
ADA4 7

ARL-STRUC-TM-:536 AR-006-59

DTICSELECTF
DEC & 19910

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORY
MELBOURNE VICTORIA

Aircraft Suctures Technical Memorandum 536

DETERMINATION OF SYMMETRIC END LOADS FROM BULK
STRESSES ON A RECTANGULAR PRISM

by

T. TRUONG
and

L.BENNETT

9 1-1070

Appiwed for publi rekese

C OM~tWELT O A~hLZ 19



This work Is copyright Apart from any fair dealing for the purpose of
study, research, criticism or review, as permitted under the Copyright
Act, no part may be reproduced by any process without written
permission. Copyright is the responsibility of the Director Publishing
and Marketing, AGPS. Enquiries should be directed to the Manager,
AGPS Press, Australian Government Publishing Service, GPO Box 84,
CANBERRA ACT 2601.

!



AR-006-596

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORY

Aircraft Structures Technical Memorandum 536

DETERMINATION OF SYMMETRIC END LOADS FROM BULK
STRESSES ON A RECTANGULAR PRISM

by

T. TRUONG

and

J. BENNETT

SUMMARY

A mathematical method is presented for the determination of the normal symmetric
end loads from known values of the bulk stress on a lateral surface of a three dimensional
rectangular prism. A FORTRAN computer program has been developed to implement this
method, and results for an arbitrarily chosen case are presented.
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SYMBOLS

z, i, z Cartesian co-ordinate axes

2a, 2b, 2c Length, depth, breadth of the prism

v Poisson's ratio

oz, Upy, Oz Normal stress components in the z, y, z directions

2kb, 2k 2c Lengths of loaded portion in the y and z directions

, m, n Indicies of the Fourier series

Amn, Bn1, Dim Fourier coefficien~s

f(y, z) Stress distribution function on the faces z = a



1. INTRODUCTION

The stress distribution in rectangular prismb subjected to certain normal end forces

on its two opposite faces is a fundamental problem in Applied Mechanics. The stress

distribution near the loaded surface may be very complex, and the distribution given by

elementary theory is often inaccurate [1]. In this paper, it is assumed that the bulk stress

(o,,, + a, + r,) on a lateral surface of a rectangular prism, which is being subjected to

an arbitrary loading, is known (i.e. measurable). Such a measurement could be obtained

using advanced thermal emission techniques. The aim of this paper is to reveal how the

measured values of bulk stresses can be used to determine the actual end loads.

A method for calculating the bulk stresses produced by a self-equilibrating end load

is given in [1]. This will be referred to as the Direct solution. In the Inverse method we

will determine the end loading from a known distributior of bulk stress values on a lateral

surface. In this case, bulk stresses on the lateral surface were simulated using the Direct

solution. In this preliminary "proof of concept" work, the effect of experimental noise on

the thermal signal was not considered.

This technique of determining the actual end load based on the known bulk stress field

has many potential applications, i.e. in fatigue tests involving rectangular cross sections

to determine the stress distribution inside the specimens. Other possible applications

include the determination of the longitudinal stress distribution around a planar crack at

right angles to the sides of the - rism.

2. DIRECT SOLUTION

The solution, given in [1], is first used to generate the bulk stresses on a lateral surface

for the case of a rectangular prism subjected to end forces symmetric in z, y and z. For

the rectangular prism shown in Figure 1, in the absence of the body forces, the general

solution is as follows.

.. .... .. ...



First define the Galerkin vector F.

F iF. +jF, +kF2  1

where

F. Amn _~ l oh am nX cosh a,,, - (2v' + amna coth amna) sinh Ck,,n,,z x

m~y nirz

xcsb c

F, [Onl cash Only - (2zV + Olab coth flIb) sinh O,tj x
I 3.31coshi3~ab

nirz CO Ir
X CoB - Cs-

c a

F. 3 Dnc ['lmzcosh7ylmz - (2vi+ylmccoth-flmc)siflYjmzIx
Iin 7,mcosh 7lnc

Ilix mry

x o a co b
and

2 (m7r)2 + n 2

-(nli)2 + (17)2

I'm, n = 0, 1, 2,3...

The stress components are then related to F by the following equations.

i0m= 2 (l - v) aV2FX + ( V2 _ 2)dF 2

= 1-i) (y V2  + ~V~)--div F. (3)
2 OyezI______ 2



This gives:

Arna
ir= Acosh-mna [(1 + Crmna coth Q,,na) cosh amnx - amnx sinh a,niz]

mTry nirZ +~' Bc [b r 2nw2cohln+lwc\ 2

M n
b c n I f ln2C2 cosh 6nlo

1 narz lrx

× [(1 - 8ib coth/3,nb) cosh6nly + 3noy sinhI3njyJ] Cos n cosI
c a

+ z i Dimc 2rn2r 2 cosh -tmz + (7) [(1 - 7Lmc coth 7,,nc)I t?. 2 cosh 71.cI a

x cosh t7 ,z + 7lmz sinh comzl w co (4)j a b

mmnamn 2 [sh 1 - (2v + amna coth arna)] cosh anX
]rC2b c z mna ], cs/nb ~nr

+ am., sinh Cm.X sin --z sin r13 + i cash P"lyt
I b n I cosh#nb

- Bnib coth /3,b sinh OIV] sin nrz cos rx + Dtmrc
C a I jm"lb cosh "7ime

x [,t,,z cosh 7lmz - 7imc coth 7l,,c sinh 7lz] sin b cos (5)

Expressions for the other stress components can be written in a similar manner.

With reference to Figure 1, the following boundary conditions apply.

on y=±b; ay =O, rY =O and rvz=O,
on z=±c; ar =O, r.=O and r,.=O,

on z=±a; a. =fl(y,z), r21 1=O and r..=O. (6)
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All the shear stress boundary conditions are exactly satisfied by (5) and similar expres-

sions for r., and r... The normal stress boundary conditions are approximately satisfied

by equating low order Fourier cosine terms in equation (4), and in similar expressions for

a,, and o,.. Taking the double Fourier cosine transforms of these three equations (with

their approximated normal stress boundary conditions) gives the expressions (7),(8) and

(9).

E 4An,,b tanhamna(-j1 T n [ /n,,a\ 2 .2 a2 +12r2)

mz nbCt 4A2 + 127r2 )2  izr 2 ana

" _w 2/127r2] + ( 20nib

+ (Bt 2 (1 + sinh 2/,nlb

," E4DAnh tanh -yic(- 1)' +n [ ( 2 C2 + n22

7n IM ~

where

i = 2 when n-O, 61=1 when n70

j,=w2 -when 0 or n 0, -. -I when !$0, n, 0

6= 2 when 1=0, b3=l when m$O

4A,,61 tanh a na( l when 2

a3=2 whe a2 or 1r2, b~= whna +$ 1

n 
1

+ nva )217]+E 4Bnlb2 tanh )37,b( 1)",+ n

× , (,c n Pnj(,r2)  + MW)

+ Djnb3 1 + si. 2tc,= 0 (8)

where

• b1=2 when re=O, 61 =1 when mj4O
6b2=2 when 1=0, b2-=1 when 1960

63=2 when m=O or 1=0, b3=1 when m54O, 1960

4I



2arena 4B,.162 tsh 0.1k( 1)+'A l+sinh 2anna. )A,2 + M27-2)2

x ~ ) 2 ( i b + 2 r ) ( k ) 2 m i× (v b 2 2n~) + r

4DImbstanhTImc(-1)} + n [ 22 c 2  2 )

+ (!VC) 2 zz 
9

where

61-2 when m=O or n=O, 6.- when rn O, n#:*O

6=2 when n=O, 6b=I when n#O

63 =2 when m=0, 63=1 when m#O

and

Imn = jfii YZ) Cos (M")cs!~ ±dd

Equations (7),(8) and (9) may then be solved simultaneously for the unknown Fourier

coefficients. The stress at any point in the prism may then be calculated by substituting

the Fourier coefficients into equations (4),(5) and similar.

Since the given equations are valid only for self equilibrating end loads, it is necessary

to modify the required end loading f(y, z) so that the net force acting on each end face

is zero. This produces a modified loading distribution f](y, z). For symmetric loading,

fh(y,z) = [f(yIz)- (10)

where P is the total load due to f(y,z), i.e.

f+b +c
P = f~dz)d (11)

The previous equations calculate the stresses due to the modified loading fl(y, z). The

stress component a., calculated from equation (4), is a Fourier series approximation to

h (Z
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3. INVERSE SOLUTION

The main aim of this section is to provide an Inverse solution to the problem, which

involves calculation of the end stress or from the known bulk stress distribution (a. +

Cry + or_) on one lateral surface of the prism. Consider the case when we know the bulk

stress distribution on the surface y = +b. On this surface, or, = 0, and so the bulk stress

is o-r + or. From equation (4) we obtain the following expression for the bulk stress.

A a(- ( oshacothana)coshm t z( y ']=b --- -- E(1+, aoh..aos ,x

M cosh amta

In 7r

- amn1a sinh amzC-c + f i3%c2 cosh fll

x 12vn272 cosh /3nlb + (iic) 2 [(1-/Ilb coth n11 b) cosh .1b

+,jbin~nbjCo niz Cs17rx + D mc(- 1)'
+ 13,absinh/311 b1 cos - cos -- + 72bD 2 cosh1)m.

c ~y a E bcoshy,,~c

t 2vm21r2 coshyLmz + (i-) [(1- ./tmc coth c) cosh y mz

+ "Lmzsnh'Tnz] cos- + olmC 11 + (l. cth'Tvm)a

+ coshtm z - " 1tzsinhyj z cos- + - (1 co Q j71a
aa12n 21r2 cosh ma c

+ aosnz -sinh -y,] cos T + B71

fl~ta cosh/a.nb

x [2VM22 cosh 3zb + n- [(1 - am/b coth f71 nb) cosh mnb

+ fanlbsinhnibzj cos cos (12)

II
c a

63

-- - --------- ----



By taking the Fourier transform of this equation, as shown in Appendix A, the following

results are obtained.

jc + (7 + aj Co (17a ) cos ( n~r) d dz

z 4A,,,(-)-+(1 + &,) tanhc

x , O 1bn {I vmlr2 ( 2 r~ n~b2(l)}

+ z 4DL (-1)m +n(1 + 6or)tanh yimc

+ " b (-,2 + (nr/C)2 )2

X+ )(1 + 6o 7)(a r
2n (2 + c2 l2 )

2I., 1 1 1.2n i , ib + R .t ,nh \ ib (

where

bn f1 when n = 0
O 1= 0 whenn0

1 when = 0oi1= whel#0

Equation (13) may then be applied for each value of n and I to give a set of linear

simultaneous equations with the Fourier coefficients Ame, Bat and DIm as the unknowns.

Since the boundary conditions of equation (6) still apply, equations (7) and (8) are also

used in conjunction with (13). In effect, equation (13) replaces equation (9) for the Inverse

solution. This imposes the restriction that 1 = m, so that the number of linear equations

produced by (7) (8) and (13) equals the number of unknown Fourier coefficients. The

resulting set of equations is then solved to produce a set of Fourier coefficients A..., Bt

and D1, for the Inverse problem. Equation (4) is then used to obtain the applied stress

a 7 I.
I I
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4. RESULTS AND DISCUSSION

4.1 General

The Direct and Inverse programs were implemented using FORTRAN 77 on an Apollo

DNIOOOO computer. A variety of numerical procedures were considered for performing

the integrations required by equations (9) and (13). Initial versions of the programs used

either trapezoidal or Simpson's rule. It was found that these methods were not sufficiently

accurate, and the Gauss-Quadrature method was finally selected. Reference [2] describes

the Gauss-Quadrature technique in detail.

Various methods were also used for the solution of the resulting set of linear simul-

taneous equations. Gaussian elimination with full pivoting was employed in the final

program.

Both the Direct and Inverse programs were written with the aim of minimising nu-

merical errors. Double precision was used throughout the programs, and many mathe-

matical functions were re-written in more suitable forms to reduce errors for large values

of 1, m and n.

4.2 Direct Results

The equations given in the previous section are applicable to a prism with an arbitrary

rectangular cross section. However, for illustrative purposes, a square cross section with

a square loading area was considered. In this case, b = c =- 2 and k, = k2 = 0.5.

With reference to Figure 1, a stress of f(y, z) = 16 was applied to the P-aded area, with

f(y, z) = 0 outside the loaded area. Equations (10) and (11) must first be used to produce

a self-equilibrating loading f (y, z) on the end face.



J)

From (11) the total load is:

p = bLfcf(y, z)dy dz

= 16(2kib)(2k 2c) + 0

= 64klk2 bc

Applying (10) gives the modified loading function.

fi (Y'Z) = rf Pz

64kk 2 bc
= f~, z) 4bc

= f(Ay,z) - 4

Hence,

fh(y, z) = 16 -4 = +12 over the loading area

= 0 - 4 = -4 outside the loading area

This applied stress field is shown in Figure 2.

Sample results from the Direct method are shown in Figure 3. Plots of the bulk stress

distribution on the y = +b surface and the end stress a. are presented. These results

were obtained using seven terms of the Fourier series (i.e. L,m,n = 0,1, ...7), and show

good convergence. Shown in Figure 3a is the surface plot of a., with its corresponding

values indicated in the contour plot, Figure 3b. These plots show the stress values ranging

from -5.0 to +14.0 with the majority between -4.0 to +12.0. This solution is in good

agreement with the applied stress field fh(y, z). However, a small discrepancy is noticeable

around the edges of the surface. The bulk stress distribution ab on the y = +b surface is

shown in Figures 3c and 3d. As expected, symmetries occur about the z = 0 and z = 0

axes with zero stress values occuring along the z = 0 axis.

9



i 4.3 Inverse Results

In t he Inverse problem, the bulk stress field, generated by the Direct method, was used

dto calculate the applied end stress. For comparison, the results of the stress distributions

obtained from both the Direct and Inverse methods, at different Fourier indicies, are

shown in Figure 6.

Initial program versions produced good Inverse results for all Fourier indices up to

the fourth term. However, at higher terms, the Inverse solution was poor. The problem

occurred evaluating the double integral of equation (13), using Simpson's rule with up to

161 grid points in each direction. A Gauss-Quadrature method was then implemented, in

a general form, so that the number of Gauss points could be increased easily if required.

By using 81 grid points in the z and z directions, good results were obtained for up to

eight Fourier indicies (i.e. 1, m, n = 0, 1, ...8). The number of Gauss points used between

each grid point is indicated in Figure 4.

It is evident that more Gauss points must be used when solving for a higher number

of Fourier coefficients. Figure 5 shows the effect of increasing the number of Fourier

coefficients without changing the number of Gauss points used by the integration routine.

Figures 5a and 5b show the surface and contour plots produced by the Direct program for

1, m, n = 0,1, ...9. Figures 5c and 5d show similar plots produced by the Inverse program.

Clearly the agreement between the two solutions is not as good as for the plots presented

in Figure 4. Further increases in the number of Gauss points and Fourier coefficients

were not warranted for preliminary work due to the large increase in computer resources

required.

One disadvantage of the Gauss-Quadrature method is that the bulk stress distribution

is required at points which are not evenly spaced over the surface of interest. Since a

thermoelastic (i.e. SPATE) measurement is likely to contain stress information for a

number of evenly spaced points, the stress values at the location of the Gauss points

would first need to be interpolated from the measured values.

10



5. CONCLUSION

This work has shown that it is possible to predict the stress distribution in a rect-

angular prism using bulk stress measurements from one surface only. Analysis has been

performed for the case where the bulk stress distribution used in the Inverse method was

produced by the Direct method. The results obtained were good for up to 8 Fourier

indices.

Although the concept has been successfully proven, a considerable amount of work

will be required to extend this methodology to a procedure which can be routinely used

for the analysis of thermoelastic measurements from real structures.
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Fig. 3a Fig. 3c

Fig. 3b Fig. 3d

FIGURE 3. DIRECT SOLUTION FOR 1, m, n 0,1 =



Direct Solution Inverse Solution

Fig 4&. 1, m,, n 0, 1. Two point integration.

Direct Solution Inverse Solution

Fig 4b. 1, mi, n 0, 1, 2. Two point integration.

Direct Solution Inverse Solution

Fig 4c. 1, m, n , 1... 3. Two point integration.



Direct Solution Inverse Solution

Fig 4d. 1,m,u n 0, 1... 4. Three point integration.

Direct Solution Inverse Solution

Fig 4e. 1, m,n =0, 1 ... 5. Three point integration.

Direct Solution Inverse Solution

Fig 4f 5, m,w= 0,l l... 6. Four point integration.



IDirect Solution Inverse Solution

Fig 4g. 1, m, ii= 0,1 ... 7. Five point integration.

Direct Solution Inverse Solution

Fig 4h. 1, m, n =0, 1...8. Six point integration.

IIGURE 4. DIRECT AND INVERSE SOLUTIONS FOR VARYING 1,m,n.



Fig. ba. Direct Solution Fig. 5c. Inerse Solution

Fig. 5b. Direct Solution Fig. d. Inverse Solution

FIGURE 5. DIRECT AND INVERSE SOLUTION FOR 1, m,n 0,1 = .



APPENDIX A

DERIVATION OF EQUATION (13)

From Equation (4)

E~ + Y=~~ '~( + a.acotha. a)cosha~.a - ct,x~sinha,,,l

mry nirz 2EBb [2 r
2 cosh,3.1y-i +h' 2

xCCOS OCo!- + '6.13% 7 h3,,b [ ka)

x [(I - 03,bcoth J,ab)cosh,.ly + /3,,sinh8,any] cos "cos-

I C a

+ i ~7~~coh~,,c 2vmr2cosh-frS:+ (i'2[I-)l,,C Coth -11C)

x cosh-j~,z + VI,.zsinh-fssz1] Cos -Cos
I a

1 , b

+I- [( + ,,ccothw, 5 ~c)coslvw,,:

Ir ,iss a - b ohC~ 2vm 2 r2 
cosh a,,,,, + -

n 'I2

"[(1 - am,acoth amna)coshao,r+ omnrsinha_ cos cos

+ B 3
2 ~cshb [2u1272 cash )

3
.ay + (717rG ) 2 [(1 - 0,,b coth 03,b)

x cosb/3nIY + 0.1y sinh3Only]} cos - cos -

o-b a, + a,. Putting y b into the above equation yields the following result.



APPENDIX A

In It O -ha "' [(1 -4 a acotha-a)cosha, a ,,xsinha,xz Cos C (1)

. I On2C2coshb n1br

X cosh &~6 -t- &b ,sinhf 0.b] Cos - Cos~i - (11)

2tcsh1,2:+ cos h~jz - -(III)th-y-

l -rcosh -c a

x csh-n z +n )I-1 +in (ne) [(1 Cosaato~

+ E .a-)- 2m r csh m, z + () 2 [( - Qacotha )

X cosh am. Xb+ ambsinh ab] Cos , nros:(I

+C +C

(o ;,~coscosj C zd

x LIh),l [+I O~bsn (I)l +O (II +o (IV + V ±(I os c) :d

I C a

To dterinetheFouier oeficintsA, nj ad D, i isnecssar totak th Forie



APPENDIX A

Integrating the RHS, taking term (1)

+c +a xlr qr:JJ(I) cos - cos - da dz
-' 1. a c

[~(1"(I1+ a,.a coth a-a f casha-xcs d
,, n I S- a

f.a c asc :

ca.] CsnhkLo + cos-/aC

~ Aaa(-1)' ( b )P oha 2a , ,(- 1)sinha.,,a

I.a + ( Q2 .

2A,, a(- )~ - (1+ osoha~~,_________ 2,,,- ) tnha ,a ~ -(~~)
±t .p/) +a +p/)

a2 ± (pwr/a)l

Rearrange and simplify to give:

(oa,,, + (p-/a)
2 

2 -ano'

Put I =p

4AmnOa.n ac(-1t"4-1
(_ a

(ot_2 + (1w/a)
2 

)' ah.~

where

bn 1whenii=O

0_wenn__



APPENDIX A

Taking term (II)

f+cf+ (1 osLxq oswz d

z ~ Brb ~,.b [Vf2 #
2

cs3jb (hc)' ( -,3,bcoth3,b)
02C . 2nxcoh01 +~ a1: q

cosh 0.1b + on,,b sinh,3.1b1] Cos -Cos - dx] cos - cos -d

= B.iab(I -4- 6o)( + b-) [22T ,rcoshO3,ib + (rC) [(1- ib,.th,3,lb)coshI3,ab+ 3nibsinhL~nibI

= B1b(1 + 6d)(l + b-,) 2v[ r + (rC) 2 [(1 -,3 ,b coth 3,jb) + 43.1b tanh ~njb]]

where

1 1{ when 1=0

bo 1 wen n =0

0when n 0

Taking term (III)

JJ + (III)cos-rcos qirz dx d.
f f. a C

+q r: fwb\ 2 cosw:

cosh y 1 ,,, cos- dz-- + - z sinh j,:os-d:]

x +jCos I cos.. lr dx

ZDInca( )' (1+ 6.) 21,M2l21+()r 2(1 - -ymccothy-c)}

2-l( I p~ sinh 1a,,,c + (1#b \
2  2-j,,,c( -1 )q coh -y,,,c

y2+ (q#r/C)
2  

\a)' -y2, + (q-/c)l
- I ~ -(q/

(17rb)+ (qw/c)
2

]

zDI-2ac(-1)'"+(+6 b[l 2 -2 tanh -ymc + lr)2(1 - ycot-j )
71.yb

2 (ry2 + (qlt/C)2 ) L

x tnhViC .b() 2 -- 2 -(qw/c

tan -f_ c+ 'l~ I + (q/C)
2 

taht,_caIt2 qC2C
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Put n = q, re-arrange and simplify to give:

4D1,ac(-1)m"+(1 + 6,.) tanh-i,,c r 2 (Ib/a)2(nr/c)2]

- 62 (7 + (Ir/c)[) 1  y ,2, + (n1r/C)
2 J

where
1 when 1 06ot- 0 when 1 0

The integrals of parts (IV) (V) and (VI) were derived using the same approach as shown
in (1) (1I) and (111).

+c+. 7x qirz
(IV) cos L- cos dx dz

4D,_my ac(- 1)",(1 + 6o1) tanhimc

(-Y2 + (naC)/)2

+c + (V) cos = cos 1-zdx dz

4Ama(-1)"+'(1 +6_)tanh_,,=a [ 2
K2 + (nib/c)

2
(lir/a)

2 1
a,,nb2 (a'~ + (17r/a)2 ) a2 as, + (lir/a)2 j

.BnbC(1 + 6WO )( ,1[22 +( 2 [(1
- 1 2vr' + (---- [(1 -/.bcoth3.,b) + .,abtanh 0.1b]

where
1 1 when I = 0

1= 10 whenl$O

{ when n = 06o= 0when n 0

-. , .-.--.- - i
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The individual integral components may now be summed to give the following.

+I (11) + (111) + (IV) + (V) + (VI) cS "7 cos - dz dz

I [() a c

4A-,a3_.nac(-1)"'+'(I + 6_,) tanha,,,a

(,,,+ (1-/a)2)
2

4Am,ac(1I)"' 1 (1 + 6-tanhc,,,,a 2r2 + (uirb/c)
2
(Lir/a)

2

-m,,b 2 (-m2 + (1-/a)2) a2.,, +(L/)

"+.a( 6.1 )( +_)2Ln r2 + y-r)' [(I - 0.,abcoth/3,,ib) +/3nzbtanh3nb1J

+nb~ +3 6L0+h) V2r [(1 - 13,bcoth43,b) + Onabtanh)3 ibI]

+ 4DI,,,ac(- 1)m'"(1 + 6,g) tanhyi-,c V2V 2 +(Lw/a) 2
(nir/c)

2

+ f q,,b
2 (9,,,_ + (__/C) 2 ) 1 jm y2+ + (nwr/c)

2

+ 4DI-1 ,_,ac(- I)"+"(I + 6.1) tanh -,,,c
m(-y,_ + (nir/c)2)

2

Simplifying this equation gives the following result, as presented in equation (13).

1J+c jh + 6'41 ~cs( ) cog (nir) dx dz

-+ (lw/a)

[1 +/ M 7 2 2 (. 2 w+ '\ + ( ? rI 2 1 1r\ 2 )1+Qn2 a C"4 ) (a\c

b(,2+ (nr/,)2)'

r-Y i r 22( 5 2 fnw\ \1 a 2j C '

+ -1r /32(I + 6-,,)(1 -4 6,j)(a00 + c
2
1

2
)

X (2v + 1 - 03,,bcoth3,,1 + O3,,b tanh/3,,,b)
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