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A KALMAN FILTER FOR A POISSON SERIES WITH COVARIATES 

AND LAPLACE-APPROXIMATION INTEGRATION 

0. INTRODUCTION 

D.P. Gaver 
P. A. Jacobs 

The Poisson model is an initial idealized, but plausible, off-the-shelf tool 

for representing point-process data of nearly any kind, cf. Feller (1966) and 

Cox and Lewis (1968). However, to be more descriptive, and even predictive, 

representation of non-homogeneity in space or time may be needed. For 

instance the occurrence of rare events in space, such as the occurrence qf 

extreme heights, i.e. above a level of Arctic ice along a transsect or encounters 

with ice keels along a submarine track at constant (deep) depths, may well 

appear roughly Poisson. A better description of these events may require 
' 

more detail than a simple mean or rate: some account of regional and 

seasonal variation could be needed for true accuracy; for instance the 

intervention of natural gaps along a path in Arctic ice will occur if the latter 

crosses leads (open water amidst an ice pack). For another example, demands 

for spare parts in a logistics system often are roughly Poisson, or compound 

Poisson, but with a mean or rate that changes erratically but slowly in time. 

Demands for communication and computer facilities exhibit a simila r 

temporal pattern, and there are a great many other examples. To summarize, 

variation in a fundamental Poisson rate or mean is very often encountered in 

practice; it is possible that if this variation is slow-moving or persistent 

enough it can be exploited for short-term forecasting. 
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In this paper we study a model-based procedure for forecasting in the 

kind of environments described. The model introduced allows the mean or 

rate of the Poisson process to be itself a random process; the exponential of an 

AR/1 autoregressive process. In addition-the rate is influenced by a 

covariate. _We then recursively update the par~meter estimates using an 

approximation based on the Laplace method; cf. de Bruijn (1958). The approach 

resembles that of Delampady, Yee and Zidek (1991), but frankly ~euristic 

methods are used to estimate certain of the underlying parameters. The 

methodology is checked against simulated data with encouraging results. 

1. FORMULATION 

Consider the following Poissonian model for count data: 

.(1.1) 

where · ·, 

(1. 2) 

with {rot} independent normal/Gaussian random variables with mean 0 and 

variance W t independent of {J.l;; i ~ ·t-1}, {Y;; i ~ t-1}, {x t}, {h tl and p. Another 

hierarchical time series model for count data can be found in Harvey et al. 

(1989). 

The purpose of this paper is to suggest a Kalman filter-like procedure to 

produce successive estimates of p and J.lt as new data becomes available. The 

procedure is based on a Laplace approximation to an integral. A Bayesian 

approach to a similar problem is being investigated by Delampaday et al. 
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(1991). A Bayesian approach to time series can be found in West et al. (1989) 

and for a more recent computational approach in Carlin et al. (1991). 

2. AN APPROXIMATE UPDATING PROCEDURE 

Assume that the posterior distribution of (f~, ~t-l) given {yi, i ~ t-1} is 

bivariate normal with mean (bt-l' m t-1), Var[~] = rt-l' Var[Jlt-tl = Ct-l and 

Corr[~,~t-l] = Pt-t· 

Since it is known that 

the prior distribution of (~,Jlt) is bivariate normal with mean (bt-l' am t-1), 

Var[~] = rt-l' Var[JJ.tl = Rt = a
2
Ct-t + Wt and Corr[~,~tl = rt = apt-t -Jct-tiRt. 

The forecast/prediction distribution of Yt in terms of data up to t-1 arid 

the covariate value at tis 

(21) 

wherebf =bt-l andmf = amt-l· 

We now approximate the integral by the Laplace method; cf. Easton 

(1991), Cox and Hinkley (1974), de Bruijn (1958). Let the exponent of the 

integrand be 
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where K is a constant. 

a (b .. )_ Xtb+zh. 1 [(z.:mf) . (b-bf)] 
-g ,z - Yt - e ''t ---2 - rt~=--= az 1- rt Rt .Jrt -1.JR; 

2 0 1 a . (xtb+z) . 1 -g(b,z) = - e ht - ---· 
az2 · : 1 - r/ Rt 

0 • • 

a 
0 

x b+z . 2 _:1[(b- bf) tt(z- mf)] 
-g(b,z) = (Yt- e t lzt)xt- [1- rt] - fu..JR; 
ab rt -1 rt -1 · Rt 

2 . ' a (xtb+z) 2 [ 2]- 1 1 
- 2 g(b,z)=-e htxt·- 1-rt -
ab · rt -1 

Use a Newton procedure to solve the system of equations 

a 
0= -g az 

a 
0= -g 

ab 

for mt and bt. Solve for !t, Ct and Pt using the relation 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 



a2 I -g 
abaz mt ,bt 

-1 

(2.9) 

The posterior distribution for (~,J.Lt) given Yt, Dt-1 is approximated b y a 

bivariate normal distribution with mean (bt, m t) and variance-covariance 

matrix 

[ 

'rt . 
I -

t - Pt .Jet rt 
(2.10) 

2.1 Summary of the Newton Procedure 

0. Start with estimates of the parameters of the prior bivariate distribution 

of (~,J.Lt); that is, estimates of the mean (bt-1, amt-1), Corr(~,J.Lt) = rt, Var(~) = 'rt-1 
0 0 

Var[J.Ltl = Rt. Set bt = bt-1, m t = amt_1. 

1. Solve the systerri 'of linear equations (in band m) 

2 2 
_ a ( o o) + a ( o o)[ o] + a ( o o)[ o] 0 - -g bt ,mt --g bt ,mt b - bt - 2 g bt ,mt m - mt 

az abaz az 
2 2 

_ a ( o o) a ( o o )[ o] a g( o o )[ o] 0- -g bt ,mt + ----:?g bt ,mt b- bt +-- bt ,mt m- mt 
ab atr azab 

forb, m. 

2. If max[(lb? - b 1/b),(lm~ - mjl m)] < 0.001, set mt = m and bt= band g o to 

3. Otherwise set b~ = b and m ~ = m and return to Step 1 unless Step 1 has been 

returned to 49 times in which case set mt = m ~ and bt = b~; go to 3. 

3. Return (bt, m t) as the estimate of the posterior mean of the bivariate 

normal distribution of (~,J.Lt)· 
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4. To find the variance-covariance m c•trix of the posterior distribution of 

(~,Jlt) evaluate 

-1 

set it equal to 

and solve for Tt, Pt and Ct-

2.2 Summary of Kalin an Procedure 

In summary the approximate Kalman procedure is as follows 

0. Start with the parameters of the (approximate) posterior bivaiiate 

normal distribution o.f (~,Jlt-1) having mean (bt-1, m t-1), Corr(~,Jlt-1) = Pt-1 1 

Var[~] = Tt-l Var[~t-1] = Ct-1· 

1. Update Corr(~,Jlt-1) and Var[Jlt-1] using (1.2) to obtain the prior 

bivariate normal distribution of (~,Jlt) having mean (bt-l, am t-1), Var[p] = Tt-1 1 

Var[Jlt] = Rt = a
2
Ct-l + Wt, Corr(~,Jlt) = Yt = apt-1 ~Ct-1/Rt. 

2. Observe the Poisson count Yt· 

3. Invoke the Newton procedure of Section 2.1 to obtain estimates of the 

parameters of the approximate posterior distribution of (~,Jlt) given past 

observations and the new observation Yt-
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To obtain moments for the Poisson mean At= htexp{xtfJ+J.lt} note that since 

the distribution of (IJt, J.lt) is being approximated by a bivariate normal 

distribution, the posterior moments of At are approximately 

E[l1 ) ~ exp{ xtbt + mt + ~~ X~'l:t +Ct + 2XtPtFt .JC;"] }~zt 

Var[At] z htexp{2(xtbt + mt) +[xt-rt +Ct +2XtPtFtJC;)} 

x[exp{xt-rt + Ct + 2XtPt .[i; .JC;} -1]. 

2.3 A Simulation Example 

In the example p = 0.5, {Xt} takes the values {0.25, .5, 1} over and over; ht = i. 
{rot} are iid normal with mean 0 and variance 0.25 and a= 0.5. Given p and J.lt, 

Y t has a Poisson distribution with mean At = extll+~t. The simulation starts 

with J.lo drawn from the stationary distribution of {J.lt} a normal distribution 

with mean 0 and variance W /{1-a
2

) = l Successive Jlt are computed as 

the At is computed and a Poisson random number with mean At is then 

generated. The simulation data are the Poisson counts and {Xt}; t = 1, ... , 100. 

The random numbers were genera ted using LLRANDOM II; cf. Lewis et al. 

(1981). 

At time 0, the Newton procedure is initialized at Jlo = 0, f3 = 0, Po= ro = 0, 

a = 0.5, W = 0.25, C0 = 0, r1 = 0.25, -ro = 1; note the a and Ware assumed 

known. The data point Yl is observed and the Newton procedure is used to 

find the posterior moments [m1, b 1, P1, C1, 't"J]. 
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The da .a point Y2 is the observed and the Newton procedure is started 
1 

with [m1 , b 1, r1, C1 + 4' 'l'I] and used to find [m2, if]., p2, C2, r2], etc. 

Results of the simulation appear in Figures 1-3. In Figure 1 the count data 

Yt appears along with the true At (dotted line) and the estimated At (solid line). 

In Figure 2 the true value of llt (dotted line) and estimated value of llt (solid 

line) appear. The estimated values of the standard deviation of ]1 t' ~,also 

appear in Figure 2. The estimated value of {3, P's estimated standard 

deviation~, and the estimated value of Pt appear in Figure 3. Figures 1-3 

indicate that the procedure perf~_Hms satisfactorily. The apparent oscillation 

in some_ of the figures, (particularly p t), is due to the cyclic nature of {x t}. Not 

surprisingly, the estimated values of A.t and ~tare less variable than the true 

values. They appear to be practically acceptable. 

3. APPROXIMATE KALMAN PROCEDURES WHICH INCORPORATE 
ESTIMATES OF THE AUTOREGRESSIVE PARAMETERS a AND W: 
NAIVE MOMENT ,ESTIMATORS 

In this section we will assume that {rot} are independent identically 

distributed normal/Gaussian random variables with mean 0 and variance W 

with rot independent of {~i; i::; t-1}, {Yi; i::; t- 1}, {h tl and p. 

3.1 Estimates of the Autoregressive Parameters a and W 

If {~t; t::; T} were observable, then one could estimate a and W by 

maximum likelihood; that is, the likelihood function is 

T 1 { 1 21} L(W ,a)= IT .J2irViexp - -(!lt - a11t -1) -
t=l 2nW 2 W 

(3.1) 

or 
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1 T 2 1 
lnL(W,a) = l(W,a) = 2L (,ut- a,ut -1) W 

t=1 
T T 

- -lnW - -ln2n. 
2 2 

(3.2) 

Now 

az T 1 
-= -I,(J.tt -a,ut-1)Jlt-1-=0 
aa t=1 w 

(3.3) 

gives 

T T 

a(T) = I, JLtJlt -1 1 I, ,ul-1 (3.4) 
t=1 t=1 

and 

al 1 1 T 2 T 1 
- = --2 L (,ut - a,ut-1) - -- = 0 
aw 2w t=1 2 w 

(3.5) 

from which 

T 
A 1 ( A 2 

W (T) = - L Jlt - a(T),ut -1) 
T t=1 

(3.6) 

Unfortunately J.l
1 
is not observable. One possible estimate of J.lt is the 

posterior mean mt of subsections (2.1) and (2.2). In this case the corresponding 

estimators of a and W are 

T T 

arn(T) = L mtmt-1 I L ml-1 (3.7) 
t=1 t=1 

(3.8) 
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Another estimate of Jlt is 

{i,(y) =In[ Yt + ~) - Xtbt (3.9) 

where b1 is the mean of the approximate posterior distribution of~ given 

{y
5

; s::;; t}. The corresponding estimates of a and Ware 

T T 

ay(T) =I (Jit(Y)iLt -l(y)) 1 I Pt(Y)
2 

(3.10) 
t=1 t=1 

and 

Wy(T) =~I (Jl,(y) - liy(T)Jlt -l(Yl( 
t=1 

(3.11) 

The estimates (3.7)- {3.11) can be recomputed at every time T. Other 

similar estimates can be obtained by not recomputing the estimates at every 

time T; for example, choose an integer 8 > 1, put 

a(t;o) = a((n- 1)8;8} (3.12) 

and 

W(t;o) = W((n - 1) 8 ;8) (3.13) 

if (n -1) 8 < t < n 8; 

n8 n8 
A '"'AA I'"'A2 a ( n 8; 8) = i.J J1 tJl t -1 i.J J1 t -1 (3.14) 

t=1 t=1 

n8 
A 1'"'(A A A )2 W ( n 8; 8) = - i.J J1 t - a ( n 8; 8) Jlt _ 1 

no t=1 
(3.15) 

where {l tis an estimate of Jlr Another possibility is to use a window of times 

to compute estimates of a and W. 
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The following is a summary of the Kalman procedure of Section 2 with 

the addition of estimation of a and W. 
' 

3.2 Summary of the Kalman Procedure with Estimation of a and W 

0. Start with the parameters of the (approximate) posterior bivariate 
normal distribution of(~, J.lt_1) having mean (bt_1, mt_1), Corr(~,J.lt-l) = Pt-
1, Var[~] = rt_1, Var[J.Lt_1] = Ct-r 

1. Update Corr(~, J.lt_1) and Var[Jlt-l] using (1.2) and the current estimates 
of a and W to obtain the prior bivariate normal distribution of (~, JJ) 

2 ... 
having mean (bt_1, at_1 m t-1), Var[~] = rt_1, Var[J.It] = Rt = at-1Ct_1 + W t-1' 

Corr( ~, llt) = at_1pt_1 ~Ct-1 I Rt. 

2. Observe the Poisson count Yr 

3. Invoke the Newton procedure of Subsection 2.1 to obtain estimates of 
the parameters of the posterior bivariate normal distribution of(~, llt) 
given past observations and the new observation Yr 

4. Compute new estimates of a and W: at,Wr 
5. Return to 1. 

3.3 Results of Simula!ion Experiments 

Various simulation experiments were carried out using the procedures 

outlined in this section to estimate a and W. One striking phenomenon was 

that if the count data has a long run of zeroes, then the Kalman procedure 

reacts by estimating a> 1 and trying to estimate llt to be a negative number 

large in absolute value. This tendency caused the numerical Newton 

procedure discussed in Section 2 to become unstable, and rendered the 

predicted value of A.t very slow to respond to positive counts when they did 

eventually occur. This behavior was ameliorated by arbitrarily putting a 

lower bound of -2 on Pt· A run of zero counts could also make the estimate of 

W become close to zero. A small value of W makes the Kalman filter 

unresponsive to count changes. This behavior was mitigated by recomputing 
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estimates of a and W every o = 10 time units rather than at every time, and 

using all previous times t as in (3.7)-(3.8). The estimates of a and W were also 

not computed if the last 10 observed counts were zero. Further a lower 

bound of 0.1 was arbitrarily set on estimates of W. Such heuristics are not 

claimed to be optimal, but are needed to allow the procedures to behave 

suitably. A search for more systematic procedures can be carried out in 

future work. 

The following are empirical observations. The estimates of a and W using 

p(t) = m t tends to produce practically acceptable estimates· of a but 

underestimates W-it tends to make it very small. This behavior is not 

unexpected since m 1 can be thought of as a smoothed estimate of the Jlt and ~o 

will have a smaller variance than Jlt' This underestimation of W is not 

improved by using {1 1 =In [y, + ~ J. Neither does using "windows" of length 5 
seem to solve the problem. Other procedures for estimating a and W are 

explored in the' following two sections. 

4. ESTIMATION OF a AND W FOR THE POISSON/NORMAL MODEL: 
THE FREEMAN-TUKEY TRANSFORMATION 

This section reports another possible approach to the estimation of the 

autoregressive parameters for a Poisson/normal model. 

The model is as before 

Jlt+l = aJlt + rot+l (4.1) 

where {ro1} are iid normal with mean 0 and variance W; 

(4.2) 
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For simplicity of notation we will assume ht = 1. 

If W and a are known, then an approximate Kalman procedure has been 

given previously. The issue here is the estimation of a and W. 

Let 
. . · . . ·: ~ :· .·: ... . 

. . ... .· .. ~ . 
g(x) =Vx + vx-+1 (4.3) 

and 

{4.4) 

The conditional distribution of Zt given J.lt is approximately normal with 

[ 
X ]05 mean k(J.Lt + x t~), where k(x) = 4e + 1 , and variance 1; c.f. Freeman and 

Tukey {1949, 1950) and Bishop, Fienberg and Holland {1975). Thus if {V t+l} are 

iid standard normal, given D t = (Y0, Y 1, ... , Yt) 

d 
Zt+l:::: k(J.lt +1 + Xt+l~) + Vt+l 

Hence, 

(4.6) 

An approximate joint distribution of the transformed observations is 

13 



Hence an approximate In-likelihood function is (up to addition of constants), 

r 1 1 2 -1 
l(a,W) = L, --lnft(a,W) --(zt+l·k(amt+xt+lbt)) ft(a,W) . (4.9) 

t=l 2 2 

Note that 

[ 1
0.5 

. · k(x) = 4ex + 1 ; 

( 4.10) 

Further, 
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~ ft (a 1 W) = [ k' ( amt + x t + 1 bt)] 
2 

aw 

~ ft(a~W) = [2aCt + 2xt+1Pt..[C; ,fi;][k'( amt + xt+1bt))
2 

a a 

Differentiating (4.9) with respect to a and W we obtain 

a 
al _ T 1 aaft(a1 W)[ [zt+1- k(a11lt + Xt+1bt))

2
] --E- - 1--------

aa t=1 2 ft(a~w) ft(a~W) 

(4.1 1) 

( 4.12) 

( 4.13) 

a 
ai T 1 1 a 1 2 aw !t (a I w) 

- = L- ft(a~W) +-[zt+1- k(amt + Xf+1bt)) 
2 

(4.14) 
aw t=1 2 ft(a~ W) avy 2 ft( a 1W) 

T 1 1 a ~ [ [ Zt + 1 - k( amt + X t + 1 bt ) ] 
2 

] 
= L- 1 t(a~W) 1---------

t=1 2 ft(al W) aw ft(al W) 

( 4.15) 

[ 
a21 J _ T 1 [ 2~ ft(a,W)]

2 

E-2- --E- . a W t=1 2 ft(a~ W) 
( 4.16) 
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[ 
021 ] T 1 -ftC a,W) -ftC a,W) 

E = _ L _ aw oa ' [ i) i) l 
oaiJW t=l 2 ftCa,W) 2 c 4.17) 

To avoid difficulties with a Newton procedure involving the restricted 

range of W > 0, we will repar.ameterize; W = er. In this case 

and W is replaced .by er in all the expressions C4.12)- (4.17). 

A Kalman procedure with this method of estimating a and W is similar to 

that of Section ~.2 except that Step 1 is replaced by the numerical solution of 

the system of equations, 

a I 
oa = 0 C4.18) 

C4.19) 

by a Newton procedure using Fisher's scoring method. Set W = eY where y is 

the solution. Occasionally, there are numerical problems with the Newton 

procedure. In these cases search is used to find estimates of a and W. 

A summary of the Newton (with default search) procedure is as follows. 

The procedure starts with the previously estimated a and ycalled a0 and Yo· 

0. Set B = 0. 
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1. c 0 Dl p u t e \ f (a l, a a ) I \ f (a l, a y) I E \ b \ b c \ [ ( \ f (a 2 1, a a 2 
)) I E 

[ 
a

2

1 J [ a2

1 J . [ a
2
1 1 ay2 I and E aaay USing a 0 and Yo · If E aaayJ < 0.001 or E 

[a
2z] ay2 < 0.0001 go to 2', otherwise go to 2. 

2. Solve the system of linear equations (in terms a andy) 

a1 [ a
2
1 } [ a

2
1 J 0=-+E-- a-a)+E-(y-~) 

ay aaay 0 ar 0 

for an and Yn· Go to 3. 

2' . Set Yn = y0• If:~ is of the same sign for both the current and previo:us 

value of a, set 

a = ao - ~;E[_t}__] 
n aa aa2 

and go to 3. If aal is of different signs for the current and previous a . 
values for a, then a golden section search is used to solve the equation 

0=~· 
aa' 

set a. equal to the first value of a for which 1:~1 < 0.1; if the number of 

iterations for this one-dimensional search is greater than 50, go to 4. 

3. U max[ 1:~ I( an), 1:~ I( y n)] < 0.1 stop and take a. and r. as the estimated 

values. 

3'. If I an I < 5 and Yn < 5, go to 5. 
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3". If I an I > 5 or Yn > 5, let B = B +1. If B = 1, go to 4. If B = 2, go to 4'. If 

B ;::: 3, to to 4". 

4. Do a two-dimensional search of the In-likelihood function (4.9) 
parameterized in terms of a and W for a maximizing value. The grid 
for a is [-4,4] in steps of 0.2; the grid for W is [0,8] in steps of 0.2. If 

return an and Yn = lnW as the estimated values; otherwise set a0 =an 
and y0 = In W and return to 1. 

4'. Same as 4 except the grid for a is [-8,8] in steps of 0.1 and the grid for W 
is [0.1,8] in steps of 0.1 with the additional points 0.000001, 0.00001, 
0.0001, 0.001, 0.01. 

4". r is set equal to its previous value and a golden section search for the 

f 
01 . d . 2' zero o iJa. 1s one as 1n . 

5. Set a
0 

= an and Yo= Yn and return to 1 if the number of iterations is .less . 
than 50. If the number of iterations is greater than 50 set B = B + 1. If 
B = 1, go to 4. If B;::: 6, return an and Yn as the estimated values. If 
1 < B::; 5, go to 6. 

6. Compute ~g~(a~) I and ~g~(Yn) I· If jJg~(an)l < ~g~(Ynl I go to 6'; 

otherwise go to 6". 

6'. Fix an = a 0 and do a search over the interval [-4B, 4B] for that r fo! 
which 

az 
0 =or· 

Set Yn equal to the first value of y for which ~g~~ < 0.1; if the number of 

iterations is greater than 50, go to 4. 

6". Fix Yn = y0 and do a search over the interval [-4B, 4B] for that a for 

which 0 = g~; set an equal to the first value of a for which 
1
J g~ I < 0.1; 

if the number is greater than 50, go to 4. 
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The following are empirical observations. The procedure involves a great 

deal of computing. For small times t, the estimate of W can be very close to 

zero; a lower bound of 0.1 was placed on the value of W that is input into the 

Kalman procedure. Further, a lower bound of -2 was also put on Pr The 

stopping criteria of max [ :~ , ~g~ ] < 0.1 seems to be adequate; a smaller 

tol~rance can result in the procedure becoming unstable and greatly 

increasing the computational effort. 

5. ESTIMATION OF a AND W FOR THE POISSON/NORMAL MODEL: 
LOGARITHMIC TRANSFORMATION 

Results of Lambert (1989) suggest that when count data arise from a 

mixture of Poisson distributions, then a smaller power transformation of the 

counts than the square root is needed to stabilize the variance of the count 

data. In particular, if the variability of the mixture is largish, then a log 

transformation may stabilize the variance. In this section simple procedures 

for estimating a and w' based on a log transformation of the count data are 

described. 

Suppose Y 1 and J.lt are as in (1.1) and (1.2). Given J.lt+l' fl, the first two terms 

of a Taylor expansion yield 

- 1 
lnYt+l z lnht+l + lf+lfl + J.lt+l + [htexp{xt+lfl+ .Ut+d] [Yt- htexp{xt+lfl + J.lt+l}] 

(5.1) 

Let 

(5.2) 

Using the first term of the Taylor expansion (5.1) 
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(5.3) 

Hence, given [Y(}I Y1, ... , Yt], the distribution of Zt+l has approximate mean am 1 

and variance W. We will approximate the distribution of Zt+l with a normal 

distribution having mean am t and variance W. A In-likelihood function 

under this approximation is (up to addition of constants) 

Thus, 

T- 1 1 1 2 1 
1( a,W) = I --lnW - -(Zt+1 - amt) -; 

t=1 2 2 w 
a1 T- 1 1 

- = I (zt+1 - a11lt )mt- = 0; 
aa t=1 w 
01. T- 1 1 1 1 2 1 

aw = I -2 w +2(zt+1- amt) w2 = o. 
t=1 

T -1 

I (zt+1mt) 

a <T) = ....:..t =....;;1::--:---
L T -1 

Iml 
t=1 

A 1 T- 1 
A 2 

WL(T) =--I (zt+1 - at(T)mt) 
T - 1 t=1 

are the resulting estimates of a and W. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Simulation experiments suggest that ciL and WL tend to have a large 

positive bias. 

Another possibility is to estimate a by 

(5.9) 

as in (3.7) of Section 3 and W by 
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1 T -1 
A '"'( A 2 Wm,L(T) = -- L Zt+1 -am (T)md 

T - 1 fz1 
( 5.10) 

These estimates are easy to compute. Simulation experiments suggest that 

this estimate of am tends to have a negative bias and Wm,L has a positive bias 

but not as large as that of WL 

6. · RESULTS FROM SIMULATION EXPERIMENTS 

· In this section we report results of simulation experiments concerning the 

behavior of the approximate Kalman filter of Section 2 under various 

procedures for estimating a and W. 

Each replication of the simulation consists of generating a Poisson time 

series {yt; t = 0, 1, 2, ... , T} using equations (1.1)- (1.2). The random numbers 

were generated using LLRANDOM II, cf. Lewis et al. (1981). If a< 1, then Jlo 

is drawn from the stationary distribution of {IJ.t; t ~ 0}. The Kalman procedure 

with each of t~e procedures for estimating a and W is then applied to 

{y; t = 0, 1, 2, ... , T}. For each time t, the estimate 

is computed and the mean square prediction error 

1 T -1 A 2 
e = - I (Yt+1 - A-t) 

T -1 t=1 

(6.1) 

(6.2) 

is calculated. In addition the average estimated values of a and W and f3 are 

computed: 

(6.3) 
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1 T A 

m(W) =- l',Wt 
T t=1 

(6.4) 

(6.5) 

where at and wt are the estimates of a and w obtained after the observation at 

time t and b tis as in Section 1. 

The simulation is replicated N times. If e;, m ;(a), m ;(W), m ;(/3) represent 

the summary statistics from the fh replication, then the mean of the summary 

statistics are computed for theN replications; i.e. 

N 
- 1 ~A 
e = N L e;; 

i=1 

1 N 
a= N L m;(a); 

i=1 

- 1 N 
W = N L m;(W); 

i=1 

1 N 
/3 =-I, m;(/3). 

N i=1 

(6.6) 

(6.7) 

(6.8) 

(6.8) 

These latter statistics are then compared for the different procedures of 

estimating a and W. 

Results for the following procedures for estimating a and Ware reported. 

1. DD: a and W are both known and are not estimated. 
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2. FT: Both a and Ware estimated by a two-dimensional search of the In­
likelihood based on the Freeman-Tukey transformation (4.9). The grid 
for W is [0.1,3] in increments of 0.1; the grid for a is [-3,3] in increments 
of 0.1. 

3. M/FT: a is estimated by the moment estimator using (3.7);W is 
estimated by searching the one-dimensional likelihood based on the 
Freeman-Tukey transformation with a set equal to (3. 7); the grid is 
[0.1,3] with steps of size 0.1. 

4. M/LN: a is estimated using the moment estimate of (3.7). W is 
estimated using the moment estimator (5.10) based on the logarithmic 
transformation. 

5. LN/LN: a and Ware estimated using the moment estimators (5.9) and 
(5.10) based on the logarithmic transformation. 

All the procedures have a lower bound of -2 on flt, a lower bound of 0.1 

on W t' and an upper bound of 1 on the absolute value of at. 

For the results of the simulation experiments reported in Table 1, a = 0.5, 

W = 0.25, x t = 1, ht = 1, {3 = 0.5. The initial values of the estimates W0 = 0.25, d0 = 

0.5, flo = 0; for the Kalman C0 = 1, t 0 = 1, p0 = 0, {J = 0. The two-dimensional 

search for the estimates of a and W in FT takes a large amount of computer 

time. As a result, the ~umber of replications for the experiments reported in 

Table 1 is small. However, the results of Table 1 suggest that the two most 

promising procedures are M/LN and M/FT. 

In Table 2, the number of replications is 100. The procedures M/LN and 

M/FT only are compared. In Table 2, the initial values of W 0 = 0.25, d 0 = 0.5, 

flo= 0; for the Kalman C0 = 1, t0 = 1, p0 = 0, j3 = 0 .. 

In Table 3, {x t} = {0.25, 0.5, 1, 0.25, 0.5, 1, ... }, {3 = 0.5, W = 0.25, a= 0.5. The 

initial values of W0 = 0.25, d 0 = 0.5, Po= 0; for the Kalman C0 = 1, t0 = 1, p0 = 0, 

/3 = 0. 

In Table 4, the parameters are the same as in Table 3 except W = 1. The 

initial values of W 0 = 0.25, d 0 = 0.5, Po= 0; for the Kalman C0 = 1, t0 = 1, p0 = 0, 

/3 = 0. 
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Comparison of Tables 2 and 3 suggests, not surprisingly, that the mean 

square prediction error is smaller when there is a variable covariate {xt}. 

Comparison of Tables 3 and 4 suggests, not surprisingly, that a larger 

value of W results in a larger mean square prediction error. 
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TABLE 1. 

SERIES LENGTH= 5; 20 REPLICATIONS 

METHOD: DD FT M/FT M/LN LN/LN 

Mean MSE 4.34 4.91 4.77 4.19 4.96 

St. Dev. MSE 3.21 3.82 3.64 3.17 3.76 

Max MSE 11.0 13.2 11.7 12.5 13.5 

Mean a 0.10 0.11 0.15 0.26 

Mean W 0.48 0.67 0.98 0.77 

SERIES LENGTH = 10; 20 REPLICATIONS 

METHOD: DD FT M/FT M/LN LN/LN 

Mean MSE 2.94 3.15 3.08 2.77 3.36 

St. Dev. MSE 2.27 2.42 2.28 1.93 2.54 

Max MSE 10:4 11.1 10.1 8.27 11.2 

Mean a 0.12 0.08 0.09 0.19 

Mean W 0.23 0.32 0.78 0.69 

SERIES LENGTH= 20; 40 REPLICATIONS 

METHOD: DD FT M/FT M/LN LN/LN 

Mean MSE 3.38 3.90 3.72 3.29 3.97 

St. Dev. MSE 2.00 2.81 2.43 2.16 2.62 

Max MSE 10.7 13.5 12.1 10.3 11.2 

Mean a 0.33 0.15 0.17 0.31 

Mean W 0.22 0.31 0.79 0.73 
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TABLE 2. xt = 1, a= 0.5, W = 0.25 

SERIES LENGTH = 5; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 4.21 4.75 4.32 

St. Dev. MSE 4.68 5.81 5.40 

Max MSE 28.7 38.0 34.1 

Mean a 0.08 0.09 

Mean W 0.55 0.93 

Mean {3 0.34 0.25 0.23 

SERIES LENGTH = 10; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 3.98 4.41 4.14 

St. Dev. MSE 3.27 3.87 3.58 

Max MSE 16.4 19.0 17.3 

Mean a 0.07 0.10 

Mean W 0.45 0.88 

Mean j3 0.42 0.36 0.31 

SERIES LENGTH= 20; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 3.96 4.35 4.18 

St. Dev. MSE 2.59 3.30 3.06 

Max MSE 20.3 26.5 23.6 

Mean a 0.10 0.13 

Mean W 0.41 0.82 

Mean j3 0.48 0.43 0.37 
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TABLE 3. VARIABLE {xt}, a= 0.5, W = 0.25 

SERIES LENGTH= 5; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 3.69 3.89 3.70 

St. Dev. MSE 3.83 4.09 4.00 

Max MSE 15.6 18.4 19.9 

Mean a 0.13 0.12 

Mean W 0.52 0.80 

Mean f3 0.32 0.21 0.18 

SERIES LENGTH= 20; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 3.11 3.32 3.21 

St. Dev. MSE 2.48 2.80 2.68 

Max MSE 20.4 22.7 20.2 

Mean a 0.12 0.10 

Mean W 0.35 0.78 

Mean j3 0.41 0.36 0.28 
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TABLE 4. VARIABLE {xt}, a= 0.5, W = 1 

SERIES LENGTH= 5; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 19.21 20.70 19.88 

St. Dev. MSE 52.2 53.0 52.1 

Max MSE 415.1 390.1 393.5 

Mean a 0.19 0.18 

Mean W 0.93 1.05 

Mean f3 0.31 0.14 0.12 

SERIES LENGTH= 20; 100 REPLICATIONS 

METHOD: DD M/FT M/LN 

Mean MSE 18.93 21.6 20.4 

St. Dev. MSE 28.6 31.5 30.9 

Max MSE 181.7 192.1 188.5 

Mean a 0.20 0.19 

Mean W 1.2 1.1 

Mean {3 0.55 0.32 0.31 
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Of the two procedures, M/LN tends to have the smaller mean MSE . 

M/LN tends to have a positive bias estimating W and negative biases 

estimating a and {3. The procedure M/FT takes more computational effort, 

tends to underestimate W, a and f3 and produces slightly higher mean MSE. 

Tables 5-7 report results comparing procedures estimating a and W with 

the procedure NFT in which both a and W are estimated using the Newton 

procedure of Section 4. For all the procedures reported in these tables, there 

is no bounding on a. In Table 5, xt = 1, ht z 1, f3 = 0.5, a= 0.5, W = 0.25. In 

Table 6, xt = 0.25, 0.5, 1, 0.25, 0.5, 1, ... ,and the other parameters are as before. 
A A 

For Tables 5 and 6 the initial values of W 0 = 0.25, a0 = 0.5, Po = 0, C0 = 1, f 0 = 1, 

p0 = 0. The values in parentheses are estimates of standard deviations; e.g. 

1 

[ 
1 N 2]2 --I (mi(a) - a) . 

N - 1 i=l 

For Table 7, {x·t} is as in Table 6, a = 0.5, W = 0.25, /3 0 = 0.5, and the initial 
A A 

estimates are a0 = 0, W0 = 1, C0 = 1, t0 = 1, Po = 0, {10 = 0. 

The Newton procedure of Section 4 does not take as much time as the 

two-dimensional search used in Tables 1-2; however, it is still a much larger 

computational effort than the other two procedures. Once again, based on the 

mean MSE and computational effort the procedure M/LN appears to be the 

most attractive. The procedure M/LN once again appears to overestimate W 

and underestimate a and /3. 
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TABLE 5. xt = 1; a= 0.5, W = 0.25, fJ = 0.5 

SERIES LENGTH = 5, 25 REPLICATIONS 

METHOD: DD NFT M/FT M/LN 

Mean MSE 3.94 4.44 4.32 3.89 

Std Dev. MSE 3.08 3.66 3.49 3.10 

Max MSE 11.0 13.2 11.7 12.5 

Mean a 0.06 (0.37) 0.08 (0.22) 0.10 (0.23) 

Mean W 0.46 (0.47) 0.60 (0.60) 0.93 (0.45) 

Mean /3 0.28 0.18 0.21 0.18 

SERIES LENGTH = 20, 25 REPLI.CATIONS 

METHOD: DD NFT M/FT M/LN 

Mean MSE 3.11 3.40 3.32 3.14 

Std Dev. MSE 1.83 . 2.12 2.11 2.03 

Max MSE 8.50 9.29 9.60 8.78 

Mean a 0.22 (0.39) 0.10 (0.30) 0.12 (0.29) 

Mean W 0.29 (0.24) 0.32 (0.26) 0.80 (0.23) 

Mean /3 0.38 0.23 0.31 0.23 
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TABLE 6. VARIABLE {xt}; a= 0.5, W = 0.25, fJ = 0.5 

SERIES LENGTH = 20, 25 REPLICATIONS 

METHOD: DD NFT M/FT M/LN 

Mean MSE 2.63 2.77 2.81 2.63 

Std Dev. MSE 1.78 1.95 2.06 1.79 

Max MSE 9.24 10.10 10.86 9.12 

Mean a 0.21 (0.38) 0.06 (0.32) 0.06 (0.34) 
A 

Mean W 0.20 (0.14) 0.25 (0.20) 0.68 (0.18) 

Mean /3 0.33 0.21 0.27 0.18 
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TABLE 7. VARIABLE {xt}; a= 0.5, W = 0.25, JJ = 0.5 
... ... 

tin= 0, W0 = 1, C 0 = 1, t 0 = 1, p0 = 0, flo= 0 

SERIES LENGTH = 20, 100 REPLICATIONS 

METHOD: DD NFT M/FT M/LN 

Mean MSE 2.95 3.25 3.21 3.04 

Std Dev. MSE 2.21 2.70 2.67 2.28 

Max MSE 13.2 16.5 16.5 13.8 

Mean a 0.12 (0.34) 0.11 (0.28) 0.09 (0.29) 
.... 

Mean W 0.34 (0.44) 0.36 (0.32) 0.73 (0.19) 

Mean /3 0.36 0.25 0.28 0.21 
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7. SUMMARY AND CO 'JCLUSIONS 

In this paper we have investigated approximate methods for estimation 

and prediction for the hierarchical Poisson/normal time series model given 

in (1.1)-(1.2). For given values of the random walk parameters, a and W, the 

joint distribution of (JJ, Jlt) is approximated by a bivariate normal distribution 

using the Laplace method. Various heuristic methods for estimating a and W 

are presented. Based on simulation results and ease of computation, it is 

recommended that a be estimated by (3.7) 

T T 

a(T) = L mtmt -l I L ml-l 
t=l t=l 

and W be estimated by (5.10) 

T -l 
A 1 A 2 

W(T) =-L (zt+l - a(T)mt) 
T - 1 t=l 

where zt+l is given by (5.2). 

These estimates of a and W along with the approximate Kalman 

procedure using the Laplace method provide a computationally easy 

procedure for prediction of the time series. 

Figures 4-7 show results of a simulation of model (1.1)-(1.2) for 

t = 1, ... , 100. In the example f3 = 0.5, {xt} takes the values {0.25, 0.5, 1} over and 

over, and ht = 1. {rot} are iid normal with mean 0, variance 0.25, and a= 0.5. 

The simulation starts with llo drawn from the stationary distribution of {Jlt}, a 

normal distribution with mean 0 and variance W1(1-a
2

) = ~· The values of a 

and W are estimated using (3.7) and (5.10). Initial values of a and W are 
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a0 = 0.5 and W = 1, C0 = 1, r0 = 1, Po= 0, /30= 0, Jlo = 0. There are no bounds on 

Jlt, a and ~v . 
Figure 4 d isplays the count data . Also displayed are the true A.t (circles), 

the estimated At when both a and W are known (dashed line) and the 

estimated At when both a and Ware estimated (solid line). The it when both a 

and W are estimated is perhaps a little more responsive to changes in the data 

than when a and W are known. The difference between the two estimates of 11 

is greatest for small times t. 

Figure 5 presents plots of the estimated Vw and a. Note that W has a 

positive bias which will make the Kalman procedure more responsive to the 

count data. The estimated values of a appear to be reasonable. 

Figure 6 presents estimates of f3 and its estimated standard deviation {f; 
both for the Kalman with a and W known (dotted line) and with a and W 

unknown (solid line). The estimates of rt generally decrease as t increases 

reflecting the model assumption that f3 is constant. The estimates of f3 appear 

to be reasonable. The estimates of f3 with a and W also estimated tend to be 

smaller than those for which a and W are known; this behavior may be due to 

the fact that estimation of a and W is accounting for some of the variability of 

the data that would otherwise be accounted for by f3. 

Figure 7 displays the true Jlt (circles), the estimated T1 t = m t with 

parameters a and W known (dotted line) and the estimated {it with parameters 

a and W estimated (solid line). The count data are also displayed. The 

estimates of Pt with a and W estimated are more variable than those when a 

and W are known reflecting the greater responsiveness of the Kalman to the 
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data when the estimated W has a position bias. Once again the estimates of Jlt 

appear to be reasonable. 
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