and the destination LGN is connected directly to the WAN.

In the prototype system, one can reconfigure an LGN as a CLGN or vice versa
with a minimum of program recompiling. Some minor design changes would allow
an LGN's status to be switched between that of regular LGN and that of CLGN

4Actually, there are two essentially duplicate CLGNs located at LMI, to ensure a reasonable
availability over the WAN and to ensure sufficient disk space. However, from the standpoint of an
LGN, there exists only one CLGN - the one it communicates with - and thus for all practical
purposes it makes sense to refer to the CLGN as though there were only one.

5 1n the prototype, this step is usually bypassed for convenience. Skipping this step, however,
does not materially reduce the test's effectiveness, since all procedures performed at the destination
LGN are performed at the prototype CLGN as well.

2-6

simply by changing one or more parameter values. An LGN can determine whether
or not it is the CLGN via a parameter read-in at LGN start up. This flexibility will

not be a factor in the production system, since the location of the CLGN will be fixed.

2.7

CHAPTER 3

OVERVIEW OF REQUIREMENTS

LOCAL CONNECTIVITY

The most difficult requirement to resolve in the LGN is connectivity to the host

system. This is particularly true in the prototype environment, since the prototype

LGN is basically "'at the mercy of' the host environment. The host interfaces

encountered during the development and operation of the prototype system are

* 3270 terminal emulation

* Asynchronous terminal emulation.

The asynchronous environment consists of various terminal emulations,

depending on the host. A design goal of the prototype LGN is to insulate the

site-specific connectivity requirements from the remainder of the LGN processing as

much as possible. For the most part, this goal has been achieved, by having separate

host-specific processes that are invoked by standard LGN processes. To the extent

possible, host-specific operational considerations are table driven.

In general, the LGN periodically initiates a logical session with its host and

polls it to determine whether there are transactions to download. While the

frequency and nature of the polling vary somewhat from LGN to LGN, the following

basic steps are always taken:

* Step 1A - If the connection to the host is hard wired, establish a host
connection at LGN start up.

* Step 1B - If the connection to the host is not hard wired, establish a
temporary host connection at the beginning of each poll.

* Step 2 - By looking for a predefined file or set of files in a particular
directory (e.g., UNIX, etc.) or data set, determine whether a file exists to
download.

* Step 3 - If a target file exists, download it and pass it to the next step in the
LGN. Because of security requirements in place during the operation of the
prototype system, files on the host cannot be deleted. Therefore, logic in the

3-1

m |-A

LGN minimizes but does not eliminate the chance that the same data file is

downloaded twice. This is a known limitation of the prototype LGN.

" Step 4A - If no file exists, do nothing.

" Step 4B - If the host connection is not hard wired, disconnect from the host.

" Step 5 - Sleep until the next poll of the host.

* Step 6 - Return to Step 1B or Step 2.

WIDE AREA NETWORK CONNECTIVITY

In the prototype system, all WAN connectivity is by way of a commercial
X.25 WAN provider. Some LGNs have a direct connection to the WAN, making them

directly addressable by the CLGN; others have a dial-up connection, in which case
they poll the CLGN periodically to receive files or remote commands addressed to

them. If an LGN is directly addressable, the sender initiates the transfer of data; for
those LGNs with a dial-up connection, data transfers are initiated by the LGN,
whether it is the sender or the receiver.

CLGN AND LOCAL LGNS

The CLGN, as indicated in Chapter 2, is essentially a superset of an LGN, with

unique remote operations and maintenance capabilities. It also has some processing

capabilities related to its (and DAASO's) role as a transaction entrepot. Generally,
however, the translation, communications, and logging functions are common to both

the LGNs and the CLGN. All LGN descriptions in this document refer to both the
LGN and the CLGN, unless otherwise noted.

TRANSACTION PROCESSING

Since the prototype LGN handles files of transactions rather than individual

transactions, it is not a transaction processor in the commonly understood meaning of
the term. For the test, all transactions are considered to be of equal priority.
Transactions are processed sequentially, in the order received from the host (or the
WAN), except that some multiple card-image DLSS transactions are sorted during
filtering and may be in a different order in the resultant filtered DLSS file.

Guaranteed minimum processing times are not inherent in the prototype LGN's

design.

3-2

THROUGHPUT

Average sustained throughput rates in a single LGN are as follows:

" Download: In the prototype system, download speeds differ significantly
from LGN to LGN and depend almost entirely on available file transfer
software at the site. In general, the highest download throughput rates have
been achieved with file transfer software that had both a host and an LGN
component and that executed in a cooperative manner. Of course, the line
speed of the LGN-to-host connection is a limiting factor. For
3270 connections through a concentrator, competing communications
activity from connected terminals is also a big factor. In other words, the
download throughput rates given here are rough and should be viewed as an
approximate baseline.

0 3270 direct connect with intelligent host transfer software: 60,000 to
120,000 transactions per hour.

0 Asynchronous connection using Kermit: 9,000 transactions per hour.

* DLSS transaction filtering: 108,000 transactions per hour (1,800 per
minute).

* DLSS-to-EDI translation: 7,200 transactions per hour.1

" File compression: 360,000 transactions per hour (6,000 per minute).

* WAN file transfer (2400 baud line; 128-character packet size, XMODEM file
transfer; compressed file): 7,200 transactions per hour.

* File expansion: 540,000 transactions per hour (9,000 per minute).

* EDI-to-DLSS translation: 9,000 transactions per hour.

While the prototype system has been running, most of the DLSS transactions

have been single card-image transactions. Multiple card-image transactions of only

about 30 images were downloaded from the various hosts during the test, but DLSS

card-image transactions on magnetic tape of up to 500 cards have been run manually

through the prototype LGN. For this reason, throughput rates based on number of

card images processed may be a more useful measure of performance than those

ITransaction processing rates for the Phase III LGN are considerably burdened by the multi-
tasking software used in the prototype model in an MS-DOS environment. Phase I, stand-alone LGN
speeds (without multi-tasking) were 21,000 transactions per hour (approximately 6 per second) for the
slowest, rhost difficult DLSS-to-EDI translation. EDI-to-DLSS translations were even faster. Rates
for both Phase I and Phase III LGNs reflect high levels of input/output (1/O) accesses per transaction.
This is uncharacteristic of a production LGN, whose I/O activity should be tuned to a minimal level.
Furthermore, in a production version, multi-tasking would not be based on a cycle-stealing process.

3-3

based on number of transactions processed. The prototype LGN throughput rates for

card images processed are approximately 10 percent greater than those for

transactions.

All processing times, including filtering, compression and expansion, and file

transfer, are based on a Compaq 386/20 supporting a DESQview multitasking

environment with approximately 12 tasks running concurrently. The overhead of

this concurrency significantly degrades the throughput rates as opposed to those

experienced in a stand-alone (single-tasking) environment.

LOCAL AND REMOTE OPERATIONS AND MAINTENANCE

Tables 3-1 and 3-2 list the various prototype LGN operations and maintenance

tasks, respectively, and the extent to which each task can be performed remotely

from the CLGN. All of the tasks can be performed locally.

A procedure developed for the prototype LGN, for synchronizing an LGN's clock

with the CLGN, using Greenwich Mean Time (GMT) as a basis, has not been made

operational. This inactive implementation is described in the WAN interface

subsystem design alternatives in Chapter 9.

LOGGING ACTIVITY

Each LGN module records to a log every event of significance to the module, by

time and date, as the event occurs. A separate log file is used for each module. While

this approach makes it tedious to look at a historical window of the LGN as a whole, it

makes it easier to examine the processing flow of a particular module. All analysis

for the prototype LGN, including constructing ad hoc audit trails, is done off line.

3-4

TABLE 3-1

OPERATIONS TASKS

Operations task Comments

System shutdown Can be performed remotely.

System warm boot Can only be performed locally; in some cases,
particularly if the LGN is outfitted with an
X.25 communications controller, it may be
necessary to power down the LGN and then do
a cold boot.

System restart Can be performed remotely as a special system
shutdown/system restart option; this differs
from system warm boot, which starts the
system from scratch, independently. Note:
this operation cannot be executed on an LGN
having an internal communications contro!ler
or other hardware that requires reinitiali-
zation at system start up.

Subsystem shutdown Can be performed remotely.

Subsystem restart (after subsystem shutdown) Can be performed remotely. Because of time
constraints, this capability was not included
for all prototype LGN subsystems.

Subsystem suspend/subsystem restart Can be performed remotely.

Performance monitoring Can be performed remotely by indirect means,
e.g., requesting log files.

Disk maintenance tasks Can be performed remotely by executing DOS
commands on the remote LGN.

3-5

TABLE 3-2

MAINTENANCE TASKS

Maintenance task Comments

Executable program update Can be performed remotely via system shut-
down/restart operations task for LGNs without
internal hardware boards that require
reinitialization at system start up. Note: this
procedure has not been fully tested in the
prototype LGN.

Translation table updating Fully automated from CLGN, including module
suspend and restart. As implemented in the
prototype, this task operates on a file basis
only, not on single records.

Examining create dates of files and other file Can be performed remotely by executing a
characteristics remote DOS command whose output is

redirected to a file on the LGN and, then,
requesting that file from the CLGN.

3.6

CHAPTER 4

BASIC DESIGN PRINCIPLES

HARDWARE/SOFTWARE PLATFORM

The prototype LGN runs on a Compaq 386/20 or 386/20e microprocessor. The
386/20 has 5 megabytes (MB) of main memory and a 60-MB hard disk; the 386/20e
has 6 MB of main memory and a 40-MB hard disk. Each LGN has a dot-matrix
printer attached, but the printer is used only on an ad hoc basis; no LGN operations
depend on the printer's working reliably. 1 LGNs directly connected to the WAN are
outfitted with an AdCom2-I X.25 communications board theoretically capable of
managing 128 simultaneous virtual X.25 connections (however, in the prototype
LGN environment, it manages only 1). LGNs with an IBM mainframe local host
have an IRMA-2 3278/3279 terminal emulation board. All LGNs have a 2400-baud
modem. LGNs with only a dial-up connection to the WAN use the modem as the sole
means for interfacing with the WAN; LGNs with a direct connection to the WAN use
the modem as a back-up communications device.

The CLGNs at LMI are connected to a Plantronics Micro Turbo Packet
Assembler/Disassembler (PAD) connected to a General DataComm 4800-baud
modem and a Rally Data Race 9600-baud modem. Each modem serves as a gateway
for an addressable (direct) WAN line.

DESQview is the operating environment in which the LGN runs. DESQview
provides multi-tasking by exploiting the 80386 chip's ability to simulate multiple
virtual machines. Although the DESQview environment is not as robust as that of
UNIX, virtually any DOS application can be run, unmodified, in the DESQview
environment. This feature makes it possible to take advantage of the unequaled
number and diversity of DOS-based development tools and products. American
National Standards Institute (ANSI) C is the primary application language of the

1While relying on a printer for a console log (paper is a very reliable storage medium) is
attractive, printers are too undependable for any essential processing functions. They jam, they run
out of paper, and they encounter mechanical problems. Unless the systems using them explicitly
recognize and deal with trouble in the printer connection (most software does not), a printer can render
the system inoperational.

4-1

prototype LGN. Table 4-1 lists the complete array of software used in developing and

operating the LGN.

TABLE 4-1

LGN DEVELOPMENT SOFTWARE

Software Function

MS-DOS v3.3 Operating system

DESQview 386 v2.2 Multitasking environment and 386 memory
manager

PolyAWK vl.3 (AWK programming language DLSS transaction filter
interpreter)

SuperSort v1.6 Used in filtering of multiple card-image
transactions

CrossTalk Mk. 4 vl.02a Used at most sites to automate a host session

Frontier Technologies Corporation (FTC) Used to initialize FTC AdCom2-1 communica-
Super-X.25 run-time software v4.21 tion controller board. Used only at sites

directly connected to the WAN.

PKARCIPKXARC File compressor/expander
The following software is used for LGN software development only-

Borland Turbo C v2.0 Primary application development language

DESQview API C library C interface to DESQview

Greenleaf Comm Library C-callable routines for communicating with
the WAN

YACC and LEX Parser and lexical analyzer for translation rules

AccSys function library API functions for Paradox

Paradox 3 Data base management system for translation
tables

FTC Super 4.2S development software v4.21 C-callable routines and data for interfacing
with the FTC AdCom2-1 board

Note: API , Applications Programming Interface.

MODULAR DESIGN

The LGN is divided analytically into separate processing areas called

subsystems; each consists of one or more modules. A module, which is the primary

functional unit of the LGN, is made up of a number of processes. A process, which

4-2

roughly corresponds to an executable program, performs a more specialized function

in support of the module to which it belongs. A process is perceived by the DESQview

multi-tasking environment as the basic operational unit.

Each module is defined in terms of its processing and its interfaces with other

modules. Generally, interfaces are defined as interprocess communications (IPCs).

In theory, since the modules are closed except for their interfaces, each can be

developed in any language that can (1) execute in the overall operating environment

and (2) interface with the IPC facility. In practice, it is impractical or impossible for

any language other than C to interface with the DESQview IPC However, through

the use of additional C-utility programs, it is possible to use any other language as a
main programming platform. Accordingly, in deciding which programming

language to use for each module, we sought a balance between applicability to the

task and ease in interfacing with the DESQview IPC. In general, higher level,

fourth-generation languages have been used where possible to reduce development

time. An example is the use of AWK in the filter module.

Generally, a module is implemented as one or more C-language processes, each

using the DESQview Application Programming Interface (API). Each process waits

for events indicating that action is required. An event is defined as one of several

possible occurrences, listed here in order of their priority:

* Input from the local keyboard

" Message from the operations subsystem

* Expiration of a software-based timer

* Message from any other subsystem

* Communications signal from the local host or the WAN.

After making an appropriate response to an event, the process awaits the next event.

This loop continues until stopped by a message from the operations subsystem to shut

down processing.

Those subsystems in which a language other than C is appropriate are handled

as follows: A C-language event manager process runs as described above. When an

4-3

event is detected for an action involving a non-C process, the C-process executes a
batch file process made up of at least these two components:

* One or more non-C programs

* A trailer C-program that sends a "process complete" message to the
event-manager C-process.

In a batch process, each program is run sequentially; thus, the trailer C-program is
executed automatically right afte' the last non-C program. In this way, a
non-C process communicates indirectly with the main event manager process, by
using the trailer C-program as a messenger. The batch process can also contain
header C-programs, which are run prior to the non-C programs and perform
additional IPC-related taskb. The batch process terminates after its last program is
run.

For example, the AWK programming language is used for the input filtering
process. The C event-handling program creates a batch process to run AWK and
accompanying C-programs each time a file requires filtering.

All processes in the LGN are essentially peers of one another. Thus, the
non-C process described, although invoked by another process, is an independent
entity, as opposed to being a child process completely subordinate to the process that
created it.

A significant benefit of a highly modular approach is that each module can
employ a different software developer. Provided the interfaces between modules are
well defined, the developers can code to the interface specifications, taking
preferential liberties in programming without affecting the overall system. This
strategy puts the largest share of responsibility on the interface design, since it will
affect the whole system, its development, and its operation. During the development
of the prototype LGN, the best results were achieved by establishing overall
structures and practices that defined the IPC interface, and then assigning complete
subsystems to individual developers. The benefits of a common programming style
and approach were gained from a cohesiveness within subsystem modules, whereas
adherence to the IPC interface rules was the chief factor in the successful integration

of the disparate subsystems.

4-4

PARAMETERIZED SUBSYSTEM START-UP

A number of parameters are used to tune an LGN to its particular environment.

These generally relate to the frequency of communication with the host and the

WAN. Other parameters specify file and naming conventions, time-out periods, site-

specific processes (generally called by the local interface subsystem), communication

settings, and overall LGN characteristics. Each module has a separate bootstrap
process and its own configuration file (parameter table) containing parameter

settings. In addition, there is a configuration file of system-wide parameters read by
all modules in the LGN. Maintenance of the parameter files is achieved by remotely

controlled file replacement.

Parallel Processing

With few exceptions, all modules in the prototype LGN run in parallel, i.e.,

concurrently. However, since the system processes one file of transactions at a time,
the actual degree of parallelism is usually low at any one time. Nevertheless, there

are exceptions: for example, an LGN can be translating transactions in the DLSS-to-

EDI direction while it is processing transactions in the EDI-to-DLSS direction.

Likewise, a pipe-lining effect occurs if two transaction files from the host download in
rapid succession. In this case, the first file might be translated while the second file is

being filtered. However, if the filter finishes before the translator, the second file will

not begin translation until the first file is finished.

For the prototype model, all processes run at equal priority; no attempt is made

to optimize processing in this respect. In the production LGN, a design objective

should be (1) to accommodate priority traffic and (2) otherwise to minimize

throughput bottlenecks by adjusting module processing priorities during run time.

There are critical instances in which a process requires exclusive use of the

LGN. At such times, all other processing is suspended. For example, when a mailbox

(used for IPC messages) is to be created, a check is made to see whether or not it

already exists; if it does not, one is created. To ensure that another process does not

create the same mailbox during the time between checking and creation, all other

processes are put on hold. As soon as the mailbox is created, the suspension is lifted,

and LGN processing resumes normally.

4.5

Interprocess Communication

Each process in the LGN communicates via IPC, using the DESQview API
facilities. DESQview uses a mailbox protocol for IPC: each process has mailboxes
into which other processes put messages. A process needs only the name of the

mailbox to send a message; once it is sent, the sender can forget it. This

asynchronous approach works well for the peer-to-peer relationship among processes.
For the prototype, acknowledgment is seldom required. However, a production

system will require (1) more checks to ensure that the receiving process receives the
message intact and (2) logic specifying a number of retries and required actions if
unsuccessful. The present design does not preclude an ordered message dialog
between two processes; it is just not performed automatically as part of the
DESQview IPC.

Synchronization in the prototype model is emulated in two ways. First, an IPC
semaphore is used to synchronize certain processes; in this way, one process can infer
whether or not another is active by the availability or nonavailability of the

semaphore.

Second, certain messages signal that a requested process has been completed.
For example, Process 1 can send a message to Process 2, requesting performance of a

certain task, and then wait a designated period to receive notification of task
completion and error status from Process 2.

Interprocess messages are structured with a header followed by the message.

Exceptions are (1) simple messages in which the header contains all the information
necessary and (2) others, unique to each message type, that use one or more

additional information fields. The message header is constructed as follows:

typedefstruct modelshead

{
WORD wType;
char cPriority;
char sQuerymod(SYMODMNEMLN + 1];
char sQuerylgn[SYLGNNMLN+ 1];
word wId;
I MODELSHEAD;

4-6

where:

" "wType" is a non-negative integer specifying the message type. Each
message type has a unique number and an associated mnemonic identifying
it. For example, the mnemonic for the message to initiate a filter is
FILTERDLSS (message type 201).

* "cPriority" is the priority code of the message. E stands for expedited,
L stands for low, and S stands for system message. System messages are
ones sent by the system boot module; they have the highest priority.
Low-priority (L) messages are not functional in the prototype LGN, except in
the WAN interface module, where they are used for a specialized purpose.

" "sQuerymod" is the 2-letter name of the module sending the message. Each
module in the LGN has a unique 2-letter identifier defined as a constant,
along with a mnemonic name for the constant. For example,
SYD2EMNEM equals "DE", which is the 2-letter code for the
DLSS-to-EDI translator module.

* "sQuerylgn" is the 3-letter identifier of the LGN sending the message.
Normally, this is the same as the LGN on which the message is received.
However, in some cases, the message originates from another LGN. The
chief example of this is CLGN-to-LGN remote commands.

S'"wId" is a non-negative integer that serves as an additional qualifier of the
message. It is primarily used for sequencing messages, which is to say that
it is not used often in the prototype LGN.

The simplest messages contain the message header and no additional fields. For
instance, the SUSPENDREADY message consists solely of a message header, with

wId equal to SUSPEND__READY (48). Most messages, however, have additional
fields built into their structure. For example, the STARTED message contains one
additional field, tTimestamp, as illustrated:

typedef struct msg__ started

{
MODELSHEAD mMsg head; /*MODELS message header*/
time__t tTime._.stamp; /*time of day*/
} MSGSTARTED;

A design that relies on the concept of messages sent between modules and
action based on the message is called object-oriented. The key to an object-oriented
design is defining the objects (modules) in terms of message handling. A complete
listing of message structures, defined in the prototype LGN from the perspective of a

4-7

receiving module and the processing that the message triggers, is included in the
MODELS LGN system specification and is a prime component of the system's
detailed design.

Priority Management

Messages are one class of events that are acted upon or rejected by a module. A
module becomes aware of an event by monitoring its object queue, through which all
events are funneled. (The actual message is not sent to the object queue but, rather, a
marker pointing to the event.) For mail message events, each module has one
mailbox set aside to receive system messages from the system boot module. Messages
sent to this mailbox are handled before messages received in any other mailbox;
messages concerning critical actions such as suspensions or shutdowns are received
here.

Peer Relationships Among LGNs

In initiating communications, all LGNs are peers; each can initiate a
connection with another at any time. As implemented in the test system, two
restrictions are placed on this prerogative. First, remote LGNs can initiate a
connection only with the CLGN, not with other LGNs. Second, a connection between
the CLGN and a dial-up LGN has to be initiated by the LGN; there is no outbound
dialing from the WAN. This raises a question of how two dial-up LGNs (in the
production system) might communicate. Two possible solutions might use (1) a WAN
out-dialing capability, if available, or (2) the CLGN as a store-and-forward repository
into which LGNs poll periodically.

Remote Operations

The CLGN can send any message to a remote LGN, by embedding it inside a
SENDMSG message sent to the WAN interface module of the receiving LGN. When
the SENDMSG outer layer is stripped off, the embedded message is sent to the
appropriate module. This procedure applies for responses the remote LGN sends back
to the CLGN.

One type of remote message sent by the CLGN is the utility request. When an
LGN receives a utility request, it spawns a temporary process to execute the DOS
command specified in the message. In most cases, the DOS command includes
redirection of output to a file. The CLGN can subsequently request this file so that

4-8

file creation dates and other directory information about an LGN can be analyzed
remotely.

4.9

CHAPTER 5

PROCESSING ENVIRONMENT

All software and data files required for operating the prototype LGN are located

on the LGN's C-drive hard disk. An A-drive (floppy-disk drive) is required for

manual file updates and emergency boots. Forty megabytes of hard-disk storage is

the minimum required for smooth operation of the LGN; having any less capacity

greatly increases the chances of running out of disk space during processing.

Appendix A contains a listing of the contents of the prototype LGN disk
directories. The more important ones are covered here. The \CONFIG directory
contains the configuration files for all modules. Most of the configuration files
pertain to a particular module and are named by a concatenation of a two-letter
module mnemonic with a .CFG extension. Others relate to a subsystem or to the
entire LGN. All configuration files are American Standard Code for Information

Interchange (ASCII) text files with entries of the form

<param> = <value>.

Although the software can interpret <value> as a list of values, in the prototype

implementation, <value> is single-valued.

By convention, two-letter mnemonics are used to identify the top-level
directories. For example, the local interface module is under directory LI. The

system boot module determines the directory for a module's executable programs by
reading from its corresponding module configuration file the optional OP__DRIVE

and OPDIRECTORY parameters. If neither of those parameters is found, the drive
and directory default to the ones listed in the program's Program Information Files

(PIFs) (see Chapter 6).

The organization of subdirectories under the main module directories is listed
with each module in Appendix A. In general, application programs reside in a
subdirectory called BIN. Beyond that, subdirectory naming conventions are specific

to the module to which they pertain.

5-1

No random access memory (RAM) disk is used in the prototype LGN, since all
available memory is used for running programs. Any temporary files are written to
the C-drive in specified directories. In a production model, the single maneuver most
likely to affect translation throughput speed would be a maximum use of virtual
storage.

5-2

CHAPTER 6

NAMING CONVENTIONS

With few exceptions, names for configuration parameters, application
programs, and callable application functions follow accepted coding conventions.
This chapter lists the naming conventions used for each type of named entity in the
system.

CONFIGURATION PARAMETERS

In general, configuration parameters are of the form

<module>__<name>

where <module> is a two-letter module mnemonic and <name> is a descriptive
parameter name. Table 6-1 shows the module mnemonics.

TABLE 6-1

MODULE MNEMONICS

Mnemonic Module Mnemonic Module

CL CLGN polling SB System boot
D2E DLSS-to-EDI translation SM System monitor
E2D EDI-to-DLSS translation SY Systemwide (all modules)
LD LAN dequeuing WD WAN dequeuing
U Local interface W WAN interface
OP Operations (subsystem) WQ WAN queuing

PROGRAM NAMES

Executable and batch programs in the prototype were named at the discretion of
their individual developers. Generally, all programs belonging to a particular

6-1

module start with the two-letter module mnemonic. This is not so, of course, for
off-the-shelf programs incorporated in a module.

MESSAGES

Message mnemonics are all named (via #define) constants that convey the
message content but follow no convention other than the standard C-language
practice of naming constants via upper-case letters. Message structures (see the
Interprocess Communication section of Chapter 4) are formed by a concatenation of
MSG_ and the message mnemonic.

C-PROGRAM IDENTIFIERS

For C-program identifiers, Hungarian notationl is used. It allows programmers
to overcome the lax enforcement of data typing rules in the C-language. Table 6-2
shows the standard set of Hungarian prefixes as implemented in the prototype
environment. Table 6-3 shows prefixes to the prefixes that further describe the
identifier.

Several exceptions to Hungarian notation naming rules exist in the prototype
system. Some frequently used structures are assigned their own Hungarian prefixes.
Function name identifiers and constants do not use Hungarian notation. Further-
more, much of the translation program code pre-dates Phase HI, so a slightly
different Hungarian notation is used in that area.

C-PROGRAM NAMED CONSTANTS

Names of constants follow the standard C-language practice of using all upper
case. Constants defined in include files, which are accessible by all subsystems, begin
with an appropriate two-letter module mnemonic. Constants whose domain is only
one subsystem do not follow any prescribed naming convention.

iHungarian notation is an increasingly popular naming methodology that prefixes every
identifier with letters suggesting the identifier's type. In a Hungarian notation variable, all letters up
to the first capital letter are part of the Hungarian prefix.

6-2

TABLE 6-2

HUNGARIAN NOTATION TYPE PREFIXES

Notation Type

ac non-AsciiZ string (array of characters)

b BOOL (int)

by BYTE (unsigned char)

c char

dp DATA PTR (void *)

h DV._API HANDLE (unsigned long)

i int

I long

m message structure

s AsciiZ string (char *)

St structure

t time t (defined as long in Turbo C)

v void or variable argument list

w WORD (unsigned int)

TABLE 6-3

ADDITIONAL HUNGARIAN TYPE PREFIXES

Notation Type

a array

aa two-dimensional array

g global

p pointer

u unsigned

x static

6-3

C-APPLICATION FUNCTIONS

While systemwide functions are usually named su_<descriptive-name>,
there are a few exceptions: for instance, names for functions contained within a
module are up to the programmer's discretion.

PROGRAM INFORMATION FILES

All DESQview processes are invoked via a program information file (PIF) that
must be of the form < 2-char-id >-PIF.DVP. In the prototype LGN, < 2-char-id > is
the two-letter module identifier for main module processes; otherwise, it is a
descriptive identifier of the process. For example, the main local interface process
PIF name is I-PIF.DVP; the download script process PIF name is DS-PIF.DVP.

DESQVIEW MAILBOXES

Two mailboxes are used consistently by LGN modules: the system mailbox and
the expedited mailbox. Modules use the default DESQview mailbox, which is
unnamed, as the system mailbox. The expedited mailbox has the value
"<module>_E". A suite of named constants is declared and set to each expedited
mailbox value. Other mailboxes, including temporary intramodule mailboxes, do not

follow a naming convention.

6-4

CHAPTER 7

PROCESSING SUBSYSTEMS AND MODULES

The design of the LGN divides processing into four subsystems:

* Local interface subsystem

* WAN interface subsystem

" Transaction processing subsystem

* Operations subsystem.

These are further broken down into several major modules, each consisting of one or
more processes. Chapters 8 through 11 describe these major subsystems in terms of
their modules.

THE THREE STATES OF MODULE PROCESSING

A module is always in one of three possible states: the Initialization State, the
Operational State, or the Shutdown State. The LGN itself can be considered to be in
one of these three states. When the LGN starts up, it is in the Initialization State, as
are each of its modules. When every module has initialized and confirmed that fact to
the system boot (SB) module, the SB module instructs all others to enter the
Operational State. Most of the time is spent in this Operational State, in which all
transactions are processed and all host and WAN communications take place. The
LGN enters the Shutdown State as the result of a command or a fatal error.
Normally, the Shutdown State ends with termination of LGN execution, requiring
the LGN to be rebooted to the Initialization State. There is a special
shutdown/restart message that enables shutdown to be immediately followed by
restart, i.e., a return to the Initialization State. It is possible for an individual
module to be in the Shutdown or Initialization State while the rest of the LGN is in
the Operational State.1

1This occurs when a module receives a SHUTDOWN message or a RESTART message
(following a SUSPEND or SHUTDOWN message).

7-1

COMMON MODULE PROCEDURES

A module boots when the SB (see Chapter 11) creates a process and invokes a

canonically named PIF:

<PIF-Drive > :\ <PIF-Directory > \ <ModMnem>-PIF.DVP

The PIF, in turn, starts the module's main executable program. The < PIF-Drive>
and <PIF-Directory> are retrieved from the LGN.CFG file. The file BOOT.TAB

lists modules to boot; each module in the list is referenced by its two-letter mnemonic

(<Modem>). Each module first performs common and module-specific

initialization procedures and then sends SB a STARTUP message, indicating it is
ready to proceed into the Operational State, or a CANTSTART message, indicating a

failure during module initialization.

As the SB receives a STARTUP or CANTSTART message from each module, it

displays the status in its window on the local console.

Figure 7-1 shows pseudocode 2 for the standard module start-up procedure

making up the bulk of the Initialization State. Except for SB, this same approach is

used by each module in the system. SB follows a different path during the LGN
Initialization State, functioning as a central clearinghouse for notification messages.

The SB module, before invoking other modules, creates mailboxes to be used by them;

this procedure allows SB to retain ownership of the mailboxes if a module is shut
down. Individual module start-up procedure opens the mailboxes, reads values for

parameters, and performs all other initialization necessary to proceed te. the
Operational State. A STARTUP message sent to SB indicates successful completion

of initialization; a CANTSTART message indicates an error, and SB triggers a

transition of the LGN to the Shutdown State. After the STARTUP message is sent,
the start-up procedure waits SYWAIT4GO seconds for an OPGO message from SB,
which means that all modules have completed initialization and that the LGN can

advance to the Operational State. For any message other than OPGO, or if
SY__WAIT4GO seconds elapse, the module sends a SHUTDOWNREADY message

to SB, triggering the transition to the Shutdown State.

2Pseudocode, also known as Structured English, uses a small subset of English words in
conjunction with symbolic names representing abstract entities, to describe the sequence of events
making up a process. It is more precise than a flowchart but is less rigorously structured than a format
programming language.

7-2

/* Psuedocode for module Initialization State processing */

BEGIN
OPEN mailboxes previously created by System Boot
READ LGN parameters
READ module parameters
INITIALIZE resources
IF ERROR during INITIALIZE

SEND CANTSTART message to System Boot
PROCEED to Shutdown State

ENDIF
SEND STARTUP message to System Boot
CREATE time and set for SYWAIT4GO seconds

WAIT for EVENT from Event-Queue
IF EVENT = OPGO message

PROCEED to Operational State
ELSE

PROCEED to Shutdown State
ENDIF

END

FIG. 7-1. MODULE INITIALIZATION STATE PROCESSING

Figure 7-2 shows pseudocode describing a module's Operational State, in which
modules spend most of their processing time. Upon entering the Operational State,

each module goes into a loop, (1) awaiting events, (2) acting on events it recognizes,
and (3) treating as an error those it does not. Specifically, the module waits for the
types of messages it serves or for any of the special messages: SUSPEND, RESTART,
or SHUTDOWN. The processing of messages, other than special messages, is
module-specific, although consistency is strived for through use of common
message-handling procedures. Special messages are handled more uniformly, except
that each module's SHUTDOWN and RESTART activities differ. The module waits
in this loop until receiving a SHUTDOWN message, which initiates transition to the
Shutdown State.

7-3

./* Psuedocode for module Operational State processing */

BEGIN
suspended = FALSE
DO FOREVER

WAIT for EVENT from Event-Queue
IF EVENT = SHUTDOWN message

PROCEED to Shutdown State
ENDIF

IF suspended = TRUE
IF EVENT = RESTART message

READ LGN parameters
READ module parameters
RE-INITIALIZE resources
MOVE (Suspended) EVENTS from Holding-Queue to Event Queue
suspended = FALSE

ELSE
MOVE EVENT to Holding-Queue

ENDIF

ELSE /* not suspended */
DO CASE (EVENT)
CASE SUSPEND message

SEND SUSPEND-READY message to System Boot
suspended = TRUE

CASE expected message
Act on message

OTHERWISE
LOG ERR

END CASE
ENDIF

END DO
END

FIG. 7-2. MODULE OPERATIONAL STATE PROCESSING

The LGN and its component modules enter the Shutdown State by one of five

events:

* A module sends a CANTSTART message to SB during the Initialization
State.

* A module fails to send a STARTUP message to SB in the time allotted
during the Initialization State.

* A module sends a CANTSTART message to SB during its re-initialization
following reception of a RESTART message from SB.

7-4

* The CLGN sends an LGN__SHUTDOWN message to SB remotely, via the

WAN.

* An LGNSHUTDOWN message is sent to SB from the local keyboard.

A need is recognized for additional means, not implemented in the prototype

system, of entering the Shutdown State, as part of the error procedure for certain

fatal errors. More practicable methods for entering the Shutdown State in response
to a nonrecoverable LGN error should be built into the operational system.

As noted above, the transition to the Shutdown State is always through the SB
module. Figure 7-3 displays the pseudocode for the common module logic for the

Shutdown State.

/* Psuedocode for module Shutdown State processing */

/* Entered upon receiving a MODSHUTDOWN message from System Boot */

BEGIN
SEND SHUTDOWN READY message to System Boot
CLOSE all mailboxi"
KILL any temporary mailboxes (not created by System Boot)
FREE other resources as needed
QUIT

END

FIG. 7-3. MODULE SHUTDOWN STATE PROCESSING

HOW A DESQVIEW PROCESS IS INVOKED IN THE PROTOTYPE LGN

Although the SB module is the module chiefly responsible for starting up
DESQview processes, other modules such as the local interface module and the local
area network (LAN) dequeuing module perform this task as well. Therefore, a

general discussion of the mechanics of starting up a DESQview process is presented
here.

Each DESQview process has an associated PIF containing information needed
by DESQview to execute the process properly. The parent process (the one starting a
new process) reads this PIF into its own memory. It can then edit selected fields of

the PIF image in memory. For example, the PIF field specifying the directory where
the process is located can be overridden by the OP _DIRECTORY parameter, which

is optionally included in every module's configuration parameter file. Some LGN

7.5

processes use a simplified PIF structure, shown in Figure 7-4, that clumps together
ignored fields; other processes simply refer to PIF fields as an offset within a buffer.

The address of the PIF image is passed as an argument to the DESQview API

function app.._start, which starts the process designated in the PIF.

How does the first DESQview process get started? In the prototype LGN, this is
accomplished via DESQview's primitive scripting facility, which allows a process to
be invoked automatically upon starting DESQview from DOS, in which case that is
the main process of the SB module.

typedef struct pif /* PIF (.DVP) structure */{
char acFillerl [21; /* not used by LGN */
char acPgmtitle [32-2]; /* descriptive program title */
char acFiller2 (36-32]; /* not used by LGN *1
char sPgmstartcmd [100-36]; /* command to start program 1
char cDrive; /* default drive (e.g., C)
char sDirname [165-101]; /* default directory name */
char sPgmparams [229-165]; /* program parameters *1
char acFiller3 [233-2291; /* not used by LGN */
BYTE byNIogrows; I* # rows in logical window */
BYTE byNlogcols; P # cols. in logical window */
BYTE byRow; * initial row location *1
BYTE byCol; /* initial column location
int iSysmem; /* system memory size (KB) */
char acFiller4 [367-2391; I* not used by LGN */
BYTE byCtrlbytel; /* bit-mapped *1
BYTE byCtrlbyte2; /* bit-mapped *1
char acKeys [2]; I* keys to start from menu *I
char acFiller5 [380-371]; /* not used by LGN *1
TBOOL cClose on exit; /* auto-close on exit? (TIF) *1
char acFiller[3-381]; I' not used by LGN *1
BYTE byNphysrows; I' # rows in physical window */
BYTE byNphyscols; /* # cols. in physical window 'I
char acFiller7 [388-3861; IP not used by LGN */
BYTE byCtrlbyte3; /* bit-mapped *1
char acFiller8[SYPIFLN-389+ 11; /* fill toend

I PIF;

FIG. 7-4. PIF STRUCTURE

7-6

CHAPTER 8

LOCAL INTERFACE SUBSYSTEM

The local interface subsystem is responsible for transferring all transactions
between the host and the LGN. One of the prototype test goals is to make use of
existing host-to-terminal file transfer capabilities, rather than modifying the host.
Thus, a flexible design was called for that could segregate site-dependent

communication processes with only minimum impact on the rest of the local interface

subsystem. This segregation is accomplished in the prototype LGN via a separate

download script invoked by the main local interface process. The download script is a
batch process that, in turn, calls a site-specific program to maintain the host
connection optionally and perform the data transfer. Figure 8-1 displays the
relationships among the components of the local interface subsystem. Parameters
read at boot time specify site details, including download scheduling information and

the site-dependent program to be invoked. The communications interfaces handled
by the prototype system are

* 3270 terminal emulation

* Asynchronous teletype and terminal emulation.

LOCAL INTERFACE MODULE

Purpose and Description

The local interface module oversees the transfer of all data between the host
and the LGN. Since the actual connection to the host is maintained by programs
called by the download script process, the main local interface process is
host-independent.

The module attempts to initiate a download from the host during "download

windows," which are simply time periods. There may be one or more download
windows. Within each download window, the host is polled at intervals until a

download is completed successfully or the end of the download window is reached.

8-1

Main process

Download script
process

Site-specific
download software

Host

FIG. 8-1. LOCAL INTERFACE SUBSYSTEM

The values for the download windows and polling interval are read during subsystem

start up.

Start-Up Procedures

The local interface module performs the standard module start-up procedure,

plus additional steps related to invoking the local interface subsystem's

host-dependent process. As part of the start-up procedure, the module parameters

listed in Table 8-1 are read in. Additional parameters concerning uploading and

multiple physical and logical host connections were defined but are not used in the

prototype system.

Another local interface module start-up task is reading the download window

parameters. The download window parameters are kept in a separate file called

8-2

TABLE 8-1

LOCAL INTERFACE START-UP PARAMETERS

Parameter Description

LI SESSIONINTERVAL Number of seconds between host polls

LIDNLDMNEM Mnemonic used in determining PIF that executes the download
script process

LIDNLDSCRIPT Name and optional parameters of site-dependent program
invoked by the download script process

LI DNLDTIMEOUT Number of seconds to wait before receiving a "completed'
message from the download script process

DLWINDOW.DAT and are read in during start up and after each host session as
well. The DLWINDOW.DAT file contains one line for each window; each line
consists of the following fields:

* Window start time

* Window end time

* Last download date (YYMM)

" Last download time (HHMM)

* LGN target file name

* Host source file name.

The local interface module uses four mailboxes:

* Default DESQview mailbox

" Expedited mailbox SY LANINTMXEXP

* Low-priority mailbox SYLANINTMXLOW (inactive in the prototype
system)

* A holding or deferred mailbox used for storing certain messages to be acted
on later.

The default mailbox is used to receive messages from SB. The expedited mailbox is
used to receive messages from all other modules. The local interface module receives
no expedited messages from any outside module, only from its component processes.

8-3

In the prototype, the low-priority mailbox is not used. The deferred mailbox provides
a temporary holding facility when the module is unable to service its expedited
mailbox - during downloads, for example.

If 3276 or asynchronous terminal emulation is involved,
Terminate-and-Stay-Resident (TSR) software is installed when the LGN is booted,
either from the CONFIG.SYS file or the AUTOEXEC.BAT file; TSR software
controlling a device must be loaded before DESQview is invoked.

A timer, created as part of the initialization process, is used to ke 'p track of the
time elapsed since a download script process was started. During the Operational
State, if enough time (determined by a parameter) accumulates since the last
download process, the local interface process assumes an error has occurred that has
caused the host connection software to hang.

Processing

Frequency of Operation

The main event-handling process in the local interface module is always
running. Mostly, it is parked on the object queue awaiting a timer1 elapse, which
indicates that it is time to attempt a host download. The download script process is
invoked whenever a download attempt is made. Usually, the download script process
oversees the entire session with the host and quits after the download attempt. The
download script process, a batch file, calls other programs serially. These programs
are not DESQview processes and do not run continuously.

Flow of Processing

The frequency of host download polls is governed by a timer. If the local
interface module is not in a download window, the timer is set to the start time of the
next window. If the module is in a download window, the timer is set to expire after
I__SESSIONINTERVAL seconds, which is the delay time between polls. Figure 8-2

shows the logic used to determine whether or not the module is currently in a
download window. This logic is performed right after start up and after every
download attempt. Note that once a file is downloaded from the host, the module is

IA timer is a DESQview object that can be set to "expire," or send a time message, at a
prescribed time of day or after a certain number of seconds.

8-4

no longer considered to be in the window in which the download was made. In other
words, for a module to be in a download window, two conditions have to be met:

* The current time must fall between the download window's start and end
time.

* A download must not already have occurred within this window today.

/* Psuedocode for determining if currently in a download window */

BEGIN
next-start-time = 9999 /* impossibly high value */
current-time = current time
current-date = current date
dnld-window-ct = # of download windows in configuration file
in-window = 0
i=0

DO WHILE i < dnld-window-ct
AND in-window = 0

i=i+1
last-dnld-date = date of last download in ith window
window-start-time = start time of ith window
window-end-time = end time of ith window
IF current-time > = window-start-time
AND current-time > = window-end-time
AND current-date NOT = last-dnld-date

in-window = i
next-start-time = window-start-time

ELSE
/* This is always true when i = 1:
IF window-start-time < next-start-time

next-start-time = window-start-time
ENDIF

ENDIF
END DO

END

FIG. 8-2. DOWNLOAD WINDOW DETERMINATION LOGIC

During each download poll, the local interface module invokes the download
process, which in turn calls one or more site-dependent programs to perform the

following functions:

* Establish a connection with the host (if the connection is not permanent).

" Log on to the host.

8-5

* Download all available designated files.

* Log off the host.

* Update file DLWINDOW.DAT.

* Disconnect from the host (if the connection is not permanent).

In most cases, CrossTalk Mk.4 is the program that performs all of these functions.
The main module waits for LISESSIONINTERVAL seconds for a message from the
download script process indicating that the download attempt is finished. If it does
not receive this message in the time allotted, it assumes that a nonrecoverable error
occurred during the host session; the timer is reset, and processing continues.

Because host downloads may take a relatively long time, an additional check
should be made before initiating a host poll, to ensure that a download is not already
in progress. Code for this function was not completed for the prototype system. For
the prototype test, the situation was avoided simply by scheduling download windows
far enough apart to ensure download completion before the start of the next download
window.

The scripts controlling host sessions are located in the directory
\LI\DNLD\SCRIPTS and are highly tailored 2 to each site. The production system
should employ a sender-driven download design. But the following description of the
flow of processing in the script program is applicable to almost all of the sites in the
Phase HI test, and the script program is necessarily described, as an integral part of

the prototype LGN design.

Even though the script is invoked only if the module is currently in a download
window, the script reads in the download window parameters from
DLWINDOW.DAT. This reading is done primarily because a script language such as
CrossTalk Mk.4 can more likely read a text file than handle command-line
parameters. Therefore, to find out which download window is in effect, the script
program needs to read the parameters from DLWINDOW.DAT.

After the script reads the download window parameters and performs other
program initializations, it attempts to log on. If successful log-on is possible, an

rThis was especially a challenge during the prototype test, since the host environment was
subject to change without notice.

8-6

appropriate return code is passed; if not, the script logs off the host and returns
control to the download script batch process.

Once logged on to the host, the script downloads the host file associated with the
current download window (read in via DLWINDOW.DAT) to a uniquely named file in
the LGN's \LI\DNLD\STAGING directory. The exact software and methodology used
to download the file vary from site to site in the prototype environment. Whenever
possible, file-transfer software with both a host and an LGN component working in
tandem is used (e.g., FTTSO). Otherwise, an asynchronous transfer using XMODEM
or Kermit is used.

After the download, the script checks for the existence of the downloaded file
and the return code sent by the download script process. Usually this code is zero,
since most communications packages' script languages cannot send a return code.
Note that these checks do not guarantee that the download has been flawless; they
prove only that something is there. At this point, the DLWINDOW.DAT file is
updated to show that a file was downloaded during the window.

A RCVDDLSS message is sent to the LAN dequeuing module, indicating the
name of the downloaded file. The file is uniquely named via the concatenation of a
base-36 timestamp, a one-digit qualifier, and the extension .DLD. Th. timestamp
represents the number of seconds since 00:00:00 GMT, 1 January 1970. Finally, the
local interface module re-reads the download window parameters and resets the

timer accordingly.

Data on all pertinent events are logged, including the values to which the timer
is set, the number of download windows read, the current download window number,
the name of the download script process, the start and end time of the download script
process, and the size and create date of the downloaded file.

Data Structures

The PIF structure (Figure 7-4) is used to start the download file process. No
other data structures of note are required by the module.

8-7

Differences Between LGN and CLGN Implementations

Although the production system's local interface subsystem is likely to be

greatly different, in the prototype system, the CLGN can emulate all LGN functions.

The CLGN's local interface module is virtually the same as the LGN's.

Shutdown Procedures

Upon receipt of a MOD _SHUTDOWN message, the standard procedures for

module shutdown are followed and the module terminates.

Serialization

The local interface module must be running all the time. Since it is the module

that initiates the DLSS-to-EDI flow through the LGN, it has no prerequisite process.
On the other hand, the LAN dequeuing module can be serialized to execute after the
local interface module; this process is described under the topic of Serialization in

Chapter 10.

Files

The format of the host files differs from site to site; this factor is one of those
involved in deciding on the appropriate file transfer software. The main local
interface process, however, is not affected by the format of the host file. It passes host
files along, transparently, to the LAN dequeuing module, which then has to filter out

any extraneous header and/or communication data mixed in with the DLSS

transactions.

Alternative Designs

The prototype LGN local interface subsystem is designed with a severe
limitation: no modification of the host software is permitted. Below are design

considerations for a production system free of this restriction:

" Employ sender-driven file transfers

* Couple local interface module and host operating environment more tightly
(e.g., create direct access to host file from C-program or direct access to LGN
[PC from the host).

8-8

CHAPTER 9

WAN INTERFACE SUBSYSTEM

X.25 MODULE

Purpose and Description

The X.25 or WAN interface module provides for either direct or dial-up service

with the commercial WAN used during the prototype test, as shown in Figure 9-1. It

is responsible for connecting with the WAN and maintaining a session with a

remote LGN. All transactions and information exchanged between an LGN and the

CLGN are managed by the WAN interface. During the test, remote LGNs have

communicated with the CLGN only; direct LGN-to-LGN communication has not

taken place. Unless otherwise noted, this restriction on remote LGN communi-

cations is implied for the rest of this section.

Start-Up Procedures

Because the communications link must be initialized before the WAN interface

module can proceed to the Operational State, this module performs a number of tasks
/in addition to the usual start-up chores. Also, for LGNs that are directly connected to

the WAN, initialization code for the AdCom2-I X.25 board is loaded beforehand in the

AUTOEXEC.BAT file, as per DESQview's restrictions with device driver software.

IPC Start- Up Procedures

The module first opens its expedited and low-priority mailboxes (recall that

these were created previously by the SB module). Actually, the low-priority mailbox

is used for storing previously deferred messages, 1 rather than ones of low priority.

1After the expedited and low-priority mailboxes are opened, a deferred mailbox is created and
opened; it is used as a holding area for messages involving unsuccessful WAN transmissions. During
the Operational State, after an unsuccessful attempt to process a WAN transmission message, the
message is retained in the deferred mailbox for ulDefertimeout seconds, and then transferred to the
low-priority mailbox. When no expedited messages precede it in the queue, the message is processed
again. If the WAN transmission is again unsuccessful, the message is placed back in the deferred
mailbox and the cycle starts over. A message can be deferred and subsequently retried up to
iDeferLimit times. ulDefertimeout and iDeferLimit are read in as configuration parameters.

9-1

LG N

WAN equeingWAN dequeuing
subsstemsubsystem

WAN interface
module

________________ _______________ X.25 level-Il and
Modem or level-Ill software

WAN

FIG. 9-1. WAN INTERFACE SUBSYSTEM

9-2

The WAN interface module creates four timers used for scheduling and

synchronizing different tasks during the Operational State:

* hCheckx25_timer. The CheckX25 timer determines the time allowed
between checks for status changes in the communications interface.

* hCheckipc_.timer. The CheckIPC timer regulates the time spent between
instances of polling the IPC object queue. It works in tandem with the
CheckX25 timer. Note that the CheckX25 timer signals X.25 polling to end
and IPC queue (event queue) monitoring to start, while the CheckIPC timer
signals IPC queue monitoring to end and X.25 polling to start. The module
spends most of its Operational State time checking alternately for IPC and
communications events. This processing flow, along with the role played by
the two timers, will be explained in more detail under the topic of Flow of
Processing.

* hDeferredtimer. The Deferred timer expires every ulDefertimeout
seconds, and all deferred messages are moved to the low-priority mailbox.
As a consequence, they are back into the object queue and eligible once again
for processing.

* hIPCStat__timer. The IPCStat timer expires every ullPCStatinterval
seconds (typically, the expiration interval is 24 hours). The timer's
expiration signals the module to write an entry to the log and the screen
summarizing IPC activity over the timer interval.

These timers are created during module initialization but are not set until the

Operational State begins. The IPCStat timer is an exception; it is set during start up,

enabling the messages exchanged as part of the Initialization State protocol to be

included in the module's next IPC status report.

Once the mailboxes and timers are created, the configuration parameters are
read in. Setting many of the WAN interface parameters is optional; they have

default values. Table 9-1 shows the complete list of module-specific configuration

parameters; where a default value is shown, entry is optional for the parameter in the

WAN interface configuration file (WI.CFG). Two parameters included in the table

are not specific to the WAN interface module but are very important to its operation.

The SYLGNCOMM parameter indicates whether the LGN is configured as a

direct-connect site or a dial-up site. If the LGN is direct-connect, the SYNETADDR

parameter contains the LGN's network address.

9-3

TABLE 9-1

WAN INTERFACE BOOT PARAMETERS

Parameter Description Default

WI__CHECKX25QUEUE Wait time between X.25 polls 5 seconds
WICHECKIPCQUEUE Wait time between IPC checks 5 seconds
WIDEFERTIMEOUT Wait time between retrying 60 minutes

messages
WIDEFERLIMIT Maximum number of retries 5
WI FTCWINT FTC AdCom 2-1 software 105 (0 x 69)

i nterru pt num ber
WIDEFAULTDIR Top-level directory under

which subdirectories are
found

WY LGNCOMM Type of WAN interface
(direct or dial-up)

If the LGN is directly
connected to the WAN:
SYNETADDR Network address of the LGN

If the LGN has a dial-up
connection to the WAN:
WI NETPHONE Network phone number
WIBAUD Baud rate 2400
WIPORT LGN comm port number

(typically 1 or 2)
WIPARITY Parity (E, "O, or -N) "No
WI__STOPBITS Stop bits per character 1
WI DATABITS Data bits per character 8
WIATTEMPTS Maximum number of times to 5

try dialing the network

NOte: FTC - Frontier Technologies Corporation.

Communications Start-Up Procedures

When the LGN is direct-connect configured, after IPC initialization is
completed, the WAN interface module initializes the X.25 communications hardware
and software and the X.25 level-il link and level-rn link.

9-4

All direct WAN communications go through the AdCom2-I communications
controller board. The module interfaces with the AdCom2-I board via API function
calls and global data structures. Before invoking any AdCom2-I API functions, the
module initializes a data structure that holds packet and frame parameters used by
the AdCom2-I board during X.25 communications. The prototype LGN maintains
parameter values for several network environments, including commercial WAN
defaults, Defense Data Network (DDN), direct (AdCom2-I to AdCom2-I, bypassing
the WAN), and loop-back (for testing). All environments except DDN have been
encountered at some time during the Phase Ill test. In the prototype, only one of
these conditions can be in effect at an LGN at any given time; only recompiling the
WAN interface software can change the WAN environment setting. In a production
LGN, this configuration management procedure must be more flexible. Table 9-2
shows the values of the more significant parameters for a default commercial WAN
connection used during the test.

Once the X.25 parameters are set to starting values, the module initializes the
X.25 level-fl link and level-rn link to the WAN, using the AdCom2-I API functions.
The LGN uses only one line for an X.25 session; only one line (line 0), the first line
available on the AdCom2-I board, is initialized.

Clock Synchronization

In a production LGN, calibration with the CLGN clock will need to be
established before the LGN can proceed to the Operational State. In the prototype
LGN, code was written to calibrate the LGN clock with the CLGN but was not
activated. The clock synchronization algorithm coded is described later under the
topic of Algorithms.

Processing

Frequency of Operation

The application software for the WAN interface module is always operating. If
the LGN has a dial-up connection to the WAN, it remains parked in the IPC queue
waiting for events; if directly connected, the module seesaws between the IPC queue
and the X.25 line, monitoring each area for activity.

9-5

TABLE 9-2

SELECTED X.25 INITIALIZATION PARAMETERS

Parameter Value Meaning

Packet parameters:

line 0 Line to which the initialization applies

term_ type 1 Specifies DTE (1) or DCE (3)

ccittyear 0 Specifies CCITT 1980 (0) or 1984 (1)

passive 0 Send restart packet onlink initialization

modulo 1 Pending packet modulus

mbit 1 Allow m-bit use

mbitmode 5 Enable data splitting and re-assembling

qbit 0 Do not distinguish between X.25 control
packets and data packets in packet header

dbit 0 Disable remote DTE acknowledgment of data
packets

ddn 0 Disable DDN compatibility

ddnstand 0 Do not use DDN standard service on call setup

sdu 1024 Maximum data buffer size to be delivered to
or from X.25

txmaxpacketsize 1024 Maximum packet size to receive

rx maxpacket__size 1024 Maximum packet size to send

txpacketsize 128 Level 3 send packet size

rxpacket.size 128 Level 3 receive packet size

numpvc 0 Number of permanent virtual circuits

timers and retry counters a CCITT and ISO timers T20 - T28

CCITT 1980 facilities used on a
per-call basis:

fcp__negotiate 1 Enable flow control parameter negotiation

Frame-level parameters:

mx frame size 1028 Maximum size data passed to level 3

ti time 60 Wait time before retransmitting a frame
(value is in units of 50ms)

n2_cnt 3 Maximum number of retransmission attempts

frame modulo 8 Frame sending modulus

frm window size 4 Maximum number of outstanding frames

* Values recommended in FTC Super-X.25 DOS Programming Manual, Version 4.1, Appendix A are used.

9-6

Flow of Processing

The main processing loop logic and the handling of messages by this module

depend on whether the LGN's WAN configuration is direct or dial-up. For a direct-

connect LGN, the module services DESQview events and incoming X.25 packets as

well.

For DESQview IPC service, the module parks in the DESQview object queue

until a message is received or a timer expires. If the CheckX25 timer expires, the
module switches to the X.25 service and checks for incoming packets. If no packets

are received, processing switches back to the IPC queue. Packets received are
processed until time expires for the X.25 service interval; when the time is up, the

module returns to monitoring the IPC queue. This loop continues indefinitely until a

SHUTDOWN message arrives in the object queue. Figure 9-2 shows pseudo-code for
the WAN interface module Operational State processing for a direct-connect LGN.
The processing is the same for a dial-up LGN, except that the X.25 step is skipped.

A direct-connect LGN monitors the X.25 WAN connection directly by using
Frontier Technology Corporation's (FTC's) Super-X.25 API function calls to

communicate with the AdCom2-I hardware. When servicing the X.25 connection
during the Operational State, the WAN interface module listens for a CALL

REQUEST packet on line 0 (the X.25 line initialized during start up). If a CALL
REQUEST packet is not detected within ulCheckIPC seconds, the module switches

back to IPC processing.

When a CALL REQUEST packet is received over the WAN line within
ulCheckIPC seconds, the module responds by sending a CALL ACCEPT packet.
Embedded in the first DATA packet following the CALL REQUEST packet is a code
indicating the type of message being sent by the remote LGN. The coding scheme

used is termed the MODELS Network Protocol (MNP). It begins with a one-

character identifier (in the first DATA packet) representing the action requested by
the remote (calling) LGN; if required, supplemental data (e.g., a file name) are also
included in the packet. Two MNP codes - A (Acknowledge) and N (Negative

acknowledge) - sent by the called LGN provide an immediate response to an MNP.
The MNP is summarized in Table 9-3. When two codes are used to indicate the same

action, one refers to a more streamlined version of a request than does the other.

9-7

/* Psuedocode for WAN interface module
Operational State processing */

BEGIN
X25-seconds = 5
IPC-seconds = 5

DO FOREVER
Set CheckX25 timer to I PC-seconds
check-X25 = FALSE
DO WHILE check-X25 = FALSE

WAIT for EVENT from IPC-Queue
DO CASE (EVENT)
CASE SHUTDOWN message

PROCEED to Shutdown State
CASE CheckX25 timer expiration

check-X25 = TRUE
CASE expected message

Act on message
OTHERWISE

LONG ERROR
END CASE

END DO
Set ChecklPC timer to X25-seconds
seconds-left = X25-seconds
DO WHILE seconds-left > 0

WAIT for incoming packet for seconds-
left seconds

IF incoming packet received
PROCESS packet
CHECK CheckIPC timer
SUBTRACT seconds remaining on

ChecklPC timer from seconds-
left

ENDIF
END DO

END DO
END

FIG. 9-2. WAN INTERFACE MODULE OPERATIONAL
STATE PROCESSING FOR DIRECT-CONNECT LGN

Once the MNP code is validated, the module services the remote LGN's request.

As long as time remains on the CheckIPC timer, the module monitors the X.25 line

for another DATA packet, until it is time to switch over to IPC processing.

Many of the IPC messages processed by the WAN interface module are the

counterparts to remote messages received via the WAN. The LGN, when processing

9-8

TABLE 9-3

MODELS NETWORK PROTOCOL SUMMARY

MNP Code Meaning

A Acknowledge (ACK); used to acknowledge requests

C Request to receive any file being stored in outbound directory destined for
calling LGN

E Request to receive file that matches a prototype

F or P Request to send a file

H Remote message

K Request for confirmation that a table is ready to be received by calling LGN;
generally followed by T

N Negative Acknowledge (NAK); opposite of A

Q Request to receive any message being stored in outbound directory destined
for calling LGN

R Request to send an EDI file

S or U Request to receive a particular file

T Request to receive table specified in reply to previous K request

X Request to receive any file request being stored in outbound directory

destined for calling LGN

IPC messages, sends the same MNP commands that it waits for when monitoring the
WAN line. At the start of IPC processing, the CheckX25 timer is set for ulCheckX25

seconds. The module awaits an IPC message until the CheckX25 timer
elapses,processing those messages that arrive during the timer interval and
switching back to monitoring the X.25 line2 when it expires.

Except for SUSPEND and SHUTDOWN messages, all IPC messages sent to the
WAN interface module prompt a WAN transmission to a remote LGN. The data
transmitted can be an EDI file, a table, a message, a request, or a response to a
request (which can be a file, message, or table). The most prevalent message
processed is SENDEDI, which instructs the WAN interface module to transmit an

2 For a dial-up LGN, IPC event processing is interrupted by the CheckX25 timer every
ulCheckX25 seconds, but the CheckX25 processing is not executed. Instead, every ulCheckX25
seconds, the module takes a momentary break from checking and servicing the IPC queue.

9-9

EDI file to a remote LGN. The SENDEDI message contains the full path name of the
EDI file, both as it exists on the local LGN and as it will exist on the receiving LGN.

It also includes the TORIC, which is an index into the file DODAAC.DAT.3 This file
maps the TORIC to a remote LGN, its network address, and an indicator of whether

the remote LGN is dial-up or direct-connect to the WAN. All messages sending data
to a remote LGN use the DODAAC.DAT file.

Another IPC message, GETEDIFILE, is sent at regular intervals by the CLGN
polling module. This message is used by dial-up sites to poll the CLGN for the
following information:

* EDI files

* Messages

* Files other than EDI files

* File requests

* Table updates.

Since a dial-up LGN cannot be called directly, polling the CLGN is the only way that
LGN can receive EDI files and other data. The WAN interface attempts to do the poll
in one telephone call. After completing each of the above steps, the module proceeds
to the next step; if necessary, it redials the WAN.

To initiate a network call, the destination LGN's communications profile first is

extracted from the DODAAC.DAT file, as described above. (If LGN-to-LGN

communications are in operation and the destination is a dial-up LGN, which cannot
be called directly, the destination will default to the CLGN. The CLGN holds data for
dial-up LGNs in a staging directory until the remote LGN polls the CLGN for data.)
For a direct-connect LGN, the X.25 level-fl and level-IfI links are re-initialized.

Next, a CALL REQUEST packet including the addresses of both the calling LGN
(only the CLGN in the test) and the called LGN is assembled and delivered across the

WAN. The module then awaits a packet on the WAN line. If -t is anything other

than a CALL ACCEPTED packet, the line is closed and the call attempt is deemed
unsuccessful.

3The DODAAC.DAT file was originally indexed by DoD Activity Address Code (DODAAC), not
TORIC; hence the misnomer.

9-10

If the LGN has a dial-up connection to the WAN, it communicates with the
WAN via a public PAD; it also requires more steps to establish a connection. First,
the serial communications port is initialized (once this is done, the serial port can be
used indefinitely for communications until the LGN is shut down). Initialization is
accomplished with the help of the Greenleaf Comm Library suite of communications
functions. In fact, on a dial-up LGN, all interfacing with the serial port (and, thus,
with the modem and the WAN) is done via the Greenleaf functions. Once the serial
port is initialized, the WAN interface module telephones the network via the serial
port. Specifically, it calls a modem (provided by the WAN), which is connected to a
PAD, wakes up the PAD, sets some initial PAD parameter values, establishes a
WAN session with the remote LGN, and sets some additional PAD parameters. At
this point, it is ready to begin an MNP dialog.4

For both direct-connect and dial-up LGNs, the WAN interface module makes
multiple attempts to call over the WAN. The number of retries for various steps in
the WAN calling process is determined by a mixture of module start-up control
parameters and hard-coded values. Any message involving data transfer that
exceeds a maximum number of tries or that fails during file transfer is put into the
holding mailbox, where it will be retried when the Deferred timer expires. After a
message has been retried WIDEFERLIMIT times, it is discarded and an error entry
is written to the log.

Every transmission of files or other data between two LGNs is preceded by one
or more MNP codes indicating the action to follow. In the case of a CLGN poll, the
entire session could consist solely of MNP codes sent back and forth. In cases (such as
the processing of a SENDEDI message) where a file transfer ensues, the file transfer
mode used is XMODEM/CRC with a buffer size of 896 bytes.

At the completion of a WAN session, the WAN interface module closes the
communications line. In the case of a direct connection, it sends a CLEAR REQUEST
packet to the remote LGN and waits for a CLEAR CONFIRMED packet in response.
If the connection is dial-up, the module hangs up the telephone line.

4The specific characters exchanged to connect with the PAD and establish a network session are
highly tailored to the WAN being used. By the same token, the values for the PAD parameters will
probably vary from network to network. In the prototype LGN, the PAD parameters were set to make
the WAN as transparent as possible (i.e., no echo, no editing, no flow control, etc.).

9-11

In addition to handling IPC messages, the WAN interface takes appropriate
action on the expiration of either the IPCStat timer or the Deferred timer. (Recall
from the IPC start-up procedure that expiration of the Deferred timer results in the
transfer of all deferred messages from the deferred mailbox to the low-priority
mailbox.) Since messages in the low-priority mailbox can get bumped in the IPC
queue by any other messages, they may never reach the top of the queue. However,
in practice, the waiting line of messages in the queue is short, and the low-priority
messages usually are processed immediately. In the production LGN, a more
sophisticated method will be needed to guarantee that the maximum wait times for
messages is not exceeded.

For the IPCStat timer, each time a message is (1) received, (2) sent, (3) deferred,
or (4) retried during normal processing, the module updates counters that keep track
of those four message activities. When the IPCStat timer expires, the module writes
entries to the log and to the local console showing the count for each of those message
activities since the previous IPCStat timer expiration. For each message activity,
subtotals are listed by message type (e.g., SENDEDI) occurring during the
designated time interval.

Data Structures

Global Information Structure (WAN__GLOBAL). The WAN__GLOBAL
structure contains parameter values, mailbox and timer handles, and other
information reflecting the LGN's current state. Its component variables are used
frequently throughout the module. The WANGLOBAL structure is shown in
Figure 9-3. Nested within the WANGLOBAL structure is the DIALINFO
structure, which contains variables describing the asynchronous communications
connection of a dial-up LGN. It is shown in Figure 9-4.

FTC Global Structures (INIT._GLOB and DATA__DESC). Data passed between
the Super-X.25 API functions are in the form of globally accessible data structures.
The INITGLOB structure holds the X.25 level-2 and level-3 initialization
parameters. The DATA__DESC structure consists of a pointer to the data area of an
X.25 packet plus additional fields that further describe the packet.

Inter-LGN Message Structure (MSG__SENDMSG). Although the
MSG__SENDMSG structure is relatively simple, it is important in the sense that

9-12

typedef -struct wan__global

BOOL bRestart; /* Restart Flag
BOOL bSuspended; /* Suspended Flag
8001 bDirect; /* Direct or Dial-Up
char sDefaultdi r[SY FI LEM LN + 1]; /* 1 st Level Directory
char sLgn[SY FILEMLN +1] /* LGN Identifier
char sMod Fiime[SY MODMNEMLN+ 1]; /* Module Mnemonic '
char sMetacdr[SY X2-SADDRLN +1]; /* LG N's Network Address
DIAL INFO stDiirT info; /* Dial-Up Information
DV WDIHANDLE hExp mhailbox; /* Expedited Mailbox Handle *

DV ADIHANDLE hLow _mailbox; /* Low-Priority Mailbox Handle *

DV7ADIHANDLE hDef -mailbox; /* Deferred Mailbox Handle '
DV ADIHANDLE hSys mailbox; /* System Mailbox Handle
DV ADIHANDLE hCh~ekipc timer; I* ChecklPC Timer Handle
DV__ADIHANDLE hCheckX2r timer; I* CheckX25 Timer Handle
DV__ADIHANDLE hDeferred -timer; /* Deferred Timer Handle
DV__ADIHANDLE hlPCStats -imer; /* IPCStat Timer Handle
nt- iDeferLim it; /* Max # of Message Retries
unsigned long ulCheckipcqueue; I* ChecklPC Timer Interval
unsigned long ulCheckX25queue; I* CheckX2S Timer Interval
unsigned long ulDefertimeout; /* Deferred Timer Interval
unsigned long ulQuiettimeout; /* Not Used
unsigned long ulTeardowndelay; I' Not Used
unsigned long ulipcstatinterval; I' lPCStat Timer Interval
)WAN GLOBAL;

FIG. 9-3. WAN INTERFACE GLOBAL INFORMATION STRUCTURE

/* Global dial-up information (ignored for direct-connect LGN) *

typedef struct dialup

int iPort; /* Corn Port Number (0 = COM 1, 1 = COM2) *
int iBaud; /* Baud Rate
int iParity; /* Parity (Odd, Even, or None)
int iStopbitss; /* Number of Stop Bits
int iDatabits; /* Number of Data Bits
int iAttempts; /* Max Number of Dial Attempts '
mnt iSpeaker; /* Modem Speaker Status (0 = Off, 1 =On) '
char sNetphone[2 11; I' WAN Telephone Number '
DIAL-INFO;

FIG. 9-4. DIAL-INFO GLOBAL STRUCTURE

9-13

every message sent over the WAN is passed in this structure. It is shown in
Figure 9-5.

I* Message structure used when sending a message over the WAN *I

typedef struct msgsendmsg
{
MODELSHEAD mMsg head; /* MODELS message header */
char sDestmod[SY MODDMNEMCL-+ 1]; /* Destination module
char sLgn[SYLGN-MLN + I]; /* Destination LGN */
BYTE bPriority; /* Message priority *I
int iMsgLen; /* Length of embedded msg. */
char acMsgtest[SY MAXMSGLN]; /* Message text and data

MSGSENDMSG;

FIG. 9-5. INTER.LGN MESSAGE STRUCTURE

Algorithms

Queue Service. The means by which the WAN interface module equitably
services both incoming X.25 packets and IPC events was described earlier under
Flow of Processing.

Clock Synchronization. A clock synchronization algorithm was incorporated
into the prototype system but has not been activated during the test. Activating the
code is a trivial operation. But, since the algorithm is relevant to the design of a
production LGN, it is described here nonetheless. Because all transaction files are
timestamped as they move through the MODELS process - from the source LGN,
through the WAN, to the destination LGN - the system clocks in each LGN in the
system must be closely synchronized. The clock synchronization algorithm has the
WAN interface module at each LGN set up a session with the CLGN during its
Initialization State. The LGN then sends a series of WICLKREQCNT messages of
type CLKREQ to the CLGN, each separated by a 1-second delay. Each message
contains the system time according to the local LGN. The CLGN responds to each
CLKREQ message with a CLKRESP message containing the time originally entered
by the local LGN and the time (from the CLGN's viewpoint) that the CLGN received
the message. To this information, the local LGN adds the time the response was

9-14

received (according to the local LGN). After WI_ CLKREQCNT query-response
pairs, three sets of numbers will have been developed:

{QL(i): 1 < = i < = WICLKREQCNT} Time (according to local LGN) when query
i was sent.

{RY(i): 1 < = i < = WICLKREQCNT} Time (according to CLGN) when query i
was received.

{RX(i): 1 < = i < = WICLKREQCNT} Time (according to local LGN) when
response i was received.

The average round-trip propagation delay for a query-response is:

eeeie2p- 10

Assuming the delay in each direction is equal,5 then the average delay in each

direction is:

I RL(i)-n(i)]

20

Adjusting for the delay, the LGN's clock is set to:

[RC(i)L(i)]

10

Differences Between LGN and CLGN Implementations

The WAN interface module makes no distinction between the LGN and CLGN

environment, even though only the CLGN is capable of executing such tasks as
remote module suspensions or communication with another LGN on the WAN. These

differences are all resolved by either (1) input tables or (2) the makeup of messages
sent to the WAN interface module by other modules in the LGN.

51f a systematic bias in directional propagation delay exists and is constant, a small refimement
in the algorithm can correct it.

9-15

Shutdown Procedures

The WAN interface module acts when it receives a SHUTDOWN or SUSPEND
message. In addition to following the normal procedure of suspending message
processing, it disconnects from the direct or dial-up communications line and stops its
array of timers.

Serialization

It is not feasible to serialize the WAN interface module with any other
processes; it must be constantly monitoring the X.25 line for incoming packets. In
addition, other tasks such as IPC statistics updating and CLGN polling (for a dial-up
LGN) depend on continuously running timers.

Files

Two types of files - EDI files and general files - are sent and received by the
WAN interface module. The primary processing difference between them is that the
EDI file is deleted after successful transmission. The WAN interface module of the
sending LGN is responsible for names and locations of the files.

Alternative Designs

The WAN interface module of the prototype LGN suitably performs its task of
providing a WAN communications link. However, as a by-product of running the test
in a number of different environments, some desirable alternative design features for
the production LGN have been uncovered:

* The ability to handle more than one logical WAN session. This capability is
already inherent in the X.25 protocol and in the FTC hardware and
supporting software. Additional logic would need to be programmed into the
module.

" It would be beneficial, especially in a high-volume, multiple virtual session
environment, for the module to be able to recognize and take action in
response to other types of packets, those it currently ignores. The X.25
supervisory packets in particular are helpful in determining the causes of
communications errors.

9-16

CLGN POLLING MODULE

Purpose and Description

The CLGN polling module is a small, single-purpose module activated on dial-
up LGNs only. It regularly sends messages to the WAN interface module directing it
to poll the CLGN for EDI and other files, file requests, and remote messages.

Start-Up Procedures

The CLGN generally performs a subset of the standard LGN module
Initialization State sequence. The module receives only system messages from SB.
Therefore only the default, system mailbox is used. In addition to standard
systemwide parameters covering general LGN information, the following parameters
are obtained from configuration files during start-up:

CL._POLLINTERVAL CLGN polling interval (number of seconds)

WQQUEUEDIR Outbound directory of EDI files on the CLGN

WQ STAGE1DIR Destination directory for files received from the
CLGN

The module creates the CLGN Polling timer, which is used during the
Operational State to regulate the sending of messages to the WAN interface module.

Processing

The CLGN polling module consists of one program, which responds to the usual
system messages (SUSPEND, SHUTDOWN, and RESTART) and only one other
event: expiration of the CLGN Polling timer.

Frequency of Operation

The module runs continuously. Most of its time is spent waiting in the IPC
queue for the expiration of the CLGN Polling timer.

Flow of Processing

After receiving an OPGO message from SB signaling transition to the
Operational State, the CLGN polling module sets the CLGN Polling timer to
CL._POLLINTERVAL seconds. Subsequently, the module enters its main
processing loop of parking in the IPC queue awaiting a system message

9.17

(i.e., SUSPEND, SHUTDOWN, or RESTART) or the expiration of the CLGN Polling

timer. When the timer expires, the module forms a GETEDI message and sends it to

the WAN interface module.

To accommodate the testing environment, the polling interval has been

changed frequently. Suppose five new files were to be sent to a dial-up CLGN with

the polling interval set at 24 hours; it would take 5 days to update the LGN. To

overcome this problem, the polling module reads the CLPOLLINTERVAL

parameter with every timer expiration, setting the timer to the most recently

acquired CL_..POLLINTERVAL value. In the example, the CLGN first sends a new

polling configuration file specifying a smaller polling interval, typically 30 minutes.

From then on, the LGN polls the CLGN every 30 minutes instead of once a day. After

all the files are sent, the CLGN sends the LGN another configuration file restoring

the original polling interval of 24 hours.

Shutdown Procedures

Upon receipt of a SHUTDOWN message, the CLGN polling module follows

standard LGN module Shutdown State procedures.

Serialization

This module does not run in a serial fashion; its main processing task is

dependent on a continuously running timer that is independent of any other LGN
activity.

Alternative Designs

In a production system, the tasks performed by the CLGN polling module could
be incorporated into the WAN interface module. For purposes of developing the

prototype, making the CLGN polling function a separate module was a simpler

design, providing more modularity.

9-18

CHAPTER 10

TRANSACTION PROCESSING SUBSYSTEM

Figure 10-1 shows the transaction processing subsystem in terms of

" Its component modules

* Tables used by the translation modules

* The flow of information between modules

* The interfaces between the transaction processing subsystem and other
subsystems with which it communicates.

The prototype LGN cannot recognize EDI transactions or Service-specific

transactions that fall outside of the DLSS format (as understood by the LGN). In the
operational system, both of these types of transactions will be passed directly to the
WAN queuing module, bypassing the translator.

LAN DEQUEUING MODULE

Purpose and Description

The LAN dequeuing module (shown in Figure 10-2) transforms files
downloaded by the local interface module into the DLSS-to-EDI (D2E) translator

format. It is able to distinguish between single-card and multiple-card DLSS
transactions. Cards belonging to multiple-card transactions are grouped together
and sorted. The module assigns a unique transaction ID to each transaction
processed. Data that are not part of any transaction are discarded.

The module is made up of two DESQview processes (two programs): the main
event-handling process and an AWK filter process. To support a single translation,
there may be up to five instances of the AWK filter process.

Start-Up Procedures

The LAN dequeuing module is created when the system boots. It is initialized
via standard module initialization code. As usual, it does not open or use the low-

priority mailbox. Two other mailboxes are created: the expedited mailbox and a

10-1

andro filterin

I~ ~ ~ ~ ~ rnlto AddMdlereqiedieasseaioa
I~ ~ ~ ~ ~ tbe stamboicuedintesrtoye

J. 101 TRASATIN-ROESSNGSUSYTE

Loggi10.2

(Up to 5)

Raw DLSS AWK filter

transactions process

interface dequeuing rslator
main process

Filtered D LSS Error
trsctions trsctions

FIG. 10-2. LAN DEQUEUING MODULE

"semaphore mailbox." While, according to DESQview, the semaphore mailbox is
technically a mailbox, in reality it is a semaphore. Only one process can have
possession of the semaphore at any given time. A process can determine whether or
not it currently owns the semaphore; by this method synchronization among
processes can be achieved.

Only one module-specific parameter, LD _FILTERPIFDIR, is read during
directory initialization; it contains the PIF for the AWK filter process. The main
LAN dequeuing program requires the location of the filter process' PIF in order to
read and use the file in starting the filter process during the Operational State.
Another parameter, the current serial number, used during the Operational State is

10-3

read on an as-needed basis during processing. The value is kept as an ASCH string in
a separate file called SERIALNM.CFG. This file is updated each time a batch of
transactions is filtered.

Processing

As is the case with other modules in the LGN, the main processing role of the
LAN dequeuing module is to await specific IPC events. Critical IPC messages to this
module are RCVDDLSS, from the local interface module, and FILTERDONE, an
intra-module message from the filter process.

Frequency of Operation

The main event-handling process of the LAN dequeuing module is always
running. When not processing a specific message, it is parked in the IPC queue. The
filter process is executed when needed and is terminated once it has completed its
filtering tasks.

Flow of Processing

The main loop checks for RCVDDLSS messages in the expedited mailbox; when
one is in the queue, it is removed and processed. The sFilenm field in the RCVDDLSS
message contains the name of the file to be filtered. The file name consists of a
timestamp, assigned previously by the local interface, with the extension .DLD. The
file is in the directory \LI\DNLD\QTEUE. Another field in the RCVDDLSS message

specifies the host name. The LAN dequeuing module is designed to invoke a separate
filter process for each host connected to the LGN. During the prototype test, the LGN
has been connected to only one host, so only one file filter has been developed.

When the RCVDLSS message is read, a separate process is started to filter the
file sFilenm. The parameters sent to the filter process are: (1) the host name; (2) the
file name, without the extension (i.e., the file's timestamp only); and (3) the LGN
name. The filter process uses the LGN name as a component of the unique

transaction ID assigned to each DLSS transaction.

Up to five filter processes at a time can be active, although the module runs only
one active filter at a time; the other four are dormant, awaiting the semaphore
LDSEMAPHORE. The filter process is a batch file consisting of (1) a header

C-language program that gains ownership of the semaphore; (2) the filter programs,

10-4

which are written in AWK and SuperSort; and (3) a trailer C-language program that

releases the semaphore and sends a FILTERDONE message to the main C-language

event-handling process.

The actual filtering and sorting are done by a series of AWK programs and

SuperSort scripts. The SuperSort scripts inform the SuperSort software of the file

names, sort keys, and collating sequence. Generally, successive AWK programs,

upon recognizing a type of DLSS transaction, process and write it to an output file.

The main output file created by the filter process is C:\LD\VAL\ < time-stamp > .VAL,

where <time-stamp> is the timestamp of the transaction file being filtered. An

error file, \LD\FILTER\ERROR.TXT, is also produced. Because of space limitations

and lack of high-capacity, removable media in the prototype LGN, this file is written

over each time the filter process is run.

For each transaction, the filter writes to the output file a unique ID, which

precedes the transaction. The transaction ID is a concatenation of the tilde character

(-), the three-letter LGN name, and a sequence number. The sequence number is

incremented by one each time a transaction ID is formed and written. At the end of

each filter program, the current sequence number, which is the one applied to the

next transaction, is written to the file C:\CFG\SERIALNM.CFG.

Generally, each transaction is distinguished by its Document Identifier

Code (DIC) field, located in the first three columns. If the transaction is determined

to be a single-card transaction, a transaction ID is written to the output file, followed

by the transaction. If it is a multiple-card transaction, more pre-processing, and

consequently more programs, are involved. For these transactions, the values of

other fields are used as qualifiers and keys to separate transactions and to sort

multiple card images within transactions for processing by the D2E translator.

The main event-handling process keeps track of outstanding filter processes.
Each is identified by the timestamp of the filtered file; the FILTERDONE message

includes this identifier to identify which process has been completed. At this point, a

TRANSDLSS message is formed and sent to the D2E translator module; also, the

unfiltered DLSS file is deleted.

10-5

Shutdown Procedures

For the most part, the LAN dequeuing module follows the standard prototype
LGN module shutdown procedures. Its one additional task is to cancel the semaphore
mailbox.

Serialization

Since the prototype LGN operates on a file of transactions, rather than on a
single transaction at a time, serialization would impose less severe decreases in
performance than it would if the LGN were truly a transaction-processing system.
Under the prototype conditions, the LAN dequeuing module is a good candidate for

serialization.

The LAN dequeuing module could be invoked following the download of a DLSS
file, and managing multiple filter processes would be unnecessary. If two or more
downloads occurred in rapid succession (which happens), the design should allow
more than one instance of the module to run simultaneously. The logic for assigning
serial numbers would have to be modified accordingly, to ensure that duplicate
numbers are not assigned.

Files

Two main files are processed by the LAN dequeuing module: the input file of
unfiltered DLSS transactions and the output file of filtered DLSS transactions. The
file ERROR.TXT contains card images considered by the filter process not to be part
of a transaction. In addition, several temporary files are used during the filtering of
multiple-card transactions.

DLSS-TO-EDI TRANSLATION MODULE

Purpose and Description

The DLSS-to-EDI translation module (D2E translator) performs the core LGN
function of translating transactions from DLSS into EDI format. The operating
context for this module is shown in Figure 10-3.

The translation module receives a TRANSDLSS message from the LAN
dequeuing module that specifies a DLSS file to be translated into EDI format and
triggers the module to process all transactions in that file. The translation logic that

10-6

DLSS Translation
transactions tables

queuing translator "1queuing

Filtered DLSSEro
trnctios transactions

FIG. 10-3. MODULE FOR DLSS-TO-EDI TRANSLATION

drives the module resides primarily in tables designed by LM, using Paradox

structures and syntax. Some supplemental logic, in the form of frequently used

utility routines, is incorporated in the translator module itself.

The translator is a C-language program that reads the translation rules from

the tables at module start-up and compiles them into an internal "portable-code"

(P-Code) abstract stack machine format. An abstract stack machine uses a set of

pseudo-machine-language instructions that can be evaluated by an abstract stack

machine. The language constructs of the translation tables are simple compared to

those of a conventional programming language (like C, for example), keeping the

abstract stack machine fairly uncomplicated. However, the syntax is not trivial; as

the apparent data interrelationships and cross-references used to specify the

translation process become more complicated and numerous, the sophistication of the

10-7

table logic increases proportionately. The translation P-Code is stored entirely in
memory, greatly increasing the performance of the translator in comparison to that
which would be obtained by accessing the translation logic directly from the tables.
The utilities YACC and LEX are used to build the compiler.

The translation tables are converted to P-Code by using an incremental
compiler. In theory, this process provides the capability to revise one portion of the
logic or add a new rule without having to recompile the entire set of tables. During
the prototype test, however, the mechanisms for notifying the program of the
particular translation logic revisions have not been developed. Therefore, when a
change to the translation tables takes place, the translator reloads the entire set of
tables and recompiles all the logic rules.

Start-Up Procedures

The D2E module is a single C-language executable process. At start-up, the
module performs the standard module start-up procedures. Once those procedures
are accomplished, the translation tables are loaded into memory and converted to the
internal P-Code format. Because of the added workload shouldered by the translation
module during the Initialization State, its start-up time is significantly longer than

that of other modules (except the EDI-to-DLSS translation module): up to 3 minutes
on a Compaq 386/20 with a disk cache.1 The length of time to complete start-up
procedures is determined by the number of records in the translation tables.

As usual, the module uses its expedited mailbox as the vehicle for receiving
messages. The low-priority mailbox is not opened and consequently is not used. In

contrast to the other modules in the LGN, the D2E module does not read any module-
specific parameters during start-up. All information required by the module is either
hard-coded, passed through parameters in messages, or implied.

IThese times are based on a "fully loaded" LGN; i.e., an LGN with 11 or 12 processes all
initializing at the same time. A stand-alone version of the translator, built expressly for LMI
translation table development and analysis, yields much quicker times: approximately 30 seconds
with all other conditions equal.

10-8

Processing

The D2E module waits in the IPC queue for (1) a system message from SB or

(2) a TRANSDLSS message triggering a DLSS file translation. The translation itself

is driven by the translation tables.

Frequency of Operation

This module is always running, but it is dormant until a message arrives for

processing.

Flow of Processing

The receipt of a TRANSDLSS message in the IPC queue starts a DLSS-to-EDI

translation of the file denoted in the message. The file is read one transaction (one or

more DLSS card images) at a time. The translation is driven mainly by the tables

DIC2TID and DLSS2EDI, with the EVALDLSS table playing an important

supporting role. The relationships among the translation tables are shown in

Figure 10-4.

The DIC2TID table provides the first step in translating a transaction. One or

more records in the DIC2TID table referencing a unique transaction identification

(TID) form a TID section. The first TID section record to be translated corresponds to

the DIC of the DLSS transaction found in the DIC2TID. Internal tables (in program

memory) map the TID section to the first DLSS2EDI record to use for translation of

the TID section. 2 The DLSS2EDI table is essentially a step-by-step sequence of

instructions describing how to build an EDI transaction in terms of its 'omponent

segments and fields. The table is grouped logically by TID section. Each record entry

in the DLSS2EDI table corresponds to a conditionally 3 created EDI field in the target

transaction.

The DLSS2EDI table also contains records that do not correspond to any

particular EDI element. These records are used to generate "side effects," such as

2Remember that the tables are loaded into memory compiled, so all references to table records
are actually to internal representations of table records; likewise, all record positions resolve to
memory offsets.

3The [condition] field determines whether or not the EDI element will be created in the current
EDI segment; when condition is true, the EDI element created follows the rules in the [evall field.

10-9

DIC2ID table

Dicattern i iletFnDI

P9 [ABCDEF] 5 A ..

P2[B (A91S]

P [ABE] [AS) I P[BE1l 561 1

P (ABEl [CDl 6 0 ytmTascin
P [ABE] [EFH] 6 0 fnto

P(ABE 1 l]
Find
TOIDSE~ al

Tid Tid Seq Seq ConditiongEa
Sect Seq Id

5. 61 1 0 dlum Matches (RP(CurrentCard. 1, 3).IPABIP [BE] (AB~in Exit ()
561 1 0 dum Matches (RP(CurrentCard, 1, 3),/PA [BE] 1i) P1 : a 1

561 1 0 dlum RP(CurrentCard, 1, 3) - 'PAA' ISA: - 1

561 1 0 dlum Found: - FindCard(I .Forward,CurrentCard, 1, 3 PA: a Found

561 1 0 dum PA and (Found: - PB: a Found

FindCard(/PABE]0/, ForwardCurrentCard, 1. 3. RP(PA, 4.,19,4,

561 1 0 dlum Not PA and (Found: -P9: =Found

FindCard(IPISE]B/ ,Forward, CurrentCard, 1,.3))
S61 0 lum PS ad (oun: -P82 := Found

d 61fin0edF Findad/AI [SE] (A]ABEI FrarP824] R(B4,0,,4) 0 DS.I

vaial DSorwardCurrenttard, 543)

FIG. 10-4. TABLE INTERACTION FOR DLSS-TO-EDI TRANSLATION

10-10

assigning a value to a user-defined variable or exiting from the current section. The
segment sequence number in these records is always zero.

The translation proceeds through the DLSS2EDI rules, building EDI segments
according to the DLSS2EDI rules specified for that section an element at a time, until
it reaches the last DLSS2EDI record in the section. At that point, the program
returns to the DIC2TID table for another TID section to translate, repeating the
translation loop until no unprocessed TID sections remain.

How does the EVALDLSS table fit in? In the [condition] and [eval] fields of the
DLSS2EDI table, references are made to logical names, which roughly equate to
fields in a DLSS transaction or to EDI elements. These logical names are essentially
the atomic units of the translation rules, and they are defined in the EVALDLSS
table. The logical names themselves may be defined in terms of conditions and
further transformations, referring as necessary to other logical names. The
translation rules for EDI elements can be quite complicated.

If the translation of a transaction fails, the segments produced up to that point
for the transaction are written to an error file.

If at least one transaction from the file is translated correctly, a DISPATCHEDI
message is sent to the WAN queuing module.

SUSPEND messages are handled in the usual way. A RESTART message
signals a transition out of the suspended state, and before re-initializing, the module
frees all memory associated with internal representations of the translation tables.

Data Structures

Several aggregate data types associated with the translation module relate to
the compiler and the execution engine for compiled code: symbol tables, parse trees,
the evaluation environment, and page tables for input and output data.

Two symbol tables are maintained for the translator: a DLSS evaluation table
and a system symbol table. The DLSS evaluation table is the internal representation
of the logic defined in the translation table EVALDLSS. The C-structure of this
entity is shown in Figure 10-5. The table contains information derived directly or
indirectly from the translation table: the symbol name (pszName), the symbol's
internal type (tType) and type as presented in the Paradox table (cType), a pointer to

10-11

the P-Code that evaluates it (codEval), and the length of the P-Code (wCodeLen).

Since the DLSS symbol is re-evaluated every time it is referenced, its most recent
value is not stored in the symbol table; rather, the rules for its evaluation (i.e., the

pointer to its P-Code) are stored.

typedef enum tagTYPE
(
eVoid /* No type */
,elnteger /* 16-bit integer */
,eString /* String
,eBoolean /* Boolean (integer)
,eRegex /* Regular expression *1
,eTypeCount /* # of types */

typedef struct tagDLSSSYMBOL
I
char *pszName; /* Symbol name */
TYPE tType; /* Data type *1
char cType; /* Type as coded in data base *1
PCODE codEval; /* Evaluation P-Code
WORD WCodeLen; /* Length of P-Code *1
J DLSSSYMBOL;

FIG. 10-5. EVALDLSS SYMBOL TABLE ENTRY

Similarly, the translator maintains an array of entries representing records in
the DLSS2EDI table. Each D2ETRANS entry corresponds to a rule for conditionally
including a particular EDI element. The fields in the D2ETRANS table correspond

closely to field counterparts in the DLSS2EDI table. The D2ETRANS entries are
grouped together by TM section into a larger DLSS2EDI structure. The structure for
these entities is shown in Figure 10-6.

The language that captures translation logic (as contained in the fields
[EVALDLSS -> Condition], [EVALDLSS -> Transformation], [DLSS2EDI ->
Condition], and [DLSS2EDI -> Eval]) is dubbed TransLog. As computer languages
go, TransLog is uncomplicated, but not trivially so: (1) it has few data types and few
operators; (2) symbols scope either to a TID section or are global; (3) it allows for a
maximum of 20 run-time declarable variables, all of which are of type integer; and

(4) it is strongly typed - each symbol has exactly one type, which is declared

explicitly. The type of each DLSS symbol is declared in the EVALDLSS data base
and is mapped to an internal type during start-up. The types supported in the data

10-12

typedef enum tagD2ETRANS

WORD wSegSeq; /* Segment seq number */
char aszSegld[kwrTRMaxSeglDSz + 1];

/* Segment id */
WORD wSegUse; /* Segment use # */
WORD wEltSeg; /* Element use # */
WORD wOutputSection;

/* Output section */
PCODE codEval; /* Evaluation P-Code
WORD wCodeLen; /* Length of P-Code
) D2ETRANS;

EXTERN struct tagDLSS2EDI
{
WORD wTid; /* Transaction ID
WORD wTidSect; /* TID section */
WORD wNumrecs; /* Numberof D2ETRANS */
D2ETRANS *recTranslation;

/* Trans. records
I garecDlss2 EdifkwTRMaxNu mTidSects];

FIG. 10-6. DLSS2EDI TABLE ENTRY

base and their internal equivalents are shown in Table 10-1. The compiler enforces

strict typing.

TABLE 10-1

DATA TYPES IN EVALDLSS DATA BASE

ata base DSymbol table
type flag Data base type type

A Alpha eString

U Untrimmed alpha eString

L Logical eBoolean

D Date eString

N Numeric eString

The DLSS evaluation table is an array of objects such as those in Figure 10-5. It

is loaded at start-up from the EVALDLSS table. The load process is actually a

two-pass compiler and code generator that builds the P-Code for each function.

10-13

Where a field representing different conditions contains multiple translation table
records, they are collapsed into a single table entry, and multiple table records are

represented as different blocks of code within the P-Code. The subfield codEval,

within the table entry, points to an array of P-Code entries associated with the

EVALDLSS symbol. The D2ETRANS table is loaded in similar fashion.

The P-Code is generated during the compiler's second pass. (Other subfields of

the EVALDLSS symbol table entries are resolved during its first pass.) The generic

structure of the code is:

typedef struct tag < structurename >

{
BYTE opCode;
<some-type> <hungarian__prefix > Operand
} < structure-name >;

where:

* <structure-name> is the mnemonic representing the structure for a
particular type of P-Code instruction (e.g.,
STRINGOPERANDINSTRUCTION).

* <some-type> is either char, BYTE, int, WORD, REGEXCODE (regular
expression code, also compiled), STRING, or FUNC (pointer to a system
function).

* <hungarian-prefix> is the Hungarian notation prefix corresponding to the
variable type named in < some-type >.

Generally, a line of code consists of an instruction and an operand. From the
structure, it can be seen that the operand can be any one of seven types, depending on

the nature of the instruction. The uses of these operands are illustrated below.

Table 10-2 contains a list of the instruction set supported by the abstract
machine, 4 along with a brief functional description. P-Code for an EVALDLSS

symbol consists of streams of these instructions generated by the code generation

pass of compilation during translator initialization. codEval points to the beginning

of this stream of P-Code instructions.

4A P-Code entry for an abstract stack machine is analogous to a machine instruction for a true
machine.

10-14

TABLE 10-2

P-CODE INSTRUCTION SET

Instruction Operand type Description

Pop none Discard the top value on the stack and decrement the stack pointer.
Push WORD Push the operand value onto the stack.
PushString STRING Push the length and address of the operand onto the stack.
PushRegex REGEX Push the address of regular expression P-Code onto the stack.
Copy none Copy top value of stack onto the position "1 beyond the top," which

becomes the new top.
Calls FUNC Call the system function pointed to by the operand.
CalIU WORD Recursively evaluate the P-Code entry for the DLSS value whose index is

equal to the operand value.
LVal WORD Pop the value on the top of the stack to the system variable whose index

is equal to the operand value.
Rval WORD Push the value of the system variable whose index is equal to the

operand value onto the stack.
EQString none Com pare the string at the top of the stack with the string below it for

equality, pop the stack, and set the result (<O, 0, or >0).
WEString none Like EQString, except check for inequality.
EQ none Compare the integer at the top of the stack with the integer below it for

equality, pop the stack, and put the result on top of the stack.
NE none Like EQ, except check for inequality.
And none Perform a logical AND with the integer on the top of the stack and the

integer below it, pop the stack, and put the result on top of the stack.
Or none Perform a logical OR with the integer on the top of the stack and the

integer below it, pop the stack, and put the result on top of the stack.
SBPJump WORD Jump (advance the P-Code pointer) forward the number of bytes

specified in the operand. Also set the base pointer (used in jumps) to the
location in the P-Code following the SBPJump instruction.

Jump BYTE Jump forward the number of bytes specified in the operand.
JumpT BYTE If the top of the stack is true (non-zero), jump forward the number of

bytes specified in the operand.
JumpF BYTE If the top of the stack is false, jump forward the number of bytes

specified in the operand.
Jumpl BYTE Jump forward the number of bytes specified by the local variable whose

index in the local variable array matches the operand value.
JumpiT BYTE Like Jumpl, except the jump is conditional on the top of the stack being

true.
JumpIF BYTE Like Jum pl, except the jump is conditional on the top of the stack being

false.
Not none Perform a logical NOT on the integer on the top of the stack.
NOP none No operation.

Inc WORD Increment the DLSS symbol whose index is equal tothe operand value.
Plus none Add the integer on the top of the stack to the integer below it, pop the

stack, and put the result on the top of the stack.
Minus none Add the integer on the top of the stack to the integer below it, pop the

stack, and put the result on the top of the stack.

10-15

Expressions in TransLog are built up from references to EVALDLSS functions,
user-defined variables, and system primitives. User-defined variables are simply
identifiers in a TransLog expression that are not a reference to an EVALDLSS entry
or a system function. The compiler considers them to be integers, implying that they
can be also be used as Boolean. Their values are cleared at the start of a new TID
section translation.

System primitives are functions or variables; they are stored in the system
symbol table and are initialized during start-up. The number of system functions has
grown gradually throughout the prototype test; the complete list of system functions
at test end is listed in Appendix B. There are two kinds of system symbols:
(1) variables, including those whose value is constant and those whose value can

change during a translation, and (2) functions that transform or retrieve some value.
The functions can be thought of as similar to EVALDLSS symbols, except for two

factors:

* System functions can have parameters.

* System functions have actual compiled C-language code underlying them,
not P-Code.

The system function table is needed for the compiler to recognize valid system
function names, validate the numbers and types of parameters for a system function

call in TransLog, and connect the call to the run-time routine at code-generation
time.

The system symbols stored in the system table have their own structures.

Figure 10-7 shows the C-language structure for system-table symbol entries.
Symbols in class eFunction are evaluated by executing the function pointed to by
fnFunction. Symbols in class eVariable store their current value at vValue. The
symbol table consists of an array of symbol table entries.

A second significant data structure for the compiler is for parse trees. Parse

trees are generated by the syntax checker of the compiler. They represent
derivations of expressions from the syntax rules of TransLog. TransLog statement
parsing will be handled by the inherent capabilities of YACC, the compiler

generator.

10-16

typedef enum tagSYM CLASS

eFunction /* Symbol is function */
,eVariable /* Symbol is variable
} SYMCLASS

typedef struct tagSYSSYMBOL
I
char *pszName; /* Symbol name */
TYPE tType; /* Data type */
SYM CLASS scClass; /* Function or variable */
BYTE- byNumParams; /* Number of fixed params */
BYTE byMaxNumParams: /* Max number of params
BYTE byTupLeSize; /* Repeat param group size */
BOOL blsPrimitive; /* Always Yes in prototype */
BOOL blsScopedToTransaction;

/* Reset to zero?
TYPE *ptParamType; /* Array of param types *1
VALUE uValue; /* Current value */
FUNC fnFunction; /* Code for function call *1
}SYS SYMBOL

FIG. 10-7. SYSTEM TABLE ENTRY AND RELATED STRUCTURES

A third major set of data structures is the execution environment, containing

" A global execution stack

* A stack pointer

* An instruction pointer

* A call walk-back.

The global execution stack is simply an array of type integer. The stack pointer is the

current position in the stack; it is initialized to zero. The instruction pointer

references the P-Code instruction under current evaluation; it is initialized to the

symbol's codEval field at the start of P-Code evaluation for a symbol. The call

walk-back is an array holding a pointer to the current symbol table entry, as well as

pointers to all DLSS symbols referenced recursively during P-Code evaluation. By

way of the DLSS symbol entry codEval subfield, the call walk-back array points to all

P-Code entry points in the call stack.

The translation module also uses a set of data arrays to map DLSS images, page

table entries, and file locations to each other. A similar array maps EDI segments to

10-17

file locations. Because DLSS transactions can be hundreds of card images in length

and the amount of memory to store a DLSS transaction is limited, images pertaining
to the current transaction are brought in as needed; the program allocates space for
the 100 most receutly used images. The following data items and structures are used
in DLSS card-image mapping:

gaiDlssSwap2CardMap[I maps page table entry to card number

garecDlssCard2File[I maps card number to page table entry and to input
file location

gapszDlssCardSwap[] array of buffers, each of which holds the card image
associated with a particular page table entry.

The structure garecEdiSeg2FileMap maps EDI segments to output file locations.
Actually, the EDI segments are written temporarily to a sort file before being written
to the EDI output file.

Algorithms

The translator module makes significant use of algorithms. These are discussed
as they apply to the EVALDLSS symbol table, in particular, and, in much the same
way, to the D2ETRANS array entries.

Overview of Compiler Processing. The compiler loads the EVALDLSS table
into memory in two passes. The first pass populates the internal EVALDLSS symbol

table with all the field names in the data base. All the subfields for each symbol table
entry are filled in except for codEval. In the second pass, code is generated for each
entry; the codEval subfield for the entry points to the allocated space for the code.

In the second pass, each symbol is compiled in two phases. First, a lexical and
syntactical analysis is performed to generate a parse tree from the TransLog code for
the symbol. If any symbol fails lexically or syntactically, the compile fails and the
program aborts. For symbols that have more than one record in the translation

EVALDLSS table, the records are collapsed as follows:

[Condition]l:\n[Transformjll;\n[Condition]2:\n[Transform]2;\n...
..[Condition]n:\n(Transform]n.

10-18

where different conditions and transforms represent successive data base records for

the same symbol5 and \n represents the "new line" character. Such a statement is

interpreted as executing the transform that follows the first true condition. A null

condition is interpreted as true, while a null transform is interpreted as no transform.

Lexical Analysis. Lexical analysis is performed by a finite stack machine in

C-language generated by the LEX utility. The TransLog grammar used for LEX is

shown in Figure 10-8 in Backus-Naur form. Note that the grammar is not

case-sensitive; all names are converted to upper case by the lexical analyzer. Also

note that EVALDLSS name references are of the form DLSS.name, but only name is

stored as the identifier name in the EVALDLSS symbol table.

Syntax Analysis. The syntax analysis phase generates a parse tree using the

facilities of YACC. Each major production in Figure 10-8 is augmented with

semantic rules6 for generating a parse tree node. The resulting grammar is processed

by YACC to produce a compiler that generates a parse tree, which subsequently is

the input to the code generator.

Additional semantic checking is also done during the syntax analysis phase. As

code is generated to put system function parameters on the stack, their type is

compared with the required type for that position's parameter. Similarly, the type of

each Boolean or comparison operator is validated to ensure Boolean or string types. If

type checking fails, the compile fails and the program aborts. In addition, the syntax

checking phase makes sure that limits are not exceeded for the number of

instructions on the stack or the number of local variables; if the limits are exceeded,

the compilation aborts.

The semicolon following a condition expression is treated as a label for P-Code

branching on true, and the semicolon after a transform as a branching label for false.
In this way, during evaluation of the P-Code, the translator executes the transform

code if the condition is true but branches to the next condition or the end of the

P-Code if the condition is false.

5This collapsing does not take place for D2TRANS entries. Each D2TRANS codEval subfield
points to one condition-transformation pair (each member of which can be null).

6The parse tree is generated in post order so that infix expressions (e.g., 9-5 + 2) are converted
to postfix (e.g., 952+-).

10-19

program case block .

case block case expr :case vlock';'case expr
case expr.' condition ':' expr list
expr'list :: = exprl expr list ,'expr
expr : 'NOT' exprT(' expr ')' . variable 1 INTEGER

func call
-usercalIlREGEXISTRINGLITERAL:'INC"('expr '

compareexpr boolexpr : arithlexpr ' dssign expr

[Note: In the previous line, the expressions are interpreted as a single term within a larger
expression.]

STRING LITERAL :: = ... (\. : [A\W),

REGEX T N
user call :: = USER NAME maybeparen
maygeSparen :: = '(' ')'
USER NAME :: = 'DLSS.' letter (letter 1 digit 1 national)*
natio-Thl :: = [#$%?__
digit ::= [0-91
Letter..- - [a-zA-Z]
condition :: = 'CASE' expr list: 'DEFAULT'
param list :: f nonull param list: E
nonull param list :: = expr I onull param list ',' expr
compare expr " - expr' =' expr-Texpr'<->' expr
bool expr :: = expr'OR' expr I expr 'AND' expr
arith-expr :: = exp ' +' expr 1 expr '-' expr
assign expr :: f expr': =' expr
func -a11 :: f SYSTEM NAME'(' paramllist')'
variale :: = SYSTEM-NAME
SYSTEMNAME :: = letter (leer I digit 1 national)*

FIG. 10-8. TRANSLOG GRAMMAR

Code Generator. The parse tree generated by the syntax analyzer converts to

P-Code on the basis of the semantic action directives added to the TransLog
productions. An array of buffers is built to hold the resulting code for all symbols.
When code generation for a symbol is complete, the code is copied to a buffer,

referenced by the symbol's codEval bucket.

The code generator passes the parse tree in a post-order traversal, emitting code

for the major productions defined in the TransLog grammar. Generally, string or

integer expressions determine whether (1) parameters for a system function call,
(2) operands of a comparison, or (3) assignment operators are pushed onto the stack.

10-20

Expressions cause labels to be back-fitted and operator code to be generated. A
feature of the compiled code is that a comma in an expression list pops all stack
values off the stack. Thus, expression values appearing before a comma are
completely independent of those appearing after it. The execution engine is
responsible for popping values off the stack when a system function is called.

Execution Engine. The execution engine evaluates condition-transformation
pairs in the EVALDLSS and DLSS2EDI tables. It is called with the C function

void vExecute (register PCODE pcCode).

It may be called (1) directly from the translator, when the translator is
navigating through the DLSS2EDI table or (2) recursively from P-Code, when an
expression refers to an EVALDLSS symbol. It returns (via the execution stack)
integer, string, or pointer to regular expression code, depending on the nature of the
expression evaluated.

At the top-level call to vExecute, there is a global execution stack (as explained
earlier under the topic of Data Structures) that is visible to all recursive functions of
vExecute and to the code associated with system symbols. The evaluation uses this
global execution stack to execute string compares and Boolean operations according
to the P-Code. Code for calls to system functions is generated so that the correct
number and types of parameters for the function are placed on the stack.

Producing Interleaved Output. The correct order of segments in an output EDI
transaction is not necessarily the same as the order of the segments in the DLSS2EDI
table. Information about each EDI segment produced is kept in the structure
garecEdiSeg2FileMap:

struct tagEDIFILEMAP
I
WORD wCreationOrder; /* Order in which created */
WORD wOutputSection; /* Composite loop indicator *1
WORD wL1; /* Outer loop counter *1
WORD wL2; /* Inner loop counter *1
long ILoc; /* Offset position in file
) *garecEdiSeg2FileMap;

(The fields wL1 and wL2 are not used in the current system.) Each EDI
segment created during translation of a transaction is written to a sort file. For each
of these segments, a garecEdiSeg2FileMap entry is updated to reflect sort

10-21

information and soLt file positicis. After the last transaction segment has been
created and written to the sort file, the set of segments making up the transaction is
sorted by output section and creation order (within output section) and written to the
EDI output file.

Shutdown Procedures

Upon receipt of a SHUTDOWN message from SB, the D2E translation module
follows the standard prototype LGN shutdown procedures.

Serialization

Since this module responds to the TRANSDLSS message in particular, and the
TRANSDLSS message is sent only by the LAN dequeuing module after that module
has filtered a file of DLSS transactions, the DLSS-to-EDI translation module could
execute serially after the LAN dequeuing module. This arrangement would not be
suitable for a true transaction-processing environment.

Files

The D2E translator uses several files during the course of processing:

0 Translation tables

o DIC2TID Maps from a regular expression describing a set of DICs to
the matching TID section. This is the first table referenced
,or any transaction translation.

o EVALDLSS Defines how values for logical names are derived in a DLSS
transaction.

o DLSS2EDI Contains conditions and instructions for building an EDI
transaction, one element at a time, for all segments
making up the transaction. Refers, in the conditions and
transformation of EDI elements, to the logical names in
the EVALDLSS table.

o CODEMAP Provides table look-up for certain elements, by mapping
between DLSS field values and corresponding EDI element
values. Unlike the other tables, CODEMAP is currently
not read at module start-up, but is referenced as needed
during translation.

10-22

* Text files

o DLSS Input A file of filtered DLSS transactions, referenced in the
TRANSDLSS message from the LAN dequeuing module.
The complete path name for the file is C:\LD\VAL\<time-
stamp>.VAL, where <time-stamp> is the timestamp
assigned to the file when it was downloaded by the local
interface module.

p EDI Output The file of EDI transactions resulting from the transaction.
The full path name is C:\DE\VAL\ < time-stamp >.VAL.

o Error File Any transactions that the module is unable to translate
are written to the error file. For each transaction in the
file, all segments up to the one in error are written, along
with an error message and a description of the EVALDLSS
symbol that was most recently evaluated. The full path
name for the error file is C:\DE\ERR\< time-stamp >.ERR.

Alternative Designs

The present design of the translator has created a reliable module with more

than adequate performance for the prototype system. The fact that translation rules

are compiled at run time yet reside in a full-featured data base management system

(DBMS) allows ample translation speed and reasonable ease in changing translation

rules. Results of field testing the translator during the course of the Phase Il test

prompt the following suggestions for design modifications and alternative

implementations:

* True transaction processing. This would not require a significantly large
change to the translator. Translation strategy would not need to change but
would just be exercised on a single-transaction basis instead of a file of
transactions.

* Hard-code constant translation rules. Moving some or all of the translation
rules into the actual C-language program could optimize performance and
eliminate the amount of compilation required during program start-up. On
the other hand, the added value and ease of use of the DBMS facilities would
be lost.

* Object-oriented constructs. Given the number of aggregate data types
explicitly defined within the module and implied 7 by the data, the translator
would appear to be a good candidate for object-oriented methodologies. In

7This is especially the case for EDI formats, where transactions are built up hierarchically from
elements, segments, and loops.

10-23

the same vein, the EVALDLSS table is essentially a table of objects and
associated rules on how values for the objects are formed. Using object-
oriented constructs might also cut down on the profusion of system functions
designed to handle unique combinations of data formats.

WAN QUEUING MODULE

Purpose and Description

The WAN queuing module responds to DISPATCHEDI messages from the D2E
translator module. It compresses the EDI file named in the message and sends a
SENDEDI message to the WAN interface module. The compression is done via a
separate batch file process (referred to as the ARC process) that invokes a PKARC
compression program. The context for the WAN queuing module is shown in
Figure 10-9.

WE WAN AN
translator queuing interface

E Archive batch Compressed

tranactins roces EIo

FIG. 10-9. WAN QUEUING MODULE

Start-Up Procedures

This module performs the normal module start-up sequence and some
additional steps in preparation for invoking the ARC process during the Operational
State. The parameters in Table 10-3, which does not include standard systemwide
parameters, are read during start-up.

As part of its start-up procedure, the WAN queuing module forms the PIF name
for the ARC process by concatenating (1) the PIF directory SY- PIFDER, (2) the ARC
process mnemonic WQARCMNEM, and (3) the character constant 'PIF.DVP."

10-24

TABLE 10-3

WAN QUEUING START-UP PARAMETERS

Parameter Description

DEVALROOTDIR Directory where outbound EDI files reside

SYPIFDIR Directory containing PIFs

WQQUEUEDIR Directory where outbound compressed EDI files are stored

WD STAGEIDIR Directory (on remote machine) for inbound EDI compressed files

WQARCMNEM Two-letter mnemonic for ARC process (used in building PIF name)

Next, the module reads the PIF contents into memory and overwrites a few of the PIF

fields to control the ARC process screen behavior.

The module uses the expedited mailbox for normal message processing and the

system mailbox for receiving SB messages. In addition, a holding mailbox,

WQ-HOLD, stores messages to read while the main event-handling process awaits

completion of the ARC process.

Processing

Frequency of Operation

The main process of the WAN queuing module is always running. Normally, it

is in a wait state, awaiting the arrival of a DISPATCHEDI message in the IPC queue.

The ARC process, invoked in response to the DISPATCHEDI message, compresses

the file, notifies the main process that it has done so, and quits. It is invoked as a

new, temporary process each time it is neecRd.

Flow of Processing

As noted above, the program is normally in a wait state, awaiting arrival of a

DISPATCHEDI message in the EPC queue. When a DISPATCHEDI message does

occur in the queue, the module confirms that the file referenced in the message exists.

Then, by concatenating a base-36 timestamp, a one-digit qualifier, a period, and the

10-25

three-letter mnemonic for the LGN, it forms a unique name8 for the file to be formed
by the ARC process. The combination of the LGN-unique timestamp and the LGN
qualifier, which is unique across LGNs, precludes receiving two EDI ARC files with

the same file name.9

After the ARC file name is formed, the main process invokes the ARC process to
compress the file. The ARC process is a batch file containing the PKARC program,
followed by a C-language program that sends an ARCDONE message to the main
process. The ARCDONE message contains a return code indicating the success or
failure of the PKARC execution. The return code is based on the DOS error level set
by PKARC.

Once the ARCDONE message is received, the module builds a SENDEDI
message and sends it to the WAN interface module. The SENDEDI message contains

the full path name of the ARC file to be sent and the destination path name for the
file when it is received by the remote LGN.

While the main process awaits an ARCDONE message, it moves any other
message received during that time to a holding mailbox. All messages sent to the

holding mailbox are removed from the IPC queue by the process; if they were not, the
queue would report a message in the holding mailbox and the program would keep
reading the same messages over and over. When the process resumes servicing the

IPC queue after receiving and processing the ARCDONE message, it checks for
messages in the holding mailblx first.10

8Note that an ARC file consists of one or more compressed files that are bundled into one ARC
file. The file names of the compressed files are retained, but the ARC file has a name of its own, not
related to the names of the embedded compressed files.

9What about duplicate EDI translation file names? Since EDI file names are not qualified by an
LGN name extension, is it possible for an LGN to receive two EDI ARC files, each containing a
compressed file identically named? Currently, the answer is "yes," because of name-length
restrictions. In the prototype system, a work-around was devised, using an additional qualifier, to
ensure that all received EDI files have unique nam's. This should not be a problem in a production
system running under UNIX, with its longer file names.

10This approach would be unsuitable for a production LGN. For instance, what happens if the
ARC process hangs and an ARCDONE message is never sent to the main process? During the
prototype system test, this has not occurred, but a production solution should be devised to preclude
such occurrences.

10-26

Data Structures

The PIF structure (Figure 7-4) is used to invoke the ARC process. No other data

structures are maintained by the WAN queuing module.

Shutdown Procedures

Upon receipt of a SHUTDOWN message from SB, the WAN queuing module

follows the standard prototype LGN shutdown procedures.

Serialization

The WAN queuing module is an intermediary between the D2E translator

module and the WAN interface module, called on to perform only after the D2E
translation module has translated a file of DLSS transactions. The module is

suitable to be invoked serially after the D2E translator. In this scenario, it would

still run in parallel with the WAN interface module.

Files

The WAN queuing module takes an input file of valid EDI transactions and

produces an output ARC file containing the EDI file in compressed form.

Alternative Designs

The present design of the WAN queuing module has worked satisfactorily for

the prototype, file-based system. For a production, transaction-based system, the
WAN queuing module must bundle transactions with common priorities and

destinations. The bundled files will be compressed and a message sent to the WAN
interface module, bearing in mind that high-priority transactions cannot be detained

by lower priority transactions. As indicated by the processing flow, the module must

be capable of receiving new transactions concurrently while compressing others.

WAN DEQUEUING MODULE

Purpose and Description

In the receiving LGN, this module is a peer process of the sender's WAN
queuing module. Its primary job is to expand (decompress) EDI files received by the
WAN interface module and notify the EDI-to-DLSS translation module that the

expanded file is ready for translation. In many respects its processing is analogous to

10-27

that of the WAN queuing module. The context for the WAN dequeuing module is

shown in Figure 10-10.

-WAN WIIA N D b2 E

interface -[dequeuing "[translator

D1 batch process

FIG. 10-10. WAN DEQUEUING MODULE

Start-Up Procedures

The WAN dequeuing module's start-up procedures are very similar to those of

the WAN queuing module. In addition to the standard start-up sequence, the module

forms a PIF name for the unarchiving process, reads into memory the PIF by that

name, and overwrites certain fields within the PIF structure.

The expedited mailbox is used by the module for normal message processing.

The system mailbox receives SB messages. A holding mailbox, WD__HOLD, holds

messages received during file expansion by the unarchiving process.

During start-up, the module reads the parameters listed in Table 10-4 (which

does not include standard systemwide parameters).

Processing

Frequency of Operation

This process is always running. Normally, it is in a wait state, awaiting the

arrival of an RCVDEDI message from the WAN interface module.

10-28

TABLE 10-4

WAN DEQUEUING START-UP PARAMETERS

Parameter Description

SYPIFDIR Directory containing PlFs

WQQUEUEDIR Directory where outbound compressed EDI files are stored

WD STAGE2DIR Directory for inbound EDI compressed files

WQ _ARCMNEM Two-letter mnemonic for ARC process (used in building PIF name)

Flow of Processing

The main work of the WAN dequeuing module is to await an RCVDEDI
message pointing to an ARC file, expand the component EDI file, and notify the E2D
translator module via a TRANSEDI message. Upon detection of an RCVDEDI
message in the IPC queue, the module invokes the unarchiving process through a PIF

structure. Like the ARC process in the WAN queuing module, the unarchiving
process is a batch file that calls the program PKXARC. Following PKXARC in the
batch file is a small C-language program that sends a message to the main process
indicating that the file expansion has been completed.

Although in the prototype implementation there is just one EDI file per ARC
file, the WAN dequeuing module does not make this assumption. For each expanded
EDI file, the main process forms and sends a TRANSEDI message to the
EDI-to-DLSS translation module. The module deletes the ARC file after processing

it. Operating in a fashion similar to the WAN queuing module, the WAN dequeuing
main process transfers all incoming messages to the holding mailbox during its wait

for an UNARCDONE message from the unarchiving process. After processing the
UNARCDONE message, when it returns to servicing the IPC queue, it checks the
holding mailbox first for messages.

Data Structures

The PIF structure (Figure 7-4) is used to invoke the ARC process. No other data

structures are maintained by the WAN dequeuing module.

10-29

Shutdown Procedures

Upon receiving a SHUTDOWN message from SB, the WAN dequeuing module
follows the usual prototype LGN shutdown procedures.

Serialization

The WAN dequeuing module could run as a transient, serial module, invoked
after receipt of an EDI ARC file.

Files

The module processes incoming ARC files containing EDI files in compressed
form. Its output is the expanded EDI file, placed in the directory C:\WD\QUEUE.

Alternative Designs

For a transaction-based production system, the WAN dequeuing module would
be required to recognize and read, one at a time, the transactions making up the EDI
files and send the proper message to the E2D translator.

EDI-TO-DLSS TRANSLATION MODULE

Purpose and Description

In a broad sense, the EDI-to-DLSS translation module (E2D translator) is a
mirror image of the D2E translator; its operating context is shown in Figure 10-11.
This module translates EDI transactions, a file at a time, into their equivalent DLSS
formats. The translation is triggered by the reception of a TRANSEDI message in
the IPC queue. As in the D2E module, the translation is driven by tables. The
purpose of the tables in the two translators is approximately the same, although their
makeup and use differ. The E2D translator uses the same TransLog grammar and P-
Code compiler as its D2E counterpart. Likewise, the E2D translator is a single C-
language program. In many other respects, the two translators closely parallel one
another. For these reasons, processes in the E2D translator that have already been
covered in detail in the DLSS-to-EDI Translation Module section, will not be
revisited here, except to highlight differences in design or operation.

10-30

WAN 2

dequeuing

DLSSErrr Cornre file

FIG. 10-11. MODULE FOR EDI-TO-DLSS TRANSLATION

Start-Up Procedures

The E2D module start-up procedures are comparable to those for the D2E
translator, as is the time required for initialization. As in the D2E module, no
module-specific configuration parameters are read during start-up; all information
required for operation (1) is obtained through message parameters, (2) is hard-coded,
or (3) is implied.

Processing

Predominantly, the E2D module is parked in the IPC queue in expectation of a
TRANSEDI message or a system message. Receiving a TRANSEDI message causes
the module to start a translation of an EDI file; again, translation is driven by the
translation tables that were read and compiled during start-up.

10-31

Frequency of Operation

This module is always running. During the Operational State, it is dormant

until an event is detected on the]PC queue.

Flow of Processing

The most significant message for the E2D module is the TRANSEDI message
sent by the WAN dequeuing module. The TRANSEDI message specifies the EDI file

to translate. EDI transactions are read one at a time from the input file. The
program determines the TID of the transaction from its start (ST) segment, builds a

template of segments and elements in memory, verifies that no required segments

are missing from the transaction, and determines the starting record number of the
EDI2DLSS table to use for the translation.

The module navigates through the EDI2DiSS table records associated with a
transaction's TID, one record at a time. The EDI2DLSS table is analogous to the
DLSS2EDI table: it contains conditions and evaluation rules for each field in the

transaction. Each record in the table indicates a condition for adding a field to a
DLSS transaction and the required evaluation to produce the correct field value. The
evaluation is a reference either to an EDI symbol (in the EVALEDI table) or to a
TransLog expression. Each field may have more than one condition associated with

it, but one condition per EDI2DLSS record. The program continues reading records11

for a field until encountering a true condition or end of records. The EDI2DLSS table

does not have an explicit column designating an output DLSS transaction field;
rather, DLSS fields are implicitly defined by starting column and length. Since
DLSS transactions can contain multiple card images, the record also indicates the

card-image number for the transaction to which the field is written. Once a condition
for a field is evaluated as true, the program evaluates the EDI2DLSS table's
(CardNo] field. That field is written to the appropriate card image and column
positions. After writing the DLSS field, the program reads EDI2DLSS records until

UAs is the case with the D2E translator, keep in mind that "records" is a figurative term; it
actually refers to P-Code record images.

10-32

encountering a start column for the DLSS field at least one greater than the last

column written, or until there are no more records for the current TID.12

As a validation measure in the prototype system, the original DLSS transaction

is included in the EDI transaction as a series of "XXX" segments, one segment per
DLSS card image. After translating from EDI to DLSS format, the E2D translator

compares the XXX segments to the DLSS transaction just produced. Any

discrepancies in field values or number of card images are identified and written to a
compare file. If an error occurs that prevents completion of translation, an
appropriate message and a list of the segments translated up to the point of the error

are written to an error file.

For remote LGNs, no message results from translating a file of EDI

transactions into DLSS format. Since, in the prototype, translated DLSS data are not
uploaded to the host, this marks the last LGN processing step for a file. The CLGN
implementation is handled differently, as will be discussed.

SUSPEND messages are handled by the E2D module in the same way that the
D2E translator handles them. Upon receiving a RESTART message, the module

frees all memory allocated for internal translation table representations and

re-initializes.

Data Structures

The E2D translator manipulates a set of data structures comparable to those of

the D2E translator: symbol tables, parse trees, the evaluation environment, and
paging tables. Because the data structures are so similar, only these aspects of the
E2D data that are different from the D2E environment are stressed.

The E2D module maintains two symbol tables: an EDI evaluation table and the

system symbol table. The system symbol table is created and used as for the D2E

12There are some exceptions to this searching criterion. For example, an EDI2DLSS record may
exist only to generate a side effect. As in the D2E translator, a side effect generates a system function
or assigns a value to a user-defined variable but does not affect any particular output field. Side-effect
records always have a value of zero in the (length) field. If a side effect results in generating a new
DLSS card image, the DLSS card image position is assumed to be zero. This ensures that the next
EDI2DLSS record pertaining to a DLSS field will be read (not skipped), since the start column for a
field specified in the table is always greater than zero.

10-33

translator. The set of system symbols for the E2D translator is somewhat different,
as shown in Appendix B.

The EDI evaluation table is the internal representation of the translation table
EVALEDI; its purpose is analogous to the DLSS symbol table in the D2E translator.
The C-structure of an EDI symbol table entry is shown in Figure 10-12.13 Whereas
the DLSS symbol table is basically a dictionary with instructions on how to calculate
the value for each field, the EDI symbol table primarily specifies where to find the
field in an EDI transaction. In contrast to the D2E symbol table, the P-Code for an
EDI symbol entry indicates only how to extract the EDI field. The wSegSeq and
wEltSeq subfields point to the segment and element (within the segment); the
evaluation of the codUseCtr subfield yields the segment occurrence number 14 to
which the other subfields refer.

typedef struct tagEDISYMBOL
(
char *pszName; /* Symbol name(composite) */
WORD wSegSwq; /* Segment sequencenumber */
PCODE codUseCtr; /* P-Code for usecounter */
WORD wEltSeq; /* Element # in segment '1
} EDI SYMBOL;

FIG. 10-12. EDI SYMBOL TABLE ENTRY

Figure 10-13 shows the aggregate data structures associated with an
EDI2DLSS table entry. The one-to-many relationship between the ED12DLSS and
E2DTRANS arrays is analogous to the DLSS2EDI-D2ETRANS relationship in the
D2E translator. The subfield *precTranslation in each EDI2DLSS entry points to a
set of E2DTRANS entries representing condition-transformation pairs for all fields
in the TID section named. In addition, the subfield *precEdiSegs points to an array of
EDISEGS entries associated with the EDI2DLSS record; the EDISEGS entries define
the EDI segments that make up the section and their maximum allowable number of
occurrences. For the current TID section, the EDI2DLSS entry also points to the

13The EXTERN keyword in Figures 10-6 and 10-13 is defined in the translator C-language
program as the word "external" for all functions except the one in which the structure is defined; in
that case, it is defined as the null string. This allows the function defining the structure to allocate
space implicitly for the structure and all other functions to share the same "include" file to refer to the
structure.

14There may be more than one instance of a segment in an EDI transaction.

10.34

parent, next sibling, and child sections. 15 These pointers are used as navigation
guides during a translation. Figure 10-14 shows the relationships among the
ED12DLSS, EDISEGS, and E2DTRANS tables.

typedlef enumn tagE2DTRANS

WORD wvRecNo; /* Record # in ED12DLSS *
WORD wStart; 1* Start position in card *
WORD wvLength; I' Number of columns in card *
PCODE pcCode; 1* Code to determine value *
PCODE pcCardNoCode; /* P-Code to determine card number *
1 E2DTRANS

typedlef struct tagEDISEGS

char aszQual Name [kwTR MaxQual NameSz];
/* Composite name for table entry *

WORD wSegSeq; 1* Segment sequence number *
WORD wUseCtr; /* Segment use counter *
char aszSegld[4j; /* Segment ID
BOOL bRequired; /* Segment required? *
) EDISEGS;

EXTERN struct, tagEDI2DLSS

WORD wTid; /* Transaction ID
WORD wTidSect; I* TID section *
Struct tagED2DLSS * precParentSect; /* Parent loop pointer *
struct tagED2DLSS *precRtSibSect; /* Right-hand sibling pointer *
struct tagED2DLSS, *precl'jrstChildSect; /* First child ioop pointer *
WORD wNumTrans; /* Number of E2DTRANS *
E2DTRANS *precTranslation; /* Set of transaction records
WORD wNumSegs; I* Number of EDISEGS *
EDISEGS *precEdiSegs; /* Segment template set '
WORD wSectOccurrences; 1' # Occurrences encountered '
WORD wMaxSectOccurrences; I' Max #l occur. for section .
I garecEdi2Dlss[kwTR__MaxNumTidSectsJ;

FIG. 10-13. ED12DLSS TABLE ENTITIES

The E2D translator uses paging tables in a manner similar to their use by the
D2E translator, the main difference being that EDI segments, rather than DLSS card
images, are paged in.

15For instance, if the TID is 568 and the TID section is 110, the parent section is 100, the next
sibling section is 120, and there is no child section (there are no lower level sections).

10-35

Check for adherence to
segment order rules

EDISEGS table ST*561 DAS-
0000524408
RFL*PAA

Tid Tidect SegmentSeq MaxSecOcc UseCtr Req'd Segmentid RFL*PA8
KA.AWOO1 0483...

561 1 10 1 3 V RFL KAB1JA*B

561 1 20 1 N PED

561 1 30 1 Y KAA

561 1 40 1 KB1Transactions

Tid SetSt Ord Len Condition Field Transformation
Tid

Side-effect#

561 1 1 1 0 P1:-PA:-a P: a P82: 0
561 1 1 4 0 Not P1 and EDI.DIC1 =- PAA' PA: -CurrentCard

User-
defined

561~~ 1 1 1 3 P 1vrl

561 1 41 1I3 10 ~IN 1

561 G1 10-1.TAL 6 NEAlO FOR E ODSSH TRANSLATond

Find VALEI symol10-36D

Algorithms

The significant algorithms used in the E2D translator (P-Code compilation and

evaluation, segment paging) are similar enough to those used by the D2E translator

so that a separate discussion here is unnecessary.

Differences Between LGN and CLGN Implementations

The prototype CLGN models some key attributes of the production CLGN that
will reside at DAASO (see Chapter 2); specifically, after receiving EDI transactions

and translating them into DLSS format, it retranslates the DLSS transactions back
to EDI. Thus, the EDI module in the CLGN, upon completing the translation of a file
of EDI transactions, sends a RCVDDLSS message to the LAN dequeuing module, as
if a DLSS file had been downloaded from the host. In the prototype case, however, the
DLSS file to be filtered is the output of the E2D translator, as specified by the

RCVDDLSS message.

Shutdown Procedures

Upon receipt of a SHUTDOWN message, the E2D module follows the standard
prototype LGN Shutdown State procedures.

Serialization

The E2D module could be positioned to run serially after the WAN dequeuing
module. However, this approach would not be suitable for a transaction-processing

environment.

Files

The following files are central to the processing of the E2D translator:

* Translation tables

i EVALEDI Defines how values for EDI logical names are derived
from an EDI transaction.

p EDI2DLSS Describes, for each TID section, the conditions for
inclusion and transformation of each candidate field
making up a DLSS transaction. References to the
EVALEDI table are made liberally.

10-37

EDISEGS Contains the set of segments that make up an EDI
transaction and their respective attributes.

CODEMAP Provides table look-up for certain elements, by mapping
between DLSS field values and corresponding EDI
element values. Unlike the other tables, CODEMAi is
currently not read at module start-up but is referenced
as needed during a translation.

0 Text files

o EDI Input A file of EDI transactions, pointed to by the TRANSEDI
message. Analogous to D2E's DLSS input file.

o DLSS Output The primary output of the E2D translator. A file of
DLSS transactions having the same base name
(timestamp) as the EDI input file and the file extension
.VAL.

0 Compare File A file containing transactions that were translated
error-free but that differ from the XXX segment(s) of
the source EDI transaction. For each transaction that
has a compare discrepancy, the file lists the original
DLSS card images, the EDI segments, and the
retranslated DLSS card images, along with an
illustration of the differences.

o Error File A file containing EDI transactions and partially
translated DLSS tran-zactions for each transaction that
was halted because of an error. The full path name of
the file is C:\ED\ERR\ < time-stamp >.ERR.

LAN DEQUEUING

This module is not included in the prototype system.

10-38

CHAPTER 11

OPERATIONS SUBSYSTEM

The operations subsystem in the Phase I prototype LGN consists of three
modules:

* System boot (SB)

* System monitor (SM)

* System utilities (SU).

SB is the entry point of the subsystem and also of the LGN. It keeps track of the
operational status of all other LGN modules. During LGN start-up, SB invokes the
other two operations subsystem modules, SM and SU. The overall structure and
context of the subsystem are shown in Figure 11-1.

SYSTEM BOOT MODULE

Purpose and Description

The SB module starts all the LGN processes that run continuously. Transient
processes are started by their respective parent modules when required. The SB
module invokes the overall LGN processing environment and ensures that all
necessary modules are started. It subsequently acts as the operator console until the

system is brought down.

Boot Procedure

The SB module starts automatically upon LGN start-up, via the Autoexec.Bat
file. The Autoexec.Bat file starts DESQview, which checks its script file,
Desqview.Dvs, for the presence of a script that is run automatically whenever
DESQview is invoked. On the prototype LGN, it is the !Auto script that starts the SB
module. Alternatively, the module can be invoked from the DESQview "Open
Window" menu (option SB in the prototype).

11-1

System System
monitor utilities

System boot
DESQview

ieFyard
inteface

Other
modules

FIG. 11-1. OPERATIONS SUBSYSTEM

Processing

Frequency of Operation

The SB module is executed once when the LGN is powered up and again after a

general application software failure or operating system warm boot. The module
cannot be invoked while the LGN application software is running. As part of its

start-up procedure, the module checks for an existing copy of its expedited mailbox; if

it finds one, that indicates that a copy of the module is already active and the

(redundant) module terminates with an error. Other LGN modules, however, can be

shut down and restarted during operation of the LGN. The SB module is always the
vehicle by which this is done.

11-2

Flow of Processing

The SB module relies on the computer's clock being set to the correct date and

time. In the production LGN, CLGN clock synchronization, operator confirmation,

and other programmatic methods should be used in order to verify that the clock is

set correctly. This feature was removed during prototype development because of the
inconvenience of entering the date and time whenever the LGN software is restarted,
a frequent occurrence during program development.

The first two steps for the module are reading the LGN.CFG file to obtain
systemwide parameters and reading the BOOT.TAB file, which contains a list of all
modules to be started by SB. SB maintains a linked list of records for each valid entry
found in the BOOT.TAB file. This list is a series of entries of the type
BOOTENTRY, shown in Figure 11-2. Every line in the BOOT.TAB file

corresponds to an entry in the linked list as well as to a DESQview task that is
created by SB, except for lines that begin with"#"; those are considered to be

comments.

/* One BOOT ENTRY entry for each process started by System Boot
typedef struct BOOTENTRYtag

char sModule[SY MODMNEMLN + 1]; /* Module mnemonic 'I
char sPath[SY FILENMLN + 1]; /* Module path '/
time t sStarted; 1 /* Modulestarttime */
DV APIHANDLE HProc hdl; /* Module handle *1
DV-"APIHANDLE hSy mbox; /* System mailbox handle */
DVIAPIHANDLE hExp- mbox; /* Expedited mailbox handle
DVIAPIHANDLE hLow- mbox; /* Low-priority mailbox handle 'I
DV APIHANDLE hMailIox[MAXNOFMAILBOX]; /* Other mailbox handles

TB6-OL bSuspend able; /* Can be suspended?
short shMboxct; /* Number of "otherw mailboxes
time t tAcknowledged; /* Time SB rcvd. STARTUP msg.
char- sErrortxt[SYERRMSGLN + 11; /* Error number reported
short shError; /* Error message *1
BYTE byStatus; /* Current module status */
time t tLastshdown; /* Time of last shutdown '1
time-t tLastlsuspnd; I* Time of last suspend
structBOOT ENTRYtag *dpNext; /* Poi nter to next entry */
}BOOT ENfRY;

FIG. 11-2. BOOT ENTRY PROCESS

11-3
I-

All modules are invoked using the DESQview PIF structure and app__start API
function. For each module table entry, SB reads a corresponding PIF of the form:

< Drive >: < PIF-Dir > \ < Module-Mnemonic > < PIF-Suffix >

where:

" Drive is the systemwide parameter specifying the letter of the drive where
the system software is located.

" PIF-Dir is the systemwide parameter specifying the directory containing the
PIFs for LGN processes.

* Module-Mnemonic is the two-letter module mnemonic as it appears in the
BOOT.TAB file.

" PIF-Suffix is a systemwide constant specifying the right-hand portion of all
PIEF names C-PIF.DVP").

The PIEF is read into a memory image in SB's data space. The drive and directory
fields of the PIF image are overwritten with the drive and directory read from the
BOOT.TAB file or, if present, the drive and directory specified in the appropriate
module configuration parameter file.

SB starts DESQview processes with the DESQview API app start function.
Appstart returns a handle for the process, or zero if the process cannot be started.
SB displays the start-up time for each module as it is executed on the console.

Once the main processes for all LGN modules have started, SB waits for
SY__LGNT[MEOUT seconds to receive a STARTED message from each process
invoked. If the time expires before all processes have sent a STARTED message, or if
a process sends a CANTSTART message, (1) a diagnostic is displayed on the console,
(2) all processes are terminated, and (3) the LGN is shut down.

When SB receives a STARTED message from all processes, it returns an OPGO
message to each, and the LGN enters the Operational State. SB shuts down the SU
module, since it is needed only occasionally and can be started up and shut down as
required.

The SB module's main tasks during the Operational State are (1) servicing
requests from the local keyboard, (2) servicing messages from a remote LGN via the

11-4

WAN interface module, and (3) handling system messages to and from system

mailboxes for other modules.

An operator communicates with an LGN via its local keyboard. SB displays a

menu in the DESQview window with the following options:

" Suspend a module

* Restart a module

* Shut down a module

" Transfer a file to a remote LGN

* Update a translation table on a local or remote LGN

* Run a system utility

* Reset an LGN (shut down all LGN processes and restart the LGN)

" Request a file from a remote LGN

* Shut down an LGN.

When a menu option is entered from the keyboard, it is verified as valid by SB and

transformed into a message to the SB system mailbox.

Table 11-1 shows the complete list of messages that SB services during the

Operational State.

If SB determines that a request conflicts with the current status of a module

(e.g., a SUSPEND request of an already suspended module), as indicated by the by

Status field in that module's boot table entry, SB processes the request but issues a

diagnostic warning of the conflict.

Data Structures

SB employs several data structures to store current information about LGN
modules and keyboard activity. All structures listed below are defined in the include

file sb_g.h.

* Boot table. One entry for each process invoked by SB. This data structure,
already discussed, is shown in Figure 11-2.

11.5

TABLE 11-1

SYSTEM BOOT MESSAGES

Message name Description

SUSPEND Suspend a module

SUSPENDREADY Module is about to suspend

UTILREQST Perform utility (usually a batch file or executable
program) via the system utilities module (which may
have to be re-spawned)

SHUTDOWNMOD Shutdown a module

MOD SHUTDOWN Module intention to shut down

RESTART Restart a module

SBRESET Reset local LGN

LGNSHUTDOWN Shutdown LGN

STARTED Module has completed Initialization State procedures
and is ready to make the transition to Operational
State

ERROR MSG Display error message on local console

RELOADTRANS Reload one or more translation tables

TABLERELOADED Confirmation of translation table update from remote
LGN

TEXTREPLY Text reply (probably in response to query) from
remote LGN

CANTSTART Module cannot complete Initialization State tasks

PROBEQUERY or Query from local or remote LGN; if query is directed to
STATUSQUERY SB, respond; otherwise, forward query to System

Monitor

PROBEQUERYRESP or Response to query; forward to System Monitor
STATUSQUERYRESP

FILERECEIVED A remote file request has completed; display message

MSGTOOEARLY Module received a message before receiving an OPGO
message

11-6

* Structure definition to track utility requests and local table updates. This
structure is passed to the SU module.

typedef struct UTILREQSTtag
I
char sModid[SY MODMNEMLN + 1]; /* Requesting module
char sLgnid[SY LGNNMLN + 1]; /* Source LGN */
char sSuspmodTSYMODMNEMLN + 1]; /* Modules affected (suspended) */

/*Utility command for utility request, or table names for table reload: */
char sCommand[SYMAXCOMMDLN + 1];
time t tDate; /* Time request issued
shorF-" iUtid; /* Request ID
short iStatus; /* Request status: */

/* CLEAR - available, no request */
/* STARTED: SU started

IUTILREQUEST;

* Structure definition for storing operator keystrokes for current command. It
is used for both local and remote LGN menu requests.

typedef struct USERCOMMANDtag
I
char sSrclgn[SY LGNNMLN + 1]; /* Source LGN */
unsigned short iType; /P Command type */
unsigned short iStep; /* Current step # in multi-step command */
char sSrcmod[SY MODMNEMLN + 1; /* Source module
char sF or t[Sf" FILENMLN]; /* Tables or files included in command */
char sDe-stff-l[SY -FILENMLN]; /* destination file names (for file

/P transfer only) *1
char sAffect[SY MODMNEMLN + 1]; * Modules affected
char sDestlgn[SY- LGNNMLN + 1]; /* Command goes to this LGN *
char sDestmod[S'- MODMNEMLN + 1]; /and to this this module
char sSyntax[SY MSGTXTLN]; I Syntax of current command

} USER._COMMAND;

Differences Between LGN and CLGN Implementations

The CLGN can exchange data with any LGN; all other LGNs can exchange data

only with the CLGN. This is the only difference in SB operation resulting entirely

from whether or not an LGN is configured as a CLGN.

Shutdown Procedures

Shutdown procedures are similar to the processing steps previously described.

Shutdown is initiated by an operator action - either locally or remotely. In the

prototype configuration, only a CLGN operator can initiate the shutdown of a remote

LGN. To shut down an LGN, option 3 is selected from the SB menu, causing a

11-7

SHUTDOWN message to be sent to all processes started by SB. SB then waits for a
confirmation response from each affected module. When all modules have responded,

or when SY _LGNTIMEOUT seconds have elapsed (the same time-out period used

during initialization), the SB transaction log file SB.LOG is updated, all DESQview

objects are freed, and all LGN processes are terminated.

Files

The SB module interacts with two data files: SB.LOG and APPHAN.CFG. The

SB.LOG file is updated each time SB is started or shut down. Each record in the file
is a tally of the total number of messages received by the module, by hour. The
numbers are cumulative since the last time the file was updated.

The APPHAN.CFG file is updated during the Initialization State and each time

a module is restarted. It contains the DESQview process handles of all processes

started by SB. The file is overwritten each time SB is run.

Alternative Designs

In the production system, more frequent and expanded time and event

recording could be added, both on the local console and in the SB.LOG file. For
example, the transactions could be broken down by category, in a way similar to that
used by the WAN interface module. Better verification of system time will be
necessary in a production system. Ample coding, if not hardware-assisted, solutions

to this particular problem are available.

SUSPEND/RESTART MODULE

Purpose and Description

Suspend/Restart is not actually a separate module but is embedded in the SB
module. It makes up three commands in SB's menu: SUSPEND, RESTART, and
SHUTDOWN. The functionality and operation of this module are described in the

previous section on SB.

Boot Procedure

Because the suspend/restart module is not a distinct process, a discussion of the

boot procedure is not applicable.

11-8

Processing

The BOOT.TAB table, read during SB start-up, contains a field in each record

indicating whether or not the module associated with that record can be suspended or

shut down from the SB menu. There are some exceptions. For instance, neither the
WAN interface module nor the CLGN polling module can be suspended or shut down

from a remote LGN. Because the necessary communication with the remote LGN
would be lost, there would be no way for the remote LGN to signal the module to

restart once the module was inactive.

To suspend a module, an operator at the local console or at a remote console

enters the suspend option (option 1) from the SB menu. SB then prompts the operator

for the two-letter module mnemonic telling the module to suspend. The mnemonic is
verified in SB's boot table as valid, as is the fact that the module is not currently

suspended. Also, any rules that may prevent the module from being suspended are
enforced. SB then sends a SUSPEND message to the affected module and updates its

status flag in the boot table.

Module restarts and shutdowns are handled in much the same way, via the
Restart option (option 2) and Shutdown option (option 3) on the SB menu. The
Restart option can be selected both for suspended modules and for those that have
been shut down. However, the current implementation of the LGN does not fully

supportl restarting a previously shut down module. This is not an issue if the entire
LGN is brought down, since, when the LGN is subsequently restarted, all modules

are started fresh (in other words, they are not considered to be restarted).

Sometimes modules are suspended automatically as part of servicing a utility
request or table update. The table update and system utility SB menu options

(options 5 and 6) are the correct way to effect such actions.

IRecall that a module's primary mailboxes (expedited and low-priority) are created by SB
during system start-up. Once the module has received the OPGO message from SB, it opens the
already created mailboxes for the Operational State. When the module is shut down, those mailboxes
must be closed, to ensure they can be properly recreated and reopened if the module is subsequently
restarted. This aspect of module shutdown/restart has not been tested for all modules in the prototype
system.

11I-9

Shutdown Procedures

Since this module is not a separate executable process or a distinct process
thread, a shutdown procedure is not applicable.

Serialization

Given the tight integration of module suspend/shutdown/restart functionality
with the SB module as a whole, it makes sense for suspend/restart to be a subset of
SB. It can remain a strictly logical subset of the SB module, or it could be packaged
as a separate function called from the SB main program. In either case, it is part of
the SB executable.

SYSTEM MONITOR MODULE

Purpose and Description

The SM module has two major purposes:

* Acts as the interface with other modules for status and performance queries.

* Ensures that critical messages relating to system or module outage are
relayed to the CLGN.

Boot Procedure

SM is booted up as a separate process in the standard way, via SB and the
BOOT.TAB file.

Processing

Frequency of Operation

The SM module is always operating, awaiting user input from the keyboard or
unsolicited status messages from other modules.

Flow of Processing

As indicated, after module start-up, the SM module waits for keyboard input or
a message from another module. Keyboard input can request a status or performance
report on a particular module running on the local LGN. For the CLGN, keyboard
input can query status or performance for any LGN in the test network.

11-10

•~~M
I

Query requests can be directed to one of three destinations:

* The SM module on the local LGN

* Another module on the local LGN

* A module on a remote LGN (this option is available only to the CLGN).

SM maintains a table of queries received. If the number of outstanding queries
exceeds available entries in the query table, SM will not be able to process the
overflow. Once a query has been processed, its table entry is freed up.

If the query is for the local SM module, SM writes a report file of all outstanding
and processed queries based on information in the query table. It issues a DESQview
API appgofore call and becomes the foreground process, ensuring that its window,
in which the report file is viewed, will be visible to the local operator. When the
report is displayed on the screen, the local user can scroll through it a line at a time.

If the query is for a local module other than SM, it is forwarded to the
destination module specified in the message. In the prototype implementation, other
modules do not have any functionality for responding to queries; the queries are
presently ignored by modules other than SM. This deficiency requires remedy in the
production LGN.

In the CLGN, queries can be destined for modules on remote LGNs. In this case,
the query is bundled inside a SENDMSG message and forwarded to the WAN
interface module, which sends the message to the destination LGN.

Query responses are serviced in a manner similar to the way in which query
requests are serviced. Responses can refer to a previous query or can be unsolicited.
Both are handled in much the same way. When SM receives a query response
message, it checks the query table for response matches with unanswered queries. If
it finds a match, the appropriate query table entry is updated. If the response is
directed to the local SM module, or if the response is unsolicited, it is displayed on the
local console. Unsolicited responses are displayed in a small window inside the
regular SM window on the screen. The format of unsolicited responses is assumed by
SM to be as follows (not including the line number designations):

* (Line 1) .hdr

* (Line 2) <Headline >

11-11

* (Line 3) .hdr

* (Lines 4 to n) <Response Text>.

As the local user scrolls the report, the headline stays fixed on the screen. The
headline could be, for example, column headings for the text that follows. A small
program logic change could make it possible for unsolicited query responses to be sent
to the CLGN instead of being displayed on the local console.

Responses directed to the local SM module are displayed in the default SM
window on the console. As with SM-bound queries, SM captures the foreground
processing position and scrolls the response under user control.

Responses for modules on remote LGNs are packaged within a SENDMSG
message and sent to the WAN interface module, where they eventually are sent to
the destination LGN. The CLGN can send a response to any LGN in the test
network; all other LGNs can send responses to the LGN only (presumably as a reply

to a previous query from the CLGN).

Data Structures

The SM module keeps a table of queries originating from the local LGN. Each
entry is uniquely identified by its query ID. The record structure for the query table
entries is shown below. Every response received by SM is checked against this table
to determine whether or not the response is unsolicited.

#define SMMAXQUERYONHOLD So

typedef struct SMQUERYONHOLDtag

MODELSHEAD mQueryhead; /* MODELS message header
char sDestmod[SY MODMNEMLN+ 11; /* Destination module */
char sLgn[SY LGRNMLN + 1]; /* Destination LGN *I
time t tQrytime; /* Time SM received the query *1
time-t tResptime; /* Time SM received query response *1
BYTE- byQueryid; I* Unique ID of query *1
}SMQUERYONHOLD;

SM also uses data in this table to form the performance/activity report in
response to a query made of SM.

11-12

nm a nionnmllnil~ nl uum n~m an

Differences Between LGN and CLGN Implementations

As noted previously, the CLGN can query any other LGN. All other LGNs are

restricted to making local queries and responses, and sending responses to the CLGN.

Shutdown Procedures

SM enters the Shutdown State in the usual way, in response to an

unrecoverable error or upon receiving a SHUTDOWN message from SB.

Serialization

This module needs to be continuously available; it cannot be serialized with any

other modules.

Files

Query responses refer to an ASCII file containing the actual response to any

query. These files are scrolled on an appropriately sized window on the screen.

Alternative Designs

For a discussion of SM module alternative designs, see Remote Control Facility.

SYSTEM UTILITIES MODULE

Purpose and Description

The SU module enables the execution of operating system commands or

executable files on a remote LGN. An operator enters the utility commands as part of
a dialog generated when the Remote Utility option from the SB menu is selected. The
utility commands can be simple DOS commands, off-the-shelf programs, or batch
files. Additionally, SU is automatically used during table update operations; the

receiving end of a table update 'ressage runs an SU-controlled batch file to copy

downloaded files from a temporary directory to the target directory.

SU spawns a separate process, with the mnemonic UT, to run the batch file.

This process executes the batch file, and thus the requested commands, and then runs

the program Subatdon.Exe, which sends a BATCHDONE message to SU. The UT

process then shuts down.

11-13

UT's size must be kept minimal. It uses the C-language system call, which

invokes a secondary copy of the DOS command interpreter but does not release the

calling program from memory. This arrangement decreases available memory for

commands invoked by the secondary command interpreter, and UT simultaneo'usly

exacts as much allocated memory as possible from DESQview to accommodate the

most space-consuming utility commands. From the point of view of DESQview, UT

and the commands it invokes make up one process.

Boot Procedure

SU is created by SB at system start-up. Once the LGN's Initialization State

procedures are completed, SB shuts down SU to save system cycles and re-spawns SU

as needed to run requested utility commands.

Processing

Frequency of Operation

SB creates SU anew to run system utilities whenever SU's waiting period since

the previous utility request has run out. When SU completes its task, it remains

dormant for a pre-determined amount of time, awaiting a UTILREQST or a

RELOADTRANS message. If it receives neither within the allotted time, it shuts

down. For the next utility run, SB checks to see whether SU has shut down since it

was last used. If not, messages are sent to SU, and operation continues apace; if so,

SU is started again.

Flow of Processing

SU is activated upon receiving a RELOADTRANS or UTIL REQST message.

For a RELOADTRANS message, SU constructs a batch file named SURELOAD.BAT

to copy the designated tables from a temporary download directory to the appropriate

target directory (C:\DE\TRANSTBL or C:\ED\TRANSTBL). SU does not construct a

batch file for other utility requests. SU then asks SB, via IPC message, to suspend

modules affected by the request, and waits 5 seconds for the module suspensions to be

completed. SU can then spawn the SU-batch (UT) process, which executes the

requested command or the SURELOAD.BAT file. At this point, SU waits for a

BATCHDONE message indicating completion of the UT process.

11-14

UT executes the command or batch file via a system call. Upon completion,
control returns to UT, and UT executes the Subatdon.Exe program via another

system call. Subatdon sends a BATCHDONE message to SU, informing SU that the
utility command has been run. Then SU signals SB to restart all suspended modules,

starts a timer, and waits in the object queue for the next request.

If no requests are received by the time the timer expires, SU notifies SB that it

is shutting down and terminates its process.

Shutdown Procedure

SU shuts down in the usual way in response to a SHUTDOWN message from SB
or in response to an unrecoverable error. Unlike other modules, and as described, SU
also shuts down after a period of inactivity.

Serialization

SU is functionally independent; it cannot be serialized with any other modules.

Files

The batch file SURELOAD.BAT in the directory \SU\BIN is executed by the UT
process exclusively for table updates. It is rewritten every time SU receives a table

update request. Additional files may be produced as by-products of commands
invoked by SU.

REMOTE CONTROL FACILITY

There are two aspects of the prototype LGN's remote control facility, or remote

access capability. First, it is possible to direct any file or executable command to a
remote LGN from the CLGN; likewise, data can be sent from any LGN to the CLGN
in response to a CLGN request. Second, by using off-the-shelf communications

software products, it is possible to make a keyboard at the CLGN appear to the

remote LGN to be local to that LGN; in this way an operator can enter keystrokes at

the CLGN keyboard that are sent immediately to the remote LGN. However,
implementing this second aspect of remote control is complex, as was observed

first-hand during the prototype LGN development.

11-15

Remote Commands

The SB menu, in tandem with the WAN interface module, allows the CLGN
operator to perform the following functions on any remote LGN:

" Suspend, shut down, or restart a module (except for the WAN interface and

CLGN polling modules)

" Shut down or reset (shut down and restart) an LGN

" Send a file

* Request any file (including a file that matches a prototype, such as "*.CFG")

* Update a translation table.

Moreover, through the SU module, one can execute any operating system command,

executable program, or batch file on a remote LGN.

The LGN operates in local mode by default. This means that all user options
entered at the SB menu refer to local modules. By pressing Ctrl-R (the Ctrl key
simultaneously with the R key) followed by the Enter key, the operator switches the
LGN to remote mode.2 From the CLGN, all menu operations in the SB menu are
available in remote mode. For other LGNs, the remote operations from the keyboard
are limited to file requests from the CLGN. (Of course, LGNs exchange other data
without operator intervention in response to requests from the CLGN.)

When a remote command is entered at the CLGN keyboard, the operator is
prompted for pertinent information to ensure that the command is executed correctly.
For all commands, the user furnishes the remote LGN name. In the case of file
transfers and file requests, both the remote path name and local path name must be
supplied. For table updates and module operations (Suspend, Shutdown, Restart),
the affected modules must be entered. For utility requests, the user enters the name
of the utility command to be executed remotely.3

21n this mode for the prototype, all SB menu commands are directed to the CLGN (from remote
LGNs) or to a remote LGN (from the CLGN).

3One effective device is to execute a command for which the output is redirected to a file (e.g.,
DIR>\test\dir.doc). This command can be followed by a file request for the redirected output file.
During prototype development, executing this maneuver proved to be a useful and inexpensive way to
analyze a remote LGN from a central location.

11-16

Remote Keyboard Control

During prototype development, the software package Remote2 4 was
investigated to enable keyboard entry at the CLGN to be redirected to a remote LGN
in real time. The virtual local keyboard is connected to its host PC through the WAN
and the remote communications software. Conceivably, this could be an effective
way to analyze and diagnose LGN problems remotely. The remote communications
software could be initiated in host mode during LGN start-up, facilitating remote
keyboard control by the CLGN at any time. However, Remote2 communications
software has not yet provided a feasible approach to remotely controlling an LGN
because (1) a host personal computer (PC) must be callable and (2) incompatibilities
exist between Remote2 and other software components of the LGN. Sometimes it has
worked flawlessly - even when running concurrently with another communications
package - but at other times, it would lock up the remote LGN with no means for
recovery, except to physically reboot the machine at the remote site. Nonetheless,
with the proliferation of interconnected networks and the requisite remote
management software, this approach may merit a second look by the time the
production system is developed.

Alternative Designs

Consider a scenario: 50,000 high-priority EDI transactions are in process
between the CLGN and a remote LGN, which is directly connected to the WAN.
While this process is occurring, an external factor dictates that the CLGN operator
must reset the receiving LGN. In the prototype design, all 50,000 transactions will
be sent to the LGN and translated before the reset action takes place. To prevent
such a problem, high-priority commands must be able to enter the WAN queue ahead
of in-process routine traffic. This can be accomplished by including additional
priority logic or by using two (or more) concurrent virtual X.25 sessions in the
production system.

The first solution could involve program logic capable of interrupting the
transmission of the 50,000 transactions and sending the reset message.
Implementing this solution may require establishing more priority levels than the
present normal and high-priority ones.

4The Remote2 software provides a virtual local keyboard capability allowing a remote keyboard
to act as though it were a local keyboard.

11-17

The second approach would require that the WAN interface module use
separate virtual sessions for exchanging transactions and for exchanging other
messages and data. This arrangement would give inter-LGN message and data
transfers some independence from inter-LGN transaction transfers. The approach is
not applicable to dial-up sites (although it could be partially implemented if the dial-
up site had two modems and two phone lines, an arrangement that seems impractical
at this time).

The module most affected by this change is the WAN interface module. The
operations subsystem modules would also be affected, to a smaller degree.

11-18

CHAPTER 12

LOGGING AND LOGISTICS DATA BASE SUBSYSTEM

Because of time and development platform constraints, no separate logging and

logistics data base subsystem has been included in the prototype LGN. These two

components of the LGN can serve as the basis, in the production environment, for

extracting analytical information about the nature, volume, and efficiency of the

data flow throughout the LGN network. A modest logging capability, developed for
the prototype LGN, has proved useful in analyzing LGN throughput and in detecting

and solving operational problems.

LOGGING

The prototype LGN does not have a separate logging module. Instead, each
module uses common LGN logging functions to log events and errors to a log file
and/or the screen, depending on the parameters passed to the functions. Each module
has its own log file.

A utility program, CLEARLOG.BAT, clears out - but does not erase - a

designated log file. The CLEARLOG utility is not run automatically but rather is
invoked manually from the keyboard (or through a remote command using the SU
module).

The main reason for not designing a stand-alone logging process for the
prototype was a concern that having a large volume of log messages passed to the

logging module would overburden DESQview's EPC facility. This problem may not

occur in the UNIX environment, or there may be a design work-around. One
alternative is to pass error events to a common error module, which can log them and
take corrective action at its option, while logging non-error events directly as is done

currently.

DATA BASE MODULE

No data base module was developed for the prototype systems. In the prototype,

all postprocessing of log files is done off-line. At regular intervals, all log files on all

12-1

LGNs are requested and subsequently cleared via SU remote commands entered at
the CLGN.

12-2

CHAPTER 13

LGN MAINTENANCE

This chapter is an overview on maintaining the software modules, data files,

and hardware components of the LGN during the course of its day-to-day operations.

Most software maintenance and tuning of the LGN can be accomplished
through the various SB menu options previously noted. The most common

maintenance tasks are:

* Translation table updates

* Module software updates

* Module configuration file updates

* Download window file updates

* Remote commands (e.g., DIR, DEL, CLRLOG)

* File requests

* LGN reset

* LGN shutdown

" Manual LGN boot.

The rest of this chapter addresses these tasks in more detail. Unless otherwise

noted, this chapter views LGN maintenance from the perspective of an operator
located at the CLGN. While this implies that modification or analysis refers to a
remote LGN, maintenance procedures performed locally usually go through the same
menu options.

SYSTEM BOOT MENU

The SB menu is the primary interface between an operator and the LGN
software. Discussed earlier, it is listed again here for convenience in Table 13-1. In

addition, Ctrl-R toggles the menu operation between local and remote mode. In local
mode, all operations refer to the local LGN; in remote mode, all operations refer to a

13-1

TABLE 13-1

SB MODULE OPTIONS

Option Description
number

1 Suspend a module

2 Restart a module
3 Shutdown a module
4 Transfer a file to a remote LGN

5 Update a translation table on a local or remote LGN
6 Run a system utility
7 Reset an LGN (shut down all LGN processes and restart the LGN)
8 Request a file from a remote LGN
0 Shutdown an LGN

remote LGN, whose name the user furnishes in response to a prompt. The SB menu is

available as soon as the LGN enters the Operational State.

To select a menu option, type the menu option number and press the Enter key.

At any time during the dialog following a menu option selection, pressing the Escape

key cancels the option and brings up the menu again. Two-letter module mnemonics

must always be keyed in upper case.

The LGN is in local mode by default; pressing Ctrl-R followed by the Enter key

switches the LGN to remote mode. When a menu option is selected in remote mode,

the next prompt is always for the mnemonic identifier of the target LGN. In the

discussions of the various menu options below, this prompt is implied.

GENERAL PROCEDURE FOR REMOTE MODE

SB menu options entered in remote mode cause SB to create a corresponding

message, which it embeds within a SENDMSG, SENDFILEMSG, or SENDFILE
message. This outer message goes to the WAN interface module, which sends it over

the WAN to the target LGN. (The WAN interface module divides SENDFILEMSG

messages into separate SENDFILE messages and SENDMSG messages.) On the

receiving end, the WAN interface module determines the message type via the MNP,

13-2

strips off the outer part of the message, and sends the embedded contents to SB. At
that point, SB services the message as if it were a local command.

TRANSLATION TABLE UPDATES

Translation table updates are translation table replacements; the entire file is
overwritten. There is a danger that a replacement translation table may be
truncated or corrupted by a communications error while it is replacing the old table.
For protection, replacement tables are copied first to a temporary directory on the
target LGN and then to the destination directory.

To update (replace) a translation table, select option 5 from the SB menu, enter
the full path name of the file to be replaced, and enter the translation process (DE or
ED) that will be affected. The new table is sent to the directory C:\SU\DOWNLDED
on the target LGN. Then, the affected translator module is suspended, the table is
copied from the \SU\DOWNLDED directory to the correct target directory
(\DE\TRANSTBL or \ED\TRANSTBL), and the translator module is restarted. A
copy of the replacement table will remain in the \SU\DOWNLDED directory until
deleted via the remote command facility.

MODULE SOFTWARE UPDATES

To update an executable module program, select file transfer (option 4) from the
SB menu. Answer prompts for source file and destination file names (including full
path). If left blank, the destination name defaults to the source name. The file will be
sent to the target LGN and directory by the WAN interface module. Remember that
remote LGNs can send files to the CLGN only.

Theoretically, at this point the affected module would be shut down and
immediately restarted. But, since not all testing in the area of opening and closing
mailboxes has been completed, it is not certain that this procedure will work for all
modules. If shutting down and restarting the module does not work, it will be
necessary to reboot the LGN manually. This is an acknowledged limitation of the
prototype LGN.

To shut down a module, select option 3 from the SB menu. This option is
straightforward; enter the two-letter mnemonic of the module to be shut down. The

13-3
I

SHUTDOWN message will be delivered over the WAN to the target LGN, where SB
will issue an appropriate SHUTDOWN message.

To restart a module, select option 2 from the SB menu. This option is the
converse of the module shutdown option; enter the two-letter mnemonic of the module
to restart. The RESTART message will be relayed to the target SB module, which
will restart the module in question.

MODULE CONFIGURATION FILE UPDATES

Often a change in the environment of an LGN will necessitate updating one or
more module configuration files. The file transfer option (option 4) on the SB menu
triggers a remote configuration file update in the normal way. As with other file
updates, the configuration file is actually overwritten, not updated in the normal
way. On prompt, enter the full path name of the source file and, optionally, the full
path name of the destination file. If not entered, the destination name defaults to the
source file name. A SENDFILE message is relayed to the WAN interface module,
which uploads the file directly to the destination path'on the receiving LGN.

Usually, it is necessary to suspend and restart the module associated with an
updated configuration file if the new parameter values are to take effect. This is done
by selecting suspend (option 1) and restart (option 2) in that order. Both of these
options are straightforward, requiring only the two-letter mnemonic of the module
affected.

Table 13-2 shows some of the more frequently changed configuration param-
eters.

DOWNLOAD WINDOW FILE UPDATES

This task traces nearly the same steps as updating module configuration files.
The file transfer option (option 4) is selected from the SB menu. The source file name
is always C:\LI\)NLD\TABLES\DLWINDOW.DAT. The destination file name may
be left blank, since it will default to the source file name. This file is likely to be
updated frequently. It is subject to change when mainframe host file names or
availability times change. Other factors also may result in an update to the
download schedule.

13-4

TABLE 13-2

FREQUENTLY CHANGED CONFIGURATION PARAMETERS

File Parameter Description

CL.CFG Poll Interval Number of seconds between successive polls to the
CLGN for message or files. Normally, this is set to a high
value resulting in a poll once or twice a day. When
several files or messages need to be sent to an LGN, this
value may be set to as low as 10 minutes (600 seconds).

LI.CFG DNLDTimeout Number of seconds after which to assume that the
download process encountered an unrecoverable error.
This value may change on the basis of the download
software used, the mainframe response time, and the
size of download files.

LI.CFG HostSessionlnterval Number of seconds between download attempts. This
value may be adjusted depending on the drain on host
resources caused by a download attempt and the
likelihood of the download attempt to fail.

WI.CFG DeferTimeout Number of seconds to wait before retrying to send a file
or message. This value may be temporarily decreased if
the CLGN requires several files from the LGN or if the
likelihood of a communications failure is high.

REMOTE COMMANDS

One of the more valuable LGN features is an ability to enter a DOS command,
executable program, or batch file (collectively called a command or a utility
command) to be run on a remote LGN. To invoke this feature, select the run a system

utility option (option 6) from the SB menu and (in response to the prompt that
follows) the exact command to be run. At the next prompt, enter the two-letter
mnemonic of any process to be suspended during the execution of the command;
usually, this can be left blank. It is often useful to redirect the output of a command
to a file that can be retrieved later. For example, the command DIR
\DE\TRANSTBL*.* > \TESTMDIR.DAT saves the list of all DLSS-to-EDI translation
tables and sends it to the file \TEST\DIR.DAT, which can be retrieved later using the
file request option (option 8).

Two commonly used commands are DEL and CLEARLOG. The DEL command
is often used after a table update to delete the temporary copy of the replacement

13-5

table (in the \SU\DOWNLDED directory). Sometimes LGN errors result in a
proliferation of intermediate files that normally would have been deleted. A DOS
TREE command, followed by one or more DEL commands, erases the superfluous
files. The CLEARLOG command clears out, but does not delete, a log file. If this
command is not periodically applied to log files, they grow indefinitely.

FILE REQUESTS

To retrieve a file from a remote LGN, select file request (option 8) from the SB
menu. Answer the prompts for source file name (on the remote LGN) and destination
file name. Again, the destination file name defaults to the source file name if left
blank. The next prompt is for a file request D, which is simply a reference number
for the file request. The WAN interface log will display the file request ID in the log
entry corresponding to the status of the ensuing file transfer. Once all the required
information is entered, the WAN interface module downloads the file from the remote
LGN. If the requested file does not exist, an appropriate error message is displayed in
the WAN interface window and entered in the WAN interface log.

A special feature of the file request option allows an operator to enter a file
uame prototype (e.g., \WD\STAGING1*.*) for the source file name. In this case, the
first file on the remote LGN that matches the prototype will be downloaded. If no
files on the remote LGN match, an error message will result.

LGN RESET

The SB menu reset LGN item (option 7) shuts down and immediately restarts
all modules on the designated LGN. No further prompts are involved with this
option. However, as previously discussed, because of imperfections in this area of the
prototype LGN, there is no assurance that all modules will restart once shut down.
Moreover, this option will not necessarily bring back a hung LGN if the hang-up
results from a hardware problem or from a severe operating system or memory error.
Thus, in the prototype, this option is less useful than it could be. More often, a
combination of using the LGN shutdown option (option 0) and manually restarting
an LGN will be employed.

LGN SHUTDOWN

This is a frequently used option, especially during prototype development. Use
of this option, combined with a manual LGN boot, often follows major software

13-6

updates on an LGN. Select shut down LGN (option 0) from the SB menu. This option
will have the effect of shutting down each LGN module, one by one. The SB module
will be the last to go, and the LGN PC will be at the DESQview main menu. Should
any module windows remain on the screen, their presence is most likely due to (1) the
DESQview "Close on exit" option not being set to "Y" in the module's PIF or (2) an
unrecoverable error in the module that prevents it from processing the SHUTDOWN
message.

MANUAL LGN BOOT

An LGN can be started in one of three ways:

* Warm-booting the PC (Ctrl-Alt-Del)

* Cold-booting the PC (turning the power on)

* Invoking DESQview and selecting SB from the Open Window menu.

If the LGN has a X.25 PAD board installed, a cold-boot may be necessary to recover
from certain X.25 protocol failures. Also, cold-boot may be the only way to recover
from other unidentified errors that hang the LGN.

13-7

GLOSSARY

AccSys - API function library for Paradox

ACK - acknowledgment of electronic message

AdCom2-I = FTC telecommunications board for PC housing X.25 protocol

Alpha - alphabetic data type

ANSI - American National Standards Institute

API - Application Programming Interface

ASCII - American Standard Code for Information Interchange

AWK = programming language developed by Aho, Kernighan,
Weinberger

baud = telecommunications transfer rate unit of measure

BOOL - Boolean data type

CCIT = International Telegraph and Telephone Consultative
Committee

char - character data type

CLGN = central logistics gateway node

CODEMAP = LM-developed translation table

CRC - cyclical redundancy checking

D2E - LMI-developed DLSS-to-EDI translation software

DAAS - Defense Automatic Addressing System

DAASO = Defense Automatic Addressing System Office

DBMS = data base management system

DDN - Defense Data Network

DIC - Document Identifer Code

DIC2TID = LM[-developed translation table

Gloss. I

DLSS - Defense Logistics Standard Systems

DLSS2EDI - LMI-developed translation table

DODAAC = DoD Activity Address Code

E2D = LMI-developed EDI-to-DLSS translation software

EDI = electronic data intercb -iage

EDI2DLSS = LMI-developed translation table

EDISEGS = LMI-developed translation table

EVALDLSS = LMI-developed translation table

EVALEDI = LMI-developed translation table

FTC - Frontier Technologies Corporation

FTTSO = file-transfer software

GMT = Greenwich Mean Time

int - integer data type

IPC - interprocess communication

LAN = local area network

LEX - lexical analyzer

LGN - logistics gateway node

LMI = Logistics Management Institute

MB - megabyte

MODELS = Moderization of Defense Logistics Standard Systems

MNP - MODELS Network Protocol

NAK = negative acknowledgment of electronic message

P-Code = "Portable-code"

PAD - packet assembler/disassembler

Paradox = relational data base by Boland Corporation

PC - personal computer

PIF - Program Information File

Gloss. 2

PKARC PKware data compression software

PKXARC = PKware data uncompression software

RAM - random access memory

SB - System Boot (Module)

SM - System Monitor (Module)

SU = System Utilities (Module)

Super-X = FTC run-time software

SuperSort V1.6 = commercial sorting software

TID transaction ID

TransLog = LMI-developed language that captures translation logic

TSR = Terminate-and-Stay-Resident

UNIX = AT&T Bell Laboratories Operating System

WAN - wide area network

WORM = Write-Once-Read-Many

XMODEM = file transfer protocol

X.25 " packet-switching network access protocol

XXX - transaction test segment

YACC = parsing software

Gloss. 3

APPENDIX A

PROTOTYPE LOGISTICS GATEWAY NODE DISK DIRECTORIES

This appendix contains brief descriptions of all significant files in the prototype

logistics gateway node. The files are listed by directory. The file list is for a

development personal computer; thus, source files and development tools are

included, as well as the executable files and data files that are found on a field LGN.

Data file name extensions would be slightly different on a central LGN.

A-1

u m m I |

Directory CA ~ - DOS / System Files, Autoexec.Bat

File Nam Description

autoexec.bat Environiment Variables, Adccm2-I TSR Calls, Call to DESOView
dv.bot DES~view Batch Fite
loadhi .com High-Memory TSR Loader
qomm.com Quarterdeck 386 Memory Manager / MuLtitasker
config.sys oomm and Other Device Driver Specifications
qemomsys Qua rterdeck System File
qext.sys Quarterdeck System File

Directory C:VWI - Awk Software

File N ame Description

awk.*xe Awk pattern language interpreter

Directory C:%CL\3IN -CLGN Polling Executable Code

File, Name Description

ctlOl.exe CL CLON Polling Executable

Directory C:\CL\SRC - CLGN Polling Source Code

Fite Name Description

cLO1O.c CL CLON Polting Main Program

Directory C:ACOUFIG -Nodule and System-Wide Configuration Files

File Name Description

am.cfg Automag (Test Message Generator) Parameters
cL.cfg CLGN Polling Par ame ters
de.cfg D2E Parameters
ed.cfg E2D Parameters
Ld.cfg Lon Dequeuing Parameters
Lgn.cfg LGN Parameters
ti.cfg Local Interface Parameters
sb.cfg System Boot Parameters
serfaliu.cfg Next Serial Number to be Used by Lon Dequeuing Filter
sm.cfg System Monitor Parameters
su.cfg System Utility Parameters
validmod.cfg PermissabLe Module Mnemonics
wd. cfg MAN Dequeuing Parameters
wl.cfg WAN Interface Parameters
wq.cfg 1MAN Queuing Parameters
boot.tab DESQview Process Table for System Boot

A..2

Directory C:OEBIl - DLSS-to-EDI Binary Code

FitLe Name Description

d2e.exe D2E Executable
*.obj D2E Object Files

Directory C:%DEWRR - DLSS-to-EDI Error Files

Fite Name Description

*.err D2E Error Files

Directory C:WEIlCLUDE - DLSS-to-EDI Include Files

File Name Description

*.h D2E Include Files

Directory C:PE\SRC - OLSS-to-EDI Source Code

Fil e Nam Description
..........°..

d2e.c D2E main Source File
*. D2E Function Source Code
d2escan.t D2E Grammar Definitions
granmar.y D2E Grammar

Directory C:DE\TRANSTBL - DLSS-to-EDI Translation Tables

File Name Description
............ ...

codemap.lb DLSS Value - EDI Value Mapping
dic2tid.db DIC Pattern to TID / TID Section Napping
dLss2edi.db Rules and Transformations for Forming EDI Transactions
evaLdtss.cb DLSS Logical Name Definitions
codmap.px Index for CODENAP Table

Directory C:\DE\VAL - DLSS-to-EDI Valid Output Files

File Name Description
...

*.'vt D2E Output Files

A-3

ai a i I I I II I III

Directory C:VV D ES~vimi SYstem and PIF Files

File em Description

Setup.bat DESQview Setup Batch File
px-Load.com DESoview Special Loader Program for Paradox 3
dvsetsup.dv DES~view Setup Program output
desqview.dvo DES~view Open Window Menu Configuration
am-pif.dvp AutoMessage PIF Fite
cL-pif.dvp CLGN Polling PIF Fite
de-pif.dvp D2E PIF File
dl-pif..dvp Download script PIF File
ed-pif..dvp E2D PIF File
t2-pif.dvp LAW Dequeuing Filter Batch File PIF File
td-pif..dvp LAN Dequsuing PIF File
ti-pif.dvp Local Interface PIF F.file
p3-pif.dvp Paradox 3 PIF File
sb-pif..dvp Systm Boot PIF File
sm-pif.dvp System Monitor PIF File
au-pif.dvp System Utility PIF File
w2-pif.dvp WAN Queuing Archive Batch File PIF File
w3-pif.dvp WAN Dequeuing Un-Archive Batch File PIF File
wd-pif.dvp WAN Dequeuing PIF File
wi-pif.dvp WAN Interface PIP File
wq-pif.dvp WAN Queuing PIF File
desqview.dvs DESaview Autostart Script
dv.ex* DESOview Program

Directory C:XDVAPIXINCLjME DES~view API Include Files

Fite Nam Description
...
dvapi.h DESOview API Type Definitions and Low-Level Definitions
dvapi2.h DESOview API Funiction Prototypes

Directory C:NWVAPIj.IB -DESOview API Funtction Library

File Name Description
.------..--..... . -...
apl.lib DESOview Library of ALl API Funmctions
apf.Lat Listing of api.Llb Contents

Directory C:XCVPIj - DES~view API Object Code

File Name Description
....... ...
'.obj DES~view API Object Files (Componmnts of api.tlb)

Directory C:MMIM - EDI-to-DLSS Binary Code

File Name Description
...........

e2d.exe E2D Executable
.obj E2D Object Files

A-4

Directory C:ECOWARE - EDI-to-DLSS Compare Files

File Name Description

. E2D Compare Files

Directory C:EDRR - EDI-to-DLSS Error Files

File Name Description

*.err E21) Error Files

Directory C:D\IMCLUDE - EDI-to-DLSS Include Files

File Name Description

*.h E2D Include Files

Directory C:'M)SC - EOI-to-OLSS Source Code

Fi te Name Description

e2d.c E2D Main Source File
*.c E2D Function Source Code
scan.t E2D Grammar Definitions
grammr.y E2D Grammar

Directory C:IED\TRANSTBL - EDI-to-DLSS Translation Tables

File Name Description
............ ..

codemp.db DLSS Value - EDI Value Napping
edi2dlss.db Conditions, ED! Field References, and Transformations for Building DLSS Transactions
edisegs.b EDI Segment Des .ript;ns / TeimpLatt
evaedi.db E2D Field Defin'tiony
codmap.px Index for CODENAP jdiole

Directory C:\ED\VAL - EDI-to-DLSS Valid Output Files

File Name Description
............

*.val E2D Output Files (VaLid Transactions)

Directory C:\FTC\IKCLUDE - FTC API (Super-X.25) Include Files

File Name Description
......o...... ..

ftctypes.h Super-X.25 Type Definitions
ftcx25.h Super-X.25 Constant and Structure Definitions
intfcx25.h Super-X.25 Structure and Status Code Definitions
t2.init.h Super-X.25 Level 2 Structure Definition
13inft.h Super-X.25 Level 3 Structure Definitions

Directory C:\FTC\LII - FTC API Librery and Source Files

Fite Name Description

caltpkt.c Super-X.25 Source Code for Converting To/From X.25 Packet Structure
lntfcx25.c Super-X.25 Source Code for API Functions
tctomsc.c Super-X.25 Source Code for Utility Functions
x25.tib Super-X.25 Function Library - Iecomptled With Turbo C

A-5 I

Directory C:%G.EAFlUCLt3E - GreenLeaf Comiications API include Files

File UN Description

asiports.h Constants, structure Definitions, and Function Prototypes for Communication Ports,
Interrupts, Status Registers, Etc.

gf.h Generat Include Fite
ibnikeys.h Include File for getkeyo) Special Key Codes
xmodem.h Constants, Structures, and Function Prototypes for Xmodem Routines

Directory C:XGLEAFJ.IB -Greenaeaf Commications API Libraries

File Name Description

gfc?.Lib GreenLeaf Com Libraries for Different Memery Models (gfct - Large Model -Used for LGN
Prototype)

Directory C:%GLEAFSOURCE3 - GreenLeaf Comunications API Source Files

File Name Description

*.c GreenLeaf Comm Source Files

Directory C:MLD%3IN - LAN Dequeuing Binary Code

File Name Description

automsg.exe AutoMessage Executable (For Development Only)
td01O.exe 1.0 Main Executable Program
IdO2O.exe LD Semaphore Lock Executable
tdO0i .exe LD Semaphore Unlock / FILERDONE Message Sender Executable
sbstub.exe S8 Stub for Testing LD Executable

Directory C.%LDXFILTER - Awk Filter Prograsms ; Sort Directives; Batch File

File Nam Description
...
addkey.awk Assigns a Key to All 568 Cards
bfikey.awk Assigns a Key to All NILSSILLS Cards
cons.awk For MILSTA14P Cards, Determine Container Consol idation Number and Append to Card
qbt.awk Filters All Single-Card DLSS Transactions; Extracts All Cards Associated with GIL Cards
m561.awk Groups 561 Cards into Transactions
m562.awk Groups 562 Cards into Transactions

m564.awk Groups 564 Cards into Transactions
m565.awk Groups 565 Cards into Transactions
m566.awk Group~s 566 Cards into Transactions
m568.awk Groups 568 Cards into Transactions and Strips Of f Leading Key
mbis.awk Groups MILSILLS into Transactions
mt23.awk Writes Transactions for T2 and T3 Independent TCs (and Subordinate TI~s)
rmOl.awk Extracts and Writes TO and T1 Transactions
filter.bat 1.0 Filter Batch File - Controls All Fltering and Sorting
sort *com SuperSort
'.crs SuperSort Directive Files
error.txt Transactions That Did Not Pms Filter (Overwritten Each Time)

A-6

Directory C:%LDS3C: - LAW Dequsuing Source Code

File Name Description

automg.c LD Test Message Generator
ldO Oxc LD Main Process
1d020.c LD Fitter Semaphore Lock
ld021.c LD Fitter Semaphore Unlock and FILTERDONE Message Sender
sbstudb.c System Boot Test Stub~ (For Development Only)

Directory C:NLD\VAL - LAN Dequsuing Filtered Transaction Files

File Name Description

*.vat DLSS Transactions That Passed the Fitter

Directory C:\LI\BIM - Local Interface Binary Code

File Name Description

li0lO.exe LI Main Executable

LiO2O.exe LI ONLODONE Message Sender

Directory C:\LI\DNLD\GUELIE - Uniquety-Named Download Files

File Name Description

*.dLd Downloaded Raw DLSS Transaction Files

Directory C:\LI\DNLDSTAGING - Staging Area For Downloaded Files

Fite Name Description

Downloaded DLSS Files -Temporary Nolding Area

Directory C:\LI\WNWDTABLES - Local Interface Download Peamter Files

File Name Description

dtwindow.dat LI Download Script Window Parmters

Directory C:\LINSCRIPTS -Local Interface LGO-Speclf ic Download Scripts

File Nm Description

testacrp.exe LI Test Download Script Executable
testscrp.c LI Test Download Script Source
*.bat LI Download Script Batch File (Site-Specific)
*.exe LI Download Script Executable (Site-Specific)

Directory C:\LI\SRC -Local interface source code

File Name Description

liktld.bat LI Script Batch Controlling File
tfloO.c LI Main Process Source
tf020.c LI Batch Completion Message Sender Source

A-7

Directory C:%SBB1U - System Boot Binary Cads

Fil* Name Description

ab.*xe 55 System Boot Executable
sbreset.exe SB Restart Executable
sustdoti.exe BATCH-DONE Message Sender Executable

Directory C:XSBXLOG -System Boot Transaction Log

File Name Description

sb. log Number of So Messages by Hour; Record Added for Each Restart

Directory C:%SB-%SRC -System Boot Source Code

File Name Description

oplib.c SB Operations Library
sb.c SB Main Process
sblib.c SB Main Library
sbreset.c SB Restart
sb kbin.c SB Keyboard Interf ace
sbg.h SB Global Variable Definitions
sblt.h SB Local Variable Declarations

Directory C:NSNBIU - System Monitor Binary Code

File N Me Description

sX1.eXe S14 Executable

Directory C:%SNSRC -System Monitor Source Code

File Name Description

oplib.c SM Utility and Support Fun~ctions
SO c SM Main Process (Services Queries)
sei ib.c SM Miscellaneous auery Support Functions
sRmkbin.c SM Keyboard Interface
sag.h SM Global Variable Definitions
sAlI.h SM Local Variable Declarations

Directory C:NWJJIN System Utility Binary Cade

File UN m Description
....... ..
surelood.bat Temporary File to Copy Translation Table From Temporary Directory to Destination

Directory C\DE\TRANSTBL or \ED\TRANSTBL)
su.exe SU1 System Utility Executable
su-ut.exe SU Executable to Spatin Requested Process anid SUBATDON Process
substdon.*xo SU Executable to Send BATCHOONE Message to SU Main Process

Directory C:\$U\DOWLDED -System Utility Table Molding Area

File UN m Description

*.db Translation Table

A-8

Directory C:XWASRC - System Utility Source Code

File Name Description

optlb.c WU Operations Functions
su.c SU Main Process
su-ut.C SU Spawn Batch Utilities
subatdon.c St) Send Batch Done Message to SU Main Process

Directory C:%SYRIN - System-Wide Binary Code

Fite Name Description

*.obj System Function Object Files

Directory C:XSY\IMCLEIDE - System-Wide and WAN Interface Include Files

Fite Nam Description

cfg.h SY ConfigBuratioan Peameter Mnmo ics
errmgr.h SY Error Definitions/Constants
irip.h WI MODELS Network Protocol
models.h SY MODELS Constants Definitions
paths.h SY File and Path Definitions
pif.h SY DES~view PIF Structure Definition
pdox.h AccSys Paradox API Variable and Constant Definitions and Function Prototypes
su.h SY Function Return Code Definitions and Prototypes
sutog.h SY Logging Constant Definitions
sylen.h SY Variable, Array, and Data Length Constants
sys.h SY IPC Message Definitions
systddef .h SY Standard Types, Constants and Macros
syutll.h SY Definitions of Constants and Macros That Are Used Only By System-Wide Library

Functions
timers.h SY DESOview Timer Constants
wihh WI Constants, Macros, arid 'Type Definitions
Pimodem.h WI Hayes Modem Definitions
wistats.h WI Definitions for Performance Statistics Maintenance and Reporting
xm.h WI Xmodem Constants

Directory C:%S M 19 Various Libraries

File Nam Description

pdox.Lib AccSys Paradox API Library
su.lib ST System-Wide Utility Function Library (Contains Functions in \SY\BIN)
ttLex.tib LEX Lexical Analyzer Library
tLyacc.Llb YACC Parser Library

Directory C:\S'Uog - LGN Module Logs

File Name Description

??. log Module Log File

fitter.tog Filter Log File (Overwritten Each Time)

Directory C:\SYSRC - Source Code for System-Wide Library Functions

File Name Description

error.c SY Error Handler Functions
mall.c SY Mailbox / IPC Functions
sufuncs.c SY Common Utility and DES~view API Functions
&uLog.c SY Logging Functions
timrs.c SY DESovei Timer Functions

A-9

Ofirectory C:XTPX3IU - Transaction Processing Subsytem Binary Code

Fif MoNo Description

tpOlO.obj Functions Common to TP Modules

Directory C:XTPXINCLWE - Transaction Subsystem Include Files

Fileo Nam Description

tp.h Function Prototypes, Constants, and Global Variables Common to TP Modules

Directory C:%TPXSRC - Transaction Subsystem Source Code

File Name Description

tp.c Source for Common TP Funmct ions

Directory C:WUTIL -Utility Programs

File Name Description

cleartog.bat Utility to Clear Module Log
pkarc.com File Compressor
pkxarc.com File Uncompressor

Directory C:XWD\B!N -WAN Dequeuing Binary Code

File Nunse Description

wd0l.exe W Main Executable
wd02O.exe WD UNARCOONE Message Sender Executable

Directory CAVD\)WELIE -Destination Directory for Uncompressed EDI Files

File Mamne Description

*0 Uncompressed EDI File - Input for E2D Translator

Directory C:\WD\SRC -WAN Dequauirw Source Cods

File Name Description

wdwi~uarc.bot W Un-Archive Batch File
wdOlO.c W Main Process
wd02O.c W UNARCDONE Message Sender

Directory C:\WD\STAIMG1 - ED! Archive (Compressed) Files

File Mam Description

* * EDI Archive, file

Directory C:\WDSTAGIMG2 -ED! Uncompressed Files

File M m Description

*0 Uncompressed ED! File - Input for E2D Translator

Directory C:NWI\BIU - WAN Interface Binary Code

File M m Description

wi. axe WI Executable

.obj WI Object Files

A-10

Directory C:WIQ.ELAEFILE - WAN Interface Outbounid Files$ COial-up Si tes)

File Name Description

* ' Outbound (For Reote IAN) Fileo

Directory C:WJIULAEEV=S - WAN Interface Outbound Messages CWial-14 Sites)

File Name Description

** Outbound Message

Directory C:XWIXQLEEW sT - WAN Interface out'oi Fi le Requests (Ofiat-up Si tes)

File Name Description

Outbounmd File Request

Directory C:\YI\5WELETBL - WAN Interface Outbound Translation Tables (Dial-Lip Sites)

Fite Name Description

*.db Outbound Translation Table

Directory C:\WI\SkC - WAN Interface Source Code

File Name Description
---............

ctkresp.c WI Clock Response Message Routine
ctksync.c WI Clock Synchronize Routines
comm.c WI Generic Commuanication Routines
deferred.c WI Deferred Message Handler
distup.c WI Disl-Up Routines
dodaacc V1 COnac Address Handler
getedi.c WI Check for and Receive EDI File From Remote LGH
getmsg.c WI Check f or Message on Remote LCN
getparam.c WI Configuration Parameters Retrieval
hatt.c WI Exit Routine
initx25.c WI Initialize Su4,er-X.25 Interface
ipcinit.c WI Initialize DESQVIew interface
ipcservec WI IPC Service Routines
linkx25.c WI X.25 Levi 2 aid Level 3 Initialization
.ekecatt.c VI Conniect to LGM
mnpchk. c WI Check Polling Requests From Remo LG~s
wprcvoc WI Handle Receive Portion of MODELS Newtork Protocol (NMP)
wipsend.c WI Service an NIP Seind Fite Request
wlpserve.c WI MNP Functions
inodem.c WI Hayes Nodem Routines
netutil.c WI NNP-to-X.25 Interface
rcvedi .c WI EDI Message/Data Reception
received.c WI EDI Reception Sup2port Functions
requestc WI Initiate File Request (From Remote LUN)
reset2fic W1 Oversee resetting of FTC AdComZ-I Board

A-11

Directory C:\WI\SUC (cant.)

File N m Description

sendedi.c WI Send ED[File (Archived)
sendfite.c WI Fite Transfer
sendfmg.c WI Send File-Message Pair
sendasg.c WI Send Message
shutdown.c WI Normal Termination
startx25..' WI Manage X.25 Network, Hardware, A Software Initialization
stats.c WI Performance Statistics -Update and Log
superx25.c WI X.25 Support Routines -Calls Super X.25 API
suspend.c WI Suspend Process Routine
switch.c WI Manage File Sempahore (At TROSCOM Only)
wanexec.c WI WAN Executive - IPC and WAN Service Manager
wanserv.c WI Service IPC Queue
wilog.c WI Logging Routines - Calls SULOG System-Wide Function
wimin.c WI Main Program
x25serv.c WI X.25 Packet Send/Receive
xmack.c WI XMODEM Send Acknowledge/NAK
xirbjffer.c WI XMODEM Transmit/Receive
xm*.c Greenleaf XMOOEM Functions - Modified for WI Larger Block Size and Use of X.25 BoardI

Super-X.25 API Instead of Serial Port
ymW.c Like xn.c Routines, Except for Dial-up Sites (Not Direct-Corviect)

Directory C:WISWITCN - WAN Interface Semaphore Directory (TROSCON Only)

File Name Description

port.sem WI TROSCOM Semfwphore File (For Serial Port Contention)

Directory C:XWI\TABLES - WAN Interface Run-Time Tables

File Nae Description

dodaac.dat WI Dooaac Address File

Directory C:XWD\3IN - WAN Queuing Binary Code

File Name Description

wq~lO.exe UG Main Process Executable

wqO2O.exe WO ARCDONE MEssage Sendar Executable

Directory C:\WWQEUE - WAN Queuing Outbound EDI Archive (CoiW esed) Files

File N ma Description

* 1D1 Archive File

Directory C:\WUGSUC - WAN Queuing Source Code

File N ame Description

wqarc.bet WO Archiving Batch File
wqc O.c WO Main Process
wqOZO.c Wqarc.bat Completion Program, Sends ARCOE Message to W0010

A-12

APPENDIX B

TRANSLATOR SYSTEM FUNCTIONS

The table on the following pages lists all system functions for both the Defense
Logistics Standard Systems (DLSS) to Electronic Data Interchange (EDI) and
EDI-to-DLSS translators. The system functions are callable by TransLog expressions
in the Paradox tables (and thus in the internal P-Code representations of those
tables). The functions receive parameters and pass values via the execution stack in
the translator's memory space.

The argument lists after each system function in the table represent values that
are passed on the stack and pulled off by the function during its span of control.
System symbols in the table that are followed by an asterisk are system variables; all
other symbols are functions.

B-1

II

Function Name Description

AddDays(Oyymndd " , iDays) Peturns a date incremented by a specified number of days.

Cat("stringlu, "string2") Concatenates two string values.

CC() Synonym (in function form) of CurrentCard.
*

CurrentCard The number of the current card (counting the first card as 1)
within the current transaction.

DiffDays(-yymmdd-hi", Returns the difference in days between two YYMPDO dates.
Nyymdd- towo)

DiffNonths(-yymmdd-hi", Returns the difference in months between two YYDO dates.
"yyxmdd- Lown)
DissVatue(-codename,,, "edival") Converts from ED! values to OLSS values via the CODENAP table.

Dd2Dst("dd,) When passed a two-digit Julian day, supplies the third (most
significant) Julian digit and one-digit year, based on current
date, and then converts the resulting date to ED! format. The
two-digit Julian day is assumed to refer to the next day in the
future wAere the Julian day ends in those two digits.

DocNo2Date("Document-number) Converts a document numer to an EDI date.

DOuant("DLSS-quantity") Converts a DLSS quantity field into a string containing a n eric
quantity. A DLSS quantity field my have an "No in the Last
position, which gets converted to mUOON (thousands).

EdiELement(wSegSeq, wUse, Retrieve the value of an element given the segment sequence
wEttSeq) number, segment use rumer, and element sequence n omer.

B-2

Function Name Description

EdiVlue("codenam"l, DLSSVaLue) Converts from DLSS values to EDI values via the CODENAP table.

Exito) Causes processing of the current TID section to cease.

FindCard(/Pattern/, iDirection, Returns card number that metches a specified pattern in specified
iCardOrigin, wStartCoL, wLen colums on the card. Nore than one pattern-cotumns pair can be
11, "stringi", wStartColl, passed. The range of cards to search is also passed.
wLenl]...]

FinlJse(wSegSeq, wSegUse, Finds a use of an EDI segment based on a value from a particular
wEttSeq, /Pattern/ EL, wEltSeq, element within the segment. If wSegUse > 0, than a particular
/Pattern/] ... I instance of the segment is searched.

InRange(wLower, wtipper) Boolean function that determines whether an integer is within a
certain range.

IsAlpha(-string") Boolean function that determines whether a string is composed
entirety of upper case alphabetic characters.

IsNumeric('string") BooLean function that determines whether a string is composed
entirely of digits (0-9).

IsPunch(wCardNo, wCardPos) Determines if the specified position in a card contains one of
the overpunch characters ()JKLMNOPO).

IsVaLidS (-MMCV' ,) Determines whether a month of the form MS1 (e.g., DEC) is a
valid 3-tetter abbreviation.

LastCard The number of cards in the transaction.

Len("string") Returns the length of a string.

B-3

Funtion Nm Descript ion

LZeroQstringm, wLen) Returns a string padded with Leading zeros whlen passed a string
and a length for the returned string, including the zeros.

Matches(setring", /pattern/) Boolean function that determines whether a string matches a
regular express Ion.~mmmu4)Corverts an WU month string to

MMndd2dat("01rindof, MyyU) Takes an HIO string and a YY string and returns an EDI date.

NuumaLustring") Converts a string to an integer.

Punch(mstring", wpunchPos E, Examines up to 19 positions within a string and OpunchesU those
wPunchPos, ... 3) that contain a numeric digit.

RDDD2Dat(ddd"' E. "Document- Calculates an EDI date from a Julian day offset in the form 000
date"i) and the year of the current date or, if provided, a docuent

date.

RDDSOiMonths, "yylrhdd") Calculates a date equal to the Last day of the month of (start
date + iNonths.)

RPOiCard, wPos, wLen) Returns the string found in DLSS card number iMard, starting in
position wPos, for wLen columns.

Spaces CwNurber) Generates a string of wdImber spaces.

StartRDP~iDays, Nyyimmdd", Hday- Comutes a date equal to a document date plus nWher of days
code") minus a day code (NAN=l, "3"u2, etc.)

StrVat(wlnt) Converts a numeric to a string.

SubStrCmstring", wStart, wien) Returns a sj.bstring, of a given string, starting in position
wStart, for a Length of wLen characters.

SubtractDaysCmyymmdd", iWays) Returns a date decremented by a specified ns.'or of days.

B-4

Function Nme Descriptian

ToDQunt(tQuant) Converts a quantity to a 0LSS quantity (opposite of OQuant).

UnPunch(string", JnPunchPos Examines up to 19 positions on a card and "un-punches- those that
E, wMnPunchPos, ... 1) contain overpunch characters.

*

Value Shorthand for the value extracted using the Carclto, Start, and
Length fields in the EVALDLSS table.

Yddd2 at("yddd") Converts a date of the form YDOO (e.g., 0352) to an EDI date
(e.g., 901201).

Ymi2at("ymd-) Converts a YMD date to an EDI date. In a YND date, N is a one-
character month code and D is a one-digit day code.

YTR2Dat("yn,) Returns the date for the first day of the month in ED! format
(e.g.. 901201) when passed a year and month of the form YImm
(e.g., 012).

Y2yy(81y") Returns the appropriate two-digit year (e.g., 90) when passed a

one-digit year (e.g., 0).

Yylmdd2J("yyfujd,,) Converts a YYI.0 date to YJJJ format.

Yyfnmn2Dat("yymxW') Converts a YYIEi date to an EDI date (TYISED).

Yywmdd2Dst("yymmmdd-) Converts a ¥YWI4O string to an EDI date.

YTMuKMJ(uyy91nlnmd") Returns the appropriate Julian date (e.g., 90352) when passed an
ED! date (e.g., 901218).

YymKmd2Ymd(Oyymmdd., bOorlFlag) Converts a YYIS)O date to a YD date, where N is a one-character
month code, and 0 is a one-digit day code; the flag parameter
ffcts the usage of the D code.

B-5

