
DTIC
NASA Contractor Report 187593 DEC 9

ICASE Report No. 91-53

D-A242 984

EVOLUTION OF HELE SHAW INTERFACE FOR
SMALL SURFACE TENSION

S. Tanveer

Contract No. NAS1-18605
November 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

ROM 91-17151
National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

Apj:rerid for P1), 'ic release;
Distribution Un amited 4 0 2 8..... ~~~Wi I !' ':i0



Acoesslea Yiv

NT!3 QRW&

EVOLUTION OF HELE SHAW INTERFACE FOR SMALL SURFACE TENSION

S. Tanveer f  • bLa 7 Cot

Mathematics Department Dli:t . ep aia

Ohio State University

Columbus, OH 43210

ABSTRACT

For the time evolution of a Hele-Shaw interface described by a conformal map z((, t) I ED

that maps a unit circle (or a semi-circle) in the C plane into the viscous fluid flow region

in the physical z-plane, we present results on the motion of singularities outside the unit

circle.

For zero surface tension, we extend earlier results to show that for any initial condition,

each singularity of z((, t) present initially in I(l > 1 continually approaches the interfacial

boundary I(I = 1 without any change of form. However, depending on the singularity

type, it may or may not impinge ICI = 1 in finite time. Under some assumptions, we give

analytical evidence to suggest that the ill-posed problem in the physical domain I(I - 1

can be imbedded in a well-posed problem in CI > 1. We present a numerical scheme to

calculate such solutions.

For each initial singularity of certain type, which in the absence of surface tension

would have merely moved to a new location (.(t) at time t from an initial (.(0), we find

an immediate transformation of the singularity structure for nonzero surface tension B;

however, for 0 < B << 1, surface tension effects on this singularity are limited to a

small 'inner' neighborhood of (,(t) when t << -. Outside the inner-region but for

IC - C,(t) << 1, the singular behavior of z° , the zero surface tension solution still persists

for z((, t). On the other hand, for each initial zero of z(, which for surface tension B = 0

remains a zero of zC at a location Co(t) different from (o(0), surface tension effects spawns

new singularities that move away from (o(t) and approach the physical domain ](I = 1.

t This research was supported by the National Aeronautics and Space Administration under NASA contract

number NASI-18605, while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, Virginia, 23665-5225



1. Introduction

The problem of a less viscous fluid displacing a more viscous fluid in a Hele-Shaw

cell has received considerable attention over the last few years since the original work by

Saffman & Taylor (1958). Reviews by Saffman (1986), Bensimon et al (1986), Homsy

(1986) summarize the state of affairs as of five years back. Since then, there has been

considerable work that have been reviewed from different perspectives by Pelce (1988),

Kessler & Levine (1988), Howison (1991) and Tanveer (1991). This intense activity related

to a relatively simple experiment has been motivated by the mathematical analogies of the

Hele-Shaw to viscous displacement in a porous medium, growth of a needle crystal in an

undercooled melt and the morphological instability and resulting features in directional

solidification. Indeed, many of the generic results for these apparently diverse areas were

first discovered in a Hele-Shaw flow. In addition to the relative simplicity of the equations,

the flow in this geometry is accessible to experiments making it possible to compare theory

with experiment.

Most of the work to date has been on steady states and their linear stability (see recent

reviews cited above for extensive bibliography). In an actual experiment (Saffman & Taylor

(1958), Tabeling et al (1986), Maxworthy (1987), Arneodo et al (1989) the interface does

not evolve into a steady state when surface tension effects are very small. Indeed, through

a sequence of instabilities, a highly convoluted interfacial pattern forms that appears to

be fractal (Arneodo et al (1989)) over some range of length scales. Further, the precise

interfacial shape appears to be extremely sensitive to initial conditions though the overall

statistics of the observed pattern is not. The theoretical understanding of these features

is lacking to a great degree. This paper, we hope, is an important step in that direction.

The time evolution problem is studied in this paper is for a highly idealized boundary

condition, originally developed by by Mclean & Saffman (1980) (we call it the MS bound-

ary conditions), where important three dimensional effects observed in the experiment

(Tabeling et al (1986)) are ignored. For steady flow, realistic two dimensional boundary

conditions incorporating three dimensional thin film effects were discussed by Saffman

(1982) and later derived by Park & Homsy (1985) and Reinelt (1987) (we call it the SPHR

boundary conditions). Numerical (Schwartz & DeGregoria (1987), Reinelt (1987), Sarkar

& Jasnow (1987)) and analytical calculations (Tanveer, 1990) show important quantitative

differences in solutions corresponding to the MS and SPHR boundary conditions. Over

some range of experimental control parameters, qualitative differences also exist though in

other cases the qualitative conclusions are about the same. Further, analytical calculations

on steady state finger (Tanveer, 1990) suggest that the mathematical structure, in a broad

sense, are similar in these two cases despite the relative complexity of the SPHR conditions.
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Here, we proceed with the belief that for the time evolving flow, the solutions correspond-
ing to the much simpler MS boundary conditions are relevant, atleast qualitatively, over
some range of control parameters, as is true for the steady state.

For the rectilinear geometry, we take z((, t) to be the conformal map that maps the
semi-circle in Fig. 1 into the physical flow domain (Fig. 2) in the z plane such that C = 0
corresponds to z = +00 and C = ±1 correspond to points A and B (see Fig. 2), where the

interface meets the channel side walls. It is clear that one can decompose

__2

z((, t) -- In ( + i + f(C, t) (1.1)

where f is analytic in the unit semi-circle with

Im f = 0 (1.2)

on the real diameter of the unit circle corresponding to the geometric condition that the
walls of the channel correspond to the real diameter of the unit semi-circle. We will assume

f is continuous up to the real diameter including C = 0 . Further, we will assume that
the shape of the extended finger obtained by reflection about each of the two side walls is
smooth implying that z and hence f is analytic and zC : 0 on the semi-circular arc

=(I = 1. ,From Schwarz reflection principle, f is analytic and zC 5 0 for KI - 1
We decompose the complex velocity potential:

2
W((, t) 2 In C + i + w((, t) (1.3)

7r"

where the fluid velocity at infinity is assumed to be unity without any loss of generality

(equivalent to appropriate nondimensionalization). It is clear that the condition of no flow

through the walls imply

Im w = 0 (1.4)

on the real diameter (-1, 1) of the unit semi-circle. As is physically reasonable, w will be

assumed to be continuous up to the real diameter including C = 0 . Further, it will be

assumed that w is analytic on the semicircle corresponding to the assumption of smooth
flow at the interface. LFrom Schwarz reflection principle, (1.4) implies that w is analytic

in -I < 1.
Second, for the radial geometry, following Howison (1985,1986ab), the conformal map

z((, t) that maps the interior of the unit circle in the C plane into the physical flow
domain (Fig. 1) such that C = 0 is mapped to oo can be decomposed as

z((, t) ! + k((, t) (1.5)
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where the remaining degree of freedom in the Riemann mapping theorem is used by re-
quiring a(t) to be real and positive. We will assume that the iwieciice is smooth and so

k((, t) is analytic and z( # 0 everywhere in 141 _ 1 . k(C,t) c.zi± bt -xpressed as as

power series convergent for < < 1

00

k(Ct) = j k.(t) C" (1.6)
n=O

Further, the complex velocity potential W(C, t) can be decomposed as:

__2

W(C, t) 2- - In C + w((, t) (1.7)7r

where the injection rate Q = 4 without any loss of generality. This choice is made for

convenience of presentation so that (1.3) and (1.7) have the same form. For smooth flow

at the interface, w((, t) can be assumed to be analytic in 141 - 1 and has a convergent

series representation in that domain:

00W(C¢t) E , (t) C"(18
n=O

Note that unlike the channel geometry, w and k do not have vanishing imaginary part

on the real axis within the unit circle except if they are so initially (corresponds to certain

conditions of symmetry of initial conditions).

In either Hele-Shaw cell geometries, the boundary condition (Mclean-Saffman, 1980)
on the finger boundary that the difference of pressure on the two sides is balanced by

surface tension times curvature implies that on CI( = 1

RwB Re [1+ C (1.9)

where for the channel geometry, B b2T where T is the surface tension, b is the
121Va,

gap width and 2a is the cell width, p2 the viscosity of the more viscous fluid, V the
velocity of fluid at oo. For the radial Hele-Shaw geometry, we define B = ,2T where• -- 311Qa

Q is the injection rate and 7r a2 is the initial area of the blob of less viscous fluid. The

viscosity of the less viscous fluid and the thin film effects have been neglected here for the

sake of simplicity. The kinematic boundary condition that corresponds to no fluid flow

through the interface (see Saffman (1959) or Richardson (1972) for details) implies

Re [C W( - 0 (1.10)
I z1 2 (Z3



on 141 = 1 . Note that for the channel geometry, (1.9) and (1.10) hold on the lower half
unit semi-circular boundary as well. The mathematical problem, therefore, is to determine

analytic functions w and f (or k for the radial geometry) and therefore W(C, t) and z((, t)
satisfying (1.9) and (1.10) on the circular arc, when z((, 0) and W(C, 0) are appropriately

specified.

Almost all the work to date on this initial value problem* belong to either of two
categories: numerical computations for B not too small or analytical work for 8 = 0.

For B 5$ 0, the numerical computations by Trygvasson & Aref (1983), DeGregoria &

Schwartz (1986), Bensimon (1986) and Meiburg & Homsy (1988) have shed some light on
the process of finger competition that eventually leads to a single steadily moving fingr.

However, when surface tension parameter is smaller than some critical value, the finger is
itself unstable. The calculations of linear stability by Kessler & Levine (1985, 1986) and
Tanveer (1987b) suggests that there exists a linearly stable branch for any nonzero surface
tension. Based on numerical experimentation, Bensimon (1986) concluded that observed

instability in the simulation is a nonlinear mechanism where the threshold amplitude for
destabilization decreases with surface tension. This is plausible, as a discrete set of steady

fingers (VandenBroeck, 1983) coalesce as B -- 0 and all but one of these branches are

unstable (Kessler & Levine (1987), Tanveer (1987b), Bensimon et al (1987)). Despite the

understanding on the onset of various instabilities, a full understanding of the complicated
time dependent pattern beyond the onset stage is difficult using conventional simulation
with boundary integral methods since widely disparate scales, both in space and time,

need to be resolved accurately as B is made progressively smaller.

For B = 0, it is clear that the initial value problem posed in (1.9) and (1.10) sim-

plify considerably since w = 0 in this case and therefore W(C, t) is known (from (1.7)).

Gustaffson (1984, 1987) has rigorously provel the existence of solution for finite time for
analytic initial data on the real axis (the physical domain in his formulation). Earlier,

Galin (1945) and Polubarinova-Kochina (1945) considered the mathematically identical
problem of Darcy model for ground water flows and devised analytical techniques for ob-

taining exact solutions. These were apparently well known in the Russian literature (see
Howison (1991) & Hohlov (1990)). Exact solutions due to Saffman (1959), Howison (1985,

1986ab) and Shraiman & Bensimon (1985) can be seen as applications of these techniques

though results appear to have been obtained without knowledge of the Russian work.

Howison (1990) summarizes the relation between the different techniques. The Saffman-
Howison-Shraiman-Bensimon (SHSB) exact solutions are limited to initial conditions for
which z(((, 0) is either a polynomial or a superposition of poles. In these cases, the number

* Other authors have used differing but equivalent formulation
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of poles is known to be preserved, as is the number of zeros; only their locations change.

Within this class of solutions, it is known that poles never hit the physical domain bound-

ary JCJ = 1 in finite time but zeros may or may not. In the case when a zero hits I(I = 1,

a zero angled cusp protruding into the viscous fluid forms at the physical interface. The

mathematical solution does not make physical sense beyond that time. Howison (1986a)

was further able to show that that one can start with two different initial conditions that

are arbitrarily close in the physical domain 1(1 : 1 (in any Sobolev norm), yet after a

finite time, the physical boundary develops a cusp in one case while it remains regular in

the other. In this sense, it is known that the zero surface tension evolution problem is ill

posed. Richardson (1972) showed certain invariance properties of the Schwartz function

of a domain for the related problem of a more viscous fluid displacing a less viscous one.

In our formulation, Richardson's result implies that singularities of z((, t) in the finite C
plane other than that at C = 0, arise due motion of an initial singularity of the same form

(i.e. for instance, a branch point of one half power remains so at later times) of z((, 0) in

I( > 1. However, no explicit solution are known if zC((, 0) contains branch point. Richard-
son's suggestion about approximating them by a polynomial is invalid in our case as we

shall see that the later time evolution depend critically on the initial singularity structure

in 1,( > 1. The only known closed form solutions with branch points are the self-similar

solutions in time for a radial or wedge geometry recently found by Thome et al (1988),

Ben Amar (1991) and Tu (1991). Further, due to the ill-posedness of the problem in the

physical domain I( < 1, conventional numerical simulation using boundary integral meth-

ods for instance is not possible due to uncontrolled growth of round off errors, unless one

uses some artificial dissipation or a filtering procedure (see Krasny (1986) for applications

to another ill-posed interfacial problem). Such procedures appear to be computationally

expensive and may not be practical when the interface becomes highly convoluted as is

the case in the interesting stages of Hele-Shaw evolution.

For nonzero B, it is expected that the initial value problem in the physical domain

will be well-posed. However, the problem is considerably more intractable analytically,

because of complications due to the unwieldly curvature term on the right hand side of

(1.9). As stated earlier, numerical computations in the physical domain become rather

difficult in the dynamically interesting case of small B. Duchon & Robert (1984), while

working on a mathematically equivalent problem, have proved the existence of solutions

for short times. However, it is not known if solutions exists for all times for any nonzero

B. Physically, one might expect this to be the case, though this remains to be shown.

Studying the problem perturbatively about any known solution at B = 0 is fraught with

difficulties. If So(t) denotes the solution operator that maps the initial condition z((, 0) in
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I(I < 1 into the B = 0 solution z°((, t) in I (- 1, ill posedness immediately implies that the

operator So(t) is unbounded. For this reason, there is no reason to expect under a small

perturbation caused by a small nonzero B, the corresponding solution operator S(t) will

be close to So(t). Any physical argument to the contrary is unacceptable as a physical flow

always corresponds to nonzero B and one cannot use physical argument to extrapolate the

B = 0 result. Despite this, in an effort to make some headway, analytical efforts have been

made by Lacey et al (1988) by assuming that for small surface tension, surface tension

effects are important only when the interface curvature, as predicted by z° , is large. As

the authors themselves point out, this assumes that the actual interface curvature is not

very different from what is predicted by z0 , the zero surface tension solution. Recently,

Dai et al (1991) carry out a numerical simulation of the initial value problem in the

physical domain for the small nonzero B in the radial geometry when z( is either a cubic

polynomial or a combination of three poles with a three fold rotational symmetry and

deduce the nature of singularities in the unphysical domain using a Domb-Sykes plot. For

such initial conditions, exact solutions are known within the Saffman-Howison-Bensimon-

Shraiman family when B = 0. Comparison of Dai et al (1991) calculations with these

suggest that initial poles of z( remain unaffected. With polynomial initial conditions, it

is found that an initial zero splits into what they term as 'two pole-like singularities'. In

this case, it is found that difference with the exact B = 0 solution becomes significant even

when the interface curvature based on z°((, t) is << 1. This appears to suggest that the

Lacey et al (1988) hypothesis may not be correct. Recently, Constantin & Kadanoff (1990,

1991) have derived local partial differential equations for z((, t) in the region 1(1 > 1 for

the radial geometry by analytically continuing (1.9) and (1.10) for the radial geometry,

assuming that the singularities are very far off from the physical plane so that the physical

interface is nearly circular. Their localization procedure is similar in spirit to the equations

derived by Caflisch, Orellana & Siegel (1990) for the zero surface tension case. Constantin

& Kadanoff (1991) and Howison (1991) have also found special similarity solutions that

show the immediate transformation of an initial singularity or a zero of z( into possible

-4/3 singularities; however their relevance to the overall physical dynamics has not been

addressed. Constantin & Kadanoff (1990) also prove the existence of solutions to these

localized equations in an unphysical domain that shrinks in time like t- 1 2 . Since the

physical domain is KI _ 1 (in their formulation, j1 _ 1 ), their results do not

guarantee existence of solutions for all times even with surface tension. However, their

equations become invalid when the actual interfacial shape deviates significantly from a

circle, long before a singularity actually can come close to 4(1 = 1. Thus the behavior of

their solution need not reflect the behavior nf nrtual solutions that satisfy (1.9) and (1.10).
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We like to understand the Hele-Shaw dynamics for small nonzero B perturbatively by
exploiting the simplicity of the equations when B = 0. There are two major hurdles in
accomplishing this. First, the information on the B = 0 problem is not complete. We do

not have exact solutions for a general initial condition. Nor is it known how to compute
such solutions effectively. Second, B = 0 problem is ill posed in the physical domain I(I - 1,

as demonstrated by Howison (1985, 1986ab). Thus, as discussed before, one cannot have
any confidence that a zero surface tension solution z0((, t) in the physical domain ICI < 1

is necessarily relevant as B --+ 0. In this paper, we address these two problems.
First, we show that the analytically continued equation for B = 0 has the feature that

all information in I(I > 1, flows inwards towards the interface boundary I(I = 1. In partic-

ular, for arbitrary initial conditions, singularities present in I(I > 1 must always approach
the physical domain boundary I(I = 1, though it need not actually impinge it in finite

time. Assuming that that the speed of a zero of zC((, t) is bounded for certain classes of

initial conditions, we present analytical arguments to suggest that the initial value prob-

lem in I(I > 1 obtained by solving the analytically continued equations with analytically
continued initial condition is well posed in the unphysical domain for a finite time. We

also argue that the solution obtained in this way for t > 0 is the analytical continuation

of the physical solution in 1(1 5 1 across the unit circle. Using these results, we suggest a

numerical method to find solutions for arbitrary initial conditions, including ones where zC
has a set of branch points of specific types. Because of the well-posedness of the underly-

ing formulation in I( I> 1, the computation can be performed without growth of round off
errors, a problem that plagues computation of solutions to ill-posed problems. Recently,

G.R. Baker (private communication) has successfully implemented this scheme. We then
present analytical evidence that a singularity (,(t), where zC ,-" Bo(t)(( - (.(t)) - 6, does

not impinge the physical domain when P I. When 0 </3 < , our evidence suggests

that the singularity impinges ICI = 1 in finite time. Under some assumptions that we are

unable to check, the same appears to be true for P < 0. Our results also suggests that the

ill-posedness in the physical domain for B = 0 is actually in the sense of Hadamard.

Having found a well posed formulation in the domain I(I -> 1 allows us to address the
second serious hurdle mentioned above. In this extended domain, we can expect that the

solution z((, t) for nonzero is close in some sense to z° ((, t) and therefore can be studied

perturbatively. Indeed, a minor modification of the numerical method suggested for solving

the zero surface tension solution z°(C, t) can, in principle, be used to find each term of the

regular perturbation expansion in I > 1:

z((,t) = zU(,t) + B z'((,t) + ... (1.11)

Examination of the analytically continued equation in I(I > 1 shows immediately that the
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regular perturbation expansion expansion will break down near each point (o(t) where z=

0 and singularities that include branch points (,(t) near which zo - Bo(t)(( - (.(t)) - #

with 3 < 2. Even for 3 independent initial conditions, the perturbation expansion (1.11)

becomes invalid at any singular point (p where zC , A(t)[( - (P(t)] - 4 / 3 , with A(o) = 0

and A(t) scaling as some positive power of 3. As we shall see later, such singular points

are created at the initial instant of time by surface tension effects. When, the perturbation

expansion (1.1) breaks down, it becomes necessary to consider the inner equation obtained

by appropriately rescaling the dependent and independent variables.

With certain assumptions, we find that for initial conditions that are independent of

5, appropriate inner-outer matching can be carried out for 0 < i0 < 2. We find that for a

branch point or a simple pole singularity of zc((, 0) where z((, 0) - Bo(0) (( - (,(0)) - 0,

for a nonzero B, the singularity is immediately transformed. However, for 0 < B <<

1 and t << I, the location of the newly created singularities is within a small inner

neighborhood of (,(t) (singularity of z°), where I- C(t) = O(B ). The singular

behavior (C - C(t)) -  of zo is reflected in the actual solution z( when 1 > >C - C(t) > >

13210. Thus, in the outer asymptotic sense, the solution z((, t) behaves like z0 ((, t) near

C(t). When 1C(t) I - 1, as must happen for every singularity at the late stages, the physical

interface can become quite distorted locally. In this final stage, our analysis is restricted

to 2 < 3 < 1. We find that the governing equations when 1C(t) - 1 - 0(131/(3(1-))) is

nonlocal in an inner scale where 0- (t) = Q(13l/(3(1-6))). We have not attempted to

solve thiF inner equation; however, the z( in this inner neighborhood scales as 13-0/(3(1-0))),
which is large for small B. We conclude that when a singularity of this kind is present in

the initial data in I(I > 1, it will eventually cause locally large localized distortions of the

interface when 1(.(t)l - 1.

For an initial zero of zC((,0) that is independent of B, we find that while z0 (t)

would have merely moved the zero to a new location CO(t), the effect of surface tension

is create new singularities immediately. The possibility of these singularities, where z(

has a -4/3 power singularity just like the ones for an initial branch point singularity was

recognized by Constantin & Kadanoff (1991) and Howison (1991). We actually confirm

their existence and calculate their locations at early times. Further, unlike the case of initial

branch points, where such singularity locations are within an inner region around (,(t),

which masks the effects of the -4/3 singularities, in this case, each of the -4/3 singularities

move away from Co(t). For t = 0(1), all these singularities are clustered over a 132/9

scale. However, the effect of each of these singularities (p(t) are felt over a small 137/18

neighborhood around each of these points beyond which the solution matches to z0 (C, t).

In this region of singularity cluster created by an initial zero (o(O), there is also a point
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(,,(t), where the perturbation expansion (1.11) breaks down because z' is singular and

higher order terms z2 , z 3 , etc. are progressively more singular. However, this is not a true

silJalarity of z(, as the solution is smoothed out in an inner scale of 0(B1 /3 ) extent where

the deviation of z( from z, is at best 0(B'/ 6 ). This inner regions around each (p(t) and

C., (t) do not overlap. Our results here become invalid when any of I(p(t)I or I(, C(t)I is very
close to 1, as in that case new scalings of the inner variables become necessary that lead
to new nonlocal equations that are yet to be analyzed. We are of the opinion that Dai

et al's (1991) direct numerical computation reflecting the creation of new singularities out

of an initial zero is reflected in our findings, though the detected 'pole-like' singularity in

the numerical calculations may be an artifact of the clustering of the singularities over a

B 2/9 scale. One of the immediate implications of our findings is that it is possible for z(
to deviate from z, by 0(1) or larger even at points where zo is neither zero nor singular.

Our results for small nonzero B suggests that we can start with smooth physical

interface initally; at later times the interface can get highly convoluted over a local length

scale, as the effect of singularities either present initially, or those created from an initial

zero of z( continually move towards I1 = 1. Since the location of initial singularity and

zeros is highly sensitive to arbitrarily small changes of z((, 0) in the physical domain I(I -< 1,

there will be highly sensitive dependence of observed features on initial conditions.

2. Analytically continued equations in I1 > 1

Using Poisson integral formulae that relates a harmonic function and its conjugate to

its boundary value on the unit circle, from (1.9) for 141 < 1

w=-B 11 (2.1)

where

- I C + 12(C ~ ~ ~('t= ,ZC/ 2(' L t) + < + 13', t) (2.2)
7 2 Z( (CI,) 2

where 1
12 = (2.3)

51/2, t)

13 C 1 t) (2.4)

where for the channel geometry,

i(,t) = z(,t) (2.5)
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and for the radial geometry:

(¢,t) =a(t) ¢

t) = a)t) + E kn(t) ( (2.6)
n=U

where superscript * denotes complex conjugate. By a standard method of analytic con-

tinuation through contour deformation (see Tanveer, 1987a for an example), for fCJ > 1,

w=-B1 - B12 1 [2 +C(!- 13 (2.7)
z(1/ 2  zC +

Alternatively, (2.7) follows from (2.1) on using a variation of the well known Plemelj

formula (see for example Carrier, Krook & Pearson (1983)). Note the choice of branch of

half power appearing in (2.3) and (2.7) should be consistent with IzCI = z(1/2 j/2 on
Se iv

The analytical continuation leading to (2.7) can alternately be done by noting that

on C = e, an analytic function G(C) in I1 1 with representation:

00

G(C) = E g, CR (2.8)

satisfies the relation: 2 Re G = G((,t) + GQ, t) , where

00

G(C,t) = g n C- (2.9)
n=O

Applying this to (2.9), we obtain (2.7) with

I, = v( , t) (2.10)

This provides an alternate expression for I, besides (2.2).

Using Poisson's integral formulae for the harmonic function Re [ ] , with appropri-

ate choice of imaginary constant for ICI < 1 , (1.10) implies:

zt = (z 14 (2.11)

where

A , 1 ) 1 +C [CC( I I' f ''(t) 16(C', t)
4icI=i C' C zc(C',t) (t(C, t) + z6(C, t)] (2.12)
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where
1e is 

(2.13)
15= cQj- t)

18 WC, (2.14)
e zcQt)

By ur;ng analytic continuation through contour deformation, for [CI > 1 we obtain:

Zt = Czc 4 + 2 WC IS + C 16 (2.15)

Alternately, if we use the procedure of the last paragraph, we can derive (2.15) provided

( it(1 t)
14 ¢ ( ' t) (2.16)

Equation (2.16) provides an alternate expression for 14 (besides (2.12)) for K I > 1

Combining (2.7) and (2.15), we obtain one nonlinear integro-differential equation for

z for [I > 1:

Zt = q1 Z( + q2 + Bq3 + B q4 + Bqz_ 3 B z + B3q7z(Ce (2.17)
ZCI/

2  Z, 3/ 2 2 ZC 5 / 2 Z3/2

where

q= 14 (2.18)

q2= 215 WC + C 16 (2.19)

q3 = _( 2 I,( 15 (2.20)

q4 = -/2C 15 ( 2 (2 + 13) - J2 15 C2 3 C (2.21)

1 ¢q5 = -2C 15 (3 + 1(2/23/5 (2.22)

q7 = -C3 12 15 (2.23)

It may be noted that each of q, through q7 are analytic functions of C outside the unit

circle since they involve _-e and the z-1 evaluated on or inside the unit circle where

they are analytic.

3. The case of zero surface tension
It is clear from that when B = 0 , w = 0 from (2.1). From (1.3), (2.11) and

(2.12), for ICI < 1,
zt= 14 zC (3.1)
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where 14 now simplies to:

!- [( +1 (3.2)14 = J-i - C t)12

For I > 1 , (2.17) simplifies to:

zt= q, zC + q2 (3.3)

where

ql ( , t) = 14 (3.4)
2 2C

q2= 2 2 (3.5)7r (,)

Note that even though 14 has one analytic expression (3.2), it defines two different analytic

functions inside (used in (3.1)) and outside the unit circle (used in q, in (3.4)).

/,From the alternate expression (2.16) for 14, it follows that for KI > 1

qi(Ct) = _( 2 i t (, t) (3.6)
zi ( ,t)

Further, noting that and hence are analytic inside the unit circle and zc((, t) and

¢(C*, t) are complex conjugates on I(= 1, it follows from (3.5) and Cauchy's integral

formula that

q2 2(. < - 1 (3.7)q2 = 2i ,= '-1/( Z*(W , t)

LFrom (3.2), (3.4) and (3.7) it is clear that small changes of - on = 1 will

induce only small changes in q, and q2 for I C > 1 and so determination of q, and

q2 from - on the unit circle is well posed, when IzC on I(I = 1 is bounded away from zero.

Further, note that if we know z((, t) a circle of radius R where R > 1 (Note R could

depend on t ) but smaller than the distance of the nearest singularity of z ((, t) other

than that at the origin, than for any < R, including i = 1,

z((,t) -2 InC + 1i < [Z((0+2I (3.8)
- 27ri 1 = R C' - 7

for the channel geometry and for the radial geometry

z((,t) a). + .1. 0 d' (3.9)

2ri R

12



where a(t) is determined from:

a(t) - j d' z(C', t) (3.10)

The determination of z for I < R from given z on I = R is again well posed

from the above formulae.

Further, note from (3.2) that for I(1 < 1 , Re 14 defines a harmonic function so

that on 1(I = 1, 1 2
Re 14(,t) = z 2  (3.11)

Thus from the maximum principle for harmonic function for I < 1
2 1 2 1

max 2 2 > -Re/14 > min > 0 (3.12)
I(I = I 7r IZC I 2 7 ZW

Further, a little manipulation of (3.2) gives:

14 t) - d __[ ____ 1 (3.13)

27r2 1  Iz(_,t) 2

It is clear that Re I4(-, t) is a harmonic function in 1II < 1 taking on the boundary

value:

Re 4( -,t) = 1 2 (3.14)Re/4(,t) =z(,t) 12-7

on I(1, = 1. By putting = , from maximum principle, it follows that any

I(1 > 1,
1 2 1 2

max - > Re14 > min -> 0 (3.15)M =---1 Iz(12  7r t0 ----1 Cz 7r

The properties (3.12) and (3.15) will be crucial as we shall now see.

The ensuing discussion will focus on solutions to (3.3) with initial data obtained by

analytically continuing physically relevant initial data z((, 0), subject to the decomposition

(1.1) (or 1.5 for the radial case)) and the requirement that zC((, 0) : 0 in ICI < 1. There

is no apriori reason for a specific solution of the analytically continued equation (3.3) for

t > 0 to be identical to the solution to the original equations (satisfying boundary condition

(1.10)) with decomposition (1.1) (or (1.5) for the radial case). Therefore, as part of our

discussion, we will include analytical arguments that suggest that the solution to (3.3)

that we calculate in I(1 > 1, on analytic continuation back to I(1 < 1, is consistent with

decomposition (1.1) (or 1.5 for the radial case) and that with a finite speed of any zero of

z(, there will be no zero of z( in I(1 < 1, atleast for a finite nonzero time interval.

13



Equation (3.3) is in some sense a nonlocal hyperbolic p.d.e, if indeed hyperbolicity can

be defined for such equations. The coefficients are clearly analytic for I(I > 1, except at
infinity, where from (3.5) and (3.6), q, is proportional to C , but q2 is analytic. In reality,
(3.3) is a nonlinear integro-differential equation. The analyticity of the coefficients q, and

q2, however, guarantee that there is no spontaneous generation of singularity in I( I> 1 for
if it were otherwise, reversal of time would imply that the singularity moves somewhere else

rather than disappear (see Lacey, 1982 for a discussion of moving singularities in a differing
but equivalent formulation). Thus any singularity of z((, t) outside the unit circle at a
point must be the result of singularities moving from somewhere else. Earlier, Richardson

(1972) showed the invariance of singularity form using a Schwartz function approach. Even

though, he was concerned with a displacement of a less viscous fluid by a more viscous

fluid rather than the other way around, his results hold by using time reversal argument.

However, the motion of singularities was not addressed in the Richardson (1972) paper.

We note from (3.3) that the characteristic velocity is -ql that is always pointed

inwards towards I(1 = 1.

ZFrom (3.4) and (3.15), it follows that

Re [ t] = - Re h((c(t),t) < 0 (3.16)

on a characteristic (c(t) . Equation (3.16) immediately implies that the radial component
of characteristic speed at any time t at any C outside the unit circle is always inwards

towards I41 = 1 and so information in I(1 > 1 flows inwards towards I(1 = 1 at all

times for which a solution exists. In particular, this implies that singularities of the initial
conditions in 14[ > 1 move towards the unit circle since a singularity must move with

the characteristic speed -qi evaluated at that point.

On the other hand, for I(1 < 1 , for given 14 , (3.1) is a hyperbolic equation with
characteristic speed -( 14 , which according to (3.12), moves outwards towards I1 = 1.

Further the characteristic speed is zero at ¢ = 0 and so any singularity of z at

C = 0 at initial time will not move in time.

LFrom the exterior equation (3.3), as o 00 , using (1.1), (3.5) and (3.6) the

asymptotic equations are:
7r"

zt= - ft(O,t) C zC + 2 (3.17)

for the channel case and for the radial geometry from (1.5), (3.5) and (3.6), we get:

_a'(t) 4
zt- a(t) r a(t)C (3.18)

a(t) 7 ~)
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The general solution to the initial value problem in (3.17) is

z(,t) - 2t + z(ei(f(0't f(0,0))C, 0) (3.19)

and for (3.18), it is:
z(,t 0 4t + (2a(t)

W a(t)C + z a( 0 (3.20)

Thus any singularity present at infinity at initial time does not move to finite C values.

Now consider the motion of a zero Co (t) of zC . Here, by a zero of zC , we only refer

to points where z( is zero but analytic. If z is zero but nonanalytic at a point (say like

a branch point), then it is called a singular point and will be denoted as (.(t) just like

any other singularity.

To follow the motion of zeros, it is convenient to take the derivative of (3.3) with

respect to C and divide the resulting expression by -z' to obtain:

1) ( q1 _ q2- (3.21)

LFrom the form (3.21), one notes that a double zero of zC is only possible when q2( = 0.

This can occur momentarily; however, we limit our discussion to a simple zero for which

zC . zC(Co(t),t) (C - Co(t)) (3.22)

On substituting this into (3.21), we find

Co = - ql(o(t),t) q2 C(Co(t),t)
z¢c(Co(t), t) (3.23)

We are unable to show in the general case that Re [ 0 J is negative, i.e. if the zero must

always appronch the physical domain. Also, another open question is whether the velocity

of approach is always smaller than -qi(Co(t), t) , which would have been the velocity of

approach of a singularity at that point. However, this is the case for the specific case of

Saffman (1959) exact zero surface tension solution (in the formulation of this paper). In

that case

z(C, t) = i + d(t) - 2InC + 2 (1-A) In (1-a, (t)C 2) (3.24)
7r7r

where 1 > a1(0) > 0 and 0 < A < 1 , and d(t) and ai(t) are determined by

Ad + -(1 - A) Ina, = t + Ko (3.25)
7r



d- _Ina, + 2(1 - A)ln(1-a2) = K, (3.26)
7r r 

1

where K 0 and K, and depend on the initial conditions. In this case, for 0 < A < I
2 '

we calculate (o ± ' on the imaginary axis and corresponding speed o at all
V.-1 (-1-2 A)

times is towards to the physical domain KI = 1 though the magnitude of the speed is

smaller than the magnitude of -q(Co(t), t) , calculated from (3.6) which is also directed
towards the physical domain ICI = 1 . For 1 > A > , within the Saffman class of2

solutions, (0 = ± /a(-) ' on the real positive axis at a distance further from any of

the poles at C = - ±L The speed of each zero is directed towards unit circle,

though they are less than I- q, (Co(t), t)! in absolute value. Within this class of solutions,

as t -+ oo, the zeros actually eventually settle down at C = ± 1 , at finite distances
2 - 1

from the physical domain [ = 1 . This is unlike other cases given by Lacey (1982),

Howison (1985,1986ab), Shraiman & Bensimon (1985) where the zeros actually impinge
the physical domain in finite time.

Now consider the initial value problem
00

z((,O) = 2in C + i + E f,(0) (3.27)
7r

for the channel geometry or

z(C,o) = a¢) + E k7 (o) C (3.28)
n=0

for the radial geometry. We assume that zC is nonzero for ICI < RO and that the

convergence of the infinite series occurs within a circle of radius R 0 ( > 1). When this

series is not convergent, we can take its unique analytic continuation across the unit circle

to be the initial condition. As long as integrals (3.2) and (3.7) exist, each of q, and

q2  are analytic functions outside the unit circle except at C = oo where q, is

proportional to C ( q2 is analytic). Thus, any singularity (,(t) for z outside the unit

circle has to be there at initial times and owing to the hyperbolic nature of the equation,

any such singularity at (,(t) must move with speed -qj((.(t),t) , which owing to the

property (3.16) is always towards the unit circle. This is the basic reason for ill-posedness

for the initial value problem restricted to I(1 < 1 since two slightly different data in

I(I < 1 can correspond to different initial distribution of singularities: in one case the

singularity may be far off while in the other case, the singularity can be made as close

as we want to the physical domain. After a short time, in the latter case, depending on

the singularity nature, it can impinge the physical domain and the difference between the
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interfacial shapes in the two situations in any norm that measures the interfacial slope will

be 0(1) . The singularity location and strength can be arranged so that this happens for

arbitrarily short times. However, when one chooses an norm that distinguishes between

initial conditions based on their values in a strip adjoining the physical domain then up to

certain times, the evolution problem can be expected to be well posed.

However, the problem is well posed when I(I >- 1 is our domain as we now argue.

We assume that there exists T > 0 so that the speed of a singularity (given -ql ) or

a zero (given by 3.22)) has uniform upper bound M for the inward radial component for

0 < t < T . This appears to be reasonable assumption since all the soiutions known

explicitly satisfy this criteria. Then if we choose T, < T so that Ro - MT > 1, then it

is clear that for te[0, T] , ROt-Mt > 1 so that z is analytic for 1 < I¢j < RO - Mt.

For such a time, each of q, and q2 is determined by first determining z and therefore

zC on I(I = 1 using (3.8) (or (3.9) and (3.10) for the radial case) and then using (3.4) and

(3.7). Further, the value of z on a circle of radius Ro - M t will completely determine

z in any other circle with radius between 1 and RO - M t through (3.8) (or (3.9) and

(3.10) for the radial flow ). This determination is well posed as argued earlier. Further, it

is clear that the values of z at time t determine z at any points on the closed curve

S at time t shown in Fig. 5. The curve S is chosen such that it determines z on the

circle of radius RO - M (t + bt) at time t + b t by using the method of characteristic

on (3.3). This determination is well posed since a characteristic method is equivalent to

an ordinary differential equation, for which continuous dependence on initial values is well

established.

The arguments in the last paragraph suggests the well posedness of the formulation
of the exterior problem. However, one must ascertain that this exterior solution to the

analytically continued equation is actually in the form (1.1) or (1.5) for T, _> t > 0 and

zC has no zero in K(I < 1 as must be the case for a physically acceptable solution.

This follows from noting that (3.1) is actually the analytic continuation of (3.3) back into

ICI < 1 across ICI = 1. Further, at initial time, by the very construction of z((, 0), the data

satisfied in the interior problem is consistent with (3.27) (or (3.28) for the radial flow case)

and as we mentioned before, the characteristics in the interior problem is always pointing
outwards with zero characteristic speed at the origin. This means the solution of (3.1)

cannot develop singularity unless 14 is not analytic or fails to exist for I(I < 1. However

from the exterior problem - is analytic upto time T on = 1 and in particular

must be integrable implying 14 exists and defines an analytic function in I < 1

Thus, in the interior evolution the only singularity is at the origin in the form given in

(1.1) (or (1.5) for the radial geometry). Further, no zero of z( can form in < - 1 in the
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time of interest since at initial time there is no such zero and the only way for a zero to

form in this domain is for - =L 1d d z¢( 1't) to change values discontinuously in
time. This can happen only if a zero of zC moves through 1 I . Clearly, none of the

above is the the case since from the exterior problem z( and its inverse are analytic on

the unit circle for t e [0, T1] . Thus the solution one calculates in the exterior is actually

of the form
2 00

z((,t)= -2 In ( + i + y f,(t) ( n (3.29)
7r

n=O

for the channel geometry and of the form

(,)-a(t) 00"(
z((,t)= + E k,(t) (3.30)

n=O

for the radial geometry for I(I < 1 with z( : 0 in that domain. This guarantees that

the initial value problem solved in I(1 > 1 , when analytically continued to I < 1 , is
in accordance to the requirements on z((,t) in I(I < 1.

As a concrete example of how one might solve an initial value problem with branch
point singularities, we start with initial value

N 1
z((,0) = (1- 0) (C- (0))-' E.(C,0) + G(C,0) (3.31)

where I( I > 1 and /3t is generally a noninteger constant and Ej(C1(0), 0) # 0. In the

case, when fi3 = 1, we replace the above expression by the limit of /3j --+ 1 which clearly

gives a logarithmic expression. Further, suppose E1 ((, 0) is entire and G((, 0) is an
analytic function everywhere in the finite ( plane except at ( = 0 , where the singularity

is consistent with the singularity of z as given by (1.1) (or (1.5)). On substituting

N

z((,t) = Z(( - (C(t))' - # E((,t) + G((,t) (3.32)
j= 1 - 3 j

into (3.1), where (j satisfies

C, = -qj((j(t),t) (3.33)

and each E((, t) is chosen to satisfy

Ej t - ql EjC = (1- /t) Ej [ql(C ' t) - ql((,(t),t)j (3.34)
(C - ct(t))

then, it becomes clear that

Gt = qi G( + q2 (3.35)
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On examination of (3.34) and (3.35), it is clear that for times when IK(t)l > 1 , and

zC 5 0 in I(1 < 1 , each of Ej and G will remain analytic in I > 1 since q, and

q2 are remain analytic outside the unit circle.

We now outline how a rigorous proof of the analyticity would follow. Consider G(C, t).

If fc d( G(C, t) 7 0 for some finite contour C completely outside I(CI > 1, the preimage

Co (which must be a closed contour) of the contour C under the flow -ql( ,t) (i.e. each

point of the contour moved according to the equation = -ql ((, t)) at time t = 0 must

also be a finite contour entirely in I(I > 1 by noting the property that Re [ql/C] > 0 and

finite for the time that a zero or a singularity of z¢ has not impinged I(I = 1. However,

kc0 d( G(C, 0) = 0 from the assumed analyticity initially. On the otherhand it is clear

from (3.35) and the analyticity of q2 in I> 1 that A fc G(C, t) = 0 on a contour moving

with the flow -qj((,t). This leads to a contradiction, implying that fc G((,t)d( = 0

for arbitrary closed contour C in I( > 1, which by Moerara's theorem implies G((,t) is

analytic in I(I > 1. The proof for each Ej would be along similar lines.

Thus the form of the solution (3.32) implies invariance of the singularity form at later

times. Note however, that inside the unit circle at C - A- , each of G and Ej may

have have singularities for t > 0 , as the analytic continuation of q, and q2 has

singularities inside (from (3.5) and (3.6)). However, since z((, t) as argued earlier cannot

have singularity inside except at C = 0 , the singularities of Ej 's and G must cancel

out at C - on the specific Riemann sheet corresponding to the physical domain.

Given Ej and G at any instant of time on a circle of radius R greater than unity,

but smaller than the nearest zero or singularity of z( , (3.32) determines z on that circle

which then determines z and hence z( on I(I = 1 through (3.8) (or (3.9) and (3.10) for

the radial geometry). z( on I(I = 1 determines ql and q from (3.2), (3.4) and (3.7).

Equations (3.33)-(3.35) can then be used to advance Ej and G along a characteristic.

We now discuss the fate of singularities. First, we assert that a singularity cannot stay

away at a finite distance from ICI = 1 since this would otherwise imply existence of a

limit point or a limit cycle where Re [q, /(] = Re 14 = 0. From maximum principle and

(3.15), it follows that this is impossible. Thus every singularity must indefinitely approach

I(I = 1 . We know from Howison (1985,1986ab) within the context of exact solutions

that pole singularities of z( never actually impinge I(I = 1 in finite time though it

approaches it exponentially in time. We now discuss in a general context if a singularity

(.(t) , once very close to the unit circle, can actually impinge the unit circle in finite time.

Consider singularity in the form:

z¢ - Bo(t) ( .- (t)) - " (3.36)
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for ,(t). On substitution into (3.3), we can easily establish

Bo(t) = Bo(0) (i-l) f: dt1 qC((,(it1),tl) (3.37)

Note that for a simple pole, i.e. for /3 = 1 , the strength Bo(t) is a constant. This is

known for the previous SHSB exact solutions.
Assume that at time to , the singularity is very close to the unit circle. We will now

find the asymptotic equation of motion for the singularity beyond that time. Let

C. = R ei' (3.38)

Since singularity moves with the characterestics, t) = -ql (C,, t), which from (3.2) and
(3.4) imply that

- + ii, = -I 4 ((a(t),t) (3.39)

,We now consider the asymptotic expression for 14 as R --+ 1+ . LFrom (3.2), we

immediately get

dv [ R + 1 (3.40)

-I4((.(t),t) = T .2 dr _(v--) - R] I zC(ei,,t)12

Let's assume v, : ±7r or otherwise the range of integration or, v will be changed

from 0 to 27r and the same argument as given below can be repeated. We break up the

integral in (3.40)

= + (3.41)

where

= (R- 1)'/ 4  (3.42)

It is then clear that R- 1 << e << 1 and the integrand in each of the 1st two integrals

can be replaced by

1~ _icot (v - .) - 2(R- 1) cosec 2(V - V,)] iz(ei",t)12 + o(R -1) (3.43)

On integration by parts of the second term in (3.43), one finds that the asymptotic behavior

for P3 > j of the sum of the first two integrals in (3.41) is given by
I f[ i [ 7r 1]j +/,,j -- [jir dv cot (v - v,,)lz(et)l2 + o(1)
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(R 2 j dv cot (V-I V) Izc(etv,t)12 + o(R- 1) (3.44)

The first term above is completely imaginary and will not be relevant to our discussion of

the asymptotic equation for A found by taking the real part in (3.39). For / < I

one finds from integration of (3.43) the real part of of the first two integrals in (3.41)

is o((R - 1)20) . Now consider the contribution from the third integral. Introduce new

variable s = , we find that to the leading order

'+' 2(R- 1)2# - (-1 -is) 2 - 2 cos(s[R -1])_ ~ 72 Bo (t)12 .  _  da (1 +S 2)  +(R - 1)2  (.5

For #3 < , to the leading order the above expression simplifies to

4 (R - 1)P (1 +S 2)0-1 (3.46)T2 +~ (3.1240)

On the other hand for 3> it is clear from (3.45), that the contribution is

O((R - 1)2 ) which is smaller than O(R-1) contribution to Re 14 in (3.44). Combining

the above information with the real part of (3.39) we obtain

A , -M(t) (R - 1)2# (3.47)

for R -+ 1+ for /3 < 1 where

M1 (t) 4 1 2 (1 + 2)0-1 (3.48)Ml~~~t)~ Bo 7- B(t)12

and for / > 1

S- M 2(t) (R- 1) (3.49)

where
M7(t) = r dv cot (v-v 8 ) 1 (3.50)

Note that from (3.15) it follows that M 2(t) as determined above must be positive.

Further from (3.48), for any v(t), M 1 (t) cannot go to zero when Bo(t) stays bounded.

Further from (3.37), and the relation of q, with 14 through (3.4), it follows that Bo(t) will

stay bounded when P3 > 0. For P < 0, it is possible to have Bo(t) unbounded as

1. ,From (3.50), it is clear that that will stay bounded for M 2 (t) when > I

This is true irrespective of the dependence of v, on t .
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On solving these ordinary differential equation, we find

R -1 = [-(1 - 2,3) Mi(t')dt' + (R(0) - 1)1 - 2 9] (3.51)

for /3 < 1 and for /3 > ,wefind

R -(R - 1) - diM (,l) (3.52)

It is clear that for /3< R - 1 will be zero unless qo0 C (Cs(t),t) - oo as

KCI --+ 1 such that Bo(t) as determined from (3.37) -- oo in such a way that the
integral of M, in (3.51) stops growing indefinitely as t - oo . We cannot rule out

such an exceptional case when /3 < 0 , since the behavior of 14 (C.(t), t) given by (3.46)

implies that ql0 ¢ ((,(t),t) determined from (3.4) will tend to infinity as 1C.1 --+ 1 for

/3 < 0. However, more careful arguments not considered here, may rule that out as well

though we are unsure about it. Thus aside from the exceptional case pointed out over

here, there will be finite time singularity for /3 < 2"

LFrom (3.52), for /3 > the singularity never hits the the physical domain in finite2

time as M2 (t) in (3.50) is always finite. At the cross over value of 8 the three

integral terms contribute equally and one finds a (R - 1) contribution for which (3.40)

holds (though with a different M ), and therefore in this case as well, the singularity will

not reach the physical domain.

In the case of /3 < 0,if

zC((,t) ,- Eo(t) + Bo(t) ( - ,(t)) -  (3.53)

as (. p(t) for nonzero Eo(t) , then it is easy to see that Re I 4((,(t),t) = 0(1) .

From the real part of (3.39), it follows that R - 1 in this case will be zero after a finite

time. Thus for a singularity of the form (3.53) with # < 0 , it will move to the boundary

of the physical domain in finite time.

We now sketch a numerical algorithm to solve for z((, t) outside the unit circle.

We will limit our description to the channel geometry though the procedure with minor

changes is readily applicable to the radial flow. We will also only describe the algorithm

to calculate z((, t) on a circle of radius R(t) , where R(t) shrinks with t in some

prescibed way and initially does not contain any singularity of zC or a zero. We will find

that we can stably calculate z((, t) on the unit circle, i.e. the physical interface as a by

product.
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Assume N uniformly spaced out points in a circle of radius R(t) at any time at
which z((,t) is known. We now describe how to calculate z((,t + 6 t) on a circle of

radius R(t + 6 t) , where R(t) is changed in some prescibed way.
LFrom a discrete fast Fourier transform, we can calculate each cj in the relation:

N

2 T
z + - In( = E cj Ri e 'j  (3.54)71"

where c = R ei v at points on the circle of radius R(t). We know from previous discussion

for the appropriate initial value problem for the continuum case that c2 = 0 for j < 0.

This should be approximately true for the discrete version for large N . This provides a
check on numerical accuracy. On finding the ci , we calculate z and z( for = e"' on

N uniformly spaced out points using

2 2 j
z + -in = E cj eSJ (3.55)

j=O

2 1
z+ Z j e l (3.56)7r ¢ =0

Note that the cj for negative j is not used. We now can calculate q2 at any point

outside the unit circle using (3.5) as z = z for the channel geometry and therefore

q2 4 ¢(357)
ir c+ ci

Further, on finding zC and hence L at N uniformly spaced out points on the unit

circle, we -aculate a finite set of coefficients di and 6j ( N of them altogether) in the

Fourier series representation of

2 = do + 1 dj cos (jv + 6,) (3.58)

LFrom (3.2) and (3.4), it follows that

q1 = -( do + d)e'6' (-j (3.59)
j=1

After knowing dj in (3.58), a finite truncation of (3.58) can be used to calculate q, at

any C point outside the unit circle.
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Now, we put (3.3) in a characteristic form and consider the problem of determining

z on a circle of radius R(t + 6 t) chosen such that

-in R(t+6t) + R(t) = max [Re-q, 6t (3.60)
= R) I (J

Now the va ie of z at a point P at time t + 6 t in Fig. 5 is determined from value
of z , ql and q2 at point P on the curve S at time t and q, , q2 at P at time
t + bt . Applying a second order difference scheme for the characterestic, we obtain:

1
((P) - ((PI) = -2 [ ql(((PI),t) + q,(((P), t + 6t) ] 6t (3.61)

2

1
z(c(P),t + 6) = z((PI),t) + 1 [q2(((P1), t) + q2(((P), t + 6t)] 6t (3.62)

2
In the above, C(P) and z(P, t + 6t) for N uniformly spaced out points P on the

circle of radius R(t + bt) have to be determined all at once in an iterative fashion since

each of q, and q2 at time t + 6t are determinable in terms of z at t + 6t on

N uniformly spaced out points on circle of radius R(t + 6t) (as described in the last

paragraph).

The procedure can be repeated until R(t + 6t) 1 or z( = 0 on the unit

circle for which q, will fail to exist. We note that to follow the motion any singularity,
it is not necessary to calculate z near that singularity. Once q, is calculated as

in the above procedure, it is known for every C outside the unit circle and we can
then calculate each singularity location by numerically integrating the ordinary differential
equation , = -q1 ( 8 (t),t) • The strength of the singularity Bo(t) given by (3.37) can

similarly be calculated at any time through integration.

In the following sections, we consider how small nonzero surface tension modifies the

dynamics of z((, t). Our discussion of surface tension effects will be limited to initial
conditions that are independent of B . Further, we will assume that the singularity of
zC at initial time is either a simple pole or a branch point of a power type like any of
the (j in the expression (3.31) with 0 < 3 < 1. We will also assume that the zeros and
singularities of zo0 are at 0(1) distance from each other. Further, our results in sections 4
to 7 are restricted to cases when the distance of each singularity of zC from the boundary

of the physical domain, I(I = 1, is 0(1). However, since the physical interface is RI( = 1,
the dynamics described in these sections are not directly relevant at that instant of time to

the large distortions of interfacial shape caused by one or more singularities coming very
close to RI( = 1. For large times, all singularitie.. must come very close to I(I = 1 and the
study of the this latter stage is taken up in section 8, though in a limited way.
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4. Perturbation expansion in powers of B.
The discussion in the last section suggest that the zero surface tension problem solved

in the unphysical plane is well posed. Thus, it is natural to study the effect of small non
zero surface tension in this unphysical plane. We start by assuming that an asymptotic
expansion for some part of the complex C plane at least in the vicinity of the physical

domain is of the form

z - zo + B z1 + ... (4.1)

In this section, we will examine where such a perturbation expansion is inconsistent. In

latter sections, we then proceed +o show that under certain assumptions, a so called 'inner'
region exists (in what is now the standard language in the theory of matched asymptotic
expansion) such that an appropriate inner-outer matching is possible.

On substituting (4.1) into (2.17), it is clear that zo denotes the z determined
for B = 0 in the last section. Going back to (2.17), it is clear that zl satisfies the

integro-differential equation:

q40  q50 z 0 <( 3 q70zoCC 2 ________4.2

Zlt - q1o ZlC = q2 1 + qjj zo+q3o T qo + z 2 q70z¢ (4.2)
Zo¢ 1/2 z0¢3/2 2 zO 5/2  zoC3/2

where subscript 0 on each of q, , q , q4 , q5 and q7 denote the evaluation of this
quantities as given by (2.18), (2.20)-(2.23) using w = 0 and z = zo as determined

in the last section. The subscript 1 on ql and q2 denotes the derivatives of each of

ql and q2 with respect to B at B = 0 as determined from (2.18) and (2.19) on
substituting (4.1) for z . We can solve (4.2) in the unphysical plane by a variation of the

numerical method outlined in the last section for zero surface tension since the operator
on the left hand side is similar to that of the equation for zo (in 3.3). It is clear from
(4.2) that at points where z0C is either singular or has a zero, there is singular forcing on
the right hand side of (4.2). In the case when zoC '- Bp(t) (C - (,(t)) - ' as 4 --- (.(t),
with 06 < 1 where Bo(t) = Ej((,(t),t) for Ej((,t) determined by (3.34) with the

identification ( = 4o , we find from (4.2)

z -Cr. B,(t) (4 - 4t))2 -  (4.3)

where B1 (t) is determined by the first order differential equation
1 1

bi - 1 1 0/- 2) q, 0C(((t),t)BI(t) = - q7 0((,(t),t) Bo(t) - 1/ 2 /3 (/3 + 2) (/3 + 4) (4.4)

with initial condition:

B,(0) = 0 (4.5)
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Note that /3 = 1 , i.e. the singularity is a simple pole for zC , Bo(t) is a constant as

noted before in the context of SHSB solutions. For 1 < / < 2 , the most singular

term on the right hand side of (4.2) comes from ql1 zoC rather than the curvature terms.

However, the uniformity of (4.1) arising because of such singular terms is simply because

the singularity of the outer expansion zo + B zi + .. travels with speed ql rather than

q10 • Thus in approximating the location of the singularity by ( , we commit an error

ir the location of the singularity of order B , which shows up in the regular expansion

(4.1) in term zi as a more singular term (C - C) - 1 than that of z0C . For /3 in

the interval (4/3, 2) , this happens to be more singular than the curvature term which

also induces in z1 C a more singular term than zo C . This nonuniformity can be remedied

in the two term outer perturbation z0 + B zj by determining the singularity position

(,(t) of zo using

= -q,0((.(t),t) - B qjj(.,t) (4.5)

However, even with this remedy, there are still singular terms on the right hand side of

(4.2) arising from the curvature, the most singular of which induces a singularity of the

form (4.3) which is more singular than z0C when /3 < 2 . For /3 > 2 , there is

no nonuniformity of (4.1) owing to curvature, as the induced singularity in zjC is less

singular than zO( in that case.

The conclusion is that if the initial value problem has a singularity for zC -. Bo(O) (C -

1(,(O)I > 1, and if that initial condition is independent of B, then the singularity form

is preserved by zoC though its strength Bo(t) generally changes (simple pole is an excep-

tion) in time; the higher order perturbation term has a worse singularity at approximately

the same point (to order B ) for / < 2 . Thus, one can expect an inner region near any

such (,(t) , where the asymptotic expansion (4.1) becomes invalid. This inner region will

be treated in the next section.

Going back to (4.2), we find that the right hand side forcing terms is singular when

z0C is analytic but zero (generically simple). Thus, if we consider an initial value prob-

lem for z((, t) with initial conditions that are independent of surface tension B such

that z(((, 0) = 0 at some point, then we know from section 3 that B = 0 solu-

tion z0C preserves this zero (o(t) that move in time according to (3.23). At such a

point Co(t) , one finds a singular forcing on the right hand side of (4.2). Near Co(t) ,

zoC(C,t) - zoc( ((o(t),t) (( - Co(t)) and this induces a singular term in z, at Co(t) so

that the leading order asymptotic behavior is

Zl ((,t) - Ao(t) (C - Co(t)) 5 /2  (4.6)

as C --+ CO(t) obtained by substituting (4.6) into (4.2) and equating the most singular
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term. On using (3.23), we find that

A0(t) = 3 [zoCC((o(t),t)]I q7o((O(t),t) (47)
2 q2((t),t)4.)

However (4.6) does not satisfy the initial condition z((, 0) = 0 , as it must for B in-

dependent initial condition z((, 0) . Therefore, to a particular solution that behaves like

(4.6), one must add in a solution to the homogeneous equation on left hand side of (4.2)
so that initial condition is satisfied. The homogeneous part of the solution must have

a singularity at ( = Co(O) at t = 0 so as to cancel the singularity in (4.7) at

t = 0. However, if there is a singularity present in the homogenous solution at t = 0,

it must be move at the singularity speed -ql 0 (from left hand side of (4.2)) which is

different from the speed of a zero given by (3.23). Combining all the above information,

we conclude that for t > 0 , there must be a singular point (,, of z1C that initially

coincides with Co(0), i.e. (.1(0) = (o(0), whose location at later times is determined

by = -ql 0 (C 1(t),t) such that as C-- (t) ,

Zl - A,(t) (C- (.l(t)) - 5/ 2  (4.8)

where

Al(t) = A1(0) e-  f dt' qO (1.1(t'),t') (4.9)

and AI(0) + Ao(0) = 0. Thus one observes the birth of a new singular point C 1(t) of

the outer asymptotic expansion (4.1) that is neither a singular point of z0 nor a zero of

zo , except at initial time. Thus, aside from each singular point of z0C discussed earlier,

an inner region is required near each zero (o(t) zero of zoC (which is a singularity point

of z, ), and around each new singularity (, (t) of z 1 . (Note: this is not a true singularity

of zC, as there is smoothing over an inner scale as shown in section 7.) The scale of the the

inner region near Co(t) is proportional to B2/7 , whereas the difference of speed of the

singularities between Co(t) and ( is order unity. This means that for t = 0(B2/7 )
the location of (,1 is within the inner scale around (o(t) and the two term (in B )
outer expansion that one can expect to match with the two term asymptotic behavior of

the solution to the leading order inner equation for large values of inner spatial variable is
(from Van Dyke's matching principle)

z . zCC (Co(t),t) (C - 0(t)) + B [ Ao(t) (C - ( 0 (t)) - 5/ 2 + AI(t) (¢ - (t))- 2

(4.10)

The matching question will be taken up in section 6. However, if indeed a successful

inner outer matching is possible, the evidence presented in this section suggests that new
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singularities for z, C axe born and these will move towards the physical domain. For the
case of Saffman solution, each such newly created (,, moves faster than a zero since we
showed in section 3 that the speed of Co(t) is smaller than -q, (Co(t), t) for this class of

solutions. We emphasize that these singularities like the singularities and zeros of zo C are
only present in terms of the outer asymptotic solution (4.1) and that they are smoothed
out in an inner scale as will be seen in section 7. In section 7, we will find that the size of
each such inner region is O(B 1/ 3) where the deviation from zoC is 0(B13/ 6) .

Note that, if we were to look at the evolution equation for z2 , it would contain
singular forcing at the singularities of zo and the zeros of zO . In addition, it will have
singular forcing at the singularities of z, which were born initially from a zero of zo C that

moved away later. Since left hand side of the differential operator in (4.2) is the same for
Z2 , Z3 , etc., as it is for z1 , there are no new singular points for z2 (or z3 , etc) other

than ones for z, .

Note that the singularity structure for zl and z2 and other higher order terms that
we have sketched out are dependent on the initial condition being independent of B . If
we have initial conditions that allow appropriate terms in z, , one may not have any birth
of a singularity of z, from an initial zero of zC . This effect will show up at z 2 or higher

order depending precisely on the initial conditions.

Aside from each point (.(t), Co(t) and corresponding C., (t), where the perturbation
expansion (1.11) fails because the higher order terms become progressively more singular,
(1.11) is also invalid at any singular point (p(t) created by surface tension effects (as will
be seen in sections 5 and 6) on an branch point or zero of z0C, where

A - 0 (t) (C - (,(t)) - 4 / 3 + .. (4.11)

as - p(t) provided where Ao(O) = 0 and Ao(t) scales with some some positive power of

B. Indeed, for any B, which need not even be small, substitution of (4.11) into the complete
equation (2.17) (actually its C derivative) shows that such a singularity is consistent with

the equation with

= -ql(p(t),t) - 9Bq,((p(t),t)Ao3/2 (4.12)

Because of the scaling of Ao with some positive power of B, the singular behavior (4.11)

is not present in zoc; further since Ao(0) = 0, there is no such singularity at initial time.

However, at later times, for t << B - 1 , the location of singular point (p(t) that initially
coincides with some C.(0) (where z(((,0) is singular as in (3.31) with 0 < 6 < 2) is within
an inner neighborhood of (,(t) where the perturbation expansion (1.11) is invalid in any
case because of the nonuniformity pointed out earlier. Thus there is no need for a separate
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inner region around such (p(t). However, in section (6), we shall see that a (p(t) which

initially coincides with with some zero Co(O) moves away from Co(t), but for t = 0(1)
remains within a O(B2/9 neighborhood of C.,(t). However, at this time, the the inner

region around (, 1(t) which scales ulk O(B1/3) does not include any of (p(t). A separate

inner region scaling as B 11s around each such Cp(t) becomes necessary to analyze.

5. Local Nonlinear Equations near singular point of z0

Here we consider the equation near a point where zoC is singular generally like

(C - (.(t)) - " for 0 < P3 < 2.

For P3 2 , the curvature term in the evolution equation is less singular than than

other terms of the equation and there is no need for an inner zone. For # < 0, the inner

equations becomes a little more complicated and is not considered here. The equations

derived in this section will also be restricted by the assumption that 1(,(t)l - 1 is not

very small. Each (,(t) eventually must approach I(I = 1 as shown in section 3 and so

our assumption implies that we will not be looking at the final stages of evolution when

1Cal - 1 << 1. In section 8, however, we derive equations for the final stages of evolution

for the special case 1 < #3 < 1.

Before introducing inner variables, it is convenient to take the derivative of (2.17) with

respect to C, to come up with an evolution equation for z(. Inorder that the curvature

term comes at the same order as zCt and that the solution matches with the outer solution

for which zo Bo(t)(( - (.(t))- 1, it becomes necessary* to introduce inner variables:

2 1
C (t) = B72--0 Co() x (5.1)

= 8-(-Y Co(t) G(x,-) (5.2)

= dt CG/ (t) q7o (6, (t), t) (5.3)

where

CO(t) = CO(O) dt' q1 0 C(C. (t'),t') (5.4)

where Co(0) depends on the initial condition Bo(0). Then the leading order equation
becomes: = 03 G- 1/ 2  

(5.5)
>> - -2

In deriving the above, we assumed I72(t)--1 88-2=P , or otherwise the simplification

of each of q, through q7 by ql 0 ,.. q70 would be incorrect. This would make the derivation

* The term Co(t) appearing in the scaling is only meant to put the inner equation in

the simplest possible form
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of (5.5) invalid. When the singularity is so close to I(I = 1, different scalings are necessary
for the dependent and independent variables and instead of a local partial differential
equation (5.5) for the inner equation, one obtains a parameter free integro-differential
equation. We consider that in section 8 for the special case 1 < < 1. Equation (5.5)

2
is the Harry-Dym equation as pointed out by Kadanoff (private communiation) which can
be related to the modified KdV equation (Kawamoto, 1985) and is completely integrable.
However, all the inverse scattering theory results are based on the real domain where
certain decay conditions hold at ±oo . These do not appear to carry over to the complex
plane and we could find no direct use of the integrability of (5.5). However, there exists
similarity solution that satisfy both initial and matching conditions at infinity for certain

ranges of arguments of Arg .

Consider the initial value problem, with

G(X,0) = (5.6)

with boundary conditions
1

G(X, T) ~X (5.7)

for X in some sector of the complex X plane that will be determined shortly. Equation
(5.7) corresponds to assuming that at initial time, z( is the same as zoC . The boundary
condition (5.7) corresponds to the leading order inner-outer matching, i.e. as we move out
of the inner zone the solution is assumed to match to zo .

It is convenient to transform the Harry Dym equation (5.5)

H = G - 1/ 2  (5.8)

Then the equation for H is:

H,= H 3 HXX× (5.9)

This has a similarity solution that satisfies both initial and boundary conditions (5.6) and

(5.7) of the form

x / 2 F _/2)) (5.10)

On substituting this into (5.9), we obtain

27 F'1 (l2(-)F + 3(-)22-8# 017F+27 - 2)3772 F"+- (27 2)3 773 F"' =F
8 8 T(5.11)

where
77= (5.12)
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Note that in the special case of 8 = 1 , (5.11) can be integrated once to obtain

3 1F -27 2 F' 27 73 F" 1 [ 1(5.13)
8 8 = TF2.

where we used the boundary condition F -+ 1 as 77 --+ 0.

We now return to the general case of arbitrary P3 in the interval (0, 2). We now seek the

asymptotic solution to all powers of 77 in order to use Borrel summation to find the leading
order transcendental terms, that are beyond all orders of the asymptotic expansion. This

will give information on what sectors of the complex q7 plane can the boundary condition

F(7) - 1 be satisfied for small 7 corresponding to boundary condition (5.7) for some

corresponding sector in the X plane. It is convenient to substitute

F = I + Q (5.14)

into (5.11) to obtain

00 (-1) (n+1) (n+2) Qn Q- + 1 3 2)(21,284 +80) Q'
n=1

+2(P- 2)3172 Q11 + 27(P - 2)3 11 Q1"' = Q? 5.5

It is clear that the complete asymptotic expression for small 77 is of the form:

00

Q "," E am if" (5.16)
m=1

On substituting this into (5.15), we obtain a complicated recurrence relation. However,

in order to find the leading order transcendental terms for small q , we only consider the

form of the recurrence relation for large m. We will establish aposteori that the nonlinear

terms will not contribute to the leading order in the ratio. Consider any nonlinear term

in the summation formulae in (5.15), say QQ' . The coefficient of 77"-1 will involve

=12 1 m a3 am-j . From the final asymptotic expression for am in (5.19) that is

obtained by balancing the linear terms, it is not difficult to see that the the contribution

from the previous summation in equation (5.15) is relatively small for large m. Similarly,

we can argue for other nonlinear terms. More detailed arguments have been made by

Combescot et al (1988) along these lines -Ior a nonlinear ordinary differential equation

arising in steady state selection. While, this does not rule out other forms of balance

where nonlinear terms can be important, we expect that the balance obtained through

linear equations is appropriate since for large It/I, transcendental terms are small in certain
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sectors of the complex plane and should therefore appear as solution to a homogeneous part

of equation obtained by linearizing about F = 1. Kruskal & Segur (1986) demonstrated

this to be the case for a model nonlinear equation. LFrom ignoring the nonlinear terms in

(5.15), we obtain the recurrence relation:

a. - 27 (f3- 2)3 (m- 1)2 [1 + O(-- A (5.17)

am-, 8 M2 m-1 1 ~J

This implies that

am ~ b - I)rn - 1)!2 (5.18)

where b depends on the initial few iterates where nonlinearity in (5.15) plays a role. On

using Stirling's approximation, (5.17) simplifies to:

a I.0b 27 2)3) (2m)!
a,, - 32 )' )  r 3 /2  (5.19)

where b = V b. We now carry out the procedure of Borrel resummation, as previously

done for the steady state fingering problem by Combescot et al. Define R(s) by

00

R(s) = E a. s' (5.20)

Then the asymptotic behavior (5.19) implies that the nearest singularity of R(s) to the

origin in the complex s plane is at s = -so , where so - 327 ading
27 (2-,6)'3n teledn

order asymptotic behavior near s = -so is given by

R(s) ~ b So1/ 2 r(-1/2) (s + so)1/2 (5.21)

The functions R(s) and F(77) are related through the transform:

Q(7) 10 ds e R(s2 01) (5.22)

Alternately, we can write

Q(7) ds, e-9 R(s2) (5.23)

Using Watson's Lemma, it clearly follows that the asymptotic expansion of Q is as given

by (5.16) for q7 real positive and small. This is also true for Arg q in (-7r, 7r) since the

contour along the real axis is not affected by the presence of singularity of R(s) . Notice

that instead of (5.22) or (5.23), which are equivalent, we could have equally used

1 f0c  -

Q(d) sds e - R(S2) (5.24)
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for any real and positive constant c that is independent of 77 and obtain the same

asymptotic expansion (5.16) for Arg 77 in (-7r, ir) . It is clear that (5.23) and (5.24)

differ by transcendentally small terms in 77 that axe beyond all orders of the asymptotic

expansion (5.16). However, we shall see momentarily that (5.24) does not give the asymp-

totic expansion (5.16) when Arg 77 is extended beyond 7r which is necessary for obtaining

matching to the outer asymptotic expansion for a range of P7 values.

Returning to (5.22), as we continuously change argument of 77 from 0 to ir , the

stationary phase path encounters the singularity at s = sc = i . on the real positive

axis when Arg 77 = 7r , In conformity of analytic continuation from smaller values of

Arg 77 , it follows that the path of integration should be deformed such that it goes below

sc on the real axis. For 2 7r > Arg 77 > 7r , this deformation is equivalent to Fig.

6, which is the required stationary phase contour. The contribution from the trip around

77 = s, gives an additional contribution of

is r/4 23/2 b 7 1/4 8-1/4 -i 'V 5.5

However, this is transcendentally small for Arg 77 in the interval (7r, 2 7r) and hence

the asymptotic expansion (5.16) holds for this range of Arg 7i . Once again, if we repeat

the analysis for Arg I continuously changing from 0 to -7r and going beyond -7r , we

find that there is an additional contribution from s = -s, owing to the use of a contour

shown in figure 7 that is
_ -i , 14 2/32 b 7r q1/4 S-1/4 ev I  (5.26)

However, this is transcendentally small for Arg 77 in the interval (-27r, -7r) , Thus over

Arg q in the range (-27r, 27r) , the asymptotic series for Q in (5.16) hold for small

77 implying a matching is possible in that sector of the complex q plane to the appropriate

zero surface tension solution as C - (.(t) . However for Arg 77 in (2 7r, 3 r) and

(-3 7r, -2 ir), (5.16) does not hold as (5.25) or (5.26) become transcendentally large. At

this stage, we can see the difference between (5.24) and (5.22) (or (5.23)). If we were to

use (5.24), the asymptotics of Q when Arg 17 is in (7r, 2 7r) or (-2 7r, -7r) will be

dominated by the contribution from c which would then dominate (5.16). If c were

complex with Re c > 0 , it would still not be possible to ensure the validity of the

asymptotic series (5.16) beyond an interval of 2 7r for Arg q . We now note that there is

nothing special about the interval (-21r, 21r) for Arg I1 where the asymptotic series (5.16)

is valid. Through appropriate rotation of contours in the s- plane in the expression (5.22),

(5.16) can be made valid for any interval of the form (-2r + 2 k 7r, 2 k 7r + 1 7r) for any

integer k.
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Now, we examine the implications of being able to carry out an inner-outer match for

a range of Arg 77 not exceeding 47r. Clearly, the matching fails because the transcendental

term (5.25) or (5.26) becomes large. These transcendental behavior, when rewritten in

terms of outer variable correspond to transcendental corrections to the regular perturbation

expansion (1.11) of the form

±4i YarIC 0(t)(C -CA (t))]8/2-SP/4

e rl/281/3 (5.27)

where in (5.27), we have suppressed a prefactor that is algebraic in B and ( - C(t). This
2

form of transcendental correction to (1.11) is only valid when B7 2-0) << I-_((t) « 1.

To find the form of the transcendental terms for arbitrary (, one needs to look at the
associated homogenous equation found by linearizing (2.17) about zo and look for WKB

type solution to this equation. Each WKB solution obtained this way are expected to have

the feature that they exchange dominancy across lines in the complex C plane called Stokes

lines. The structure of global Stokes lines fo the steady finger problem has been analyzed

before (Tanveer (1987a)). However, in the time dependent problem, the equations appear

to be quite complicated and we do not address this problem here.

We now present just heuristic arguments to conclude that appropriate matching can

be accomplished atleast for some range of P. These have to be checked in the future by

complete determination of global Stokes lines at each instant of time. LFrom prior expe-

rience with steady problems, it appears likely, that in j(j = 1, the dominant contribution

towards the transcendental correction is from the nearest singularity. It is clear from (5.27)

that the local structure of the Stokes lines near C = (,(t) is given by setting the real part

of the exponent in (5.27) to zero. Now, from the relation (5.1), (5.3) and (5.12), it follows

that

Arg (6(t)- ) Arg (.(t) Arg Co(t) 1
(-w = (3- 3//2) 3 - 3//2 Arg tI  (5.28)

Now, in the special case of a -- 1, i.e. a simple pole for zoC, it is clear that regardless

of the value of 7r - - Arg Co(t), an integer k can be chosen so that Arg q7 is inof te vlueof " -(3-3#/2)

(-27r + 2k7r, 27r + 2k7r) when Arg (,- is in (-r/2, 7r/2) showing that a matching

is possible to the outer solution in all directions from (,(t) towards the half plane that

contains the physical domain (see Fig. 8). We now argue that such a matching imposed

for the nearest singularity to the physical domain I(I < 1, assumed to be at 0(1) distance,

is sufficient to ensure the validity of (1.11) in the physical domain. Consider a circle around

the origin in the C plane so that its radius R is slightly less (independent of B) than

the distance of the nearest singularity S from the origin (See Fig. 8). We know from
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our discussions in the context of zero surface tension solution, that the value of z on this
large circle uniquely determines z on [¢[ = 1 in a well posed manner. Now if any

part of this large circle contained exponentially large terms in B that can be expected

if an inner-outer matching failed, then one or more of the coefficients of a power series

representation for z + ln C for the channel case ( z - for the radial geometry)

that is convergent up to this circle of radius R must contain transcendentally large terms

in B. Now since the distance of the singularity from the unit circle is assumed to be order

unity (i.e. independent of B ), it follows that z on I(I = 1 will contain transcendentally

large terms in 8 that is incompatible with the assumption that (4.1) actually holds in the

physical domain.

The argument just presented above suggests that for a simple pole of zo ( or /3 values

close to unity, we are assured of a successful inner-outer matching. However, this condition

may just be sufficient, not necessary. Certainly, the argument above will not hold for any

(a(t) which is not the nearest singularity from the physical domain. Further, the global
structure of the Stokes line is likely to change due to effect of other singular points that

move out of the inner region, if these are located close to a Stokes line emanating from

(,(t). This point is not addressed in this paper, but needs to be resolved in the future
to ensure that the inner-outer structure of the solution is indeed valid for any /3 in the

interval (0, 2). Our argument only assures that for P3 = 1 or sufficiently close to it.

Now consider possible singularities of the actual zC. It is clear that the function F

appearing in the similarity solution (5.10) that satisfies (5.11) admit singularities at one

or more 71o such that

F(77) - A 1 (,q- o)2/3 (5.29)

as q -77 o. Rewritten in terms of the outer variable, this implies that
(1 2

Z B ~ P Co1' 3(t)(-j0) - 4/ 3 (A 2 (3 - 3//2) - 4/3 [C- Cp(t)] - 4/3  (5.30)

for

IK- ( l << ) « I[c(t)]'- 1  I (5.31)

where

Cp(t) = C8(t) - [C0(t)Y- 1  (5.32)

We now present a likely explanation to Dai et al's (1991) numerical computation that

appeared to suggest that an initial pole of zc(, 0) remains a pole at later times even for

nonzero B that is small. In order to determine the nature of the singularity (p(t) (5.30)

on ICI = 1 through monitoring of the power series coefficient k,, in (1.6) as carried out
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by Dai et al (1991), one must consider the asymptotic behavior of k,, for very large n

because of the highly localized nature of the singularity as reflected in (5.31). Further, the

calculations must be accurate enough to distinguish the the small O(B2/9) (for 3 = 1)

coefficient of the singular term in (5.30) from the behavior

B 0  533)

z - _ )

that is valid for B2/3 << j - (.(t)I << 1 given that (.(t) and (p(t) are quite close to

each other (within B2/3 as is seen in (5.32)). We believe that the behavior (5.30) will be

reflected in in kn for very large n, far beyond what has been calculated by Dai et al (1991).

In some sense, in the Dai et al (1991) calculation, the singular behavior (5.33) masks the

actual singularity because sufficiently small spatial scales were not resolved.

However, due to the stiffness of the system of ODE for small B and larger size of
truncation in the Dai et al (1991) formulation, such a direct computation appears to be

impractical at this stage. This The number of kn numerically computed by Dai et al's

(1991) does not appear to be large enough and accurate enough to detect the singular

behavior (5.30). Instead, their calculations only reflected the behavior: that is valid
6. Local Nonlinear Equations near a zero of z0 C

As pointed out earlier, the perturbation expansion (4.1) is invalid near the zero Co(t)

of zoC as well. We now present the analysis for an inner-region around Co(t) which scales

as B2/7, where (4.1) breaks down.

We introduce innter variables

C- 0(t) = B2/7 kl , (6.1)

r - B - 2 /7  d (t') 2 (t'), t) (6.2)

z B B4/ 7 k 2 G (C, r) + J dt' q2(6O(t'), t') (6.3)

where

= q/ 0
7 (7t)(t)tt)

2/q2o ((o(t),t) z07 (Co(t),t)

k 4/(°(t)'t) zo5/ (0(t),t) (6.5)4/7((()t
q20€(o (),t

Then equation (2.15) to the leading order in B2/7 reduces to

G, = -G4 + C - 2 [Gt-1/2 ],, (6.6)
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In order that this matches with zo( as -- (o(t) , we must require that

~t r (6.7)

as -- oo along sectors in the complex t plane for any fixed scaled time -r in directions

towards the physical domain. The initial conditions imply that

Gt(,0) = (6.8)

For convenience, we define

H = Gt - 1/ 2  (6.9)

Then on taking the derivative of (6.6) with respect to , we find that the evolution

equation for H is given by

-2 2Hi4 1 - 2H (6.10)
H3  H3

The boundary and initial conditions (6.7) and (6.8) translate to:

for I1 >> 1 and initially

H( =,0) (6.12)

6a. Early times t << B217

When t << 52/7, it is clear from the definition of 7- in (6.2) that r << 1 . In

this case there is an asymptotic similarity solution that is relevant to boundary and initial

conditions and is given by

H(C,r) (- r) - 1/ 2 F ( (6.13)

where F(q) (q - r2 in this case) satisfies (5.11) with 3 - -1 and can be made

to satisfy boundary condition "

lim F(77) = 1 (6.14)
,7-*0

for Arg Y7 in (2k 7r - 27r, 2kir + 2 7r) for any specific choice of integer k, as shown in

section 5. Using the relations (6.1), (6.2) and the relation of tj to r and - r, it is clear
that this implies that the inner-outer matching condition appearing as boundary condition

(6.11) will be valid for a 87r/9 range of Arg and hence of Arg (1 - (/(o(t)).
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We now determine the singularity locations of F(r) for a solution that satisfies (6.14)

for Arg r7 in the interval (-27r, 27r). Through appropriate rotational invariances of the

equation (6.6) and initial conditions, the form of the singularities for solutions that satisfy

(6.14) for Arg ri in (-27r + 2kir, 27r + 2k7r) for nonzero integer k can then be deduced. The

proper choice of integer k depends on Arg k, and Arg k2 as determined in (6.4) and (6.5)

as they relate the Arg (1 - /(o(t)) to Arg and hence to Arg 77.

First, for computational purpose, we found it convenient to introduce the transforma-

tion

=77 - 2/9  (6.15)

with principal choice of Arg q and

( )= -1/2 F(r-9/2 ) (6.16)

Then the differential equation satisfied by F is

1 [P + 2i F'] = F"' (6.17)9F3

The boundary condition (6.14), imply that

~ 1/2 (6.18)

Through consistent dominant balance argument on (6.17), one obtains the following pos-

sible asymptotic series at oo:
, - -15 + 225 x 115 -- 19/2 + (6.19)

8128 +..(.9

The form of the transcendental correction has already been determined in section (5) for

F(r) as 7 -+ 0. Using that result, we can assure ourself that there is not transcendental

term (atleast to the leading order) when Arg is in the interval (-27r/9,27r/9). At the

anti-Stokes lines 27r/9 and -27r/9, transcendental terms are born so that for Arg r7 in the

interval (2r/9,67r/9),

~ -- 1/2 15--5 225 x 115 +-1 C, -13/8eiv/ -] -29'/4
77 + 128 7 7 + (6.20)

where

C, - -e-in1 423/ 2 br S01/4 (6.21)

and for Arg i in (-67r/9, -27r/9)

- 15- + 225 x 115 7 -19/2 + ... + C2 -1s/8e-i 3794 (6.22)
128
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where

C2 = eitw/ 423/ 2b7r 01/4 (6.23)

Notice that the transcendental terms in (6.20) and (6.22) are subdominant to the algebraic

terms of the asymptotic expansion for Arg q in (27r/9, 47r/9) and (-4r/9, -2 r/9) respec-
tively, but become the dominant contribution for Arg i7 when the Stokes line Arg i = 47r/9
or Arg i = -47r/9 is crossed. Thus (6.19) holds for Arg q in (-47r/9, 4r/9) since the

transcendental terms in (6.20) and (6.22) are subdominant.

We now describe a numerical procedure to calculate such a solution F to (6.17) in the

complex plane and to find the location of singularities o, where P is singular. Earlier,

Constantin & Kadanoff (1991) and Howison (1991) realized that a two-thirds singularity
of F was consistent with (6.17). Indeed, an expansion

P [ 40]2/3 Aj[i _- 0 ]" 3  (6.24)
j=0

is consistent with (6.17). We therefore proceeded to verify that the form (6.24) is correct,

determine the location of each such singular point o and find out if there are other forms

of singularities admitted by (6.17).

As suggested originally, by Kruskal & Segur (1986) for another third order nonlinear

ODE, a cor.venient numerical method to calculate such solutions will be to march in along
the positive real axis from a large distance by using the asymptotic behavior (6.19) for F,

' and F". This ensures that we have effectively set the coefficients of the two possible

exponential terms to zero for Arg 7 in the interval (-2r/9,2 r/9), since otherwise on

the real positive axis (a Stokes line), each of the two exponential exponential contributions

would have dominated some algebraic terms that are included in the three term asymptotic

expansion (6.19). The third degree of freedom for the third order ODE (6.17) has been

utilized in demanding (6.18) rather than the more general condition F - constant -1/2,
which for arbitrary constant is a possible leading order asymptotic behavior for a solution

to (6.17). We did not use a starting value of exceeding 15 to avoid the expected stiffness

of the differential equation for large . However, for a starting i exceeding 10, we verified

that the computed solution F was independent of starting to 10 digits. A Runge-Kutte

solver that automatically adapts the step size to control errors was to calculate numerical

solution for any given ,,, the real axis for q in the interval (-5,15). This numerical

integration showed no sign of singularities on the real axis on this interval and F was

always real upto machine precision. We then used a procedure quite similar to one used

earlier for computing singularities in a different context (Tanveer, 1991) We took round
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trip paths over anti-clockwise closed contours C in the i plane and numerically evaluated

the values of
1 d P? (6.25)

4ri J F_
1 t¢ .P

d i -P (6.26)

and found it was zero to numerical accuracy most of the times, suggesting that there are

no singularities inside such contours C. Further, it was checked that F returned to the

same value. When this contour integration answers were nonzero for any contour, we also

found that F during those times did not return to the same value. So we suspected that

there was one or more singularities inside our contour. In that case, we went around that

contour C anti-clockwise three times and evaluated each of the integrals (6.25) and (6.26).

Then, we either found that (6.25) gave us a value of 1 (within numerical accuracy) and

during those times F returned to the same value after three rotations; or at other times the

value of (6.25) was not unity and during those times P did not return to the same value

even after three rotations. In the first case, we concluded that there was one singularity of

the form (6.24) at a location o given by the value of the integral in (6.26) (remembering,

offcourse, that C is traversed thrice). Such a value was consistent with the location of the

actual contour C, regardless of its size, which we varied. In the second case, we concluded

that the contour included multiple singularity (which need not be on the same Riemann

sheet). In such cases, we decreased the size of the contour C, until we found that the value

of (6.25) on a thrice traversed contour was unity.

With our numerical search for in the region -5 < Re 0 < 5, -7.5 < Im O - 7.5,

we were only able to find three pairs of singularities located at

0 = 0.29349 ± 3.7586 i, 0.660998 ± 5.61650 i, and.. 0.92209 ± 6.9174 i (6.27)

It was difficult to get reliable values of the integrals in (6.25) and (6.26) for larger values

of i far away from the real axis because of the effect of exponentially growing terms. This

led to restrictions on the zone where reliable singularity search could be performed. One

curious observation about the roots in (6.27) are that they are close to the Stokes line

Arg = ±4 7r/9 that limit the validity of the asymptotic expansion (6.19) and get closer

as the roots are further out from the origin. Now, a divergent asymptotic series for F valid

in some sector of the complex plane has encoded in it information about the asymptotic

behavior for other sectors where the asymptotic series is invalid due to its subdominance

to transcendental terms that now become large. However, the form of the transcendental

correction when Arg 1 is just beyond 47r/9 is given the one in (6.20). Now notice that
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the singularities in (6.27) are at reasonably large distances from the origin, especially the

latter ones. We argue that a singularity far out from the origin ought to be located close
to a point 4 g, where

9 1/2 + Cl49 3/8e' V /" = 0 (6.28)

Offcourse, the asymptotic series (6.20) is itself valid in the immediate vicinity of such
a point ,., as can be expected since F satisfying (6.17) does not admit a simple zero.
However, we make the ansatz that the modification of (6.20) occurs over a small local scale

when qo is large and so q9 is close to qO. This is admittedly a very heuristic argument;
however, we now see the ramifications when this is assumed correct. Consider the zeros of

(6.28) near the Stokes line Arg q = 47r/9. We put

ig = r e i41r 9 + ie (6.29)

and carry out a perturbation for large r to find that

f 9-/4r 9/[ In r - In IC11 (6.30)

[2 k 7 (6.31)

Computing (6.31) for k = 1, 2, 3 gives us:

r = 3.6788, 5.6252, and 6.961618 (6.32)

which compares well with the actual values of J1oj for the roots given by (6.27):

3.77004, 5.65526.., and 6.97858 (6.33)

The agreement between (6.32) and (6.33) gets better for larger singularity distances from
the origin, as can be expected if our heuristic argument is correct. Now, lets compare

the value of e for k = 1,2,3, with what is observed to be the for deviation of Arg 4O
from 47r/9 for the roots in (6.27) in the upper half plane. We cannot directly apply the

asymptotic relation (6.31) accurately since IC, I given in (6.21) is only known interms of

a real posive number b (introduced in section 5) that we have never computed. Leaving

out the IC, I term in (6.30) would have been allright as a leading order approximation if
r was sufficiently large so that 11n rl >> 1. But this is not the case. We circumvent
this difficulty, by estimating IC, I by using the last value in (6.33) and using it in (6.30) to
determine ICI. This computed IC11 is then used in (6.30) for k = 1, 2 to give us:

= 0.095909, 0.05768 (6.34)
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compared to 0.096606 and 0.05738, respectively for Arg 0 - 41r/9 for the first two

roots quoted in (6.27) (only those in the upper half plane). Again, with the asymptotic

argument results is better the further out the singularity is. Thus, it appears that our

heuristic argument about the infinite set of singularities along the Stokes line 47r/9 may

be correct. If so, their radial positions approach those given by (6.31) for to positive

integral values of k in (6.31) (the agreement getting better for larger k), whose Arg values

approach 47r/9 from above with the deviation e approaching that predicted by (6.31). We

checked the k = 4 case with direct numerical computation which yielded a singular point

at io = (1.128,7.966), very close to what is predicted. Clearly, from symmetry of the

problem about the positive real axis, on the basis of our heuristic argument, there will

be an infinite number of roots close to the Stokes line Arg %0 = -47r/9, with complex

conjugate locations to the ones determined above.

Now let's examine the consequence of singularities in the similarity solution. Going

back to the relation (6.13), (6.15) and (6.16) it is clear that for r << 1,

(~,r) -- 7 /2 7 []1/3 [C- P(.r)]2 3  (6.35)

2

for

K - W,(0)l << r2/9 (6.36)

where

Cp(r) = r - q 0
r 2 / 9  (6.37)

Thus initally each singularity coincides with C = 0, i.e. Co(O). However, they move

away from it for r > 0. Now for any r > 0, assuming that there are infinite number

of singularities that are arbitrarily far out in the q plane as indicated above that will

approach the Stokes lines that limit the validity of the asymptotic expansion (6.19) (and

hence inner-outer matching). These singular points located in ICI >> 1 are expected to

alter the global Stokes line structure for C outside the inner region around (o(t). It is

unclear, what this affect will be. However, we proceed further with the assumption that

that the global Stokes line structure is such that local matching for Arg q (and hence

Arg C for large ) in the interval (-4r/9, 47r/9) guarantees that transcendentally large

terms in B are avoided on I(I = 1 thereby ensuring the validity of (1.11).

6b. The case of t = O(B2/7)

In this case r, as defined in (6.2), is order unity. The similarity solution (6.13) becomes

invalid and one has to look at other ways of solving the P.D.E. (6.10). Our primary interest

in (6.10) is to see if solutions exist that satisfy the boundary condition (6.11) over some
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sector of the complex C plane, if for early times such a solution can be matched to the

early time similarity solution (6.13) and what singularities are present in such solutions.

We assume that the only singularities of (6.6) are those created at r = 0, though

located at a different position that is determined from (4.12). Note that near a singularity,
the C term has little importance and therefore the equation in an approximate sense reduces

to a Harry-Dym equation (with the independent variables C - r and r) for which it might

be expected that the only moving singularities are of -4/3 rd type for G4. With this

assumption, we expect an infinite number of singularities moving away from - 0. Now

consider the question of inner-outer matching.

What is necessary is to ensure that boundary conditions (6.11) can be satisfied for

sufficiently large range of Arg . For that purpose, we need to look for other possible

behavior of H aside from terms that are algebraic in C that occur in systematic domi-

nant balance arguments applied to (6.10) and (6.11). This can be found by linearizing

(6.10) about the asymptotic behavior (6.11) and looking for solutions t to the associated

homogeneous equation, which in this case turns out to be:

C3/2 [f + -tt] f m = 0 (6.38)

We impose the condition that

=(,0) 0 (6.39)

for any 5 0, as it appears appropriate beyond the immediate scale where the similarity

solution of section 6a is relevant. Also, as - oo for certain range of arguments that is

unspecified at this time,

fI( ,Tr) - 0 (6.40)

Such a solution can be found in the form

A = ew  (6.41)

The leading order WKB type behavior of W is given by W0 that satisfies

3/2 [W0, + W0 ] - W0  = 0 (6.42)

Appropriate solution to this which matches with the form of the exponential in (6.20) and

(6.22) (after appropriate change of variables) for r << 1 is is

W0 = -i/( -) /  (6.43)

Irl/293/2 
(.3
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The next order correction to W that matches with the form of the algebraic prefactors in

(6.20) and (6.22) (after appropriate change of variables) is

In[ (6.44)4 [4-r)9/

One can clearly see that the form of the leading order transcendental corrections eW°+W1

agrees with with the form for r << 1, as reflected in (6.20) and (6.22).

LFrom the (6.41) and (6.43), it is clear that with a choice of positive sign, H is tran-
scendentally small for large 4 when Arg 4 is in the interval (0,4r) and with the minus sign

choice H transcendentally large for large 4 in this sector but transcendentally small when

Arg 4 is in the adjoining interval (-41r, 0). Now, for a general partial differential equation
with third order spatial derivative, one can expect to be able to specify three independent

boundary conditions. For (6.10), one degree of freedom has been used in requiring (6.11)
rather than the more general asymptotic condition H ,, [constant (4 - T) + r]- 1/2.

The other two degrees of freedom can be used by ensuring that the the coefficients of14 Vrf(t -r)/4 V3_/4C i )9,./4
(r... i ,_Ie for Arg 4 in (-4r,0] and and coefficients of (rI -e- j.-9

((r)e 9r)eI 2F
for Arg 4 in [0, 1r) are all zero. For r << 1, we have seen in terms of compuation of a

similarity solution, that these conditions are appropriate.
This would mean that it is possible to satisfy the asymptotic boundary condition

(6.11) for Arg 4 in the open interval (- LE, L-). There is nothing special about this range
of argument of 4. Clearly, instead of this range, we can choose to ensure boundary condition

(6.11) for other range of arguments like (0, L) ), etc. The appropriate choice will depend

on q7, 0 o(t),t), etc. that relate Arg ( - o(t)) to Arg 4 through (6.1). Certainly 17r is

smaller than 7r. Thus the proposed sufficient condition (section 5) for inner-outer matching

for the nearest singularity is not applicable here. However, if we are to assume that there
are an infinite set of -4/3 singularities (as our arguments indicate) that change the global

Stokes lines in such a way that the matching in an appropriate 87r/9 ensures the validity

of (1.11) in the physical domain, then we have a consistency in inner-outer matching. We
cannot ascertain this at this stage without studying the global Stokes line structure, but

proceed further on the assumption that this is the case.

Further in the sectors where the asymptotic expansion (6.11) is valid, an examination

of the two term asymptotic relation for Gt = H 2 , obtained directly from (6.6) and

using by using the leading order relation (6.7) implies that
3 4 _ -5/2 3

G2 3 - / + 3 (4 - r)-5/... (6.45)

which for 4 -- oo which for rIJ << 141 matches to (4.10), as it must for a consistent

matching.
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6c. B - 2/ 7 t >> 1

In this case, Ir >> 1. For [r >> I 1 >> 1 , it is clear that the -r dependence
in the asymptotic behavior will disappear at each order (though not uniformly). Thus, for

large r the inner equation (6.6) for r independent solution becomes:

0 = -G + 2 [G(1/2 1 (6.46)

On substituting G, "1/ 2 = H , we get the inner equation obtained in the steady state
analysis of Combescot et al (1988) for the relative finger width A < . Via Borrel

summation, they showed that it is possible to have solutions so that

G4 -- 6 (6.47)

for Arg C in [0, ). However, in the steady state problem, it is necessary to have (6.24)

valid for Arg in [- , ], or equivalently (for symmetric steady finger with a smooth
tip) require Arg Gt = 0 when Arg = 0 for sufficiently large . These were

found not to be valid and so a steady finger was not possible in that case. In our time
dependent problem with B independent initial conditions, we have a different picture.
Assun e at each instant of time, a zero Co(t) does not move towards the physical domain

as fast as the corresponding daughter singularity Cl(t) , as is true for the Salfman family

of solutions. Then it is enough to require that the solution Ge satisfy (6.24) for Arg in
[0, 7r/21 and a separate solution (not an analytical continuation) of (6.46) satisfy (6.47)

for Arg C in [-7r/2, 0] . These two solutions need not be identical since we can have
branch cut connecting Co(t) and 1 << << << B - 2/7, this corresponds to a cut
between C = 0 and = r . Thus, for r >> >> 1 a matching of the inner

solution is possible to the outer solution of the form (4.1). Clearly, when >> r >> 1,
the above analysis becomes invalid. This is not unexpected as there is a singularity of the
outer perturbation expansion (1.11) at = r , corresponding to ( = (.,(t) that moves
away from the inner zone around C = Co(t). It then becomes necessary to introduce an

inner-neighborhood around C = C.,(t). We do that in the next section for t = 0(1). The

result remains valid for t >> B2/7 and so there is no necessity to go through the analysis

forr >> 1forC-r = 0(1).
Further, when r >> 1, each of the -4/3 rd singularities (p(t) that was born at Co(0)

move away from the inner region around C = (o(t). This will be dealt with in the following

section as well.

7. Inner scales around each created singularity for t = 0(1)
From, the result (6.35) and the relation of H, and r to zC, C and r that can be found

from (6.1)-(6.3) and (6.9), it follows that for t << B2/7, A0(t) defined in (4.11) scales as
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[Bt]14/27 (Note the scaling does on q0 associated with that particular singularity). We make

the ansatz that when C.1(t), the newly created singular point of the outer perturbation

expansion as noted ii, otion 4, is not in the immediate vicinity of JKj = 1, Ao(t) scales

as B14 / 27 for t = 0(1) as well. When C.,(t) becomes very close I(I = 1, the inner

equations themselves become global integro-differential equations (as will be seen in section

8 for special cases) and in that case, we do not expect the B 14/ 27 scaling to survive. On

integration of (4.12), we get

Cp(t) = -otqi(((t),t)dt' - 452/9 j dt'q7 (C,(t'),t) [B- 14/ 27 Ao(t') -3/2  (7.1)

LFrom section 4, C,(t) = -qi 0((.,(t), t). Since initially (p(0) = (.,(0) = Co(O), it follows

from (7.1) and our ansatz about the scaling of Ao that

C,(t) = (,,(t) + O(B 2/ 9) (7.2)

Now, consider first the inner region around C = G. (t). It turns out that this does

not include or overlap with the inner region around any of the (p(t) Clearly, as pointed out

in the last section, for t >> 0(B5 2 /7 ) , a singular point (.1 of the outer perturbation

expansion (4.1), initially coinciding with Co , moves towards the physical domain. We now

introduce the inner equations near C.1(t) where this apparent singularity in the outer

equation is smoothed out. The appropriate scaled variables in this case are:

-. (t) - B113 e-fo dt' ql(,(t'),t) 1 (7.3)

Szo + B1 6 A(O) f' d' (.(),) (, ) (7.4)

where
I t d q7 (C. (t'),t) 3 f ' dr, qioC(C., (tj),ti)

J ZO 3 2  (e( ), )(7 
5 )

Then, to the leading order, we find

Hr = Hjfjr (7.6)

The appropriate solution to dhis that matches with the singularity given by (4.8) is:
- 1 -i

= - F(-- ) (7.7)

where F satisfies the ordinary differential equation:

5 1
- F - - i F'() = Poo (7.8)

3

46



It is clear that for large i, one possible behavior is given by

P- q}-5/2 (7.9)

and this matches with (4.8). In order to ascertain that (7.9) holds over a big enough sector
of the complex plane, we consider WKB solution to (7.10), which clearly can be a linear

combination of the two asymptotic behavior:

41/2 2 
+ 42 (7.11)

We can ensure the asymptotic behavior (7.9) for Arg i i.e. Arg in ( LA, 2M) which
33

is a combination of two Stokes sectors. In that case, for Arg in (0, 1M) , including the

leading order transcendental correction, the asymptotic behavior for F will be

+ .. + D1 p71/2 e' 1 3 S/, (7.12)

For Arg in (--2 , 0)

}5/2 + .. + D 2 i1/2 e- 8/2 (7.13)

where Dz and D 2 are uniquely determined order unity constants. Since the sector of

matching is bigger that 7r , then according to suggested matching principle in section 5,

an inner-outer matching is possible in this case.
Now consider the inner-zone around each singularity (p(t). It is appropriate to intro-

duce inner variables:
( - (P(W = B 7 / 18 (7.14)

(714

Z(C't) = -1 (7.15)

Then plugging it into (2.17), the leading order equation equation is

fH3 + M(t) H = 0 (7.16)

where M~t) =B2/gqTo° (WO, )0

, + qio(¢p(t),t) (7.17)

In order to match with the outer solution, we must require that as -- oo in cer-
tain sectors (to be specified) that correspond to certain directions towards the physical

domain,

47 -_ ff (7.18)
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where

Tc. = [Zo((P(t),t) ]-1/2 (7.19)

Solution to the ordinary differential equation (7.16), where M(t) is merely a parameter,
can be obtained in closed form (in terms of elliptic functions) that ensures the validity

of the matching (7.18) for Arg j in ((2k - 1) 7r, (2k + 1) 7r) for any specific choice of
integer k. A choice of integer k clearly exists so that inner-outer matching is possible for

Arg (1 - (/Cp(t)) in (-r/2, 7r/2).

8. Final stages for specific type of singularities of zo

In the previous section, our analytical evidence suggests a very rich dynamics that

involve not only the alteration of initial singularities but also the creation of new singular
points. As mentioned earlier, all singularities approach the physical domain I I = 1, as to
the leading order, their location evolves according to the relation C = -i 0 (C(t), t). Thus

eventually each of (,(t), (, (t) and (,(t) will be arbitrarily close to I(I = 1. In that case

the leading order approximation q "= ql0 , q7 = q70, etc. that were used in deriving the

leading order inner equations in sections 5, 6 and 7 become invalid. It is clear then that
we need to look at the modifications of the global integral terms ql, q7, etc, created by the

presence of singularities that are very close to Ic[ = 1 in order to study this late stages.

This is a rather involved study by itself.

On the other hand, unless we study this, our findings in the previous sections will

remain of uncertain relevance to the physically interesting localized distortions of the
Hele-Shaw interface that occur in the presence of singularities very close to I(I = 1. In this

section, we undertake the task of deriving appropriate inner-equations when a singularity

CI(t) of zO of the form zoc "- Bo(t) (C - (,(t) - 6 approaches the physical domain arbitrar-

ily closely in the restricted case 1 < /3 < 1. Our main purpose will be to show that z¢
scales as some inverse power of B over this localized scale implying that the approach of the

singularities of this kind of the zero surface tension solution does indeed correspond to large
distortions of the physical interface, which are smoothed over a small local scale by surface

tension effects. We expect similar effects by the approach of other kinds of singularities

not considered here (including the -4/3 types created by surface tension effects).
In this case, equation (2.17) is not a convenient starting point, as many of the terms

become of the same order. We now consider C = e" to be a point on I() = 1 corresponding
to the physical interface. We work directly with (2.1) and (2.11) which remains valid on
I(I = 1 provided the integrals I, and 14 are taken in the limit of C approaching the circle

from inside. We introduce the inner-scales:

48e/(,(t)) = BP (8.1)
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zC = B-# P1H(6,t) (8.2)

The scaling of (6.2) is appropriate in order to match with the outer-behavior zC - Bo(t) (C -
Further we introduce

S= l-P1(l-) Q(C,t) (8.3)

We introduce

(,(t) = R(t) ei °() (8.4)

and will define
p(t) = (R - 1) B -P1 (8.5)

For p >> 1, we recover the local inner-equations studied in section 5. So, we will assume
p = 0(1). Then, on substituting the above relation into (2.1), we find that to the leading

order,

1 +0 1 ' 1) 1t [ ( ,t)]
11(c ]) dC' IM± IM

M(,t ,i __00 H I 'tl H -', t) 1 70,1~ H (6, t)

(8.6)
where the integral above is in the principal value sense. Now, consider the kinematic

condition (2.11). First, it is useful to break up 1 4((, t) as

14((,t) = 10(Ct) + 4 (Ci) (8.7)

where
i 02T d, + e '  1

4°(et T2 
0  e-.' - ei- Izdei&,t)12 -rlzc(eiv,t)1 2

1e1 . 2 r dv'- .e' + e"" Re [e"/ wC(e i "',t) + Re [ei" wC(eiv,t)1 (8.9)

e T)= 1 ev' - ei' IzC(e,',t)12  IzC(e"',t)12

It is not difficult to establish that

1*0 -1 12w dr/cot v' -v(t) 1

2i oIzoC(eiVt)I 2

BI(+ ip(t)) dv'cot V1 - ro(t) a 11- 2 OV' IzOC(e'i',t) j
2  + o(B ') (8.10)

Again

r R ~ _ - pj3 + p " [ 7 _1, _ f- -",0 <im - ( ,, t) I+ i ( ',t)l
P _P -' V J((', t) + m (~t) (8.11)
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Using the scalings (8.1), (8.2) and substituting (8.10) and (8.11) into (8.7) using the relation

for C./( derived in section 3 and the relation (3.44), we find that it is necessary to choose

P1 = 1 (8.12)
3(1 - P)

to get a leading order inner-equation that includes the curvature and which can match to
the outer solution. Obviously, this scaling is invalid for fP > 1, since the assumed small
inner-scale is then inconsistent with (8.1). Further, the approximation (8.10) become

invalid for fP _< 1. With the choice in (8.12), we get (2.11) (after differentiating with

respect to C) to reduce to
Ht = i e - i v. ( t) [(I40,2(t) - O 0°(,))] +I'(t) H (8.13)

where
1 12 7r vi- (t) 14 dv'cot 2 0 (8.14)

d't )(t) 1 (8.15)
7) - r v' Iz0o(e(vi,t)12

27r~~ [i I + 1't
14 t 1 -iP+oo d' Im nt( ',t) Im Q4( ,t)(

L7't J-sP-oo J ~ H( ',tI IH(C,t)I
It is then necessary to solve the system of integro differential equations (8.6) and (8.13),

subject to the asymptotic behavior that

H(C,t) - Bo(t)[-i(,(t)]-  -,6 (8.17)

and for early enough times, when p(t) >> 1, we want

H( ,t) - Bo(t)[-i(.(t)]-  - (8.18)

for all . We have not solved these equations. Nonetheless, the scalings obtained in

(8.12), together with the relations (8.1) and (8.2) immediately imply that a large localized
distortion occurs in the physical interface at a point corresponding to C = ei ' (O.

Thus, we can conclude that an initial singularity of zC(C, 0) atleast of the type (C -
with f0 in the range (1, 1) initially located at 0(1) distance from ICI = 1, while being
smeared out and transformed by surface tension effects, will still make its presence felt on

I(I = 1 after 0(1) time that can be computed by calculating the trajectory of (,(t) that
moves according the the zero surface tension solution and eventually comes arbitrarily
close to ICI 1.
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Conclusion

We have imbedded the zero surface tension problem in a well posed problem and shown

how surface tension affects singularities of certain forms. Here we only addressed the global

qualitative features of the dynamics of singularities and zeros. These will be supplemented

with actual numerical calculations of singularity trajectories relating it to the shape of the

physical interface. We also need to account for the final stages of singularities other than

the special types considered in section 8.

However, in order to completely relate the findings with physical domain initial con-

ditions, which in general cannot be analytically continued exactly to the complex plane,

one needs to address the issue of the probability density of singularities of different types

and their strengths in [I( > 1, once a function iq specified in I1 < 1 within a certain error

(say in the Max norm sense). This does not make sense at this stage since the singularity

types are not even denumerable. However, if the long time feature of the interface is not

crucially dependent on the precise singularity nature, it may make sense to restrict to spe-

cific kinds of singularities. Our findings in this paper is in some sense equivalent to finding

the input-output relationship of a device. However, in experiment or in direct numerical

simulation (if one is possible for very small B) what one observes is the statistical features

of the output, given random inputs, the randomness coming in because one cannot control

the location of singularities in the unphysical domain even with arbitrarily accurate data

in the physical domain. Thus to predict the statistical features of the output, besides

figuring out the input-output relationship that has been addressed to in this paper, we

also need to predict the statistical features of the input. We can also expect that such

statistical features of the input, combined with the understanding of the dynamics with

specific input is likely to lead us to discover self-similarities of the statistical features in

time that may well explain the apparently fractal nature of the interface over some range

of length scales.

We can perhaps expect this mode of attack to be useful for the understanding of the

time dependent features (such as side-branching) of a needle crystal, since the important

element of the analytical technique is not the conformal map, but but a system of integro

differential equations, which is available in that case.
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1. Fig. 1: Unit semi-circle in the C -plane.
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2. Fig. 2: Rectilinear Hele-Shaw flow viewed in the lateral plane.
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3. Fig. 3: Unit circle; work plane for the radial flow.

Y

More Viscous fluid

x
Less viscous fluid

injected at x-=O, y=O

4. Fig. 4: Hele-Shaw flow in a radial geometry.
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* R(t+dt)

R(t)

5. Fig. 5: Circles of radii R(t) and R(t + 6t) in the ( plane. Values of z on curve

S determine z at time t determine z on circle of radius R(t + bt) at time

t + bt . P is a representative point on circle or radius R(t + 6t) that is influenced

by point P1 at earlier time t through characterestic as shown.

Ims

Re s

----------------------- --------- -----------

6. Fig. 6: Illustration of matching zone. Transcendentally large terms in B have to be

avoided inside circle of radius R where the nearest singularity S is just beyond R.

The sector of matching near S is bounded by the two dotted lines through S and

subtend an angle of 7r.
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7. Fig. 7: Deformed contour C starting at 0 along the real axis and then again along

two sides of the cut at s = s, for Arg r in (7r, 27r)

S.. . ............. .. * 1. . . .

8. Fig. 8: Deformed contour C starting at 0 along the real axis and then again along

two sides of the cut at a = -j8c for Arg q in (-2 7r, - 7r)
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9. Fig. 9: Branch cut between C Co and corresponding daughter singularity

C = C.1 allows two different local solutions on two sides of the cut to be matched to

the outer solution in the region inside the large dotted circle.
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