
TRW Systems Engineering & AD-A242 963
Development Division \ "q~I JliIII | IIIJJII|I | lll)I,i.. l"l.

L It j U wr 4...

TRW-TS-91-02

A System for Specifying and
Rapidly Prototyping User Interfaces

Christopher Rouff 91 13793'
June 1991

i !\4 Igc o gTRW Technology Series

L.-W .iec no gy Ser es
TRW. Tech1ology Series

/ T W17 -icii I gy series, Technology Series

I TRW Technology Series
I: i IM•TRW lechnolog Series

__ %3 I :hnology SeriesAl,:~~ ~u1 r rj a tl~lo

Statement A per telecom N-IT:

Doris Richard ESD-PAM • '

Hanscom AFB MA 01731-5000

NWW 12/2/91

A System for Specifying and Rapidly Prototyping User Interfaces! tr3trt b rk

Christopher Rouff - --iVNi .
TRW Inc. ist

Systems Engineering & Development Division ;Ds

Carson, California

Ellis Horowitz _

Computer Science Department
University of Southern California

Los Angeles, California

ABSTRACT called Reduced Programming Prototyper (RPP). This system and

This paper presents a system for rapidly prototyping user inerfaces

and a model for specifying them. The model represents the • interactively lay out the graphical components of the interface,
components, flow of control, constraints, and semantic feedback of
an interface while the system allows the interface layout, dialogue, • combine components into hierarchical groups,
and application interface to be interactively defined, resulting in - specify the control flow between interface components and
little or no programming to produce a prototype. Asa user interface
is prototyped, a model of the interface is maintained that represents groups,
its structure and functionality. This model can then be compiled • define constraints between interface components, and
into source code with calls to the X Windows and MOTIF libraries.
The generated program can then be compiled and linked to • definesemanticfeedbackbetweenthe interface and the underlying
application funis toprod IA cueeprogm. application,

Other user interface builders only have interactive definitions of the without writing any code. As the interface is being constructed, its
interface layout and specify thedialoguein aprogramming language, components, flow of control, constraints, and semantic feedback
thus requiring a programmer to learn yet another language. The are represented by a formal model, which can be used as the
system described here is based on a graph model instead of a interface specification. This specification can be compiled into C
programming languageandallows complex sequencing,constraints, code with calls to the OSF/MOTIF X Window toolkit [11].
and the application interface to be defined interactively. This graph
model representation also allows analysis of the interface to be Figure 1 shows the structure and components of RPP. An interface
madeintermsofconsistencyandcompletenessofthespecification. designer interacts with RPP through an interface editor. As the

I designer draws the components and defines relationships between
I. INTRODUCTION them, the definition of the interface is saved onto a formal structure,

called an interface representation graph (IRG), which can be
Rapid prototyping of user interfaces allows a designer to produce checked for inconsistencies and incompleteness. The designer
a proposed interface in a short time, to easily experiment with produces an executable version of the interface code by issuing the
different approaches to the interface, and to allow end users to try generate command, which causes the interface compiler to read in
itearly in design, when it is most cost effective to make changes [2]. the interface representation and compile it into C code with calls to
The primary hindrance of producing a prototype is the amount of the MOTIF toolkit and X library. At this point the source code is
code needing to be handwritten. Reducing the programming compiled and linked with any user-written functions, which then
reduces the designer's reliance on a programmer, decreases can be executed by the designer.
development time, and leaves the interface more modifiable (which
supports iterative design). In the remainder of this paper we discuss related work, discuss the

components of an interface, describe the methodology a designer
We are currently developing a methodology and User Interface follows to specify theinterface, and dicfinc the formal representation
...... ,,.,nent System (UIMS) [6) for prototyping user interfaces of the interface components and their interaction.

91 10 22 07$

Fge.Cm n C Executable
t use lgeeeInterface Generate interfacei Source l nDeterd Editor aCompiler N Compiler

Display ii

behnd he ce estodi therface1 and the tetb ensimuat Mirss e

Application mo f

Consistencye IRG thecndoserLibraries
[Checker IRG Database IRG

Figure 1. Components of R P.

H. RELATED WORK IN PROTOTYPING TOOLS programming language, or if partofa UIMS, in adialogue language
that uses the earlier generated definitions. A large number of IDTs

Thereahr teebasic typesof prototyping [18: storyboardsor slide have been written, often as part of UMSs or other developm nt
shows, Wizard of Oz simulations, and testable simulations. The systems. Some of these systems are Dialog Editor by Cardelli [4,
storyboard or slide show is a predefined set of screens displayed in Interface Builderby NeXT [81, Prototyper by SmethersBarnes [15 ,

a predetermined order, the Wizard of Oz prototype uses a person XBuild by Nixdorf Computers [19], and Dev Guide by Sun
behind the scenes to drive the interface, and the testable simulation Microsystems.
is a fully functional user interface that can be tested by the end user.
RPP addresses th n be esa sm atp of prototyping. HyperCard [5 and OSU [9 also allow interface objects to be
Production of this kind sf prototype requires the largest investment interactively laid out on the screen but differ from the other systents
in time andmoneysoitis oftenintegratedinto the finalproduct [3 in that a limited amount of sequencing can be specified. In

Current tools for producing testable simulation prototypes can be HyperCard the designer defines a series of cards with common
divided into threo groups: User Interface Management Systems backgrounds and differing foregrounds and links them together
(UIMSs), Interactive Design Tools (IDTs),and high-level language- through button presses and other interactions. In this way, simple

based systems flow of control between cards can be defined without the need for
any programming, though the Hypertalk scripting language can be

A UIMS's printary goal is to separate the user interface from the used for more advanced schemes. OSU allows sequences of

difyin application . Tbedefined asasystem thatprovides acomponent Macintosh interface objects to be specified based on user inputs.
for the presentation of the visual part of the interface, a component Peridot [13h is another system that lets a designer interactively lay
for the definition of the dialogue between the user and application, out and construct interface objects by demonstration.

and a component for defining the interface between the UIMS and
the application program [6]. foe separation of the interface from T e third type of prototyping systems is based on high-level

the application allows different interfaces to be tried without programminglanguages that have specific constructsfordisplaying
modifying the application. Twocurrent UIMSs are Serpent 1 and and manipulating user interface objectsand usually havecapabilities
TeleUse by Tele~oft. Serpent and TeleUse both provide an to call functions written in a conventional programming language.

interactive design tool for defining the layout of an interface, a Examples of these types of systems ae Winterp [101, Garnet d141,

dialogue language(SlanginSerpentandD inTeleUse) fordescribing and Tooltool n121. Winterp is based on XLISP and the MOTIF
the flow of controlof the interface, and a specification lang tige for widget set. It allows easy definition of widgets in X Windows an

defining the interface between the UIMS and application. Both has the power of programming in LISP. Like Winterp, Garnet is
systems use X Windows [161 for presenting the visual component. LISP-based and provides a high-level interface to X Windows.

Garnet also provides mechanisms for defining constraints between
IDTs are similar to interactive graphics editors but allow users to objects as well as object manipulation. Tooltool is based on
place interface objects such as buttons, lists, menus, and icons on SunViewand acts as a mediatorbetween the windowingsystem and
the screen, instead of graphics objects such as circles and lines. an application. The designer defines what interface objects will be
Many IDTs also allow the designer to specify application functions used and maps inputs to these objects into inputs for the application
to be executed when a particular input occurs (e.g., a button press). and maps outputs from the application onto the user interface.
Most systems produce sourc:e -"ode definitions in a programlming

language or layout description language that represents the screen RPP differs from these systems in that it allows the definition of
layout. The dialogue portion of the interface is then written in a complex sequencing of the dialogue, constraints, and semantic

2

feedback interactively without using a dialogue programming can consist of (but are not limited to) display of dialog boxes,
language. The application still needs to be programmed, but for addition of menus, lists, error messages, or help.
prototyping purposes a mock-up facility is supported that simulates
the call and return ofapplication functions, allowing the application Some user interfaces are a series of frames, others are a single frame
routines to be simulated. Previous prototyping systems have relied with subframes that continually modify the original frame, and
heavily on programmers to code any complex sequencing of the others are a mix of these. An example of a frame-oriented user
interface and in many cases to also define the layout of objects. interface isa transaction-based system where data in fieldsof a form
With the exception of Peridot and Garnet, none of the systems are filled, with new frames and fields appearing depending on the
allows the designer to define constraints between objects of the items selected or the values entered. An example of a single frame-
interface and none of the systems allow hierarchies of interface oriented interface is a graphics editor, in which a single frame is
objects to be grouped together to reflect visual and flow-of-control displayed and changes are continually made to it. Most systems
similarities, contain both types of frames. There may be several frames that

make up the interface but are modified with dialog boxes, errors,
and help messages that continually update or modify the original

III. COMPONENTS AND INTERACTION frame.
OF AN INTERFACE

B. Flow cf Control
To produce a prototype with a minimal amount of programming, an
underlying structure that describes the components and their Flow of control defines how the interface will change on inputs
interrelations needs to be defined. The building of this structure is from the user or values returned by the application and represents
then reflected in the methodology thatadesigner follows to produce an ordering on the interface objects over time. There is also an
an interface. We define a user interface to consist of: implicit flow of control defined by the windowing system (in this

case X) that allows the input focus to be changed from window to
" graphical objects, window and graphic to graphic. This usually takes the form of

moving the cursor from one window or graphic to another with the
" flow of control, window or graphic that the cursor is over being the object that

" semantic actions, and receives input. Control among frames and subframes is explicitly
defined since it requires the interface to be modified.

" constraints.
C. Semantic Actions

The graphical objects are made up of the graphical images that are
visible to the user, the control portion defines an ordering on the Semantic actions are the operations that drive the application.

appearance of the objects, the semantic actions define how the These actions are tied to the events that are associated with the flow

interface interacts with the application, and the constraints define of control. When an event occurs, a semantic action can be

dependencies between the objects. The following sections discuss performed. These actions can take the form of calls to user written

each of these parts. functions, programs, or file input/output. These actions can also
reference or set variables that represent attributes of graphics being

A. Graphical Objects displayed. This allows the user to pass data to the application and
allows the results of calculations in the application to be printed or

The graphical objects consist of the buttons, menus, dialog boxes, change the display.

text, and other items that are directly visible to the user. These
objects can be divided into two groups: those that contain other D. Constraints

objects and those 'at area tomic. The container objects are called
windows and the others, graphics. Graphics that appear at the same Constraints occur when an attribute of an interface object becomes

time inside a window are grouped together into frames. When dependentona value computed in the application or the attribute of

control is transferred from one frame to another, the content of the another object. Constraints aic one way thatan application displays

window is cleared and a completely new set of graphics is drawn. its output. Examples of attributes that an application might set are

An example of a series of frames isa transaction-based system, such the label, position, size, or color. These attributes can reflect values
as a data base browser, in which the user fills in query fic!ds, and the computed hy the snpliration. The second type ot constraint occ urs

results are displayed by erasing the query and displaying the results when an attribute of one object is dependent on the attribute of
in its place. Since modifications to a frame sometimes need to be another. Examples are an object's position depending on another
madewithouterasingtheentirecontentsofawindow,asecondtype (e.g., when one object moves, the other follows), and objects
of frame is defined, called a subframe. Modifications to windows sharing a color.

3

Figure 2. Two Top-Level Windows

IV. PROTOTYPING AN INTERFACE as the parent's, then whenever the parent appears, the object alsto
appears. If the window is a top-level window and does not have a

To prototype a user interface, a designer follows these steps: parent, then it appears at the start of the application. Appearance
when control is transferred to an object is how pop-up windows,

1. The windows that are to appear in the interface are drawn. dialogs, and other transitory windows are defined.

2. Frames that are to appear in each of the windows are drawn. When specifying a window, its initial position and size are given by
in which the frames are to appear are defined, the designer. If it is a subwindow, its parent window is selected

from the already defined windows. Next defined are the attributes

4. Events are specified that determine when a sequence is to be of the window.such as the width of its border, its dimensions, and
taken, its appearance time. Figure 2 shows two windows after specification.

They are both top-level windows, the left window (Browser) being
5. Constraints between the components are defined, the main window and the right window displaying help information.

6. Semantic feedback among the interface, the application, and the B. Defining Frames and Subframes
constraints are defined.

After a window is defined, a series of frames is drawn to represent
the appearance of the interface at different points in time. Frames

All interface objects are drawn in an interactive editor that allows can be defined in one of four ways: by the designer explicitly

the designer to place objects on the screen exactly how they will be defining the graphics that make up the frame, by the designer

seen at execution time. At any point in these steps the designer can defining a frame to be a modification of a previous defined frame

repeat or reduce previous steps. This allows mistakes to be (subframe), through semantic feedback from the application, or by

corrected, enhancements to be made, or different techniques to be a dependency on another graphic.

tried, thus supporting iterative design. The following sections Hierarchiesof windows, frames, orgraphical objectscan be defined
describe each of these steps in more detail. by grouping together those sharing common attributes such as

graphical objects, flow of control, or attributes (e.g., color).
A. Defining Windows Groupings allow common attributes to be defined once for the

entire group instead of individually for each item. A group of
A designer begins a prototype by defining the windows in which the objects can be used like any other object; they can be listed as the
interf" is to appear. A window can be defincd as cithcr a iup-lcvl source or destination of a sequence, graphics or iuributes can e
windoworasubwindow. Multipletop-levelwindowscanexistand assigned to them (which are persistent across all frames and
each window can have multiple subwindows. Appearance times windows in that group), semantic feedback can be associated with
for windows can also be specified, which define when the window them, and they can belong to other groups. Grouping similar
will be displayed. The appearance time can be the same as the objects together produces a consistent user interface by providing
parent's or when control is transferred to the object. If it is the same these benefits:

4

Book Query Author Help

Click on one:
Author NThis is the top level

I Title F ONT____ of help...

Subjet

Figure 3. Three Frames of the Bookstore Query System.

" Persistent objects only need to be defined once. written to files - also can be assigned to sequences, which are
executed when the sequence is taken.

" Persistent objects appear in the same place and look the same over

the frames in which they appear. D. Defining Constraints on Objects

" Identical flow of control properties need be defined only once. Constraints can be defined on objects or flow of control of the

" Objects with the same flow of control operate similarly. interface. Constraints among objects (either windows or graphics)
can be defined by declaring that a value of an attribute of one object

" Modification of a shared object or sequence only has to be done is dependent on an attribute of another object. This is useful for
once. defining such things as shadows, groups of objects whose positions

are defined relative to one another, and objects with equivalent
Figure 3 shows examples of frames thatcould be defined in the two attributes such as the same foreground color. When defining an
windows shown in Figure 2. Two frames are shown in the Browser attribute of an object to be defined relative to an attribute of another
window and one frame in the Help window. The frame on the left object, a simple formula can be applied to the original attribute to
in the Browser window is the initial frame listing a choice of queries transform it to a value for the new object. This transformation can
that can be made. The center frame is the frame displayed if the first be done by selecting the appropriate attributes of each object whose
query is taken. The third frame (right) is the first frame of the Help relationships are to be maintained or by explicitly naming the
window that is displayed whenever a help button is pressed. All the attributes involved and the transformation to be applied to those
frames of th. Browser window could be grouped together so the attributes.
help button would only have to be defined once, causing it to appear
in each frame of the Browser window in the same place and operate Constraints on the flow of control can be defined by specifying
in the same manner, thus ensuring consistency in the look and events in multiple objects that need to occur before a sequence can
operation of the button in all the frames of the browser. be takr'n. An example is when a user has to select an item from

multiple menus before the next frame is displayed or a value must
C. Defining Flow of Control between Components be entered into a text field and a button pressed before execution can

continue. Constrained and unconstrained flow of control can occur
Once the windows, frames, and subframes are specified, the flow in the same frame, thus allowing the user to get help, quit, or skip
of control of the interface is defined by ordering the frames. The the frame.
ordering consists of a set of sequences, each having a source and
destination object. The source object can be a graphic, frame, E. Defining Feedback to Objects
subframe, window, or group. The destination of the sequence can
be a frame, subframe, group,or window. Each sequence is assigned Input may be passed from the interface to the application, and the
a value indicating what input initiates it. Input can be in the form results returned to the interface for display or for modification of the
of keystrokes, mouse button clicks, mouse movements, a value read interface appearance. Passing values between different parts of the
from a file, or a value returned from a uzcr-written function. interface allows a value input to one graphic to affect a second
Allowing inputs from the user or outputs from a program to initiate graphic without going through the application. A simple
flow of control permits the interface to be either user-driven, transformation formula can also be applied to these values to
application-driven, or a combination of both. Actions -graphical account for offsets. Values can also be read from files as well as
operations, user-written routines to be executed, values read or passed from the application. This allows quick mock-ups of the

5

interface before the application is written and removes the need for transitions, semantic feedback, constraints, or other attributes that
a programmer from the early stages of the interface design. Values apply to all the nodes inside the group.
can also be saved to files to record data values entered by the user
or other useful information. The values passed to the application There are other types of nodes. Default nodes are the nodes when
are not restricted to input but can be attributes of a widget, such as execution starts in a window or group. A history node remembers
position or dimension, the last subnode executed when the flow of control is temporarily

interrupted. A diversion is a group of nodes that are executed as an
F. Generating the Interface aside to the current flow of execution, and a termination node stops

execution of the application.
When the designer wants to try out the interface, the interface
specification can be converted to User Interface Language (UIL) B. Representing Sequencirg between Components
fI] and C code with calls to MOTIF and X Window routines,
compiled, and then linked with the application functions. The UIL The sequences in an interface are represented by transitions that
defines the initial appearance of the interface objects, the C code connect nodes of the IRG. Transitions ace defined as tuples
implements the flow of control of the interface, and modifications containing a source and a destination node, a value indicating when
are performed through calls to MOTIF and X toolkit routines, the transition can be taken, and actions to be executed. The
Values defined as semantic feedback are stored in shared data circumstance for a transition to be taken, the semantics associated
structures, whichcanbereadandwrittentobyapplicationfunctions. with a transfer of control, and the actions executed when the
When the shared data values are changed, the corresponding destination is reached, all depend on the types of nodes involved. If
attribute of an object is updated. a window is the source of a transition, then whenever control is in

the window and the value listed on its transition occurs, then the
V. INTERFACE AND INTERACTION transition is taken and control is given to the destination node. If a

REPRESENTATION frame is the source of a transition, the transition is taken whenever
the listed input occurs among the frame's graphics. If a graphic is

As an interface is specified, it is mapped onto an IRG, which the source of a transition, then whenever the listed input occurs
represents its structure, flow of control, interrelationships, and inside, the graphic control is transferred.
semantic feedback. This diagram models the structure and interaction
between the graphics and application. The interface objects The type of a destination node determines the result of the transition.
themselves are not addressed because it is assumed that the interface If the destination is a window node, then control is transferred to the
designer was given a predefined set of objects (such as the MOTIF window and all inputs are applied to the nodes in that window until
widget set) and has no control over their functionality, only in how the window loses control. The window must first transfer control
they are used. Such low-level actions as highlighting menu items to its start state: a group, frame, or graphic. If the distinction is a
are defined by the object and are not addressed in this model. The group, then, like a window, its start state is given control. If the
IRGs are not seen by the designer but are what drive the prototyping destination is a new frame, then the graphics in that frame are
process. The designer only sees the actual objects in the editor. The displayed in the window; if it is a modified frame, the graphics are
following sections describe IRGs and how interface specifications modified. Finally, if the destination is a graphic, such as a dialog
are mapped onto them. box, then only that graphic can receive input. This forces the user

to acknowledge a message or input a value before continuing with
A. Representing Components of the Interface any other part of the interface.

IRGs, which are based on statecharts [6,161, can be defined as Unlike transition diagrams and statecharts, IRGs do not require
hierarchical transition diagrams in which nodes either stand for nodes to have transitions entering and leaving them. This is due to
themselves or contain subdiagrams. It is this hierarchy of nodes that the fact that not all objects may change the state of the interface and
is used to represent the levels of windows, frames, and graphical not all receive input. An example of the former is radio buttons,
objects of an interface. An interface is mapped onto the node whichsimplymaysetanapplicationvariable, and an example ofthe
structure by first representing the entire interface as a root node of latter is a label.
an IRG, the top-level windows as children of the root node,
subwindows as child nodes of the window's parent, frames as An example of transitions between different interface components
children ofwindow nodes, andgraphicsaschildrenofframenodes. is shown in Figure 4. In this example, there are two windows.
If a window contains subwindows, then the window has two types Window I has two frames and Window 2 has one frame. The default
of children: frames and a subwindow. Grouping of nodes (such as start node for Window I is Frame 1. This is where execution begins
frames or graphics) is represented by enclosing them in superstates, when control is given to Window 1. When Frame I receives control
with the group possibly spanning across windows, frames or other through the transition, it will display objects Obj I and Obj 2. Obj
groups. Groups are treated like any other node. They can have I does not have any transitions entering or leaving it. It could be a

6

Window 1 ,,Q, Window2
Fame I Frame 2 - go Frame3 -

j Selectl

Figure 4. Transitions between Different Components of an Interface.

radio button label widget, or an object whose sensitivity has been widgets to force them to maintain positions relative to each other or
turned off, like an invalid menu item. Obj 2 has a transition leaving for one widget to display an attribute of another.
it with a destination of Frame 2. This means that whenever the
event "select" occurs in Obj 2, then Frame 2 is drawn. Frame 2 has An example of semantic feedback and constraint between widgets,
an example of constrained flow of control. Control can only be with the resulting IRGs, is shown in Figure 5. On the left side of
transferred from Frame 2 to Window 2 when text has been entered Figure 5, a scrollbarand a text widget with a shadow are shown. The
into Obj 3 and Obj 4 has been selected. Window 2 has an example text widget displays a value relative to the location of the slider in
of a group of objects (Obj 5 and Obj 6) that might share some the scrollbar. The right side of Figure 5 is the IRG representing the
attribute or common flow of control. widgets. The square labeled "variable" represents a value shared

between the interface and the application. The transitions from the
C. Representing Semantic Feedback scroll node and shadow node to the text node represent constraints.

The transition between the text node and the variable node represents
Semantic feedback between the interface and application is the data feedback, and the transition from the variable to the text
represented throughdata feedback transitions (DFT) and application node represents application feedback. Additional constraints
feedback transitions (AFT). These transitions show flow of data between the scrollbar and the text widget could be defined to keep
instead of flow of control. A DFT transfers data from a user thewidgetsafixeddistancefromeachother. Insuchasituation, one
interface object supplying a value to a parallelogram representing widget's position would be constrained by the other via an offset
a variable containing data value shared between the interface and added to the first's position.
the application. An AFT has as its source a shared data value and
as its destination anode representing the widget that is tobeaffected E. Example of a Representation
by the data. The values that flow between the interface and the
application can be attached to any attribute of a widget, such as its Figure 6 is the complete IRG of the Browser interface described in
position, size, label, or ability to accept user input (stippling). the second section. The interface being specified is fora system that

allows patrons of a bookstore to query the availability of books. At
D. Representing Constraints on Components any time the user can move from the Browser window to the Help

window, page through the Help window, and return to the Browser.
Constraints between widgets are represented similarly to the above Subsequent movement to the Help window resumes execution
semantic feedbacks. An interface constraint transition (ICT) has as where it left off.
a source the node representing the widget that is to be constrained,
and as a destination the node representing the object to which the The outer node (Bookstore Query System) contains the entire
source is being constrained. An equation is associated with the interface description. The two states (Query and Help) in the root
transition that represents the transformation of the source widget's state represent the two windows of the interface. The subnodes in
value to the destination widget's value. Constraints can be used on the Query node represent the frames that appear in that window and

7

Sha-
dow

Figure 5. Scrollbar, Text Widget, and Corresponding IRG.

Bookstore Query System
Bro wser Window 'uhrFrame Help Window

Query Frame Dao M Nx

Figure 6. IRG Representation of Interface in Figure 3.

correspond to the first two frames in Figure 3. The four nodes in the VI. CONCLUSION
Book node and the three nodes in the Author node represent the
widgets in the frames that receive input. The Name node in the The system described here allows a wide range of user interfaces to
Author node does not have a transition leaving it because it be easily and quickly prototyped by an interface designer with little
represents a label widget and input to that widget does not cause any and in some cases no assistance from an applications programmer.
changes in the interface. The circles with the H in the middle are It allows the interface components, their relationships, flow of
history states thatreturn control to the lastexecuted i~ode. If no node control, constraints, and semantic feedback to be interactively laid
has been executed, thedefauitnode is used. The transition from the out directly on the screen. The designer specifies the interface by
Query node to the history node represents an input that can be defining windows, frames, subframes, and the graphics within
executed anytime to take the user into the Help window, them. The frames and graphics can then be grouped together for

8ir

easy specification of persistent objects and objects with identical 9. Lewis, T., Handlooser III, F., Bose, S., and Yang, S. (1989).
attributes or flow of control. The grouping supports consistency of "Prototypes from Standard User Interface Management
the objects' appearance and operation across the interface and Systems," IEEE Computer, 51-60.
reduces the time to modify persistent objects.

10. Mayer, N., Shepherd A., and Kuchinsky, A., (May 1990).
The IRGs arecapable of representing the structure, flow of control, "Winterp: An Object-Oriented, Rapid Prototyping,
constraints, and semantic feedback of the interface and provides a Development Environment for Building Extensible
formal specification that complements the prototype. The Applications with the OSF/MOTIF UI Toolkit," Xhibition'90
hierarchical structure of the IRGs allows them to represent the Conference Proceedings, San Jose, CA, 49-64.
nested components of the interface and the grouping of the objects
and their flow of control. It also has constructs for representing the 11. MOTIF Programmer's Guide, Open Software Foundation
execution of semantic actions of the application, feedback from the (1989), Open Systems Foundation, Cambridge, MA.
application, and constraints between graphics and the interface.

12. Musciano, C. (1988). Tooltool Reference Manual.
REFERENCES

13. Myers, B. (1988). Creating UserInterfacesbyDemonstration,
I. Bass, L., Hardy, E.J., Hoyt, K., Little, R., and Seacord, R.C. Academic Press, Boston, MA.

(March 1988). Introduction to the Serpent User Interface
Management System. Technical Report CMU/SEI-88-TR-5, 14. Myers, B., Guise, D., Dannenberg, R., Vander Zanden, B.,
ADA200085, Carnegie Mellon University, Software Kosbiew, D., Marchal, P., Pervin, E., and Kolojejchick, J.
Engineering Institute. (November 1989). The Garnet Toolkit Reference Manuals:

Support for Highly-Interactive, Graphical User Interfaces in
2. Boehm, B. (October 1976). "Software Engineering," Software LISP, Technical Report CMU-CS-89-196, Carnegie Mellon

Series. TRW-SS-7-08,TRW Defense & Space SystemsGroup. University, Computer Science Department.

3. Boehm, B. (May 1984). "Prototyping Versus Specifying: A 15. Prototyper Reference Manual (1987), SmethersBarnes.
Multiproject Experiment," IEEE Transactions on Software
Engineering, SE-10 (3), 209-302. 16. Scheifler, R. and Gettys, J. (April 1986). "The X Window

System," ACM Transactions on Grcphics, 79-109.
4. Cardelli, L. (October 1988). "Building User Interfaces by

Direct Manipulation," Proceedings of the ACM SIGGRAPH 17. Wellner, P. (April 1989). "Statemaster: A UIMS Based on
Symposiumon UserInterface Software, Banff, Alberta,Canada, Statecharts for Prototyping and Target Implementation,"
152-166. Proceedings of the ACM SIG CIII '89, 177-182.

5. Goodman, D. (1987). The Complete HyperCard Handbook, 18. Wilson, J. and Rosenberg, D. (1988). "Rapid Prototyping for
Bantam Books, New York. User I terface Design," Handbook of Human-Computer

Interaction, edited by Martin Helander, North-Holland.
6. Green, M. (1985). "Report on Dialogue Specification Tools,"

User Interface Management Systen -, edited by Gunther E. 19. XBuild User's Guide (1990), Nixdorf Corp, Cambridge, MA.
Pfaff, Springer-Verlag, 9-20.

7. Harel, D. (May 1989). "On Visual Formalisms,"
Communications of the ACM, 514-528.

From Taking Design Seriously -Exploring Techniques Useful in
8. Interface Builder (1989), NeXT Systems Reference Manaal, HCIDesign, edited by John Karat. Copyright© 1991 byAcademic

Chapter 8, NeXT Inc. Press, Inc. Reprinted by permission of the publisher.

9

