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SECTION I
INTRODUCTION

A. OBJECTIVE

The objective of this investigation is to study the behavior of
reinforced concrete structural systems including slabs, beams and
beam-columns, subjected to localized loads in both the static and
dynamic domains. The approach is specifically aimed to develop of -
reliable, accurate, and efficient models that can predict the
resistance of reinforced concrete structural elements subjected to
localized loads from onset of loading all the way to the failure of
the element. . -

B. BACKGROUND

The design of reinforced concrete structural elements subjected to
localized loads, such as those generated by blast forces from the
detonation of conventional weapons, involves uncertainties with
respect to the expected forcing function and the structural behavior.
Because of the uncertain nature of such loads, the effect of the
applied loads may exceed the strength and/or deformation capacity of
the individual structural elements. Generally, more information on the
variability of the potential loads and a better understanding of the
behavioral response of the structure will reduce the possibility of
failure and increase the probability of a structure's survival.
Therefore, a knowledge of the expected resistance of the individual
elements, as well as the overall performance of the structural system
under the given loading condition, becomes important to design
process, since this knowledge may give the designer with a more
complete overview of the structural performance.

In analysis of reinforced concrete structures, one is often
concerned with the actual strength and deformation capabilities of a
structural element under a combined state of loading, that is,
flexure, shear and axial forces. This issue becomes very critical if
the structures are expected to provide protection against modern
conventional weapons. The development of reliable analytical/numerical
techniques for predicting the structural response is particularly
important since it provides the means for controlling the entire
structural behavior to be within a desired range. Thus, creating the
need for a rational and analytical procedure for predicting the
strength and deformation of reinforced concrete structural elements
under the effect of severe localized loads.

C. SCOPE
The analytical models, along with the results obtained from the
application of the present procedure, are presented in the following

sections.

Section I1 summarizes the existing and relevant information for
analysis of reinforced concrete beams subjected to localized static




loads. It includes a background on the material properties and the
procedure to compute the moment-curvature relationship for the cross
section of a beam or a beam-column. In studying the various modes of
failure at the ultimate condition, the lack of the general criteria
for failure in reinforced concrete structural elements is discussed.
As a result of combining empirical results from previous investigation
with the present assumptions about the behavior of the structure at
the ultimate condition, an improved model for the failure criteria is
also proposed in Section II.

Existing analytical and experimental background on the
interaction and influence of shear in reducing the flexural capacity
of the reinforced concrete structural elements is studied and
discussed in Section II. The truss mechanism analogy,
extensive experimental data, and empirical models obtained from the
literature, are used to develop a modified model for evaluating the
influence of shear in reducing the flexural capacity of the element.

The last part of Section II is devoted to analysis for deriving
the load-deformation behavior of the structural element. The
computational procedure developed for this purpose accounts for the
load-dependent and nonlinear distribution of curvature, influence of
the boundary conditions, formation and propagation of plastic zones,
and the second-order effect of the axial compressive force.

The behavior and modeling of reinforced concrete members under
time-dependent localized load is studied and discussed in Section III.
The procedure for obtaining an equivalent dynamic model with nonlinear
characteristics is reviewed and is followed by the proposed modified
equivalent single-degree-of-freedom (SDOF) model for analysis of
reinforced concrete structural elements subjected to high intensity
dynamic loads. The modified model accounts for the potential
nonlinearities associated with the materials, support conditions, and
the dissipation of energy under dynamic conditions. Furthermore, an
approximate method is developed for evaluating the shearing response
of the elements at the critical locations.

To evaluate the validity and to demonstrate the effectiveness of
the present approach, a number of reinforced concrete structural
elements tested by other investigations are analyzed in Section IV. In
the static domain, these include two groups of reinforced concrete
beams and one group of reinforced concrete beam-columns. In the
dynamic domain, the analysis is performed for reinforced concrete
beams subjected to impact  loads, and for reinforced concrete wall
slabs subjected to detonation loads of conventional explosive devices.
For all cases, the computed results are compared with the available
measured experimental data, as reported- in the original sources.
Additional analytic results and all experimental data from the
previous experimental investigations are provided in Appendix B
through D.

Section V summarizes the proposed procedure and the results
obtained. General conclusions and recommendations for the future




studies are also presented in that section.
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SECTION II -
ANALYTICAL MODELING OF STRUCTURAL BEHAVIOR IN THE STATIC DOMAIN

A. INTRODUCTION

The behavior of reinforced concrete beams and beam-columns has
been investigated theoretically and experimentally in the past, and a
tremendous amount of information on various aspects of the subject is
available in the literature. This section provides only the
information relevant to the analytical modeling of reinforced concrete
structural elements developed through the course of the present
investigation. It describes the material models for longitudinal steel
and concrete employed in the present study. The behavior of reinforced
concrete members subjected to flexure is surveyed briefly, followed by
the assumptions and the numerical model used to analyze the flexural
resistance of reinforced concrete beams and beam-columns. Study of the
previous investigations revealed that none of the available models
could provide an accurate description of the failure (collapse) at the
ultimate condition. This issue is investigated in the present study,
and has resulted in proposed improved models for the failure criteria
in reinforced concrete beams. The influence of shear on the flexural
behavior with or without the presence of web reinforcement is
discussed and a modified method is proposed to account for the
influence of web reinforcement on the flexural capacity of deep and
slender beams. Also, the effect of axial compressive force on the
flexural performance of the cross section is discussed.

B. MATERIAL MODELS
1. Longitudinal Reinforcement

The actual shape of the stress-strain curve for the
longitudinal reinforcing bars must be considered in obtaining an
accurate estimate of moment and curvature. A typical stress-strain
curve for moderate strength steel consists of the three parts (Figure
1): (1) the linear elastic region, (2) the yield plateau, and (3) the
strain-hardening region.

Region AB: (¢, < c’)
In the elastic region, stress is assumed to be proportional to strain
by Young'’s modulus of elasticity,

f, = E,¢, (1)
where, ¢  is the steel strain, ¢, is the yield strain of steel, E  is
the modulus of elasticity for steel, and f. is the steel stress.

Region BC: (¢, s €, < £.0)
In the yield plateau strains increase with no increase in stress up
to the beginning of strain hardening. The length of the yield plateau
depends on the yield strength of steel. Generally, high strength steel
has a shorter yield plateau than low strength steel. The stress-strain
relationship for region BC in Figure 1 is as follows:
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Figure 1. Stress-Strain for Steel.




£, - £, . (2)

where, ¢,, 1s the strain at which strain hardening begins.

Region CD: (¢, 2 c'h)
The strain hardening of steel, shown by region CD in Figure 1, has
been modeled by Burns and Siess in Reference 1 as follows:

112(e, - €,,) + 2 €, - £, £,
f. =-f { + (;-) - 1.7)]

8 y - -
60(¢s ‘Sh) + 2 tau ¢sh y

(3)

Park and Paulay (Reference 2) proposed a different formulation for
region CD:

m(e, - €,,) + 2 (e, - €,,)(60 - m)
£, - £, ( + ]
60 (eg - €egy) *+ 2 230 + r + 1)?

(4-a)
where,

fl.l
(—)(30+r+1)2 - 60r - 1
fY
m = (4-b)
15r?

rTe=c . - £, (4-¢)

and
€,, = ultimate strain,
f = ultimate stress.

u
Evaluation of numerical results as reported in Reference 3 has
indicated that Equation (4-a) provides better results and thus, it
will be used in this study.

2. Unconfined Concrete

The stress-strain relationship for unconfined concrete is
normally obtained by standard cylinder tests in the laboratory. The
test results in Reference 4 show that plain concrete under uniaxial
compression can resist a maximum stress of f’_ (generally known as the
uniaxial concrete compressive strength) at a strain of approximately
0.002. From the same test results it has also been found that at
strains higher than 0.002, concrete is still capable of providing
resistance up to its ultimate useful strain at which it can no longer
resist any additional stress.




One of the most realistic stress-strain curves for unconfined
concrete has been suggested by Hognestad in Reference 4. Hognestad's
model assumes a second-degree parabola between zero strain up to
0.002, where f'_ 1is reached. Beyond the strain of 0.002, the strain
increases to 0.0038, while the stress decreases to 0.85f' . The
material model for the unconfined concrete used later for the flexural
analysis in this study is very similar to the relationships proposed
in Reference 4, except that the ultimate useful strain of concrete is
taken as 0.004 instead of 0.0038. Referring to Figure 2, the stress-
strain relationship for unconfined concrete, namely the side and top
covers in the compression zone of the cross section of beam and beam-
columns, is described by the following formulation:

Part 1 : For the strain range 0. < ¢ < 0.002 (where ¢  is the
concrete strain and 0.002 is the strain corresponding to the maximum
compressive strength), the stress-strain relationship is parabolic and
can be represented by the following expression:

ch €,

£, - £, [ - ( )2] (5)
0.002 0.002

where, fc is the stress in concrete.

Part 2 : For the strain range 0.002 < ¢_ < 0.004, the concrete
stress is assumed to vary linearly from f'_  to 0.85f’ at the strain
of 0.004 as follows.

£ = £'_ [1-2(e, - 0.002)] (6)

[

where, Z {. the line slope derived from the above mentioned
parameters.

Part 3 : For the strain range £, > 0.004, the unconfined concrete
cover is assumed to have spalled off, thus resisting no stress.

£ =-0. . (7

Hence, The cover is assumed to contribute to the strength of the
section so long as the strain is not larger than 0.004, while at any
strain beyond this value, the cover does not resist any stress.

The assumption that the concrete cover in the compression zone
would lose strength and eventually spall off has been employed by




‘__._-—

| NORMLIZED STRESS, £ /g’

1.00

0.85

0.0 0.002 0.004

CONCRETE STRAIN, L

Figure 2. Stress-Strain for Unconfined Concrete.




—

other investigators. Baker and Amarakone (Reference 5) assumed that
spalling occurs at strain of 0.0035, while Blume et al. (Reference 6)
chose the spalling strain of 0.004. Krauthammer and Hall (Reference 3)
assumed that concrete cover crushes at the strain of 0.004, but it may
still resist compressive stresses so long as spalling has not
occurred. Furthermore, they assumed that spalling occurs when the
strain at the level of the compression longitudinal reinforcement
reaches 0.004, but idealized the concrete cover located between the
compression reinforcement and the neutral axis to remain on the cross
section at strains larger than 0.004 and to resist compressive
stresses in the range of between 0.5f'_ to 0.85f’ .

The maximum usable strain at the extreme compression fiber is
taken as 0.003 by the ACI 318-1983 Code (see Reference 7).

3. Confined Concrete

In most reinforced concrete structural elements, concrete is
confined by transverse reinforcement in the form of rectangular hoops
or spirals. At low stress levels, the confined concrete will resist
the applied compressive stresses and deform in a manner similar to
unconfined concrete. Due to the internal cracking and crushing of
concrete at higher stress levels, lateral deformations in the concrete
increase, and the concrete will push against the lateral
reinforcement. In response, the lateral reinforcement confines the
concrete and improves its stress-strain characteristics. This
phenomenon was first observed by Richart et al. (Reference 8) during
triaxial compression tests on reinforced concrete cylinders loaded
axially and subjected to lateral confining fluid pressure. The
experimental results by Richart et al. (Reference 8) and later by
Balmer in Reference 9 have indicated that an increase in lateral
pressure increases the ultimate strength and ductility of reinforced
concrete members.

The behavior of concrete confined by rectangular hoops was
studied previously, as reported in the literature (see References
1,5,6,10,11,12, and 13). A brief description of a few material models
for concrete confined by rectangular hoops is given in Reference 2.

The stress-strain relationship employed in this study for
confined concrete in the compression zone of a beam was originally
proposed by Vallenas et al., in Reference 14 for axially loaded
compression members, and later modified by Krauthammer and Hall
(Reference 3) to represent the behavior of confined concrete in beams
or in beam-columns. This stress-strain curve consists of three parts
as described below and shown in Figure 3.

Part 1 : For the strain range 0. s ¢, < ¢, where ¢, is the

concrete strain corresponding to the maximum stress, the stress-strain
relationship is parabolic.

10
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( Y(—) - RK(—
f'c €, £,
£f = (8)
¢ Eceo €
1+ ¢ - 2)(—)
Kf'e ‘o

Part 2 : For the strain range €, S e, < €y 4g, vhere €, 3¢ is the
strain at which the concrete stress is reduced to 0.3Kf'c, the stress-

strain relationship is linear and described by the following equation:

€
£ =K £ [L-0.82¢ (— - 1)] (9)
‘o

where, parameters ¢_, K, and Z are given by the following expressions,

o!?

0.734  p £
e, = 0.0024 + 0.005 (1 - S) ( ) (10)

h* 7

S D" f"y
K=1. +0.0091 (1 - 0.245 —)(p, + — p')

h" D’ JE,

(1)
0.5
Z - (12)
3 h* 3+ 0.002 £’
P ) - 0.002
s £, - 1000

Part 3 : The third part of the curve is for strains larger than

€o.3x
£, = 0.3K £ (13)
and,
E, = elastic modulus of concrete (psi)
h"™ = average core dimensions of the confined concrete compression

zone measures to the outside of stirrups (inches).
p, = ratio of the volume of confining steel to the volume of the

12




confined concrete core per unit length of the beam, both in
the compression zone,

p' = longitudinal compression reinforcement ratio,
£, = yield stress of hoops,

S ° = spacing of hoops (inches),

D" = nominal diameter of hoops (inches),

D' = nominal diameter of longitudinal compression

reinforcement (inches)

The above formulation shows that the shape of the stress-strain
relationship for confined concrete depends on the parameters ¢, K,
and Z, which depend on the location of the neutral axis. Such a model
will provide a unique stress-strain curve for any specific depth of
the neutral axis. It is, however, noted in Reference 2 that using such
relationship for flexural analysis of beams in which part of the cross
section is in tension may be a questionable assumption. The low stress
concrete in the tension zone helps to confine the compressed concrete
(as discussed in Reference 2) and, for this reason, p. is defined in
this study specifically for the compression zone.

C. MEMBERS IN FLEXURE

The methods of evaluating the flexural capacity and curvature of
the cross section at various loading stages, as presented in the
available literature (References 2,3,15, and 16), is discussed here.
In general terms, the procedure is based on a number of assumptions
about the behavior of the cross section in bending and employs the
stress-strain curves for longitudinal steel and concrete, as discussed
earlier. The method was applied successfully in the past (References
2,3, and 16) for the analysis of reinforced concrete beams and beam-
columns.

The present numerical model for the flexural analysis of
reinforced concrete beams employs the following assumptions:

1. Plane sections before bending remain plane after bending
(Bernoulli’s principle). This assumption implies that the
strains have a linear distribution over the cross section.
Experimental results indicated this to be reasonably
accurate in analyzing the flexural strength of reinforced
concrete members at all stages of loading up to failure.
However, in the tensile zone of the cross section, where the
bond between steel and concrete may deteriorate, the
relative local slip between the tensile reinforcement and
the surrounding concrete distorts the validity of this
assumption. Although, if the concrete strain 1s measured
across several cracks in that region, Bernoulli's principle
would still be valid for the average strain measured in that
region, as discussed in Reference 2. In addition, attention
must be given to the analysis of deep reinforced concrete
beams in flexure, since this assumption is not completely
valid for deep cross sections, as discussed in References 2
and 3.

13




2. Tensile strength of concrete below the neutral axis is
ignored. Concrete is weak in tension and cracks at early
loading stages, well before the yielding of the tensile
reinforcement. Thus, the contribution of concrete below the
neutral axis can be reasonably neglected in studying the
post-yielding flexural behavior of the member.

3. The stress-strain relationship for steel and concrete is
well defined. The longitudinal tensile and compression
reinforcement are assumed to behave according to the stress-
strain model discussed previously in Section II-B-1. The
stress-strain curve for unconfined and confined concrete in
the compression zone was also described in Sections II-B-2
and II-B-3*fespective1y._o

The numerical method for obtaining the moment-curvature diagram
is straightforward and similar to procedures in References 2,3,16. For
any load level that corresponds to a fixed strain in the temnsile
reinforcement, a location (or distance from the extreme compression
fiber) of the neutral axis, kd, is assumed and a linear strain
distribution is imposed on the cross section. Then, the concrete
compression zone is divided into Nl arbitrary number of layers
parallel to the neutral axis (Figure 4). Using the first assumption,
the strain at the center of the concrete layer i, €.,, and the strain
for the steel bar j, €,;» can be obtained. Knowing the stress-strain
relationship of steel and concrete, the stresses for each concrete
layer i, and steel bar, j, can be computed. These are £, and £_,,; -
respectively. The total compressive force of concrete acting on the
cross section, C_, is obtained by summing the concrete compressive
force in all layers.

N1
C,= L f£..A, (14)
i=1

where, A , is area of the concrete layer i. Also, the compression
force in the longitudinal compression steel C,, is computed as
follows:

gz :
c, - £,,A', (15)
g M

where, A’ ., is the area of the J*® compression steel bar and N2 is the
number of compression steel bars. Similarly, the net tensile force ,T,

14
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acting on the cross section can be given by the following equation:

N3
T=- 3£, 4, (16)
k=1

where, A_, is the area of the k' tension steel bar and N3 is the
number of the steel bars in tension. For equilibrium of intermal
forces, it is required that the sum of all the compressive forces in
concrete, C_, and in the compression reinforcement, C,, be equal to
the sum of the force T in the tensile reinforcement.

T=C_+C, Q7)

Equation (17) is the force equilibrium expression of the cross
section at any give load level. If Equation (17) is not satisfied for
the assumed neutral axis location, an iterative procedure would begin
for a new location of the neutral axis (for the same strain in the
tensile reinforcement) until equilibrium is obtained to within a small
tolerance. The moment and the curvature are subsequently computed for
the cross section that is in statical equilibrium.

The moment of all forces can be taken about any arbitrary axis.
In this study, the moment is arbitrarily taken about the plastic
centroid of the section. The plastic centroid is defined as the
centroid of resistance when the entire cross section of the beam is
compressed, steel to the yield stress, and concrete to the stress
0.85f' . For a symmetric cross section, this point is the same as the
geometric centroid of the section. Referring to Figure 5, the
resisting moment of the section may be given by the following
expression:

M=C(d-d-d)+C,(d-d"- d') + T(d") (18)

where,

d = distance from the extreme compression fiber to the centroid
of the tension bars,

d*' = distance from the extreme compression fiber to the centroid
of the compression bars,

d, = distance from the extreme compression fiber to the centroid
of the compression block,

d" = distance from the centroid of the tension bars to the
plastic centroid of the section

The lines of action of forces T, C,, and C_ are at distances d, d’,
and d_ from the extreme compression fiber, respectively.

16
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The curvature of the cross section may be give as follows:

€,

P - (19)

d-kd

where, e, is the strain in the tensile reinforcement and kd is the
depth of the neutral axis from the extreme fiber in compression, both
corresponding to the same load level.

The entire procedure is repeated for other values of tensile
strain (i.e, different load levels) until the failure of the cross
section is reached. This will result in a series of moment and
curvature values which eventually form the moment-curvature diagram.

1. Failure Modes at the Ultimate

The computation of a complete moment-curvature diagram
requires a clear definition of failure in the beam. In this study the
words failure and ultimate are used synonymously and they refer to the
final collapse loading stage. In general, three different modes of
failure are possible in reinforced concrete beams: (a) flexural failure
due to the fracture of the longitudinal tensile reinforcement, (b)
flexural failure due to concrete crushing in the compression zone of
the cross section, and(c) shear failure.

The following discussion describes various possible flexural
modes of failure in reinforced concrete beams. Shear failures are
discussed later in this section.

The mode of failure and the extent of ductility of the beam at
the ultimate curvature depend mostly on the percentage of the
longitudinal reinforcement, p. If p 1s less than the balanced amount
of tensile reinforcement, p,, then the cross section is under-
reinforced. Otherwise if p is more than p,, the beam is over-
reinforced. A distinction between over-reinforced and under-reinforced
beams would further require a definition of the balanced amount of
reinforcement ratio within the flexural model. The balanced
reinforcement ratio p,, can be easily computed. p, can be defined as
the amount of longitudinal tensile reinforcement necessary for
obtaining equilibrium, i.e. satisfying Equation (17), such that the
strain of the tensile steel is at yield, while the concrete strain at
the extreme compression fiber is at 0.004. It is also noted that the
strain of 0.004 is the ultimate strain for unconfined concrete
described in Section 1I-B-2 and illustrated in Figure 2.

In under-reinforced beams, where the ratio of the percentage of
the longitudinal tensile reinforcement to the percentage of the
longitudinal compression reinforcement (p/p’) is less than one, the
fracture of the tensile reinforcement is usually the predowinant mode
of failure at collapse (Reference 1). Conversely, if this ratio is

18




more than unity, concrete failure.ls expected to occur in the
compression zone. Of course, the extent of the ductility would depend
on the amount of confining reinforcement and on the ratio of the
compression reinforcement present in the beam. Proper confinement of
concrete increases its strength and the ductility and may change the
flexural mode of failure from compression to tension.

A compression flexural failure in under-reinforced beams is
either due to the buckling of the compression bars or excessive
decrease in the compressive capacity of concrete. Experimental results
(References 1 and 17) have indicated that in most cases the buckling
of the compression bars and the loss of strength in concrete both
contributed to the ultimate failure of the specimen. It. is also noted
in Reference 17 that the type of the flexural compression failure
depends heavily on the percentage of the compression reinforcement,
because specimens with small amounts of compression steel had concrete
compression failure and conversely, beams with larger amounts of
compression reinforcement failed by buckling of the bars. The results
of experiments reported in References 1 and 17 indicated that buckling
of the compression reinforcement between two adjacent ties occurred in
all beams that exhibited compression type failure. It was also noted
that the bars always buckled outward on a horizontal plane, since they
were restrained laterally by the surrounding confined concrete and the
curvature of the beam prevented the upward buckling of the bars.

Yamashiro and Seiss (Reference 17) proposed a formulation which
included the effect of buckling of the compression bars in predicting
the ultimate point on the moment-curvature diagram. In their study,
they assumed that the ultimate point on the moment-curvature diagram
was the point of absolute maximum moment or the point corresponding to
the buckling load of the compression bars, whichever occurred first.
Moreover, it was assumed that stirrups provided perfect restraint
against rotation and displacement, and no lateral restraint was
provided by the surrounding concrete. With these assumptions, the
idealized buckling stress was proposed according to the following
expression:

szt
fop=—— (20)
4 (5/p")%

where, E, is the tangent modulus and D’ is the diameter of the
compression bar., Equation (20) implies that the buckling of the bars
could occur only after the compression reinforcement has entered into
the strain hardening region. Although the criteria selected in
Reference 17 for ultimate condition provided adequate computational
results, the collapsed members did not seem to follow the assumed
behavior. For example, some beams continued to deflect under
increasing load after the buckling of the compression reinforcement.
Moreover, in case if buckling occurred after reaching the point of the
absolute maximum moment, that point did not seem to be the failure of
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the beam, since more deformation was observed with increasing loss of
strength due to the excessive concrete distress in the compression
zone. ’

Although predicting the flexural mode of failure at the ultimate
curvature was of major concern in a number of experimental
investigations (see References 1,11,13,17,18,19,20, and 21), no
analytical or empirical method was available to relate the flexural
failure to geometrical and/or material properties of the member. From
information available in the existing literature, an attempt has been
made here to establish analytical/empirical failure criteria for
reinforced concrete beams and beam-columns that will include rational
relationships for the ultimate strain in the materials as a function
of the element material and geometric properties. The validity of the
proposed formulation will be illustrated later in Section 1V, when the
analytic results for a number of cases are compared with the measured
experimental values.

2. Proposed Failure Criteria for Flexural Failure

The present study ignores the possibility of failure in a
beam caused by buckling of the compression reinforcement. Instead, the
flexural failure for ductile members at the ultimate curvature is
based on the ultimate strain in the tensile reinforcement or the
ultimate strain of the confined concrete, whichever occurs first. The
ultimate strain of the longitudinal tensile reinforcement, ¢, , is the
last point on the stress-strain curve of steel as discussed in Section
II-B-1. If this strain is reached in the tensile reinforcement before
a concrete failure in the compression zone occurs, the beam will be
assumed to have failed in tension. Otherwise, if the concrete failure
in the compression zone precedes the fracture of the tensile
reinforcement, then a compression failure is assumed.

A failure in the confined compression zone depends on two
important factors;
1. The ultimate strain of confined concrete in compression,
2. The location on the confined compression zone at which the
ultimate strain of the confined concrete must be reached in
order to trigger a concrete compression failure.

The following discussion is aimed at illustrating the simulation
for a concrete compression failure in ductile members within the
flexural model.

The ultimate strain of confined concrete was studied
experimentally by a number of investigators (References 5,11,13, and
21). The results of these investigations indicate that the ultimate
strain of concrete confined by rectangular hoops depends mostly on the
amount and properties of the confining reinforcement. Based on a
series of tests on short specimen of confined concrete subjected to
axial forces, Chan (Reference 11) suggested the following expression
for the ultimate strain of concrete confined by rectangular ties:
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e, = 3 Jp'°/24.5 + g, (21)

where, p'_  is the ratio of the volume of the lateral reinforcement to
the volume of the confined concrete, ::u is the ultimate strain of
confined concrete and 52u is the ultimate strain of unconfined
concrete taken as 0.004 in this study (see Section II-B-2).

Other investigators (References 11,12, and 21) proposed empirical
expressions for the strain of confined concrete at the ultimate
curvature. Extensive experimental studies by Corely (Reference 13) on
inelastic behavior of reinforced concrete beams under concentrated
loads provided the following expression as a lower-bound ultimate
strain for concrete confined by rectangular ties:

€S, = 0.003 + 0.02(b/L,) + (p, £" /20)% (22)

cu

L, = distance on the span of the beam from the section of maximum
moment to the section of zero moment,

b = width of the cross section

f"_ = yield stress of web reinforcement (psi),

p. = the ratio of the volume of the confining steel (one stirrup
plus compression reinforcement) to the volume of the confined
core.

In discussing Corley’s paper, Mattock (Reference 21) recommended
the following simpler relationship, which is i.dependent oi the yield
strength of web reinforcement, in lieu of the last expression:

c

€, = 0.003 + 0.02(b/L_) + 0.20 p_ (23)

where, all variables are the same as defined above. Equations (22) and
(23) (for f'y = 50 ksi) are shown graphically in Figure 6. These
expressions represent a family of curves defining a lower bound for
the ultimate strain of confined concrete for the number of beams that
tested in Reference 13. These expressions will reduce to 0.003 if the
moment is constant along L., and if the effect of lateral
reinforcement is neglected. Also, for a beam subjected to a single
concentrated load at its midspan, L, would be the same as the shear
span of the bean.

After the results of these equations were compared to the
experimental data as reported in (References 1 and 17), the simpler
model proposed by Mattock and give by Equation (23) was chosen as the
basic method for determination of the ultimate strain of confined
concrete with the following modifications:
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1. The ultimate strain of unconfined concrete is taken as 0.004
instead of 0.003. This adjustment is primarily for the sake
of consistency with the unconfined concrete material .model
that was previously discusses in Section I1I-B-2.

2. Equation (23) is only a lower-bound to the ultimate strain
of confined concrete. In order to obtain more realistic
values, the coefficient 0.2 is replaced by 0.27 (p/p’'). This
modification will compensate for the fact that for smaller
amounts of compression reinforcement (relative to the amount
of tensile reinforcement), the neutral axis at the ultimate
curvature is at a lower depth, providing a larger confined
compression zone of concrete which is in equilibrium wich
the tension force in the longitudinal tensile reinforcement,
thus allowing the confined concrete to withstand higher
strains at the ultimate condition.

The proposed modified equation for the ultimate strain of
confined concrete is the following:

€;, = 0.004 + 0.02(b/L,) + 0.27 p_ (p/P") (24)
The parametric range of this equation for the ratio of p/p’ is
1.0 < p/p!' =1.79 ; p' not equal to 0.

Equation (24) is plotted as well in Figure 6 along with Equations
(22) and (23). It can be seen that for equal percentages of tensile
and compression reinforcement, the proposed equation predicts values
that are close to expressions in References 13 and 21.

As mentioned earlier, the complete formulation of a compression
failure criteria would require one to define the level on the confined
concrete zone for which the strain at each load step is compared with
the ultimate strain of confined concrete. If the strain of concrete at
that level exceeds the ultimate strain as obtained from Equation (24)
before the tensile reinforcement reaches its fracture strain, the mode
of failure is by compression. For beams without the influence of axial
compressive force, this level is chosen as follows:

1. If p/p'=~ 1 , the above check is made at the midheight of
the confined compression concrete zone,

2. 1f 1. < p/p' < 1.79 ,_then the check will be made at some
point between thenddhgight of the confined compression
zone and the neutral axis, linearly proportional to the
ratio p/p’'.

The distance between the neutral axis and the axis at which the
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strain is compared against the ultimate strain is denoted by d_, and
can be expressed as following:

kd- TC - 0.5 D"
d, = ( ) (—) (25)
2 e’

where,
. kd = the depth of the neutral axis from the extreme compression
fiber, :
TC = thickness of the top cover,
D" = diameter of the transverse reinforcement.

According to the above formulation, a failure in the compression
zone depends on the ultimate strain of concrete and the equilibrium of
forces acting on the cross section, as reflected by the depth of the
neutral axis in Equation (25). The parametric range for Equation (25)
is the same as for Equation (24).

The preceding model was developed specifically for reinforced
concrete members capable of behaving in a ductile fashion. In heavily
reinforced concrete members in which the tensile steel content is near
(or more than) the balanced amount, failure would be brittle unless
the concrete is well confined by transverse reinforcement. A brittle
failure occurs because a high tensile force T would require & lower
depth of neutral axis and consequently, the concrete would be crushed
(if it is not heavily confined) before the yielding of the
reinforcement. This situation is characterized by an immediate loss of
strength upon reaching the peak flexural moment before the yielding of
the tensile steel. In the present analysis, whenever the flexural
moment capacity was reduced significantly (due to a large amount of
tensile reinforcement or the presence of a high axial compressive
force), the peak moment was taken as the ultimate flexural resistance
on the moment-curvature diagram and a brittle compression failure
would be assumed. On the other hand, if the flexural moment was slowly
and consistently increasing to a peak along with yielding of the
tensile reinforcement, a ductile compression or tension failure would
be assumed to occur as discussed earlier in this section.

D. INFLUENCE OF SHEAR ON THE FLEXURAL BEHAVIOR OF BEAMS

The influence of shear on the performance of reinforced concrete
beams has been studied theoretically and experimentally in the last 30
years. Generally, it is well understood that the so called "shear
failure" in reinforced concrete beams is a result of bending, shear,
and sometimes axial force acting simultaneously. A failure of this
kind is usually brittle and it occurs before the structure reaches its
ultimate flexural capacity.

To understand the problems associated with shear in reinforced

concrete beams, the influence of shear must be first examined in beams
without web reinforcement, then in beams with shear reinforcement. The
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shear strength of reinforced concrete beams has been investigated by
elastic, plastic and empirical models in the literature. In this
section, the nature and mechanism of various types of shear failures
in reinforced concrete beams are examined separately for beams with or
without transverse reinforcement. In addition, two theoretical models
proposed in the literature are discussed for providing a rational
analytic background for the modified shear model that is proposed
later in this section.

1. Shear Failure in Beams without Web Reinforcement

The cracking pattern in a typical simply supported reinforced
concrete beam is shown in Figure 7. Potential flexural eracks are
initially formed vertically at locations of high bending moment. A
combined state of stress due to shear and flexural stresses will cause
the formation of secondary or flexure-shear cracks near the interior
extremity of one of the initial cracks (Figure 8). From elementary

mechanics of materials, the maximum principal tensile stress, £ , at
any point below the neutral axis of the beam is obtained from the
following expression:
2 2
£y oaxy = 0-58, +J (0.5£,)% + v (26)

where, v and f, are shear stress and flexural stress at that point,
respectively. The direction of the principal tensile stress is given
by the following expression:

Tan 20 = v / (0.5£,) (27)

vhere, ® is the angle between the maximum principal stress and the
longitudinal axis of the beam, measured in a counter clockwise
direction. If the shear stress is small, the principal tensile stress
is nearly equal to the longitudinal tensile stress, and its direction
is nearly parallel to the longitudinal axis of the beam. On the other
hand, if the longitudinal tensile stress is small, the magnitude of
the principal tensile stress is nearly equal to the shear stress and
it makes an angle of 45 degrees with the longitudinal axis of the
beam.

Since concrete is weak in tension, the principal tensile stresses
are the major reason for the formation of the initial cracks in
reinforced concrete beams as shown in Figure 8. With increasing load,
inclined flexure-shear cracks will subsequently develop as an
extension of the initial flexural cracks (Reference 22). As shown
later in this section, some beams fail immediately after the formation
of the inclined cracks, while others may resist higher loads, even
after the appearance of the inclined cracks.
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Upon the formation of the inclined cracks, the shear force in the
beam is resisted by the following internal forces (Figure 9):
1. Dowel forces in the flexural reinforcement; V, L
2. The vertical component of the aggregate interlocking shear
force along the diagonal crack; V,
3. Shear across the uncracked concrete in the compression zone;

VeV, +V +V, ) (28)

where, V is the applied shear force at the cracked section. It has
been reported (Reference 22) that approximately 15-25 percent of the
shear force is carried by dowel resistance, 20-40 percent by the
concrete in compression zone and 30-50 percent by the aggregate
interlocking shear resistance.

These forces contribute to two principal mechanisms of shear
resistance, namely, the "beam action" and the "arch action"

mechanisms. From basic principles of beam theory, shear force is
related to bending moment by the following expression:

V = dM/dx (29)

where, M is the resisting moment of beam which can be expressed by the
following relationship (Figure 9-b):

M= (jd)(T + V, Cot a) (30)
T is the tensile force in the longitudinal reinforcement, and jd is
the vertical distance between T and C in Figure 9-b.
Assuming that the dowel resistance force is ignored, the above
expression reduces to the following:
M=T({d (31)
Substituting Equation (31) into Equation (29),

V = (d/dx)(T jd) = (dT/dx)(jd) + T(d/dx)(jd) (32)

If the internal lever arm does not change along the length of the
beam, the beam action mechanism of shear resistance can be expressed
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Beam. (Reference 2)
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as.:
V = (dT/dx) (jd) T (33)

The rate of change in tensile force with distance is called the shear
flow which is in turn the bond force between the reinforcement and the
surrounding concrete. If the bond force between steel and concrete is
destroyed, then the tensile force does not change any more and the
beam mechanism is no longer valid. In that case, the inclined
compression or arch action will resist the applied shear as follows:

V =T (d/dx) jd (34)
Ignoring the aggregate interlocking resistance, from Figure 9-a,
T=2C (35)

where, C is the net compressive force acting on the uncracked
concrete. Substituting for T in Equation (34),

V = C (d/dx) jd (36)

Thus, the external load is balanced by arch action.

In general, a perfect bond between steel and concrete is uncommon
and the necessary bond force for the beam mechanism can not fully
develop. Therefore, both mechanisms contribute to shear resistance at
the same time and the extent of their individual contribution depends
on the internal deformation pattern at various stages of loading as
extensively discussed in Reference 2.

The development and growth of the inclined cracks in a reinforced
concrete beam depends on the relative magnitude of the shear and
flexural stresses. For all practical purposes (see Reference 22),
these stresses may be represented by the following expressions:

v=_C, (V/bd) | (37-a)
£, - ¢, (M/bd?) (37-b)

where, d is the effective depth of the beam, b is the width of the
web, and C, and C, are arbitrary coefficients which depend on the
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amount of reinforcement, type of steel, type of loading and bond force
between steel and concrete. Dividing the second of Equations (37) by
the first,

£,/v = C, (M/Vd) (38)

where C; is the ratio of C, to C,. For a beam subject to a
concentrated load at its mldspan the M/V ratio is the so called
shear span, a. Thus,

£./v = C, (a/d) - 39

It can be seen that the variation in inclined cracking capacity of the
beam is a function of a/d, namely the shear span to the effective
depth ratio.

Experimental results (References 23 and 24) indicate that when
all other parameters are kept constant, the strength of rectangular
simply supported reinforced concrete beams depends on the shear span
to the effective depth ratio. In general, two different categories of
failure may be established:

1. Slender Beams: (2.5 £ a/d < 7). Initial flexural cracks are
followed by flexure-shear cracks which extend diagonally
towards the point of load application. The beam will fail
shortly after the formation of the diagonal crack and the
subsequent arch mechanism cannot sustain any additional load.
Such a crack causes a failure in the beam before its full
flexural capacity is developed. This type of failure is known
as a "diagonal tension failure."

2. Deep Beams: (1.0 < a/d £ 2.5). Failure is either due to the
propagation of the secondary crack along the longitudinal
reinforcement which in turn results in a loss of bond between
steel and concrete, or due to an extension of the inclined
crack to the top of the beam which results in crushing of
concrete above the upper end of the inclined crack. In fact,
this is an arch action failure in which the propagation of the
crack reduces the size of the compression zone, causing the
compressive stresses to exceed the compressive strength of
concrete. This type of failure is known as " shear compression
failure." Moreover, in very deep beams in which the a/d ratio
is close to one, the failure may also be due to the following
reasons:

a. Anchorage failure of tensile reinforcement.

b. Crushing of concrete near the reaction point.

c. Flexural failure either by crushing of the concrete above
the tip of the inclined crack or by yielding of the
tensile reinforcement.
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d. Tension failure of fhe arch rib accompanied by crushing
along the crack.

The ACI 318-1983 Code (Reference 7) provides the followiné
relationship for evaluating the shear strength of reinforced concrete
beams without web reinforcement.

v, v d
v, - ;; - 1.9 JE, + 2500 p — < 3.5 JE,
M

u

(40)
All parameters are in pound and inch units, and
p = A /bd

v/ M, s 1.0

Y

where,

v, - shear stress of concrete, (psi)

A, - area of tensile reinforcement, (inches?)

b = width of beam, (inches)

d = effective depth of beam, (inches)

v, = ultimate shear force, (pounds)

M, - ultimate moment at the section, (pound-inches)

f' = compressive strength of concrete (psi)
Equation (40) provides reasonable and acceptable predictions, as
discussed in References 22,23,25, and 26 for the flexure-shear
cracking load, particularly for beams with shear span-to-depth ratios
in the range of 2.5 to 7.

According to the ACI-1983 Code, the following more conservative
and simpler equation can be used instead of the previous equation:

v, =2 Jf'° (41)

Figure 10 shows a comparison between Equation (40) and Equation (41)
with experimental results.

Perhaps the best statistically accepted equations for predicting
the shear strength of reinforced concrete beams has been proposed by
Zsutty (Reference 27) as follows:

v, = 59 (', p d/a)*/? (42)
Other investigators (Reference 28) have developed similar expressions:
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v, = 12.5 (100 p a/d £’ )1/3 (43)

All these staciscical studies indicate that unless shear
reinforcement is provided, collapse occurs immediately after the
formation of the diagonal crack. Moreover, the most significant
variables that affect the shear strength of reinforced concrete beams
are the longitudinal reinforcement ratio, the tensile strength of
concrete, and the shear span-to-effective depth ratio of the beam.

Experimental test results obtained by Kani (Reference 23) and
other investigators (Reference 24) indicate that the flexural capacity
of reinforced concrete beams with shear span-to-effective depth ratios
between one and seven cannot fully develop. Based upon these
investigations, it was found that the moment capacity is primarily a
function of two variables, namely the percentage of tensile
reinforcement and the shear span-to-effective depth ratio. Kani
(Reference 23) showed that the influence of the compressive strength
of concrete on the shear strength is not significant and can be
ignored in the shear failure analysis.

Figure 1l summarizes results obtained by Kani in Reference 23. It
can be seen that the ratio of the ultimate moment with shear influence
to the ultimate flexural moment without shear influence clearly
depends on two variables, namely the tensile longitudinal
reinforcement ratio, p, and the shear span to the effective depth
ratio, a/d. Krauthammer and Hall (Reference 3) studied these results
and arrived at the following observations:

1. Regardless of the amount of tensile reinforcement, the minimum
capacity falls in the range: 2 < a/d < 3.

2. No moment reduction exists for beams with a/d larger than seven.

3. No moment reduction exists for beams with a/d less than unity.

Moreover, it was assumed in Reference 3 that the minimum moment
capacity line is comprised of three linear segments parallel to the p
axis. The following equations have been obtained from Reference 3.
These equations were developed by the numerical evaluation of the
experimental results in Reference 23 for describing the minimum moment
ratio as a function of p.

M

0<p<0.658 : (—), = 1.0 (44-a)
M!l
M\l
0.658 < p <1.88% : (—)_, = 1.0 - 36.6 (p - 0.0065)
M
1

(44-b)
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: Figure 11, General Model for Shear Influence on Beams
Without Web Reinforcement.
(Reference 23)
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M
1.88% < p < 2.88% : (—), = 0.6 (44-¢)

Mtl

where, (Mu/“z1)n is the minimum ratio of moment capacity of the beanm
with shear influence to the the maximum flexural capacity of the beam
without any shear influence. Using these expressions, it is possible
to describe the maximum influence of shear on the flexural moment
capacity.

Assuming a straight line relationship on both sides of the
minimum moment capacity line (Figure 12), Krauthammer and Hall
(Reference 3) also developed the following procedure for computing the
influence of shear on moment capacity of reinforced concrete beams
without web reinforcement:

1. Define the a/d value of the minimum moment capacity as point P,
(Figure 12).

2. Define the a/d values on both sides of the minimum point for
which the ratio of moment capacity to full flexural capacity is
one. These are points P, for slender beams and P, for short
beams in Figure 12.

3. Since two points are defined on both sides of the minimum point,
a linear interpolation will give the moment capacity for a
specific shear span to the effective depth ratio.

For slender beams,

a
- - P,
M, M, d
—) =10+ [(—), - 1] — (45-a)
M,, £l P, - P,
and for deep beams,
a
- - P,
Mu M\l
(—) =10+ [(—), - 1] — (45-b)
Mgy Mgy P, - B

where, (M ,/M,,), can be obtained from Equations (44). Point P, in .

Figure 12 is the shear span to the effective depth ratio corresponding -
to the minimum moment capacity line. P, 1is the shear span to the

effective depth ratio below which there is no reduction in the moment

capacity (Figure 12) and P, is the a/d beyond which there is no loss
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of flexural capacity. The numerical values for P, and P, were taken as
one and seven (see Reference 3) for &ll values of the tensile
reinforcement ratio.

2. Modifications for Evaluating the Influence of Shear in Beams
without Web Reinforcement

The model and the procedure that is used in the present
investigation for beams without transverse reinforcement is in essence
the same as that proposed in Reference 3, with the following
modifications: .

a. From the numerical evaluation of experimental results in
Reference 23 as shown in Figure 11, point P, may be obtained
from the following proposed equation:

p>1.88% : P, =7, (46-a)

0.65% < p < 1.88% : P, = 7. + 365.9(p - 0.0188)
(46-b)

Thus, P, can be defined as a function of the amount of
tensile longitudinal reinforcement. P, and P, have the same
definition as before.

P, - 1. (47)
P, = 2.5 (48)

The procedure for computing the influence of shear in reducing
the moment capacity for slender and deep beams without
transverse reinforcement is the same as that discussed in the
previous section.

b. For over-reinforced sections, shear would not have the same
influence on reducing the moment capacity. In an over-reinforced
beam, the concrete compression zone is considerably larger at
the ultimate curvature, causing a more effective aggregate
interlocking mechanism and as a result, the inclined flexure-
shear cracks do not propagate as extensively as they would in an
under-reinforced beam. This phenomenon is accounted for in the
present model by introducing a factor called ORF (Over-
reinforcing Factor) defined in the following manner:

p < p, : ORF=1 (49)

p >p, : ORF=p/p, (50)

where, p is the percentage of the tensile longitudinal
reinforcement and p, is the balanced percentage of the tensile
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reinforcement defined earlier in Section II-C. ORF is
subsequently applied to the minimum moment capacity ratio given
earlier in the last section by Equation (45) as follows:

M, M,
(—) =(—), - ORF=<1.0
tl Mgl (51)

The expression on the left hand side of Equation (51) is the new
moment ratio for the over-reinforced section. The model proposed
for over-reinforced beams in shear will be verified later in
Section IV by comparing the experimental results with the
analytic values as obtained from the present model.

3. Shear Failure in Beams with Web Reinforcement

The improvement in shear capacity of reinforced concrete beams
due to the presence of web reinforcement is primarily attributed to
the following phenomena:

a. Supporting the longitudinal bars and thus increasing the dowel
shear resistance. _

b. Enhancing the shear resistance of the aggregate interlocking
mechanism by reducing the width of the diagonal cracks.

c. Enhancing the compressive strength of concrete by confinement of
concrete.

d. Suppressing tensile stresses across the concrete cantilever
blocks.

e. Preventing the breakdown of forces between concrete and tensile
reinforcement near the anchorage zone.

Perhaps the most accepted method for computing the shear capacity
of reinforced concrete beams is the truss mechanism analogy. Referring
to Figure 13, the truss analogy assumes that stirrups act like tension
members and the concrete compressive struts act like compression
members in the web of the analogous truss. Also, the forces in the
bottom and the top chords of the truss are equivalents of the
resultant compressive forces in the compression zone and the tensile
force in the longitudinal steel,respectively. From equilibrium of
forces at joint X:

vV, =T, Sing (52)
T, = A, ", (53)
where,

V, = external shear force attributed to stirrups,
T, = sum of all stirrup forces across the diagonal crack,
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B = angle between stirrups and the longitudinal axis of the beam,
A, = area of web reinforcement (both legs),
f", = stirrup stress.

Also, from the geometry of the truss, spacing between the stirrups, S,
can be given as:

8 = jd (cota + Cotp) (54)

where, a is the angle between the diagonal compressive strut and the
longitudinal axis of the beam. From the last two expressions, the

tributary shear force per spacing of the stirrups may be given by the
following equation:

TI vl Avf“l
—_ - - (55)
S (jd)SinB(Cota + Cot B) S

Therefore, the shear stress that must be resisted by a single stirrup
may be expressed in the following manner:

vl Avf"l
v - -

b(jd) b S

Sin B (Cota + Cotfg) (56)

Assuming that stirrup stresses are beyond their respective yield
stresses before a shear failure occurs, the amount of web

reinforcement necessary to resist the external shear can be computed
from Equation (57) as following:

v, Sb

A, - —) (57)
Sing (Cota + Cot ) f£",

vhere, ", is the yield stress of the web reinforcement.

According to the ACI-1983 Code (Reference 7) the external shear

is resisted by both the concrete and the web reinfo:cement., This
implies that

vV, =V, t v, (58)
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v, is given by Equation (40) or (41), and v, is the ultimate shear
stress. Furthermore, the ACI code assumes that the diagonal cracks are
to prevail at 45 degrees with respect to the longitudinal axis of the
beam. For vertical placement of stirrups, Equation (57) reduces to the
following form:

bs
A, = v, (—) : (59)

v "
f’

which is the familiar expression used often in the design of web
reinforcement for typical reinforced concrete beams.

The results of shear tests on reinforced concrete beams as
reported by the ACI-ASCE joint committee (Reference 22) have indicated
that the ACI procedure outlined above is conservative. Moreover, it is
clear that the ACI design procedure does not include the interaction
of bending in the shear resistance mechanism. Experimental
observations have shown that unlike what is assumed in the ACI Design
Code, the slope of the diagonal cracks at ultimate is not necessarily
45 degrees, and several investigators (References 25,29, and 30) have
developed more accurate methods for the design of web reinforcement.

A procedure was proposed in Reference 3 to account for the
contribution of shear reinforcement to the ultimate flexural capacity
of slender and deep beams. In that approach point P, in Figure 12 is
shifted upward to point P’, in accordance with the following
formulation:

M, M, M,
)y = (=) + [1 - (—),]) Cot ® (60)
M!l Mfl M!l

where, 6 is the shear crack angle at the failure defined by explicit
empirical expressions available in Reference 3 for slender and deep
beams as a function of beam geometry, material properties and the
amount of web reinforcement. (M /M, ), ‘' is the new position of the
minimum moment capacity due to the influence of web reinforcement and
it replaces the value of (M /M,,)_  in the right hand side of Equation
(45). Thus, the new moment capacity that includes the influence of
shear reinforcement for a specific case can be computed from Equation
(45).

In the following two sections, two analytical failure models
relevant to the ultimate shear strength in reinforced concrete beams
are discussed. The first model (Section II-D-4) was originally
developed by Thurlimann (References 31 and 32) and later used to
verify test results in Reference 33. The second model (Section II-D-5)
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was discussed in Reference 34 which also agreed well with experimental
results. The primary purpose of discussing these models is to create a
rational explanation for the shear model that is proposed later in
Section II-D-6.

4. The Truss Shear-Flexure Interaction Model

A free body diagram of the truss model is shown in Figure 14.
As described before, the tension force in the lower chord represents
the tension force in flexural reinforcement and the compression force
in the upper truss chord is the net compressive force of concrete in
flexural compression with any compression reinforcement. The direction
of the maximum principal tensile stress is perpendicular to the cracks
and the principal compression stresses act in a direction parallel to
the diagonal cracks, forming the compressive strut of the analogous
truss. The web reinforcement represents the vertical tension ties of
the space truss.

This model assumes the following (Reference 33):

1. The longitudinal reinforcement must yield prior to shear
failure. Therefore, only under-reinforced beams may be analyzed
by this model.

. The tensile strength of concrete is ignored.

. Dowel and aggregate interlocking contributions are ignored.

. Diagonal crushing of concrete does not precede the yielding of
the web reinforcement. Thus, it is not necessary to assume an
upper bound limit for the concrete stresses in the compressive
strut.

S. Longitudinal reinforcement is properly anchored to avoid bond or

slip failure.

SN

A moment balance about point O in the free-body diagram of
segment AB of the beam shown in Figure 14 gives the following
relationship:

id
M = C(jd) - nA ", (— Cota) (60)
2

where,
n = number of stirrups in the cracked segment AB,
a = angle of the diagonal compression strut at ultimate,

A, = area of two legs of stirrup,

f", = stress in the web reinforcement,

C = compressive force in the upper chord of the analogous truss,

jd = distance between tensile and compressive chords of the analogous

truss.

Dividing both sides of the last equation by (jd) and assuming
the transverse reinforcement has yielded prior to the failure of the
beam (i.e., f" = f" ),

43




e—0

Figure 14. Forces in the Flexure-Shear Truss Model
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M v,
C=— +

GL-)) 2

Cota . (61)

where, V  is the ultimate shear at failure. Neglecting the shear
capacity of concrete, V, can be given by the following expression:

1d
Vo = mAE", = () Cota A, £, : (62)

where, S is the spacing between the vertical stirrups. Therefore, the
angle a at ultimate can be obtained from either of the following two
equations:

Avf"y(jd)
Tang = ——— (63)
v, S
or
Pnfﬂy
Tana = (64)
v

u

where, v  is the ultimate shear stress at failure and p" is defined as
the percentage of the web reinforcement. They are given by the
following relationships:

v

v, -— (65)
b(jd)
A_fr

pr - —— (66)
Sb

Equation (64) shows that the angle of the diagonal strut at ultimate
shear stress is function of the yield strength and the amount of the
web reinforcement as well as the ultimate shear stress in the beam.

Substituting for Cota from Equation (64) into Equation (61),
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M vis ,
Cm=— + ————— - (67)
jd  2(ja)afn,

If the longitudinal tensile reinforcement (lower chord of the
analogous truss) has also yielded prior to the failure of the beam,
then,

M =M = (Tor C)(jd) - A £ (jd) (68)
and,
Af V?Zs
C=—+ —— (69)

jd  2(3A)A

Equation (69) represents the combined effect of bending and shear at
failure, provided that both longitudinal and web reinforcement have
yielded prior to failure. For the case of pure bending, one can set
(V, = 0) in Equation (69). This will give the pure flexural capacity
of the beam as

V, =0 ; M, =M, =T(jd) = Af (j3) (70)

For the case of pure shear (no bending), one can set M, = 0 in
Equation (69). This will give the maximum value of shear strength as

2T(jd)A, £"
M, =0 ; V =V, = [——-2]%2 (71)
s

Combining Equations (69), (70), and (71) will result in the basic
flexure-shear interaction relationship as follows:

M, Va
+ (
M., v

)2 =1 (72)

us

Equation (72) is only valid if both longitudinal and web reinforcement
have yielded prior to failure.

Unlike the traditional truss analogy where the angle of
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compression strut is always assumed to be 45°, Thurlimann’s space
truss model is valid for all inclinations of a. However, as the
following kinematic analysis will show, the requirement that both web
and longitudinal reinforcement yield places certain limitations on the
magnitude of the angle a.

The angle of inclination of the concrete strut given by Equation
(64) is defined at ultimate (just before failure) and not during the
earlier load levels. As the loading increases from the initial
cracking, diagonal cracks widen and the orientation of the diagonal
compression strut will change until the cracks are so widely open that
no further shear transfer by aggregate interlocking can take place
across the cracks. At this point the redistribution of .internal
stresses as well as any further changes in the inclination of the
diagonal compression strut stops, thus,causing the failure of the
bean.

Thurlimann and others (References 31,32, and 33) introduced
limitation on the use of Equation (72). The limitations were primarily
based on the magnitude of diagonal tension crack width and the
relative strain values in the chords and stirrups. From the kinematic
relationship between the strains in the analogous truss members and
the width of the crack, it is possible to show that at least
analytically, the state of strain in the web of the analogous truss
and the longitudinal reinforcement determine the crack width at
failure (Reference 33). The assumptions for the kinematic strain model
are as follows (Reference 33):

1. The beam is under-reinforced.

2. Concrete in the compression strut is rigid.

3. Deformations are only due to the longitudinal and web
reinforcement.

4. At failure, the angle of the principal compressive stress
corresponding to the force in the diagonal compressive strut
coincides with the angle of inclination of the principal
compressive strain.

Consider the state of the strain in the shear field element
(Figure 15). Figure 15-a represents the shearing strain due to the
elongation of the stirrups and Figure 15-b shows the state of strain
due to the deformation of the longitudinal bars. The total shear
strain due to the stirrup strain and the longitudinal chord strain is

7 =1, + 1, (73)

where, ", and vy, are the shearing strains due to the transverse and
longitudinal reinforcement, respectively. From Figures 15-a and 15-b;
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y, = ———— = ¢, Cota )
1+ e,
e", (jd)
", = ———— = ¢"_ Tana (75)
(jd) Cota

substituting the last two relationships into Equation (73),
Yy = €, Cota + " Tana (76)

From Figure 16, the relationship between the mean crack strain, €crs
and the strain in the longitudinal and the transverse direction can be
given as follows.

e, = ¢ Sin%a (77-a)

8 cr

e", = ¢, Cos?a (77-b)

where, the mean crack strain is defined as the ratio of the mean crack
width to the spacing between two adjacent cracks. From the last two
equations,

£, =€, + ", (78)

Equation (77) can be rearranged in the following form:

= 1 + Cot2a ' (79-a)

= 1 + Tana (79-b)

Assuming that both the transverse reinforcement and the longitudinal
reinforcement yield at failure, Equation (79) may be rewritten as
follows.

cr

= 1 + Cot?a (80-a)
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Figure 16. State of Strain in the Diagonal Strut.
(Reference 133)
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ccr

= 1 + Tana '(80-b)

£y

Equation (80) are plotted on the same graph in Figure 17. If both the
longitudinal and the web reinforcement are at their respective yield
points, the mean crack width has the smallest possible value. An angle
of inclination that is less than 45° represents a failure in which the
transverse reinforcement is strained more than the longitudinal
reinforcement and yielding of the chord reinforcement could increase
the width of the diagonal crack to the point that no additional shear
transfer across the previously formed cracks can take place.
Conversely, an angle of inclination greater than 45° represents a
failure in which the strain in the transverse reinforcement is less
than the strain in the longitudinal reinforcement and yielding of the
web reinforcement increases the crack width. Based on experimental
observations, it is suggested that the analogous space truss shear-
bending interaction model can predict satisfactory results for the
following range:

26° < a =< 63° (81l-a)
0.5 = Tana s 2.0 (81-b)

These restrictions are introduced to account for the fact that the
deformation of the concrete compression strut may alter the validity
of Equation (72). Moreover, when the angle a is less than 26°,
diagonal crushing of the compression strut may occur prior to the
yielding of the flexural reinforcement (Reference 33), thus, placing a
limitation on the use of Equation (72).

The limiting values of the angle of compression strut in the
space-truss model should not be thought as fixed points (Reference
33). These limits, as for example suggested by Equatioms (81), only
represent the transition between different mechanisms of failure.
According to the space truss model, if the angle of the diagonal
compression strut at failure is less than 45 degrees, the strain in
the web reinforcement is beyond yield. Furthermore, if this angle is
less than 26 degrees, the longitudinal reinforcement has not reached
its yield strain at the ultimate. This would be an example of a pure
shear mechanism in which the influence of shear is expected to cause a
premature failure in the beam before the ultimate flexural capacity of
the beam is developed. For values of the angle between 26 and 45
degrees, the strain in the transverse steel at the ultimate load is
higher than the strain in the longitudinal reinforcement. This is
flexure-shear type failure in which the moment capacity of the beam is
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reduced by the shear influence. The minimum value of the angle for
which the full flexural capacity of the beam can be “developed is 45°.
When Tana is equal to unity, both the longitudinal and the transverse
reinforcement of the shear field element yield. In fact, as shown in
Figure 16, when the angle a is 45°, the mean crack width has the
minimum possible value, thus,resulting in highest shear strength at
the collapse mechanism. For all values of the inclination of the
diagonal compression strut greater than 45°, the shear stress in the
beam at ultimate must be less than the shear capacity as provided by
the transverse reinforcement in Equation (56). In that case, the mode
of failure is by flexure and the moment capacity of the beam remains
unaffected. Hence, the inclination of the diagonal compression strut
can be used as a parameter to relate the influence of shear to the
ultimate flexural strength of beams which fall into the critical shear
region, namely beams with shear-span to the effective depth ratio
between one and seven.

5. Diagonal Tension at the Ultimate Load Condition

The problem of shear in reinforced concrete beams has also
been approached by the limit analysis technique as developed presented
by Nielsen and presented in Reference 34. This was done by considering
an admissible stress field in the web of the reinforced concrete beam.
From equilibrium of forces in Figure 18, the compressive force in the
diagonal concrete strut can be given by the following expression:

v
D= fd b (jd) Cosa = (82)
sina
where, f, is the stress in the diagonal strut defined as:
\Y v
f, = - (83)

b(jd) Cosa Sina Cosa Sin a

Moreover, the stresses in the x and y directions for the element that
is bound by diagonal cracks are as follows (Figure 18):

o, = £, Cos’a (84-a)
oy = £, Sina (84-b)

The vertical component of the stress field is in equilibrium with the
stirrup forces and therefore,
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A £, ,
- pnfn, . (85)

f, Sin%a =
bs

Substituting Equation (83) into Equation (85) and rearranging the
terms,

pnfll,
Tana = (86)
v
At the point of collapse, shear is at ultimate (i.e., v = v,)
pllfll,
Tana = (87)
v

This is the same as Equation (64) obtained previously from the space-
truss analogy. After some algebraic manipulation, it is possible to
arrive at the following relationships:

P
(—)
fd
Tana = | - 12 (88)
1- (—2)
fd
v“ Hf'l 'lf"
—-—2qQ - Tyy1/2 (89)
fd fd fd

Figure 19 shows plots of the last two equations. It can be seen that
when (p"f" )/f, increases from zero to 0.5, the angle of compression
strut increases, from zero to a maximum of 45°. Also, when

(p"f" )/Ey 1s 0.5, the shear strength is maximum and the angle of the
diagonal compression strut is at 45°. This reveals that for any angle
greater than 45°, the shear strength of the beam does not increase
with increasing the amount of the transverse reinforcement. Nielsen
also showed that for values of (p"f" )/fd greater than 0.5, the angle
a stays constant at 45°.
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6. A Modified Method to Evaluate the Influence of Shear in Beams
with Web Reinforcement

The angle of compression strut with the longitudinal axis of
the beam is a good measure for the determination of shear influence in
reducing the flexural strength of the beam. This concept was employed
here to account for the improvement in the moment capacity ratio of
the beams, (M ,/M,,), due to the presence of web reinforcement. For
that purpose, the rational approach of the truss mechanism (Sections
I1-D-3 through II-D-5) was used in conjunction with results of tests
from various sources in the literature. The modified method has been
developed for rectangular deep beams (1 < a/d £ 2.5) as well as
rectangular and T slender beams (2.5 < &/d £ 7), as follows.

a. Deep Rectangular Beams:

The model proposed here for deep rectangular beams is based on
experimental results from a study by Clark (Reference 35), in which
the beams were loaded by either a single concentrated load at their
midspan, or by two single concentrated loads at their quarter span
points.

The following variable defined the influence of the material
property and the amount of the web reinforcement:
p"f"?

e

p* = (90)

where f’_ is the compressive strength of concrete and p" is the web
reinforcement ration, and £_" is the yield stress of stirrups. Table
A-1 in Appendix A presents the data for the 27 beams which are used in
this study. When the product of the variables p" and a/d were plotted
against the angle of the compression strut at ultimate, as computed
from Equation (87) for 27 beams (Reference 35), the following linear
relationship was observed, as illustrated in Figure 20.

a= 2.72 p* (as/d) + 4.08 (91)

It can be seen that the scatter between data for the 27 points is
not large, resulting in a statistical correlation coefficient of 0.91.
Moreover, Figure 20 shows that the angle a improves with increasing
the amount of web reinforcement. Therefore, the influence of beam
geometry and material properties on the angle of diagonal compression
strut at failure can be reasonably predicted. The experimental data
from which the last expression was obtained fell into the following
parametric ranges : 3200 < £’ < 4200 psi, f"y = 48 ksi, 1.57 < a/d <
2.42, and 0.0035 < p" < 0.0096.
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Ultimate for Deep Rectangular Beams Based on
Experimental Data from Reference 35
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b. Slender Rectangular'Beams:

The experimental data for the 27 rectangular under-reinforced
slender beams used for the derivation of the following formulation
were gathered from studies by Burns and Siess (Reference 1), Bresler
and Scordelis (Reference 36), Placas and Regan (Reference 28), and
Mattock and Wang (Reference 37). These beams were loaded by either a
single concentrated force at their midspan or two concentrated loads
at quarter span points. In this case it became clear that the variable
P Ja/d provided a better correlation to the data than p (a/d) which
was the the better choice for deep beams. When the variable p Ja/d for
these beams was computed (Table A-2 in Appendix A) and plotted
against the angle of the diagonal compression strut at ultimate, as
shown in Figure 21, the following linear relationship was derived.

a=3.06 (p° Jajd ) + 7.22 (92)

Again, the scatter between the 27 points about the best fitted
line was small, reflecting in a correlation coefficient of
approximately 0.99, and the properties of the 27 beams used in the
last expression fell into the following parametric ranges; 1850 < f'_
< 6230 psi (12.7 < £’ =< 43 MPa), 47.2 < f " < 60.2 psi (325 =< £ =
414 Mpa), 3 < a/d < 7, and 0.004 < p" < 0.001.

" ¢c. Slender T Beams:

Here, the data was obtained from experimental investigations by
Placas and Regan (Reference 28) and Mattock et al. (Reference 38) for
tests on 29 under-reinforced T beams loaded by a concentrated force at
midspan. The data for these beams is documented in Table A-3 in
Appendix A. For these cases, the following relationship was derived,
as illustrated in Figure 22.

a=1.63 (p* Ja/d ) + 9.55 (93)

The correlation coefficient for Equation (93) is computed as 0.98, and
the range of beam parameters were as follows; 1850 < f! < 7840 psi
(12.7 = £, < 54 MPa), 50 < f7 = 52 ksi (344.7 < £7 < 358.5 MPa),

2.5< a/d < 4.5, and 0.0017 < p" < 0.018.

Unlike the traditional truss analogy where the angle of
compression strut, a, at ultimate is assumed to be at 45°, Thurlimann
and other investigators (References 29,31,32,33, and 34) developed and
werifizd analytical models that were valid for a wide range of a
values. In Sections II-D-4 and II-D-5 it was shown that, at least
analytically, when the angle a was at 45°, shear would have no
influence in reducing the moment capacity ratio. However, if Tana was
less than unity, the moment capacity ratio would be reduced.
Therefore, it is reasonable to expect that a can be chosen as a
parameter that can represent the interaction between the shear and
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flexure. Following in the same direction, it was decided to choose the
function "tan a" as the parameter which would represent the effect of
shear reinforcement on the ultimate capacity of the beam by varying
the value of the minimum moment capacity ratio (point P, in Figure 11)
as defined next.

M“ » M\l M\l
(—) = (—), + [1.0 - (—)_] * tan e (94)
Htl Mfl . Mfl

where, (M“/le)'m is the new (enhanced) value of the minimum moment
capacity ratio due to the influence of transverse reinforcement. The
improvement in the flexural capacity of the member is schematically
shown in Figure 11 by shifting the point P, upward to a new point P’,.
The present approach is different from the previous study (Reference
3) in which a was defined as the measured angle of shear crack, and
the function ”cot a" was used for modifying the minimum flexural
ratio.

The above procedure can be summarized in the following steps for
deep beams and for slender beams,respectively:

1. Deep beams

a. Compute p*(a/d) for the deep beam.

b. Using Equation (91), compute the angle a.

c. Compute the minimum moment capacity (M /M,,)_, ratio by
using Equations (44).

d. Modify the minimum moment ratio of step 3 by using
Equation (94) to account for the improvement in the
ultimate capacity caused by the shear reinforcement.

e. Use the modified minimum moment ratio in Equation (45-b)
to obtain the moment capacity ratio of the deep beam,

Mu/Mtl *
2. Slender Beams

a. Compute p*/(a/d) for the slender beam.

b. Compute the angle a from Equation (92) if the beam has a
rectangular cross section and from Equation (93) if the
cross section is T shaped.

c. Compute the minimum moment capacity ratio (M ,/M.,) by
using Equations (44).

d. Modify the minimum moment capacity ratio in accordance
with Equation (94) to include the effect of shear
reinforcement.

e. Employ the modified minimum moment ratio in Equation (45-
a) to obtain the moment capacity ratio of the beam,

Hu/Mfl. *

Hence, it is possible to represent the influence of shear on the
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flexural capacity by SRF (Shear Reduction Factor) as following

M, .
SRF = (—) (95)
L

In the previous study (Reference 3), the SRF was applied only to
the ultimate moment. Since this study is concerned also with the
overall behavior of beams, it is proposed here to multiply all values
of the computed moments between zero and failure by the SRF. It must
be noted that the concept of SRF, as defined here, was originally
developed in Reference 3, but the formulation for the influence of web
reinforcement on the flexural capacity of deep and slender beams was
different from the proposed procedure, as discussed in Section II-D-3.
Furthermore, contrary to the initial assumption that shear
deformations were negligible compared to the bending deformations, it
was observed later (as discussed later in Section IV) that the
computed collapse deflection of beams sensitive to shear (SRF<1l) could
be increased slightly to account for shear deformations and to obtain
better correlation with the available experimental results. Therefore,
it is also proposed here to divide all computed curvatures, from zero
to the ultimate, by the SRF. Thus, to compute the modified moment-
curvature diagram that includes shear effects, one can multiply the
moments by the SRF and divide the curvatures by the SRF to obtain the
new curve.

E. EFFECT OF AXIAL COMPRESSIVE FORCE ON MEMBERS WITH FLEXURE AND
SHEAR

The presence of an axial compressive load acting on the cross
section of the beam is accounted for by modifying the equilibrium
expression, Equation (17), to the following form:

T+P C_+C (96)

axial = Y¢ s

exial is the constant

where T, C_ ,C, have been defined before and P
axial compressive force.

From basic analysis of reinforced concrete beam-columns, it is
understood that as long as the magnitude of the axial force is below
the balance condition, the result is an enhancement of the moment
capacity of the cross section. Furthermore, the effect of axial force
on reinforced concrete beams that fall into the critical shear region
(1l <a/d <7 ) is to reduce the tensile stresses and delay the
opening of the diagonal tension cracks. The presence of axial force
increases the depth of the compression zone and prevents the extension
of the cracks far into the compression block.

The ACI 318-83 Design Code suggests the use of the following

equation in lieu of Equation (40) to reflect the improvement of the
shear capacity in the presence of the axial force:
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v.d -
-1.9 Jf' + 2500 p — 97
M

where, V_ is the ultimate shear capacity of the beam and M  is
modlfied ultimate moment given by the following approximate equation,

4h-d
M -M -P

u axial (_) - (98)
8

where, h is the overall depth of the beam. Alternatively, the ACI Code
also recommends the following equation to account for the enhancement
in shear capacity of concrete with axial force:

P 0.002 P
1 : 1
v, = 2(140.0005 —=2) [F7. < 3.5/F7, (1+ ————21"y1/2

Ag Ag

(99

Mattock and Wang (Reference 37) studied the influence axial
compressive force on the shear strength of reinforced concrete beams
and concluded that Equation (99) is too conservative. Instead, they
recommended the following expression:

0.3P
- 2JF, (1+ Ly <as £, 4 —txist (100)

A, £, A,

Experimental results obtained by Mattock et al. (References
37,38, and 39) have reconfirmed that increasing the axial compressive
force improves the shear capacity of the beam. In addition, it was
found that the contribution of the web reinforcement to the ultimate
strength of the beam is approximately independent of the magnitude of
the axial force.

The increase in the strength of beams caused by the axial force
is included in the analytical model proposed in this report. This
nonlinear second order effect of axial force is discussed later in
Section III-F-4.
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F. LOAD-DEFORMATION ANALYSIS OF RC BEAMS AND BEAM-COLUMNS
1. Introduction

Upon obtaining a complete moment-curvature relationship for
the cross section of the structural element, including the effecis of
shear and axial force, it was desired to derive the load-deformation
relationship for the element. The primary reasons of this phase of
analysis were to obtain a quantitative description of the behavior of
the structural element from the onset of loading to the ultimate
(collapse) stage under a static loading condition, and to compare that
information with tbe available experimental data. The proposed step-
by-step procedure accounts for the nonlinear distribution of the
curvatures on the span as well as the possibility of nonlinearities
associated with the support conditions.

In addition to the load-deflection relationship, if a dynamic
analysis was required, it would be necessary to compute the deformed
configuration of the structural element at every load step, and to
employ that information for computing the parameters of the equivalent
dynamic model. The second major goal of the analysis at this stage was
to compute these variables as discussed later in Section III.

The numerical method emplo,ed here for deriving the load-
deformation relationship from the moment-curvature diagram is based on
the following assumptions:

1. The approximate theory for small rotations and deflections is
employed. This assumption implies that deformations are small
enough so that the slopes and curvatures can be closely
approximated by the first and the second derivatives of the
deflection curve with respect to the position coordinate.
Figure 23 shows the small-deformation and large-deformation
solution for the center deflection of a simply supported beam
subjected to a concentrated load at midspan. For deflections
as high as 15 percent of the beam length, the solutions are
not different from each other. This is well within the range
of the expected result in the present investigation.

2. The effect of diagonal tension cracks, as a result of
excessive shear forces, on the external bending moment
diagram is ignored. In the presence of diagonal tension
cracks, the tension force in the tensile reinforcement is
slightly larger than that predicted by the flexural moment
diagram, thus, increasing the distance on the span of the beam
over which the curvatures exceed the yield curvature
(Reference 2).

3. The influence of bond slip on the rotation and deflection of
the beam is also ignored.

Assumptions 2 and 3 lead to conservative solutions, since

diagonal tension cracks and the loss of bond between steel and
concrete tend to increase the deformations.
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2. Description of the Present Numerical Method

Since the nonlinear relationship between the resisting moment
and the curvature of the cross section is available in a numerical
form, closed form analytical solutions for the reactions, moments and
deformations are not considered. Because of the nonlinear nature of
the moment-curvature relationship and the arbitrary (linear or
nonlinear) nature of translational or rotational boundary conditions,
reactions and deformations deviate considerably from the solutions of
the linear elastic beam theory. In order to obtain the behavior of the
beam at all levels of loading, the following formulation has be=an
employed, as presented next.

The general reinforced concrete element under consideration is
shown in Figure 24. The load may act at an arbitrary distance, a, from
the left support. Moreover, partial linear or nonlinear restraints
against rotation and lateral displacement are modeled at the
boundaries of the element by rotational and translational springs for
which the moment-rotation and force-displacement relationships are
assumed to be known. It is also assumed that the complete moment-
curvature relationship for the cross section has been computed using
the method discussed earlier herein. Knowing the lateral concentrated
load, Q at load step i, it is desired to obtain the end moments, end
reactions and a numerical solution for lateral deflections at load
step 1. Referring to Figure 24, the solution methodology can be
summarized according to following steps:

a. Divide the beam into N number of elements ; N+l nodes.
b. Increment the load, Q, by dQ.

c. Assume a moment M, at the left support. This moment acts on the
rotational restraint and the support at end 1. Also, assume a
moment M, at the right support. Similarly, this moment will act
on the right end of the beam as well as the rotational spring. A
very good initial guess would be to choose the end moments
obtained form the previous load step.

d. From equations of static equilibrium, obtain the reactions at
the left and right supports. The equilibrium equations for the
element in Figure 24 can be given by the following expressions:

vV, +V, =Q (101-a)

V,.a+V,.(L-a)-M +M,=0. (101-b)

1

where, V, and V, are the reactions at the left and right
supports, respectively.

e. The displacements at the supports are denoted by A, and A,. They
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can be computed from the following expressions:
A, =£, (V) €102-a)
A, =f£, (V) (102-b)

where, £, and f, are the translational boundary conditiouns at
ends 1 and 2,respectively.

. Similarly, The rotations at supports are denoted by 6, and 6,
and can be computed from the moment-rotation boundary
conditions.

-

6, - g,(M,) (103-a)
8, = g,(M,) (103-b)

where, g, and g, are the functions for rotational boundary
conditions at ends 1 and 2, respectively.

. Knowing the end reactions and the end moments, create the moment
diagram by computing the moment at each node.

. Obtain the curvature diagram, ¢(x), in a numerical form by using
the moment diagram in conjunction with the moment-curvature
relationship.

i. Compute the slopes at the boundaries from the curvature of the

beam by numerical integration of the curvature diagram along the
span of the beam as following.

L
e, - { $(x) ax (104-a)

L
0, = [ #(x) ax (104-b)

. It is now necessary to check for geometric compatibility at the
boundaries of the beam. The conditions of compatibility can be
expressed by the following expressions for ends 1 and 2,
respectively.

8, + (8, +¢ )=0. (105-a)
8, + (8, +¢ ) =0. (105-b)
vhere,
¢ = (8, - 8,)/ L (106)

¢ is the chord deflection resulting from the differential
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displacement at the supports. The only permissible state of
equilibrium for the beam is when compatibility conditions, as
for example given by Equations (105-a,105- b), are satisfied to
within a small tolerance. A value of 1.#107° is chosen in this
procedure which provides a reasonable computational speed and
accuracy.

k. If Equations (105-a,105-b) are not satisfied, then the end
moments, M, and M, are modified and the iterative procedure,
steps 2 through 10 will be repeated until convergence is
obtained.

1. In the event that convergence is not reached within an
acceptable number of iterations (taken as 50), the load
increment, dQ, is reduced and the entire iterative process,
steps 2 through 11, will be repeated for the new load.

m. Once equations of equilibrium, i.e., Equations (101-a,101-b),
and equations of geometric compatibility, i.e. Equations (105-
a,105-b), are satisfied simultaneously within an acceptable
tolerance, the rotations and deflections may be computed for
every node, j, on the beam for the specific load level.

X
o, - o, + [ 400) ax (107)

X
J
Ay = B, + { X $(x) dx (108)

Where, x, is the distance between end 1 and node j. Furthermore,
once these computations are performed for all nodes, it is
possible to obtain the expression for the deflection function,
A(x),, and slope function, 6(x),; corresponding to the load step
i. The normalized deflected shape function, ¥(x),, can be
obtained in a numerical form by dividing the deflection function
by the maximum value of deflection obtained at this step.

B(x), = AX), / B,, (109)

This function will be used later in computing the parameters of
the equivalent dynamic model (Sections III-F-3, II-F-4, and III-
H-2).

n. Steps three through fourteen are repeated for a new load level
until the collapse load of the member is reached, i.e., when
hinges are formed at the boundaries and under the concentrated
load.

The iterative procedure for satisfying the conditions of

geometric compatibility for either one of the end moments is bypassed
if the moment at that end is known. In other words, iterations
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performed on either end moments are required only if the beam is
statically indeterminate at that end. For example, a simply supported
beam does not require iterations at all, because the value of the
moment at the support hinges is always zero. Similarly, upon the
formation of the plastic hinge in one location, the moment at that
point will be kept constant and equal to the ultimate moment (on the
moment-curvature relationship). Beyond this load, any additional
increase in load is supported by other parts of the element
(redistribution of moments), provided that sufficient ductility is
available at the critical sections. The collapse (ultimate) load of
the member is reached upon formation of plastic hinges at the critical
locations.

Experimental observations (References 1,13, and 17) indicate that
the failure of reinforced concrete cross sections seem to occur over a
finite length in the vicinity of the critical section. Thus, the
formation and propagation of plastic hinges require special attention,
and the following assumptions are used in this study to formulate the
influence of hinge formation on the behavior of the beam. If the
maximum moment in the critical section is less than the yield moment,
the beam will be assumed to behave elastically. When the moment at the
critical section exceeds the yield moment, a hinge begins to develop.
The length of the plastic hinge, L., is defined as the distance
between the location of the yield moment, M_, and the maximum moment.
The curvature over the length of the plastic hinge will be assumed
constant and equal to the magnitude of the curvature at the critical
section. This assumption is in fact analogous to the horizontal
displacement of the bending moment diagram proposed in (References 40
and 41) to empirically account for the effect of diagonal tension
cracks at the critical section. As the load increases, the plastic
hinge propagates and may reach its full length. Based on experimental
result on simply supported beams subjected to concentrated loads,
Corely (Reference 13) picposed the following expression for the full
length of a plastic hinge.

L
L,-05d + 0.2./d (—) (110)
d

where, d is the effective depth of the cross section in inches and L,
is the distance between the critical section to the point of
contraflexure in inches. The validity of the present assumptions are
investigated later in Section IV, where the analytic results are
compared with the experimental findings.

3. Complete Structural Systems
The method outlined above includes the consideration of the
boundary conditions for the element under investigation. These

conditions may reflect the contribution of the adjoining members
and/or connections to the response of the particular loaded element,
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and are included in the numerical derivation of the load-deflection
relationship and the deflection shape function. The boundary
conditions considered in the present study are the following:

a. Simply supported
b. Fully restrained against rotation and displacement
c. Partially restrained against rotation and displacement

If the loaded member is simply supported, the end moments are
zero, consequently no iterations are required and the numerical
computation of the deformations from the moment curvature relationship
is straightforward. The collapse mechanism is reached upon the
formation of the first plastic hinge in the span. On the other hand,
if the loaded member is fixed at both ends, two sets of iterations
must be performed at every load-step until the formation of the first
plastic hinge. Provided that sufficient ductility is available at the
plastic hinge, the computational procedure for redistribution of
moments will continue with one set of iterations until the formation
of the second plastic hinge, beyond which the structure is determinate
and no iterations are required. In this case, the collapse mechanism
is reached upon the formation of the third plastic hinge.

The following two options have been considered for modeling
partially restrained members:

1. Employment of rotational and translational springs at the
supports for which the linear or nonlinear load-deformation
characteristics may be defined by numerical functions. The
resistance of the rotational springs is defined by a moment-
rotation relationship, 6=g(M), and the resistance of the
translational springs is defined by a load-displacement
function, A=f(V). This option could be particularly useful in
modeling the interaction of connections (e.g., bond slip in the
anchorage zone) with the flexural behavior of element in
question.

2. Attachment of the loaded element at its boundaries to a simple
linear rectangular frame. The properties of the adjoining
elements of the frame, i.e., lengths, moments of inertia and
elastic modulus, must be provided. Figure 25 depicts all the
possible configurations for which the analysis can be performed.
The assumption of frame linearity seems to be rational for cases
where concentrated loads are considered in the dynamic domain,
since the nonlinear flexural response is primarily governed by
the element in question while the effects of adjoining elements
decreases as they are further away from the zone of interest. In
the event that the analyst might suspect nonlinearities in the
frame action, the use of the preceding option is recommended
instead.
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G. COMPUTER PROGRAM AND FLOW CHART FOR STATIC ANALYSIS

Based on the formulations presented in this section, the computer
program, ZCON, for the moment-curvature analysis of the element cross
section, and the computer program, LOADDEF, for load-deformation
analysis of structural elements were developed. These programs are
currently ready for use on IBM AT as well as IBM 4341 computers. The
programs were used to analyze a number of experimental cases in which
reinforced concrete elements were subjected to severe concentrated
loads. The analysis for these cases are provided in Section IV. The
contents of the programs ZCON and LOADDEF are illustrated by flow
diagrams in Figures 26 and 27, respectively.

-
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Figure 25.  Flowchart for Program ZCON
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SECTION III
ANALYTICAL MODELING OF STRUCTURAL BEHAVIOR IN THF DYNAMIC DOMAIN

A. INTRODUCTION

Since the end of WW II there has been an extensive amount of
theoretical and experimental research on the effects of detonations on
structures. Most of the research activities were devoted to the
dynamic response of structures that were subjected to nuclear blast,
and relatively little work was performed on the respunse of reinforced
concrete structures to resist localized effects of conventional
weapons. For nuclear detonations it is generally assumed to consider
only the variation of load (pressure) with time, since the spatial
variation of the load is assumed to be uniform in nature. However, for
conventional weapons there is a steep decay of pressure with distance,
and the applied loads act only on a small part of the structure or
structural element. Thus, it becomes important to study the response
of the individual elements which may be subjected to local blast
forces arising from a nearby detonation. This study is concerned only
with dynamic load sources which act on a relatively small part of the
structural members, such as loads generated from a local impact and
detonation of conventional weapons.

A reinforced corcrete structural element subjected tc lateral
localized impulsive load is a continuously distributed vibrating body.
Theoretically, it consists of a large number of elements, each with
specific mass, that are connected to other elements, each having a
specific stiffness properties. The mathematical idealization for such
an ideal continuous system is by means of a partial differential
equation, with independent variables being the position coordinate
along the longitudinal axis of the element, and time. The solution of
the partial differential equation will depend on the boundary
conditions, initial conditions, type and distribution of the loading
function, and the mass and stiffness properties of the continuous
system (References 42,43, and 44). The closed form solution to the
partial differential equation of motion for a vibrating elastic
homogenous Bernoulli-Euler beam with simple boundary condition (e.g.,
clamped, hinged) is available in References 42,43, and 44. The so
called ’'exact’ solutions become increasingly complicated, if not
impossible, for beams with arbitrary translational and rotational
support conditions. The dynamic response of a reinforced concrete beam
is further complicated by the fact that it is a composite structural
element with nonhomogenous anisotropic material properties, in which
certain highly stressed parts of the beam are likely to experience
nonlinear (plastic) deformations, while other par:s may still remain
elastic.

As Biggs (Reference 42) points out in his book: "rigorous dynamic
solutions for vibrating beams are only possible when the loads,
stiffness properties, and boundary conditions are simple and
convenient mathematical functions. Thus, it is desirable to employ
approximate, reliable, and inexpensive techniques to analyze the
dynamic behavior of reinforced concrete beams.'
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One of the most common analytic methods for the analysis of
complicated dynamic systems is to discretize the continuous system and
concentrate the mass of the beam in a number of lumps, and to connect
these lumped masses by springs which are representatives of the
stiffness properties of the continuous system. Each lumped mass is
associated with a number of prescribed independent displacement
coordinates or degrees of freedom ( e.g., bending deflection,
rotation, axial deformation, etc.). In selecting the degrees of
freedom it is very important to choose displacement coordinates which
posses significant physical features (e.g., point of maximum
deflection). Since the mass of the continuous system is lumped,
inertia forces can only be developed at the discrete points. By
considering the dynamic equilibrium of each mass, a differential
equation of motion can be developed for every degree of freedom, and
thus the continuous system is approximated by a multi-degree-of-
freedom (MDOF) system. In general, these equations are not independent
(static coupling) and an approximate response solution of the system
can be obtained by solving the system of differential equations
simultaneously.

It is possible, at least theoretically, to create a MDOF system
for dynamic analysis of reinforced concrete beams or one-way slabs
subjected to impulsive loads. But, because of the arbitrary nature of
the support conditions considered in this study, obtaining an accurate
description of stiffness properties of the discrete parameter system
becomes a very difficult task. More important is the difficulty
associated with inclusion of plastic displacements and rotations on
the stiffness properties of the springs. These inelastic deformations
are load-dependent and occur only at certain highly stressed regions
along the longitudinal axis of the member. Furthermore, it becomes
necessary to solve a series of coupled, simultaneous and nonlinear
differential equations, often in itself a tedious and expensive task.
In addition, for blast loads arising from the detonation of
conventional weapons, the distribution and magnitude of the applied
impulsive loads on the lumped masses is uncertain. Hence, employing a
complex MDOF model for dynamic analysis of reinforced concrete members
does not seem to be a well justified method.

Another possible approximate technique for solving dymamic
problems of this type is to use an advanced numerical approach such as
the Finite Element Method. Generally, this method includes certain
features of both the discrete MDOF and the generalized distributed
coordinate procedure (Reference 44). In this method the beam is
divided into an appropriate number of elements, interconnected to each
other at nodes, and the displacements of these nodes are the degrees
of: freedom or the generalized coordinates., By using proper shape
functions, the deformations in the structure are expressed as
functions of generalized coordinates. Similar to the generalized
distributed method, these shape functions must be compatible with the
geometric boundary conditions and maintain the internal continuity of
the displacements at the nodes. Upon formation of global mass,
stiffness, and load vectors, a numerical solution to the set of
simultaneous equations may follow.
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dynamic behavior of reinforced concrete beams.'
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Just as for the MDOF approach, the drawbacks in using such a
technique for the present problem are again the difficulties with an
accurate formulation of material behavior for reinforced concrete, and
uncertainties about the load. In other words, it is really not
worthwhile to perform an elaborate three-dimensional dynamic finite
element analysis without both a realistic constitutive material model
for reinforced concrete at hand, and an accurate definition of the
loading condition. Most dynamic finite element codes do not have a
well verified material model which can accurately simulate cracking,
post-elastic, and confinement of concrete. Moreover, there are
considerable uncertainties with regard to the nonlinear-resistance and
the loss of stiffness due to the formation and propagation of plastic
zones along the span of the beam during vibration.

The use of an advanced approximate technique , such as MDOF,
Finite Element, or Finite Difference codes is justified only if it
will better represent the behavior of the structure under
consideration. Usually, employment of complex analytical techniques is
not recommended. In light of the preceding discussion and from the
viewpoint of obtaining a practical and justifiable solution to this
extremely complicated dynamic problem, employment of an advanced form
of a single-degree-of-freedom for dynamic analysis is proposed. The
primary reasons for using the SDOF model are as follows:

1. It permits an accurate representation of the material behavior
of reinforced concrete members in the analytical scheme. This
method is able to account for elastic, smooth transition to
inelastic, and the plastic behavior of reinforced concrete
members. Such representation considers the effects of
confinement and cracking of concrete and the strain hardening of
the reinforcing bars, in addition to the effect of the
enhancement in material properties of steel and concrete when
subjected to short impulsive loads. Above all, the nonlinear
behavior of the element, due to the formation and propagation of
plastic hinge(s), is incorporated into the vibration analysis.

2. It is possible to incorporate a systematic and consistent method
for including the influence of arbitrary linear or nonlinear
support conditions. The influence of translational and
rotational end conditions on the flexural resistance function of
the element in the dynamic domain can be considered. -

Although this technique has its own limitations (as discussed in
Section III-H-2), it should not be thought of as a poor approximation
for predicting the dynamic behavior of reinforced concrete beams under
impulsive loads. As Clough and Penzien (Reference 44) point out:

" .the quality of results obtained with a SDOF approximation depends
on many factors, principally the sratial distribution and time
variation of the loading and the stiffness and mass properties of the
structure." Moreover, when employing the SDOF approximation for the
dynamic analysis of a continuous system like a beam, one must always
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be aware of inherent limitations of the approach. For example,
determination of dynamic shear forces and bending moments directly
from the results of the SDOF analysis yields erroneous results. In
that case, additional special steps must be taken for obtaining an
adequate solution.

In this section, the procedure for obtaining the equivalent SDOF
system for an elastic vibrating beam with simple boundary conditions
is discussed. The development of an equivalent SDOF for a beam that
theoretically has an infinite number of degrees of freedom requires
that certain important idealizations be made regarding the dynamic
motion of the structural element. These assumption and the influence
of other important parameters such as loading duration,. support
conditions, damping, resistance, and inertia forces on the solution of
the SDOF are studied. In addition, the procedure and limitations for
deriving the equivalent dynamic system for a beam with plastic
deformations, as reported in the literature, is studied.

One of the most difficult problems in modelling structural
elements as SDOF systems is in the flexural interaction of the
individual element with others members of the structure. In MDOF
modelling of elastic structures, this phenomenon is generally referred
to as elastic or stiffness coupling between the structural elements.
When modeling the dynamic behavior of the individual element by a SDOF
system, one must be aware of this lmportant interaction, since it may
have a considerable impact on the quality of the results. The
significance of this concept for structural members that are subjected
to short impulsive loads is also discussed.

1. Objectives of SDOF Dynamic Analysis

The analytical scheme in this study has been structured as
follows:

a. It represents the flexural dynamic response motion of a
reinforced concrete structural element (i.e., beam, one-way
slab, etc.) by an equivalent SDOF system.

b. It employs an accurate flexural resistance-deformation
relationship for the reinforced concrete element in the
dynamic analysis. Such relationships take into account
internal changes along the element due to the formation of
plastic zones. These changes occur as a result of gradual
loss of stiffness at highly stressed cross sections, and they
affect inertia and resistance forces.

c. It includes the influence of boundary conditions in the SDOF
modeling. The proposed resistance-deformation relationship
reflects the influence of arbitrary linear or nonlinear
support conditions in the form of translational and
rotational springs. These end condition reflect the influence
of attached structural elements and/or connections on the
stiffness properties of the element under consideration. The
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importance of stiffness coupling between the individual
element and the support structure is also examined for shovt
duration impulsive loads. :

| d. It considers the energy dissipation and stiffness
deterioration of the reinforced concrete element via a

| hysteresis resistance-displacement relationship which is

‘ consistent with previous experimental observations.

\

e. It incorporates the influence of loading rate on stress-
strain properties of concrete and steel.

f. It considers the direct shear resistance of reinforced
concrete beams and one-way slabs subjected to localized
impulsive loads.

B. THEORETICAL BACKGROUND ON EQUIVALENT SDOF SYSTEMS

The method of approximating the dynamic response of a beam, which
in reality is an infinite-degree-of-freedom system, by a SDOF system
is discussed thoroughly (see References 42,44, and 45) and reviewed
here briefly. In order to derive such an equivalent system, it is
necessary to represent the motion in terms of one displacement
coordinate, i.e., the maximum displacement of the beam, with some
approximate shape function to represent the deflection of the entire
beam. Figure 28 shows a beam with arbitrary boundary conditions
subjected to a concentrated dynamic load at some arbitrary point j on
the span. The SDOF idealization is also shown in Figure 28. The
displacement coordinate u, represents the maximum deflection of the
beam, k, is the equivalent stiffness constant of the spring, and Q, is
the equivalent dynamic load. A common approach to derive the
parameters of an equivalent SDOF system is to equate the energies of
the distributed and SDOF systems in the following manner.

1. The kinetic energy of the beam, KE,, and the kinetic enexrgy
of the equivalent SDOF system, KE , may be expressed by the
following two equations:

KE, = 0.5 I m, (du/dt)? dx (111-a)

KE, = 0.5 M, (3u,/dt)? (111-b)

where, m  is the mass per unit length of the beam, L is the
- length of the beam, and u is the displacement of the beam
which depends on position and time. For the SDOF, M_ is the
equivalent mass and u, is the displacement of the lumped
mass, chosen to be the same as the maximum deflection of the
beam. If the displacement function, u(x,t), can be
represented by the product of a proper shape function, ¥(x),

83




Qe
Q Mo T
i BC.2 :
B.C. 1 ]l - - Kq
T C =Ry

Figure 28. Dynamically Loaded Beam and SDOF Idealization
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and a time varying function, G(t), i.e.,
u(x,t) = $(x) G(t) - (112)
then, by equating Equations (1lll-a) and (112-b) it is

possible to obtain an expression for the equivalent mass of
the SDOF system as follows;

L
M, = [m, ¥ (0% ax (113)

The function ¥(x) is normalized with respect to the maximum
deflection of the beam and it must be compatible with the
geometric end conditions.

. The strain energy of the elastic beam, U,, and the strain
energy of the equivalent system, U, , may be given by the
following relationships, respectively.

L
U, = 0.5 [ (ED), (3u?/ax?)? ax (114-a)

U, = 0.5 k, u? (114-b)

Substituting for u(x,t) from Equation (112) into Equations
(114) and equating Equation (11l4-a) to Equation (114-b), the
equivalent stiffness constant for the SDOF system may be
derived as follows;

L
k, -{ (EI), ($(x)")? ax (115)

Here, E is the elastic modulus of the beam, I is the moment
of inertia, and ¥(x)" is the second derivative of the
normalized shapes function with respect to the longitudinal
coordinate variable x.
. The external work on the beam, W,, and the external work on
the SDOF, W_ , may be expressed in the following manner;

W, - Q(t)J u, (116-a)

W, = Q. (t) u, (116-b)
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where, Q(t:)J is a time dependent concentrated load function
acting at point j on the span of the beam, u, is the
displacement of the beam evaluated at point j, and Q (t) is
the equivalent load of the SDOF system. By equating Equations
(116-a) and (116-b) to one another and substituting for u
from Equation (112), the equivalent load may be obtained as

following;
QL) , = QL) $(x), (117)
where, $(x), is the shape function ¥ evaluated at point j.
Thus, the equation o% motion for an undamped equivalent SDOF system
can be written as -
M, X+ k, X=Q(t) (118)

and the displacement of any point along the longitudinal axis of the
beam can be obtained from Equation (112), in which G(t) is the

solution of the differential equation of the equivalent system, i.e.,
Equation (118). 4

Biggs (Reference 42) derived the parameters of the equivalent
system for an elastic beam by employing the shape functions obtained
from the application of the load to the beam under static condition.
These parameters were presented only to a limited number of cases for
which the boundary conditions were simple and the concentrated load
was always applied to the center point of the span. Moreover, certain
assumed shape functions were provided for the fully plastic range of
behavior and it was stated that the lack of a smooth transition from
elastic to plastic behavior could introduce errors in the results of a
dynamic analysis.

Biggs (Reference 42) proposed another version of Equation (118)
by introducing transformation factors as follows;

(MF) M, X + (LF) K X = (LF) Q(t) (119)

Where, M, is the actual mass and k is the stiffness of the beam. MF
and LF are the mass factor and the load factors defined by the
following equations, respectively.

MF = M /M, (120-a)

LF = Q,(t)/Q(t) (120-b)

These factors are often referred to as " the Biggs factors" and -they
can be computed once the deflected shape function is assumed. In
addition, by introducing the concept of a resistance function to
replace the stiffness parameters, a more practical form of Equation
(119) can be obtained. The resistance function to be used in the
dynamic analysis is the relationship between the applied load and the
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selected deflection coordinate (where deflection is chosen be equal <o
that of the equivalent SDOF) under the static application of the
dynamic load. The resistance force is the internal force that resists
the externally applied load, and hence must be equal to it. For an
elastic beam, the resistance force is equal to the product of the
equivalent spring stiffness constant and the displacement, i.e. k x.
For an inelastic beam, the resistance R is the restoring force in the
spring, and the maximum resistance is the ultimate load the beam can
carry under static conditions. Since resistance and the applied load
are essentially the same under static conditions, the resistance
factor denoted by RF is always the same as the load factor, LF. Hence,
the more general form of Equation (118) may be give as follows;

MF M, X + (LF) R(t) = LF Q(t) (121)

where, R(t) 1is the time dependent resistance function. If external
damping is also introduced by a viscous dashpot, the equation of
motion for the equivalent SDOF will have the following form.

M, X + C X + LF R(t) = LF Q(t) (122)

where, C is the external damping constant. More on the effect of
damping on structural response is provided in Section III-E-3,

C. EFFECT OF LOAD DURATION ON STRUCTURAL RESPONSE

Since this study is concerned specifically with the dynamic
response of structural elements to impulsive loading, it is important
to study how the duration of of loading may affect the response of the
element. References 42,44, and 46 provide excellent discussion on this
subject and a brief review is provided in this section.

Consider the impulse-momentum relationship for the single-degree-
of-freedom systen,

T,
M, X(t) = [7 (Q,(t) - R(r) ) ¢ (123)
where, T, = duration of the applied load
Q. (t) = equivalent applied dynamic load
X(t) = displacement function
M = equivalent mass
R(t) = equivalent resistance

It can be observed that if the loading duration ‘is short compared to
the natural period of the system, there is not enough time for the
resistance force to develop and therefore, the mass does not displace
significantly. In that case, the inertia force provides the primary
resistance mechanism to the applied load. Hence, if T, is small
relative to the natural period of the structure, the magnitude of the
second term in the integrand of Equation (123) will be small compared
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to the first term, and the impulse-momentum relationship may be
expressed by the following approximate equation.

. T
k (0) = 1M, ([ Q(®) db) (124)

In general, the error in using Equation (124) is negligible 1if the
ratio of the load duration to the natural period of the structure is
less than 0.1, as illustrated and discussed in Reference 46.

Biggs (Reference 42) studied the influence of loading duration on
the response of elasto-plastic undamped SDOF systems. The results of
his work are summarized in Figures 29 and 30 for triangular and
rectangular loads,respectively. As the duration of the pulse
decreases, the ratio of maximum displacement to the elastic
displacement, i.e. y_/y,,, becomes smaller. For example, for an
applied force that may be as large as 2.5 times the ultimate static
resistance load, if the ratio of the applied triangular pulse to the
natural period of the system is 0.2, the response displacement does
not even exceed the elastic displacement value.

Baker et al. (Reference 46) point out that it would be
unreasonable to generalize and employ this concept in the dynamic
analysis of large structures which have many structural and non-
structural components. This is because the individual elements of the
structure have their own natural periods of vibration, and while the
duration of a high-intensity load, such as a blast, may be small
relative to the natural period of the overall structure, it may not be
short enough when compared to the period of some of the individual
members. In that case, considerable localized damage to individual
elements may occur, while the entire structure may remain relatively
unaffected. This is why it is important to analyze for the dynamic
response of the individual structural elements, in addition to
studying the overall response of the structure.

D. EFFECT OF STIFFNESS COUPLING

Any structure is ideally a MDOF dynamic system and when a SDOF
dynamic analysis of an individual structural element is required, it
is often important to be aware of the influence of stiffness (elastic)
coupling between the structure and the specific loaded member.
Generally, if the impulsive load is applied over a short period of
time relative to the natural periods of the coupled system, the effect
of stiffness coupling between the loaded member and the support
structure on the response of the individual member is not expected to
be significantly important.

Baker et. al. (Reference 46) employed a simple example for
illustrating the effect of flexibility of the support structure on the
response of the loaded element by comparing the maximum response of
the two systems, as shown in Figure 31. The first system was a two-
degree-of-freedom dynamic model in which the loaded member was
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supported by an elastic structure, whereas in the second system the
loaded element was connected to an infinitely rigid base. The analysis
was performed for two different loading durations. In each case a
short triangular pulse was applied to the loaded element of each
system as shown in Figure 31. The results indicated that the maximum
relative elastic deformation of the two masses in the coupled system
was generally less than the maximum elastic deformation of the second
SDOF system. However, as the stiffness of the support structure
increased, the ratio Tz/'l'1 increased, and the maximum relative
deformation of the coupled system approached the maximum displacement
of the second system. Moreover, -it was observed that the loading
duration did not have much influence, as long as it was small compared
to the natural period of the systems. .

In most engineering structures, such as frames and buildings, the
ratio T,/T, is usually greater than one, thus,reducing the error when
a SDOF model is used for estimating the dynamic response of an
individual element subjected to short impulsive loads. However, It
should be emphasized that such generalization does not hold when the
period ratio, T,/T,, is considerably less than one, or when the entire
structure (as opposed to one element) is subjected to cyclic
loadings.

E. NONLINEAR SDOF SYSTEMS FOR ANALYSIS OF RC ELEMENTS
1. Introduction

Dynamic analysis of reinforced concrete structural elements
using a linear SDOF model may provide adequate results for loads that
cause very little damage to the structure. At higher load levels,
particularly beyond the elastic range of response, the material
properties and the mechanism of structural behavior and energy
absorption of the structural member no longer conform with the
assumptions of the linear theory. Thus, the linear differential
equation of motion is not sufficient for describing the motion of the
vibrating element and a nonlinear dynamic analysis of the structural
element becomes necessary.

The nonlinear form of the equivalent SDOF differential
equation of motion can be represented as follows: '

M (x) X + C (x) X + R(x) = Q(t) (125)
M(x), C(x), and R(X) .are nonlinear functions representing mass,
damping, and resistance characteristic of the system. These functions
are independent of time. Q(t) is the arbitrary time dependent loading

function which is independent of displacement, velocity, and
acceleration (Reference 43).

2. NonLinear Response of Structural Components
The primary sources of nonlinear behavior in a reinforced

concrete beam are the following:
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a. Material nonlinearity
b. Nonlinearity of support conditions
c. Geometric nonlinearity

In the present study geometric nonlinearities (as a result of large
deformations) are not included in the analytical scheme. The use of
the small deformation theory was justified in Section II, and later in
Section IV the range of results will demonstrate the validity of this
assumption. However, the significant features of nonlinearities
associated with material properties and boundary conditions are
considered in the dynamic analysis.

Nonlinearities associated with the inelastic behavior of
materials in reinforced concrete affect the dynamic response
significantly. In SDOF analysis, it is required to provide a force-
deformation function that is representative of the flexural
performance of the structural element under the static application of
the load, and the effect of important sources of nonlinearity in
concrete and steel must be rationally considered in deriving such
function. These sources can be summarized as follows:

a. Nonlinear behavior of flexural reinforcement when strained
beyond the elastic limit. This includes the range of behavior
in the yield plateau and in the strain hardening region.

b. Nonlinear behavior of concrete. The stress-strain
relationstip for concrete is not linear and thus, a nonlinear
distribution of stress must be considered in the concrete
compressive zone of the cross section. In addition, confining
of concrete by transverse reinforcement can significantly
affect the nonlinear ductile behavior of the beam.

c. Nonlinear failure criteria of the cross section in flexure.
The failure criteria must properly define the plastic
(ultimate) moment beyond which the cross section can not
resist additional load, and can only rotate if sufficient
ductility is provided.

d. Nonlinear distribution of curvatures along the span of the
beam, particularly for deformations beyond the yielding of
the reinforcement. This is to account for the gradual
spreading-of plastic hinges as a result of the concentration
of curvatures in the vicinity of highly stressed (inelastic)
regions. Since the distribution of the curvature diagram is
not linear, it will no longer relate directly to the moment
diagram. Hence, for statically indeterminate beams,. an
iterative step-by-step numerical procedure is required for
obtaining the resistance function.

e. Nonlinear damping mechanisms by which energy is dissipated in
the dynamic system as a result of plastic deformations. A
discussion on this issue, accompanied by a modified proposed
model is given in Sections III-E-3 and III-F-2 herein.
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f. Nonlinear influence of loading rate on the material
properties of steel and concrete. This topic is discussed
later in Section III-G.

In addition to including these nonlinearities in the
derivation of the load-deflection (resistance) function, it is also
necessary to consider the effect of nonlinear deformations on the
parameters of the equivalent SDOF model. These parameters depend
directly on the displacement shape function, ¥(x). The material
nonlinearities affect this function at every load step and thus, the
parameters of the nonlinear SDOF system must be modified in accordance
with the updated shape function. For example, the equivalent mass of
the system, as computed from Equation (113), may not be considered as
a constant parameter in nonlinear analyses. Moreover, for beams with
axial compressive load, the nonlinear resistance function must be
continuously modified at every load step to account for the loss of
resistance (increased deflection) due to the second order moments
caused by the axial load. The procedure employed in this study for
such modifications is presented in Section III-F-4.

3. Mechanisms of Energy Dissipation

Perhaps the most distinguished feature of inelastic dynamic
response is the irreversible mechanism by which energy is removed from
the dynamic system. In a realistic dynamic analysis of reinforced
concrete elements, this phenomenon should be modeled as accurately as
possible; i.e., representing a hysteretic process. A hysteresis model
is a particular case of structural damping in which the dissipated
energy is assumed to be independent of frequency of vibration. The
amount of absorbed energy is primarily a function of the extent of
inelastic displacement history of the structural element. Although a
precise theory on the hysteretic characteristics of reinforced
concrete is not available, numerous experimental investigations,
particularly in the field of earthquake engineering, have provided
valuable insight into the inelastic response of RC elements under
repeated loading and unloading conditions. In order to justify the
development of the proposed model in Section III-F-2, a brief review
of the subject is provided next.

Reference 47 summarizes hysteretic responses of reinforced
concrete beams and beam-columns. Typical hysteretic moment-rotation
models are shown in Figure 32. Model A is a hysteresis curve commonly
used for elements made of structural steel, while Model B, originally
developed for reinforced concrete members, consists of a bilinear
skeleton curve and it accounts for the loss of stiffness upon
reloading.

A typical hysteresis curve for a cantilever reinforced concrete
beam with a symmetric cross section and subjected to a concentrated
load is shown in Figure 33-a. The loading history of the element is
depicted in Figure 33-b. Even though the cross section may be slightly
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Figure 32. 1Idealized Hysteretic Models for Ductile
Material. (Reference 47)

95




~_-End Of Cycla
¥ €nd Of Cycle 2

Il

(¢)

Displacamant

()

Figure 33. Hysteresis for a Reinforced Concrete Cantilever
Beam. (Reference 47)
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cracked, the force-displacement relationship is nearly linear from A
to C (Figure 33-c). As the load is increased beyond the yield point C,
the beam responds inelastically and a plastic hinge begins to develop
near the fixed support. The behavior of the beam in region CD is
marked by spalling of the concrete cover at the extreme compression
fiber near the support, extensive cracking, and further yield'ng of
the tensile reinforcement (Figure 33-d). If the direction of loading
is reversed at point D, the beam begins to unload almost elastically
to a plastic deformation at point E. If more load is applied in the
reverse direction, flexural cracks in the opposite direction will be
formed (point F), and the hysteresis curve will proceed to point G.
The slope of the curve between points F and G depends on the amount of
reinforcement, stress-strain properties of steel, and the extent of
crack closure in the compression zone. If cracks do not close, the
entire compression force must be carried by the reinforcement. Due to
the Bauschinger effect, the compression steel yields at a lower stress
that the initial yield stress. At point G, almost all cracks are
expected to close in the compression zone. Point G can be thought of
as the image of point D in the opposite displacement direction and
hence, reloading from G to H is similar to unloading from D to E.

The second loading cycle begins at point H, the cracks begin to
close in the original compression side, but since the reinforcement
was already strained beyond yield, the Bauschinger effect would
considerably reduce the slope of the curve beyond this point.
Reference 2 also points out that the formation of flexural cracks in
both directions eventually would result in a fully cracked section and
consequently, a drastic reduction in the flexural resistance. In
addition, the loss of bond between steel and concrete and the presence
of high shear distortions at the critical section contribute to
further reduction of resistance under repeated loading.

Analytical models are available that reflect the effect of
stiffness degradation on the hysteretic response of reinforced beams.
Figure 34-a shows the Ramberg-Osgood model in which the skeleton curve
is primarily constructed in accordance with the Bauschinger
phenomenon. Figure 34-b shows Clough’s elasto-plastic degrading
stiffness hysteresis relationship in which the loss of stiffness in
modeled by a reduction in the slopes of the reloading and unloading
line segment. Figure 35 depicts another idealized stiffness degraded
model discussed by Sozen (Reference 47), where the slope of the
unloading portion, k,, is related to the initial slope, k_ , by the
following relationship;

[ ]
k, -4k, p (126)

where, p is the displacement ductility factor at the unloading point
and 4 is a material dependent coefficient taken as 0.5. In this model,
the slope of reloading for each cycle is obtained by connecting a
straight line between the point of plastic deformation on the
displacement axis and the point of maximum deformation in the reverse
direction. .
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Figure 34. Idealized Hysteretic Moment-Curvature
Relationships (a) Ramberg-Osgood Model

(b) Clough’s Degrading Stiffness Model.
(Reference 47)
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To obtain a more realistic view of hysteresis problem in
reinforced concrete elements, one must also pay close attention to the
experimental observations. Figure 36 shows a typical hysteresis load-
deformation curve for a simply supported, moderately reinforced
concrete beam with a symmetric cross section. The beam was loaded
statically for a small number of cycles by a concentrated force at its
midspan. The behavior during cycles a,b, and ¢ is nearly elastic.
Cycles d and e clearly reflect the influence of cracking and the
Bauschinger effect on the response. Figure 37 demonstrates the
hysteretic response of a reinforced concrete beam-column joint at the
face of the column. In this experiment, the cross section of the beanm
and the column were both symmetric and well confined. The presence of
high shear stresses and the slippage of the tensile reinforcement in
the connection core contributed to the deterioration of the assembly
under repeated loading cycles. The corresponding joint moment-end
deflection curve is shown in Figure 37-b. Additional information on
the hysteretic response of RC comnection can be found in References
48-52.

F. PROPOSED MODIFIED SDOF MODEL FOR ANALYSIS OF RC ELEMENTS
1. Introduction

In Section II assumptions and the procedure for deriving the
moment-curvature diagram and the load-deflection relationship for a
rectangular reinforced concrete beam were discussed. Formulation of
the moment-curvature diagram included the nonlinearities associated
with the behavior of confined and unconfined concrete in the
compression zone, inelastic behavior of the longitudinal steel, and
failure criteria for the cross section. The procedure for obtaining
the numerical load-deflection function from the moment-curvature
diagram was also described in Section II. The numerical model included
the possibility of translational and rotational end conditions, as
well as systematic formulation for the nonlinear distribution of
plastic curvatures along the span of the beam. In this section the
nonlinear load-deflection relationship serves as the skeleton curve,
used to calculate dynamic resistance functions and other parameters of
the equivalent SDOF system.

2. Dynamic Resistance Function

The proposed resistance-displacement model shown in Figure 38
is similar to models discussed -earlier in Section III-E-3 by Clough
(Figure 34-b) and Sozen (Figure 35). Assuming that the cross section
of the beam is symmetrically reinforced, the skeleton curve OAC in
Figure 38 is the numerical load-deflection function. Unlike the
bilinear models proposed by Clough (Reference 53) and Sozen (Reference
47), the present nonlinear function is actually a piecewise a
multilinear curve and it includes all material and support .
nonlinearities mentioned earlier in Section III-E. Since a specific
closed form mathematical expression is not available, theoretical
evaluation of the structural response are not considered and all
computations are performed numerically.
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The proposed dynamic resistance function is described next by
using a typical displacement response diagram.

a. Elastic Response

If the maximum dynamic displacement does not exceed the yield
displacement, i.e. 8 , < Ay, the behavior of the beam is elastic and
oscillation will occur about the zero displacement position (Figure
39-a) or between points A and A’ on the resistance-displacement
diagram (Figure 38). The beam eventually comes to rest after all
energy has been dissipated by external damping.

b. Inelastic Response

If the maximum dynamic displacement exceeds the yield
displacement, the beam experiences unrecoverable inelastic
deformation. In that case, the beam will come to rest with a residual
displacement, after all energy is dissipated by the internal
hysteretic damping mechanism as well as the external damping.
Referring to Figures 38 and 39-b, the following steps describe the
proposed hysteretic behavior and the inelastic dynamic response of the
beam;

(1) Upon initial loading, the maximum dynamic deflection
increases along the resistance-displacement (R-A) curve,
exceeds the yield displacement, and reaches a maximum
deflection at point B shown in Figures 38 and 39-b.

(2) At point B the displacement begins to decrease and positive
unloading of the beam is assumed to occur along a straight
line BD in Figure 38.

(3) Once point D is reached, neogative unloading follows along
line DB’. The slope of the negative unlo-.ding segment is the
same as that proposed by Sozen (Reference 47); i.e., to
choose point B’ to be the mirror image of point B on the
negative R-A diagram. Negative unloading continues until the
poi.t of minimum displacement E in Figures 38 and 39-b is
reached.

(4) After point E, displacement begins to increase and negative
reloading occurs along path EF for the first time.
Experimental findings (Section I1I-E-3) show that the slope
of the reloading line is best represented by a straight line
until the initiation of positive unloading marks the end of
the first complete hysteretic cycle.

(5) The formation of the flexural cracks in both positive and
negative directions in conjunction with the Bauschinger
effect reduce the strength (stiffness) of the section Clough
(Refecence 53) and Sozen (Reference 47) acknowledged this
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Model.

105




fact and proposed models that account for stiffness
degradation within the hysteretic model. Here, the slope of
the reloading line segment, FG, is taken the same as that
proposed by Sozen (Reference 47) i.e., along a line between
points F and B by in Figure 38.

(6) If the new maximum deflection does not exceed the maximum
value of the previous cycle, unloading is assumed to follow
along a straight line from G to D’.

(7) The process of reloading and unloading cycles continues
until the beam eventually comes to rest with a residual
deflection denoted by ALtas in Figure 39-b.

The following should be noted about the proposed model:

a. Point C in Figure 38 represents the flexural fallure of the
beam. If the deflection at any time exceeds the value of the
deflection at point C, failure is assumed and the
computational process is stopped.

b. The model shown in Figure 38 is constructed for a beam with a
cross section that is symmetrically reinforced. For beams
with unsymmetrical cross sections two resistance-displacement
curves must be provided; one for the positive loading and one
for the negative loading.

c. The above discussion it was assumed also that the maximum
displacement would be reached during the first positive
loading cycle. Such an assumption would often be valid for
blast and impact loads but not necessarily for earthquake and
other types of dynamic loads. If the nature of loading was
such that the maximum deflection exceeded the wvalue at point
B or point B’ in Figure 38, the displacement should continue
to increase on the skeleton curve(s) until either failure or
rebounding would occur.

In discussing the effects of energy dissipation, Baker et
al. (Reference 46) provide the following reasons for ignoring external
damping in the analysis of structures to resist blast loads:

a. The amount of external damping is very small compared with
internal (material) damping.

b. Only the first cycle of response is usually of interest and
the effect of external damping on the response in the first
cycle is negligible.

c¢. There are considerable uncertainties in estimating the
external damping factors. By ignoring damping, results are
always more conservative.

Nevertheless, the presence of external damping has been
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included by employing a linear viscous dashpot, for which the value of
the damping ratio must be known.

3. A Modified Method to Evaluate the Parameters of Equivalent
SDOF Model

This study proposes to perform the dynamic analysis by
employing a SDOF approximation for the reinforced concrete structural
element. The results obtained from a number of studies (References
54,55,56, and 57) show that this technique is a simple and relatively
accurate tool for evaluation of the structural response, if proper
behavioral models are assumed. Thus, special attention must be devoted
to the derivation of the parameters of the SDOF model. The accuracy of
the results is extremely sensitive to the formulation and employment
of these parameters.

In Section III-B the procedure for computing the equivalent
mass and load was discussed. Evaluation of the integral in Equation
(113) would result in an equivalent mass for the dynamic system, from
which the mass factor as given by Equation (113) could be computed.
Also, the concept of Equivalent Load applied to the SDOF system was
expressed mathematically by Equation (117). This was presented by
Biggs (Reference 42) for a number of cases by assuming an analytical
expression for the shape function ¥(x). Those few cases were limited
to perfectly elastic or perfectly plastic beams with ideal boundary
conditions (e.g., fixed, hinged) and always loaded at the mid-span by
a concentrated force. Moreover, there was no attempt to compute the
mass and the load factors for the transition period, when the behavior
changes from elastic to plastic. The present numerical method, as
presented next, removes these restrictions so that a complete array of
mass and load factors can be computed for a reinforced concrete beam
with arbitrary linear or nonlinear boundary conditions from the
initiation of loading to failure.

a. Mass Factor

In Section 11 the shape function ¥(x) which satisfied the
geometric support conditions was obtained in a numerical form for
every incremental load level from the onset of loading to the ultimate
condition. Therefore, the mass factor at every load step i could be
computed by numerical integration over the length of the beam of the
right hand side of the following expression

L
MF, = ([ m, (B(x))? ax ) /M, ‘ (127)

Where, MF, is the mass factor at load step i, Y(x) is the deflected
shape function of the beam at load step i, m, is the mass of the beam
per unit length, M, is the total mass of the beam, and L is the length
of the beam.

. ‘During the dynamic analysis, the mass factor, MF, is computed for
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the specific displacement at every time step by the following linear
interpolation equation;

MF1+1 - MF:
MF = MF, + [ )] (A - Ai) (128)

8,4, - b

where, A, A=< A

i i1+1

Equation (128) is employed at every time step until rebounding from
the maximum inelastic dynamic displacement (point B in Figure 38)
takes place. After that time, the mass factor is kept constant and
equal to its value computed at point B, since it is assumed that the
inelastic deformed shape function does not change considerably after
the formation of plastic hinges.

The effects of the arbitrary nature of end conditions and the
location of the load on the span of the beam have been incorporated in
the development of the deflected shape function, as discussed in
Section II. Thus, the present approach removes all limitations
mentioned earlier in this section. In addition, the analysis is no
longer restricted to perfectly elastic or perfectly plastic beams,
since it is possible to compute the mass factor for every displacement
during the transition from elastic to plastic.

b. Load Factor

The computation of a load factor follows the same approach used
for the mass factor. In the development of the load-deflection diagram

the load factor at any load step i is computed according to the
following expression

LF, = ¥(X)(, g, (129)

where, LF, is the load factor at load step i and ¥(x),, is the shape
function at step 1 evaluated at point j on the span. *ar example, the
magnitude of load factor for a beam with symmetric boundary conditions
and loaded at the 'midspan by a concentrated force is always unity,
because maximum deflection always occurs at the point of load
application.-

Similar to the development of the mass factor, the array of load
factors contains values at every load step i, from the initiation of
loading to the ultimate condition. During the dynamic analysis, the
load factor at every time step may be computed by a linear
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interpolation in the following manner;

LF - LF, + [— ] (8 - a,) (130)

where, A, A=A

i 1+1°

It is important to realize that so long as the end conditions are not
different and the load is applied at the center of the span, the
magnitude of the load factor does not deviate from unity.

4. Influence of Axial Compressive Force

The effect of an axial compressive force on the moment-
curvature and load-deflection behavior was discussed in Section II.
From the equilibrium of the cross section, the difference between the
net compressive and tensile forces is the axial thrust. In addition,
due to considerable lateral deflection of the beam at advanced loading
stages, the presence of the axial compressive force introduces an
additional secondary external moment (P-A effect) into the beam which
would result in additional curvature and deflection. In the present
approach, a closed form evaluation of the second order effects is not
considered because:

a. Numerical models were employed to model material
nonlinearities in reinforced concrete and thus, unique load-
dependent closed form solutions for the variation of EI,
¥(x), and derivatives of y(x) with x are not available.

b. The possibility of including arbitrary linear and nonlinear
support conditions were considered by employing numerical
models and therefore, the shape function ¥(x) can not be
presented in closed form.

Instead, it was decided to modify the nonlinear resistance-deflection
relationship (R-A curve) to include the effect of axial load, as
described next.

In Section II a deflection function A(x) which satisfied the the
geometric boundary conditions was computed numerically for every
incremental load step. Therefore, the second order moment denoted by
M’ can be evaluated numerically at every load step i for every point j
on the span of the beam by the following expression;

- P (131)

M A

axial

'
(1,3 (4-1,3)

where, P__,., is the axial compressive force, i is the load step, and
j is the arbitrary point on the span of the beam. The second order
moment, M’, is subsequently added to the first order moment to obtain
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the modified moment diagram which includes the effect of axial
compressive load.

Mo =Y.t Yoy (132)

vhere, M'(i.J) is the moment representing the combined effect of
transverse and axial load at point j in step i. The modified moment
diagram is subsequently used in conjunction with the moment-curvature
relationship to compute the maximum deflection at step i. The modified
R-A curve obtained from the procedure mentioned above is subsequently
employed in the dynamic analysis.

G. EFFECT OF LOADING RATE ON STRENGTH

This study is particularly concerned with the response of
reinforced concrete structures subjected to high loading rates such as
impact and blast. Under these conditions, the strength and modulus of
elasticity of concrete and steel increase significantly. Many
experimental investigations were conducted in the past to demonstrate
the influence of rate of strain on material properties. Consequently,
empirical relationships were developed to model this phenomenon as
accurately as possible. Inclusion of this concept into the proposed
dynamic model is discussed in Section III-G-1.

In an original experimental study, Watstein (Reference 58)
investigated the behavior of plain concrete cylinders subjected to
rates of straining ranging from 10"% /Sec. to 10. /Sec. with the
corresponding duration of tests ranging from 30. to 0.003 seconds.
Under the highest rate of loading, the compressive strength of
concrete increased by as much as 85 percent, and the secant modulus
increased by 47 percent for weak concrete (2500 psi) and 33 percent
for strong concrete (6500 psi). Bazant and Byong (Reference 59)
extended the data base by combining the results from several studies
(including Watstein’s) to obtain empirical relationships between
strength and strain rate for plain concrete. A summary of these
results are shown in Figure 40. The effect of strain rate on a typical
constitutive model for plain concrete is shown in Figure 40-a. Figure
40-b shows that the rate effect does not have much influence on the
strain of concrete at peak stress. Figures 40-c and 40-d depict the
influence of strain rate on compressive strength and secant modulus
respectively.

' Soroushian et al. (Reference 60) conducted a similar study in
which empirical constitutive models for plain and confined concrete
were proposed based on extensive experimental studies by other
investigators. In that study, it was found that the influence of
loading rate is more pronounced for wet concrete than it is for dry
concrete. Moreover, the trend of data showed that the strain of
concrete at maximum stress decreased for strain rates smaller than
0.01 /Sec and increased at higher strain rates (Figure 4l-a). Figures
40-b, 40-c, and 40-d show the strain rate effect on compressive
strength, secant modulus and tangent modulus of concrete as reported

in Reference 60.
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Soroushian and Choi (Reference 61) studied the strain rate
effects on material properties of structural steel. In that study,
extensive experimental data from past investigations were combined to
obtain empirical relationships for predicting the strain rate effects
on yield strength and ultimate strength of steel (Figure 42). It was
concluded that increasing the rate of straining would increase all the
characteristic stress and strain values on the constitutive model.
But, material properties of steel with high-yield stress demonstrated
less sensitivity to high strain rates.

A number of other experimental and analytical investigations -
focused on predicting the overall enhancement in the strength of
reinforced concrete structural elements subjected to dynamic loads
applied at high rates. In design for protective structures, Newmark
(Reference 62) recommended to increase the yield strength of steel by
30 percent and to increase the compressive strength of concrete by 25
percent, Criswell (Reference 63) found that the strength of reinforced
concrete specimens would increase by 18 percent in flexure and 26
percent in shear under dynamic loads. Furlong et. al (Reference 64)
observed an increase of 30 percent in flexural strength and an average
increase of 37 percent in shear strength in beams subjected to impact
loads. Similarly, Seabold (Reference 65) found 20 percent to 30
percent improvement in strength of reinforced concrete beams under
dynamic conditions.

Soroushian and Obaseki (Reference 66) employed strain rate
dependent constitutive models for concrete and steel to predict
analytically the ctrength of reinforced concrete beams-columns
subjected to different strain rates. The results of the computational
effort in Reference 66 indicated that closer placement of the
longitudinal steel to extreme fibers of the cross section and
confinement of concrete increased the strain rate effects.
Furthermore, it was reported that increasing the strain rate from
0.000005 /Sec. to 0.05 /Sec. caused an average increase of 25 percent
on the axial-flexural strength of the member. However, it was mnoted
that the influence of strain rate would not necessarily induce the
same effect on the shear strength of beams. In addition, variations of
the strain rate in different sections of the structural element could
result in unforeseen and perhaps undesirable redistribution of
stresses within the element.

1. Implementation of the Rate Effect into the Analytical
Procedure

Since the response of a structural element depends on the
dynamic excitation, the strain rate is a time dependent parameter.
Therefore, empirical constitutive models developed from constant
strain rate test results should only be used for the average rate of
straining the material (see Reference 67). In addition, review of the
existing state of knowledge on this subject, as presented in the
previous section, reveals considerable variabilities in the
experimental data. This is particularly true for structural elements
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subjected to blast and impact loads, since the average rate of
straining or loading often exceeds the range of the available
experimental data. Such being the case, direct employment of the
constitutive models described in the previous section can not be
justified.

This study proposs modification of strength properties of steel
and concrete by applying the average rate effect enhancement factor to
the stress parameters of the material models. Such modification are’
introduced as follows.

£, =q f (133-a)
y sy Yy

foo = £, (133-b)
£, =n, £, (133-c)

where,n ., n,,, and n_ are the average material enhancement factors
for yield strength of steel, ultimate strength of steel, and
compressive strength of concrete respectively. f.y . f.u, and f'.c are
the modified yield strength, modified ultimate strength, and modified
compressive strength of concrete. The modified values are subsequently
utilized to compute the moment-curvature and resistance-displacement
relationships using the procedures mentioned earlier in Section II.
The modified R-A curve is then employed in the dynamic analysis.

Good engineering judgment must be exercised in selecting
appropriate values for the enhancement factors. If the average rate of
straining is not very high, Figures 41 and 42 may serve as guidelines
in predicting the enhancement factors for f’, f,, and £' . For very
high rates of loading (e.g., blast), enhancement of material
properties is estimated to be often between 0.2 and 0.4 (References
62-66).

H. ANALYTICAL MODEL FOR DIRECT SHEAR RESISTANCE MECHANISM IN
REINFORCED CONCRETE ELEMENTS

1. Analytical Methodology

So far, the dynamic SDOF analysis has been only based on the
flexural resistance of the element and it has been assumed that the

element would not fail in direct shear. Experimental observations on
the dynamic response of shallow-buried reinforced concrete box-type
structures to blast loading (as reported in References 67,68, and 69),
indicated that in many instances the structure failed in shear at
critical locations (e.g., supports) at an early time. The shear
failure surface observed in the expériments (see References 68 and 69)
looked quite similar to the interface shear failure along the vertical
shear plane. This type of failure is commonly referred to as the
direct shear failure and is characterized by sliding or large
displacements along the interface shear plane. A review of the current
state of knowledge on the dynamic shear resistance of one way slabs as
reported in References 67-70 indicated that if the dynamic shear
resistance was not included in the analytic formulation, and if the
dynamic analysis was performed only for.evaluation of the flexural
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response, it would be possible to grossly overestimate the strength of
the member. The possibility of an interface shear or direct shear
failure of the element could control the failure mechanism and
therefore, should be included in the overall analytical scheme, as
presented next.

The analytic approach adapted here is very similar to the model
proposed by Krauthammer et. al (Reference 56) and used successfully
for the analysis of buried reinforced concrete box-type structures. In
this method, two single-degree-of-freedom systems are considered for
the overall response of the element to the impulsive excitation. The
first is for the evaluation of the flexural response (discussed
earlier in this section) and the second is for monitoring the direct
shear response at critical locations on the span of the beam (e.g., at
the supports or under the concentrated load). The procedure for
deriving the parameters of the second (shear) SDOF system are
presented in Sections III-H-2 through III-H-4. For each time step, the
flexural and shearing responses are computed and compared to their
respective failure criterion. If the flexural dynamic displacement
exceeds the maximum displacement on the resistance function, a
flexural failure is assumed to have occurred. Similarly, if the shear
slip at the selected critical location exceeds the ultimate
permissible shear displacement (Section III-H-2), a shear failure is
assumed and the computational procedure is halted. So, the present
highly nonlinear dynamic problem has been approximated by two
uncoupled simpler piecewise-linear problems, each represented by a
separate nonlinear SDOF system.

Experimental observations as reported in References 68 and 69
indicated that the response of box-type buried reinforced concrete
structures subjected to blast loads was controlled by either a direct
shear failure mode at the end supports which occurred very early in
time, or by a flexural mode where the roof slabs experienced permanent
inelastic deformations. From the experimental observations, it was
apparent that if the structure happened to fail in shear, there was
hardly any significant flexural response. Similarly, in cases that the
roof member failed in flexure at much later time, it survived the
early high shear forces. Thercfore, it would seem reasonable and
justifiable to uncouple the direct shear response from the flexural
response in the manner discussed above.

Ross (References 67 and 71) investigated the direct shear failure
phenomenon in one way reinforced concrete by employing the classical
elastic Timoshenko beam model to account explicitly for the shearing
deformations when slabs were subjected to distributed impulsive loads.
It was found that direct shear failures preceded the flexural faflures
in all cases examined. This conclusion agreed well with the
experimental observations reported by Kiger et al. (Reference 68),
thus, further reaffirming the assumption of uncoupling of direct shear
a1 flexural response in the simplified SDOF models.

_The nonlinear form of the SDOF differential equation of motion
for direct shear analysis can be presented as follows: °
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M, Y+C, Y+ R, =V(t) (134)

where, M, is the shear mass, C, is the shear damping coefficient, R,
is the direct shear resistance function, and V(t) is the applied shear
force (e.g., dynamic reaction at the support). These parameters are
discussed in the following Sections. Y, Y, and Y are the shear
displacement, velocity and acceleration, respectively.

2. Dynamic Shear Force

One of the inherent limitations of the SDOF approach is in
lack of results for some of the key characteristics responses which
may be of great interest to the analyst. One such case is the dynamic
reaction. In his book, Biggs (Reference 42) provides the following
explanation on this issue:

",..the dynamic reactions of the real structural
element have no direct counterpart in the
equivalent one-degree system. In other words, the
reaction of the equivalent system, i.e., the
spring force, is not the same as the real
reaction. This is true because the simplified
system was deliberately selected so as to have the
same dynamic deflection as the real element,
rather than the same force or stress
characteristics."

In order to obtain an approximate value of the dynamic reaction
of the real structural element, Biggs considers the dynamic
equilibrium of forces on the free body of the left half of the
elastic simply supported beam (Figure 43) as follows.

V (61L/192) - M_ - 0.5 (61L/192 - L/4) F = 0. (135)

where, V is the dynamic reaction, F is the total dynamic load on
the beam, M  is the dynamic moment at the midspan and L is the
length of the beam. Similar to the procedure in Reference 42, it
is assumed that the inertia forces have the same distribution as
the deflected shape function of the elastic beam under uniform
static load. It is further assumed that the relationship between
the dynamic bending moment and dynamic resistance is the same as
that between the static bending moment and the applied load.
Thus, by substituting RL/8 for the M_ it is possible to arrive at
the following expression for the dynamic reaction.

V=0.39R+0.11 F (136)

where, R is the time dependent resistance function and F is the
time dependent loading function.

Keenan (Reference 70) obtained the ’‘exact’ solution for the
support reaction of a simply supported elasto-plastic beam
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subjected to a triangular pulse, and he compared that with the
result of Equation (136) for the same load. It was found that the
magnitude of the dynamic shear force at the support predicted by
Equation (136) would provide an adequate result for all practical
purposes. Furthermore, it was stated that the maximum shear
stress produced by a blast load can exceed the maximum shear
stress produced by the ultimate flexural resistance under static
conditions.

Based on a similar procedure, Biggs obtained and documented
analytic expressions for the dynamic reaction of beams with
different support ¢onditions. However, these cases were always
limited to some perfectly elastic or perfectly plastic beams,
loaded at the midspan by a concentrated force, with ideal
boundary conditions (e.g., hinged or fixed). In addition, it is
noted in Reference 42 that the assumed shape function for the
plastic domain is not necessarily the actual deformed shape of
the beam, and the abrupt transition from the elastic shape to the
assumed plastic shape may result in incorrect deviation in
behavior of the dynamic model from the actual behavior of the
element.

The following formulation removes these restrictions so
that the dynamic reactions for a reinforced concrete beam with
arbitrary boundary conditions can be approximated at every time
step. The procedure, summarized below, assumes that the
distribution of the inertia forces is identical to the deformed
shape function of the beam (Figure 44).

a. During the computational procedure for the load-
deflection relationship, obtain the reactions at each
end of the structural element and compute the load
proportionality factor 4 for each end as follows;

71’. - Q(l)i/Qi (137'3)
v,y = Q2),/Q, (137-b)

where, Q(1), and Q(2), are the static reactions of the
beam at load step i, Q, is the load at step i, and 7.,
and v,, are the load proportionality factors at ends 1
and 2 respectively.

b. At every load step j, compute the Inertial Load Factor,
IFL, by evaluating the following integral numerically at
every load step j.

L
ILF, = ({ (¥(x),) dx) /L (138)

where, IFL is the load factor associated with the
distribution of the inertial forces and ¥(x), is the
deflected shape function at load step i.
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c. Knowing the distribution of the inertia forces, compute
the inertia proportionality factors v’',, and vy’,, for
ends 1 and 2,respectively at every load step i. Since
the magnitude of the inertia load is not known at this
stage, an iterative procedure for the exact
determination of the these factors can not be performed.
Therefore, these factors are approximated by using the
principles of the linear beam theory. The fact that the
peak direct shear response always occurs early in time,
before any significant nonlinear flexural response-is
developed, further justifies this assumption.

d. During the dynamic analysis, the dynamic reaction at
either end of the element can be computed at every time
step as follows.

Vy =7y, ¥ QE) + ILF * o7,

* M, (139-a)
V, = 75, * Q(t) + ILF * 4", * M,

* X
* X (139-b)
wvhere, Q(t) is the forcing function, M, is the mass of
the beam and X is the acceleration. Factors Yygr ¥ gy
Y, and v',, are computed for the specific displacement
at every time step by the following linear interpolation
equations respectively.

Tie1 = Yy
7=, + [ 1 & -4, (140)
B4y - 4

where, A, <A =<4,

where, A is the dynamic displacement at the specific time step,
and ¥ is the generic name for inertia and load proportionality
factors.

The dynamic reaction obtained is used as the forcing
function to derive the second SDOF system which provides the
shearing motion response at the critical location. The validity
of the present approach is investigated later in Section IV,
where the results obtained are compared with experimental data.

3. Direct Shear Resistance Function

The issue of direct interface shear resistance mechanism
in reinforced concrete beams has been discussed by Park and
Paulay (Reference 2). The present empirical model is based on the
investigations by Mattock and Hawkins as modified and documented
by Murtha and Holland (Reference 72), followed by further
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modifications by Krauthammer et. al in Reference 56: The original
model, shown in Figure 45, is simply a nonlinear relationship
between the shear stress and shear slip at the shear interface.
The linear segments of the model are described briefly as
follows:

a. Line OA: In this region the response in linear elastic
up to the point A (Figure 46). The slope of this line is
defined by a slip of 0.004 in. and an elastic shear
stress limit given by the following expression

r, = 165 + 0.157 £'_ (141)

where, 7  is the elastic shear stress limit in psi, and
f’, 1s the compressive strength of concrete in psi.

b. Line AB: The slope of the line in this region is defined
by a shear slip of 0.012 in. and a maximum shear
resistance, r_, given by the following equation.

ra=8JF, +p,, £,50.35f, (142)

where, £  is the yield strength of the reinforcement
crossing the shear plane in psi, p,, is the of the total
reinforcement ratio crossing the shear plane, f’'_ is the
compressive strength of concrete in psi, and r is the
maximum shear stress.

¢. Line BC: This segment is defined by a horizontal line
where the shear stress remains constant at r_, while the
shear slip increases to 0.024 in.

d. Line CD: Beyond point C, the shear slip increases with
decreasing shear stress down to the limiting shear
capacity r,, given by

r, = (0.85 A, £' ) /A (143)
The slope of this segment is given by the following
expression.

K, = 2000 + 0.75 £’ (144)

-

e. Line DE: The shear capacity remains constant as the
shear slip increases until the failure slip at point E .
The slip for the point of failure is defined by the
following expression.

Ay, = 2.0 (e* - 1)/120 (145)
and,
x = 900/ (2.86 Jf'c/db) (146)

d, is the bar diameter in inches, and 4 ,, 1is the

maximum shear displacement at failure in inches.
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The model described above is based primarily on the results
of experimental investigations as reported in References 72 and
73. The slope of segment OA is based on the assumption that for

-low values of slip, the effect of dowel action in the flexural
reinforcement is negligible, and the compressive strength of
concrete can be used as the parameter that relates the shear
stress to the shear slip. The maximum shear stress,r_, given by
Equation (142), is based on the recommendations by ACI Committee
318 in the Proposed Commentary to the ACI Code 318-83. The shear
slip values of 0.012 and 0.024 at points B and C are due to
experimental observations as reported in Reference 73. Equations
(145) and (146) were proposed in Reference 72 based on
experimental observations on the relationships between dowel
force, slip, and limiting shear capacity.

In order to employ the Hawkins shear model in dynamic
analyses, Krauthammer et al. (Reference 56) modified the present
model to include the effect of load reversals. This modification
is shown in Figure 46 for a slab having the same amount of
reinforcement in tension and compression. On initial loading, the
shear stress-shear slip will follow the original path until
unloading is reached at point A, and followed along a straight
line until the point of zero stress, D. Once point D is reached,
unloading will follow along line DA’. A’ is the mirror image of
point A on the opposite (reverse) shear envelope. If the shear
displacement continues to increase in the reverse direction, it
will follow the curve until the second unloading occurs at B, and
the loop is repeated in a similar manner. If the shear slip never
exceeds the maximum slip value on either side of the envelope,
the system will eventually come to rest with a residual shear
deformation. In the event of reloading, the shear displacement is
assumed to follow a straight line with a slope equal to the
initial loading path (Line OA in Figure 45)

4. Effective Mass in Analysis for Direct Shear Resistance

One of the important parameters in SDOF analyses of
structures is to obtain the equivalent mass of the system based
on the assumed approximate shape function. In the flexural
analysis, the deformation pattern of the beam was obtained
numerically at every load step, and subsequently used to compute
the mass of the equivalent system. In a similar manner for shear,
proper shape functions must be employed in order to characterize
the behavior of the total element in accordance with the
existing experimental observations. Furthermore, since it is
important to investigate the shearing resistance at supports as
well as under the concentrated dynamic load, estimates of the
equivalent mass must be obtained for both types of analysis, as
presented next.
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a. Support Shear Failure Mode

~ Experiment observations on the dynamic shear failure of
shallow-buried flat-roofed reinforced concrete structures
subjected to blast loading (References 68 and 69) indicated that
in nearly all cases of direct shear failure, the roof slab was
completely severed and separated from the walls along a vertical
shear failure plane at each end of the slab (Figure 47). Due to
the uniform nature of loading, it is suspected that the reactions
and the shearing resistance were nearly equal at both ends of
these slabs and the mode of direct shear failure would resemble
the configuration shown in Figure 47. Thus, the entire mass of
the beam and the shearing resistance of both supports must be
considered in the SDOF dynamic analysis.

Krauthammer et. al (Reference 56) applied the shear SDOF
approximation to analyze the experiments reported in Reference
68. It was concluded that the method could effectively predict
adequate results, so long as rational models were employed in the
analysis.

No experimental data are available on the direct shear
resistance of reinforced concrete beams subjected to localized
(non-uniform) impulsive loads. However, it is speculated that if
the loading is not uniform, direct shear failure at the support
(as a result of separation of the roof from the wall) would
certainly occur first at the boundary with the highest magnitude
of the dynamic shear force, and then perhaps followed by the
failure at the other end. In that case, only the shearing
resistance of one cross section should be considered in the SDOF
analysis, and the mode of failure could be assumed triangular
(Figure 48) for which the equivalent mass can be computed as one
half of the total mass of the beam.

b. Localized Shear Failure Mode Under the Load

There are only a few studies on which the localized direct

shear failure in reintorced concrete elements subjected to
impulsive loading were investigated. Ross and Rosengren
(Reference 74) and Ross et al. (Reference 75) analyzed generic
reinforced concrete slabs for localized shear failure in the
vicinity of an explosive device placed in soil directly below the
concrete slab, In that study, a static localized hinge mechanism
(Figure 49-a) was used with the assumption that failure would
cause a volume of the slab (shear mass) to be sheared off without
appreciable damage to the other parts of the slab. It was found
that the breach radius of the slab (49-b) depended on the
magnitude, type, and distribution of the explosive charge and
therefore, it would not be possible to predict a general
expression for the shear mass for different types of loading
conditions.
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Figure 48, Assumed Mode for Support Direct Shear Failure
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"In the fresent study, the critical shear breaching radius is
conservatively assumed to be one-half of the effective depth of

the beam or the slab, based on which the effective shear mass
under the concentrated load is computed. This is consistent with
the experimental observations on punching shear failure in
reinforced concrete members under static conditions as reported
in Reference 22.

A direct localized dynamic shear failure in reinforced
concrete is not a well-understood phenomenon and as Ross and

Rosengreni(Reference 22) point out, in addition to extensive
experimental studies, many details on concrete strength,

"effectiveness of stirrups, and loading conditions are needed

before analytical techniques can provide adequate results.
I. SOLUTION OF NONLINEAR EQUATION OF MOTION

In this study, the nonlinear Equation of motion was solved
using the Newmark-Beta method. The iterative technique is
summarized as follows,

1. Let at some time t, acceleration al®), velocity ﬁ(",

and displacement u‘®’ be known.

2. Assume at the next time step t+At, the acceleration is
~(s+1
i ).

3. Compute u**?) and u‘**!’ from the equation provided by

Newmark (Reference 49):
ﬁ(l‘l’l) - ﬁ(') + At (ﬁ(') - ﬁ(l+1)) (147)

w1 Loyl 4wl A+ (5 - B) 0t (ar)?
+ pal*tl)(ar)2 (148)

vwhere B is assumed depending on the variation of the
acceleration, and will affect the convergence speed and
stability of the iteratioms.

4. Compute u‘**!) from the equation of motion rewritten as

follows :
t+At) R
ats+1) . g:ﬁ_____ -2 €0, utttd : (149)
M, M,

5. Repeat steps 3 and 4 until the variation in d(s+l)
between consecutive steps is small.
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More details on the Newmark-Beta method can be found in
References 44,49, and 76.

J. COMPUTER PROGRAM AND FLOW CHART FOR DYNAMIC ANALYSIS

Based on the formulations presented in this section, the
computer program BSDOF for the dynamic flexural and direct shear
analysis of structural elements was developed. This program is
currently ready for use on IBM PC/AT as well as IBM 4341
computers. The program was employed to analyze a number of
experimental cases in which reinforced concrete elements were
subjected to localized impact or blast loads. The analyses for
these cases are provided in Section IV. The contents of the
program BSDOF are illustrated by a general flow diagram in Figure
50.
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SECTION IV
ANALYSIS AND RESULTS

A. INTRODUCTION

For demonstrating the application of the present model and the
accuracy of the numerical results, the analytical/computational
procedure developed herein is employed for analyzing several cases.
All structural elements analyzed herein were studied experimentally by
other investigators and the results obtained from the present approach
are compared with the previous findings.

The present section contains analyses of reinforced concrete
structural elements in the static and the dynamic domain of behavior.
In the static domain three groups of tests are considered, two groups
of reinforced concrete members without axial forces (beams) and one
group of reinforced concrete beams with axial forces (beam-columns).
In the dynamic domain the analysis is performed for two groups: (1)
reinforced concrete specimens subjected to localized impact loads, and
(2) analyses of reinforced concrete walls subjected to localized blast
loads, caused by detonation of conventional explosive devices.

B. ANALYSIS IN THE STATIC DOMAIN

The analytical procedure employed for the analysis of beams under
static conditions consists of the following two steps;

1. Analysis for obtaining the complete moment-curvature
relationship for the cross section subjected to the combined
effects of flexure, shear and axial compressive force. Here,
the computer program ZCON is employed.

2. Analysis for deriving the load-deformation (resistance
function) of the reinforced concrete structural element from
the moment-curvature behavior. In this step the computer
program LOADDEF is employed.

The numerical results for each member are illustrated by a
moment-curvature diagram for the cross section and a load-deflection
curve for the structural element.

1. Analysis of Reinforced Concrete Beams

The two groups of beams analyzed in this section were obtained
from two different sources and comprise nine beams tested by 2urns and
Siess in Reference 1 (Group 1), and nine beams from an experimental
study by Bresler and Scordelis in Reference 36 (Group 2). All 18 cases
considered in this section were simply-supported reinforced concrete
members loaded laterally at their midspan by a single concentrated
force. For beams of Reference 1, this load was applied through a rigid
short (column-like) stub and therefore, a plastic hinge would be
assumed to form on each side of the rigid column.
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The beams tested by Burns and Siess (Reference 1) were moderately
reinforced (0.67 percent < p < 2.63 percent , 0.61 percent s p’ < 2,63
percent) with moderate-strength tension (45.1 < fy < 48.5 ksi) -and
compression (45.5 < p < 50 ksi) reinforcement. The ratio of the shear
span to effective depth for this group ranged from 4 to 7.2. Figure B-
1l in the Appendix B represents the schematic arrangements of these
beams and the details of geometrical and material properties of these
group of beams are provided in Tables B-1 and B-2 and B-3 in Appendix
B. The input material properties and the numerical results for the
moment-curvature and the load-deflection analyses are illustrated in
detail for one case, namely beam J8, and for the remaining beams in
this group the results are summarized and presented by plots of
moment-curvature and load-deflection, respectively. -

A graphical illustration of the moment-curvature behavior of beam
J-8 is shown in Figure 51. The ultimate computed moment for this beam,
889 kip-inches, compares very well with the ultimate experimental
moment, 878 kip-inches. Similarly, the load-deflection behavior of
beam J-8 from the onset of loading to the ultimate (collapse)
condition is shown along with the measured experimental data in Figure
51. The computed ultimate load (27.2 kips) is only 1 percent larger
than the measured load at the ultimate condition (27.1 kips), and the
computed deflection at the collapse condition (16.6 inches) is only
2.5 percent larger that its experimental counterpart (16.2 inches). In
addition, it can be observed in Figure 51 that the computed load-
deflection diagram simulates the experimental observations quit
accurately. Table B-4 in Appendix B demonstrates a typical output file
for the moment-curvature and the load-deflection analysis of this
beam.

The numerical results at the ultimate condition for the remaining
beams from Reference 1, namely beams J17, J18, J13, J1l4, J20, J5, J6,
and J22 are presented in Table 1. These results indicate that the
present analytical/computational procedure is effective in that the
ultimate mean computed load for the nine beams in this group at
failure is withinl percent from the mean experimental failure load,
with a standard deviation of 0.04. Moreover, the ratio of the average
computed midspan deflection to the measured deflection just before
collapse is 0.97 with a standard deviation of only 0.11, indicating
that the present approach for the computation of the deflection at the
ultimate curvature provides good results. But, as it can be observed,
the degree of variability for the computed deflections is larger than
that for the ultimate loads. Results illustrated by Figures B-4
through B-11 in Appendix B show the complete moment-curvature and
load-deflection behavior for beams in this group. The present
behavioral model for the effect of shear in reducing the ultimate
flexural capacity of the beams has improved the result, particularly
for beams J20, J6, and J22. The experimental points which are marked
on the load-deflection diagrams are the actual measured readings
during the tests. The present procedure provides the means for
predicting the resistance of the member at all stages of loading with
a fairly good accuracy.
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TABLE 1. RESULTIS FOR SLENDER RECTANGULAR BEAMS OF REFERENCE 1

Beam a/d Collapse Collapse Q A Failure
Load, Q Deflections Comp Coop Mode*
(Kips) (Inches) Queas AMeas
Qens QConp byeas ACo-p Exp. Ana.
J8 7.20 27.1 27.2 16.2 16.6 1.00 1.02 c c
J17 7.20 27.2 27.7 18.1 14.3 1.02 0.80 c c
J18 7.20 27.0 27.3 15.5 16.4 1.04 1.06 c c
Ji3 5.14 42.5 39.6 13.7 12.3 0.93 0.90 c/s 1/S
Jis  5.14 39.0 36.9 11.5 10.4 0.95 0.90 c/S C/S
J20 5.1 37.7 36.9 10.2 9.4 0.98 0.92 c/s C/S
J5 4.00 54.0 51.3 12.8 11.9 0.95 0.93 /S T/S
J6 4,00 52.3 53.4 10.0 10.4 1.02 1.04 c/s T/S
J22 4.00 51.0 50.7 7.3 8.7 0.99 1.19 c/s C/s
Avg : 0.99 0.97
STD : 0.04 0.11
t c Compression Flexural Failure
S Shear Failure
T : Tension Flexural Failure
C/S : Combination of C & S
T/S : Combination of T & S

1 Kip = 4.448 XN
= 25.4 mm

1 In.
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The beams tested by Bresler and Scordelis (Reference 36) were
reinforced heavily (1.80 percent < p < 3.66 percent ) with high
strength longitudinal tensile reinforcement (£ = 80 ksi), and.a very
small percentage of compression reinforcement (0.18 percent < p’' =<0.37
percent). In fact, a number of these beams were over-reinforced. In
addition, these beams were deliberately designed with very low amounts
of transverse reinforcement. The ratio of the shear span to the
effective depth for this group ranged form 3.97 to 6.94. Figure B-2 in
Appendix B shows the detail of the cross sections and Tables B-1, B-2,
and B-3 provide the material and geometric properties for the nine
beams in this group.

The numerical results for these nine beams at the ultimate
condition is presented in Table 2. The proposed behavioral model for
the effect of shear in reducing the ultimate flexural capacity, and
the proposed model for the behavior of over-reinforced beams at
failure has been proven effective. The mean ratio of the computed
ultimate load to the measured failure load for this group is 0.94 with
a standard deviation of 0.07, and the average computed deflection for
the nine beams at collapse is only I percent less than the average
of the experimental deflection values, with a standard deviation of
0.09. The analytical moment-curvature and load-deflection curves for
these nine cases (beams Al,A2,A3,B1,B2,B3,C1,C2, and C3) are presented
in Figures B-12 through B-20 in Appendix B. From these figures it can
be observed that all these beams exhibited a brittle compression
failure with very little ductility at the ultimate condition. For all
nine cases examined here, the peak flexural moment decreased
significantly before the development of ductile behavioxr. This sort of
response was observed during the experiment and it can be primarily
attributed to the fact that these beams had high ratios of high
strength tensile reinforcement, and relatively small amounts of
compression and confining reinforcement.

From Figures B-12 to B-20 it can be seen that although the
computed load-deflection curves for these nine cases are reasonably
close to the experimental data, they do not seem to follow the data as
well as the beams in the first group discussed earlier in this
section. In a few cases, particularly beams Al, Bl, and Cl, measured
deflections are generally smaller than computed values. Such
disagreement is primarily because the present model assumes a fully
cracked section along the span of the beam (i.e., additional stiffness
of the beam at low levels of load, due to the tension carried by the
concrete between the flexural cracks, is not included in the analysis)
and therefore, it is reasonable to expect the computed deflections to
be higher than the actual deflections. But, this phenomenon has very
little effect on the analysis of ductile members (first group of
beams), because these additional inelastic deformations are small
compared to the inelastic deflections. For the second group, the beams
do not exhibit inelastic ductility and the assumption that the beam is
fully cracked along the span could result in predicting larger
deflections at early loading stages. Even though as the load
approaches the ultimate value, these beams are more extensively
cracked and as a result, the difference between the computed and the
measured deflections become smaller.
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TABLE 2. RESULTS FOR SLENDER RECTANGULAR BEAMS (REFERENCE 36)-

Beam a/d Ccllapse Collapse QUoap Acomp Failure
load, Q Deflections Mode®
(Kips) (Inches) QH..- AH.-.
Queans QConp Byqas AConp Exp. Ana.
Al 3.97 105. 97. 0.56 0.62 0.92 1.11 c/S ¢/s
A2*  4.90 110. 101. 0.90 0.86 0.92 0.96 c/s ¢/s
A3 6.94 105. 105. 1.35 1.50 1.00 1.11 C c
B1* 3.92 100. 93. 0.54 0.54 0.93 1.00 c/s c¢/s
B2* 4.93 90. 79. 0.82 0.81 0.88 0.99 c/S c/s
B3 6.91 80. 87. 1.39 1.51 1.09 1.09 c c
cl 3.95 70. 57. 0.70 0.63 0.87 0.90 c/S C/s
c2* 4.91 73. 65. 0.79 0.68 0.90 0.86 c/S C/S
c3* 6.95 61. 56. 1.45 1.27 0.97 0.88 C c
Avg : 0.9 0.99
STD : 0.07 0.09
*  Overreinforced beams.
b C : Compression Flexural Failure

S : _Shear Failure

c/s :

Combination of C & §
1 Kip = 4.448 KN
l1In. =25.4mm
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2. Analysis of Reinforéed Concrete Beam-Columns

In this section, two beams and nine beam-columns obtained from
an experimental study by Yamashiro and Siess (Reference 17) are
analyzed. All 11 specimen were symmetrically reinforced with moderate
grade steel in tension (45.9 s £ =< 50. ksi) and in compression (44.7
< f_ =< 50.3 ksi). The flexural reinforcement ratio, p, ranged between
0.6/ to 3.33 percent. The axial compressive force, P__,,.,, was applied
without eccentricity and its magnitude for each case was smaller than
one-half of the axial load at the balanced conditions, P,. Figure B-3
in Appendix B illustrates the schematic arrangement of the specimens
and Tables B-1, B-2, and B-3 contain all material and geometric
properties for the 1l test specimen in this group. The numerical
results for each member are illustrated by a moment-curvature diagram
for the cross section and a moment-deformation curve for the element,
in which the computed results are compared with the experimental
measurements.

Figure 52 represents the moment-curvature and the moment-
deflection plots of beam J-29. This ratio of compression and tension
reinforcement for this beam-column was 3.33 percent and a constant
axial force of 25 kips was continuously applied during the experiment.
The result obtained from the present procedure agree well with the
experimental measurements. The computed failure moment for this member
was 1261 kip-inches which is only 10 percent larger than the measured
ultimate moment (1150 kip-inches). The computed deflection at collapse
was 11.3 inches, within 1 percent of the measured data (11.2 inches).
In addition, it can be observed in Figure 52 that the computed values
on the moment-deflection curve are close to experimental data for all
levels of loading.

The computed moments and deflections at ultimate (just before
collapse) for the beams and the beam-columns in this group are
presented in Table 3. It is observed that on the average, the ratio of
the computed to the measured values for moments and deflections at
collapse are 1.04 and 0.91, respectively. and the standard deviation
for these two average quantities are 0.05 and 0.14,respectively.
Comparing the analytical results of members in this group with the
nine beams of Reference 1 (analyzed earlier in this section), shows
that the accuracy of the present approach in predicting the response
of the elements at the ultimate condition to be slightly reduced when
axial compressive force is present. The fact that the average ratio of
the computed deflections to the measured defleccions is 0.91 is
probably due to an increase in the length of the plastic hinge in the
presence of axial force. Presently, no analytical or empirical
formulations are available to account for the influence of axial force
on the development of the plastic zones. Nevertheless, the present
numerical technique is still effective in that it can provide adequate
results at the ultimate condition for all practical purposes.

Figures B-21 through B-30 in Appendix B depict the moment-
curvature and the moment-deflection diagrams for these beams. One
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TABLE 3. RESULTS FOR SLENDER RECTANGULAR BEAM—COLUMNS OF REFERENCE 17

Beam® P * Collapse Collapse M Al .- Failure
exial moment Deflections cone cosp Mode*
(Kips) (Kip-In.) (Inches) Myvas Dueas
MH.II M(:onp AH--: ACOIp ExP' Ana.
J24 0. 248 251 15.5 18.6 1.01 1.20 T T
J25 25.0 302 338 12.8 10.2 1.12 0.80 c c
J26 50.0 415 412 0.94 0.86 0.99 0.92 c c
J27 75.0 490 506 0.85 0.79 1.03 0.93 c c
J34 75.0 475 491 0.72 0.59 1.03 0.83 c c
J15 50.0 1000 963 10.8 7.9 0.96 0.73 c c
Ji6 25.0 931 932 13.5 9.7 1.00 0.72 c c
J28 0. 1090 1205 13.5 14.9 1.11 1.10 c c
J29 25.0 1150 1261 11.2 11.3 1.10 1.01 c c
J30 50.0 1180 1241 12.9 10.7 1.05 0.83 c c
J31 75.0 1100 1160 7.3 6.7 1.05 0.92 c c
Avg 1.04 0.91
STD 0.05 0.14

Axial force acted at the plastic centroid for all beams.
>  For all beams a/d= 7.2.

€ € : Compression Flexural Failure

T : Tension Flexural Failure

1 Kip-In. = 0.113 KN-m

1l In. = 25.4 am
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Figure 52. Moment-Curvature and Load-Deflection
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145




significant observation can be made in regards to the effect of axial
load on the ductility of beam-columns. Members J24, J25, J26, and J27
have similar material and geometric properties, and vary only by the
magnitude of the axial force. The computed results indicate that
increasing the magnitude of the axial force reduces the ductility of
the element. Similar observation can be made when the result of beams
J15 and J16 are compared to one another. The computed moment-
deflection curves and the experimental measurements are reasonably
close for all cases.

C. ANALYSIS IN THE DYNAMIC DOMAIN

The analytical procedure for analysis of reinforced concrete
structural elements subjected to dynamic excitations consists of the
following steps:

1. Analysis for computing the complete moment-curvature of the
cross section based on the input material and geometric
properties.

2. Analysis for deriving the resistance function and the
deformed shape function of the reinforced concrete element,
based on the moment-curvature data and the boundary
conditions. Here, all necessary parameters of the equivalent
dynamic system i.e., mass factor, load factor, inertia and
support shear factors are computed and stored at every load
step.

3. Dynamic analysis of the structural element subjected to time
dependent forcing function using an equivalent SDOF system.
The information obtained in step two is utilized here for
evaluating the time dependent (and perhaps nonlinear)
flexural and the shearing response of the element.

The analytical procedure for analysis of reinforced concrete
beams subjected to localized impact loads is based on the experimental
result reported by Feldman and Siess in Reference 77. In that study five
simply supported reinforced concrete beam specimens, namely C-1, H-1, J-1,G-1,
and I-1 were subjected to suddenly applied dynamic loads. Adequate data were
not collected in two cases.

Due to partial failure of the laboratory instruments, the dynamic
loading data for beam C-1 was not recorded during the experiment.
Instead, the authors estimated the step pulse based on the data
collected from the chamber pressures and trigger settings in Reference .
77. Also, during the preparation for testing, beam I-1 was
accidentally loaded statically to almost 7.5 kips, enough to cause
extensive flexural cracks. In addition, during the dynamic testing of
beam I-1, the dynamic mid-span deflection exceeded the range of the
laboratory equipment and it was limited by a wooden block placed
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beneath the midspan point of the b=am. Therefore, the validity of the
recorded data after the contact time is highly questionable, since the
beam was resisted by the wooden compression block. .

Nevertheless, all five cases are analyzed here and the analytic
results, as obtained from the present approach, are compared to the
measured data for the magnitude and the time of occurrence of peak
midspan deflections, permaner.: (residual) deflection, and peak
dynamic support shear force. In addition, the experimental deflection-
time plots and reaction-time plots are compared with the analytic
curves. Additional analytic result, including the moment-curvature,
load-deflection, velocity and acceleration-time history plots are
presented for each case as well. - 4

The material and geometric properties of these four specimen are
given in Tables C-1, C-2 and C-3 in Appendix C and are described
briefly here. The beams had overall dimensions of 6 inches by 12
inches by 106 inches and were loaded by a concentrated dynamic load at
the midspan. These beams were reinforced with two Number 7 bars for
tension (bottom), two Number 6 bars for compression (p =2 percent
,p'=1.46 percent), and Number 3 stirrups were placed at 7 inches
intervals. The concrete compressive strength of each specimen (Table
C-1) is computed by averaging the two batches for each case, as
reported in Reference 77. With the exception of beam H-1, it can be
seen in Tables C-2 and C-3 that in many instances complete and
sufficient data for the specific properties of flexural reinforcement
was not provided in Reference 77. In that case, the average value of
the same property in the other beams is used in the computation. This
approximation is not expected to introduce any significant error in
the analysis, because all these specimen were built from the same
shipment of materials and cast at about the same time. In addition, no
data for the ultimate strength and strain of flexural reinforcement
was given in Reference 77. For the type of steel that was used in that
study (46.08 < fy < 48.30 and (0.0014 = ¢, < 0.0016), the ultimate
strength and strain values of steel is taken to be 72 ksi and 0.15
inches/inch, respectively.

The range of maximum initial measured strain rate was
approximately between 0.24 to 0.42 inches/inch/sec. for the tensile
reinforcement and between 0.21 to 0.43 inches/inch/sec. For the
concrete in compression. Using the minimum of these values and the
information provided earlier in Section III on the enhancement of
materials under dynamic conditions, a 25 percent enhancement on the
compressive strength of concrete, yield strength and the ultimate
strength of flexural reinforcement is used in the analysis of these
beans.

The applied load was measured continuously during the experiment
by a a calibrated dynamometer. In the present analysis, that
information is closely approximated by a piecewise multilinear curve.
The mass of a typical beam was computed using the average normal
weight for reinforced concrete (150 pcf). Lastly, 2 percent external
damping ratio was used in the analysis of five beams as presented

next.
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a. Analysis of Beam C-1

Since it was not possible to input the exact experimental
loadings, the multilinear loading function shown in Figure 53 is used
in the analysis which closely approximates the experimental dynamic
load applied to beam C-1 (Figure C-1 in Appendix C). Figure 54 depicts
the computed displacement-time history at the midspan of this beam.
The peak experimental displacement response of the beam, measured as
3.0 inches, was reached at 50 milliseconds (Figure C-2 in Appendix C).
These observations agree very closely with the analytical results,
where the peak displacement is computed as 3.1 inches at 45
milliseconds. In addition, The permanent deflection of this beam, 2.2
inches, compares very well with the analytical residual deflection of
2.4 inches. The computed resistance-displacement diagram for beam C-1
is shown in Figure 55.

There is also a reasonably good agreement between the measured
values for the dynamic reaction (support shear force) and the
analytical dynamic reaction using the procedure proposed in this
study. The peak dynamic force was measured as 19 kips at 15
milliseconds (Figure C-1 in Appendix C). The peak computed support
reaction is 17.4 kips and at 13.8 milliseconds (Figure 56).
Furthermore, the analytical reaction-time history shown in Figure 56
is not considerably different from the measured response (Figure C-1
in Appendix C), indicating for the effectiveness of the formulation
proposed in this study.

Plots of moment-curvature, load-deflection, velocity and
acceleration time histories for the midspan point of beam C-1 are i
presented in Figures C-3 through C-6 in Appendix C.

b. Analysis of Beam H-1

The analytical load-time history and the experimental impact
loading for beam H-1 are shown in Figures 57 and C-7,respectively. The

analytical midspan displacement response is shown in Figure 58.

Again the agreement between the peak measured displacement and the
peak computed displacement is very good. The maximum measured
displacement was 8.9 inches and recorded at 58 milliseconds (Figure C-
8 in Appendix C). In the analysis, the peak displacement of 8.5 inches
is reached at 62 milliseconds. The agreement between the experimental
and the analytical values for the residual deformation is also good.
The experimental value for the p:rmanent deformation was reported to
be 7.5 inches which compared well with the analytic result of 6.8
inches, as illustrated by the resistance-displacement plot shown in
Figure 59.

The measured and the computed results for the dynamic support
reaction of beam H-1 were also in agreement. The maximum measured
dynamic reaction was 19 kips and recorded at 16.7 milliseconds (Figure
C-7 in Appendix C). From Figure 60, it can be seen that the peak
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dynamic reaction of 19 kips is reached at approximately 11
milliseconds. By comparing the results in Figures 60 and Figure C-7,
equally good agreements between the computed and the measured -
reaction-time curves is also noticed for this beam.

The analytic results for the moment-curvature, load-deflection,
velocity and acceleration time histories for beam H-1 can be found in
Figures C-9 through C-12 in Appendix C.

c. Analysis of Beam J-1

Figures 61 and C-13 show the analytical and the experimental
loading functions for beam J-1. The experimental and the computed mid-
span deflections-time diagrams are given in Figures 62 and C-14,
respectively. The peak deflection obtained from the analytic model is
0.63 inches at 40 milliseconds. These values agree with the measured
data, 0.76 inches at at a time of 32 milliseconds, as shown in Figure
C-14. The computed permanent deflection for this beam is 0.32 inches
(Figure 63) which is very close to the measured residual displacement
of C.3 inches.

Figures 64 and C-13 show the analytic and the experimental result
for the dynamic shear force at the support. The maximum shear force at
the support was computed as 13.2 kips (Figure 64). This value does not
agree well with the peak measured shear force of 19 kips (Figure C-
13). But, the computed time to the maximum shear force is 21
milliseconds, which is nearly the same as the experimental time of 22
milliseconds. Figures C-15 through C-18 illustrate the results for
this case.

d. Analysis of Beam G-1 and I-1

Unforunately, because of an instrumentation failure, the
experimental load function for Beam G-1 was not recorded in Refereuce
77. Instead, the load pulse for this beam was estimated by the authors
in Reference 77 from chamber pressures and trigger settings data, as
shown in Figure C-19. The analysis for this beam was performed using
the estimated step pulse (Figure 65) and the computed midspan
displacement-time results are shown in Figure 66. Unlike the previous
cases, the analytic results for this case do not agree with the
measured data. The computed peak displacement of 1.9 inches (Figure
66) is considerably different from the measured peak deflection of 4.2
inches (Figure C-20). Similarly, the computed residual deflection of
0.71 inch disagreed with the measured value of 3.0 inches.

From the experimental loading data of the previous three cases,
i.e., beams C-1, H-1, and J-1, it seems that assuming a perfect
rectangular step pulse for beam G-1 was really not well-justified.
Moreover, because there is no reason to believe that the estimated
magnitude of the applied load for beam G-1 is the same as the actual
dynamic load applied to this beam, gross disagreement between the
analytic result and the measured data is not surprising. This example
shows that regardless of the analytic technique, inadequate
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description of the applied load can effectively induce gross errors in
the results. A correct knowledge of the applied load is a prerequ151te
for successful analysis of structures.

Figure 67 shows the analytic load for beam I-1, as obtained from
the experimental data given in Figure C-21. As mentioned earlier, the
experiment on beam I-1 was disrupted (to protect the equipment from
damage) by limiting the midspan deflection of the beam by a wooden
block placed directly below the midspan point. Therefore, the
experimental data recorded beyond that point (see beam hit stop in
Figure C-21), including the measured peak and the permanent
displacement, could not be considered valid. The result of the
analysis for this beam indicates the occurrence of a flexural failure
as a result of extensive crushing of concrete at a displacement of
approximately 9.5 inches at 65 milliseconds, as shown in Figure 68.
Interestingly enough, these values agree closely with the measured
deflection of 10 inches at a time of 72 milliseconds, when the beam
came in contact with the wooden block (Figure C-22). Therefore, it
would be reasonable to conclude that if the wooden block was not
present, the beam would have failed during the experiment.

Measured and analytical results for the peak displacement,
maximum response time, and the permanent deflections of the above five
beams are summarized in Table 4. It can be seen that there is good
agreement between the experimental data and the computed values for
all specimen of this test series with the exception of beam C-1, for
vhich an accurate description of the impact load was not available.
Considering the wide range of uncertain variables involved, the
agreement between the measured data and the computed values is a
convincing demonstration of the effectiveness of the present
procedure. Measured and computed results for the peak magnitude and
the response time of the dynamic reactions are listed in Table 5.

In view of the inherent limitations of an equivalent SDOF system, and
the uncertainties involved in the analysis, the results seem quite
satisfactory for all practical purposes.

2. Analysis of Reinforced Concrete Walls Subjected to Localized
Blast Loads

This analysis is based on the experiments conducted at the U.S.
Army Waterways Experiment Station, sponsored by the U.S. Air Force
Engineering and Services Center (Reference 78). In that study, a
number of one-half scale model tests were conducted against simulated
reinforced-concrete wall sections using cylindrical charges. These
tests were performed in two series. In the first series, six walls
were tested, two of which were transversely reinforced with dowels and
in one case, Test I-5, the experimental results were not provided in
Reference 78. Therefore, only structures I-1, I-2, and I-6 are
analyzed here. In the second series, the tests were mostly aimed
towards investigating methods to control concrete spalling. Therefore,
three of the walls used spall plates, two walls had berms of silty
sand placed against the exterior face, and the remaining of the walls
in this series had very deep cross sections, and thus, would not fall

within the assumptions and capablilities of the present approach.
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TABLE 4 RESULTS OF DYNAMIC ANALYSIS FOR BEAMS OF REFERENCE 77

Beam Peak Deflection Peak Response Time Permanent Deflection
(Inches) (Milliseconds) (Inches)
Measured Computed Measured Computed Measured Computed
c-1 3.0 3.1 50 45 2.2 2.4
H-1 8.9 8.5 58 62 7.5 6.8
J-1 .76 .63 32 40 .3 .32
G-1* 4.2 1.9 67 40 3.0 .71
I-1® 10. 9.5 72 65 —_— —_
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TABLE 5. RESULTS OF DYNAMIC ANALYSIS FOR BEAMS OF REFERENCE 77

Beam Peak Dynamic Reaction Peak Response Time
(Kips) (Milliseconds)
Measured Computed Measured Computed
c-1 19. 17.4 15. 13.8
H-1 19. 19. 16.5 11.1
J-1 19. 13.2 22. 22.
G-1* 21.5 22.1 12. 6.3
I-1% 20. 20.5 17.6 18.
; Computed results based on estimated load pulse

Beam deflection stopped by wooden block in experiment.
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Tables D-1 and D-2 in the Appendix provide the material and
gecmetric properties of the three walls, and Figures D-1 and D-2 show
the reinforcement detail of the three test structures analyzed here.
The wall slabs were reinforced symmetrically and had dimensions of 65
inches (165 cm) in length, 158 inches (400 cm) in width, and 12.6
inches (32 cm) in height. The reinforcement ratio was 0.01, 0.005, and
0.0025 for slabs I-1, I-2, and 1-6, respectively. Unfortunately,
sufficient data for some of the specific properties of flexural
reinforcement (i.e., strain at the initiation of work hardening and at
the ultimate) was not g_ven in Reference 78. Based on the yield data
for the reinforcement, thcse values are estimated as 0.025 and 0.25,
respectively. In addition, the ultimate stress, f , for tre
longitudinal reinforcement of beam I-1 was not provided and here it
vas assumed equal to the corresponding values in the other two slabs
(115 ksi). It must be noted that data given in Reference 78 was in
metric (SI) units and therefore, it had to be converted to the U.S.
customary units for the purpose of the computations.

In order to reduce the rigid body motion of the box-type test
structures, they were fastened to a reaction structures before
testing. The reaction structure consisted of an L shaped reinforced
concrete structure in which the test structure was placed, and six
large ouncrete filled blocks, as shown in Figure D-3 in Appendix D.
The :xplosive device used was the same for each test, and it was
placed vertically on the ground surface at some unspecified distance
from the test wall. Each test was instrumented to record the blast
pressure loading on the slab and structural motion data, including the
deflection of the wall slab at the midheight.

Although the same charge was used in all tests, there was a
considerable scatter in the recorded pressure data, particularly at
the high-pressure region on the lower half of the wall. The localized
peak pressure occurs almost at the midheight cf the bottom half of
the wall, and it varies significantly from one test to another as
shown in Figure D-4. There was also a tremendous amount of variability
in the distribution of the recorded pressure data at other times.
Figure D-5 shows the distribution of the pressures along the height of
the wall at various times, and Figure D-6 shows the spatial
distribution of the pressure at 0.6 millisecond (almost the average
arrival time for these cases) after the detonation. Due to the
uncertainties with regard to the magnitude and distribution of the
applied load, the use of advanced techniques for the computation of
the total applied force is really not justified. Instead, it was
decided to compute the magnitude and the duration of the applied force
based on the average recorded data, and simple assumptions with
respect to the spatial distribution of the applied pressures, as
presented next.

Since the peak pressures along the height of the wall do not
occur at the same time, the peak force can be obtained by
approximately evaluating the volume of the "pressure solid". The
"pressure solid" consists of one half of an elliptic cone (upper
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portion), and a wedge with a rectangular base (lower portion) as shown
in Figure D-6. The intensity of the applied pressure at the peak point
of the solid and at the base of the wall are taken from the average
recorded data as 58 and 50 Mpa, respectively (Figure D-4 in Appendix
D). Therefore, the average magnitude of the peak applied force can be
computed as follows:

1. Compute Volume 1 : The "pressure solid" is assumed as one half
of a cone with an elliptic base for which the lengths of the
major and minor axis are 1200 mm and 500 mm,respectively
(Figure D-6). '

V= (0.5)(0.333)(58) () (1200 mm)(500) =~ 18221 KN (150)

2. Compute Volume 2 : The pressure solid is a wedge with a
rectangular base area. The dimensions of the base are
approximately 2400 and 200 mm along the major and minor axis,
respectively (Figure D-6).

V, = (0.5)(0.5)(58+50) (200 mm) (2400 mm) = 12960 KN  (151)
3. Compute total applied force :
Fw=V, +V, =18221 + 12960 = 31181 KN = 7000 kips (152)

The centroid of the applied force is computed to be approximately 250
mm (10 inches) from the base of the wall.

The duration of the applied load is again taken from the same
average pressure data recorded on the walls. Referring to Figures D-7
and D-8 in Appendix D, the average duration of loading is
approximately the sum of the average duration of positive pressure
(approximately 1.5 milliseconds in Figure D-7 ) and the time
difference between the average time of measured arrival at the top and
the bottom of the wall (approximately 0.5 milliseconds). Thus, the
average loading duration of approximately 2 millisecond is assumed in
the analysis with a triangular variation of force with time, as shown
in Figure 69.

Clearly, the preceding computations is only an approximation of
the actual applied load function. But, considering the uncertainties
associated with the magnitude and the distribution of the applied
load, employing any other complex technique does not necessarily seem
to present a more accurate formulation. Nevertheless, in the future
one could consider employing a reliable spatial pressure-time
function.

The procedure for the analysis of these walls followed along the
same line as before. The boundary conditions at both ends of the wall
were assumed to by fully restrained against rotation and translation.
Because of the high rate of loading, a 30 percent enhancement on the
stress properties of the reinforcing steel and concrete was assumed.
The mass of a typical wall was computed using the average normal
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weight for reinforced concrete (150 pcf). And, 2 percent external
damping ratio was used in the analysis of the three walls, as
presented next.

The analytic results for each wall are presented by midspan
deflection-time and velocity-time histories for which the critical
values are compared with the available experimental data. Additional
analytic results including moment-curvature relationship, load-
deflection diagram, resistance-displacement curve, acceleration-time
history, support shear forcing function, and support shear resistance-
displacement diagram are provided in Appendix D for each case.

1. Analysis of Wall I-1 -

Figures 70 and 71 show the results for the analytical deflection
and velocity-time histories at themidspan of wall I-1. The peak
deflection obtained from the analytic model is 0.34 inches at 3.2
milliseconds. These values are in fair agreement with the measured
data, 0.5 inch at a time of 3.2 milliseconds, as shown in Figure D-9.
The computed permanent deflection for this beam is 0.13 inches which
agrees closely with the measured residual displacement of 0.13 inches.
The peak computed velocity for this beam is 237 inches/sec. which is
also in good agreement with the experimental value of 256 inches/sec.

2. Analysis of Wall I-2

Figures 72 and 73 present the analytic result of displacement-
and velocity-time histories at the midspan of Wall I-2. The measured
and the computed results for the peak displacement are in good
agreement. The maximum measured displacement was 0.85 inches and
recorded at 6 milliseconds (Figure D-10 in Appendix D). From Figure
72, it can be seen that the computed peak deflection of 0.72 inch was
reached at approximately 4.2 milliseconds. The computed permanent
deformation of 0.38 inch was also in good agreement with the
experimental data of 0.33 inch. The peak velocity of this beam was
measured as 315 inches which compared well with the computed value of
358 inches/sec (Figure 73).

3. Analysis of Wall I-6

The computed deflection and velocity responses of wall I-6 are
given in Figures 74 and 75, respectively. The agreement between the
peak measured and computed midspan deflection is very good in this
case. The maximum measured displacement was 1.52 inches and recorded
at 12.4 milliseconds (Figure D-11 in Appendix D). In the analysis, the
computed peak displacement was 1.52 inches, but it was reached at 6.7
milliseconds. The agreement between the experimental and the analytic
values for the residual deformation is also good. The experimental
value for the permanent deformation was reported to be approximately
0.66 inch which compared well with the analytic result of 0.68 inch.
The maximum computed velocity of 394 inches/sec. also compared well
with the measured value of 479. inches/sec.
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Table 6 presents the summary of the analysis for the three walls
examined here. Considering all the uncertainties involved with the
input information data and all assumptions employed in the present
approach, the analytic results are generally within reasonable
agreement of the experimental values. It can be seen that the peak
deflection response values are close for all three walls. Permanent
structural deflection is a good measure of the structural damage, and
in all three cases the computed and the measures residual deflections
compare well with one another. Furthermore, the fact that the computed
peak response time is always less that the measured value is an
indication that the assumed approximation for the time and spatial
distribution of forcing function is not quite consistent with the
actual loading data. In general, the experimental and the analytic
values for the peak velocity response are also in good agreements.

Unfortunately, because of stress wave transmission through the
concrete, adequate data on the measured structural accelerations were
not recorded during the tests. However, the computed mid-span
acceleration for walls I-1, I-2, and I-6 are provided in Figures D-15,
D-21, and D-27. In addition, experimental observations in Reference 78
indicated that in all cases structural shearing response was highly
localized and mostly confined to the lower region of the wall, near
the floor connection. The analytic results for the support shearing
deformation, based on Hawkins direct shear resistance mechanism as
discussed in Section III, suggest a similar conclusion as reflected in
Figures D-16 and D-17 for I-1, Figures D-22 and D-23 for I-2, and
Figures D-28, D-29 for I-6 in Appendix D. But, since no experimental
data on the shear deflections were collected, quantitative comparisons
between test values and the computed results are not possible.
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TABLE 6. RESULTS OF DYNAMIC ANALYSIS FOR WALLS OF REFERENCE 78

Wall Peak Deflection Peak Response Time Permahent Deflection
(Inches) (Milliseconds) (Inches)
Measured Computed Measured Computed Measured Computed
I-1 0.50 0.34 4.5 3.2 0.13 0.13
I-2 0.85 0.72 6.0 4.2 0.33 0.38
I-6 1.52 1.52 12.4 6.7 0.66 0.68

TABLE 6 (Continued)

Beam Peak Mid-Span Velocity -
(In./ Sec.)

Measured Computed

I-1 256 235
I-2 315 358
I-6 394 479.
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SECTION V
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

The analytical procedure developed herein is aimed at a better
understanding of reinforced concrete structural elements and complete
systems under severe localized loads in the static and dynamic
domains. Furthermore, the goal was to develop a reliable and efficient
computational approach for the analysis of such systems.

1. Static Domain

In the static domain, modified analytical/empirical methods
are developed for studying the behavior of reinforced concrete beams
and beam-columns under the combined influence of flexure, shear, and
axial compressive forces. The computational procedure employs explicit
relationships between these mechanisms for evaluating structural
element behavior at any stage of its existence. The numerical
procedure consists of two parts. In the first part, the moment-
curvature diagram of the cross section is computed, based on the
assumption of linear strain distribution in the cross section, and
accurate description of stress-strain relationships for the materials,
The moment-curvature relationship was modified to represent the
influence of shear and axial forces on the flexural response. The
formation of plastic hinges, and the implementation of rational
failure criteria for defining the behavior of the structural element
at the ultimate condition were also considered. In the second part,
the load-deflection relationship and the deformed shape of the
structural element are computed from the modified moment-curvature
formulation by numerical integration. Here, the development of the
analytical technique was aimed towards obtaining a quantitative
description of the behavior of the structure from the onset of loading
to the ultimate failure condition. The proposed step-by-step
computational procedure accounts for the nonlinear distribution of
curvatures on the span as well as the possibility of nonlinearities
associated with the support conditions.

The theoretical/empirical model created for the influence of
transverse reinforcement on the flexural behavior of the element
considers the behavior of deep and slender beams. The present shear
model is primarily based on the truss mechanism analogy, and extensive
test results, as reported in the literature.

A central issue addressed herein was the adoption of rational
failure criteria for defining the transition of each structural member
into the ultimate capacity stage. For ductile (under-reinforced)
members, these criteria were characterized by the ultimate strains of
reinforcement, unconfined, and confiuned concrete. For brittle cases,
the peak flexural moment was employed for defining the transition into
failure. Attention was given to a careful definition of the boundary
conditions (linear, or nonlinear) which represented the effects of the
adjoining structural elements on the response of the individual
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member. Also, the formation of plastic hinges was monitored closely in
order to capture the behavioral variations through the nonlinear
domain.

2. Dynamic Domain

The concept of an equivalent SDOF system was adopted for the
dynamic analysis of reinforced concrete elements subjected to short
impulsive excitations. The approach for computing load-deflection
relationships was modified for the dynamic analysis to include rate
effects on material properties, -and to incorporate mechanisms for
energy dissipation and stiffness deterioration of the reinforced
concrete element. In addition, the study treated the derivation of the
SDOF parameters, such as mass factor, load factor, and the inertia
factor by computing them from the deflected shape at every step for
any combination of transverse and rotational boundary conditions. This
approach allows one to overcome the computational difficulties
encountered with material nonlinearities in dynamic analysis.

Another important topic treated herein was the influence of
direct shear on the behavior of the element when subjected to high
intensity dynamic excitations. For this purpose, an approximate
procedure has been developed for computing the dynamic transverse
forces at critical locations. These forces were combined with an
existing direct shear resistance function, and implemented into the
second SDOF system for the evaluation of the shearing response at
critical locations. Here too, failure criteria were employed for
capturing the ultimate response.

3. Results

The analytical/numerical model was employed for analyzing 29
beams and beam-columns under static conditions. These cases were
examined experimentally be other investigators and consisted of nine
beams that were tested by Burns and Siess (Reference 1), nine beams
from the experimental investigation by Bresler and Scordelis
(Reference 36), and 11 beam-columns from an experimental study by
Yamashiro and Siess (Reference 17). All 29 structural elements
considered in this study were simply supported rectangular reinforced
concrete members loaded laterally at theiraidspan by a single
concentrated force. Numerical results at collapse for the 29 beams
indicated that the mean ratio of the computed to the measured collapse
load is 0.99 with a deviation of about 5 percent. The mean ratio of the
computed deflection to the measured deflection at collapse was 0.95
with a deviation of 12:percent. The predicted moment-curvature and load-
deflection relationships for these structural elements illustrate that
the present approach seems to simulate the experimental observations
accurately.

To demonstrate the effectiveness of the analytical model for
the dynamic problems, two groups of experimental dynamic cases were
also analyzed. The first group consisted of five reinforced concrete
beams subjected to localized impact loads that were tested by Feldman
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and Siess (Reference 77). In general, the results for these beams were
in good agreement with the measured experimental data. In nearly all
cases, the predicted peak'midspan dynamic displacement and the .
residual (permanent) deflection agreed closely with the available
reported data. In addition, the computed and measured results for
dynamic reactions, particularly the peak magnitude of the support
shear force, were adequately close. This is an apparent indication of
the effectiveness of the approximate procedure developed for computing
the dynamic transverse force at the supports.

The second group of elements consisted of three reinforced
concrete wallc that were subjected to nearby cylindrical explosive
charges (Reference 78). Because of the uncertain nature-of loading as
such, the agreement between the computed values with the measured
responses were not as close as the beams of the first group. In two
cases, the analytical peak midspan deflection compared well with the
measured data, and the measured and computed values for the permanent
mid-span deflections and velocities compared reasonably well with the
measured values in all cases.

B. CONCLUSIONS

The following conclusions are drawn as a result of the present
study.

1. The analytical/numerical method presented here can be used
successfully for predicting the complete load-deflection
behavior of rectangular reinforced concrete structural elements
under the combined action of bending, shear and axial force.
The analytical results indicated that the incorporation of the
combined effects of bending, shear and axial compressive force
into such simple and yet accurate model can provide results
that are in good agreement with the available experimental data
at all stages of loading up to failure. The overall adequacy of
results confirms the assumptions regarding the stress-strain
relationships for concrete and steel employed in the present
analysis. The present approach can be employed with similar
success for the analysis of two-way reinforced concrete slabs,
as demonstrated in other studies (References 54 through 57).

2. The proposed behavioral model for the effect of shear in
reducing the ultimate flexural capacity of the beams improved
the results significantly. It was noticed that the influence of
shear reinforcement on the flexural capacity of slender
rectangular and T reinforced concrete beams was represented
more accurately as a function of Ja/d, while for deep
rectangular beams it seem to depend on a/d. This could be an
important fact which further illustrates the difference in
behavior between slender and deep beams. Results were in good
agreement with experimental findings and reconfirmed that the
lack of an adequate amount of web reinforcement would reduce
the ultimate strength of the member.
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3. The method seems to simulate accurately experimental load-
deflection data for reinforced concrete beams and beam-columns.
The adequacy of the results for the 29 cases examined here is a
convincing indication of the assumptions about the failure
criteria and the formation and propagation of plastic hinges
employed in the present model. In addition, inclusion of the
second order nonlinear effect caused by the axial compressive
force enhanced the accuracy of the numerical results for the
beam-columns.

4. The application of the method developed in this study to
analyzed reinforced concrete elements under impulsive dynamic
excitation has also been proven effective. The equivalent SDOF
is a simple, inexpensive, and accurate tool for evaluation of
the structural response, if accurate behavioral models are
employed. In nearly all cases examined here, the predicted
structural damage, as reflected by the permanent deformations,
agreed closely with the experimental observations. Thus,
demonstrating the validity of the proposed dynamic resistance
function. In general, the agreement between the measured and
the predicted peak displacements was also good, indicating that
the proposed approximate procedure for computing the parameters
of the nonlinear SDOF system is indeed effective.

5. Considering the inherent limitations in employing a SDOF
system, the proposed approximate model for predicting the
dynamic support shear forces at the supports is effective. The
agreement between the peak magnitude of the measured and
predicted shear forces shows that the approximate approach can
provide satisfactory results for all practical purposes.

6. The procedure developed here for computing the response of
reinforced concrete structural elements can be used with great
confidence, so long as the magnitude and the time variation of
the applied dynamic load is known with reasonable certainty.
Whenever experimentally applied loads were known, agreements
between the measured and computed response were very close. On
the other hand, for cases with less reliable loading
information, the computed results deviated from the measures
values.

C. RECOMMENDATIONS FOR FUTURE STUDIES

In order to develop more reliable analysis and design method, the
following recommendation are suggested as ways that the analytical
model could be improved.

1. Experiments should be conducted to obtain a more accurate
description of the localized blast loads. Presently, the
available information on the pressures generated from the
detonation of cylindrical charges reflect considerable scatter
in the data.
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. Controlled test series should be performed for studying the
mechanics of failure under localized loads. The issues to be
addressed should include the effect of concrete strength,
transverse reinforcement, bond slip of the reinforcement, rate
of straining, and the loading condition on the local shear
resistance of the structural elements.

. The development of reliable structural models for predicting
the response of connections when the structural element is
subjected to high intensity dynamic excitation is very
important. That information can subsequently be combined with
the present formulation in order to obtain a more realistic
assessment of the complete structural system response.

. The development of similar approximate techniques for analysis
of other types of structural elements, such as arches,
cylinders, closures, etc., is also important. In addition, the
present approach could be adopted for studying the equipment-
structure interaction under high intensity dynamic pressures.
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DIAGONAL TENSION FAILURE DATA
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TABLE A-1, RECTANGULAR DEEP BEAM PROPERTIES AND THE )
INCLINATION OF THE CONCRETE COMPRESSION DIAGONALS

AT ULTIMATE
Beam fe p"E" o* a p*-:- o
(psi)  (psi) d

)18 § 3388 180 3.09 1.95 6§.02 - 16.70
mn2 3650 180 2.97 1.98 5.97 18.80
R3 3435 180 3.07 1.98 5.99 16.71
B4 3380 180 3.09 1.98 6.02 17.75
BlS 3s70 180 3.01 1.98% 5.87 19.80
Cc11 3720 170 2,79 1.57 4,38 16 .47
Ci2 igo 170 2.75 1.57 4,32 14.04
C13 3475 170 2.88 1.57 4.52 18.26
1 3430 330 5.63 1.57 8.84 . 29.25
Q2 3625 330 5.48 1.57 8.60 27.92
Q4 3910 330 5.27 1.57 8.27 29.25
D16 4010 170 2.68 1.57 5.22 20.81
D17 4060 170 2.67 1.96 5.22 19.80
D18 4030 170 2.68 1.96 5.22 19.21
D26 4280 220 3.36 1.96 8.13 27.02
D27 4120 220 3.42 2.42 8.28 29.25
D28 3790 220 3.57 2.41 8.64 27.02
D41 3970 180 2.85 2.42 7.06 22.29
D42 3720 180 2.98 2.42 7.14 24.22
D43 3200 180 3.18 2.42 7.70 22.78
Ds1 4020 130 2.08 2.42 4.96 19.80
DS52 4210 130 2.00 2.42 4.84 18.77
D53 3930 130 2.07 2.42 5.00 18,77
A1l 35758 180 3.01 2.34 7.04 22.30
A12 3430 180 3.07 2.34 7.18 23.30
Al3 3398 180 3.08 2.34 7.21 22.30
Al4 3590 180 3.00 2.34 7.02 22.30
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TABLE A-2 RECTANGULAR SLENDER BEAM PROPERTIES AND THE
INCLINATION OF THE CONCRETE COMPRESSION DIAGONALS
AT ULTIMATE

Beam fé O"fy" )
(psi) (psi)

»
N1
he]

»

n4ml
Q

[ ]

Al 3490 47.2 0.80 3.92 1.58 11.17
A2 - 3520 47.6 0.80 4.93 1.78 10.76
A3 - 5080 47.2 0.66 6.91 1.73 11.17
Bl 3590 69.2 1.15 3.95 2.28 12.84
® 3360 70.0 1.21 4.91 2.59 14.37
B3 5620 70.0 0.93 6.95 2.45 16.08
c1 4290 93.9 1.43 3.95 2.84 16.33
Q 3450 95 .2 1.62 4.93 3.60 15.99
c3 5080 93.9 1.32 6.98 3.49 18.58
RS 3870 83.5 1.34 3.36 2.46 15.63
R9 4290 167 2.55 3.36 4.67 23.09
R10 4295 83.5 1.27 3.36 2.33 16 .50
ni 3800 83.3 1.35 3.36 2.48 14.00
R7 1850 83.5 1.94 3.3¢6 3.56 17.70
R8 4540 8.5 1.24 3.36 2.27 14.77
ns 4350 167 2.52 3.36 4.62 20.42
ro 6230 83.5 1.06 3.36 1.94 13.92
2 4280 83.5 1.28 3.36 2.33 15.63
Cc305-D0 3770 125.1 2.04 3.00 3.53 20.67
C310-D10 3520 250.2 4.22 3.00 7.30 31.56
C310-D20 3560 250.2 4.19 3.00 7.26 30.22
J12 4800 305.5 4.36 5.14 9.80 34.61
J14 4500 305.5 4.55 5.14 10.32 36.90
20 4380 136.0 2.06 5.14 4.65 19.21
IS 5000 305.5 4.32 4.00 8.64 34.92
J6 . 5160 308.5 4.25 4.00 8.50 35.79

J22 4420 136.0 2.04 4.00 4.08 18.22




TABLE A-3. RECTANGULAR DEEP BEAM PROPERTIES AND THE
INCLINATION OF THE CONCRETE COMPRESSION DIAGONALS

AT ULTIMATE
” Y
Beam £ D"fy o* _3_ p* % a
(psi) (psi)
A2 4235 99 1.52 2.50 2.41 13.39
A3 4360 210 3.18 2.50 5.03 18.60
M 4145 39 6.10 2.50 9.56 28.20
AS 3818 630 10.20 2.50 16.13 37.23
AS 3720 900 14.76 2.50 23.33 42.82
B 4018 210 3.38 3.38 6.09 19.87
2 4030 99 1.56 4,25 3.21 14.94
c3 3500 210 3.55 4.28 7.32 20.66
c4 3730 393 6.43 4.25 13.27 30.58
cs 4415 630 9.48 4.25 19.58 39.40
B2 2200 99 2.11 2.50 3.33 15.30
E3 1980 210 4,72 2.50 7.46 27 .41
E4 1945 393 8.91 2.50 14.09 36.15
ES 2478 630 12.66 2.50 20.02 43.75
F3 65158 210 2.60 2.50 4.11 16.56
G3 3800 277 4.49 2.50 7.10 21.26
G4 3830 416 6.67 2.50 10.55 26 .87
Gs 3790 693 11.26 2.50 17.80 37.11
1 4050 83.8 1.31 3.36 2.40 11.47
3 3990 83.58 1.32 3.36 2.42 12.03
T4 4710 83.s 1.21 3.36 2.22 11.50
Y] 4890 167 2.39 3.36 4.38 17.70
T10 4090 55.7 0.87 3,36 1.60 9.73
T13 1850 83.$ 1.94 3.36 3.56 13.93
™2 4980 83.5 1.18 3.36 2.17 11.51
pvX; 7840 83.8 0.94 3.36 1.73 11.00
31 4495 83.5 1.25 3.36 2.29 13.24
T33 5340 167 2.28 4.5 4.85 22.16
by 3970 83.5 1.32 3.46 2.46 11.51
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INPUT PROPERTIES AND RESULTS FOR ANALYSIS IN THE STATIC DOMAIN
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TABLE B-1. PROPERTIES OF MEMBERS ANALYZED STATICALLY , GROUPS 1,2;3

Beam f'. Width Depth Length P p' P ..., Stirrups
psi in. in. in. L] L Kips
Group 1 .
J5 5000 8.0 18.0 144 1.10 0.61 0 #3 @ 6.00"
Jé6 5160 8.0 18.0 144 1.10 1.10 0 #3 @ 6.00"
J8 4680 8.0 10.0 144 1.98 1.98 0 #3 @ 6.00"
J13 4800 8.0 14.0 144 1.41 1.41 0 #3 @ 6.00"
J14 4500 8.0 14.0 1las 1.41 0.79 0 #3 @ 6.00"
J17 3900 8.0 10.0 144 1.98 1.98 0 #3 @ 6.00"
J18 4410 6.0 10.0 144 2.63 2.63 0 #3 @ 6.00"
J20 4380 8.0 14.0 144 1.41 1.41 0 #3 @ 6.00"
J22 4420 8.0 18.0 144 1.10 1.10 0 #3 @ 6.00"
Group 2
Al 3490 12.1 18.0 144 1.81 0.180 O #2 @ 8.25"
A2 3520 12.0 18.0 180 2.28 0.182 0 #2 @ 8.25"
A3 5080 12.1 18.0 252 2.73 0.182 O #2 @ 8.25"
Bl 3590 9.1 18.0 144 2.43 0.243 O #2 @ 7.50"
B2 3360 9.0 18.0 180 2.43 0.243 O #2 @ 7.50"
B3 5620 9.0 18.0 252 3.06 0.245 O #2 @ 7.50"
€1 4290 6.1 18.0 144 1.80 0.361 © #2 @ 8.25"
C2 3460 6.0 18.0 180 3.66 0.366 O #2 @ 8.25"
€3 5080 6.1 18.0 252 3.63 0.363 O #2 @ 8.25"
Group 3
J15 4400 8.0 10.0 144 1.98 1.98 50O #3 @ 6.00"
J16 4550 8.0 10.0 144 1.98 1.98 25 #3 @ 6.00"
J24 5000 6.0 10.0 144 0.67 0.67 0 #3 @ 6.00"
J25 5050 6.0 10.0 144 0.67 0.67 25 #3 @ 6.00"
J26 4600 6.0 10.0 144 0.67 0.67 50 #3 @ 6.00"
J27 4920 6.0 10.0 144 0.67 0.67 75 #3 @ 6.00"
J28 5020 6.0 10.0 144 3.33 3.33 0 #3 @ 6.00"
J29 4410 6.0 10.0 144 3.33 3.33 25 #3 @ 6.00"
J30 4500 6.0 10.0 144 3.33 3.33 50 #3 @ 6.00"
J31 4280 6.0 10.0 144 3.33 3.33 75 #3 @ 6.00"
J34 4520 6.0 10.0 144 0.67 0.67 75 #3 @ 3.00"
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TABLE B-2.PROPERTIES OF TENSION REINFORCEMENT, GROUPS 1,2,3

Beam Size f_ <, €en £, e, £, €er

psi & L psi & psi %
Group 1
J5 2 #8 45.1 0.195 1.77 73.7 16.3 69.2 19.5 °
J6 2 #8 46.2 0.178 1.84 73.6 15.0 68.5 18.7
J8 2 #8 45.4 0.178 1.92 72.1 16.3 67.0 18.8
J13 2 #8 45.6 0.188 1.61 73.3 15.0 69.2 18.8
J14 2 #8 47.1 0.183 1.75 74.0 15.0 69.2 17.5
J17 2 #8 46.9 0.188 1.69 73.6 15.0 70.5 18.8
J18 2 #8 45.4 0.191 1.58 73.2 15.0 69.2 17.5
J20 2 #8 45.8 0.185 1.76 71.8 16.3 65.4 18.3
J22 2 #8 46.2 0.181 1.68 73.4 15.0 69.2 17.5
Group 2
Al 4 #9 80.5 0.255 0.35 137. 8.33 110. 13.0
A2 S #9 80.5 --c-cccceccaaaa. same ------ce-v--ece-=
A3 6 #9 80.1 --cecccccccanaan Same ----cec-v-ce--==
Bl 4 #9 80.5 --cccecccccea-a. same ---------c---c--
B2 4 #9 80.5 --cecccncccce-as SAMe ---c-cc-cevnmonne
B3 S #9 80,1 -ccceccecenccanan SAM@ =~=-<=-ce-cmcmncae
ci 2 #9 B0.5 -eccececccaanaan Same -------c-ccca---
c2 4 #9 80.5 cccvecmeccnccaan sgme -------<-c-------
c3 4 #9 B0.5 --ccccceccecaa.. S8Me ~--~----cececnc=
Group 3
J15 2 #8 46.9 0.170 1.57 75.3 14,5 71.8 17.5
J16 2 #8 45.9 0.150 1.68 72.8 15.0 67.9 18.8
J26 2 #4 48.5 0.180 1.61 77.8 16.0 68.1 24.1
J25 2 #4 49.2 0.175 1.80 78.8 17.0 73.5 19.5
J26 2 #4 49,9 0.175 1.44 81.9 16.0 71.9 17.4
J27 2 #4 50.0 0.175 1.50 80.1 15.5 68.5 19.9
J28 2 #9 46.9 0.160 1.53 77.6 17.0 76.0 19.9
J29 2 #9 48.8 0.180 1.36 80.2 16.0 75.8 24.3
J30 2 #9 47.0 0.150 11.62 77.5 16.0 75.0 17.9
J31 2 #9 48.3 0.145 1.39 78.3 18.0 74.5 24.3
J346 2 #4 48.8 0.175 1.40 81.2 14.0 73.5 17.0
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TABLE

B-3.. PROPERTIES OF COMPRESSION REINFORCEMENT, GROUPS 1.2.5

* Same for Beams Al,

A2,A3,B1,B2,B3,C1,C2,C3
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Beam Size f, y LI £, € P P
psi % % psi % psi %

Group 1

JS 2#6 48.9 0.175 1.22 82.6 12.5 78.4 13.8
J6 2 #8 46.4 0.192 1.73 75.0 15.0 69.3 19.5
J8 2 #8 45.5 0.162 1.73 72.3 15.0 66.6 18.8
J13 2 #8 46.0 0.173 1.98 71.8 15.0 66.7 18.8
Ji4 2 #6 50.0 0.170 1.22 81.2 12.5 74.4 ~----
J17 2 #8 46.8 0.188 1.55 74.9 15.0 70.5 18.8
J18 2 #8 47.1 0.191 1.68 74.7 15.0 70.5 17.5
J20 2 #8 46.5 0.180 1.74 73.7 15.0 69.2 18.8
J22 2 #8 46.4 0.161 1.83 72.3 15.0 66.6 17.5
Group 2

Al* 2 #4 51.0 0.18 1.38 83.8 16.9 75.0 18.5
Group 3

J15 2 #8 47.3 0.160 1.57 75.3 15.0 71.8 18.1
J16 2 #8 44.7 0,150 1.69 71.4 15.0 67.9 18.8
J24 2 #4 47.8 0.175 1.55 76.9 17.5 65.2 22.8
J25 2 #4 49.2 0.175 1.77 78.0 15.5 68.0 22.3
J26 2 #4 49.0 0.170 1.42 80.3 16.0 69.0 20.6
J27 2 #4 50.1 0.175 1.48 81.3 18.0 69.7 21.4
J28 2 #9 46.7 0.170 1.62 77.6 17.5 75.0 23.4
J29 2 #9 48.6 0.160 1.50 80.4 15.6 76.2 25.0
J30 2 #9 47.2 0.145 1.00 80.2 15.8 75.0 24.1
J31 2 #9 47.9 0.160 1.44 80.2 18.7 75.5 24.5
J28 2 #4 50.3 0.175 1.40 8l1.9 16.0 74.0 20.4




TABLE B-4. MOMENT-CURVATURE AND LOAD-DEFLECTION OUTPUT FOR BEAM J8

MEMBER NAME
OUTPUT FILE FOR ORIGINAL M-C

OUTPUT FILE FOR CORRECTED M-C (IF ANY)

TENSION STEEL DATA
YIELD STRESS
ULT. STRESS
ELASTIC STRAIN :
STRN-HARD. STRAIN :

: J-8
: DUMP1
: DUMP2

45400.00000000
72100.00000000
1.78000005E-03
1.92000009E-02

ULT. STRAIN 0.16300000

FRACTURE STRAIN 0.18799999

NUMBER OF BARS 2

BAR SIZE T # 8
COMPRESSION STEEL DATA

YIELD STRESS 45500.00000000

ULT. STRESS 72300.00000000

ELASTIC STRAIN : 1.62000000E-03

STRN-HARD. STRAIN : 1.73000004E-02

ULT. STRAIN 0.15000001

NUMBER OF BARS 2

BAR SIZE T # 8
TRANSVERSE REINFORCEMENT DATA

YIELD STRESS 50000.00000000

SPACING OF TIES 6.00000000

BAR SIZE L # 3

CLOSED RECT. TWO LEGGED TIES ASSUMED

CONCRETE DATA

UNIAXIAL CYLINDER STRENGTH
GEOMETRICAL DATA

BEAM WIDTH

BEAM HEIGHT

BEAM EFFECTIVE DEPTH

DEPTH OF COMPR. REINFORCEMENT :

SIDE COVER(CLEAR TO STIRRUPS)
GENERAL DATA

AXIAL FORCE

POINT OF APPL. OF AX. FORCE
(FROM TOP FIBERS)

SHEAR SPAN (A)

EXPERIMENTAL MOMENT

EXPERIMENTAL CURVATURE

NUMBER OF DIV. IN ELAS. RANGE :
NUMBER OF DIV. IN YIELD PLATEU:

NUMBER OF DIV. IN STRN-HARD

4680.00000000

8.00000000
12.00000000
10.00000000

2.00000000

1.50000000

0.00000000E-01
0.00000000E-01

72.00000000
878.00000000
0.00000000E-01

5

20

30

ENHANCEMENT FACTOR FOR DYNAMIC

ANALYSIS (IF USE SDOF)

1.00000000

CODE KEY TABLE (3RD COLUMN IN M-C TABLE)

CODE = 1 : ANY POINT

-2 :

EXPERIMENTAL MOMENT REACHED
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111
VNV W

MOMENT-CURVATURE TABL

: TENSION STEEL AT FRACTURE

: COMPRESSION STEEL AT ULTIMATE

: ULTIMATE CONCRETE STRAIN REACHED

: YIELD STRAIN IS REACHED

: STRAIN HARDENING STRAIN IS REACHED

CURVATURE MOMENT CODE STL-STRAIN TEN-FORCE

MFEE

.000000
.000054
.000109
.000165
.000221
.000278
.000386
.000492
.000598
.000703
.000811
.000918
.001026
.001134
.001243
.001352
.001460
.001569
.001677
.001786
.001895
.002004

.002242
.002351
.002482
.003119
.003734
.004347
.004960
.005570
.006178
.006784
.007390
.007994
.009262
.009978
.010688
.011403
.012124

[eNeNeNoRoNeNelleNeNeoleReNoNoNoNoNoNoBoNoReNeoleNeNoleNeo oo NeNoeNeNoNoeNeNoNoNoNoNel

.002133 -

0. 1 0.0000 0.
124, 1 0.0004 14346.
2648, 1 0.0007 28693.
371, 1 0.0011 43039,
493. 1 0.0014 57386.
614. 7 0.0018 71732.
622. 1 0.0027 71732.
627. 1 0.0035 71732.
631. 1 0.0044 71732.
634, 1 0.0053 71732.
637. 1 0.0061 71732.
639. 1 0.0070 71732.
639. 1 0.0079 71732,
640. 1 0.0087 71732.
641, 1 0.0096 71732.
641. 1 0.0105 71732.
6461, 1 0.0114 71732.
640. 1 0.0122 71732.
640. 1 0.0131 71732.
639. 1 0.0140 71732.
639. 1 0.0148 71732.
638. 1 0.0157 71732.

©617. 1 0.0166 71732.
617. 1 0.0175 71732.
617. 1 0.0183 71732.
599. 9 0.0192 71732.
647. 1 0.0240 79231.
693. 1 0.0288 84985.
730. 1 0.0336 89519.
759. 1 0.0384 93167.
783. 1 0.0432 96152.
803. 1 0.0480 98627.
819. 1 0.0528 100702.
83, 1 0.0575 102457.
845. 1 0.0623 103953.
842, 1 0.0671 105234,
850. 1 0.0719 106338.
856. 1 0.0767 107292.
g61. 1 0.0815 108118.
866. 1 0.0863 108836.
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.0000
.4660
.4960
.5300
.5670
.6070
.1320
.8440
.6520
.5150
.4310
.3700
.3240
.2890
.2620
.2390
.2190
.2020
.1880
.1760
.1660
.1560
.2250
.2140
.2030
.2630
.3081
L2911
.2759
.2628
.2498
.2366
.2236
.2126
.2016
.7516
.7916
.8216
.8516
.8816




COO0O0O0OO0OD0DO0DO0OO0O0ODODOOODODO

.012999
.013781
.014596
.015380
.016055
.016741
.017413
.018083
.018765
.019431
.020096
.020774
.021435
.022095
.022772
.023428
.024083

868,
870.
871.
873.
875.
878.
880.
882.
884.
88s.
886.
888.
888.
889.
889.
889.
898.

W o e e e 1 R e e e e

’

0000000000000

.0911
.0959
.1007
.1055
.1103
.1151
.1199
.1247
.1294
L1342
.1390
.1438
.1486
.1534
.1582
.1630
.1678
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109459,
110000.
110470.
110877.
111228.
111529.
111786.
112004.
11218s.
112335.
112456.
112550.
112620.
112667.
112695.
112704.
112695.

WWWWWWWWLWwWwWwWwWwwwwwNn

.9916
.0416
.1016
.1416
.1316
.1266
.1166
.1066
.1016
.0916
.0816
.0766
.0666
.0566 -
.0526
.0426
.0326




ECHO INPUT FILE FOR BEAM : J-8

MOM-CURV FILE (ORIGINAL)
MOM-CURV FILE (CORRECTED)
OUTPUT FILE NAME

LENGTH OF THE BEAM

LOAD POINT FROM LEFT END
NUMBER OF ELEMENTS
INITIAL LOAD

LOAD INCREMENT

" " AFTER HINGE FORMATION
CONVERGENCE FACTOR

BOUNDARY CONDITION AT END 1 =
BOUNDARY CONDITION AT END 2 =

: DUMP1l
: DUMP2
: DUMP3

144.00000000
72.00000000

SS
Ss

60

1.00G00000
2.00000000
0.50000000
5.00000007E-02

LOAD-DEFLECTION

TABLE

ISTEP ITER LOAD DEFLECT ICODE MAX DEFLECT

MASS

INERTIA MOMENT

AT CENT VALUE LOC FACTOR FACTOR AT LOAD
PDEL
1 0 0.0 0.000 1 0.000 0.0 0.486 0.625 0.0
2 0 3.0 0.063 1 0.063 72.0 0.486 0.625 99.0
3 0 5.0 0.104 1 0.104 72.0 0.486 0.625 165.0
4 0 7.0 0.147 1 0.147 72.0 0.485 0.625 231.0
5 © 9.0 0.189 1l 0.189 72.0 0.485 0.624 297.0
6 O 11.0 0.233 1 0.233 72.0 0.485 0.624 363.0
7 0 13.0 0.27s 1 0.276 72.0 0.485 0.624 429.0
8 0 15.0 0.320 1 0.320 72.0 0.485 0.624 495.0
9 0 17.0 0.363 1 0.363 72.0 0.485 0.624 561.0
10 0 19.0 0.423 1 0.423 72.0 0.479 0.620 627.0
11 0 21.0 2.09s 7 2.096 72.0 0.394 0.549 647.0
12 0 23.0 3.344 1 3.344 72.0 0.396 0.550 759.0
13 0 25.0 5.369 1 5.369 72.0 0.402 0.554 825.0
14 O 27.0 16.242 1 16.242 72.0 0.396 0.547 891.0
15 0 27.2 16.542 1 16.542 72.0 0.394 0.547 896.8
16 0 27.2 16.601 1 16.601 72.0 0.394 0.547 897.9
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MOMENT-CURVATURE OF BEAM J-17

MOMENT (Kip % Inches)

1000
800 |
600 — COMPUTED
= COMPRESS.
" LAST POINT
--EX. MOMENT
200
0 L | I I 1 . |
0 6 24 30

12 18
CURVATURE (i/Inches) E-3

LOAD-DEFLECTION FOR BEAM J-17

LOAD (Kips)
30 -
o p—— o
24 - - a
| - 4
i8
12 —COMPUTED
o EXPERIMENT
6
1 i | ]
00 15 20

10
DEFLECTION (Inches)

Figure B-4. Moment-Curvature and Load-Deflection
Relationships Beam J17
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MOMENT-CURVATURE OF BEAM J-18

MOMENT (Kip % Inches)

1000
800
600 “| —COMPUTED
= COMPRESS.
400 --- CORRECTED
" LAST POINT
--EX. MOMENT
200
ol L - g i Jd
0 7 14 21 5
CURVATURE (4/Inches) E-3
LOAD-DEFLECTION FOR BEAM J-18
LOAD (Kips)
330 r
*
25 |- g
o
20 | 8
15 , —COMPUTED
10 o EXPERIMENT
5
ol 1 1 t | |
0 4 {2 . 16 20

8
DEFLECTION (Inches)

Figure B-5. Moment-Curvature and Load-Deflection
Relationships Beam J18
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MOMENT-CURYATURE OF BEAM J-13
MOMENT (Kip % Inches)

1500
1200
900 - 1 —COMPUTED
» COMPRESS.
500 - CORRECTED
** LAST POINT
--EX. MOMENT
300
0 i L. 1 1 I
0 5 10 {5 20 25
CURVATURE ({/Inches) E-3 B
LOAO-DEFLECTION FOR BEAM J-13
LOAD (Xips)
48 -
a Q
36 -
|-}
27
18 — COMPUTED
o EXPERIMENT
9
0 i 1 N 1 g
0 3 6 9 {2 15
DEFLECTION (Inches)

Figure B-6 Moment-Curvature and Load-Deflection
Relationships Beam J13
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1500

MOMENT-CURVATURE OF BEAM J-14

MOMENT (Xip % Inches)

1200 — e B

600

300

-{ —COMPUTED

m COMPRESS.
-~ CORRECTED
" LAST POINT
--EX. MOMENT

ol ! N 1 |
0 5 10 15 20
CUAVATURE ({/Inches) E-3

40

32

24

16

LOAD-DEFLECTION FOR BEAM J-14
LOAD (Kips)

P

- P
= . o
— COMPUTED
o EXPERIMENT
1 { | |
0 3 9 12

6
DEFLECTION (Inches)

Figure B-7. Moment-Curvature and Load-Deflection
Relationships Beam J14
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MOMENT-CURVATURE OF BEAM J-20

MOMENT (Kip % Inches)
1500 —~

1200

800

600

300

0! L S L ]
0 4 8 i2 - 46
CURVATURE (1/Inches) E-3

LOAD-DEFLECTION FOR BEAM J-20

LOAD (Xips)

40 -
" -]
32 | ¢
24
o EXPERIMENT

a
ol 1 1 ! |

0 3 6 9 12

DEFLECTION (Inches)

Figure B-8. Moment-Curvature and Load-Deflection
Relationships Beam J20
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MOMENT~-CURVATURE OF BEAM J-_S
MOMENT (Kip ¥ Inches)

2000
T T T .
1600 — .
1200 - 1 =—COMPUTED
= COMPRESS.
800 --- CORRECTED
" LAST POINT
--EX. MOMENT
400 -
0 | i L |
0 5 10 15 - 20
CURVATURE (1/Inches) E-3
LOAD-DEFLECTION FOR BEAM J-5
LOAD [Kips)
60 r—
a =] -]
a0
30 —~ COMPUTED
20 : o EXPERIMENT
10
0! l 1 | L |
0 3 6 9 12 15

DEFLECTION (Inches)

Figure B-9. Moment-Curvature and Load-Deflection
Relationships Beam J5
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MOMENT-CURVATURE OF BEAM J-6

MOMENT (Kip % Inches)

2000
e — — — -
1600 ¢
1200 -1 —COMPUTED
» TENSION
800 --- CORRECTED
" LAST POINT
-EX. MOMENT
400
0 L 1 . l {
0 4 a 12 16
. CURVATURE ({/Inches) E-3
LOAD-DEFLECTION FOR BEAM J-6
LOAD (Kips)
60 -
50 T L 1%}
40
30 — COMPUTED
20 o EXPERIMENT
{0
| 1 | ]
00 12

6
DEFLECTION (Inches)

Figure B-10. Moment-Curvature and Load-Deflection
‘ Relationships Beam J6
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MOMENT-CURVATURE OF BEAM J-22
MOMENT (Kip % Inches) |

2000
1600
1200 ‘| —COMPUTED
= COMPRESS.
800 -~ CORRECTED
" LAST POINT
--EX. MOMENT
400 _
0l L S 1 1
0 4 q 12 16
CURVATURE (1/Inches) E-3
LOAD-DEFLECTION FOR BEAM J-22
LOAD (Kips)
60 r—
50 o —
40
30
— COMPUTED
20 * EXPERIMENT
10 .
0! 1 | | 1 K|
0 2 6 8 10

4
DEFLECTION (Inches)

Figure B-11. Moment-Curvature and Load-Deflection
Relationships Beam J22
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MOMENT-CURVATURE OF BEAM A-1

MOMENT (Kip % Inches)

-1 —COMPUTED

- CORRECTED
O LAST POINT
“-EX. MOMENT

) 1 N I 1
8.00 0.20 0.40 0.60 0.80
CURVATVRE (1/Inches) E-3

LOAD-DEFLECTION FOR BEAM A-1

LOAD (Kips)

120 -
100 |- _ °

80

&0

— COMPUTED
0 o EXPERIMENT
20
B

8.00 0.20 0.40 0.60 0.80

DEFLECTION {Inches)

Figure‘B-lZ.Homent-Curvature and Load-Deflection
Relationships Beam Al
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- MOMENT-CURVATURE OF BEAM A-2
NOMENT (Kip # Inches) ‘

6000
5000 - __ _ __ __ I~ -
) a
4000 ;
. - [—cowpuTeD
3000 ¢ e =
L - CORRECTED
2000 - L U LAST POINT
/. --EX. MOMENT
1000 -/
8 1 |- -L ] R
.00 0.20 0.40 0.60 0.80 1.00
CURVATURE (1/Inches) E-3
LOAD-DEFLECTION FOR BEAM A-2
LOAD (Kips)
120 —
- §
100 |-
eo e
80 — COMPUTED
40} o EXPERIMENT
20 ~
| i | 1 1 1
8.00 0.20 0.40 0.60 0.80 1.00

DEFLECTION (Inches)

Figure B-13 Moment-Curvature and Load-Deflection
Relationships Beam A2
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MOMENT-CURVATURE OF BEAM A-3

HOMENT (Kip # Inches)

1 —COMPUTED
»

- CORRECTED
O LAST POINT
-~EX. MOMENT

1 1 -1 | 1
800 0.10 0.20 0.30 0.40 0.50 0.60
CURVATURE (4/Inches) E-3 :

LOAD-DEFLECTION FOR BEAM A-3

LOAD (Kips)
120

100

3.oo ) 0.40 0.80 1.20 1.60
: DEFLECTION (Inches) -

Figure B-14 Moment-Curvature and Load-Deflection
Relationships Beam A3
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MOMENT-CURVATURE OF BEAM B-1
MOMENT (Xip ¥ Inches)

4000
3200
2400 — COMPUTED
]
-+ CORRECTED
1600 o LAST POINT
--EX. MOMENT
800
) ) L 1
8.00 0.20 0.40 0.60 0.80
CURVATURE (1/Inches) E-3
LOAD-DEFLECTION FOR BEAM B-4
LOAD (Kips)

100 — o

B |

1 1 1 1 1
800' 0.10 0.20 0.30 0.40 0.50
' DEFLECTION (Inches)

0.60

Figure B-15.Moment-Curvature and Load-Deflection
Relationships Beam Bl
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MOMENT-CURVATURE OF BEAM B-2

MOMENT (Kip # Inches)
4000

3200

2400

1600

B | 1 - L - ] 1 1
800 0.10 0.20 0.30 0.40 0.50 0.60
CURVATURE (4/Inches) E-3

LOAD-DEFLECTION FOR BEAM B-2

LOAD (Kips)
100 —

80

l 1 1 1 ]
8.00 0.20 0.40 0.60 0.80 .00
- DEFLECTION (Inches)

Figure B-16, Moment-Curvature and Load-Deflection
Relationships Beam B2
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MOMENT-CURVATURE OF BEAM B-3
MOMENT (Kip % Inches) '

6000
5000_
4000
: — COMPUTED
| ]
-  coeeEcTeD
2(_)00 1 --EX. MOMENT
1000
1 L . 1 - | 1 1
800 0.40 0.20 0.30 0.40 0.50 0.60
CURVATURE ({/Inches) E-3
LOAD-DEFLECTION FOR BEAM B-3
LOAD (Kips) -
100 ¢~
80 |-
60 |- o
o : o EXPERIMENT
ao o
o 1 1 | N
8.00 0.40 0.80 {.20 1.60

DEFLECTION (Inches)

Figure B-17.Moment-Curvature and Load-Deflection
Relationships Beam B3
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MOMENT-CURVATURE OF BEAM C-{

MOMENT (Kip % Inches)

3000
2500
2000
-| — COMPUTED
=
1500 "'CMCTEBT
O LAST PO
1000 --EX. NOMENT
500
1 1 1 B |
8.00 0.30 0.60 0.90 1.20

CURVATURE (1/Inches) E-3

LOAD-DEFLECTION FOR BEAM C-1
LOAD (Kips)

= COMPUTED
o EXPERIMNENT

8.00 0.20 0.40 0.680 0.80
' , DEFLECTION (Inches)

Figure B-18. Moment-Curvature and Load-Deflection
Relationships Beam Cl
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Figure B-19, Moment-Curvature and Load-Deflection
Relationships Beam C2
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Figure B-20, Moment-Curvature and Load-Deflection

Relationships Beam C3
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MOMENT-CURVATURE OF 3EAM J-24
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Figure B-2L Moment-Curvature and Load-Deflection
Relationships Beam J24
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MOMENT-CURVATURE OF BEAM J-25
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Figure B-22 Moment-Curvature and Load-Deflection
Relationships Beam J25
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MOMENT-CURVATURE OF BEAM J-26
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Figure B-Z3.Momeﬁt-Curvacure and Load-Deflection
Relationships Beam J26
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MOMENT—-CURVATURE OF BEAM J-27
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Figure B-24 Moment-Curvature and Load-Deflection
Relationships Beam J27
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MOMENT-CURVATURE OF BEAM J-34
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Figure B-25 Moment-Curvature and Load-Deflection
Relat’onships Beam J34
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MOMENT-CURVATURE OF BEAM d-15
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Figure B-26 Moment-Curvature and Load-Deflection
Relationships Beam J15
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MOMENT-CURVATURE OF BEAM J-16
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Figure B-27. Moment-Curvature and Load-Deflection
Relationships Beam J16
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MOMENT-CURVATURE OF BEAM J-28
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Figure B-28 Moment-Curvature and Load-Deflection
Relationships Beam J28
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MOMENT-CURVATURE OF BEAM J-30
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Figure B-29 Moment-Curvature and Load-Deflection
Relationships Beam J30
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MOMENT-CURVATURE OF BEAM J-314
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Figure B-30. Moment-Curvature and Load-Deflection
Relationships Beam J31

227
(The reverse of this page is blank)




APPENDIX C

INPUT PROPERTIES AND RESULTS FOR ANALYSTS IN THE DYNAMIC DOMAIN - IMPACT
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TABLE C-1 PROPERTIES OF BEAMS ANALYZED DYNAMICALLY

Beam® £’  Width Depth Length P p' Stirrups
psi in. in. in. s 3

c-1 5835 6.0 12.0 106 2.00 1.46 #3 @ 7.00"

H-1 5963 6.0 12.0 106 2.00 1.46 #3 @ 7.00"-

J-1 6000 6.0 12.0 106 2.00 1.46 #3 @ 7.00"

G-1 6388 6.0 12.0 106 2.00 1.46 #3 @ 7.00"

I-1 6488 6.0 12.0 106. 2.00 1.46 #3 @ 7.00"

® All Beams: d=10 in., d'=8.5 in.

TABLE C-2. PROPERTIES OF TENSION REINFORCEMENT, DYNAMIC TESTS

™
™

"

-4
rh
™

Beam Size £
y
psi

L J
[
L=
n
'ﬁ-
L 4

C-1 2 #7 46.08 0.16 1
H-1 2 #7 47.17 0.14 1.
J-1 2 #7 47.42
G-1
I-1

2 #7 47.75
2 #7 47.00 0.14 1.50

TABLE C-3.PROPERTIES OF COMPRESSION REINFORCEMENT, DYNAMIC TESTS

Beam Size f €, €.n £, €,
psi & $ psi &
. 2 #6 46.70
- 2 #6 47.61 0.15 1.0 — —
0.16 1.20 — ——

2 #6 48.30
2 #6 47.95

c-1
H-1
J-1 2 #6 48.86
G-1
I-1
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Figure C-1, Experiméntal Load and Reactions for Beam C-1.

(Reference 77)
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Figure C-2. Experimental Displacement Versus Time for Beam
C-1. (Reference 77) :
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MOMENT-CURVATURE OF BEAM C-1

MOMENT (Kip % Inches)
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Figure C-3. Moment-Curvature Relationship for Beam C-1
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Figure C-4, Load-Deflection Relationship for Beam C-1
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SOOF ANALYSIS OF S.S. BEAMS
990 BEAM NO. C-1

VELOCITY (In / Sec)
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TIME (Sec) E-3

Figure C-5. Velocity Versus Time for Beam C-1

SOOF ANALYSIS OF S.S. BEAMS
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Figure C-6- Acceleration Versus Time for Beam C-1

234




20

3
T YT LI L]
)

"'- - ”l.ll“ :
- d.l.llcnpllﬂcqlll‘,dll lllllll

= SETy

- P— - —

L'
-y

sdyx ‘saor04

Tise, milliseconds

Figure C-7. Experimental Load and Reactions for Beam H-1.

(Reference 77)
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MOMENT-CURVATURE OF BEAM H-1
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Figure C-9, Moment-Curvature Relationship for Beam H-1
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Figure C-10. Load-Deflection Relationship for Beam H-1
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SOOF ANALYSIS OF S.S. BEAMS
R9C BEAM NO. H-1 '

VELOCITY (In / Sec)
240 -

180 |-
120 |-

.60 b
0 W e

-60 \&,—/’///,

- L | - : ] |
205~ . 40 80 120 160
TIME (Sec) E-3

Figure C-11, Velocity Versus Time for Beam H-1
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Figure C-12 Acceleration Versus Time for Beam H-1
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Figure C-13. Experimental Load and Reactions for Beam J-1.
(Reference 77) .
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MOMENT-CURYATURE OF BEAM J-1
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Figure C-15, Moment-Curvature Relationship for Beam J-1
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Figure C-16. Load-Deflection Relationship for Beam J-1
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SDOF ANALYSIS OF S.S. BEAMS
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VELOCITY (In / Sec)

~30 L | B | ’ ] ]
0 40 a0 120 160
- TIME (Sec) E-3

Figure C-17. Velocity Versus Time for Beam J-1
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Figure C-18. Acceleration Versus Time for Beam J-1
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Figure C-19. Experimental Load and Reactions for Beam G-1.
(Reference 77)
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APPENDIX D

INPUT PROPERTIES AND RESULTS FOR ANALYSIS IN THE DYNAMIC DOMAIN - BLAST
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TABLE D-1, PROPERTIES OF WALLS ANALYZED DYNAMICALLY

Wall® £'e P I’y
psi % %
(Mpa)
I-1 4951. 1.00 1.00
(34.14)
I-.2 4951. 0.50 0.50
(34.14)
I-6 5547. 0.25 0.25
(38.25)

* All Walls h = 12.6 in. (32 em.), @ = 11.6 in. (29.5 cm.)
L = 65. in. (165. cm), b = 158. in. (400. cm.)

Web Reinforcement :

#3 @ 4 in. (410 @ 10 cm.)

TABLE D-2 PROPERTIES OF FLEXURAL REINFORCEMENT FOR WALLS -

Wall Size and f, £, € £, €

Spacing ksi L] L] ksi 3
(Mpa) (Mpa)

I-1 30 #7 @ 5.25 71.46 0.25
(419 @ 10) (492.7) (—)

I-2 30 #5 @ 5.25 73.29 0.26 —— 1]15.0 ——
(¢13 @ 9) (505.3) (793.2)

1-6 15 #5 @ 5.25 73.29 0.26 —— 115.0 —
(413 @ 18) (505.3) (793.2)
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Figure D-12. Moment-Curvature Relationship for Wall I-1.
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Figure D-13 Load-Deflection Relationship for Wall I-1.
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Figure D-14. Resistance-Displacement Relationship for Wall
I-1.
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Figure D-15. Acceleration Versus Time for Wall I-1.
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Figure D-16. Base Shear Force Versus Time for Wall I-1.
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Figure D-17. Base Shear Resistance-Displacement for Wall I-1
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Figure D-18. Moment-Curvature Relationship for Wall I-2
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Figure D-19 Lcad-Deflection Relationship for Wall I-2.
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Figure D-20. Resistance-Displacement Relationship for Wall
I-2.
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Figure D-21. Acceleration Versus Time for Wall I.2.
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SOOF ANALYSIS_OF WALLS -
H?C BOX : TEST NO. I2

SHEAR FORCE (Kips)
10000

-
8000 |-
6000 |-
4000 |
2000

0 |

~2000 L. l | | ! !
20000 y 8 2 16 20

TIME (Sec) E-3

Figure D-22. Base Shear Force Versus Time for Wall I-2.
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Figure D-23, Base Shear Resistance-Displacement for Wall I-2.
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MOMENT-CURVATURE OF BEAM I-6
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Figure D-24. Moment-Curvature Relationship for Wall I-6.

LOAD-DEFLECTION FOR BEAM I-6
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Figure D-25. Load-Deflection Relationship for Wall I-6.
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SOOF ANALYSIS_OF WALLS
H9C BOX : TEST NO. Ib

RESISTANCE (Kips)

r-

=

— | l _ !
.00 0.40 0.80 1.20 1.60

DISPLACEMENT (In) |

Figure D-26. Resistance-Displacement Relationship for Wall

I-6.
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Figure D-27. Accelerstion Versus Time for Wall I-6.
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Figure D-28. Base Shear Force Versus Time for Wall I-6.
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Figure D-29. Base Shear keststance-Displacement for Wall I-6
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