-

TRW Systems ‘Enginee'rlng & AD-A242
Development Division

L an 18-91-02

A System for Specifying and
Rapidly Prototyping User Interfaces

Christopher Rouff | -13793

91~
June 1991 R
PEoml WY ﬁ@@%@ nology Series

TRW Technolosy Series
TRW Technology Series
nology Series
RW ‘“’%’@mn@mgy Series
Technology Series

RW Technology Series
Iedl nology Series
s hnology Series

. Appeovod for public taleasa;
Mgtritution Unlmited

T -

T

Statement A per telecom

Doris Richard ESD-PAM

Hanscom AFB MA 01731-5000
NWW 12/2/91 '

{oJustisioavton

A System for Specifying and Rapidly Prototyping User Interfaces’_C!3tribu. : ei),."
} A\'allﬁb”<' "f‘ -
Christopher Rouff ; Y vdes
TRW Inc.
Systems Engineering & Development Division
Carson, California

BT Tat

1

Lasran ued

fomo

H
| By
!

Diat

R

Eree_ 1

Ellis Horowitz

Computer Science Department
University of Southern California
Los Angeles, California

ABSTRACT

9 This paper presents a system for rapidly prototyping user inerfaces

and a model for specifying them. The model represents the
components, flow of control, constraints, and semantic feedback of
an interface while the system allows the interface layout, dialogue,
and application interface to be interactively defined, resulting in
little or no programming to produce a prototype. Asa user interface
is prototyped, amodel of the interface is maintained that represents
its structure and functionality. This model can then be compiled
into source code with calls to the X Windows and MOTIF libraries.
The generated program can then be compiled and linked to

application functions to produce an executable program.

Other user interface builders only have interactive definitions of the
interface layout and specify the dialogue in a programming language,
thus requiring a programmer to learn yet another language. The
system described here is based on a graph model instead of a
programming language and allows complex sequencing, constraints,
and the application interface to be defined interactively. This graph
model representation also allows analysis of the interface to be
made in terms of consistency and completeness of the specification.

I. INTRODUCTION

Rapid prototyping of user interfaces allows a designer to produce
a proposed interface in a short time, to easily experiment with
different approaches to the interface, and to allow end users to try
itearly in design, when it is most cost effective to make changes [2].
The primary hindrance of producing a prototype is the amount of
code needing to be handwritten. Reducing the programming
reduces the designer’s reliance on a programmer, decreases
developmenttime, and leaves the interface more modifiable (which
supports iterative design).

We arc currently developing a methodology and User Interface
N wnugnnient System (UIMS) [6] for prototyping user interfaces

v

Wi
“Iep
KL}

called Reduced Programming Prototyper (RPP). This system and
methodology allow a designer to:

« interactively lay out the graphical components of the interface,
+ combine components into hierarchical groups,

 specify the control flow between interface components and
groups,

« define constraints between interface components, and

+ define semantic feedback between the interface and the underlying
application,

without writing any code. As the interface is being constructed, its
components, flow of control, constraints, and semantic feedback
are represented by a formal model, which can be used as the
interface specification. This specification can be compiled into C
code with calls to the OSF/MOTIF X Window toolkit [11].

Figure 1 shows the structure and components of RPP. An interface
designer interacts with RPP through an interface editor. As the
designer draws the components and defines relationships between
them, the definition of the interface is saved onto a formal structure,
called an interface representation graph (IRG), which can be
checked for inconsistencies and incompleteness. The designer
produces an executable version of the interface code by issuing the
generate command, which causes the interface compiler to read in
the interface representation and compile it into C code with calls to
the MOTIF toolkit and X library. At this point the source code is
compiled and linked with any user-written functions, which then
can be executed by the designer.

In the remainder of this paper we discuss related work, discuss the
components of an interface, describe the methodology a designer
follows to specify the intcrface, and ueline the formal representation
of the interface components and their interaction.

91 10 22 078

S eeee e L

vail paeiop

. Aconaiolar For
, NTIS Gogg, 7

—————

—

Commands Generate C Executable
. Interface Neralt ypterface | Source C Code
Designer Editor [Compiler Compiler [——
Display
Errors Objects Display
. X and
| Application Motif
Consistency IRG Functions Libraries
Checker [] Database
IRG IRG

Figure 1. Components of RPP.

II. RELATED WORK IN PROTOTYPING TOOLS

There are three basic types of prototyping [18]: storyboards or slide
shows, Wizard of Oz simulations, and testable simulations. The
storyboard or slide show is a predefined set of screens displayed in
a predetermined order, the Wizard of Oz prototype uses a person
behind the scenes to drive the interface, and the testable simulation
is a fully functional user interface that can be tested by the end user.
RPP addresses the testable simulation type of prototyping.
Production of this kind of prototype requires the largest investment
in time and money so it is often integrated into the final product [3).
Current tools for producing testable simulation prototypes can be
divided into threé groups: User Interface Management Systems
(UIMSs), Interactive Design Tools (IDTs), and high-level language-
based systems.

A UIMS’s primary goal is to separate the user interface from the
application. It canbe defined asa system that provides acomponent
for the presentation of the visual part of the interface, a component
for the definition of the dialoguc between the user and application,
and a component for defining the interface between the UIMS and
the application program [6]. The scparation of the interface from
the application allows different interfaces to be tried without
modifying the application. Two current UIMSs are Serpent [1) and
TeleUse by TeleSoft. Serpent and TeleUse both provide an
interactive design tool for defining the layout of an interface, a
dialogue language (Slang in Serpentand D in TeleUse) for describing
the flow of control of the interface, and a specification language for
defining the interface between the UIMS and application. Both
systems use X Windows [16] for presenting the visual component.

IDTs are similar to interactive graphics editors but allow users to
place interface objects such as buttons, lists, menus, and icons on
the screen, instead of graphics objects such as circles and lines.
Many IDTs also allow the designer to specify application functions
to be executed when a particular input occurs (e.g., a button press).
Most systems produce source ~ode definitions in a programming
language or layout description language that represents the screen
layout. The dialogue portion of the interface is then written in a

programming language, orif partof a UIMS, in adialogue language
that uses the earlier generated definitions. A large number of IDTs
have been writien, often as part of UIMSs or other devclopment
systems. Some of these systems are Dialog Editor by Cardelli [4],
Interface Builderby NeXT [8], Prototyper by SmethersBarnes [15],
XBuild by Nixdorf Computers {19], and Dev Guide by Sun
Microsysterms.

HyperCard [5] and OSU [9] also allow interface objects to be
interactively laid out on the screen but differ from the other systcits
in that a limited amount of sequencing can be specified. In
HyperCard the designer defines a series of cards with common
backgrounds and differing foregrounds and links them together
through button presses and other interactions. In this way, simple
flow of control between cards can be defined without the need for
any programming, though the Hypertalk scripting language can be
used for more advanced schemes. OSU allows sequences of
Macintosh interface objects to be specified based on user inputs.
Peridot {13] is another system that lets a designer interactively lay
out and construct interface objects by demonstration.

The third type of prototyping systems is bascd on high-level
programming languages that have specific constructs for displaying
and manipulating user interface objects and usually have capabilitics
to call functions written in a conventional programming language.
Examples of these types of systems are Winterp [10], Garnet {14],
and Tooltool [12]. Winterp is based on XLISP and the MOTIF
widget set. It allows easy definition of widgets in X Windows and
has the power of programming in LISP. Like Winterp, Garnet is
LISP-based and provides a high-level interface 1o X Windows.
Gamet also provides mechanisms for defining constraints between
objects as well as object manipulation. Tooltool is bascd on
SunView and acts as amediator between the windowing system and
an application. The designer defincs what interface objects will be
used and maps inputs 10 these objects into inputs for the application
and mans outputs from the application onto the uscr interface.

RPP differs from thesc systems in that it allows the definition of
complex sequencing of the dialogue, constraints, and semantic

feedback interactively without using a dialogue programming
language. The application still needs to be programmed, but for
prototyping purposes amock-up facility is supported that simulates
the call and return of application functions, allowing the application
routines to be simulated. Previous prototyping systems have relied
heavily on programmers to code any complex sequencing of the
interface and in many cases 10 also define the layout of objects.
With the exception of Peridot and Gamnet, none of the systems
allows the designer to define constraints between objects of the
interface and none of the systems allow hicrarchies of interface
objects to be grouped together to reflect visual and flow-of-control
similarities.

III. COMPONENTS AND INTERACTION
OF AN INTERFACE

To produce a prototype witha minimal amount of programming, an
underlying structure that describes the components and their
interrelations needs to be defined. The building of this structure is
then reflected in the methodology that a designer follows to produce
an interface. We define a user interface to consist of:

« graphical objects,
» flow of control,
« semantic actions, and

= constraints.

The graphical objects are made up of the graphical images that are
visible to the user, the control portion defines an ordering on the
appearance of the objects, the scmantic actions define how the
interface interacts with the application, and the constraints define
dependencies between the objects. The following sections discuss
each of these parts.

A. Graphical Objects

The graphical objects consist of the buttons, menus, dialog boxes,
text, and other items that are directly visible to the user. These
objects can be divided into two groups: thosc that contain other
objects and thosc itat are atomic. The container objects are called
windows and the others, graphics. Graphics that appear at the same
time inside a window are grouped together into frames. When
control is transferred from one frame to another, the content of the
window is cleared and a completely new set of graphics is drawn.
Anexample of aseries of frames is a transaction-based system, such
asadatabase browser, in which the user fills in query ficlds, and the
results are displayed by erasing the query and displaying the results
in its place. Since modifications to a frame sometimes need to be
made withoutcrasing the entire contents of a window, a second type
of frame is defined, called a subframe. Modifications to windows

can consist of (but are not limited to) display of dialog boxes,
addition of menus, lists, error messages, or help.

Some user interfaces are a series of frames, others are asingle frame
with subframes that continually modify the original frame, and
others are a mix of these. An example of a frame-oriented user
interface is a transaction-based system where data in ficlds of a form
are filled, with new frames and fields appearing depending on the
items selected or the values entered. Anexample of asingle frame-
oriented interface is a graphics editor, in which a single frame is
displayed and changes are continually made 10 it. Most systems
contain both types of frames. There may be several frames that
make up the interface but arc modified with dialog boxes, errors,
and help messages that continually update or modify the original
frame.

B. Flow ¢f Control

Flow of control defines how the interface will change on inputs
from the user or values returned by the application and represents
an ordering on the interface objects over time. There is also an
implicit flow of control defined by the windowing system (ir: this
case X) that allows the input focus to be changed from window to
window and graphic to graphic. This usually takes the form of
moving the cursor from one window or graphic to another with the
window or graphic that the cursor is over being the object that
receives input. Control among frames and subframes is explicitly
defined since it requires the interface to be modified.

C. Semantic Actions

Semantic actions are the operations that drive the application.
These actions are tied to the events that are associated with the ffow
of control. When an event occurs, a scmantic action can be
performed. These actions can take the form of calls to user writien
functions, programs, or file input/output. These actions can also
reference or set variables that represent attributes of graphics being
displayed. This allows the user to pass data to the application and
allows the results of calculations in the application to be printed or
change the display.

D. Constraints

Constraints occur when an attribute of an interface object becomes
dependent on a value computed in the application or the attribute of
another object. Constraints aic une way that anapplicationdisplays
its output. Examples of attributes that an application might sct are
the label, position, size, or color. These attributes can reflect values
computed by the anplication. The second type ot constraint occurs
when an attribute of one object is dependent on the attribute of
another. Examples are an object’s position depending on another
(e.g., when one object moves, the other follows), and objects
sharing a color.

R PR FPR R PR Ry SRR G VR RS TP RREAR AR,

Browser (alch

L e S R e

. Help s

f

Figure 2. Two Top-Level Windows.

IV. PROTOTYPING AN INTERFACE

To prototype a user interface, a designer follows these steps:

—

. The windows that are to appear in the interface are drawn.
. Frames that arc to appear in each of the windows are drawn.

. The sequence in which the frames are to appear are defined.

F I VS B

. Events are specified that determine when a sequence is o be
taken.

L

. Constraints between the components are defined.

6. Semantic feedback among the interface, the application, and the
constraints are defined.

7. The specification is converted to C and X Windows code.

All interface objects are drawn in an interactive editor that allows
the designer to place objects on the screen exactly how they will be
seen at execution time. Atany point in these steps the designer can
repeat or reduce previous steps. This allows mistakes to be
corrected, enhancements to be made, or different techniques to be
tried, thus supporting iterative design. The following sections
describe each of these steps in more detail.

A. Defining Windows

A designer begins a prototype by defining the windows in which the
interf~~2 isto appear. A window can be defincd as cither a wp-level
window orasubwindow. Multiple top-level windows can exist and
each window can have multiple subwindows. Appearance times
for windows can also be specified, which define when the window
will be displayed. The appearance time can be the same as the
parent’s or when control is transferred to the object. Ifitis the same

as the parent’s, then whenever the parent appears, the object also
appears. If the window is a top-level window and does not have a
parent, then it appears at the start of the application. Appearance
when control is transferred to an object is how pop-up windows,
dialogs, and other transitory windows are defined.

When specifying a window, its initial position and size are given by
the designer. If it is a subwindow, its parent window is selected
from the already defined windows. Next defined are the attributes
of the window ,such as the width of its border, its dimensions, and
itsappearance time. Figure 2 shows two windows after specification,
They are both top-level windows, the left window (Browser) being
the main window and the right window displaying help information.

B. Defining Frames and Subframes

After a window is defined, a series of frames is drawn to represent
the appearance of the interface at different points in time. Frames
can be defined in one of four ways: by the designer explicitly
defining the graphics that make up the frame, by the designer
defining a frame to be a modification of a previous defined frame
(subframe), through semantic feedback from the application, or by
a dependency on another graphic.

Hierarchies of windows, frames, or graphical objects can be defined
by grouping together those sharing common attributes such as
graphical objects, flow of control, or attributes (e.g., color).
Groupings allow common attributes to be defined once for the
entire group instead of individually for each item. A group of
objects can be used like any other object; they can be listed as the
source or destinaticn of a scquence, graphics or atiribules can be
assigned to them (which are persistent across all frames and
windows in that group), semantic feedback can be associated with
them, and they can belong to other groups. Grouping similar
objects together produces a consistent user interface by providing
these benefits:

RN R ANN AN RARE S NAARAPNRIRARA NN AN I RARNAA AN,
-

Browser "

Book Query

e e SRR
Browser
Author

Help

Click on one:

[Name:

] This is the top level

of help...

(_OK || Cancel]

R AN SRR NS N AN

Figure 3. Three Frames of the Bookstore Query System.

« Persistent objects only need to be defined once.

« Persistentobjects appear in the same place and look the same over
the frames in which they appear.

« Identical flow of control properties need be defined only once.
¢ Objects with the same flow of control operate similarly.

« Modification of a shared object or sequence only has to be done
once.

Figure 3 shows examples of frames that could be defined in the two
windows shown in Figure 2. Two frames are shown in the Browser
window and one frame in the Help window. The frame on the left
inthe Browser window is the initial frame listing a choice of queries
that can be made. The center frame is the frame displayed if the first
query is taken. The third frame (right) is the first frame of the Help
window that is displayed whenever a help button is pressed. Allthe
frames of the Browser window could be grouped together so the
help button would only have to be defined once, causing it to appear
in cach frame of the Browser window in the same place and operate
in the same manner, thus ensuring consistency in the look and
operation of the button in all the frames of the browser.

C. Defining Flow of Control between Components

Once the windows, frames, and subframes are specified, the flow
of control of the interface is defined by ordering the frames. The
ordcering consists of a set of sequences, each having a source and
destination object. The source object can be a graphic, frame,
subframe, window, or group. The destination of the sequence can
be a frame, subframe, group, or window. Each sequence isassigned
a value indicating what input initiates it. Input can be in the form
of keystrokes, mouse button clicks, mouse movements, a value read
from a file, or a valuc returned from 4 uscr-written function.
Allowing inputs from the user or outputs from a program to initiate
flow of control permits the interface to be ecither user-driven,
application-driven, or acombination of both. Actions — graphical
operations, user-written routines to be executed, values read or

written to files — also can be assigned to sequences, which are
executed when the sequence is taken.

D. Defining Constraints on Objects

Constraints can be defined on objects or flow of control of the
interface. Constraints among objects (either windows or graphics)
can be defined by declaring that a value of an attribute of onc object
is dependent on an attribute of another object. This is useful for
defining such things as shadows, groups of objects whose positions
are defined relative to one another, and objects with equivalent
attributes such as the same foreground color. When defining an
attribute of an object to be defined relative to an attribute of another
object, a simple formula can be applied to the original attribute to
transform it to a value for the new object. This transformation can
be done by selecting the appropriate attributes of each object whose
relationships are to be maintained or by explicily naming the
attributes involved and the transformation to be applied 1o those
attributes.

Constraints on the flow of control can be defined by specifying
events in multiple objects that need to occur before a sequence can
be takrn. An example is when a user has to sclect an item from
multiple menus before the next frame is displayed or a valuc must
be entered into a text field and a button pressed before execution can
continue. Constrained and unconstrained ilow of control can occur
in the same frame, thus allowing the user to get help, quit, or skip
the frame.

E. Defining Feedback to Objects

Input may be passed from the interface to the application, and the
resultsreturned to the interface for display or for modification of the
interface appearance. Passing values between different parts of the
interface allows a value input to one graphic o affect a sccond
graphic without going through the application. A simple
transformation formula can also be applicd to these values to
account for offsets. Values can also be read from files as well as
passed from the application. This allows quick mock-ups of the

interface before the application is written and removes the need for
a programmer from the early stages of the interface design. Values
can also be saved to files to record data values entered by the user
or other useful information. The values passed to the application
are not restricted to input but can be attributes of a widget, such as
position or dimension.

F. Generating the Interface

When the designer wants 1o try out the interface, the interface
specification can be converted to User Interface Language (UIL)
[11] and C code with calls to MOTIF and X Window routines,
compiled, and then linked with the application functions. The UIL
defines the initial appearance of the interface objects, the C code
implements the flow of control of the interface, and modifications
are performed through calls to MOTIF and X toolkit routines.
Values defined as semantic feedback are stored in shared data
structures, which can be read and written to by application functions.
When the shared data values are changed, the corresponding
attribute of an object is updated.

V. INTERFACE AND INTERACTION
REPRESENTATION

As an interface is specified, it is mapped onto an IRG, which
represents its structure, flow of control, interrelationships, and
semantic feedback. Thisdiagram models the structure and interaction
between the graphics and application. The interface objects
themselvesare notaddressed becawse itis assumed that the interface
designer was given a predefined set of objects (such as the MOTIF
widget set) and has no control over their functionality, only in how
they are used. Such low-level actions as highlighting menu items
are defined by the object and are not addressed in this model. The
IRGs are not seen by the designer but are what drive the prototyping
process. The designer only sees the actual objects in the editor. The
following sections describe IRGs and how interface specifications
are mapped onto them.

A. Representing Components of the Interface

IRGs, which are based on statecharts [6,16), can be defined as
hierarchical transition diagrams in which nodes either stand for
themselves or contain subdiagrams. Itisthis hierarchy of nodes that
is used to represent the levels of windows, frames, and graphical
objects of an interface. An interface is mapped onto the node
structure by first representing the entire interface as a root node of
an IRG, the top-level windows as children of the root node,
subwindows as child nodes of the window’s parent, frames as
children of window nodes, and graphics as children of frame nodes.
If a window contains subwindows, then the window has two types
of children: frames and a subwindow. Grouping of nodes (such as
frames or graphics) is represented by enclosing them in superstates,
with the group possibly spanning across windows, frames or other
groups. Groups are treated like any other node. They can have

transitions, semantic feedback, constraints, or other attributes that
apply to all the nodes inside the group.

There are other types of nodes. Default nodes are the nodes when
execution starts in a window or group. A history node remembers
the last subnode executed when the flow of control is temporarily
interrupted. A diversion is a group of nodes that are executed as an
aside to the current flow of execution, and a termination node stops
execution of the application.

B. Representing Sequencir.g between Components

The sequences in an interface are represented by transitions that
connect nodes of the IRG. Transitions are defined as tuples
containing a source and a destination node, a value indicating when
the transition can be taken, and actions to be executed. The
circumstance for a transition 10 be 1aken, the semantics associated
with a transfer of control, and the actions executed when the
destination is reached, all depend on the types of nodes involved. If
a window is the source of a transition, then whenever control is in
the window and the value listed on its transition occurs, then the
transition is taken and control is given to the destination node. If a
frame is the source of a transition, the transition is taken whenever
the listed input occurs among the frame’s graphics. If a graphic is
the source of a transition, then whenever the listed input occurs
inside, the graphic control is transferred.

The type of adestination node determines the result of the transition.
If the destination is a window node, then control is transferred to the
window and all inputs are applied to the nodes in that window until
the window loses control. The window must first transfer control
to its start state: a group, frame, or graphic. If the distinction is a
group, then, like a window, its start state is given control. If the
destination is a new frame, then the graphics in that frame are
displayed in the window; if it is a modificd frame, the graphics are
modified. Finally, if the destination is a graphic, such as a dialog
box, then only that graphic can receive input. This forces the user
to acknowledge a message or input a value before continuing with
any other part of the interface.

Unlike transition diagrams and statecharts, IRGs do not require
nodes to have transitions cntering and leaving them. This is due to
the fact that not all objects may change the state of the interface and
not all receive input. An example of the former is radio buttons,
which simply may setan application variable, and an example of the
latter is a label.

An example of transitions between different interface componcents
is shown in Figure 4. In this example, there arc two windows.
Window 1 has two framesand Window 2 has onc frame. The default
start node for Window 1 is Frame 1. This is where execution begins
when control is given to Window 1. When Frame 1 receives control
through the transition, it will dispiay objects Obj 1 and Obj 2. Obj
1 does not have any transitions cntering or Icaving it. It couid be a

Window 1

/Frame 1 \ ﬁrame 2 \

Window 2

Frame 3 \
[/ Group \

uQu

L] text
-+ Obj 1 Obj 3

Select

Sel :
Ob;j 2= Ob;j 4

Obj 6

-
Obj 5 3
Ob; 71>
-t

- ./

Select \ /

Figure 4. Transitions between Diffcrent Components of an Interface.

radio button label widget, or an object whose sensitivity has been
turned off, like an invalid menu item. Obj 2 has a transition leaving
it with a destination of Frame 2. This means that whenever the
event “select” occurs in Obj 2, then Frame 2 is drawn. Frame 2 has
an example of constrained flow of control. Control can only be
transferred from Frame 2 to Window 2 when text has been entered
into Obj 3 and Obj 4 has been selected. Window 2 has an example
of a group of objects (Obj 5 and Obj 6) that might share some
attribute or common flow of control.

C. Representing Semantic Feedback

Semantic feedback between the interface and application is
represented through data feedback transitions (DFT) and application
feedback transitions (AFT). These transitions show flow of data
instead of flow of control. A DFT transfers data from a user
interface object supplying a value to a parallelogram representing
a variable containing data value shared between the interface and
the application. An AFT has as its source a shared data value and
asits destination anode representing the widget that is to be affected
by the data. The values that flow between the interface and the
application can be attached to any attribute of a widget, such as its
position, size, label, or ability to accept user input (stippling).

D. Representing Constraints on Components

Constraints between widgets are represented similarly to the above
semantic feedbacks. An interface constraint transition ICT) has as
a source the node representing the widget that is to be constrained,
and as a destination the node representing the object to which the
source is being constrained. An equation is associated with the
transition that represents the transformation of the source widget’s
value to the destination widget’s value. Constraints can be used on

widgets to force them to maintain positions relative to each other or
for one widget to display an attribute of another.

An example of semantic feedback and constraint between widgets,
with the resulting IRGs, is shown in Figure 5. On the left side of
Figure 5, ascrollbarand atext widget with ashadow are shown. The
text widget displays a value relative to the location of the slider in
the scrollbar. The right side of Figure S is the IRG representing the
widgets. The square labeled “variable” represents a value sharcd
between the interface and the application. The transitions from the
scroll node and shadow node to the text node represent constraints,
The transition between the text node and the variable node represents
the data feedback, and the transition from the variable to the text
node represents application feedback. Additional constraints
between the scrollbar and the text widget could be defined to keep
the widgetsafixed distance from each other. Insuchasituation, one
widget’s position would be constrained by the other via an offset
added to the first’s position.

E. Example of a Representation

Figure 6 is the complete IRG of the Browser interface described in
the second section. The interface being specified is forasystem that
allows patrons of a bookstore to query the availability of books. At
any time the user can move from the Browser window to the Help
window, page through the Help window, and return to the Browscr.
Subsequent movement to the Help window resumes cxecution
where it left off.

The outer node (Bookstore Query System) contains the entire
interface description. The two states (Query and Help) in the root
state represent the two windows of the interface. The subnodes in
the Query node represent the frames that appear in that window and

scroll — T}

Sha-
dow
D)
text i
X Variable

Figure 5. Scrollbar, Text Widget, and Corresponding IRG.

ﬂ}ookstore Query System \
Browser Window uthor Frame \ Help Window
Query Frame Dialo,
Yy — gcon > Fﬂelp Next FHelp
- - rame ces
Author H cel |firm 1 - rome
see Prev
Title
) Name Sha-
Subject dow ‘
\ \. Quit Prev Next
~ =S ~ >’ Buuoul Icon mcon
Help
i ik, H

S

Figure 6. IRG Representation of Interface in Figure 3.

correspond to the first two frames in Figure 3. The four nodes inthe
Book node and the three nodes in the Author node represent the
widgets in the frames that receive input. The Name node in the
Author node does not have a transition leaving it because it
represents a label widgetand input to that widgetdoes not cause any
changes in the interface. The circles with the H in the middle are
history states that return control to the last executed i.ode. If nonode
has been executed, the default node is used. The transition from the
Query node to the history node represents an input that can be
executed anytime to take the user into the Help window.

V1. CONCLUSION

The system described here allows a wide range of user interfaces to
be easily and quickly prototyped by an interface designer with little
and in some cases no assistance from an applications programmer.
It allows the interface components, their relationships, flow of
control, constraints, and semantic fcedback to be interactively laid
out dircctly on the screen. The designer specifies the interface by
defining windows, frames, subframes, and the graphics within
them. The frames and graphics can then be grouped together for

easy specification of persistent objects and objects with identical
attributes or flow of control. The grouping supports consistency of
the objects’ appearance and operation across the interface and
reduces the time to modify persistent objects.

The IRGs are capable of representing the structure, flow of control,
constraints, and scmantic feedback of the interface and provides a
formal specification that complements the prototype. The
hierarchical structure of the IRGs allows them to represent the
nested components of the interface and the grouping of the objects
and their flow of control. It also has constructs for representing the
execution of semantic actions of the application, feedback from the
application, and constraints between graphics and the interface.

REFERENCES

1. Bass, L., Hardy, E.J., Hoyt, K., Little, R., and Seacord, R.C.
(March 1988). Introduction to the Serpent User Interface
Management System. Technical Report CMU/SEI-88-TR-5,
ADA200085, Carnegic Mellon University, Software
Engineering Institute.

2. Boehm,B.(October 1976). “Software Enginecring,” Software
Series. TRW-S$S-7-08, TRW Defense & Space Systems Group.

3. Boehm, B. (May 1984). “Prototyping Versus Specifying: A
Multiproject Experiment,” IEEE Transactions on Software
Engineering, SE-10 (3), 209-302.

4. Cardelli, L. (October 1988). *“Building User Interfaces by
Direct Manipulation,” Proceedings of the ACM SIGGRAPH
Symposiumon User Interface Software, Banff, Alberta, Canada,
152-166.

5. Goodman, D. (1987). The Complete HyperCard Handbook,
Bantam Books, New York.

6. Green, M. (1985). “Report on Dialogue Specification Tools,”
User Interface Management Systen -, edited by Gunther E.
Pfaff, Springcr-Verlag, 9-20.

7. Harel, D. (May 1989). “On Visual Formalisms,”
Communications of the ACM, 514-528.

8. Interface Builder (1989), NeXT Systems Reference Manual,
Chapter 8, NeXT Inc.

9. Lewis, T, Handlooser 111, F., Bose, S., and Yang, S. (1989).
“Prototypes from Standard User Interface Management
Systems,” IEEE Computer, 51-60.

10. Mayer, N., Shepherd A., and Kuchinsky, A., (May 1990).
“Winterp: An Object-Oriented, Rapid Prototyping,
Development Environment for Building Extensible
Applications with the OSF/MOTIF UI Toolkit,” Xhibition 90
Conference Proceedings, San Jose, CA, 49-64.

11. MOTIF Programmer’s Guide, Open Software Foundation
(1989), Open Systems Foundation, Cambridge, MA,

12. Musciano, C. (1988). Tooltool Reference Manual.

13. Myers, B.(1988). Creating UserInterfaces by Demonstration,
Academic Press, Boston, MA.

14. Myers, B., Guise, D., Dannenberg, R., Vander Zanden, B.,
Kosbiew, D., Marchal, P., Pervin, E., and Kolojejchick, J.
(November 1989). The Garnet Toolkit Reference Manuals:
Support for Highly-Interactive, Graphical User Interfaces in
LISP, Technical Report CMU-CS-89-196, Carnegic Mecllon
University, Computer Science Department.

15. Prototyper Reference Manual (1987), SmethersBames.

16. Scheifler, R. and Gettys, J. (April 1986). “The X Window
System,” ACM Transactions on Graphics, 79-109.

17. Wellner, P. (April 1989). “Statemaster: A UIMS Bascd on
Statecharts for Prototyping and Targct Implementation,”
Proceedings of the ACM SIG CHI '89, 177-182.

18. Wilson, J. and Rosenberg, D. (1988). “Rapid Prototyping for
User I terface Design,” Handbook of Human-Computer
Interaction, edited by Martin Helander, North-Holland.

19. XBuild User's Guide (1990), Nixdorf Corp, Cambridge, MA.

From Taking Design Seriously — Exploring Techniques Useful in
HCI Design, edited by John Karat. Copyright © 1991 by Academic
Press, Inc. Reprinted by permission of the publisher.

