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SUMMARY
A mathematical method is presented for the determination of the normal symmetric
end loads from known values of the bulk stress on a lateral surface of a three dimensional

rectangular prism. A FORTRAN computer program has been developed to implement this
method, and results for an arbitrarily chosen case are presented.
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1. INTRODUCTION

The stress distribution in rectangular prisms subjected to certain normal end forces
on its two opposite faces is a fundamental problem in Applied Mechanics. The stress
distribution near the loaded surface may be very complex, and the distribution given by
elementary theory is often inaccurate [1]. In this paper, it is assumed that the bulk stress
(0z + oy + 0,) on a lateral surface of a rectangular prism, which is being subjected to
an arbitrary loading, is known (i.e. measurable). Such a measurement could be obtained
using advanced thermal emission techniques. The aim of this paper is to reveal how the

measured values of bulk stresses can be used to determine the actual end loads.

A method for calculating the bulk stresses produced by a self-equilibrating end load
is given in [1]. This will be referred to as the Direct solution. In the Inverse method we
will determine the end loading from a known distributior of bulk stress values on a lateral
surface. In this case, bulk stresses on the lateral surface were simulated using the Direct
solution. In this preliminary “proof of concept” work, the effect of experimental noise on

the thermal signal was not considered.

This technique of determining the actual end load based on the known bulk stress field
has many potential applications, i.e. in fatigue tests involving rectangular cross sections
to determine the stress distribution inside the specimens. Other possible applications
include the determination of the longitudinal stress distribution around a planar crack at

right angles to the sides of the - rism.

2. DIRECT SOLUTION

The solution, given in [1], is first used to generate the bulk stresses on a lateral surface
for the case of a rectangular prism subjected to end forces symmetric in z, y and 2. For
the rectangular prism shown in Figure 1, in the absence of the body forces, the general

solution is as follows.
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First define the Galerkin vector F.

F =iF, +jF, + kF, (1)
where

Ampna .
F, = Z E 3 co"sll': . na[a,,.,.z cosh amnz — (2 + amnpa coth amna) sinh apmaz)x

nwz
€O —
[

X €Oo8

Bnlb .
F'y = 2"': ; W[ﬂnly COSh ﬂnly - (21/ + ﬂﬂlb coth ﬂnlb) sinh ﬁnl‘y] X

nwz lxz
X €08 —— CO8 ——
c a

Dipnc .
F, = Z Z —3—1"—'—[11,,,7. cosh Yimz — (20 + Ypmc coth Yime) sinh v, 2] x
T Nim cosh ymc

mny

b

Iz
X COS —— COSs
a

and

i,m,n=0,1,2,3...

The stress components are then related to F by the following equations.

os = 21 - ) O VIF, + (uv’ 8 Vaw (2)
® 9z 7 Oz2 ’

Ty = (1 )( dvtp+ Lvn) - 2 v (3)
w=UTY TE ) T we




This gives:

A .
oy = E }: mnd [(1 + amna coth ammna) cosh Appz — Ame sinh amqz]
cosh amna

2
nrz Bb Ire
X €08 ——-——cos —+ Z Z 2 c:shﬁnlb [21/71 x% cosh By + ( 2 )

I
X [(1 — Bnibcoth Byb) cosh By + By sinh ﬂnly]] cos ~——z— cos ?
Dime Irb)?
* Z Z 7i B2 rz:h Yim€ [2um2"2 cosh yimz + (T) [(1 = ygmecoth yime)
x cosh Yimz + Yimz sinh ‘an]] cos lne cos _m:.'/ "
a

Apnamnr?
Tyz = — Z Z m (1 — (2v + amna coth amaa)] cosh amaz

b
+ ampzsinh a,,mz] sin ——z sin ——— m7ry + Z Z Burc B [ﬂnly cosh Bnry
nl

cosh B,;b
l1r:: D;,mn
— B,b coth B, 1bsinh ﬂ,.nl] s — + #—
a —l‘ :‘ Yimb COSD Yim¢<
mn I
X [71mz cosh Ypmz — Yime coth v, csinh vy, z] sin y cos hlihd (5)
a

Expressions for the other stress components can be written in a similar manner.

With reference to Figure 1, the following boundary conditions apply.

on y=zb; o, =0, Tzy =0 and 7,,=0,

on z=z%c; o0,=0, ez =0 and 7, =0,

on z==2a; 0oz = fi(y,z), Tzy=0 and 7, =0. (6)
3
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All the shear stress boundary conditions are exactly satisfied by (5) and similar expres-
sions for 7z, and 7,,;. The normal stress boundary conditions are approximately satisfied
by equating low order Fourier cosine terms in equation (4), and in similar expressions for
oy and o,. Taking the double Fourier cosine transforms of these three equations (with

their approximated normal stress boundary conditions) gives the expressions (7),(8) and

(9)-

_1)i+m
24,4",,.6] tanh amqa(—1) [ (mra) (a2, _a? + 12x?)

2 .2 1 [3.2\2
- amabal, a? + Br?)

mwa\" 5 , 28n1b
+( 5 ) Fa ]+B""S’( +sinh2ﬂn1b

4Dy, 83 tanh vjpe(~1)™m" l1rc 2 3
Timb(72, ¢ + n?x?)? (7 ¢+ nie)

2
mnc 2 2| _
* (T) } 0 @)

where
6 =2 when n=0, 6=1 when n#0
5=2 when "=0 or n=0, 5 =1 when !#0, n#£0
83 =2 when l=90, § =1 when [F0
Z4Am,.61 tanh ampa(—1)"" L[ 2 ol _a? + Itx?)
~ amnc(al, a? + [2x?)? b mn
nra 4By16; tanh B,b(—-1)™t"
12 2 bt
* ( ) J Z Brrc(BE6? + m2x2)?
2
X [u(l b) (B30 + m®n?) + ( 7I’b) mzwz]
c
27lmc )
G114+ ——mF ) =
+ Dim 3( + sinh 2yinc 0 (8)
where

61=2 when m=0, 6§ =1 when m#0
§2=2 when [=0, §=1 when [#0
63=2 when m=0 or =0, §3=1 when m#0, 1#0
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_y)y+m
At (1 + 2amna ) 4B,,6; tanh B,15(—1)

sinh 2amaa Bpa( BB + m2x?)?
2 2
X [,,(1?) (/3;‘:,b2 +mz1rz) + (!1?) rn21rz]

_1y)i+n 2
+Z4Dzm5s tanh yime(—1) [u(m’"‘) (vB,c? + n?n?)

. Yima(7E, 2 + n3x2)? b
l 2
+ (-‘E) nzrz] = Inn 9)
a
where
§,=2 when m=0 or n=0, § =1 when m#£0, n#0
5=2 when n=0, 6=1 when n#0
63 =2 when m=0, 63=1 when m#0
and

1 +b  ptc .
= [ e (2

-c

Yy nxz
— ) dyd
) cos ( . ) ydz
Equations (7),(8) and (9) may then be solved simultaneously for the unknown Fourier
coefficients. The stress at any point in the prism may then be calculated by substituting

the Fourier coeflicients into equations (4),(5) and similar.

Since the given equations are valid only for self equilibrating end loads, it is necessary
to modify the required end loading f(y,z) so that the net force acting on each end face

is zero. This produces a modified loading distribution fi{y, z). For symmetric loading,

P
hly,2) = [f(y»z)_ 4_7-‘0} (10)

where P is the total load due to f(y,z),i.e.

+b p+c
P=/ f(y,2) dy dz (11)

-b J-¢

The previous equations calculate the stresses due to the modified loading fi(y,z). The

stress component o,, calculated from equation (4), is a Fourier series approximation to

h(y, 2).
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3. INVERSE SOLUTION

The main aim of this section is to provide an Inverse solution to the problem, which

involves calculation of the end stress o, from the known bulk stress distribution (o, +

o, + o) on one lateral surface of the prism. Consider the case when we know the bulk

stress distribution on the surface y = +b. On this surface, o, = 0, and so the bulk stress

is oy + 0,. From equation (4) we obtain the following expression for the bulk stress.

(o +oz)|

W e

m L] 1\
Z E a(~ [(l + amna coth ampa) cosh amnz

cosh a,na

b
— Amn¥ sinh amnz] cos —— + Z Z Ezcz*(::_—;hﬂlb
n

[2un 7% cosh B, b + (l C) (1 — Baibeoth 3,;b) cosh 3,1

Irx Dime( -
+ Bbsinh B,,lb]] cos 22 cos % 4 Z Z ‘nmbz cosh e

x |2um?x? cosh @ ’ — S
Yimz + a [( 1 — yymecoth yymc) cosh vim:

. i inz Dime(
+ Ytmz sinh ‘nmz]} cos — + Z Z i——(—— l(l + Yime coth i)
a < cosh yymc

. Irx Amna(—1)™
x cosh4jmz — zsinh z|{ cos — + —_—
71m ‘7lm 7lm } 0s a ; ; a'zn"bz COSh QAmnd

- 2

nrb

x [20m?x? cosh amaz + (——) [(1 = amnacoth apmpa) cosh amnz
c

b
+ amnz sinh amﬂz]] cos —— + Z Z I?—a_if_:)l;h—ﬁ—lb

x 2u121r cosh 3,0 + (mr ) [(1 = Bnibcoth 3,b) cosh 3,1
c

Inx

+ Bnibsinh ﬂ,,,b]] cos __z cos — (12)
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By taking the Fourier transform of this equation, as shown in Appendix A, the following

results are obtained.

1 [t e ixz nxz
Ec . ‘/_a (az+d,)]v=bcos (T)COS (——E—) dtdl

: Z 4Ama(—1)"+ (1 4 §,,) tanh appe
- 2
T (ke t Unfa)?)

y [a:m+ . {umzwz (oo () (22 (L)ZH

4D (—1)™F"(1 + 6,1) tanh yime

+ 3
m b('ylzm + (n1r/c)2)
1 nwy2 Ixb\? jnx\2
3 2.2 (.2 nx tro nT

x [‘y,m+7———lmb2 {um'lr (71m+( p ) )+( a ) ( - ) }]
Bpym? 2.2, 252
m(l +6on)(1 +601)(a n°4+c l )
nl

{201 1 Bpibeoth 8ok 4+ B btanh 3 5) nn

where

6 = 1 whenn=0
"7 10 whenn#0

6= 1 whenl!=0
=10 whenl#0

Equation (13) may then be applied for each value of n and [ to give a set of linear
simultaneous equations with the Fourier coeflicients A,,,, B, and Dy,, as the unknowns.
Since the boundary conditions of equation (6) still apply, equations (7) and (8) are also
used in conjunction with (13). In effect, equation (13) replaces equation (9) for the Inverse
solution. This imposes the restriction that | = m, so that the number of linear equations
produced by (7) (8) and (13) equals the number of unknown Fourier coefficients. The
resulting set of equations is then solved to produce a set of Fourier coefficients A0, By
and Dy, for the Inverse problem. Equation (4) is then used to obtain the applied stress

O.
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4. RESULTS AND DISCUSSION
4.1 General

The Direct and Inverse programs were implemented using FORTRAN 77 on an Apolio
DN10000 computer. A variety of numerical procedures were considered for performing
the integrations required by equations (9) and (13). Initial versions of the programs used
either trapezoidal or Simpson’s rule. It was found that these methods were not sufficientlv
accurate, and the Gauss-Quadrature method was finally selected. Reference [2] describes

the Gauss-Quadrature technique in detail.

Various methods were also used for the solution of the resulting set of linear simul-
taneous equations. Gaussian elimination with full pivoting was employed in the final

program.

Both the Direct and Inverse programs were written with the aim of minimising nu-
merical errors. Double precision was used throughout the programs, and many mathe-
matical functions were re-written in more suitable forms to reduce errors for large values

of I;m and n.

4.2 Direct Results

The equations given in the previous section are applicable to a prism with an arbitrary
rectangular cross section. However, for illustrative purposes, a square cross section with
a square loading area was considered. In this case, b = ¢ = 2 and &; = k3 = 0.5.
With reference to Figure 1, a stress of f(y,z) = 16 was applied to the }~aded area, with
F(y, z) = 0 outside the loaded area. Equations (10) and (11) must first be used to produce
a self-equilibrating loading fi{y, z) on the end face.

A R A
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From (11) the total load is:

+b ptc
P= / f(y,2) dydz
~b J-¢c

= 16(2k1b)(2kzc) + 0
= 64k, kybe

Applying (10) gives the modified loading function.

hHly,2) = [f(y,z - 4—};;]

64k1 kzbc

= f(y,2) ~ dbe

= f(yvz) —-4
Hence,

Fi(y,z) = 16 — 4 = +12 over the loading area

= 0 — 4 = —4 outside the loading area

This applied stress field is shown in Figure 2.

Sample results from the Direct method are shown in Figure 3. Plots of the bulk stress
distribution on the y = +b surface and the end stress o, are presented. These results
were obtained using seven terms of the Fourier series (i.e. I,m,n = 0,1,...7), and show
good convergence. Shown in Figure 3a is the surface plot of 0., with its corresponding
values indicated in the contour plot, Figure 3b. These plots show the stress values ranging
from —5.0 to +14.0 with the majority between —4.0 to +12.0. This solution is in good
agreement with the applied stress field fi(y, z). However, a small discrepancy is noticeable
around the edges of the surface. The bulk stress distribution o3 on the y = +b surface is

shown in Figures 3c and 3d. As expected, symmetries occur about the z =0 and z = 0

axes with zero stress values occuring along the z = 0 axis.

e e
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4.3 Inverse Results

In the Inverse problem, the bulk stress field, generated by the Direct method, was used
to calculate the applied end stress. For comparison, the results of the stress distributions
obtained from both the Direct and Inverse methods, at different Fourier indicies, are

shown in Figure 6.

Initial program versions produced good Inverse results for all Fourier indices up to
the fourth term. However, at higher terms, the Inverse solution was poor. The problem
occurred evaluating the double integral of equation (13), using Simpson’s rule with up to
161 grid points in each direction. A Gauss-Quadrature method was then implemented, in
a general form, so that the number of Gauss points could be increased easily if required.
By using 81 grid points in the z and z directions, good results were obtained for up to
eight Fourier indicies (i.e. {,m,n = 0,1,...8). The number of Gauss points used between

each grid point is indicated in Figure 4.

It is evident that more Gauss points must be used when solving for a higher number
of Fourier coefficients. Figure 5 shows the effect of increasing the number of Fourier
coefficients without changing the number of Gauss points used by the integration routine.
Figures 5a and 5b show the surface and contour plots produced by the Direct program for
l,m,n =0,1,...9. Figures 5c and 5d show similar plots produced by the Inverse program.
Clearly the agreement between the two solutions is not as good as for the plots presented
in Figure 4. Further increases in the number of Gauss points and Fourier coefficients
were not warranted for preliminary work due to the large increase in computer resources

required.

One disadvantage of the Gauss-Quadrature method is that the bulk stress distribution
is required at points which are not evenly spaced over the surface of interest. Since a
thermoelastic (i.e. SPATE) measurement is likely to contain stress information for a
number of evenly spaced points, the stress values at the location of the Gauss points

would first need to be interpolated from the measured values.

10




5. CONCLUSION

This work has shown that it is possible to predict the stress distribution in a rect-
angular prism using bulk stress measurements from one surface only. Analysis has been
performed for the case where the bulk stress distribution used in the Inverse method was
produced by the Direct method. The results obtained were good for up to 8 Fourier

indices.

Although the concept has been successfully proven, a considerable amount of work
will be required to extend this methodology to a procedure which can be routinely used

for the analysis of thermoelastic measurements from real structures.
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FIGURE 3. DIRECT SOLUTION FOR I,m,n = 0,1,.




Direct Solution

Fig 4a. I,m,n = 0,1. Two point integration.
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Fig 4b. I,m,n = 0,1,2. Two point integration.
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Fig 4g. I, m,n = 0,1...7. Five point integration.

Inverse Solution

Direct Solution

Fig 4h. I, m,n = 0,1...8. Six point integration.

IGURE 4. DIRECT AND INVERSE SOLUTIONS FOR VARYING l,m,n.
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Fig. bc. Inverse Solution

Fig. ba. Direct Solution

Fig. 5d. Inverse Solution

Fig. 5b. Direct Solution
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APPENDIX A

DERIVATION OF EQUATION (13)

From Equation (4)

Amna
or +0, = Z E cosh': [{1 + amnacoth amaa) coshamn2 — amaz sinh amn z)

mny nwz B irc\?
X cos cos + Z E e c:shﬂn [2""2"’2 cosh Bniy + (T)

Ixx

x [(1 = Bnibcoth Bud) cosh By + Briysinh B,.,y]} cos 22 ~ cos —

72, b% cosh yime

Dim - Ixb\*
+ZZ i € [2um'1r'cosh7xm:+ (%) [(1 = 9imc cothyyme)

. {xz msw
X cosh ¥im 2z + Yimz sinh yim z]] cos - cos Ty

Dlmc .
+ Z Z P e, {(1 + %tme coth ¥me) c0sh tm 2 — Ym = sinh Y 2]

.
Irz mn a nrb\ "
X €0§ — COS y + Z Z T,i—~ 2vm’n® cosh amnt + —)
a?, b?coshamna c

mn nw:

x [(1 — amna coth aympa) cosh @mn T + @mnz sinh amy, :}] cos

nib nr
+ Zz e co;hﬁ..xb [2!/1 7?2 cosh By + ( . ) [(1 = Bnibeoth Bnib)

irz
x cosh A1y + Barysinh ﬂ,.,y]] cos 2% cos -

On a lateral surface of y = b, 0y = 0 and so the bulk stress on this surface becomes
oy = 0z + o,. Putting y = b into the above equation yields the following result.
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Amna(—1 ) . nxs
L4 —EZ Amna(Z1)7 {1 + amnacothamna)coshamnz — amn7sinhamnr}cos — (1)
coshamgua c

nib Ixc\? ]
+ Z Z B Co' [Zmﬂﬁ cosh Bnib + (f) [(1 — Bnibcoth Barb)

Shﬁnlb
{ . z 1
| x cosh Bnib + Bnrbsinh ﬂ,.,b]] cos 2XZ cos -{i (1
} c
f
| Dirme(-1)" Inb)\?
f _"1* 2um?n? cosh ~imz (__) _ )
' + Z /_J T 53 coshrmc vm*x’ coshyimz + " [(} = 4tmeccoth yime)
. . Ixz
} X ¢0Sh Yimz + Yim z sinh ¥y 2] cos — (1
: e l
+ Z Z [::'os:l(‘n:.)c (1 + Timccoth vimc) coshyims ~ yim 2 sinh ym 2] cos %’ (Iv)
Amna(-1)" 2.2 nxb)’
t LY Feomhanya | coshamaz + T2 ) (1 - ammacothamaa)
T
X €0Sh AmuT + Qmn sinh am,.;t]] cos — (V)
(o

Bnib 2 nra\? ’
+ ZZ T cosh T [2.,1 7 coshBuib + (0 ) 1(1 - Buubcoth duib)

z i
x ¢osh Gn1b + Bnibsinh Bn,b]] cos —— cos —’; (vl

To determine the Fourier coeflicients A,,,, By and Dj,, it is necessary to take the Fourier
transform of the above equation.

+c +a
/ / (o +a,)cos—cos "2 4z d:

+c a .
:/ /+ [(I)+(I’)+““’+“V)+<V)+(v1) cos 2% cos 2% de d:

Note that p and ¢ are now fixed positive integers.
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Integrating the RHS, taking term (I)

+c +a -
/ / (I)cosmcosgl:dzd:
e Joa a ¢
+a

Amna(-1
'ZZ Amna(-1)" [(1+a.,.,.acothamna)/ °°’h°""'”°s¥d'

coshamna e

+a +¢
—o,..,./ zsmha,,.,.zcos—dz] [/ cos—r-cosit—'d ]
~a

2ama{—1) sinhamna
aZ, +(pr/a)?

‘—Z Amaac(=1)"(1 + bon)

t
coshamna [(l + ampacotha,,a)

_ 2ap,0(-1)? coshamna  2amn(—1)sinhamna
ak, + (pr/a)? (a?,, + (px/a)?)?

(aZ, - (pr/aﬂ]

_ Z 2Amn@mnac(—1)"P(1 + 8,,.)

(1 + amnacothamnya)tanham,a
o2, + (pr/a)? [ m " "

— Qmna + tanhamaa

—(px/a)?
ok, + (px/a)
Rearrange and simplify to give :

-3 dAmn b nac(~ 721 + Son)
(al, +{pr/a)?)’

tanh amna

m

Putl=p

tanh amna

-y 4Amn0d ac(=1)"* (1 + b0n)
- (a,, + (ix/a)?)’

where
b = 1 whenn=20
10 whenn #0
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Taking term (II)

+c +a -
/ / (1i) cos ? cos q—? dzd:

nib 1
= ZZ 3 c’fo;hﬂ,.zb [2;/1; x? cosh B,:b + ( RC) (1 = Basbcoth 3,,;b)
nl

. ta 1 *e z :
x coshﬂ,.;b+3",bsmhﬁ,.,b]] / cos—’;’-cosﬂdz / cos%cc.s ar:

_a ¢

Baiab{l +8,4)(1 + 8on)
;3“,(‘ cosh Bn1b

[21/11 7 cosh Burb + (I?rc) [ _5ﬂ,bcothl3,,,b)cosh3,.,b+B,,,bs'mhd,,lb}]

B,iab(1 +ﬂ62°lc)(l + 6011) [ vn?n? + (Ia ) [(1 — Babcoth Bnib) + Baib tanh ﬁ,.;bj]
nl

where
6r = 1 whenl=10
=10 when!#0

6 = 1 whenn =20
T 10 whenn#0

Taking term (III)

+c
/ / (III) cos T2 % cos = dzd:

_Dime(=1)" 22 (znb)’
ZZ 2 b2 cosh vim e 2vm*n® 4 a (1 = yimccothyme)

+e 2 +¢
L5 Ixb . L4
X / cosh yym 2 cosq—d: + (—,r—) ‘nm/ zsinh -n,,,:cosq— d:]
—c c a - c

R
+a i
LE xT
x / oS —— ¢Os B— dr
a

:zu,mca( 1)m(1+o,,)[{ 22 +(l:b) (l—‘nmccothn,ﬂc)}

2 b coshyime
Vim *+ (g7 /c)? TN e /<)’

Ixb\’? . v3. - (gx/c)?
-(Z —1)¢ Yim = WT/C)
( a ) Tim2(-1) s"‘h71mc7l2m ey

a

-5 Dim2ac(—1)™+9(1 + §4) [
- Nmb? (7, + (q7/c)?) l

; Ixb\? txb\? 42, - (g7/)?
x tanhyime + (—a_) NmC -- (T) W tanh vimc

Ixb\?
ym?x? tanh yymc + (:—) (1 = yimc coth 1imc)
a
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Put n = ¢, re-arrange and simplify to give:

- Z 4Dimac{—1)"*"(1 + 8,) tanh yymc ymin? 4 (tnb/a)’(nx/c)?
T Nm® (13, + (n7w/c)?) 1E, + (nn/c)?

where

P when { =0

ot =10 when!#0
The integrals of parts (IV) (V) and (VI) were derived using the same approach as shown
in (I) (II) and (III).

+c pta .
/ / (IV) cos P2 cos I drd:
-c J-a a <

_ Z 4Dy ac(=1)" (1 + 6,) tanh yime
- (1 + (nm/c)?)’

+c +a "
/ / (V)cosmcosi;dzdz

a

- Z 4Apnac({—1)" (1 + 6,n) tanh apna [um’xz (mrb/c)’(l?r/a)z]

p Amnd? (afs + (Ir/a)?) ot + (In/a)?

+¢ pta .
/ f (Vl)cosﬂ’—cosgkdzd:
J ¢ J-ga a ¢

= Butbell + 8ot)(1 + &on) [zuzz,,z + (222) ?[(1 = Batb coth Bab) + Burbtanh Bﬁ,b]]
ﬂnla <

where

bt = 1 when!=10
°/ =10 when!#0

6 = 1 whenn=290
°* 7 10 whenn#0
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The individual integral components may now be summed to give the following.

/+c /+¢ [(I) + (II) + (II1) + (IV) + (V) + (VI)] cos P‘? cos % dz dz

_ Z 4Amnal ac(—1)"+(1 4 §,,) tanh amna
- (o2 + (in/a)?)?

4Amnac{—1)"* (1 + f,n) tanh amna 2 2 (nxb/c)(Ix/a)?
> amnb? (a,, + (Ix/a)?) ['"" T et 1 (inja)

2
B..xab(l + 5204)(1 +8on) [ nin? 4 (Iﬁ) [(1 ~ Barbeoth Burb) + Butb tanhﬁ,.,b]]
ﬁnlc a
Bnlbc(l + 60!)(1 + 6¢m
Bia

) [w’# + ("7"“) ?[(1 = Buibcoth Buib) + Anibtanh a,.,b]]

4Dymac(—1)™*"(1 + 65 ) tanh yime (lwb/a)z(nﬂ'/c)2
* Z Timb? (¥, + (n7/c)?) [um - ¥2, + (nx/c)? ]

. z 4DimyE,ac(~1)™*+"(1 + 6,1) tanh yymc
(vl + (nn/c)?)’

Simplifying this equation gives the following result, as presented in equation (13).

*e Inz
abc /— {0z + 0,)|y=b cos (T) os( ) dzd:

44,0 (—1)™(1 + §,,) tanh apyna
=2
- b(adyn + (In/a) )

3 2 2
- : A " (I_“) (mrb) (Z)
x [am" + a,,..,b’ vm°x [« S a + P P

4D} (—1)™*" (1 + 641) tanh yymc
2 ~
m b(-y,’m + (n®/c) )

e e e 27) - (2) 227

BT (14 bon)(1 4+ )lan? + )
+ﬁ:,a’c7 + ou)( + ol)(a n°+c

x (20 4 1 = Boybcoth Buid + Buib tanh Bab)
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