
WN&-V

A D-A242 962
TRW Systems Engineering & WI "11inI oti l i It III
Develdpment Division Ma. TJw
T-RW-TS-91 -03

Pilot Command Center Testbed Development
Environment: A Better Way to Develop C3 Systems
Charles R. Grauling

September 1991 91-13791

TRW Technology Series

I~~~~ Vci~j~~r

IIR t danarg e,

1K Technology S!eries
".. fT1RW Tehnology Series

1I11WUTIOt4 STAr1M=4

~ chnology, Series

Statement A per telecom
Doris Richard ESD-PAM "
Hanscom AFB MA 01731-5000 . -&,

NWW 12/2/91 jot,

Pilot Command Center festbed Development Environment: .

A Better Way to Develop C3 Systems a.

Charles R.Grauling,

TRW Systems Integration Group 4 e-
Redondo Beach, California

Abstract Background

TRW has recently completed a research project spon- The foundation technology for the PTDE's generic
sored by the USAF's Electronics Systems Division command center approach was developed on ESD's
(ESD) to support the development of the Pilot Coin- Command Center Processing and Display System Re-
mand Center (PCC) for SDI. The PCC is a facility that placement (CCPDS-R) program starting in 1986. The
will be used by the USAF to develop the system level CCPDS-R progran, includes the replacement of all the
requirements for the Communication, Command and ADPE and C3 software in a set of related, existing
Control (C 3) elements of SDI with particular emphasis command centers. The requirement to simultaneously
on determining the role of the human in control by develop software for multiple command centers created
means of experimentation. TRW's role in this project extra incentives to incorporate reusable components
was to evaluate the feasibility of reusing the software and development techniques in the design process. The
ar,,hitecture developed on an earlier ESD sponsored emergence of Ada as a viable programming language
.. mand center development project for this applica- with its support of concurrency and software engineer-

tion. The PCC Testbed Development Environment ing enab'ld us to implement reliable, reusable Network
(PTDE) which is the project's primary product provides Architecture Services (NAS) software [Royce 1989] as
the capability to rapidly implement and integrate proto- the infrastructure for all the commai.d centers sup-
type C3 system application software (including mes- ported by CCPDS-R. This software is currently being
sage sets. databases, mission algorithms, and interac- reused on other TRW command center development
tive displays) and to easily migrate the prototype soft- projects. Given NAS as a foundation, the CCPDS-R
ware into a complete C3 system testbed suitable for program developed tools that it used to automatically

conducting realtime experiments. The experience generate a substantial portion of its newly developed
gained in developing and using thlgeneic command Ada source code. These tools and techniques were built

center tools and techniques that were used can be ap- specifically for the CCPDS-R program and age not de-
plied to future command center development programs signed to be generally reusable. However, the basic
to reduce system development cost and schedules, ideas behind them can be used as the basis for develop-
This paper summarizes the PTDE design and develop- ing an integrated generic command center capability
ment process with supporting rationale.,It also includes which promises to greatly enhance expected productiv-
some "lessons learned" and recommenoations for en- ity on future command center development projects

hancing the development process on future C 3 devel- [Grauling 1990].
opment efforts. The effectiveness of the NAS framework and the use of

automated code generation have been major contrib-
utors to the success enjoyed by the CCPDS-R program.
These principles and techniques can be applied on other
command center development activities by using them
as a basis for designing generic C3 system application
components that execute within the NAS provided
framework. The CCPDS-R implementation was opti-

mized for performance in CCPDS-R's target environ-
ment (DEC VAX/VMS. 1987 vintage display technol-
ogy. etc.). Broadening the applicability of CCPDS-R

01 10 22 080

1IPROCESSOR SUITE
PROCESSOR PROCESSOR HOMOGENEOUS, LOOSELY COUPLED

_MULTIPROCESSOR NETWORK

F 1I FCOTS NETWORK OS
COTSI COTS . jCOTSj COTS VAXVMS/DECNET OR
OPERATING NETWORK OPERATING NET, RK UNIX ITCPAP OR
SYSTEM SOFTWARE POSIX1GOSIP (FUTURE)

OS DEPENDENT NETWORK APPLICATION LAYER

- ----------------- - --- PROVIDED BY CCPDS-R S

NETWORK ARCHITECTURE
NETWORK ARCHITECTURE SERVICES SERVICES CSCI (NAS)

NETWORK MANAGER LOGICAL NETWORK DEFINION
ALLOCATES PROCESSING

SOFTWARE ARCHITECTURE SKELETON FUNCTIONS, Ada TASKS, AND
TOOL GENERATED) EXECUTABLE PROCESSES TO

F ERROR HANDLER PROCESSORS

REUSABLE REUSABLE TOOL REUSABLE APPLICATION SOFTWARE:
GENERATED 'PLUG-IN' MODULES TAILORED

REUSABLE NAS TOOL - TOOL TOOL TO A SPECIFIC C3 SYSTEM
APPLICATIONS GENERATED GENERATED MISION GENERATED INSTANCE

EXTERNAL DATABASE ALGORITHMS .DISPLAY NOTE:
COMM. MANAGEMENT pROCESSING APPLICATION SPECIFIC

DEVELOPED SOFTWARE
I CONSISTS OF Ada MESSAGE

DEVELOPEDt NDLING PROCEDURES
DEVELOPED COUED TO TOOL GENERATEDSOFTWARE

C 3 SYSTEM APPLICATIONS SPECIFICATIONS

Figure 1: C 3 Jystem Software Architecture

technology requires modifying the implementation t," and the executive layer above it were collected into a
optimize for portability and adherence to industry stan- product called Network Architecture Services (NAS) to
dards. This would allow the benefits of the CCPDS-R provide a complete executive framework for building
architecture while providing the capability to take ad- complex applications on a distributed computer system.
vantage of emerging commercial off the shelf technol- The functions performed or supported by NAS include:
ogy such as processors, workstations and standard system initialization, fault detection, reconfiguration,
software interfaces. The development of the PTDE error handling, and interactive network health and sta-
provided an excellent opportunity to identify and im- tus monitoring. NAS is currently in use successfully on
plement these modifications. The remainder of this CCPDS-R [Royce 1989].
section is a brief synopsis of NAS and CCPDS-R's
software development approach as background for ITC is the foundation capability upon which NAS has
readers who are unfamiliar with them. been built. The two critical communication abstrac-

tions defined by ITC are called sockets and circuits. A
NAS Fundamentals. NAS is an outgrowth of an Inter- socket is a virtual I/O channel that an application task
nal Research and Development (IR&D) project to de- uses to send and/or receive messages. Application
termine the applicability of Ada to C3 system develop- tasks can create and delete sockets at runtime using
ment which was started in 1985. The IR&D's first ITC provided services. Application tasks communicate
output was a product called InterTask Communication by establishing connections among their sockets called
(ITC). ITC provides a mechanism which enables Ada circuits. Once a task has created its sockets and cir-
tasks to perform logical I/O amongst themselves with- cuits, it is able to perform logical I/O with other tasks
out explicit synchronization or knowledge of the under- by reading messages from its input sockets and writing
lying hardware. Once ITC was in place, it became ap- messages to its output sockets. ITC provides the mes-
parent that we could layer additional reusable executive sage buffering and synchronization necessary to allow
software components on top of ITC to create an inte- both the sending and receiving tasks to execute without
grated development and runtime environment for im- waiting. A system consists of independently executing
plementing distributed applications (Figure 1). ITC

(A) TYPICAL APPLICATION PROGRAM (8) TYPICAL APPLICATION TASK

PROGRAM CONFIGURATION DATA CONTROL * STATUS

PROGRAM CONTROLLER TASK IN1 OUT1

CONTROL STATUS

APPLICATION --
J APPLICATION TASK 2 INk 0 OUTn

TASK1 ITASKLI 5APPLICATION INPUT OUTPUT
TASK N H SOCKETS SOCKETC

(C) TYPICAL APPLICATION TASK (DETAIL)

STANDARD APPLICATION TASK EXECUTIVE

PROCEDURE PROCESSIN1_MESSAGES STANDARD TASK
Is MCONFIGURATION

EG N E) PROCESSING IDATA

..)CONTROL

WRITE OUTi OUT MESSAGE
WM E); PROCESSING

END PROCESS IN1 MESSAGES: INITIALIZE
_RESET

etc

APPLICATION MESSAGE HANDLING CONTROL PROCEDURES (ONE
PROCEDURES (ONE PER SOCKET) PER COMMAND TYPE)

AFTASDL

Figure 2: Standard Application Program Structure

tasks whose only stimuli are messages which they read strong typing) without explicitly using Ada's rel-
and whose only outputs are messages which they write. atively complex tasking mechanism.

. It reduces synchronization problems among com-
Designing a system under ITC requires partitioning the municating application tasks. Sending tasks never
application into software modules that conform to this have to synchronize with receiving tasks to ac-
model. We call this design methodology "message complish communication. They simply send.
based design". Message based design provides com- ITC buffers the messages and delivers them to the
plete encapsulation of the multiprocessor architecture receiving tasks upon request. The synchronization

details within ITC (i.e., application tasks send and required is accomplished using Ada tasking within
receive messages of predefined types without any ITC.
knowledge of the location of the receivers or senders).
The advantages of this approach include: Although ITC provides a sufficient capability for im-

plementing message based systems. it is possible to
9 It enforces hardware independent design by standardize the structure of ITC based applications

requiring the exclusive use of logical input/output. software. The standard task executive handles certain
Hardware independence contributes to the overall complex system issues such as system fault detection,
flexibility of the software design. error handling, and system reconfiguration in a manner

* It promotes a cohesive and modular software de- that is as transparent to applications as possible.
sign by requiring early formal definition of task-
to-task interfaces and disallowing common Figure 2 (A) is a schematic representation of a typical
coupling among tasks. NAS based standard application program. NAS stan-

* It reduces Ada training costs and development risk dardizes the implementation of executive functions by
by encapsulating Ada tasking within ITC. De- including NAS provided control processing in every
signers can implement multitasking applications standard application program. This processing behaves
with all the benefits of using Ada (e.g., packages, as it it were performed by an included program con-

troller task as illustrated. The program control task required to build the network out of the generic NAS
performs processing that is common to all NAS appli- application components.
cation programs such as process synchronization upon
initial program load, ITC network login, standard error CCPDS-R Software Development Approach. In addi-
handling, status reporting, and monitoring the health tion to using NAS, the CCPDS-R project used a new
and status of the application tasks contained in the approach to the software development process de-
program. scribed in [Springman 1989] and [Royce 1990]. This

approach uses incremental builds, top down integration,
The standard application task, Figure 2 (B), is the basic and tools which automatically generate a substantial
processing module for a NAS based system. It consists fraction of the deliverable Ada source code. Tte : ais
of the standard executive shell, standard control mes- were developed specifically for the CCPDS-R p.,lect
sage processing, and application specific message in an ad hoc fashion (i.e., they werc invented and im-
handling and control procedures shown in Figure 2 (C). plemented by programmers for their own purposes to
The executive in each application task detects when aid configuration management and source code genera-
ITC has a message to deliver to one of its input sockets tion wherever it made sense). Our approach to demon-
and determines which socket has the next message to strating the feasibility of reusing CCPDS-R technology
read. For each message arriving on an application in the PCC included using NAS and its associated SAS
input socket, the task shell executes the application builder tool "as is", reusing CCPDS-R application
message handling procedure associated with that components wherever appropriate, replacing custom
socket. The application message handling procedure CCPDS-R components with equivalent Commercial
then reads and processes the message. This processing Off the Shelf (COTS) technology where possible, and
generally includes producing output such as writing one enhancing the ad hoc code generating tools to make
or more messages to one or more of its output sockets them more effective for use in the PTDE.
or performing external I/O. This is how the task
accomplishes useful work. PTDE Design Overview

Incoming control messages are handled by NAS. Cer- The PTDE consists of the two major components illus-
tain control messages are handled in a fashion that is trated in Figure 3. The C3 system development envi-
transparent to the application task. The control mes- ronment is a host facility with ADPE resources and

sage that requests a standard task level status informa- software development tools that can be used to build
tion is an example of a transparent control message. working prototypes of C 3 systems. The C3 system
These messages provide the mechanism whereby the evaluation environment provides the ADPE resources
program controller can gather performance data or de- and application software necessary to conduct com-
tect failures (i.e., a response time-out). NAS's control mand center experimdrnts with human controllers per-
message mechanism is also extendable to allow appli- forming realistic command center tasks in a realisti-
cation specific control procedures. This feature is used cally simulated command center environment. The key
to allow applications to issue network wide commands attribute of the C3 system development environment is
(for example to command a network reconfiguration or its ability to support all aspects of rapid command cen-
a database reset) without requiring explicit knowledge ter development. This includes facilities for rapidly
of the network's structure. In addition to providing the building display prototypes. developing the software
top level abstraction for the implementation of applica- required to handle external message sets and the va-
tion components, the existence of standardized appli- ous types of format conversion that they require, simu-
cation components provided a framework to includesupport functions such as standardized error handling, lating external C3 system components (e.g., external
performance monitoring and logging, interactive net- weapon and sensor systems), and developing the gen-perfrmace mnitringandlogingintractve et- eral purpose software required to implement mission
work control, and system reconfiguration in all NAS ei pur twr reqire to i nt miso
based systems. The standard structure of NAS based specific algorithm processing. The existing CCPDS-R
systems makes it possible to automate portions of the development system was the starting point for the de-

software development process. One of the first tools in velopment of this portion of the PTDE. The key at-

this category was the Software Architecture Skeleton tribute for the C3 system evaluation environment is its

(SAS) Builder tool. This tool allows one to build a text realism. Realism comes from providing a simulated

file description of an entire NAS network. The tool command center environment that has adequate inter-

processes the text file and produces all the source code active response time performance and uses simulation
techniques with sufficient fidelity to properly exercise

SYSTEM DEFINITION TOOLS SOFTWARE DEVELOPMENT TOOLS
DECLARATIVE VIEW
DATABASES

Fiur 3: PTSD E T LevelBArchitectur

DEFINITION COTS GRAPHC
LANGUAGE

" NETWORK
SPECIFICATION

" DISPLAY 'AUTHOR FILES" OFWR
COMMAND CENTER DEVELOPMENT ENVIRONMENT[DEVELOPMENT

-O MAN D--ENT-ER EVFLLTfTo N- E N lRO -EN-- . . . TESTBEDtCM TOOLS

FMISSPITDETUPP

Figure 3: PTDE Top Level Architecture

the humans in control. Another important feature of tolerance and the Test/Real separation that the
the C3 system evaluation environment is its ability to CCPDS-R program uses to allow test mode operation
gather the measurable performance information re- on the real system. The implementation of these ca-
quired to quantitatively assess the operation of the ex- pabilities is transparent to most application software in
perimental command centers. The CCPDS-R runtime a NAS based command center because of NAS's built-
environment with NAS and its associated performance in support for these functions. The performance impact
measurement facilities were the starting point for the of having these capabilities are negligible in any
development of this capability, realistic command center application because they use

redundant processing resources. The second build
The PTDE development process consisted primarily of consisted of replacing the display and database
the integration of existing C3 software components with management systems that were developed specifically
very little new software development. Its design is for CCPDS-R with COTS software products (e.g., a
based on the software engineering principles and sup- commercially available relational DBMS and a
porting reusable components that were developed on commercially available X-windows implementation).
the CCPDS-R program and other IR&D projects, and The motivation for this approach was to trade per-
the use of Commercial Off the Shelf (COTS) products. formance for flexibility and portability. Since the
We used an incremental development approach consist- PTDE is an experimental facility whose mission is de-
ing of three builds. The first build started with a base- velop C3 system requirements, it is more important to
line system taken directly from the CCPDS-R devel- be able to rapidly implement systems than to squeeze
opment facility. We modified it to remove certain ca- the most performance out ADPE hardware. The third
pabilities that are not necessary in the PCC environ- build was the formal demonstration of the PTDE's abil-
ment. These capabilities include the primary/shadow ity to accommodate the transition from the CCPDS-R
threads that CCPDS-R uses to provide hardware fault application to Space Defense Systems (SDS) applica-

MESSAGE CHARACTERISTICS DATABASE

* EXTERNAL MESSAGE LAYOUTS

* INDIVIDUAL FiELD TYPES

INTERFACE • LABELS FOR HUMAN READABLE FORMAT

CONTROL ENUMERATION TYPE DEPNIT'CNSDOCUMENT
(leD) MESG

/FOR MAT

Ada SOURCE CODE CONVERSION INPUTS TO OTHER TOCLSI OL TOOL

* OUTPUT MESSAGE FORMATTING PROCEDURES 0 EXTERNAL MESSAGE SMULATOR DISPLAY FORMS

* INTERNAL FORMAT CONVERSION PROCEDURES e EXTERNAL MESSAGE SULATOR DATABASE
CONTROL INFCRMATCN

" HUMAN READABLE FORMAT CONVERSION PROCEDURES
0 COTS DBMS SP-EC,R CATCDNS (SOL)

" Ada OBJECT TYPE SPECIFICATIONS
GENCWTP.

Figure 4: External Message Tool

tions. The primary objective of the third build was to automatically generate key software products. Th-: text
go thruagh the process of installing an SDS specific al- file serves as the source file for automatically generalt-
gorithm involving weapons and sensors. In the process. ing the Ada source code and the other internal
we measured the productivity characteristics of the representations that are required in a typical C3 system

PTDE's C3 system development environment. The shown in Figure 4. The list of pr-.ducts produced by
remainder of this section provides descriptions of the the Communication Message Tool (CMT) for a typical
major components of the PTDE with emphasis on the input message type consists of the folio%; in! items:
tradeoffs that had to be made among various software
quality attributes such as portability, performance char- * Message Validation Procedures. Every external
acteristics. usability qrll flcxibility. It is organized in message that enters the system must be picked

terms of the basic functions that are common to all C3 apart on a field by field basis. Each field must be
systems: external message interface,, database man- checked for violations of range of value con-

agement, mission algorithm processing, and user straints that are specified in the ICD prior to con-

interfaces, version into its internal format. The message tool
produces the source code for an Ada procedure to

External Representation Management. One of the perform this processing for each input message

fundamental capabilities of a C 3 system is its ability to type. In some cases, speial ad hoc processing
r,ceive incoming message traffic, convert them from may be required as specified in the ICD. The

their external format to a variety of internal formats so message tool also provides the hoks to add this

they may be used by processing and display application type of application specific field validation logic

software, and to generate outbound messages in an to ter at ion prc if requi e
agreed upon external format. Real world command . Ada Representation Scecifications. In theC CCPDS-R software architecture. external rues-
centers generally deal with hundreds of different types
of messages and a small number of different external sages enter the system through communication

communication protocols. The high leverage area is processing tasks that perform protocol processing
clearly in the message formatting portion of the com- a
munication processing. The CCPDS-R program devel- external message. The bit by bit description of

oped an automated system for producing format con- this format is defined in the lCD. The Ada pro-

v-c;sion procedures. This system involves capturing the grams that process these messages need an Ada

external format definition information usually provided representation clause to locate individual fields

in an external Interface Control Document (ICD) in a within the input message datagram. One of the

text file and using a tool to parse this text file and first steps in the processing of a message is its
conversion from an array of bytes to an Ada ob-

ject with an associated internal Ada record type. and consistent set of modified source code for all af-
The type specification for the internal Ada object fected software components and databases. The ab-
representation of each input message type is sence of this type of tool in the PTDE would mean that
automatically produced by the message tool based PTDE users would have to manually create all the
on information extracted from the ICD and incor- above mentioned source code for each new message
porated in the message tool's input text file. type that is added to the PTDE's repertoire of supported

" Human Readable Output Formatting Procedures. messages. The CCPDS-R CMT is adequate for
CCPDS-R allows the user to print any external CCPDS-R's purposes, but it needed enhancement in the
message in human readable form on a suitable form of a more user friendly front end to make it more
output device (such as a line printer). The suitable for use in the PTDE. In its original state, CMT
CCPDS-R message tool can automatically gener- did no error checking of its input source file. Key-
ate the Ada source code for a procedure to convert punch errors or failure to adhere to the rigid flat file
the internal representation of an external message format could cause the CMT to crash (i.e., raise an un-
into its human readable form. It does so based on handled exception. at run time). This front end helps
the information in the CMT source text file which the user create CMT input by providing a form filling
contains field definitions and other related infor- type of interface which also performs on-line data in-
mation such as the agreed upon field labels and tegrity checking. It makes the process of creating new
mnemonics. message types and updating old message types more

" External Message Simula!or Display Forms. productive for the occasional user.
CCPDS-R has a built in external message simula-
tion capability that allows the operator to con- Database Management. In our generic command cen-
struct and subsequently inject externally formatted ter model, external messages arrive, populate a
test messages. This capability uses an on-line database and cause mission algorithms to run. Mission
database of form descriptions to support the algorithms generate processed information which is
operator interface to the external message genera- also stored in the database. They can also cause opera-
tion capability. The CMT automatically popu- tor alarms which will generally cause the C 3 system
lates this database using information contained in operators to take some action. Operators interact with
its source text file. the database through their workstations under the con-

* External Message Simulator Control Information. trol of user interaction software. The database man-
This item is also related to the external message agement function provides the storage, distribution, and
simulation capability. The internal simulation ca- integrity protection of the displayable database. There
pability uses an on-line database to control last are several different implementation strategies for this
minute message formatting details such as insert- important function. The choice of a design approach
ing the correct time tags in simulated external involves the tradeoffs among attributes such as devel-
messages. The CMT automatically populates this opment cost, performance, and flexibility. The
database using information contained in its source CCPDS-R program was performance driven with a well
text file. known, stable list of required displayable data items. It

* COTS DBMS Schema Definition. C- systems therefore selected a high efficiency memory resident
routinely log incoming and outgoing messages. If database approach over a COTS DBMS based ap-
a COTS DBMS is used to implement this func- proach. In CCPDS-R, there was a single master
tion, the ability to easily perform on-line data re- database which was the recipient of all messages and
view and reduction is provided by the COTS algorithm results. The CCPDS-R master database ac-
product. The information necessary to automat- tively distributed displayable database updates to each
ically generate the SQL data definition statements of the workstations which were maintaining a local
which define a table for each type of external memory resident copy of the master database. Auto-
message already exists in the CMT's source text matic updates to users' displays were triggered by
file. Adding this type of support required a minor database distribution events. This approach ensured
modification to the existing CCPDS-R CMT. display consistency across the complete set of worksta-

tions that were serviced by the system. These prop-
The key advantage provided by CMT is its consistency. erties were explicitly specified in the CCPDS-R system
When the external definition of a given message type specification.
changes, a single update of the input source text and
subsequent rerun of the tool will produce a complete

TO WORKSTATIONS

(> ENSORNIEAPON SYSTEM MESSAGES DTBS

SIMULATED COORDINATED INPUTS (EUACTIVE
SENSOR/WEAPON / USR
SYSTEM COORDINATION
MESSAGES AL-M (Con)
(INTERNAL
FORMAT) PROCESSING SENSOPINEApON

-- EXECUTIVE SYSTEM TASKING
PROCESSING :M PE) F-

REQUEST PROCESSING PROCESSING

REQUEST REQUEST TO
PROCESSING COMMUNICATION
REQUEST PROCESSING

(EXTERNAL

PROCESSING MESSAGE
RESPONSE FORMATTING)

BACKGROUND BACKGROUND EVENT EVENT
PROCESSING ... PROCESSING HANDLNG ... HANDLING
TASKt TASK I TASK I TASK n

TIMER ACTIVATEO TASKS EXTERNAL EVENT

ACTIVATED TASKS FROM
COMMUNICATIONMI~S~SION. APPLC.ATI.O9N .PR9CES.S!N 9" T.ASKS..................... PROCESSING

--- --- --- --- -- --- --- --- - --- --- --- --- -- --- --- --- -- --- --- --- -- (EXTE R NAL
MESSAGE

SYSTEM
X1SIMULTN

SIMULATED SENSOR/WEAPON SYSTEM (ESS)

MESSAGES (INTERNAL FORMAT)

Figure 5: Typical Mission Processing SAS Structure

The requirements are quite different for the PTDE. In of source coding required to implement the access pro-
particular, flexibility and ease of change are more im- cedures in the body parts is roughly the same in both
portant than performance, provided the interactive re- approaches. In the CCPDS-R system, this coding is
sponse time is realistic for the purposes of determining done in Ada whereas the COTS DBMS based approach
operator workload. We therefore decided to replace the uses vendor provided bindings to access procedures or
CCPDS-R database management system with a func- SQL module language.
tionally equivalent COTS DBMS based implementa-
tion. This meant replacino the master and slave Mission Procesfing. In the generic command center
database managers in the CCPDS-R implementation model, the mission processing functional area contains
with a general purpose database server. Under this the algorithms that process incoming information and
approach, application processes that create displayable send displayable results to the database management
data store their data in tables managed by the server system. These results are ultimately used by the inter-
• . i application proccsses requiring access to data active users as decision aids. Since mission processing
throughout the network can log into the server as is applicatitn unique by definition, i! is th,- fu't;n,
clients. The database server handles all the processing area of a command center that is least likely to benefit
required to ensure data integrity. The major advantages from the use of generic command center design tech-
of a COTS based approach are the additional facilities niques. We applied some general guidelines for pack-
that it provides. These include forms editors, interac- aging mission processing into NAS compatible net-
tive user query support, report writers, security fea- works to create the mission processing portion of the
tures, and support for data archiving and recovery. Version 3 software architecture skeleton, Figure 5.
Under the original CCPDS-R approach, all access to
the display database was performed via procedure calls. The main objective in the design of the Version 3 mis-
The PTDE's system has the same interface with access sion processing software architecture skeleton is to
to the underlying database system completely encapsu- provide a flexible structure into which mission process-
lated in the bodies of the access procedures. Support ing algorithms could easily be inserted. In particular.
for data definition is built into the CMT. The amount the ability to spread computationally intense processing

over multiple processors in order to ensure that c'ir- by NAS. In the PTDE Version 3 SAS architecture, the
rently unspecified performance requirements could be client task (MCE) sends an ITC message to one or
satisfied by simply adding processors without major more of the event handler tasks which in turn behave as
software modifications. Figure 5 illustrates the general servers. These tasks subsequently perform the
structure of the mission processing portion of the Ver- requested processing. optionally update displayable
sion 3 SAS. This structure features a top level con- database items, and return a response message to MCE
troller task which handles all input events (such as an upon completion. The response message contains
incoming sensor message or an operator entered control status information and optional algorithm processing
command) and controls the execution of a collection of results.
event handler tasks by routing messages to the appro-
priate event handler task as a function of the incoming In the Ballistic Missile Defense (BMD) application, the
message type and the current state of the system. The server tasks are typically models of individual sensor or
basic idea behind this task structure is to provide a task weapon systems, or in some cases, specific platforms
framework that allows the software architect to allocate within a sensor or weapon system because simulation is
processing associated with specific weapon and sensor a fundamental component of the battle management
systems to separate tasks. These separate tasks could process. For example, evaluating the BMD system's
then be executed on different processors. probability of negating a missile attack involves using

some sort of model to simulate ballistic missiles, sensor
In this architecture, the Mission Processing Executive systems, and weapons syste-ms. Likewise. evaluating
task functions primarily as a top level problem solver, candidate engagement opportunities invariably involves
It implements top level algorithms (i.e.. algorithms modeling specific ballistic missile trajectories and
whose logic depends on the results generated by weapon platform physical characteristics (such as orbits
multiple weapon or sensor system models). It also has and end game capabilities). The general guidelines that
the capability to initiate and control concurrent we used to create this ,.oftware architecture skeleton are
-"cessing functions. This capability enables it to suitable for application in any command center appli

function as an ADPE processing load leveler. For cation. The notion of a creating a top level control task
example, it is possible to replicate a given type of event and partitioning the number crunching functions into
handler task on multiple processors to allow algorithms separable NAS application tasks is generally applicable
with high CPU resource demands to be broken up and to any command center application. It is also useful to
spread over multiple processors under the Mission be able to allocate the external simulation processing
Processing Executive's control. Under the message functions to separate tasks in order to easily be able to
based design paradigm, all algorithm processing is move them into external processors. This will make it
triggered by incoming message traffic. There are three possible to more accurately observe the performance
types of mission processing trigger messages: external characteristics of the main command center processing
communication message receipt, internal timer events, equipment by putting the external simulation process-
and interactive user service requests. In general, any of ing in separate processors.
these events will cauz7 the Mission Processing
Executive (MPE) task to perform some form of User Interface. The basic principles of providing soft-
algorithm processing. Throughout this paper, the term ware developers with higher level abstraction supported
"algorithm processing" refers to the processing by text file driven tools that generate the Ada source
performed in response to any of these external events, code were also used in the User Interface functional

area on the CCPDS-R project. The priliary user inte,-
Algorithm processi--g normally results in an update to face on CCPDS-R was a workstation constructed out of
the dynamic database which is used to populate user a DEC Microvax processor which drove a graphics
displays and/or generate outbound messages. MPE processor. The choice of this hardware was effectively
performs part of this processing directly (i.e., within its dictated by the end user's interactive graphics respon-
own input message handling procedures) and it may siveness requirements. The hardware was chosen in
also perform part of it concurrently by sending control 1987, before the emergence of the today's high speed
messages to one or more of the event handler illustrated workstations. One of the goals of the PTDE develop-
in Figure 5. The relationship between MCE and the ment was to replace the CCPDS-R workstations with a
other application tasks that it controls is similar to the functionally equivalent capability based on X-windows.
client/server model commonly used in COTS DBMS The primary reason for this objective was to achieve

and workstation products. tailored as appropriate to
operate in the concurrent programming model provided

DISPLAY DESIGN AND MAINTENANCE OPERATIONAL SYSTEM

DESIGNER v.%iNTAINER END USERF1 WORK' ', ON WORKSTATION

DISPLAY TDISPLAY

FORMATS INPUT INPUT ,REQUESTS
RA REQUESTSUESTS

HM

7WS DDGRAPHICS MANAGER MANAGER GRAPHICS X-WINDOWS

GRAPHS BUILDER GRAPHICS

DIPA DISPLAYPL T oION;D~ L

DISPLAY BUILDER PRODUCTS

0_An_ A1
0 0 0 APn

o IPA0 0 C IPAC CE l

BUILDER o BUILDER DPA

DISPLAY DEFINITION TEXT FILES Ada SOURCE FILES DISPLAY DATABASES

Figure 6: Implementing User Interfaces With Display Builder

the device independence to take advantage of future user interface design proce-,s with an emphasis on the
inexpensive, high performance workstation technology, role of the PTDE's display builder tool.

The design of the user interface for C3 systems is tradi- The first step in designing the user interface is the hu-
tionally a hung and difficult activity involving interac- man engineering step. This involves anak7ing the
tion and concurrence among repre7sentatives of the end overall mission requirements. the command centers
user, system engineering, human factors, and software operational concept, and the applicable human factors
development communities. It invariably includes it- standards that must be incorporated the user interface.
eration on the layout of user interface screens and pro- The output of this step is the definition cf the require-
totypes of their operation when integrated with appli- ments on the human interface implementation. These

cation processing. It was therefore necessary to include requirements include the definition of the complete set
a rapid user interface prototyping facility as part of the of user interaction screens, the information content ot
PTDE The PTDE's display builder, illustrated in Fig- each screen, and the interaction mechanisms (such as
ure 6 uses software that had been developed on earlier menus, forms. pickable items, etc.) that must be avail-
user interface IR&D projects. It supports user interface able on each screen. The PTIDE does not provide any
design iteration by providing a way to rapidly build specific tools to support this activity. It is primarily an
both display prototypes (graphical representations of analytical process as opposed to a software develop-

the way user interaction screens will look) and inter- ment activity. Ho-.4,er. the output of this stcp is the
active application prototypes (executable Ada source input to the display prototype development process.
code that implements a complete set of interactive dis-
plays including underlying user interaction). The best The user interface implementor uses the PTDE's dis-

way to explain this point is to step through the PTDE's play builder to interactively create an applications

complete user interface (such as the hierarchy of win-

dows including all the background maps, tabular dis- source code for the complete set of processes for a NAS
play layouts, pull-down menus, etc.). The display network. Of course, the application developer must re-
builder automatically generates the needed internal rep- place the stubs with appropriate application specific
resentations such as Ada source code and the internal processing for call back events such as menu picks and
data structures that are used by the workstation soft- form entries. This is analogous to the ITC message
ware to perform display generation when the applica- handling procedures that are the plugged into a NAS
tion runs in the operational environment. The display based software architecture skeleton. The key point
implementor works with a set of high level abstract here is that the PTDE provides the capability to auto-
objects called "widgets". The PTDE's widget set is matically generate all the display system related source
based on standawd Motif widgets including pull-down code (including application call back stubs) for an en-
menus, pushbuttons, toggle buttons, and radio buttons, tire interactive application that interfaces with a NAS
It is a general purpose widget set which also includes network. The system includes an Ada graphics library
some missile defense specific windows for use as map which allow the application developer easily perform
backgrounds and annotation symbols. The display im- any additional application specific graphics pro-
plementor needs only to learn the semantics of these gramming that may be required.
widgets because the PTDE's tools hide much of the un-
derlying graphics implementation system (in this case Conclusion and Recommendations
X-windows and Motif toolkits). The PTDE's display
builder is actually just another application built on top The Version 3 demonstration included a simple BMD
of a general purpose interactive application framework, application that included 23 new external messages. 13
In this case the application is to prototype interactive new intmal database objects. 3 new mission process-
user interfaces as opposed to performing interactive ing algorithm procedures, and a user interface consist-
command and control. The display builder generates ing of 29 new displays. It contained over 100.000 new
Ada source code and resources database necessary to lines of Ada source code. The demonstration was de-

mpile and run the operational version of each appli- veloped and integrated over a four month period by a
cation it creates. It also generates a text file description team of five people who also produced user level and
of the application which can be used to port an appli- interface description documentation. The software de-
cation to some other hardware environment. velopment productivity experienced on this project is

superior to other projects performing comparable de-
The display prototypes are generally used to review and velopment without the benefit of comparable tools.
attain concurrence on display !ayout details. Modifying
displays based on user comments can usually be ac- The PTDE development project was completed by the
complished in a matter of minutes using the PTDE's end of March. 1991. The development team is cur-
display prototype building capabilities. User interac- rently continuing to develop and use these tools and
tions can be checked out using a display builder test techniques on a command center development project
mode which allows one to step through the menu tree using PTDE technology for the USAF's Space Coin-
and exercise an application's various buttons and forms. mand in Colorado Springs. Recently implemented
Application specific processing is not available at this enhancements to the PTDE based system include:
point in the process. Once concurrence on the look and migration to the next generation of NAS (called UNAS
feel of the an application's user interface is achieved, [Royce 1991ab]) for improved vendor independence
the next major step in the process is to build the appli- and portability, performance enhancements in the
cation prototype. The application prototype is based on database management area, and new display buiider
a standard Ada process main program that executes in capabilities. The display builder is currently being
the workstation during on-line command center opera- used by Air Force personnel to design the user
tion (indicated as the "Application" in Figure 6). This interfaces on the new project.
program contains the main application event handler
augmented to handle additional external events includ- The PTDE development effort has provided a valuable
ing the arrival of ITC messages from a network of NAS opportunity to work with new technology that can sub-
application programs. The PTDE's user interface im- stantially improve the productivity of the command
plementation facility generates the source code for a center development process. The most important les-
skeleton of this program for an entire application which son learned is the value and feasibility of using au-
includes stubs for the application specific call back tomation to enhance Ada software development pro-
events. This approach is analogous to the way in which ductivity. The PTDE development team started with
the SAS builder tools automatically generates Ada

homemade tools that were inherited from the CCPDS-R since 1982. He is currently working on the application
program and enhanced them by adding better user in- the ideas expressed in this'paper to the problem of re-
terfaces. The ools generally handle the mundane engineering existing Management Information Systems
chores necessary to manage the declarative part of a to lake advantage of today's distributed processing and
complex system. For example, the SAS builder tool workstation technology.
deals with the static declaration of a task network's
topology, the CIT deals with the static declaration of References
external message set attributes, and the display builder
deals the user interface attributes. Tools of this nature [Grauling 1990] Grauling, C. R., "Network Architec-
arc not hard to build. The original tools were devel- ture Services: An Environment for Constructing
oped by CCPDS-R application developers for their own Command, Control and Communication Sys-
use on one project. They were not called out as con- tems", Second IEEE Workshop on Future Trends
tract deliverables. Their spartan nature is a result of the of Distributed Computing Systems Proceedings,
fact that there is no room for anything else in a cost Cairo, Egypt, October 1990.
constrained development program. The PTDE devel-
opment gave us a valuable opportunity to enhance the [Royce 1989] Royce, W. E., "Reliable, Reusable Ada
existing tools for more general usage. The task is by no Components For Constructing Large, Distributed
means complete. Using homemade tools naturally gen- Multi-task Networks: Network Architecture Ser-
crates more ideas for enhancements, vices (NAS)", TRI-Ada '89 Proceedings, Pius-

burgh, October 1989.
The homemade approach to tool building that we used
is not the only way to apply these ideas today. There [Royce 1991a] Royce, W. E.. "TRW's Ada Process
are many currently available commercial products that Model for Incremental Development of Large
one could use accomplish the same ends. We looked at Software Systems", Proceedings of the 12th Inter-

': -matives for implementing the display builder national Conference on Software Engineering,
and settled with the homemade approach for its flexi- Nice, France, March 26-30, 1990.
bility. performance, and ability to support producing all
Ada applications. Organizations not having an equiva- [Royce 1991b] Royce. W. E. and Brown. D. L.
lent legacy would be likely to find a COTS based ap- "Architecting Distributed Realtime Ada Applica-
proach preferable for their needs. tions: The Software Architect's Lifecycle Envi-

ronment", Ada IX Proceedings, March 1991Acknowledgements

[Royce 1991) Royce, W. E. et al. "Universal NetworkThis work could not have been done without the sup- Architecture Services: A Portability Case Study",
port of USAF ESD and the foundation created by the Ada IX Proceedings. March 1991
men and women of the CCPDS-R project. All the real
work on the PCC project has been done by a dedicated [Springman 19891 Springman, M. C., "Incremental Test
team in Colorado Springs lead by Jim Franklin and Approach for DOD-STD-2167A Ada Projects."
consisting of Rhonda Davis, Ya Shu Feng, Phil Gage. TRI-Ada '89 Proceedings, Pittsburgh, October
Jeff Gerhart, Dave Kayser, J. R. Johnson. and Bill 1989.
Watts.

Biography

Charles Grauling is a Software Chief Engineer for
TRW's Systems Engineering and Development Divi-
sion. He received his BS in Electrical Engineering from
Cornell University in 1966, MS in Electrical Engineer-
ing from the Massachusetts Institute of Technology in
1968. and MS in Computer Science from the University
of Southern California in 1972. He has been responsi-
ble for software requirements analysis and architecture
design on CCPDS-R and other C3 projects at TRW

