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PREFACE

The work reported here was performed in the Optical and IR Science
Laboratory of the Advanced Concepts Division, Environmental Research
Institute of Michigan (ERIM). The work was sponsored by the Office of
Naval Research (ONR), Boston, Contract No. N00014-86-C-0587, funded
from the Innovative Science and Technology Office at the Strategic
Defense Initiative Office (SDIO/IST). The project monitor at ONR was
Dr. Fred W. Quelle.

This final technical report covers work performed from 1 August
1986 to 31 December 1989. The principal investigator was James R.
Fienup. Major contributions to this work also included Jack N.
Cederquist, John D. Gorman, and John H. Seldin.

(Volume 1 of the Final Report is by J.N. Cederquist, J.R. Fienup
and J.C. Marron, “High Resolution Imaging by Phase Retrieval and
Discrimination Using Speckle," ERIM Report No. 201600-11-F, March 1989,
which describes work sponsored by the Office of Naval Research and the
Naval Research Laboratory.)
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1.0 INTRODUCTION AND OVERVIEW
1.1 BACKGROUND

Discrimination of targets from decoys can be done using imagery
having very fine resolution. The diffraction 1limit on resolution,
p = AR/D, obtained from an imaging sensor at a range R using wavelength
A and aperture diameter D, implies that, for SDI midcourse
discrimination applications, the wavelength must be very short and/or
the aperture diameter D must be very large. Such very large apertures
would be impractically heavy and difficult to steer rapidly in space if
they were made to be rigid in order to be without aberrations. On the
other hand, mirrors that are inexpensive and lightweight would warp,
causing phase errors and a severe blurring of the imagery.

An approach to circumventing these problems is to employ cheap,
lightweight mirrors and obtain fine-resolution images from them using
phase retrieval algorithms. By this approach, a computer algorithm
corrects the errors after the data 1is collected. With the increasing
speed and decreasing cost of computers, this trade-off of simpler
optical hardware at the expense of additional computational
requirements is increasingly attractive.

Phase retrieval can be employed to greatly improve the quality of
imagery from a large number of sensors. In this study, we concentrated
on a particular 1imaging sensor, the Multi-Aperture Amplitude
Interferometer (MAAI), under development at the University of Maryland
(UMd) by the group headed by Doug Currie. It is essentially a multi-
channel, modernized Michelson stellar interferometer that gathers the
Fourier transform of the target image, with all the spatial frequency
components measured simultaneously. In the process of making those
measurements, all information about the phase of the complex-valued
Fourier transform is 1lost, and only the magnitude of the Fourier
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transform (often referred to as the visibility function) is measured.
This limited information is insufficient to compute an image in a
straightforward manner. However with iterative phase retrieval
algorithms, developed under this effort, a diffraction-limited image
can be reconstructed. Aberrations then have no effect on the
reconstructed image, and so fine resolution can be obtained despite
warping of the mirror or, if present, atmospheric turbulence.

In this report is described an investigation using phase retrieval
algorithms to reconstruct fine-resolution images from an aberrated
system (the MAAI) for the SDI midcourse discrimination scenario.
Section 1.2 gives a brief overview of the accomplishments that are
described in detail in the rest of the report. Section 1.3 gives
recommendations for future effort. Section 2 describes the basic
theory behind the MAAI, Section 3 shows the performance of data
estimation and image reconstruction for 1low 1light levels. Section 4
describes an analysis of the imaging performance that would be expected
for future SDI experiments. Section 5 discusses the reconstruction of
images for the case of partially-filled apertures as would occur if the
telescope has a central obscuration. Section 6 describes alternative
geometries within the MAAI that would enable it to measure low spatial
frequencies despite a central obscuration, which would be useful for
ground-based experiments. Section 7 describes an alternative new phase
retrieval algorithm based on a blind deconvolution algorithm.
Section 8 explores the probability that an image reconstructed by a
phase retrieval algorithm is not unique. Section 9 shows the
computational requirements for phase retrieval algorithms. Section 10
mentions plans towards reconstruction of images from MAAI data gathered
in the laboratory. Additional details are given in several appendices.
References are found at the end of each section.
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1.2 OVERVIEW OF ACCOMPLISHMENTS

In this section the principal results of the program are briefly
summarized. They are reported in detail in the sections and appendices
that follow.

The basic theory of the MAAI was derived. This is explained in

Section 2.

A signal and noise model for the MAAI was developed and analyzed.
Several estimators for the object's Fourier magnitude from the measured
data were derived, and the variance of the estimate was calculated as a
function of detected photons and visibility magnitude. This leads to
an optimum way to process the raw data prior to phase retrieval.
Digital simulation and reconstruction experiments were performed to
show the quality of imagery that would be reconstructed at different
light levels and for different types of objects. This is described in
Section 3.

For parameters of actual field experiments that were to be
performed, the data was simulated and images were reconstructed. The
scenario that was simulated was the imaging of the first Firefly
exercise (piggybacking on the MIT Lincoln Laboratory laser radar
experiment) launched from Wallops Island as would be viewed by the MAAI
attached to the 48-inch telescope at Goddard Space Flight Center.
Light levels received by the MAAI assuming sun illumination of the
target, were computed, the detected data was simulated, and images were
reconstructed. The results predicted that the images produced from the
MAAI data from the Goddard 48-inch telescope would be of poor quality.
A limiting factor was that the Goddard 48-inch telescope has a large
central obscuration, preventing the measurement of the low-to-mid
spatial frequencies, where most of the information resides. However,
if the low spatial frequencies were measured, then it was shown that
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good quality imagery could be reconstructed. This could be
accomplished by changes in the MAAI (which will be described later) or
by using a telescope which has a small central obscuration, such as the
24-inch at the Innovative Science and Technology Experimental Facility
(ISTEF). Then for the same scenario, high-quality images would be
reconstructed with resolution several times better than that ordinarily
allowed by atmospheric turbulence. Furthermore, if the same experiment
were‘performed in a space-borne MAAI at the same range, then excellent
results would be obtained, even with shorter integration times. This
is described in Section 4.

For the case of partially-filled aperture, including central
obscurations or multiple-mirror telescopes, portions of the spatial
frequency domain are not measured. Then the reconstruction algorithm
must simultaneously interpolate the phase and magnitude values where
they are missing while retrieving the phase where the magnitude is
measured. This is a particularly difficult task if the lower spatial
frequencies are missing because of a central obscuration of the
telescope, since the visibility magnitude at Tower spatial frequencies
is typically much Tlarger than at the higher spatial frequencies.
Algorithms we developed to overcome this problem are described in
Section 5.

Another way to get around the problem of a telescope with a central
obscuration is to change the way that the aperture is sheared by the
interferometer so that it measures the lower spatial frequencies. When
this is done the highest spatial frequencies are lost, but the net
image quality can be far higher than what would be obtained with the
traditional method of shearing the wavefront. This is important for
ground based experiments using existing telescopes, although it would
probably not be a problem for an eventual space-based system for which
a second small telescope could fill the need for the low spatial
frequencies. This is described in Section 6.
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An alternative to the iterative transform phase retrieval algorithm
(which was the workhorse algorithm for most of this effort) was
developed. It is a version of the Ayers-Dainty blind deconvolution
algorithm modified to solve the phase retrieval problem, using support
and nonnegativity constraints. This is described in Section 7.

A question that always arises for image reconstruction by phase
retrieval is whether the image obtained 1is wunique. If it were likely
that other images were also consistent with the data and constraints,
then the method would not be reliable. A new methodology of
quantifying the uniqueness of the solution was developed and exercised.
The subspace of all ambiguous solutions was analytically derived for
the case of small (2 x 3 pixels) images. Monte Carlo experiments were
conducted to determine the probability that a random image would lie
within a certain distance of this subspace. The computation was
performed for several different cases. This is reported in Section 8.

The computational requirements for phase retrieval were analyzed.
Versions of the algorithm were also sent to other researchers to
implement on particular computer architectures, such as the Carnegie-
Mellon Warp. These results are described in Section 9.

Laboratory experiments were initiated, including preparation of
target objects and porting software to a computer at the University of
Maryland, as described in Section 10.

Publications arising from this effort are given below.

"Image Reconstruction for an Aberrated Amplitude Interferometer with a
Partially-Filled Aperture,” J.R. Fienup and J.D. Gorman, Proceedings of
the NOAO-ESO Conference on High-Resolution Imaging by Interferometry,
15-18 March 1988, Garching bei Munchen, West Germany.

"Estimation and Reconstruction from Aberrated Amplitude Interferometer
Measurements,” J.D. Gorman and J.R. Fienup, 1in D.M. Alloin and J.-M.
Mariotti, eds., Diffraction-Limited Imaging with Very Large Telescopes,
(Kluwer Academic Publishers, Boston, 1989) pp. 405-414.

5
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"Phase-Retrieval Imaging for SDI  Applications,” J.R. Fienup,
Proceedings of the SDIO/IST Workshop on Sensor Signal Processing, 25-27
April, 1989, Leesburg, VA.

“Numerical Investigation of Phase Retrieval Uniqueness,” J.H. Seldin
and J.R. Fienup, in Signal Recovery and Synthesis III, digest of papers
(Optical Society America, 1989), 14-16 June 1989, N. Falmouth, MA, pp.
120-123.

"Numerical Investigation of the Uniqueness of Phase Retrieval," J.H.
Seldin and J.R. Fienup, J. Opt. Soc. Am. A 7, pp. 412-427, March 1990,

“Phase Retrieval Using Ayers/Dainty Deconvolution,” J.H. Seldin and
J.R. Fienup in Signal Recovery and Synthesis III, digest of papers
(0.S.A., 1989), 14-16 June 1989, N. Falmouth, MA, pp. 124-127.

“Iterative Blind Deconvolution Algorithm Applied to Phase Retrieval,"
J.H. Seldin and J.R. Fienup, J. Opt. Soc. Am. A 7, pp. 428-433, March
1990.

“Lower Bounds on Parametric Estimators with Constraints," J.D. Gorman
and A.0. Hero, Fourth Annual ASSP Workshop on Spectrum Estimation and
Modeling, August 1988.

“Lower Bounds for Parametric. Estimation with Constraints," J.D. Gorman
and A.0. Hero, IEEE Trans. Inform. Theory 36, 1285-1301 (1990).

1.3 RECOMMENDATIONS

Phase retrieval has been shown via computer simulations to be a
means of obtaining fine-resolution images, important for discriminating
targets from decoys, from a badly-aberrated large-aperture telescope
employing an amplitude interferometer. This will enable the generation
of fine-resolution images from an 1imaging system that is much cheaper,
simpler, and lighter in weight than what would otherwise be possible
with competing technologies such as adaptive optics. It is recommended
that phase retrieval be used 1in future imaging experiments to
demonstrate its capabilities in the real world, that it be further
developed to increase 1its speed and reliability, and that it be
automated. The analysis of the uniqueness of the reconstructed image
should be extended to 1include the case of 1larger, more realistic
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Further analysis should be performed to determine which of the
is best suited to the SDI midcourse

can also be used to improve

images.
many known imaging modalities
discrimination problem. Phase retrieval
the images obtained with other types of imaging modalities.
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2.0 AMPLITUDE INTERFEROMETER THEORY
2.1 OVERVIEW OF THE INTERFEROMETER

In this section we describe the basic theory behind the amplitude
interferometer and discuss alternative ways to arrive at an estimate of
the magnitude of the coherence function from it.

The multi-aperture amplitude interferometer [2.1,2.2,2.3] is
essentially a highly parallel, multichannel, Michelson stellar
interferometer [2.4] that uses a pair of measurements in an optimized
measurement scheme. It can also be viewed as a dual-channel rotational
shearing interferometer [2.5,2.6] with a 180° angle of rotation. It is
presently under development by a group at the University of Maryland
headed by D.G. Currie. A full description of the multiaperture
amplitude interferometer has not appeared in the literature, and the
description that follows was arrived at from a combination of the
references cited above, conversations with the University of Maryland
group, and our own analysis.

From the data collected by the amplitude interferometer we can
compute the two-dimensional modulus (magnitude) of. the complex
coherence function of an astronomical object. If the conditions for
the validity of the van-Cittert Zernike theorem are satisfied, then the
complex coherence function is proportional to the Fourier transform of
the two-dimensional intensity (brightness) distribution of the object
under measurement. If both the modulus and phase of the complex
coherence function could be computed, then one could obtain an image of
the object by Fourier transformation. However, atmospheric turbulence
and/or telescope aberrations severely distort the phase, allowing the
determination of only the modulus of the complex coherence function,
which 1s known as the visibility function.
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In the amplitude interferometer, the incoming field is split into
two halves, one of which is rotated by 180° with respect to the other.
The two halves are then interfered and detected. The beamsplitter in
the interferometer causes the interference pattern to appear
simultaneously in two different planes. Both of these interference
patterns, which are similar to one another yet different in a useful
way, are detected. From them the modulus of the complex coherence
function can be computed. The amplitude interferometer has an
advantage over the rotational-shearing interferometer. The measurement
of the pair of interference patterns largely allows for the correction
of the effects of scintillation [2.1].

From the squared modulus of the coherence function we can compute
the autocorrelation function of the object. Reconstruction of an image
of the object requires the retrieval of the phase of the complex
coherence function, which can be accomplished using a phase retrieval
algorithm [2.7,2.8]. By this means an image can be obtained that has
several times finer resolution than what could ordinarily be obtained
through the turbulent atmosphere or through an aberrated telescope.

2.2 THE AMPLITUDE INTERFEROMETER

We make the standard assumptions that the object of interest
radiates incoherently, the interferometer is in the far-field of the
object, and the detected 1light is quasi-monochromatic. Under these
conditions the van Cittert-Zernike theorem, which states that the
object brightness distribution is the Fourier transform of the complex
coherence function, is valid [2.9]. We also assume isoplanatism: that
the effects of the aberrations are modeled by a random phase-amplitude
screen appearing at the entrance pupil of the interferometer, and its
aberrating effects are space-invariant.
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The amplitude interferometer was originally designed to measure
stellar diameters by making one-dimensional measurements of the modulus
of the complex coherence function. This one-dimensional interferometer
receives recollimated light from a telescope, and consists of a
Koster's prism, spectral filters, and photomultiplier tubes at each
output arm of the prism. This arrangement allowed the measurement of
the interference between a pair of pinholes with variable separation.
This type of measurement was sufficient for stellar diameter
measurements. In the current amplitude interferometer, the multi-
aperture amplitude interferometer (MAAI), which 1is illustrated in
Figure 2-1, the photomultiplier tubes have been replaced by 2-D CCD
arrays and additional optics have been incorporated between the
collimator and the Koster's prism, making it capable of making two-
dimensional measurements. These measurements are made in a plane that
is a demagnified version of the aperture (pupil) plane.

The key optical component of the amplitude interferometer is a
Koster's prism. The prism acts as a beamsplitter, combining two
incident optical fields. If an intensity detector is placed at an
output of the prism, what 1is measured includes a term proportional to
the coherence function of the incident field. This principle is used
to measure the medulus of the complex coherence function of the object.
In our discussion we assume an ideal Koster's prism. Liewer [2.3]
discusses the effects of a nonideal prism.

A complex-valued optical field U(x,y,t) enters the interferometer
from a telescope and is split into half fields. One half field passes
through two mirror reflections and into one side of the Koster's prism.
The other half passes through three mirror reflections and into the
other side of the prism (Figure 2-1). The mirrors between the
telescope and the prism act to invert one of the halves about the
horizontal axis, making it U(x,-y,t), while the other half remains
unchanged. These two halves are combined with the beamsplitting action

10
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o Amplitude i~terferometer (Currie 1967, 1974)

Aperture Plane U(x,vst)

U(x,Y,t) U{x,-y,t)

Koster's Prism

V4 (xuyst)

VS (x,y,t)/ )
1%(x,y,t)

I5(x,y,t)

Figure 2-1. Functional Diagram of the Multi-Aperture Amp1itude
Interferometer.
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of the prism. A simple ray-tracing argument can be used to show that
the transmitted beam undergoes a constant phase shift of GT and an
inversion about the vertical axis while the reflected beam undergoes a
constant phase shift of BR. Assume that U(x,y,t) enters the left side
of the prism and the inverted beam U(x,-y,t) enters the right side of
the prism. Then the complex field of the beam output on the left side
of the prism, denoted as beam 1, is

i6

ig
R + U(-x,-y,t) e T} . (2-1)

V) (x,y,t) = é {uxiy,t) e

where the 1/JZ° factor is required for energy conservation. Similarly,
the output complex field on the right side of the prism is

iBT i6

Vo(xiy,t) = }%: {U(-X.y.t) e " +U(x,-y,t) e R} . (2-2)

Let (¢, denote a time average over the interval [t,t+r]; that is,

<H(1)>,_ =

A=

t+r
j £(t') dt* . (2-3)
t

In the context of our model, T represents the single-frame integration
time of the CCD array, which would typically be on the order of 1 msec
to 10 msec for the case of atmospheric turbulence. Then the detected
intensity of beam 1 is

Li(xy.t) = <IV1(X.y.t)l2>T
< 3 (U B+ QUxy 1

+ (U(x,y,t) U*(-X,-y,t)>1_ eia + C-C-}
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{I(X.y.t) # 1(x,my,) + <U(xY,t) U (=x,my, 0D, e'? C-c-}
(2-4)

Nol—

where 6 = 6p - 6y, I(x,y,t) = (IU(x,y,t)l2>T, and c.c. denotes the
complex conjugate of the preceding term. For an ideal beamsplitter § =
x/2.

The optical field in the aperture plane is assumed to be given by

U(x,y.t) = U (x,y,t) expla(x,y,t) + ip(x,y,t)] (2-5)

where
Ug (x,y,t) = Uj(x,y) exp(iut) (2-6)

is the quasimonochromatic optical field of wavelength \ = 2xc/w due to
the object in the absence of atmospheric effects, a(x,y,t) is the
intensity-modulating effect '(scintillation) of atmospheric turbulence
(the log-amplitude function) [2.9, pp. 398, 404], f(x,y,t) is the phase
error induced by atmospheric turbulence or aberrated optics, and c is
the speed of light.

We assume that the integration time 7~ is many times the coherence
time of the optical field, which is approximately the reciprocal of the
bandwidth, Av = Aw/2x, of the radiation. Thus the mutual intensity of
the incident optical field due to the object is given by

I (8x,8y) = IT(Ax,8y)! exp[ig(Ax,Ay)]

Wy (x4y4t) U;(x - Ax, y - By, t)D,

I, 7(8x,8y) (2-7)

13




where I =T(0,0) = <IUo(x,y,t)lz>T is the average intensity and the
normalized quantity q(Ax,Ay) 1is the complex coherence function.
(y(Ax,Ay) is usually denoted by B = 712(0) [2.9, p. 183]; however we
use the symbol ¢4 to be consistent with the notation of earlier
publications on the amplitude interferometer.)

Inserting Eqs. (2-5) to (2-7) into Eq. (2-4), and assuming that
a(x,y,t) and p(x,y,t) are constant over the time interval 7, yields

I (x,y,t) = (1,/2) {exp[2a(x,y,t)] + exp[2a(-x,-y,t)]
+ 7(2x,2y) expla{x,y,t) + a(-x,-y,t)

+ ip(x,y,t) - ip(-x,-y,t)] exp(i6) + c.c.}. (2-8)

For an ideal beamsplitter, with § = eR - GT = x/2, this becomes

I (x,y,t) = (1,/2) {exp[2a(x,y,t)] + exp[2a(-x,-y,t)]

- 2 exp[a(x,y,t) + a(-x,-y,t)] 19(2x,2y)!
Sin[¢(2X,ZY) + p(xlylt) = ﬂ(-x,-y,t)]} . (2'9)

lql is the visibility (contrast) of the sinusoidal fringe that was seen
by Michelson. Similarly

L(-x,y,t) = (1,/2) {exp[2a(x,y,t)] + exp[2a(-x,-y,1)]

+ 2 expla(x,y,t) + a(-x,-y,t)] Iy(2x,2y)I

sin[g(2x,2y) + p(x,y,t) - p(-x,-y.t)1}
(2-10)

A function related to the fringe visibility function is given by

12 - Il . Eg('xnylt) = Il(x,y,t)
Iz + Il IZ(-xlylt) + Il(xryvt)
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_ 2 expla(x,y,t) + a(-x,-y, )] Iq(2x,2y)! sin[g(2x,2y) + A(x,y,t) -~ B(-x,-y,t)]
- EXD[Za(xly't)] + exp[Za(-x,-y,t)]

_Iq(2x,2y) | sin[g(2x,2y) + B(x.y,t) - B(-x,-y, t)] (2-11)
- coshla(x,y,t) - a(-x,-y,t)] )

One of the major advantages of the amplitude interferometer over
other rotational shearing interferometers is the suppression of the
effects of the scintillation, a(x,y,t), by the cosh[ ] function in Eq.
(2-11).

In the absence of phase errors, (I2 - Il)/(I2 + Il) of Eq. (2-11)
yields 19(2x,2y)! sin[¢(2x,2y)], which 1is the imaginary part of
7(2x,2y). Under this condition, if the object were to be positioned to
one side of the optical axis, then it could easily be reconstructed by
Fourier transforming the imaginary part of 7(2x,2y) and discarding one
of the resulting twin images. However, the phase errors f(x,y,t)
prevent us from doing this when imaging through the aberrations.
Averaging over a time long compared with the fluctuation time of
p(x,y,t) just causes (I2 - Il)/(I2 + Il) to average out to zero.

Suppose we gather M short exposures (frames), each of duration T,
separated by time At. Further suppose that the total collection time,
T = MAt, is many times the correlation time of the phase error. Then
one way to extract desired quantity, I19(2x,2y)!, from Eq. (2-11) is as
follows. Ignoring a(x,y,t), we can square Eq. (2-11) and obtain

L - 1))? 2 .2
[f;':‘f; = l9(2x,2y)1° sin®[¢(2x,2y) + p(x,y,t) - p(-x,-y,t)]. (2-12)

Averaging this quantity over the M frames gives

< 2= h > = 19(2x,2y) 12 <sin2[¢(2x,2y) + B(x,y.t
T, + 1)1 = 112217 Ksintlp(2x2y) + plx.y, ) = p(-x,-y, t) 1>
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M
ly(2x,2y) 12wt :z; sin[(2x,2y) + A(x,y,mit) - B(-x,-y,mAt)]
m=

Ip(2x,2y)1%/2 (2-13)

where it is assumed that the phase error f varies with time and is
uniformly distributed over (-r,x) over the time interval T. Therefore
a reasonable estimator for I7(2x,2y)l2 is

~ 2 I, - 1))°
17(2x,2y)1° = 2 ([12 = Il] >T (2-14)

Currie [2.1,2.2] proposed using the quantity

- _ 1/2
172,291 = T [f-5 (2-15)
where
_ 412 2
AC = <I1 + IZ)T (2-16)
and

Inserting Eqs. (2-16) and (2-17) into Eq. (2-15) reveals that this
yields

2
<(12 = Il) >T

19(2x, 2y)12 = 2
1, + 1)5;

(2-18)

which is similar to the estimator given in Eq. (2-14) but changes the
order of the time averaging operation and the division operation.
However, as will be seen later, the performance of the estimator in Eq.
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(2-14) can be shown to be significantly better for the case of low
light levels.

Alternatively if the phase error p(x,y,t) is constant during the
tota)l integration time T, then the fluctuations in g cannot be employed
to cause the average of the sinz[ ] term to be 1/2. Then we can
achieve the same effect by introducing a phase plate, with spatially
uniform phase 6(t), which can change with time, in front of one half of
the Koster's prism. Then Eq. (2-12) is replaced by

I, - 1)’ 2 (2
1| = 17(2x,29)1° sin®[g(2x,2y) + p(x,y,t) - p(-x,-y,t) - 6(t)] .
2 1 (2-19)

One choice of 6(t) would be 0 for half the time and x/2 for the other
half the time. Since sin2(6O + 0) + sinz(e0 - %/2) = sinz(oo) +
cosz(eo) = 1, then

2

I, -1
<[T§_Ii] >p = laexeni? . (2-20)

This scheme has the great advantage that only two frames of data need
taken to estimate I7|2, and this maximizes the signal-to-noise ratio
for a given total number of photons, as will be seen later. Another
possible choice for 6(t) is the discrete values {0, x/2, r, 3%/2}.
Another is to vary 68(t) continuously between 0 and 2x radians, while
integrating over an integer number of frames during each 0 to 2r¢ cycle.

Additional estimators of |712 can be obtained by averaging then

dividing, i.e. <(I, - L)% /K(1, + 1,)®>;, rather than dividing then
averaging as was :ssumed above.
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The section that follows treats the case of measurements limited by
photon noise in which case different estimators of I7I2 can have
significantly different variances.
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3.0 PERFORMANCE AT LOW LIGHT LEVELS

In this section we examine the performance of the amplitude
interferometer at low light 1levels, both analytically and through
computer simulation. Continuing the development in Section 2, we
provide a statistical model of the amplitude interferometer and discuss
a method for obtaining diffraction-limited imagery from aberrated, low
light-level measurements of the mutual coherence function. Our basic
approach is to perform a sequence of measurements from which samples of
the modulus of the mutual coherence can be estimated and then to
perform phase retrieval to recover the complex mutual coherence
function. The recovered samples of the coherence function are then
Fourier transformed to yield an image of the object intensity.

The organization of Section 3 is as follows. In Section 3.1, we
present a statistical model for the amplitude interferometer and
discuss three methods for estimating the modulus of the mutual
coherence from low 1ight level amplitude interferometer measurements in
the presence of aberrations. The first two methods, [3.3], which are
suitable for applications in which the aberration in slowly varying,
require a modification of the amplitude interferometer as shown in
Figure 3-1. The third method, proposed by Currie, [3.4,3.5], can be
used in situations where the aberrations are rapidly-varying such as
aberrations caused by atmospheric turbulence. In Section 3.2, we
develop a lower bound on the mean-squared error in estimating the
object intensity from amplitude interferometer measurements, using the
statistical model of Section 3.1. Finally, Section 3.3 contains
results from several digital simulations and image-reconstruction
experiments. As one might expect, the quality of the reconstruction
depends not only on the 1light 1level, but also on the content of the
image. The more specular or point-like the object is, the better the
reconstruction; diffuse objects are the most difficult to reconstruct.
These observations are confirmed by the digital simulations in Section
3.3.
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Figure 3-1. Schematic Diagram of a Modified Amplitude Interferometer.
A variable phase plate has been added to allow the
introduction of phase term §(t) into the measurements.
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3.1 MEASUREMENT MODEL

The amplitude interferometer measurements are assumed to consist of
a sequence of pairs of two-dimensional video frames which are the
outputs of the CCD arrays at each of the two output arms of the
interferometer. We denote these measurements as (N}jk' N?jk)' where
N%jk and N?jk respectively are the detected output energy at the
(i,3)th detector element and the kth frame of the left and right output
arms of the interferometer. At low 1light 1levels and with ideal
detectors, N%jk and N?jk consist of the number of photon events
detected over each detector element (i,j) and over each time frame k.
The counts are well-modeled as Poisson-distributed random variables

[3.13,3.15] with mean values

ty t
A}Jk | [I%J(t) + Ig] dt, and A?Jk - | [1§j(t) + 1] et (3-1)
- B te-1

respectively, where IB models contributions due to background 1ight and
the dark current of the CCD arrays and [tk-l' tk] denotes the detector

integration interval for the kth frame. I}j(t) and I$j(t) denote the
respective instantaneous intensities at the output of the two
interferometer arms.

Expressions for I%j(t) and Ifj(t) were previously derived in
Section 2. Here we use the subscript notation to emphasize the fact
that the output intensities Il(x,y,t) and 12(-x,y,t) of Eqs. (2-9) and
(2-10) are sampled:

I%j(t) = f f L(x - x5, y- Yy t) dx dy |, (3-2)
Ax Ay
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where (Xi' yj) denotes the center of the (i,j)th detector element and
(Ax, Ay) is its area. A similar relationship holds for IfJ( ). Inour
notation for the discretized mutual coherence function, we suppress the

fact that g is sampled at half the rate that the output intensities I,

and I2 are:

JF v I j 7(2x - 2x;, 2y - 2yj) dx dy . (3-3)
Ax Ay

This reduction in sampling rate results from the fact that incident
field components (xi. yj) and (-xi, -yj) are interfered to obtain the
mutual coherence component at (2x1, 2yj). This difference in sampling
rates is not important for the discussion in this section, however, it
plays an important factor in the determination of the appropriate
sampling rates in the Firefly simulation discussed in Section 4.3. For
simplicity, we assume the integration interval At = tk - tk-l is the
same for each frame. We also assume that IB is explicitly known and,
for simplicity, that it is constant in time and over the entire
aperture plane. The intensity parameters Aijk and Aka are poss1b1y
random variables due to the stochastic nature of the phase term ¢ (t)
1 z ik are typically called doub\y-

Therefore, processes such as NiJk and N
stochastic Poisson processes [3.15]. By this we mean that, conditioned

on Aka, }Jk is a discrete random variable with the probability mass
function:

— : (3-4)

1 " 1
A expy-A; .
1 1 _ [ ljk] { 1Jk}
Pr{Nijk - "IAiJk} -
A similar relationship holds for N?jk‘
Assuming an ideal beamsplitter (6 = x/2 in Eq. 2-4) and ignoring
the effects of scintillation, the instantaneous output intensities,

(t) and I j(t), can be reexpressed as:
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1}j(t) Io{1 - 17351 sinlarg ;5 + ¥;5(0)])

I?j(t) I{1 + ;1 sinfarg 7145 + ¥;5()]} (3-5)
where subscripts 1 and 2 denote the left and right output arms of the
interferometer, T4 denotes the (discretized) normalized complex mutual
coherence function of the incident field, I0 denotes the average
instantaneous detected energy in photons per second, and wi.(t) denotes
the phase difference between the input arms of the interferometer and
can include both random and non-random contributions from fixed or
varying system aberrations and atmospheric turbulence.

We assume that Io is known or can be accurately determined from the
measurements. This is not an unrealistic assumption since, by Eq.
(3-1) Io can be estimated by forming the sum,

- 1 1 2
I =——— > N + N | -1, . (3-6)
o 2NZ K At 13K [ ijk 1Jk] B

Here, N2 denotes the total number of pixels in each of K pairs of

frames in the data collection. Io is based upon N?K independent
measurements and its variance decreases as the number of frames or

pixels increase.

Our approach to image reconstruction from amplitude interferometer
measurements will be to form an estimate of the modulus of the mutual
coherence functior '7ij| and perform phase retrieval to recover the
phase of the coherence function, 71j = lqijl exp{arg 71j}' from its
modulus. A reconstructed image is then formed by inverse Fourier
transformation of the coherence function. An estimator for '7ij' can
be determined given the model described above. A reasonable estimate
is to choose the values ';ij' which are most likely to have resulted in
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the measurements (N}jk, N?jk)' Such an estimate is obtained by

maximizing the logarithm of the probability of the measurements,

1 2 . . —
p(Nijk' Nijk)' with respect to |7ij|‘ This approach, called maximum
likelihood estimation, has several desirable features which are
mentioned in [3.15]. For Poisson-distributed random variables, the

logarithm of the probability distribution, denoted L(7y), is

1 2 1,1 2 Y .2
L{y) = ‘?J% [Aijk * Aijk] * % ‘°9[Aijk] Nijk * 1% ]og[Aijk] Nijk * ©
(3-7)

where C is a constant which is independent of l7ijlz. The maximum-
likelihood estimator for l7ijl, if it exists, is then a solution of the

equation

oL Nl O N, ol
0 = = 3 ik __ijk , 5= ik ik (3-8)
oly. .l I 3l sl 2 0ly,..l
ij k A, ij k AS. ij
ijk ijk

Equation (3-8) is nonlinear in |7ij| and is generally difficult to
solve. Moreover, no information has been specified about wij(t). In
the subsequent discussion, we examine three estimators for '7ij| for
the cases where:

1. Wij(t) is constant over each of K intervals
Wij(t) varies linearly over the collection period, and
3. Wij(t) contains a phase term due to atmospheric turbulence and

changes rapidly over the collection period.

In the first two cases, we assume that the phase term Wij(t) is given
by

wij(t) = Apij(t) +6(t) , (3-9)
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where Apij(t) = p(x,y,t) - p(-x,-y,t) from Eq. (2-9), and 6(t) is a
user-controlled phase term introduced into the amplitude
interferometer. One method of incorporating such a phase term is to
place a variable-phase plate over one of the input arms of the
interferometer as shown in Figure 3-1. In the third case, which is
discussed somewhat at the end of Section 2, we assume that Wij(t) is
given by

b (0 = 8p5(0) (3-10)

where ApiJ(t) is the phase difference introduced by atmospheric
turbulence as described in Eq. (2-9). In the discussion to follow we
assume that the phase term Wij(t) is constant during any integration
interval [tk_l,tk] and denote it as Wijk'

3.1.1 Discrete Stepped-Phase Systems

Consider a stepped-phase system 1in which 6(t) in Eqg. (3-9) is
constant over each of K intervals of 1length At = T/K, where T is the
total collection period, and denote its value by ek, k=1, ..., K.
Here we assume that Apij(t) is constant over T: Apij(t) = Apijk'
te[tk_l,tk]. Define '

9ijk = 1745 sinfarg TR T 6] - (3-11)
Then A}jk and A?jk become, using (3-1), (3-5), and (3-9),
IT 1T
1 .0 - 2 _ ‘o
A”k- e gUk} and A”k- X {c+g1jk} , (3-12)

where
c=1+ IB/Io . (3-13)
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If ok is chosen to satisfy

>

%Zsin[arg 71,1"“’1'3*%] =0 for KD 2,

and

K
. 2 1

Xl

we have that
2 _2 S 2 -

Thus the motivation for introducing the controllable phase term ak into
the interferometer 15 that for a su1table sequence Gk, k=1, ..., K,
one can determine I7| from (Aljk' k) regardless of the aberration

Ap1J

One could consider the two-step process of first computing the

maximum-1ikelihood estimate of g?jk and then estimating '7ij|2 from

ngk, using the above equation. Maximization of Eq. (3-7) with respect

to ngk is much simpler and the maximum-likelihood estimate of ngk
given by
g1jk [ 1ik . (3-16)
ijk ijk

where ¢ is given by Eq. (3-13). The resulting estimator for the
squared modulus is then
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2 NS, - Nl 2
7,022 3, - B 3 |l ik (3-17)
ij K iJ K
ko N5k * Nijk

We refer to this as "discrete estimator 1" (D1). For each pixel (i,j)

and each frame k, the quantity N%jk - N}jk is normalized by the total
number of counts detected within the pixel and frame, N?jk + N}jk’
might also consider performing the normalization operation after frame
averaging; this results in two other estimators which we refer to as

"discrete estimator 2" (D2):

One

2
o2 1 2 1
Iy, 416 = —= > NS, - N, . (3-18)

and "discrete estimator 3" (D3):

2
2 1
. %—- [Nijk - Nijk]
I11jl = 2¢ > 5 - (3-19)
1
% [Nijk * Nijk]

At extremely low light levels there is a bias term proportional to 1/I0
which is present in all three estimators. To account for this bias,
correction terms can be incorporated into the estimators. Bias-
corrected (BC) versions of these estimators are given by

D1-BC:

2
35412 - g'_c(f 5 [V - N}jk]z - (Ve Mgl (320
¢ ["?jk ¥ N:jk] - ["?jk * N}jk]

27




DERY

D2-BC:

~ 2 1 2 1
. .1 =_:__§ NS.. - N:.
713 2K(IOT)2 X [[ ijk 1Jk]

2

- ["?jk + N%jk]]  (3-21)

where io is given by (3-6)

and D3-BC:
2
~ 9 2 :%: [N1Jk - N}Jk} - [ijk * Nijk]
17351° = 2¢ — 1 i (3-22)
};} [N1Jk * Nijk] - [Nijk ¥ Nijk]

3.1.2 Continuous-Phase Systems

Another possibility is that the controlled phase term 8(t) of Eq.
(3-9) varies linearly from 0 to 2x as t goes from t0 to to +T: 0(t) =
2r(t - to)/T, t, st < t, + T. In this case, I11-jl2 can be recovered
from a sequence of four frames, each with integration time equal to
T/K, K = 4., Let

to+T/4 tO+T/2
1 2 1 1 2 1
Myt T | [Iij(t) - Iij(t)] dt. By - T [ [Iij(t) - Iij(t)] dt,
t, t0+T/4
t0+3T/4 t0+T
Cij ® O [Ifj(t) - I}j(t)] dt, Dyy = | [I$j(t) - I%j(t)] dt.
0 t +1/2 ° t,+37/4
(3-23)
Then, from Egs. (3-1) and (3-5),
A A L TR TP L (3-24)
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Arguments similar to those of Section 3.1.1 can be used to derive
another two estimators. Let

NS, - NE, NG, - N
R.o=c—ull 11 5 .42z ij2
Y N2 + N!. R N‘.?. N1
ijl ijl 132 ij2
2 1 2 1
" Nijs - M3 ija = N
fyme B g T (g
Nij3 * Nij3 Nija * Nija
Then “continuous estimator 1" (C1) is
2 2
~ 2 - ~ - -
ryg” = [Aij - u) * [Bu - Dij] - (3-26)
Similarly, let
2 1 2 1
SRR ) B R T i P
13 21 Col 21
(0 o
2 1 2 1
N - N N - N .
Ci' . i3 _ ij3 ' Di - Jj4 _ ii4 . (3-27)
J J
ZIo 210
Then “continuous estimator 2" (C2) is
2 2
~ 2 -

At low Tight levels both of these estimators have a bias term which is
proportional to 1/I As in the previous section, bias correction
terms can be added to reduce the bias of these estimators.
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3.1.3 Phase Diversity From Atmospheric Turbulence

The third possibility we consider is that the phase error term is
Wij(t) caused by atmospheric turbulence. Here the frame integration
time At is assumed to be short enough that the phase errors within each
frame are essentially constant. As discussed earlier in Section 2,
this requirement limits At to be less than or equal to the coherence
time of the atmosphere. Typical values for the coherence time of the
atmosphere in the optical regime vary between 5 and 20 ms. Assuming
that the phase error is constant over each frame, Wij(t) = wijk for
te[tk_l, tk], we can use the discrete-phase estimators discussed in
Section 3.1.1. When wijk' k=1, ... K is uniformly distributed over the
interval [-x, ] we then have, in the limit for large K,

K
1 . .
X éél sin(arg %y * vijk) =0
1 X 1
X %1 sin“(arg 7ij + vijk) x5 . (3-29)

and conditions (3-14) are satisfied.
3.2 ESTIMATOR PERFORMANCE

Here we examine the performance of the estimators described in
Section 3.1. An important measure of performance which we focus on is
the root mean-squared error. In Section 3.2.1, we derive asymptotic
expressions for the bias and squared error which are valid at moderate
to high 1light 1levels. The Tow 1light level performance of the
estimators is determined by the use of Monte Carlo simulation. In
Section 3.2.2, we derive a lower bound on the expected image-
reconstruction error. An important feature of the bound is that it
accounts for the object support constraint which is imposed in the
reconstruction algorithm.

30




e

3.2.1 Estimator Bias and Squared Error

Asymptotic expressions for the normalized bias (NB), normalized
standard deviation (NSD) and normalized root mean-squared error (NRMSE)
of several of the squared-modulus estimators were derived with the aid
of the symbolic-computation program MAPLE [3.16]. For a given squared-
modulus sample |7ij|2' the NB and NSD are defined as

N = (17,12 - 175512} /19, 512 (3-30a)

and
NSD = [E{[|31J|2 - E{I;ijlz}]z}]l/zll71jlz : (3-30b)

where E{e} denotes expectation. The NRMSE can be computed from the NB
and NSD as

NRMSE = INBZ + NSDZ . (3-30¢)

The expressions for the NB, NSD and NRMSE of each of the four
estimators are complicated functions of the parameters |7] Io' T, K,
and IB' and are therefore omitted here. The expressions for the
unnormalized versions of these quantities and details of their
derivation can be found in Appendix A. We plot the NB, NSD and NRMSE
as a function of I T since 1 T is the average number of photons
detected during time T in a 51ng1e detector element (i,j) at the output
of one of the output arms of the interferometer. The estimate |7i I2

however, is based upon an average of 2I T photons, since it is based

upon the counts detected in both arms of the interferometer.
It is a]so of interest to consider the mean-squared error of the

modulus |7ij| Considering only the leading terms in the mean-squared
error given in Eqs. (A-3) and (A-8) in Appendix A (i.e., moderately
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high light level), c=1 (1 e. no b1as exposure) and K=2 frames, the
mean-squared error of I7] I2 is 2l11 .| /I By algebraic man1pulation
it can be shown that th1s implies that the mean-squared error of I71JI
is

o = =L -

Note that this first-order approximation to the mean-squared error of
'7ij' is independent of the value of '7ij"

Plots of the expressions for NB and NSD in Figures 3-2a and 3-2b
show the relative contributions to the NRMS error due to bias and
standard deviation respectively, for each of the four estimators with
|7ij = 0.2, IB 0.2 I and I T varying from 10 to 1000 photons. For
the D1 and D2 estimators, the photon collection was divided into two
frames, with 6, = 0 and 6, = x/2, whereas for the C1 and C2 estimators,
four frames were required. As expected, the estimator performance
improves as IOT, the average total number of photons collected per
detector element; increases. The bias and standard deviation of the D1
and D2 estimators are nearly identical. A similar trend is observed
for the C1 and C2 estimators. The D1 and D2 estimators, which were
based on the discrete-phase system, perform better than the continuous-
phase system C1 and C2 estimators. For all four estimators, however,
the NRMS error is dominated by the standard deviation of the estimator,
which has a strong dependence on Iqijlz. This is due to the fact that
the estimators are trying to determine the squared difference between
the means of the two Poisson random variables, N}Jk and Nle This
difference is directly proportional to '71j| [see Equations (3-1) and
(3-5)], and as the value of |7i | decreases, the average difference
between Nijk and N]jk diminishes, causing the standard deviation of the
estimate to rise dramatically. Thus, although bias corrections can be
easily 1incorporated 1into the estimators, they will improve the
estimator performance only slightly.
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Figure 3-2. (a) Bias and (b) Standard Deviation of the Squared-Modulus
Estimators as a Function of the Average Number of Photons
per Detector Element (IOT) for Iql = 0.2 and IB = 0.210.
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Another measure of performance is the number of photons required to
achieve a specified NRMS error in estimating a given squared-modulus
sample, '7ij|2' This is illustrated in Figure 3-3 for the D2 estimator
with K = 2 frames and I = 0.2 . To achieve a NRMSE of 0.1 when '7ij'
= 0.25, it would require, on average, 7700 photons per detector. To
achieve a NRMSE of 0.5 when l7i.l = 0.5, however, requires only 80
photons per detector. On the other hand, if an average of 2000 photons
is collected in each detector element, then the NRMS error in
estimating modulus values which are greater than 0.5 is less than 10
percent, while the error in estimating wmodulus values which are less
than 0.1 is greater than 50 percent. In general, this would imply that
the performance is better for objects which consist of a small
collection of points, where the mutual coherence modulus samples are
relatively large, than on extended objects, for which the mutual
coherence values are small at higher spatial frequencies. At extremely
low light levels, the expressions derived for NB and NRMSE are not
accurate since they are based on low-order asymptotic expansions in
1/IOT. Investigations of the estimator performance in the low light
regime, IoAt < 10 photons, were carried out by the use of Monte Carlo
simulation. At each light level, IoAt, and visibility level, 9, 1,000
realizations of the output of a single pair of detectors (N%jk, N?jk)'
k=1, ..., K was simulated. Each of the three discrete estimators, D1,
D2, and D3 was applied. Then the estimator bias and squared error were
then determined from the sample-mean and sample variance of the
estimates.

Two scenarios were considered. In the first scenario, a spaced-
based interterometer was assumed and a K=2 frame data collection
(01 = 0 and 02 = x/2 in Eq. 3-11) was simulated. In the second
scenario, a ground-based interferometer was assumed and a K=20,000
frame collection with a uniformly-distributed phase error term was
simulated. Figure 3-4 shows the RMS error in the modulus estimate
'7ij' (i.e., the square root of l;ijlz) for the two-frame
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RMSE vs.|7;;| for Root-DNBC Estimator (2 Frames)
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collection at a range of 1light lsvels KI At and fringe visibilities
l71. Note that the RMS error of |7ij| is nearly independent of '7ij|'
agproximately I/IZTO, as predicted. In Figure 3-5 the RMS error of
'7ij| is shown for the K = 20,000-frame collection. Comparing the two
cases, we see that about three orders of magnitude more photons are
required in the 20,000-frame collection to achieve a performance
comparable to that of the two-frame collection.

3.2.2 Lower Bounds on Image Reconstruction Error

Asymptotic expansions and Monte Carlo simulations were used in
Section 3.3.1 to derive explicit expressions and plots of the error in
estimating the Fourier intensity components I;ijlz. In assessing the
performance of the image reconstruction algorithm described in Section
3.3, this approach is not feasible since the algorithm is iterative and
nonlinear. Our approach here is to 1lower bound the image
reconstruction error. In this Subsection we present lower bounds on
the image reconstruction error for the case of image reconstruction
from amplitude interferometer measurements. The bounds derived here
are independent of the procedure used to reconstruct the image and thus
represent the best possible performance of any such estimator. These
bound allow a means of comparing a wide variety of reconstruction

algorithms against some "best possible" performance standard.

We will denote the object intensity as f(x,y), where we assume that
f(x,y) 2 0 for all x and y in the field of view and that f has finite
support. This allows f to be described by samples of its Fourier
transform, which we represent in this case by Ty By the use of
Parseval's theorem, we can then represent the squared error between f
and an estimate, say ?, as a function of 713 and its estimates ;1j:

P 2 _ Y i
j j 1f(x, y) - f(x, y)I€ dx dy = };} l7ij 7ij| . (3-32)
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Our strategy is to develop lower bounds on the error term z';ij -
7ij'2'

Appendix B contains a derivation of a Cramer-Rao (CR) type lower
bound [3.15,3.21] which incorporates side information. In the present
application the side information incorporated into the reconstruction
algorithm is the support of the object and its nonnegativity; both are
incorporated into the algorithm described in Section 3.3.

Let Tij = 7?1 + i7§jv where the non-subscripted i =J-T". For
convenience, we will represent the complex mutual coherence samples
Tijr i, =1, ..., N, by the 2N2—length real vector

I
(R ORI R R
1° [700' Toor To1* To1* --* Tijr Tij ] . (3-33)

Denote the estimate by ;. For simplicity we assume ; is unbiased. In
Appendix B a more general result is derived for biased estimators. The
CR bound of Appendix B can be expressed as (c.f. Theorem 1 of Appendix
B)

(-7 (1-1nT2 P(PJ:,1 P)* P

< -1 _
= Q J1 (3-34)

where J7 is the Fisher information matrix of g, defined by Eq. (13) of
Appendix B, T denotes matrix transposition, (+) denotes the Moore-
Penrose pseudo inverse (c.f. Eq. (9), Appendix B) and P and Q are
projection matrices which depend on the object support (c.f. Egs. (38)
and (50) in Appendix B). In (3-34), Q reflects the amount of

improvement afforded by the use of the support constraint. A bound on
the total or absolute mean squared error of the image reconstruction
can then be found by




e

oy -l el - (- 9'H
1]

2 tr{o J;l} , (3-35)

where tr[e] denotes the matrix trace operation.

The bound in (3-35) is directly applicable .a the case where the
aberration ¥, 1, § = 1, ..., N, k = 1, ..., K, is fixed and
nonrandom. If wijk are unknown or random they are referred to as
nuisance parameters. When nuisance parameters are present, calculation
of an error lower bound is more difficult. One approach for the case
of random nuisance parameters is to determine the minimum lower bound
for the worst case nuisance parameters; such a bound is called a minmax
lower bound. Another approach which is available when the distribution
of the nuisance parameters is known is to derive the Fisher information
matrix J of the augmented vector (7. ¥), where ¥ is the lexicographical
ordering of Wijk into a real-valued KN2 length vector as in (3-33).
One can then form a bound similar to (3-35) based on J. J has the form

J = , . (3-36)

where for instance Jy 1s the Fisher {information associated with the
nuisance parameters. The lower bound then takes the form

-1 +

- G-pheepla -, gt lr)te L )
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Equation (3-35) can then be interpreted as the first term in a series
expansion of (3-37). Note that (3-35) and (3-37) are equivalent when
Jogg = J$1 = 0; this is the case when the nuisance parameters are

orthogonal to the parameters of interest q.

We derive the bound of (3-35) for the amplitude interferometer
image reconstruction. In light of the discussion above, this bound may
be overly optimistic, but it should give an indication of the order of
magnitude of the expected image reconstruction error. A
straightforward calculation using Eq. (13) of Appendix B for the Fisher
information matrix and Eq. (3-7) for the likelihood function yields

J, = (I At . -
g = (I81) d};g{BIJ} (3-38)
where
1l b2
Byy = . (3-39)
p2l 22
iy Pij
2
bl - gls st 5)
iJ K ¢ - |7].j|2 sin?(arg Ty + ¥y
b12 - b2l . gl 5= cos(¥y3,) sin(¥y5,) (3-40)
N J k c - l71jl2 sinz(arg 75 * iijk)
2
22 cos(¥,,,)
byj = E ] (3-41)

2
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Here diag{Bij} indicates a diagonal matrix with blocks Bij along its
diagonal. Also, recall that c =1 + IO/IB and wijk is given by either
(3-9) or (3-10). Calculation of Q is also straightforward but we omit
the details here. Let § be the Fourier transform of the support
constraint. Then

Tig " g Sy Ty (3-42)

This relationship is expressed more compactly as
[I-Clq=Ry=0 , (3-43)
where I is the 2N2 X 2N2 identity matrix and C is a symmetric block-

circulant matrix with entries 51_1. j-g'e Q then becomes
-l -1 7"
Q=1-; R[r 7 R] R (3-44)

and the right-hand side of (3-34) is

Q J;l - J;l - J;l R[R J;l R]+ R J;l . (3-45)

Calculation of the squared-error lower bound of (3-35) requires the
evaluation of (3-40) through (3-45) which can be accomplished
numerically. As a simple example though, consider the case where no
support constraint is in use, Q = I, one frame is collected, K = 1, and
where Wijk takes on the values 0 and /2 with equal probability. Then

12 .21 _ )
b}l =1 1 =1 1
iT2.7. Z 2 2 2
C I71j| cos“(arg 7ij) 2 . [7$j]
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1 . 1

5 (3-46)
sin®(arg 7ij) c2

b22 = 1
ij 2 c2 _ I7]_‘]_l2

N

- ()

Substituting (3-46) into (3-39), (3-40), (3-35) and (3-32) results in

I j I?(x, y) - f(x, y)l2 dx dy 2 :Z: Tﬂﬁf [c2 - l71jl2] (3-47)
ij ‘o

We see that the absolute squared error is inversely proportional to the
average light level per collection frame, IOAt, and is directly
proportional to the difference

2

2 2 _ - -

This bound increases as the background 1light level IG increases or as
the squared modulus |7ij|2 decreases: either change causes a decrease
in the measurable fringe contrast. Related error behavior is seen in
the digital simulations in Section 3.3. In Section 3.3.2 we observe
that diffuse objects, those which have smaller fringe visibility values
'7ij" are more difficult to reconstruct than objects which contain
specular or glinty components. B

3.3 DIGITAL SIMULATION EXPERIMENTS

Once the squared-modulus of the mutual coherence has been
estimated, an image of the object intensity can be determined by using
the fact that the mutual coherence is just the Fourier transform of the
object image intensity. Therefore, reconstruction of the object
intensity from the squared modulus of the mutual coherence function
requires the retrieval of the phase of the mutual coherence function.
This phase retrieval can be accomplished with the iterative Fourier
transform (IFT) algorithm [3.6,3.7,3.8] using positivity and support
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constraints. The IFT algorithm is closely related to the Gerchberg-
Saxton algorithm [3.11]. Estimates of the object support are formed
from the estimate of I1ijl2 as follows: (i) I;UI2 is inverse Fourier
transformed to provide an estimate of the autocorrelation of the
object, (ii) the autocorrelation estimate is then thresholded to
provide an estimate of the support of the autocorrelation of the
object, (iii) an initial estimate of the object support is formed from
the autocorrelation support by using a triple-intersection rule
[3.2,3.9]. This initial object support depends on thresholded values
and thus may exclude parts of the actual object. Hence as the
iterations progress, the support constraint is enlarged by including
neighboring pixels, thus ensuring that the whole object is eventually
contained within the support constraint. Each iteration of the IFT
algorithm consists of the following four steps, as illustrated in
Figure 3-6: (i) the current object intensity estimate is Fourier
transformed to produce an estimate of the Fourier transform of the
object, (ii) the modulus of .the Fourier transform is replaced by the
estimate of '7ij|: (ii1) the result 1is inverse Fourier transformed;
(iv) the object-domain constraints of positivity and support are
enforced using the hybrid input-output algorithm in conjunction with
the error-reduction algorithm [3.6,3.7,3.8].

We performed a number of simulation experiments to determine the
performance of the IFT algorithm for image reconstruction from low
light levels. Three distinct series of simulation experiments were
performed. Initially, a series of simple simulations was performed to
determine the robustness of the IFT algorithm with respect to Fourier
modulus error. Independent and identically distributed Gaussian noise
was added to each Fourier modulus sample to approximate the type of
measurement error that might occur with the amplitude interferometer.
It was found that, for the diffuse object used in the simulation, a
useful reconstruction was obtained even at noise levels which gave a
Fourier modulus error of 25%. This is described in Section 3.3.1. The
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second series of simulation experiments was performed to demonstrate
the performance of the discrete stepped-phase system described in
Section 3.1.1 for the case of a two-frame collection, one frame with
6(t) = 0, te[0, T/2] the other with 8(t) = x/2 te[7i/2, T]. To
demonstrate the object-dependent performance of the imaging system,
three distinct objects were used: a simple object consisting of four
equally-bright points, one being four times the area of the other
three; a satellite which had both specular and diffuse components; and
a completely diffuse image of a simulated post-boost vehicle (BUS) with
several attached re-entry vehicles (RV's) and one detached RV. The
general trend we observed was that the specular objects were easier to
reconstruct and that reasonable reconstructions were obtained with much
less light for specular objects than for diffuse objects. This is
described in Section 3.3.2. In the final series of simulation
experiments we simulated a ground-based amplitude interferometer which
used the effects of turbulent atmosphere to provide phase diversity as
described in Section 3.1.3. The goal was to demonstrate the
performance of the amplitude interferometer imaging system for the
Firefly experiment. Simulations were performed for two cases: a
collection using the 48" Cassegrain telescope facility at Goddard and a
collection using the ISTEF 24" Cessegrain telescope. This is described
later in Section 4.3.

3.3.1 Initial Simulations with Noisy Modulus Data

Clearly, the quality of the reconstructed image has a strong
dependence on the accuracy of the squared modulus estimate, I;ijlz.
Since the IFT algorithm is iterative and highly nonlinear, it is
difficult to derive analytically the performance of the IFT as a
function of error in the modulus estimate. Empirical simulation
studies have shown, however, that the algorithm is robust under certain

types of Fourier modulus error [3.5].
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As an initial assessment of the viability of the IFT algorithm for
image reconstruction from noisy Fourier modulus data, we performed a
series of simulations in which Gaussian noise of varying intensities
was added to the Fourier modulus of a diffuse object. This was done to
approximate the types of Fourier modulus error one could expect from
the estimators discussed in Section 3.1. The IFT algorithm was then
used to reconstruct an image from each simulated noisy Fourier modulus
data and the normalized root mean-squared error of the reconstruction
was compared to the error in the Fourier modulus data which was induced
by the added Gaussian noise. Figure 3-7 shows the sequence of
reconstructed images along with the original object used in the
simulation. Figure 3-8 shows the corresponding sequence of Fourier
modulus data. Gaussian noise with variances of 400, 1K, 2.5K, 10K,
40K, 100K, 300K, 1M, 3M, 10M, and 30M was added to the modulus data to
obtain the Fourier moduli shown in Figure 3-8 (b) through (1). For
reference, the peak of the Fourier modulus at DC was 187,793. Figure
3-9 shows a plot of the -reconstructed image NRMSE versus the NRMS
Fourier modulus error. The image reconstruction error appears to be
linear with the Fourier modulus error with an error of approximately
4.5% for the case where no noise was added to the modulus. The small
image reconstruction error which occurs at zero Fourier modulus error
is most likely due to the *“stripe artifact" discussed in Ref. [3.8].
Above 25% NRMS Fourier modulus error, the reconstruction had an error
of more than 35%, and the object was barely discernible.

3.3.2 Simulations of a Space-Based Amplitude Interferometer

In the second series of ~simulation experiments we investigated the
performance of the amplitude interferometer assuming the discrete
stepped-phase system described in Section 3.1.1, and the estimator D3-
BC of Eq. (3-22). The number of frames collected was K = 2. Such a
system would be appropriate where the aberration or phase errors are
fixed or slowly varying. Here, we assumed that the aberrations were
fixed over the collection time.
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Figure 3-7. Phase Retrieval Image Reconstructions from Noisy Fourier
Modulus Data.
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Figure 3-8. Noisy Fourier Modulus Data used in the Reconstructions
Shown in Figure 3-7.
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Three different objects of increasing complexity were used in the
simulation to demonstrate the overall performance of the combined
modulus estimation/image reconstruction algorithm as a function of
image content. Figures 3-11(a), 3-12(a) and 3-13(a) show the three
objects used. Figure 3-10 shows cuts through the spin-averaged Fourier
modulus of each object. Each of the objects fits within a 64 x 64
pixel square, and a 128 x 128 array was used in the reconstructions.
The object of Figure 3-11(a), called *“four points," consists of three
equally-bright unresolved points and a fourth part being a 2 x 4
rectangle. Figure 3-12(a), referred to as "satellite," is a model of a
communications satellite, and the object of Figure 3-13(a), "“Bus/RV,"
is a simulated post-boost vehicle with several attached re-entry
vehicles (RV's) and one detached RV. As shown in Figure 3-10, the
Fourier modulus of the "four points" object drops off slowly, while the
moduli of the "satellite" and "Bus/RV" objects drop off more rapidly.

In each of these simulation experiments, one realization of a two-
frame collection was simulated and an estimate of l7l2 was formed using
Eq. (3-22). Next, a reconstruction of the complex mutual coherence
(and hence the object itself) was performed by using the iterative
Fourier transform (IFT) algorithm [3.5-3.10], using positivity and
support constraints.

After the object reconstruction was performed, the absolute squared
error between the reconstruction and the original object was measured
to provide a quantitative measure of algorithm performance. Since the
location of the object within the field of view of the interferometer
is not uniquely determined from the modulus estimate, the
reconstruction can be translated with respect to the original object.
Also, both the object and its 180° rotation have the same Fourier
modulus, so the reconstruction can appear rotated by 180° with respect
to the original. Therefore the object and reconstruction must be
registered before the absolute difference can be calculated. This
registration is done by using the procedure described in [3.8].

50




P

Visibility

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
035
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Figure 3-10.

Spin-Averaged Visibility of Three Objects
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(a) Original
Reconstructions from Unfiltered Fourier Magnitude Data

(b) 10 PhotDet  (c) 20 Phot'Det  (d) 100 Phot/Det  (e) 500 Phot/Det

Reconstructions from Wiener-Filtered Fourier Ma‘mtude Data

(f) 10 Phot/Det (g) 20 Phot/Det  (h) 100 Phot/Det (i) 500 Phot/Det

Figure 3-11. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the “Four Points" Object.

(a) Object; (b)-(e) images reconstructed from unfiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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(a) Original

Reconstructions from Unfiltered Fourier Magnitude Data

(d) 1K Phot/Det (e) 5K Phot/Det

(b} 100 Phov/Deet  (c) 200 Phot/Det

Reconstructions from Wiener-Filtered Fourier Magnitude Data

(h) 1K Phot/Det

(1) 5K Phot/Det

(f) 100 PhotDet  (g) 200 Phot/Det

Figure 3-12. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the "Satellite" Object.
(a) Object; (b)-(e) images reconstructed from uiitiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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(a) Ongina

Reconstructions from Unfiltered Fourier Magnitude Data

(b) 200 Phot/Det (c) 500 Phot'Det  (d) 2K Phot/Det  (e) 5K Phot/Det
Reconstructions from Wiener-Filtered Fourier Magnitude Data

(h) 2K Phot/Det (1 5K Phot/Det

(f) 200 Phot/Det  (g) 500 Phot/Det

Figure 3-13. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the “Bus/RV" Object. (a)
Object; (b)-(e) images reconstructed from unfiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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Figures 3-11(b)-(d) show reconstructions from simulated two-frame
measurements of the “"four points" object for the case of IoAt = 10, 20,
100, and 500 photons per detector per frame. Figures 3-12(b)-(d) show
reconstructions of the "satellite" for the case of 100, 200, 1000, and
5000 photons per detectors per frame. Figures 3-13(b)-(d) show
reconstructions of the "Bus/RV" for simulations of 200, 500, 2000, and
5000 photons per detector per frame, What we see is that the simpler
"four points" object requires far fewer photons for a reasonable
reconstruction then the "Bus/RV" object. The 1locations of the four
points can be seen with as few as 10 photons per detector per frame.
The “satellite" object, which contains glints, also reconstructs with
recognizable features down to 100 photons per detector per frame.

The impact of Wiener filtering the Fourier modulus estimates before
reconstruction was also investigated. The Wiener filter has been shown
to be the optimal filter in the restoration of images degraded by
additive Gaussian noise [3.17] but it also plays a role in iterative
image reconstruction algorithms [3.18-3.20]. In the current context,
we use the Wiener filter to reduce noise artifacts 1in the
reconstructions which arise from poor estimates of the high spatial-
frequency components in the modulus. The proper Wiener filter W
requires the squared-modulus IFI2 of the original object and has the
form

2
IF,,l
W(i, §) = —H—— (3-49)

2 2 '
'Fijl +t0

where F1J denotes a sample of the Fourier transform F and 02 is the
variance of the estimate '713" Note that, to a first-order
approximation, az = 1/(210) independent of '7ij|' However, IFI2 is

unavailable. As a first pass, we formed a Wiener filter based upon the
spin-average IFI2 of the Fourier modulus:
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2
IF

W('lnj) ) lFiJ'Z + 02 * (3-50)

Figures 3-11(f)-(i), 3-12(f)-(1) and 3-13(f)-(i) show the corresponding
reconstructions from Wiener-filtered modulus estimates for the three
objects. As one would expect, the high-frequency noise artifacts
present in the reconstructions from the Wiener-filtered data are
greatly diminished, but some of the resolution has also been
sacrificed.

A plot of the absolute root mean-squared error of the various
reconstructions as a function of the number of simulated photons per
detector per frame is shown in Figure 3-14. The Bus/RV object requires
two orders of magnitude greater photons than the four points object to
get roughly the same 1image quality. On the other hand, the Bus/RV
object has two orders of .magnitude more illuminated resolved points
than the four points object. Consequently, image quality was similar
for the same number of photons per detector per illuminated resolved
point on the target.

3.4 SUMMARY

Our proposed method for reconstructing an image from aberrated low-
light level aperture-plane aﬁp]itude interferometer measurements is to
first form an estimate of the squared modulus of the mutual coherence
and then to reconstruct a diffraction-limited image by using phase
retrieval.

Two amplitude interferometer systems were analyzed in which a
controllable phase term 6(t) was 1introduced in order to allow
measurement of the squared modulus and aberrated phase of samples of
the discretized mutual coherence function: one in which 6(t) took on
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Figure 3-14. Plots of the Absolute RMS Error of the Reconstructed
Images Shown in Figures 3-11 through 3-13.
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discrete values 0 and /2, and the other in which 6(t) varied linearly
over [0,2r]). It was found that squared-modulus estimators for the
discrete-phase system perform better than the estimators for the
continuous-phase system. It was also found that the accuracy of
squared-modulus estimates has a strong dependence on the value of the
squared-modulus, as illustrated in Figs. 3-4 and 3-5, and that the
dominant source of error was the standard deviation of the estimator.
This standard deviation results from the fact that the estimate relies
on the squared difference between the two Poisson random variables,
N?jk and N%jk' The dependence of the performance on the value of the
squared-modulus of the coherence functions also results in the
performance being much better for point-like objects, for which the
coherence function decreases slowly with increasing spatial frequency,
than for diffuse, extended objects, for which the coherence function
drops rapidiy with increasing spatial frequencies.
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4.0 PREDICTION OF IMAGE QUALITY FOR FUTURE EXPERIMENTS

In this section we describe analysis, simulation, and
reconstruction results that would predict, the quality of the imagery
that can be expected to be reconstructed from future field experiments.
The scenario that was simulated was the imaging of the first Firefly
exercise (piggybacking on the MIT Lincoln Laboratory laser radar
experiment) launched from Wallops Island as would be viewed by the MAAI
attached to the 48-inch telescope at Goddard Space Flight Center.
Light Tevels received by the MAAI, assuming sun illumination of the
target, were computed, the detected data was simulated, and images were
reconstructed from the simulated data. The simulation results predict
that the images produced from the MAAI data from the Goddard 48-inch
telescope would be of poor quality. A limiting factor was that the
Goddard 48-inch telescope has a large central obscuration, preventing
the measurement of the low-to-mid spatial frequencies, where most of
the information resides. However, if the low spatial frequencies were
measured, then it was shown that good quality imagery could be
reconstructed. This could be accomplished by changes in the MAAI
(which will be described later) or by using a telescope, such as the
ISTEF 24-inch, which has a small central obscuration. Then for the
same scenario, images would be reconstructed with resolution far
exceeding that ordinarily allowed by atmospheric turbulence.
Furthermore, if the same experiment were performed in a space-borne
MAAI at the same range, then excellent results would be obtained, even
with shorter integration times.

In Section 4.1 we derive expressions for received light levels for
the cases of (1) blackbody emission by the target, (2) sunlight
reflected by the target and (3) 1laser illumination reflected by the
target. Then we predict the reflected sunlight levels that would be
obtained for the Firefly experiment in Section 4.2. 1In Section 4.3, we
comment on the undersampling problem that could occur in the
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experiment. In Section 4.4 we show digital simulation and
reconstruction experiments that demonstrate the image quality that
would be obtained under various assumptions.

4.1 LIGHT LEVEL ESTIMATION - GENEﬁAL CASE
4.1.1 Energy Scattered or Radiated by the Object

There are three cases of interest: objects emitting in the
infrared, objects scattering sunlight 1in the visible or infrared, and
objects scattering laser illumination that is of sufficiently short
spatial and/or temporal coherence to be effectively incoherent. 1In the
first two cases, the energy must be weighted by the spectral filter
which determines the wavelength band to be detected. The total energy
is determined by the detector integration time.

Using a blackbody model for infrared emission, the spectral
radiance LS (energy emitted per unit time per unit area per unit solid
angle per unit wavelength) of an object is:

2
L = —D<¢€ (4-1)
A [exp(hc/AKT) - 1] B

where h is the Planck constant, ¢ 1is the speed of light, € is the
object emissivity, A is the wavelength, k is the Boltzmann constant,
and T is the object temperature. Ideally, an integration is required
over the surface of the object, including the effects of the angle @
between the local surface normal on the object and the line of sight to
the sensor and of variations in the emissivity and temperature, to
compute total energy.
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For sunlight illumination, the spectral radiance of an object is
given by the product of (1) the solar spectral irradiance at the
object's altitude, (2) factors depending on the angles between the
object's surface normal and (a) the solar illumination direction and
(b) the line of sight to the sensor, and (3) the object reflectivity.
(1deally, an integration is required over the surface of the object.)
Solar spectral irradiance tables can be found in The Infrared Handbook,
Section 3.4 [4.1].

For laser illumination, the energy scattered per unit solid angle
is the product of the transmitted laser energy, one way transmittance
losses (e.g., due to atmospheric propagation), the ratio of the object
cross-sectional area to the laser beam area at the object (including
the effect of nonuniform beam intensity), the object reflectivity
(again, including nonuniform effects), and the reciprocal of the
scattering solid angle. For rough objects, the scattering solid angle
can approach 4r steradians. = However, for smooth flat objects, the
solid angle can be so small as to give a glint, so some care must be
taken in estimating this solid angle.

4,1.2 Transmittance Losses

Transmittance losses could be due to propagation through the
atmosphere, transmission through the receiver optics, and use of a
polarizer.

For pulsed laser illumination, there 1is an additional loss. The
amplitude interferometer can collect data for the entire object only
during the time interval over which light is arriving from all parts of
the object. For a pulse of length Lp and an object of depth AR (along
the line of sight to the ampiitude interferometer), the fraction of the
pulse which may be used (i.e., the pulse utilization efficiency) is (L
- 2AR)/Lp. This factor is unity for emissive or continuously
illuminated objects.
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4.1.3 Receiver Collection Solid Angle

For fixed image resolution, the collection solid angle of each
detector pixel, i.e., the solid angle it subtends with respect to the
object plane, is (da/R)2 = (X/adom)2 where da2 is the area of a
detector pixel, R is the range to the target, A is the mean wavelength,

~a is the desired detector oversampling factor, and dom is the maximum
object diameter. For minimum sampling of amplitude interferometer
data, a = 2.

This result may be derived .as follows. For resolution Ad at the
object, the receiver aperture must be of diameter D = AR/Ad. For an
instantaneous field-of-view of diameter (at the object) adom' where dom
is the object's diameter, the Nyquist sample spacing at the aperture
plane is XR/adom. Assuming detector elements of width equal to the
detector spacing, the solid angle of a detector element is therefore
(x/adom)z. There are D/(XR/adom) = adom/Ad detectors across the
aperture,

4.1.4 Parametric Formulas

For thermal emission, the energy per detector Edet (i.e., the
product of the factors discussed above) is:

2 2
hc® € A cos 6 At A\ Tatm Topt Tpo\ A

x> [exp (hc/AKT) - 1] (ad_ )2

Edet = (4'2)

where

€ is object emissivity
T is object temperature
dom is maximum object diameter
A is object cross-sectional area
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A is mean wavelength
A\ is wavelength band

At is detector integration time
atm is atmospheric transmittance

Topt is receiver optics transmittance

pol
a is the desired oversampling

6 is the angle between the object surface normal and the

is polarizer transmittance

direction to the sensor
and

h is the Planck constant
k is the Boltzmann constant
c is the speed of light.

Note that all integrations over spatial and wavelength variations have
been approximated. For a = 2 (the minimum allowable), A = r(dom/z)z,
and cos @ = 1, the formula becomes:

2
7 hc™ € At A Tatm 7gpt Tpol

16 33 [exp (hc/AKT) - 1]

Edet = (4-3)

It should be noted that for determination of detected signal-to-noise

ratio, the background 1light level must also be determined and the
*

detectivity D of the detector determined.

For sunlight illumination, the energy per detector Edet is:

2
E _ Ex A cos 01 cos 60 rObi At AX Tatm Topt TDO] A (4-4)
det 2 -
t(adom)
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where
E) is solar spectral irradiance
d__ is maximum object diameter
A is object cross-sectional area
. is object reflectivity
) is mean wavelength
A\ is wavelength band
At is detector integration time
atim is atmospheric transmittance
Topt is receiver optics transmittance
is polarizer transmittance
a is desired oversampling
6. is the angle between the object surface normal and the solar
illumination direction
00 is the angle between the object surface normal and the
direction to the sensor

and it has been assumed that the object is a Lambertian scatterer. All
integrations over spatial and wavelength variations have been
approximated. Fora =2, A = f(dom/Z)z, and ¢ = 6 = 45°, the formula
becomes

2
E, r At A\ T T T A
_ A _obj atm "opt pol
Edet = 32 : (4-5)

For laser illumination, the energy per detector Edet is:

2 2
_ E Tatm "area "obj "pulse Topt Tpol *

E
det 2
1 (adom)

(4-6)
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where

E is the transmitted laser energy
atm is the one way atmospheric transmittance
Tairea is the ratio of object to beam area
Tobj is the object reflectivity
fl is the scattering solid angle
Toulse is the pulse utilization efficiency, (L - 2AR)/L
L is the laser pulse length
AR is the object depth
dom is the object diameter
Topt is the receiver optics transmittance
T is the polarizer transmittance
)\ is the wavelength

pol
a is the desired oversampling.
Note again that any integrations have been approximated.
4,1.5 Example Calculations

For thermal emission, the energy per detector is 1.2 x 10~
or 6 x 104 photons for

€ = 0.5
T = 300°K (sun illuminated)
dom = 5 meters
X = 10 pm (near blackbody peak)
A\ = 0.5 gm
At = 1 ms
Tatm = 1.0
Topt = 0.1
Tpo] = 0.5
a=2
6 = 0°.
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Note that

he _

il 4.81 ,

exp (hc/XkT) - 1 = 121 ,
and

%E =2x1020 .

Note that

For sunlight illumination, the energy per detector is 0.55 x 10'17
Joule or 15 photons for

Ex
obj
At
A
AX

r

Tatm

Topt

Tpol

a

¢
6

1942 w/m2 pm (exo atmospheric)
0.1

10 ms
0.5 gm
0.03 pym
1.0

0.1

0.5

2

45¢°
45°,

he . ax 101

For laser illumination, the energy per
1.2 x 10718 Joule or 6 photons for

atm

1 Joule/pulse
1.0
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= 0.1

= 0.1

x

=0.75 (AR = 5m, L =40 mor 130 nsec)
= 0.1

= 1.0 (no polarizer)

2

5 meters

1 pm.

-
}

-~
0

o
"

(=8
>
] "

Note that
he _
x - 2 x 10

In the above,

6.63 x 10'34 Joule sec
3 x 108 m/sec
1.99 x 1072° Joule m

1.38 x 10°23 Joule/°K

= o
O x 0 0 T
[} [] " ]

0.0144 m°K .

xl:‘

4.2 LIGHT LEVEL ESTIMATION - FIREFLY EXPERIMENTS

In this section we estimate the light level expected from the first
Firefly experiment when imaging the large cylindrical object.

For sunlight illumination, the number of detected photons (photo-
electrons) per detector per frame is, for a general object,

Noe = g Eger/ (hc/A) (4-7a)
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(dg ﬂd/Rz)
(4-7b)

[(Ldg/20) V(¥ + )] T e Toot Too1 (02 1g/RO).

(4-7¢)

=g Ex A\ At(A/hc) r (A cosé, cosao/f) T

obj atm Topt Tpol

= 1q Ey ) At(M/he) rop,

The parameters in this expression and their estimated values for
the Firefly experiment are listed in Table 4-1. Equation (4-7b) was
obtained from Eq. (4-4) by replacing the oversampling ratio, a, by

(4-8)

where da is the detector spacing and 74 da2 is the area per detector
element. Equation (4-7c) 1is obtained making the further substitution
of (LdO/Zr) V(i!1 + vo) for (A cos 6y cos 00)/1 for the cylindrical
target in the Firefly experiment. The object 1s assumed to be a
cylinder of length L and diameter do' In Appendix C the theory of a
reflecting cylinder is worked out in detail, and the energy reflected
by the cylinder, assumed to be a Lambertian reflector, is proportional
to

V(b + 9,) = (1/2) [sin(¥; + ¥ ) - (¥ + ¥,) cos(f{ +¥)] (4-9)

where ¥; is the angle of the sun below the horizontal and Y, is the
angle of the receiver below the horizontal, as seen from the target.
For the Firefly cylinder, V(#1 - io) is about 0.292, as compared with a
maximum possible value of #/2 = 1.57 for illumination from the same
angle as the sensor views the object (i.e., for the sun behind the
sensor).
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Table 4-1
Parameters for Firefly
Parameter Parameter Parameter
Value Symbol Name

0.10 q detector quantum efficiency

1942 W/mz/pm Ex solar spectral irradiance

0.50 pm ) mean wavelength

4 x 10719 hc/\ energy per photon

0.03 gm AX wavelength band

10 msec At detector frame integration time

2.4 m L = dom maximum object diameter

varies 01 the angle between the object §urfgce
normal and the solar illumination
direction

varies 80 the angle betwgen the object surface
normal and the direction to the sensor

0.8 Tatm atmospheric transmittance

0.056 Topt Tpol receiver optics transmittance

600 km R range to target

0.4 4 fractional active detector area

(3 cm x 4 cm) dau X dav detector element center-to-center spacing

0.0009 m? qdda2 area per detector element

For the cylindrical object:

0.4 m
2.4 m
10°

55° + 8°
107°

73°
0.292

180°-W1-W0
Wi + Wo
V(w1 + vo)

cylinder diameter

cylinder length

solar angle below horizon

sensor angle below object plane
bistatic angle

180° - (bistatic angle)
reflectivity factor (Appendix C)
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For the parameters listed in Table 4-1, Npe = 0.1 photo-electrons
per detector (in 10 msec). In one second this would be 10 photo-
electrons, and in 150 sec of observing time 1500 photo-electrons would
be detected. As seen in Table 4-2, 150 sec would be available between
times 200 sec and 350 sec from launch, during which period the target
would appear to be relatively stationary as viewed from the Goddard
site., At most, 3200 photons could be detected during the 320 seconds
between times 130 and 450 seconds from launch.

At 3,200 photo-electrons per detector, one can achieve a normalized
mean-squared error (NRMSE) of 0.1 (suitable for phase retrieval) for
Iyl down to 0.5, and one can achieve a NRMSE of 0.5 (suitable for
parameter estimation from the Fourier modulus) for Iq! down to about
0.1.

4.3 SAMPLING REQUIREMENTS

For the parameters listed in Table 4-1, a = 2.08 if the 3 cm
detector spacing direction 1is oriented along the long axis of the
cylinder, but a = 1.56 if it is oriented in the opposite way. Recall
that a = 2.0 is required for Nyquist sampling of I7I2. Since this
opposite orientation was contemplated, serious problems could arise.
For this reason it is worthwhile to review the basis for this sampling
requirement.

For a shear of Au, q(Au) requires a sample spacing of

Au ¢

I"I>*
-

(4-10)

in order to avoid aliasing and satisfy the Nyquist criterion, where L
is the Jlength of the target. Recall from Section 2 that the
interferometer measures |7(2Au, 2Av)|2 for a detector at location
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Table 4-2
Firefly Launch Parameters as Viewed from Goddard

Time Range  Elevation Bistatic angle Comment

(sec) (km) (deg) (deg)

130 379 50.3 112.5 Rising fast

200 506 55.6 107.5

350 664 55.4 108.3 Release cannister
450 685 50.7 113.4 Dropping fast
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(Au,Av). Therefore a doubling of the sampling rate is required because
of the squaring operation (a function squared has twice the bandwidth
as the original function), and another doubling of the sampling rate is
required because of the 180° rotational shear giving the spacing
(28u,28v). Therefore the detector spacing must be

a
728
-bly
[t ==

(4-11)

6

which is 3.1 cm for R = 600 km, A = 0.5 x 10" mand L = 2.4 m.

4.4 DIGITAL SIMULATION EXPERIMENTS

A model of the Firefly payload is shown in Figure 4-1. In this
case we are imaging the cylindrical object (which later separates into
two parts) 2.4 m long and 0.4 m diameter with a nozzle at one end.
(The simulated reentry vehicle was judged to be too small and dim for
an initial demonstration of amplitude interferometry.) Because of the
oblique illumination angle, it would not be realistic to use a
digitized version of this photograph as the object for our digital
experiments. So instead, we fashioned a three-dimensional shape from
wood and painted it white with a black stripe. Shown in the CCD-camera
image in Figure 4-2(a), it has features that are similar to those of
the Firefly object. Figure 4-2(b) is a photograph of the same object
illuminated from below and behind at an angle approximating the one at
which the sun would be shining at the Firefly object. At the nearly
grazing angle involved, a weak glint on the 1left half of the object
appeared despite the fact that the paint used (Liquid Paper white-out)
was not glossy.

Figure 4-2(c) shows the image as would be seen from a diffraction-
limited phase-measuring amplitude interferometer (as though there were
such a thing) of aperture diameter 1.2 m (48 in), operating at a
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wavelength of 0.5 uym at a range of 600 km, with no noise. This image
was obtained by Fourier transforming the object shown in Figure 4-2(b),
multiplying by a circular aperture in the Fourier plane of the
appropriate size, and inverse Fourier transforming. From this we see
that for the 1large cylindrical object under this illumination
condition, even under the most ideal conditions the best that could
ever be done with a 1.2 m telescope is to see a thin line that curves
upward at one end (where it is thinner at the nozzle) and has a barely
discernible dark band near the other end. This illustrates the need
for very large apertures for discrimination.

Figure 4-2(d) shows an image that would be obtained from a
diffraction-limited phase-measuring MAAI using a 1.2 m aperture having
a 0.6 m central obscuration, like the Goddard 48-inch telescope has.
Because of the large central obscuration, all the low-to-mid spatial
frequencies are not measured -- only the high spatial frequencies are
measured, and the result is a high-pass filtered version of the image
shown in Figure 4-2(b). The same image features are seen, but very
large ringing artifacts dominate the 1image. The narrow width of the
image can no longer be reliably estimated. Discrimination would be
difficult with this aperture even with ideal imaging with the phase.
To get an image comparable to that shown in Figure 4-2(c), the Fourier
data would have to be interpolated from the high spatial frequencies
into the mid and low spatial frequencies.

Figure 4-2(e) shows the 1image that would be obtained from a
diffraction-limited phase-measuring MAAI using a 0.6 m (24 inch) filled
aperture, and Figure 4-2(f) shows the image that would be obtained from
a diffraction-limited phase-measuring MAAI using a 0.6 m aperture with
a 0.1 m central obscuration, like a telescope that is available at the
Innovative Science and Technology Experimental Facility (ISTEF) on Cape
Canaveral. The image is 1lower 1in resolution by a factor of two, as
expected, but the ringing artifacts are much less pronounced than for
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the Goddard 48-inch, since the ISTEF 24-inch has a very small central
obscuration.

If the telescope were being operated in space, and if the
aberrations were unknown but were slowly varying over the integration
time, then the method using only two frames, described in Section 3,
could be used. As discussed in Section 4.2, for the first Firefly
experiment with the Goddard 48-inch telescope and the then-current
implementation of the MAAI, about 1,500 to 3,200 photons per detector
could be obtained during the integration time. Data was simulated with
2,000 photons per detector over two frames for each of the four
apertures described above. The iterative transform algorithm was used
to retrieve the phase over the aperture and, for the annular apertures,
simultaneously interpolate the complex values into the mid and low
spatial frequencies where no data would be measured. (Section 5.0 and
Appendix D describe the algorithm 1in more detail.) The reconstructed
images, shown in Figure 4-2(g)-(j), are comparable in quality to the
diffraction-limited images from the filled apertures. In fact, for the
48-inch Goddard annular aperture, the reconstructed image is actually
better than a diffraction-limited image with a phase-measuring MAAI
[compare Figure 4-2(h) with 4-2(d)]. This results from the success of
the interpolation of the mid and low spatial frequencies that would
otherwise be lost. This 1is a remarkable success for the phase
retrieval/interpolation algorithm operating on MAAI data.

We also performed experiments with lower numbers of photons,
corresponding to proportionally shorter integration times. For only
400 total photons per detector over the two frames, which is 1/5 the
light level expected for the Firefly experiment, the major features of
the object are still seen 1in the reconstructed image, although the
image 1s noticeably noisier than the one for 2,000 photons per
detector.
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For an earth-bound telescope, atmospheric turbulence limits the
integration time for a single frame to about 10 msec. Therefore during
a 200 sec total integration time, one must collect 20,000 frames of
data of exposure time 10 msec each. We simulated 4,000 total photons
per detector over the 20,000 frames. Note that this is equivalent to
an average of 1/5 photon per detector per frame. That is, most
detectors would receive zero photons in a given frame. This data is
extremely noisy, to say the least. By summing over 20,000 frames the
signal-to-noise ratio is built up. The image reconstructed from this
simulated data for the Goddard 48-inch and ISTEF 24-inch annular
apertures are shown in Figure 4-3(e) and (h) respectively. For the
Goddard 48-inch aperture, large amounts of noise fill the support
constraint used during the iterations. A hint of the long, thin object
is seen in the image, but the high 1level of noise would cause one to
have 1ittle confidence in it. This illustrates the fact that, even if
a large number of photons are collected, f{f they are spread over too
many frames, they are not as effective as the same number of photons
spread over a small number of frames. The interpolation, which worked
well for the case of 2 frames for a space-based sensor, work poorly
here since the coherence function squared-modulus estimate is so much
noisier. As shown in Figure 4-3(h), the image reconstructed from the
same number of photons per detector and the same number of frames, but
for the ISTEF 24-inch aperture, is much less noisy and clearly shows
the major features of the object although at only half the resolution.
This greatly improved result is due to the fact that the much-smaller
central obscuration requires far less interpolation. Then the
interpolation task is much easier and the image quality is Timited only
by the aperture size and the performance of the phase retrieval
algorithm.

Since the atmospheric “seeing”" can be expected to have a

correlation distance of about 0.05 meters under these circumstances,
the ISTEF 24-inch (0.6 m) image shown in Figure 4-2(h) has resolution
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Onginal Object

‘a) Difuse lltumination {b) Sunlit

Simulated Collection Through Goddard Aperture (20K Frms, 4K Phot Tot.)

(c) Diff. Lim. image (d) Founer Mag. (@) Reconstructed Image
Simulated Collection Through ISTEF Aperture (20K Frms, 4K Phot Tot.)

(y Diff. Lim. Image (g) Founer Mag. {hy Reconstructed Image

Figure 4-3. Object and Reconstructed Images for Simulation of Ground-
Based Imaging through Atmospheric Turbulence with the
Amplitude Interferometer. (a) Model diffusely
illuminated; (b) model illuminated by spotlight; for the
Goddard 48-inch aperture: (c) diffraction-limited image,
(d) Fourier modulus, (e) reconstructed image; for the
ISTEF 24-inch aperture: (f) diffraction-limited image,
(g) Fourier modulus, (h) reconstructed image.
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about (0.6m/0.05m) = 12 times better than what would be seen with a
diffraction-limited telescope viewing the same object through the same
turbulent atmosphere. In fact, the blur circle for atmospheric-1limited
imaging in this case would be XR/ro = 6 m, which is 2.5 times wider
than the length of the target. Therefore an image of this target from
a conventional diffraction-limited telescope would be a large blob
showing no detail whatsoever, whereas the image from the MAAI operating
with the ISTEF 24-inch would show recognizable features of the object.
This demonstrates the tremendous advantage of using the MAAI under the
right circumstances.

Figures 4-2(d) and 4-2(g) show the MAAI data (squared-modulus of
the coherence function) simulated over the 48-inch Goddard aperture and
the 24-inch ISTEF aperture for the ground-based case. The vertical
streak down their centers is due to the fact that the target is long
and thin in the opposite direction. The holes in the centers are due
to the central obscurations of the telescopes. Note that in the
horizontal dimension, in which the target is resolved, the signal-to-
noise ratio rapidly drops away from the center. This helps to explain
why the Goddard aperture worked so poorly. The central obscuration of
the Goddard 48-inch is about the same size as the entire 24-inch ISTEF
aperture. That is, the annulus of data'gathered by the Goddard 48-inch
would only start beyond the outer diameter of the ISTEF 24-inch. Since
at this point the data has become quite noisy, we see that the Goddard
48-inch would miss the data where the signal-to-noise ratio is good and
measure it where the signal-to-noise ratio is primarily poor. For this
reason it is important to change the way that the MAAI measures data
with telescopes like the Goddard 48-inch -- modifications are necessary
to measure the low spatial frequencies, even if it means missing some
of the highest spatial frequencies. This is described in Section 6.
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5.0 IMAGE RECONSTRUCTION WITH A PARTIALLY-FILLED APERTURE

For the case of partially-filled aperture, including central
obscurations or multiple-mirror telescopes, portions of the spatial
frequency domain are not measured. One way to get around this problem is
to change the way that the aperture is sheared by the interferometer so
that it measures the lower spatial frequencies. When this is done the
highest spatial frequencies are lost, but the net image quality can be far
higher than what would be obtained with the traditional method of shearing
the wavefront. This alternative shearing approach is described in
Section 6. If the alternative shearing approach is not taken, then the
reconstruction algorithm must simultaneously interpolate the missing phase
and modulus values where they are missing while retrieving the phase where
the modulus is measured. This is necessary because the impulse response
of a partially-filled aperture usually has large sidelobes that go both
positive and negative, which interferes with both the support constraint
and the nonnegativity constraint used by the phase retrieval algorithm.
This is a particularly difficult task if the lower spatial frequencies are
missing because of a central obscuration of the telescope, since the
visibility modulus at lower spatial frequencies is typically much targer
than at the higher spatial frequencies. How we accomplished this and the
results are briefly summarized below. A detailed description is given in
Appendix D.

The method of simultaneous phase retrieval and interpolation is a
modification of the standard iterative transform algorithm. One iteration
consists of the usual four steps, but with the following change in the
second step in the Fourier domain: where the Fourier modulus is measured,
the computed Fourier modulus is replaced by the measured modulus; where
the Fourier modulus is not measured but is within the area that would have
been occupied by a filled aperture of the same diameter, the Fourier
modulus is unchanged; and beyond the area that would have been occupied by
the filled aperture, the Fourier modulus is set to zero. If any phase
information has been measured in any region, then in that region the
computed phase is replaced by the measured phase.
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We found that for filled apertures with no phase information, the
iterative transform algorithm usually converges reasonably quickly to the
correct solution. For a partially filled aperture with no phase
information, for which both phase retrieval and interpolation are
required, successful reconstructions were obtained, but only when the
central obscuration was small. This was for the case of a very extended
object. As was seen in Section 4, for a simpler object, reconstructions
of this type are also possible with a larger central obscuration if the
signal-to-noise ratio (1light level) is very high.

We also experimented with interpolation when the phase is measured.
Problems with nonunique solutions were encountered if the missing region
was large. Therefore the difficulty with combined phase retrieval and
interpolation may be 1imited more by the interpolation than by the phase
retrieval in some circumstances.
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6.0 ALTERNATIVE AMPLITUDE INTERFEROMETER FOR GROUND-BASED EXPERIMENTS

In order to avoid the problems with the reconstruction algorithms
that occur when the telescope has a central obscuration, the way that the
aperture is sheared by the interferometer can be changed so that it
measures the lower spatial frequencies. When this is done the highest
spatial frequencies are lost, but the net image quality can be far higher
than what would be obtained with the traditional method of shearing the
wavefront. This is important for ground based experiments using existing
telescopes, although it would probably not be a problem for an eventual
space-based system for which a second small teiescope could fill the need
for the low spatial frequencies.

The usual geometry for the 180° rotational shear and the detectors
is shown in Figure 6-1(A). Only the right half of Figures 6-1(A), (B) and
(C) get through one side of the Koster’s prism. The annular aperture is
rotate 180° about its center and interfered, so that, for a symmetric
aperture, the sheared and combined fields occupy the same area as the
original aperture. The detector array (shown shaded), on one of the two
sides of the Koster’s prism, covers only half of the aperture, but that is
all that is needed since the coherence function is symmetric about the
origin. The low to mid spatial frequencies surrounding the origin in
spatial frequency space, indicated by a dot in the figure, are all
missing. The low to mid spatial frequencies are measured by either of the
alternative geometries shown in Figure 6-1(B) and (C). In these cases the
fields are translated horizontally (B) or vertically (C) prior to rotation
by 180° so they are rotated about points other than the center of the
aperture. For the cases shown in Figure 6-1(B) and (C), the rotations are
about points half way between the inner and outer radii of the annulus.
That point is the location of the origin of spatial frequency space, and
all the low to mid spatial frequencies around it are measured. This can
be accomplished simply by shifting the optical axis of the interferometer
making it offset with respect to the optical axis of the telescope. For
a ratio of radii of 2:1, for the geometry of Figure 6-1(B) in the
horizontal direction the highest spatial frequency passed is reduced to
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(A) Annular Aperture (B) Offset Annular Aperture No. 1

(C) Offset Annular Aperture No. 2

Figure 6-1. Alternative Pupil Shearing and Detection Geometries for

Annular Apertures. The shaded rectangles are potential
areas for the detector array to cover. (A) Conventional
geometry; (B) alternative geometry with horizontal effort;
(C) alternative geometry with vertical offset.
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1/4 that of the usual geometry, and in the vertical direction the highest
spatial frequency passed is /7/16 = 0.66 that of the usual geometry.

Since the width of the overlap region is narrow near the highest spatial
frequencies, the highest practical spatial frequency is about 1/2 that of
the usual geometry. This dimension should be oriented along the dimension

for which resolution is most important.

For the geometry of Figure 6-1(C), the highest spatial frequency
passed is 0.66 that of the usual geometry in the horizontal direction and
1/4 in the vertical dimension compared with the usual geometry, and the
detector array is closer to a square shape.

In these cases, for the same number of detector elements, the
alternative geometries have twice the field-of-view in each dimension as
the usual geometry, and the fraction of detector elements that are used is
increased from 58.9% to 82.6%. Most importantly, the low and mid spatial
frequencies, where |y| 1is 1large, are measured, enabling image
reconstruction at much lower light levels.

Another potential operating mode would be to have a system which
flips between the two geometries, which could be accomplished with, say,
a movable mirror. Then alternately both the low spatial frequencies and
the highest spatial frequencies could be measured.
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7.0 IMAGE RECONSTRUCTION USING A DECONVOLUTION ALGORITHM

An alternative to the iterative transform phase retrieval algorithm
(which was the workhorse algorithm for most of this effort) was developed.
It is a version of the Ayers-Dainty blind deconvolution algorithm modified
to solve the phase retrieval problem, using support and nonnegativity

constraints.

In the blind deconvolution problem, one is given an image g(x) which
is the convolution of two arrays, f(x) and h{(x), neither of which is
known, and both of which we wish to reconstruct from g(x). The Fourier
transform, G(u), of g(x) is given by the product of the Fourier transforms
of f(x) and h(x):

G(u) = F(u) H(u) . (7-1)

Phase retrieval is a special case of blind deconvolution for which g(x) is
the autocorrelation of the object (given by the inverse Fourier transform
of the squared Fourier modulus), f(x) is the unknown object, and h(x) is
the twin image (hermitian conjugate) of f(x), and we are given |F(u)|? =
F(u) F*(u). The Ayers/Dainty algorithm iteratively estimates F, f, H, and
h by inverting Eq. (7-1) and using constraints, such as support and
nonnegativity, on f and h.

Our analysis showed that the algorithm, modified to the phase
retrieval problem, has properties similar to the error-reduction version
of the iterative transform algorithm. It converges slowly but seems to
handle noise well, perhaps due to a built-in Wiener filter that we use to
invert Eq. (7-1).

A detailed description of the -ew phase retrieval algorithm and some

results of computer simulations and reconstructions are given in
Appendix E.
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8.0 NUMERICAL INVESTIGATION OF PHASE RETRIEVAL UNIQUENESS

A question that always arises for image reconstruction by phase
retrieval is whether the image obtained is unique. If it were likely that
other images were also consistent with the data and constraints, then the
method would not be reliable. A new methodology of quantifying the
uniqueness of the solution was developed and exercised. The subspace of
all ambiguous solutions was analytically derived for the case of small (up
to 3 x 3 pixels) images. If an image is a distance from this subspace
less than the measurement noise of the Fourier modulus data, then it is
consistent with an ambiguous image. If the ambiguous counterpart to the
ambiguous image is very different from the original object, then the
solution is ambiguous in a practical sense. For 2 x 2 and 3 x 2 images,
Monte Carlo experiments were conducted to determine the probability that
a random image would lie within a certain distance of this subspace. It
involved a reduced-gradient search along the subspace of ambiguous images
to determine the ambiguous image closest to a given image. It was found
that for small amounts of noise, the probability of having an ambiguous
image is small. As the noise level increases, the probability of having
a practical ambiguity increases.

The surface of ambiguous images for the 3 x 2 case is
five-dimensional, embedded in a six-dimensional space. On the other hand,
for the 3 x 3 case, the ambiguous images lie in a seven-dimensional
surface embedded in a nine-dimensional space. Since the ambiguous images
in the latter case have dimension two less than the space, it seems that
they would be far less likely to occur. Therefore, for larger images of
practical interest, the probability of ambiguity is probably less than
what we computed for the 3 x 2 images.

We also explored the relationship between ambiguous solutions and
local minima encountered by phase retrieval algorithms.

The most important aspect of this task was the development of a
methodology for determining the probability of uniqueness in a practica)l
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sense. If successfully extended to the larger images of interest, it
could yield a practical estimate of probability of ambiguity, and of the
reliability of phase retrieval.

A detailed description of this study of the uniqueness of phase
retrieval is given in Appendix F.
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9.0 ASSESSMENT OF COMPUTATIONAL REQUIREMENTS

The computational requirements for phase retrieval were analyzed.
Versions of the algorithm were also sent to other researchers to implement
on particular computer architectures, such as the Carnegie-Mellon Warp.

Each iteration of the iterative transform phase-retrieval algorithm
involves two 2-D fast Fourier transforms (FFT’s) and some additional
operations in the two domains. These additional operations include
addition, subtraction, multiplication, division, and square root. For
some versions of the algorithm it is also necessary to compute sin, cos,
arctangent (i.e. conversion between real-imaginary and modulus-phase),
logical NOT, and clipping (= 0). All of these operations are done
independently on 2-D arrays of numbers, so that they are well-suited to
vector processor or parallel computing architectures. The 2-D FFT’s are
similarly well-suited to vector or parallel architectures, since the row
(or column) 1-D FFT’s can be done in parallel. If fully optimized, the
largest computational burden will ordinarily be the FFT’s. Since
typically dozens to hundreds of iterations are required for convergence,
depending on the difficulty of the particular reconstruction problem, the
primary computational burden is dozens to hundreds of FFT’s to compute a
single image. For the SDI discrimination application, all this must be
done in a short time, say 20 msec. Consider this example: if the FFT
array size were N x N = 64 x 64, considering that each 2-D FFT requires
about 2N® Tlog,N complex floating-point operations (CFLOP’s), the
computational rate required to perform 100 iterations (200 FFT’'s) in 20
msec would be about 500 MegaCFLOP/sec. Consequently, substantial
parallelism in the computing architecture is currently necessary to
perform these algorithms in the short times allowed. This could be done
currently with a Cray Y/MP supercomputer. Efforts are underway to put
this level of computing power in a small package (a size less than that of
a five-pound coffee can).
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Our own computing hardware experience has seen a substantial speed-
up over time with machines of comparable cost. A single iteration for
array size N x N = 128 x 128 took 1.00 seconds with a Floating Point
Systems AP120B array processor in 1980, 0.60 seconds with a Mars Numerix
432 array processor in 1986, and 0.15 seconds with the Carnegie-Mellon
Warp computer (tests performed by H.T. Kung’s group) in 1988. The latter
time was dominated by (a) a non-optimized, slow square root function and
(b) a corner-turn required to be performed in the host computer rather
than interior to the Warp. With an optimized square root function and a
larger memory within the Warp, this time could be reduced by a factor of
two.

In a realistic space-based scenario, special-purpose electronic
processors would be used instead of the general-purpose processors
described above. Typical speed-ups of special-purpose electronic
processors over general-purpose processors is typically in the range of
100 times to 1,000 times. Projected general-purpose processors should be
adequate for the job. Therefore, if special-purpose electronic processors
were developed, then the computational requirements for phase retrieval
would be easily achieved.
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10.0 LABORATORY EXPERIMENTS

It was intended that images be reconstructed from MAAI data
gathered in the 1laboratory. The data was to be collected by the
University of Maryland (UMd) in their laboratories. ERIM prepared test
targets of appropriate objects for use in the experiments and delivered
them to UMd. The targets were those digitized images shown in Section
2.2. They were written onto fine-grained film using an Eikonix laser-
beam recording system. Transparencies, as opposed to reflective
objects, were used in order to maximize the intensity of the light that
would enter the MAAI. Transparencies were produced at a variety of
magnifications 1in order to match the size requirements of the
experimental setup. Special care was taken to make the background
density of the transparencies as dark as possible to avoid a background
term. No MAAI data was gathered in the laboratory during this effort.

Phase retrieval/image reconstruction software that resided on a
Heurikon-hosted Mercury Zip Array Processor at ERIM was delivered to
UMd and extensive assistance was given to UMd by ERIM to get the
software to work on the Micro-Vax-hosted Zip at UMd. Considerable
effort was required to overcome operating system incompatibilities
(Unix vs. VMS)., This transition was made to enable UMd to perform
image reconstruction both at UMd 1locally and at remote test range
sites.
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APPENDIX A
EXPRESSIONS FOR BIAS AND MEAN-SQUARED-ERROR

In this Appendix, approximate algebraic expressions are derived for the bias and
mean-squared error (MSE) of several of the estimators for |9:;]? discussed in Sec-
tion 3. These bias and MSE expressions can then be used to compute the normalized
bias (NB) and normalized root mean-squared error given by Equations (3-30). To
aid in the computation of expressions for the bias and MSE, the symbolic compu-
tation software Maple [A-1] was used. Section A.l contains expressions for the bias
and and MSE for four estimators: D1, Equation (3-17); D2, Equation (3-18); C1,
Equation (3-26); and C2, Equation (3-28). Listings of the Maple sources used to

generate the resulting expressions are given in Section A.2

A.1 ALGEBRAIC EXPRESSIONS

The following methodology was used in computing expressions for the bias and
MSE associated with estimators D1 and Cl. Note that estimator D1 consists of
a sum of terms which involve the ratio of the photon difference N2, — N\, to the
photon sum N3, + N}, as in (3-17). Similar ratios are required for Estimator C1.
Consequently, direct expressions for bias and mean-squared error associated with
D1 and C1 are difficult to compute. Instead, to compute the bias and MSE of these
two estimators, we use asymptotic expansions for terms involving (N2, + N}, ).
The resulting expressions for bias and MSE can then be expressed in terms of a
power series in I;'. Approximate expressions for bias and MSE are then calculated
by truncating the respective series representations after the first few terms. In
the expressions below, the first four terms (zeroth, first, second and third-order)
are maintained and the resulting accuracy of the expressions for bias and MSE
are therefore of order O(Iy*). Maple was used as an aid performing the required

symbolic computations. In the following expressions, the subscripts denote the

estimator, c is defined in (3-13), and the term @ is related to the number of frames
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An alternative methodology was used in the computation of expressions for the

bias and MSE associated with estimators D2 and C2. Expressions for the bias and
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mean-squared error for estimators D2 and C2 are simplified by ignoring the variance
and higher-order moments of denominator term involving fo. As can be seen from
Equation (3-6). the standard deviation of Ip is inversely proportional to the square-
root of the product of the number of pixels N2, the number of frames &', and the
integration time At. Furthermore, since (N}, + NZ,) is a Poisson random variable,
its standard deviation is the square-root of its expectation. i.e.. v/I,. Combining

these relationships. the normalized standard deviation of I is:

-

Iy 1
Std. Dev. (7(—)-) = 'A—'\/-Tﬁ_(; (A-6)

Therefore, for sufficiently large /o, N and R’, we can ignore fluctuations in Io in
the computation of the bias and mean-squared error of estimators D2 and C2. As
a result, formulas for the first and second moments of estimators D2 and C2 are

straightforward to compute. Again. Maple was used as an aid in the computation.

Estimator D2:

-1
Biasp, = 10_° (A-T)
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I\'ISE ~ 0 2 0 0 87 210 )
b2 K + h? K h? (A-8)
Estimator C2:
Biasc, = 25 ¢ (A-9)

MSEc, = 20.51851925+;;%cl;!
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[A-1] Char, B. W, Geddes, K. O., Gaston, H. G, Monagan, M. B., and Watt, S. M.,
Maple Reference Manual, 5th ed.,, WATCOM Pub. Ltd., Waterloo, Ont, 1988.

A.2 MAPLE SOURCE CODE

Listings of the Maple input used to generate expressions for NB and NRMSE for
each of the four estimators considered above are included in this section. The fol-
lowing file visibility contains procedures used in all of the computations. Maple

listings related to each of the estimators D1, D2, C1 and C2 follow.
visibility:

File: visibility
Date: 18 Jul 88
Author: J. D. Gorman, ERIM

Intent: Computes an expansion for the fringe visibility measurement V
in terms of two new random variables PSI and ETA, and raises it to
the Nth power.

Let NS(K) and ND(K) be the number of photons detected at the
sinisterous and dexterous arms of the amplitude interferometer
respectively so that:

E{ ND(K) } = 1.0 (1 -~ Gm(K)) = LambdaD(K)

E{ NsS(K) } = I_0 (1 + Gm(K)) = LambdaS(K).

Then we define the random variables:
PSI(K) = {[ND(K)-LambdaD(K)] + [NS(K)-LambdaS(K)]}/ sqrt(2 I_0)

ETA(K) = C*{[ND(K)-LambdaD(K)] - [NS(K)-LambdaS(K)]}
/ {Gm(K)*sqrt(21_0)},
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where:
C = {1 + 2+I_Bckgnd}/I 0.

The result is that:

L R B B

(ND(K) - NS(K)] [t + ETA(K)]
[(ND(K) + NS(K)] [1 + PSI(K)J‘

This ratio is expanded as a series and then the terms of order O or
greater are retained.

® % %

mean_ratio := proc(K)
result := expand( (Gm(K)~1) * simplify( expectation( visibility(1,K),K ) ) );

end;

mean_ratio_sq := proc(K)
result := expand( (Gm(K)~2) * simplify( expectation( visibility(2,K),K ) ) );
end;

mean_ratio_t := proc(K)
result := expand( (Gm(K)“"3) * simplify( expectation( visibility(3,K),K) ) );
end;

mean_ratio_q := proc(K)
result := expand( (Gm(K)"4) * simplify( expectation( visibility(4,K),K) ) );
end;

visibility := proc(N, K)

local tmp, resu.t;

tmp := subs( X=psi(K), convert( taylor(1/(1+X),X=0,10), polynom ) );

result := (1+eta(K))"N * tmp-N;

end; |

1ls := proc(K)
result := (c - Gm(K))/(i0inv);

end; |

1d := proc(K)
result := (c + Gm(K))/(i0inv);
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end;

The following procedures are used to calculate the expectation of
various moments of the fringe visibility.

% % B »n

etapsi := proc(m, n, k)

local i, j, joki, jnkj, result, rsum, t1, t2, t3;

option remember;

if type(m,integer) and m > 0 and type(n,integer) and n > O then
rsum := 0;

for i from 0 by 1 to m do

for j from 0 by 1 to n do

joki := i;

jnkj = 3;

t1 := binomial(m,i) * binomial(nm,j) * (-1)°i;
t2 := pem(1s(k),i+j) * pem(1d(k),mtn-i-3);

t3 := ((2.0*Gm(k)/i0inv)"m) * ((2.0%*c/i0inv)"n);
rsum := rsum + ((t1 *t2)/t3);

od;

od;

elif type(m,integer) and m > 0 and type(n,integer) and n = 0 then
rsunm := 0;

for i from 0 by 1 to m do

jnki := 1;

t1l := binomial(m,i) * (-1)"i;

t2 := pcm(1s(k),i) * pcm(1d(k),m-i);

t3 := (2.0%Gm(k)/i0inv) "m;

rsum := rsum + ((t1 *t2)/t3);

od;

elif type(m,integer) and m = 0 and type(n,integer) and n > O then
rsum := 0;

for j from 0 by 1 to n do

jnkj := j;

t1 := binomial(n,j);

t2 := pcm(1s(k),j) * pem(1d(k),n-j);

t3 := ((2.0%c/i0inv) "n);

rsum := rsum + ((t1 *t2)/t3);

od;

fi;
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result := rsum,
end;

subetapsi := proc(X,K)

local i, result, t1, t2;

option remember;

t1 := X;

for i from 12 by -1 to 1 do

for j from 12 by -1 to 1 do

if i > 5 or j > 5 then

t2 .= subs( eta(K)"i * psi(K)"j = 0, t1 )
else

t2 := subs( eta(K)~i * psi(K)7j = etapsi(i,j,K), t1 );

fi;

t1 = t2;
od

od

end;

subpsi := proc(X,K)

local i, result, ti, t2;
option remember;

t1 := X;

for i from 12 Ly -1 to 1 do
if i > 5 then

t2 := subs( psi(K)"i
else
t2 :
fi;
t1 :
od
end;

0, t1)

L}
L[]

subs( psi(K)"i = etapsi(0,i,K), t1);

t2;

subeta := proc(X,K)

local i, result, t1, t2;
option remember;

t1 := X;

for i from 12 by -1 to 1 do

if i > 5 then

t2 := subs( eta(K)"i = 0, t1)




else

t2 := subs( eta(K)"i = etapsi(i,0,K), t1)
fi;

t1l := t2;

od

end;

expectation := proc(X,K)
local result, ti1, t2;
option remember;

t1 := expand(X);

t2 := subetapsi(tl,K);
tl := subeta(t2,X);

t2 := subpsi(t1,K);
result := t2;

end;

This procedure calculates the Nth central moment of a Poisson
random variable having parameter X.

® % % n

pem := proc(X,N)
local result, Y, tmp;
if type(N,integer) then

if N = 0 then result := 1

elif N = 1 then result := 0

elif N = 2 then result := X

elif N = 3 then result := X

elif N = 4 then result := X + 3%X°2

elif N = § then result := X + 10%X"2

elif N = 6 then result := X + 25%X~2 + 15xX"3

elif N = 7 then result := X + 56%X~2 + 105%X"3

elif N = 8 then result := X + 119%X"2 + 409*X"3 + 105%X"4
else

tmp := Y«Nepcm(Y,(N-2)) + diff( pem(Y,(N-1)), Y );
result := subs(Y=X, tmp);

fi;

fi;

result
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end;
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Estimator D1:

read( visibility );

t

# File: Ncurrie_mse

# Date: 19 Oct 88

# Author: J. D. Gorman
#

mean_ratio_sq_K := mean_ratio_sq(K):

#
# Calculate BIAS of Discrete-Phase Normalized Estimator

#

sum_mean_ratio_sq := proc()

local tmpl, tmp2, result;

tmpl := expand( mean_ratio_sq.K );

tmp2 := subs( Gm(K)~2 = GM~2*(nframes/2), tmpl );
result := tmp2;

end;

L}

bias := simplify( ((2/nframes)*sum_mean_ratio_sq()) - GM~2 );

#
# Calculate Terms in MSE
#

sq_sum_mean_ratio_sq := proc()
local tmpl, result;

tmpl := sum_mean_ratio_sq();
result := expand( tmp1-2 );
end;

sum_sq_mean_ratio_sq := proc()

local tmpl, tmp2, tmp3, tmp4, result;

tmpl := mean_ratio_sq_K;

tnp2 := expand( tmpi~2 );

tmp3 := subs( Gm(K)“4 = GM"4*(qsum*nframes), tmp2 );
tmp4 := subs( Gm(K)“2 = GM~2«(nframes/2), tmp3 );
result := tmp4;
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end;

sum_mean_ratio_q := proc()
local tmpl, tmp2, tmp3, result;

tmpl := expand( mean_ratio_q(K) );

tmp2 := subs( Gm(K) "4 = GM~4*(qsum*nframes), tmpl );

tmp3 := subs( Gm(K)"2 = GM~2*(nframes/2), tmp2 );

result := tmp3;

end;

expected_quad_term := (4/nframes~2) * ( sum_mean_ratio_q()

- sum_sq_mean_ratio_sq() + sq_sum_mean_ratio_sq() );

mse := simplify( expected_quad_term - GM"4 - (2*bias*GM"2) );
#

# Simplify BIAS and MSE

#

bias := simplify( expand( bias ) );
mse := simplify( expand( mse ) );

bias_cO := simplify( coeff( expand( bias ), i0inv, 0 ) );
bias_c1l := simplify( coeff( expand( bias ), i0inv, 1 ) );
bias_c2 := simplify( coeff( expand( bias ), i0inv, 2 ) );
bias_c3 := simplify( coeff( expand( bias ), i0inv, 3 ) );
mse_c0 := simplify( coeff( mse, iOinv, ;
mse_cl := simplify( coeff( mse, iOinv, ;

mse_c2 := simplify( coeff( mse, iQinv,
mse_c3 := simplify( coeff( mse, iOinv,

) )
) )
) )
) );

’

W N = O

bias_c0 := expand( bias_c0 );
bias_cl := expand( bias_cl );
bias_c2 := expand( bias_c2 );
bias_c3 := expand( bias_c3 );

mse_cO := expand( mse_cO );
mse_ci := expand( mse_cl );
mse_c2 := expand( mse_c2 );
mse_c3 := expand( mse_c3 );
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bias_expr := bias_c0 + bias_cl*i0inv + bias_c2*(i0inv~2
mse_cO + mse_ci*i0inv + mse_c2+(i0inv™2) + mse_c3*(i0inv-3);
mse_expr - bias_expr-Z;

mse_expr :
Snr_expr :

bias_expr := expand( bias_expr );

expand( mse_expr );
expand( snr_expr );

mse_expr :
Snr_expr :

latex( bias_expr );
latex( mse_expr );
latex( snr_expr );

quit;
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Estimator D2:

read( visibility ):

#

# File: ac_mse

# Date: 19 Oct 88

# Author: John D. Gorman
#

ND := proc(k)
result := 1d(k) + dd(k);
end;

NS := proc(k)
result := ls(k) + ds(k);
end;

mean_diff := proc()
result := expectddds( expand( (0.5%i0inv)~1 * (ND(K)
end;

mean_diff_sq := proc()
result := expectddds( expand( (0.5%i0inv)~2 * (ND(K)
end;

mean_diff_t := proc()
result := expectddds( expand( (0.5*i0inv)~3 * (ND(K)
end;

mean_diff_q := proc()
result := expectddds( expand( (0.5%i0inv)~4 * (ND(K)
end;

expectddds := proc(X,K)

local i, result, t1, t2, t3;

option remember;

tl1 := X;

for i from 4 by -1 to 1 do

t2 := subs( ( dd(K) )"i = pem( 1d(K), 1 ), t1);
t3 := subs( ( ds(K) )~i = pem( 1s(K), i ), t2);
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t1l := t3;
od
end;

mean_diff_sq_K := expand( mean_diff_sq(K) );

#
# Calculate BIAS of Discrete-Phase Normalized Estimator

#

sum_mean_diff_sq := proc()

local tmpl, tmp2, tmp3, result;

tmpl := mean_diff_sq_K;

tmp2 := expand( tmpl );

tmp3 := subs( Gm(K)"2 = GM~2x(nframes/2), tmp2 );
result := tmp3;

end;

bias := simplify( ((2/nframes)*sum_mean_diff_sq()) - GM~2 );

#
# Calculate Terms in MSE
#

sq_sum_mean_diff_sq := proc()
local tmpl, result;

tmpl := sum_mean_diff_sq();
result := expand( tmp1~2 );
end;

sum_sq_mean_diff_sq := proc()

local tmpl, tmp2, tmp3, tmp4, tmp5, result;

tmpl := mean_diff_sq_K;

tmp2 := expand( tmpl-2 );

tmp3 := subs( Gm(K)"4 = GM"4*(qsum*nframes), tmp2 );
tmp4 := subs( Gm(K)"2 = GM~2*(nframes/2), tmp3 );
result := tmp4;

end;

sum_mean_diff_q := proc()
local tmpl, tmp2, tmp3, tmp4, result;
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tmpl := mean_diff_q(K);

tmp2 := expand( tmpl );

tmp3 := subs( Gm(K)"4 = GM"4*(qsum*nframes), tmp2 );
tmpd := subs( Gm(K) "2 = GM~2*(nframes/2), tmp3 );
result := tmp4;

end;

expected_quad_term := (4/nframes™2) * ( sq_sum_mean_diff_sq() - sum_sq_mean_diff,
mse := simplify( expected_quad_term - GM~4 - (2*bias*GM‘2) R
#

# Simplify BIAS and MSE

bias := simplify( expand( bias ) );

mse := simplify( expand( mse ) );

bias_c0 := simplify( coeff( expand( bias ), iOinv, 0 ) );
bias_cl := simplify( coeff( expand( bias ), i0inv, 1 ) );
bias_c2 := simplify( coeff( expand( bias ), iOinv, 2 ) );
bias_c3 := simplify( coeff( expand( bias ), i0inv, 3 ) );
mse_cO := simplify( coeff( mse, i0inv, 0 ) );

mse_cl := simplify( coeff( mse, ilinv, 1 ) );

mse_c2 := simplify( coeff( mse, iOinv, 2 ) );

mse_c3 := simplify( coeff( mse, ilinv, 3 ) );

bias_cO0 := expand( bias_c0 );

bias_cl := expand( bias_ci );

bias_c2 := expand( bias_c2 );
bias_c3 := expand( bias_c3 );
mse_cO := expand( mse_c0 );
mse_cl := expand( mse_cl );
mse_c2 := expand( mse_c2 );
mse_c3 := expand( mse_c3 );

bias_expr := bias_c0 + bias_c1*i0inv + bias_c2*(i0inv-2) + bias_c3*(i0inv~3);
mse_expr := mse_cO + mse_ci*i0inv + mse_c2*(i0inv-2) + mse_c3*(i0inv~3);
snr_expr := mse_expr - bias_expr-2;
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bias_expr := expand( bias_expr )
mse_expr := expand( mse_expr )
snr_expr := expand( snr_expr )

latex( bias_expr );
latex( mse_expr );

latex( snr_expr );

quit;
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Estimator C1:

#

# File: Nac_mse

# Date: 22 Aug 88

# Author: John D. Gorman
M 4

read( visibility ):

G := expand( (A -C)"2+ (B-D)"2);
Gsq := expand( G™2 );

tildeGA := expand( (tildeA - tildeC)~2 + (tildeB - tildeD)"2 );
tildeGAsq := expand( tildeGA~2 );

tildeGB := subs( tildeA"2 = tildeAsq, tildeGA );
tildeGBq := subs( tildeA~"4 = tildeAq, tildeGAsq );
tildeGBt := subs( tildeA~3 = tildeAt, tildeGBq );
tildeGBsq := subs( tildeA~2 = tildeAsq, tildeGBt );

tildeGC := subs( tildeB~2 = tildeBsq, tildeGB );
tildeGCq := subs( tildeB"4 = tildeBq, tildeGBsq );
tildeGCt := subs( tildeB~3 = tildeBt, tildeGCq );
tildeGCsq := subs( tildeB~2 = tildeBsq, tildeGCt );

tildeGD := subs( tildeC~2 = tildeCsq, tildeGC );
tildeGDq := subs( tildeC"4 = tildeCq, tildeGCsq );
tildeGDt := subs( tildeC~3 = tildeCt, tildeGDq );
tildeGDsq := subs( tildeC"2 = tildeCsq, tildeGDt );

tildeG := expand( subs( tildeD"2 = tildeDsq, tildeGD ) );
tildeGq := subs( tildeD"4 = tildeDq, tildeGDsq );

tildeGt := subs( tildeD"3 = tildeDt, tildeGq );

tildeGsq := expand( subs( tildeD"2 = tildeDsq, tildeGt ) );

[ B}
QQ
8 38
—~~
» W
~

tildeA := mean_ratio(1):
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tildeAsq := mean_ratio_sq(1):
tildeAt := mean_ratio_t(1):
tildeAq := mean_ratio_q(1):

tildeB := mean_ratio(2):
tildeBsq := mean_ratio_sq(2):
tildeBt := mean_ratio_t(2):
tildeBq := mean_ratio_q(2):

tildeC := mean_ratio(3):
tildeCsq := mean_ratio_sq(3):
tildeCt := mean_ratio_t(3):
tildeCq := mean_ratio_q(3):

tildeD := mean_ratio(4):
tildeDsq := mean_ratio_sq(4):
tildeDt := mean_ratio_t(4):
tildeDq := mean_ratio_q(4):

tildeGexp := expand( tildeG );
tildeGsqexp := expand( tildeGsq );

bias := tildeGexp - G;

sqterm := tildeGsqgexp - Gsq;
oterm := expand( 2 * G * bias );

mse := sqterm - oterm;

#

# Simplify BIAS and MSE
#

bias := simplify( expand( bias ) );
mse := simplify( expand( mse ) );

bias_c0 := simplify( coeff( expand( bias ),

bias_cl := simplify( coeff( expand( bias ),
bias_c2 := simplify( coeff( expand( bias ),
bias_c3 := simplify( coeff( expand( bias ),

mse_cO0 := simplify( coeff( mse, i0inv, 0 ) );
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mse_cl :=
mse_c2 :
mse_c3 :

bias_c0 :=
bias_cl :
bias_c2 :
bias_c3 :

mse_cQ :
mse_cl :
mse_c2 :
mse_c3 :

bias_expr
mse_expr :
Snr_expr

bias_expr
mse_expr
snr_expr

latex( bia
latex( mse

latex( snr

quit,

simplify( coeff( mse, i0inv, 1) );
simplify( coeff( mse, i0inv, 2 ) );
3))

simplify( coeff( mse, i0inv,

’

expand( bias_c0 );
expand( bias_cl );
expand( bias_c2 );
expand( bias_c3 );

expand( mse_c0 );
expand( mse_ci );
expand( mse_c2 );
expand( mse_c3 );

:= bias_c0 + bias_c1#*i0inv + bias_c2*(i0inv~2) + bias_c3*(i0inv"3);
= mse_c0 + mse_cl*i0inv + mse_c2*(i0inv~2) + mse_c3*(i0inv~3);

:= mse_expr - bias_expr-2;

:= expand( bias_expr );

:= expand( mse_expr );
:= expand( snr_expr );

s_expr );
-expr );
-expr );
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Estimator C2:

#
# File: ac_mse

# Date: 22 Aug 88

# Author: John D
#

. Gorman

read( visibility ):

ND := proc(k)

result := 1d(k) + dd(k);

end;
NS := proc(k)

result := 1s(k)
end;

G := expand( (A

+ ds(k);

-c)"2+ (B-D)2);

Gsq := expand( G2 );

tildeG := expand( (tildeA ~ tildeC)"2 + (tildeB - tildeD)"2 );
tildeGsq := expand( tildeG"2 );

Gm(1);
Gm(2);
Gm(3);
Gm(4) -

oD ow>
Wwon

nonn
O O OO

tildeA :
tildeB :
tildeC :
tildeD :

;oo
®* % ® *

ioinv * (ND(1) - NS(1));
ioinv * (ND(2) - NS(2));
ioinv * (ND(3) =~ NS(3));
ioinv * (ND(4) - NS(4));

expectddds := proc(X)
local i, j, result, ti, t2, t3;

option remember;
t1 = X;

for i from 4 by
for j from 1 by

-1 to 1 do
{1 to 4 do

£2 := subs( ( dd(j) )i = pem( 1d(j3), 1), t1);
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t3 := subs( ( ds(j) )"1i = pem( 1s(j), 1), t2 );

tl = t3;

od

od

end;

tildeGexp := expectddds( expand( tildeG ) );

tildeGsqexp := expectddds( expand( tildeGsq ) );

bias := tildeGexp - G;

sqterm := tildeGsqexp - Gsq;

oterm := expand( 2 * G * bias );

mse := sqQterm - oterm;

#

# Simplify BIAS and MSE

#

bias := simplify( expand( bias ) );

mse := simplify( expand( mse ) );

bias_cO := simplify( coeff( expand( bias ), iOinv, 0 ) );
bias_cl := simplify( coeff( expand( bias ), iOinv, 1 ) );
bias_c2 := simplify( coeff( expand( bias ), iOinv, 2 ) );
bias_c3 := simplify( coeff( expand( bias ), i0inv, 3 ) );
mse_c0 := simplify( coeff( mse, iOinv, 0 ) );

mse_ci := simplify( coeff( mse, iOinv, 1 ) );

mse_c2 := simplify( cc2ff( mse, i0inv, 2 ) );

mse_c3 := simplify( coeff( mse, iOinv, 3 ) );

bias_c0 := expand( bias_c0 );

bias_c1 := expand( bias_ci );

bias_c2 := expand( bias_c2 );

bias_c3 := expand( bias_c3 );

mse_c0 := expand( mse_cO );

mse_cl := expand( mse_cl );

mse_c2 := expand( mse_c2 );

mse_c3 := expand( mse_c3 );




bias_expr := bias.cO + bias_c1#*10inv + bias_c2#(i0inv-2) + bias_c3*(i0inv~3);
mse_expr := mse_c0 + mse_cl*i0inv + mse_c2*(i0inv~2) + mse_c3*(i0inv~3);
Snr_expr := mse_expr - bias_expr-2;

bias_expr := expand( bias_expr );
mse_expr := expand( mse_expr );
snr_expr := expand( snr_expr );

latex( bias_expr );
latex( mse_expr );
latex( snr_expr );

quit;

A-22




APPENDIX B

Lower Bounds For Parametric Estimation

with Constraints

John D. Gorman
Alfred O. Hero

Reprinted from
IEEE TRANSACTIONS ON INFORMATION THEORY
Vol. 36, No. 6, November 1990

T-IT 36:6 38001




IEEF TRANSACTIONS ON INFORMATION THEORY. VOL. 260 80 6 SOVEMBER 199)

1283

Lower Bounds For Parametric Estimation
with Constraints
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Abstract —A Chapman-Robbins form of the Barankin bound is used
to derive a multiparameter Cramer-Rao (CR) type lower bound on
estimator error covariance when the parameter 8 € =" is constrained 1o
tie in @ subset of the parameter space. A simple form for the constrained
CR bound is obtained when the constraint set ) can be expressed as a
smooth functional inequality constraint, &), = {8. ., < )). We show that
the constrained CR bound is identical to the unconstrained CR bound at
the regular points of €, . i.e. where no equality constraints are active.
On the other hand. at those poinis 8 € ), where pure egualits con-
straints are active the full-rank Fisher information matrix in the uncon-
strained CR bound must be replaced by a rank-reduced Fisher informa.
tion matrix obtained as a projection of the full-rank Fisher matrix onto
the tangent hyperplane of the constraint set 3t 8. A necessary and
sufficient condition involving the forms of the constraint and the likeli-
hood function is given for the bound to be achievable. and examples for
which the bound is achieved are presented. In addition to providing a
useful generalization of the CR bound. our results permit analysis of the
gain in achievable mse performance due to the imposition of particular
constraints on the par space with the need for a global
reparameterization. For the purpose of illustration. we apply the con-
strained bound to problems invoiving linear constraints and quadratic
constraints. Specific examples considered include: linear constraints for
G ian linear models, object support constraints in image reconstruc-
tion. signsl subspace constraints in sensor array processing. and aver-
age power constraints in spectral estimation and signal extraction.

Index Terms —Constrained estimation, Cramér-Rao bounds, multiple
parameter spectrum

1. InTRODUCTION

HE MULTIPLE PARAMETER Cramér-Rao (CR)

lower bound is widely used to investigate the funda-
mental limits on estimator performance in multidimen-
sional parameter estimation problems. and in single pa-
rameter estimation problems involving unknown nuisance
parameters. The CR bound or estimator error covariance
is computed as the inverse of the Fisher information
matrix premultiplied and postmultiplied by the gradient
of the mean vector of the estimator. Although eiementary

Manuscript received April 26. 1989; revised November 27. 1989, This
work was supported in part by the Office of Naval Research under
contract NOOO14-86-C-0587 and 1n part by the National Cancer Institute
of the Nauonal Institutes of Health. DHHS. under PHS Grant ROI-
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ASSP Workshop on Spectrum Estimation and Modeling. August 1988
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Computer Science. University of Michigan, Ann Arbor. MI 48109 and
also with Environmentai Research Institute of Michigan. Box 8618, Ann
Arbor. M1 38107-58618.

A O Hero 1s with the Department of Electrical Engineering and
Computer Science. Unwversity of Michigan. Ann Arbor, MI 48109.

1IEEE Log Number 9038001,

derivations. for instance {27, Section 2.4). may not exphe-
itly make the assumption. the CR bound 1s tvpically
derived under the assumption that the parameter space 1s
an open subset of =" [13. Section 1.7]. Frequently. how-
ever, the parameter is constramed to lie 1n a proper
non-open subset of the original parameter space. Some
examples are: bandwidth. support. and positivity con-
straints in phase retrieval [S). [9] and tomographic recon-
struction [24]. [29]: kernel-sieve constraints in probabuility-
density estimation [25); array geometry constraints in
estimation of coupled times-of-arrival across multiple-
sensor arrays {28): and auto-correlation lag constraints in
maximum-entropy spectral analysis and image reconstruc-
tion [23]. Constraints restrict the allowable parameter
variations and hence the local structure of the log-likeli-
hood function over the constrained parameter space mas
be changed. Specifically. the average curvature of the
log-likelihood function. and in particular the Fisher infor-
mation matrix. may be affected. thereby invalidating the
unconstrained CR bound.

We present a multiparameter CR type bound for para-
metric estimators when the vector parameter 8 is con-
strained to lie in a subset O, of ®". We refer to this
bound as a constrained CR bound. The constrained CR
bound is derived directly from a version of the Barankin
bound: the multiple parameter Chapman-Robbins bound.
The tightest such Barankin bound 1s nonincreasing as ¢,
decreases. Thus, in general. a bound reduction occurs as a
result of incorporating constraints. When @ is a noniso-
lated point in a locally convex region of ©.. and the
log-likelihood function is smooth. the constrained CR
bound depends on ©, only through the linear span ot a
set of basis vectors for the region. When the constraints
on the parameter take the form of smooth functional
inequality constraints £, <0 more explicit results are
obtained. Specifically. let the inequality constraint be
decomposed into a finite vector of equality constraints
G, =0 and a finite vector of pure inequality constrainis
H, <0 (defined in Section 11-C). Then the constrained
CR bound is obtained by implementing the classical un-
constrained CR bound with a different “constrained™
Fisher matrix. The structure of the constrained Fisher
matrix depends on whether or not 0 is a regular point of
©c. where a regular point is a point where no equality
constraints are active. As examples. points on the interior
and points on the boundary of open regions in O, are

0018-9448 /90 /1100-1285801.00 € 1990 IEEE
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regular points. [t is shown that it 8 is a regular point then
the constrained Fisher matnix s 1dentical to the uncon-
stramed Fisher matrin tor that point. Conversely, if 8 18
not a regular pomnt. the constrained Fisher matrix i« the
product of the unconstrained Fisher matnx and a 8-de-
pendent.  rank-deficient.  idempotent  matrix - whose
columns span 4 hyperplane that s tangent to the con-
stramt set at 8.

The constrained CR bound presented here has the
following attnibutes.

* For range constraints. orthant constraints. positivity
constraints. and any other constraint sets €, with no
inolated boundanes. the constrained CR bound s
dentical to the unconstrained CR bound restricted to
6. Hence the incorporation of these types of con-
straints provides no CR bound reduction.

For constraints which restrict 8 to a lower-dimen-
sional manifold of parameter space. e.g.. through
active equality constraints of the form G, = 0. the
unconstrained CR bound is invalid and a reduced-
rank Fisher matrix must be used.

While an equivalent lower-dimensional uncon-
strained parameter estimation problem can some-
tmes be specified via a reparameterization of param-
eter space. such a global reparameterization is not
necessary for the computation of the constrained CR
bound. Rather, the constrained CR bound only de-
pends on the local properties of the constraint set
through its tangent hyperplanes. Since the tangent
hyperplanes can typically be computed much more
easily than can a global reparameterization of param-
eter space. the amount of bound reduction due to
particular constraints is more easily analvzed.
Conditions under which the constrained CR bound is
achieved are similar to those required for achieve-
ment of the unconstrained CR bound. Examples are
provided for which the constrained CR bound is
achievable.

The following geometrical interpretation is helpful in
interpreting the effect of constraints on the CR bound.
The Fisher information matrix J, being the expected
value of the Hessian matrix of the (n-dimensional) log-
likelihood surface at 8. can be related to the average
curvature of the log-likelihood surface at 8 along n differ-
ent directions in 2. Thus the unconstrained CR bound is
a function of the variation of the likelihood surface over
an n-dimensional neighborhood of 8. When the parame-
ter constraint G, = 0, u € R". is introduced, local parame-
ter variations will generally be restricted to lie in a lower
dimensional neighborhood. This neighborhood is con-
tained in the linear vector space which is tangent to the
constraint set {u: G,=0) at the point u=8. As the
parameter varies over the lower-dimensional neighbor-
hood. only certain “constrained” trajectories are tra-
versed on the likelihood surface. Thus the average curva-
ture of the surface appears different for the constrained
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parameter. as compared to the unconstrained parameter
for which all local trajectories are allomed. This results in
4 change in the associated Fisher intormation matrin and
a difterent CR bound. This construined CR bound dc-
pends on the constraint set only through its tangent space
at the pont 8.

It s interesting to note that tangent space approxima-
nons 1o subsets of parameter space drise In gencrdl
assmptotic statistical theorns [13]. [19] and specttic applica-
tons have appeared in the statistical hterature. For exam-
ple tangent spaces arise in: the study (7] of the asvmptotie
distribution of the likelihood ratio for tesung composite
hypotheses involving smooth boundaries: the studs (18] o
the asvmptotic distribution of a specific esumator arising
In a composite detection problem with nequahn con-
straints on the unknown parameter: the study {4] ot
asymptotic efficiency of estimators in partially parametnic
models; the study (1] of the assmptotic distnibution ot
maximum likelihood estimators subject 1o cquality con-
straints. Whiie the study of finite sample CR bounds and
the study of asymptotic properties of esttmators have
points in common, it is important to distinguish between
the results of this paper and the aforementioned refer-
ences. First. our result is a general finite sample CR lower
bound on estimator covariance for fullv parametric mod-
els. Second. the bound s of & simple and cxplicit torm
which is useful for studving the impact of particular
parameter constraints on estimation ¢rror covaridnee.
Third. while the CR bound holds for any estimator whose
mean is smooth. the CR bound is not applicable to cases
where the estimator has a nondifferentiable mean. such
as the estimator considered in [18). Furthermore. since
the bound is a fimte sample bound on covariance. meth-
ods of large sample theory are not needed for our derna-
tion permitting a more elementary, and therefore more
accessible. presentation.

To illustrate the utility of the constrained CR bhound.
we investigate the effect of constraints on the achievable
estimator error for several representative problems in
signal processing. First we consider the problem of esu-
mation of parameters subject to linear constramts in the
general linear Gaussian model. For this probiem the
tangent hvperplanes of the constraint set are functionally
independent of the parameter 0. and hence the con-
strained CR lower bound can be achieved by projectuing
the unconstrained minimum variance unbiased (MVL)
estimator onto the tangent hvperplane. The amount ot
bound reduction depends on the rank of the projection of
the covariance matrix of the unconstratned MVU onto
the linear constraint subspace.

Second. we consider the problem of image reconstruc-
tion subject to support constraints on the mmage. The
constrained CR bound is equal to the pseudo-inverse of a
constrained Fisher matrix. obtained by zeroing out the
rows and columns of the unconstrained. Fisher intorma-
tion matrix which are associated with estimator errors
outside of the region of support. It is sigmificant that this
is not generally the same as zeroing out rows and columns
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of the unconstrained CR bound. unless the image pixels
are statistically independent. This establishes that. if an
efficient estimator of the unconstrained image exists. ze-
roing the unconstramned efficient estimator outside of the
support region does not. in general. provide an efficient
constrained estimator.

Third. power spectral density (PSD) estimation subject
to average power constraints over disjoint frequency in-
tervals, called frequency bands. is considered. For the
case where the unconstrained Fisher information matrix
is diagonal, corresponding to large observation time, it is
shown that the constrained Fisher matrix is block diago-
nal. This means that average power constraints effectively
couple the PSD estimation errors over a particular fre-
quency band. but do not couple errors across different
frequency bands. Within a particular frequency band
where average power constraints are active, our results
indicate that bound reduction is greatest over frequency
bands where there are highly resolved spectral peaks.
while there is virtually no reduction over bands where the
true spectrum is smooth. This suggests that average power
constraints make peaks easier to estimate but have little
impact on the estimation of the rest of the spectrum.

Fourth. the estimation of the eigenvalues of a struc-
tured covariance matrix subject to signal subspace con-
straints is considered. We put this problem in the context
of estimating the eigenvalues and eigenvectors of the
array covariance matrix when it is known a priori that p
of the eigenvalues. the “signal dependent eigenvalues,”
are larger than the remaining eigenvalues, the ‘“noise
eigenvalues,” and that these latter eigenvalues are identi-
cal. When the unconstrained Fisher matrix is block diago-
nal. the constrained CR bound can be achieved by averag-
ing the noise eigenvalues of an efficient unconstramed

estimator, if one exists.

Finally. we consider the problem of estimation of a
deterministic time varying signal. and its Fourier trans-
form. subject to average power constraints applied to its
spectrum (squared Fourier magnitudes). Unlike the PSD
estimation problem previously mentioned, here the con-
straints on the parameters (the signal) are nonlinear.
Nonetheless, it is shown that if the unconstrained Fisher
information is an identity matrix, e.g., corresponding to
observation of the signal in additive-white-Gaussian noise,
the structure of the constrained Fisher matrix is identical
to the structure found in the PSD estimation problem,
with the signal spectrum taking the place of the PSD.

An outline of the paper is as follows. Section Il is
divided into several subsections. In Section [I-A a
Barankin lower bound on the estimator covariance is
given for general constrained parameters. In Section [I-B
the constrained CR bound is derived from this Barankin
bound for locally convex regions of the constrained pa-
rameter space O¢. In Section II-C the constrained CR
bound of Section [I-B is extended to the case of smooth
nonlinear functional inequality constraints. In Section II1,
examples of the implementation of the constrained CR
bound are presented.

11. Lower Bounps on THE ERROR COVARIANCE

Throughout the paper the notation 8 and [8],_, , will
denote a column vector. [8,.--.6,)". of unknown param~
eters contained in the unconstramed parameter space
@ = =" For a particular value of the vector 8 we specify a
probability distribution P, governing the observations X.
taking values x in a sample space Q. The collection of
probability spaces <& ={().. 7. Pgllg. defines a @-
indexed set of possible models for X. and is called a
stausuical experiment over O. If it is known that 6 1is
restricted to a subset of O. called the constrained param-
eter space O, . the relevant statistical experiment becomes
the reduced set of models & ={(Qd. 5. Pyllgc o, - In this
context. the constrained parameter estimation problem
can be stated as follows: given a statistical experiment <
a random variable X is observed which has dnsmbuuon
P, the objective is to specify an estimator 8=06(X)c0
for the parameter vector 8. Define the vector mean

m.d——e-(E,{é) of 8. where E, denotes expectation with re-
spect to the distribution P,. The objective of this paper is
to investigate the impact of parameter constraints on
bounds for the minimum estimation error. where error is
measured by the covariance matrix

def

3, =E((° ’"o)(o m,) }

We say that a matrix B is a lower bound on a matrix 4 if
A 2 B in the sense that A — B is nonnegative definite.

(1)

A. A Multiple Parameter Barankin Bound

We first present a Chapman-Robbins version of the
multiple parameter Barankin lower bound on the covan-
ance matrix X, for the case where 8 € ©.. Unlike the CR
bound, the Barankin bound requires no regulanty condi-
tions on the distribution P,. To achieve a unified treat-
ment of the cases of continuous and discrete random
variables X, we let P, have a density function fq = f(x)
with respect to some reference measure u. Pyl A=
fafedu. where P A) is the probability that A € 4.
A€ . For a continuous sampie space (1 the previous
integral can be interpreted as the standard (Lebesgue}
integral over A. while for discrete . u is the counting
measure and the integral can be interpreted as a sum over
elements x € A.

For arbitrary vectors w,.---.v, € R" and scalars
A,,---.4, €R, define the scalar and vector finite differ-
ences, &, f, and §,m,. of the dersity function and of the
mean vector for 8. respectively, which are produced by a
change in the underlying parameter from the point 8 to
the point 8 + A v :

def fo».\ v, fa

Y A AR LA 2
lf. A, ( )
8m, '""";- il (3)

These finite differences are the variations in f, and m,
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along the directions of the vectors w,.---.v,1 a set ot
vectors which are henceforth referred 10 as direcuion
vectors. Define the row vector of & fimite differences.

T EN AR A ) (4)

and the 7 x A matnix of fimite differences

det

dmy = [8,mg. - .6, mg). {3)

With these definitions we have the tollowing multiple
parameter Chapman-Robbins version of the Barankin
bound [6]. {17) when 8 1s constrained to lic in the set €.

Proposition 1: Let the k + 1 vectors 8.6 ~ Awv,. - -8~
A,v, be arbitran points contained in the constrained
parameter set O, =" Then for any estimator 6 having
mean m,. the eslmator error covariance matrix X, satis-

fies the matrix inequaiity

3,= B (6}
where
51 7 5 -
B, =[ém,]- EO[Z—O} [_E“ ~[6m‘]r. (7)
fe fs

and the plus sign denotes pseudo-inverse. Equality holds
in (6) if and only if there exists a nonrandom n X k matrix
I" such that the estimator 8 satisfies

. 5]
0—m,=r[—f&] (w.p.1). (8)

[}
In Proposition 1. the pseudo-inverse of a matrix A4 is
defined as the unique matrix 4~ that satisfies the
Moore-Penrose conditions [2. Ch. 3]. [21, Section 1.bS]:

1} A4~ and A4~ A are symmetric.
2 A1TA= A, ‘
HA4A4°=A4". (9)

The conditions 1)-3) are a statement of the fact that
AA~ and A"A4 are projection operators onto the range of
A and A~ respectively. Pseudo-inverses always exist. are
continuous under certain conditions [26}, and if A4 is
invertible 4~ = 4"".

Before proving Proposition 1, we make the following
observations. Since onlv a pseudo-inverse is required for
the bound B, of Proposition 1. the covariance matrix,
Eql8f5 7 fo) 1314 / fo). Of the finite difference vector does
not have to be invertible. This general form is necessary
for the present application since parameter constraints
can reduce the rank of the covariance matrix. In view of
the definition (4) of the fimte difference vector &f, the
bound (6) is a measure of the variation of the probability
density f, relative to the set of “test” points 8+
Aw,. .8+ 3, v, which are arbitrarily specified in the
constrained parameter space ©.. On the other hand.
since ©, € ©. it is obvious that

max 8, = max 8,
“ 9,

where each maximization is performed over the set of
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admissible test points in the parameter space. Hence
constraining the parameter space can only reduce the
tgreatest) lower bound of the form (6). Thus 1t s clear
that some bound reduction can occur due (0 INCOTPOrd-
tion of parameter constraints. Due to the ditficulny n
finding the best test vectors for (6). however. the amount
ot bound reduction is difficult to quanufy in general. In
the next section we will derive a constratned CR bound s
a hminng form of the bound (6) for which the impact ot
constraints will be much easier to evaluate.

The proof of Proposition 1 depends on the following
generalized version of the Cauchy-Schwarz inequaliy.

Lemma I: Let U € =" and V' € =* be random column
vectors. Then

EfUUT) 2 EffLVTI Eo(11 Y] Eof3T7).

where the plus sign denotes pseudo-inverse. Moreover.
equality holds if and onlv if there is an n x kA nonrandom
matrix [ such that U=T} wp.l.

Note that if the k& x k matrix E, 3% 7} is nonsingular.
the matrix inequality (10} 1s the standard Cauchy -Schwarz
inequality for random vectors.

(1

Proof of Lemma I: Define the =""* vector Z=
[UTVTY. Then EfZZ7) > 0 implies the matrix inequality

T T
EO{ZZT}=E.{[(;_{"T f:.r]}z()-

Let D be the n x(n + k) partitioned matrix
D=1~ EQU T E1v )] 7]

where / is the n % n 1dentity. Since EZZ7} is symmetric
and nonnegative-definite. it has a nonnegative square
root: EWZZT)=E, (ZZT)E{ *1ZZ7). Thus. DE4z2')
D" =[DE, {ZZ")I DE, *{22"})" 2 0. and use of prop-
erty 3) of (9) results in
EfUUTY - EUVTIEfWT}] T Ef3T 7120,
This equation can be reexpressed as E (L ~ T4 X} —
def
TV)7) 2 0. where ['= E(LV 7 ES¥ 711", Equality holds
if and only if the eigenvalues. A,. of the matrix E (U ~
TV XU -TV)} are zero. Furthermore. the nonnegative
definiteness of this matrix implies that A, = -~ = A =10
if and only if 0=3A =t EHU-THXV ~T1)}]=
EJ(U =TV (U - TV)). Hence, equality holds in (10) if
andonly if U=TV w.p.l. -
Using the previous Lemma, Proposition 1 is proven
next.

Proof of Proposution 1: Define the n-vector L and the
k-vector V'

det ~
U=0-m,.

(7]
o]

where m, is the mean vector of 8 and 8, 1s the vector of
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finite differences defined in (4). With these definitions.
application of Lemma | gives a lower bound involving the
pseudo-inverse of the & x A matrix Eg¥¥ ') and the
kx n and n x k matrices E}L ') and EJLV' ). respec-
tivelv. If it can !¢ shown that Eo{l1' '} = 6m, Proposition
I would be established. Consider the ;th column of
E L1 7} and recall the definition (4) of 4f,.

[E(v7")]. = E, [e m,]“o
f - fu-.\u'fo\
=E°l[0_m°]T/

_ Ey.s v{e - ';'o}' Eo{é_ ’"o}

a,
Mo.y, — My
A/
=6,m,. a

B. The Constrained CR bound

We first obtain a constrained CR bound for locally
convex O, directly from the bound (6). We then show
that the same bound holds for points 8 € ©. at which 0,
can be approximated by a union of locallv convex sets.
These results are then used in Section H-C to construct
CR bounds when €, is specified by continuously differ-
entiable functional constraints.

Let 0 and the k linearly independent test vectors
8+3dw,. --.0+2,v, be contained in the reduced pa-
rameter space O for all sufficiently small A,,i=1.--- k.
Such test vectors can always be found for points 8 that
are in locally convex regions of ©, with dimension at
least k. Assuming the exchange of limiting and expecta-
tion operations is valid. the limit of the bound B,. (6) of
Proposition 1, as A, = 0.i=1,- .k, gives a bound which
depends only on the directional derivatives, lim, _,3$,f,
and lim, _,8,m,. of fy and the mean vector, m,, along
the directions of the vectors v, i = 1,- - -, k, at the point 0.
Specifically. by the chain rule we would have:
limy 3 ~u8fs=Vf,K and lim, , _,ém,=Vm,K,
where K =[v,.---,v.] is the nXx k matrix of direction
vectors: Vfy is the 1 X n (row-vector) gradient of f,; and
Um, is the nx n matrix whose rows are the gradient
vectors associated with each scalar component of m,. If
we could substitute the above limiting expressions into
the right-hand side of (6) we would obtain

3,2 [CmK[KT1,K] KT [%m,].

a7 7))

= E{[vnf,) [Tinf]} (12)

is the n x n Fisher information matrix. Under appropriate

(1m)

where
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regularity conditions [13. Lemma 8.1). [27. Section 2.4].
the Fisher matrix is equivalent to

Jo=~ E.{vzln fol-

where T In f, 1s the Hessian matrix of partial derivatines
of In f, with respect to elements of 8. This motivates the
following lemma.

Lemma 2: Let the vector 8 be in the constrained
parameter space ©,.cC =", and let {v}' | be k linearh
independent vectors such that 8 — A v, € O, for all sutfi-
ciently small A, > 0. ¢ =1, - -.k. Then for any estimator @
having mean m,. the estimator error covariance matrix
I, satisfies the matrix inequality

(13)

limsup B,. {14}

Ay LA, =0

det
< =
i,28B =

where B, is the bound (6) of Proposition 1. If in addition
the following four regularity conditions hold:

* @ has finite variance: var {8,) < x: (15)

* fo has continuous partial derivatives: (16)

al al
. .“ nf._nf. <x; (17)

\| 98, a8,
* the matrix £,{[ ¥V In £,]7[ ¥ In £,]} is positive definite:
(18)
then

B =[Vm,)A[AT)yA] AT[Vm,] . (19)

where Jg is the positive definite n X n Fisher matrix (12).
and A is any n X n matrix whose column space equals
span{v,, - -,v,}. Under these regularity conditions, equal-
ity is achieved in the lower bound (14) if and only if there
exists a non-random s X n matrix " such that:

6-m,=TA'[VInf,]" (wp.1). (20)

If such an estimator @ exists. this estimator is called an
efficient constrained estimator.

Proof of Lemma 2: By assumption, 8 + A,v,.---.0 ~
A,v, are contained in @, for all A, sufficiently small.
i=1.---,k, and the bound (14) fellows directly from the
Barankin bound of Proposition 1.

The regularity conditions (15)-(17) ensure that the
Fisher matrix J, (12) exists and has bounded elements
{13, Section 1.7], and condition (18) says that J, is positive
definite.

We first denve the limits as A,.---.4, =0 of the

matrices E,[N'] [6’ '] and dm, under the stated regular-
ity conditions of Lemma 2. Define A = max,l.&,.. Let K

be the n X k matrix with columns v,.- - -.v,. By condition
(16) and the chain rule

é 1
lim ._flg—Vf,K
AL LA, =0 fg P
=VinfK
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From this, and the stated conunum of Vin f,. condition

(16). the yth element of M’] [ ] is dominated by

tinty *int
Tn . . .
Ko —

- =

prab K, = O(3). which has finite ex-

pectation by condition (17). Hence. by dominated conver-
gence [3. Theorem 16.4]. we have the finite limit

_ 5fs ofy
3. “.m.s.~n5 [ fe } [fo }

= K'Ef(Tinf) [V Infp]}K
=KTJ,K. 2y
Next consider the n x A matrix

Mmy.,, — My
6m°= PR —
] y=1 '

y=1. .4

fo-av — fo 1“‘]

where the last equality results from the identity E, 07/3 =
]

0. Now from condition (16) the elements of the nx k
matrix 9~ my)éf,/fy are equal to the elements of
(8 - my)¥ In f,K to order O(A). The Schwarz inequality
and the regularity conditions (15) and (17) can be used to
establish that the elements of the latter matrix have finite
absolute expectation

(Eg{(8-my)¥Infy)}, |=

{6 -tm)) 52 )

. din f, :
172 V20 i)
< var'/?{6 }E, { %, }
<,
Hence. by dominated convergence. the limit
lim om,
A, LA =0
exists and is equal to the finite matrix
. Vfy
lim  6my=E, 80— K
A A = e '{ fo }
=VE,{0}K
=Vm,K. (22

Since the columns, {v)%,, of K are linearly indepen-
dent, by condition (18) K7J,K is a full rank invertible

B-7

KINANTRLNRNTIN ANV A L

matrix and [K/J,K ] ={K'JgA ] Since the matrnn
K 114K 1s symmetric and positive definite the cigenvalues
of the perturbed matrix K 'JyK = E are posine tor
sufficientty small matnix perturbation £ [12. Corollun
6.3.4]. This implies that the inserse of A 7oA 18 conunu-
ous 1n perturbations of its elements

YAUrIAN o -
‘E,[}—_s-] {f—:“ =K'k = 03]

=[K'JK] =oth. (23

where O(A) and o(1) are matrices whose elements arc ot
order O(J) and of order o(1). respectively. In view ot (21}
we therefore have

limsup B, = im  [ém,]
A, A, =0

Lo (s )

lim  [am,)"
A, LA, =0

=[Tma)K[KJ,K] KT[tmy]. (24)

It remains to show that the bound (24) depends oniv on
the range space of K =[v,.---.v,]. Let A be an nxn
matrix whose column span is identical to the span of
v,. . -.¥.. Since the column spaces of 4 and K are
identical, there exists an invertible n x n matrix T such
that

[K O] ]T= A
where O, is an n x{n - k) matrix of zeros. Let O. and

O, be (n—k)x(n-k)and k x(n ~ k) matrices of zeros.
respectively. Then,

Al AT1,A] " A7

-5 orfr|grlux our| 5]
- (K 0,]“’5?]&“ o.]}‘{g;}

EN

K'l,k 0, [kT
=K O [ 1
(ko ol o, [01’}
-[k 0] [KJK]™ o, |[K7
Yot o.|107
=K[KTJ,K] KT,

where the second equality follows from (65) of Lemma $
in the Appendix.

The condition for equality in the bound (14), under the

regularity conditions (15)-(17). can be obtained by mak-
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ing the idenuifications U=(8-8). 1= K'[Vinf,}) in
Lemma 1. veritang that the nght side ot the resultant
hound (1)) 18 idenuical to the night side of the bound (14)
and mvohing the necessan and sufticient condition tor
cquahity in (I U= UV tor some & » o matry £ This

gnes:
b-m,=(K'[Tinr,]" (wpi)

Since A has the idenucal column span as AL the above s
equinalent to condition (2th. -

The constrained CR bound (19 ot Lemma 2 v in a

general form that is apphicable to nonisolated points 8 1n
locally conves regions of the parameter space €. Tt s
significant that. unlike the Barankin bound of Proposition
1. the constrmned CR bound (19) only depends on the
test poimts through the span of the set {v,.---.v.} In
particular. when € 1s only p-dimensional in the neigh-
boarhood of 8. and p <. all p-dimensional sets of test
points are equivalent 1n the sense that the limit (19) of the
Barankin bound is the same.

The construction of Lemma 2 requires that ¢, be
locally convex or star-shaped in the neighborhood of 0.
Lemma 2 can be extended to include nonisolated points
in regions of O, that have the property that local neigh-
borhoods can be approximated to order o(d) by locally
convex neighborhoods. The result is the following lemma.

Lemma 3: Let the vector @ be in the constrained
parameter space O, =", and let {v ]}’ , be & linearly
independent vectors such that 6 + A v, - o3 )€ O for
all A, sufficiently small. t=1.---. k. where o(d ) is a X"
vector whose fength is of order o(3,). Then the conclu-
sions of Lemma 2 remain valid when the vectors 8 ~ A v,
are replaced by 8 ~ A v +0otd ), 1=1."- - k.

Proof of Lemma 3: Similarly to (2). let 8'f, denote
the k-length vector of scalar differences 48°f,
[ fg." .8, fs] where

l-‘:" f0~.\ R TEY »_fo

-
3 (25)

8/fe
Define 8'm, similarly. Let B, denote the Barankin bound
of Proposition 1 formed with the & test points {8 ~ A v, +
o(d)) .0+ 13 v, ~0l],)). We need to establish that
the limits limsup,, , ., B and limsup, , _,B,(14)
are identical.

By assumption (16) f, s continuous and therefore:
fo-sv-os,=lo.3, =003 In view of (25) this implies

8'fy B 1
fo

o

fo-so = fo 0lA)
-\' A' + =} LA

o(A,)}
LT N )

4,
Using the definition of the Fisher matrix and the continu-

=TInf,K +o(1).

1291

VORT RO BOU NN PR PARAMITRE ENSTINIATHON WITHH CONSTR ANTS

ity of the inverse of the full rank matrix A /4K
7 o
&'f,

(5] 17

Ty
where ot1) s a matnix that has of]) entries that go to zero
as the s go to zero. In a similar manner it can be shown
that é'my = YmgKh ~ ot1). which. when tshen with

(26). imphes B, = B ~_(_)(]). This establishes the lemma.

8y -
= {KJK = o(1)]

fa

=[K'JK] =0t (26)

C. Functional Constraints

Often the constrained parameter space ¢ can be
defined in terms of an implicit functional inequality con-
straint of the form

Lo <0,

(27)

where ¢ =[£".---..¢9) is a vector funclion on =",
£ 27— 24 and the inequality is to be interpreted ele-
ment by element. We will assume that the inequahity
constraints are consistent. i.e.. there exists at least one
8 =" that satisfies (27). and that .¢ 1s conunuously
differentiable in the sense that the ¢ X n gradient matnx

a5y sy
A To, a8,
Th=| 0 |=| ¢ : (28)
vool | ass b.£2
o8, a6,

exists and has continuous elements.

With the parameterization (27) of ©. the boundary of
O is defined as the set of points where at least one
component, .£,. of the vector function .£, is equal to
zero. The interior of G is defined as the set {8: £, < 0),
where the strict inequality means .£' <0. for each i =
l.---.q.

Note that equality constraints can be imbedded in (27)
bv letting £, = —.¢, for some i.j. i = j. It 15 customary
to extract the equality constraints from the inequality
constraints (27), denoting what remains as pure nequality
constraints. This vields the equivalent description of O,

G,=0. (29)
Hy <0, (30)

where G=[G'.---.G*)" and H=[H'.-- . H') are vec-
tor functions of 0.G: R" = R* H: B" = &' We will say
that the equality constraint (29) is acuee if it restricts 0 to
a lower dimensional subset of R”. Otherwise the equality
constraint is said to be inactice.

The decomposition (29) and (30) is accomplished by
partitioning the constraint set ©, into a set of regular
points and nonregular ponts.
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Defiminton [16. Secuon Y.4]: The point 8 € =" is called
a regular point of the inequality .£4 < 0 (a regular point of
the constraint set O, ) if: £, <0 and if there exists a
v = =7 such that £y - Cggw <O,

There can be no active equality constraints at a regular
point 8 . Specifically. 1t can be shown that @, 1~ a regular
pomnt of € it and only f g, <0 tor some vEZET
and all sutficienthy small A > 0 (see proof of Lemma 4).
This imphes that there exits a sequence of interior points
te.g.. {8, ~ =v}, ) that converge to 8,. Hence regular points
are points that are in the closure of the intenior of €. In
particular. all interior points of ¢, are reguiar points and
pants on the boundary of pure inequality constraints
Hgy < 0 are regular points. See Figs. 1 and 2 for graphical
iffustrations.

Fig 1 Equalin construint (j.d:(ﬂ. — g (B - 97 - a” = 0. Here
6 can onh van along boundan of disk. Set of admissible directions.
{v}. 1n which parameter can move must lic on tangent hyperplane
#, Since &) has nontersor points. there are no reguldr points of
constraint set.

7 K>
Y

Mg
//

Inequahity-constraint  Hy < 0. where H,"i'(o, —6yY (9. -
831" —a’ Here 8 can move into interior of disk. Set of admissible
directions 1s contained in half-space fl, that 15 supported by tangent
hyvperplane .#, Since any pomnt 8 € 6, can be represented as a himit
of interior points. all points in O, are regular ponts.

Fg 2

The following Lemma shows that if 8 is a regular point
of @, the constrained CR bound is identical to the
unconstrained CR bound.

Lemma 4: Assume that the conditions (15)-(18) of
Lemma 2 hold. Let the parameter space O be defined by
the general inequality constraint £, < 0 where the vector
function .¢ =[.£'.---. £} is differentiable. Let 8 be a
regular point of .. Then for any estimator @ having
mean myg. the estimator error covariance matrix I, satis-
fies the classical unconstrained CR matrix inequality

:OZ Bu‘ (31)
where
B, = [Ym 15 (Ym,). (32)

B-9
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and J, is the Fisher matrix (12). Equality holds n (3111
and only if there exists an # x n matriy T such that

6-my=0[ainf,]".

If such an estimator 8 exists. 1t gs called an etficient
unconstrained estimator.

(33

Proof of Lemma 4: Since 0 15 a regular point. there
extsts a v€ =" such that tor all A0 0 <A <1, we have:
{1-3)%, <0 and A[.£, - Vgv] < 0. Hence (1- 2316, -
Algg = Cggvl= £, - Vfvd < 0. Since for fixed v

Egosy— e~V 5gwd =0(1).

it follows that for all sufficiently small A. .£4_,, <0 . lna
similar manner. it can be verified that there exists an
€ > 0 such that for all £ = =" with length 1§ <1

£ < 0.

0-Mv-cg for all sufficiently small 3 > 0. (33)

that is. 8+ Av i1s an interior point of O.. Choose n
linearly independent unit length vectors &,.---.€,. and
define v = v - ¢€f,.1=1.---.n. Then. using (34) it 1s seen
that {8 + Av}"_ | is a set of n linearly independent vectors
contained @ for all sufficiently small A > 0. Application
of Lemma 2 thus gives the lower bound on the covariance
matrix

B, =[Vmy]A[ATIyA] AT[Vm,]".

where A is anv n X n matrix with identical column space
as {v .- --.v,]. But the column space of this latter matrix
Is identical to =", by linear independence of the »’s. so
taking A4 =/ in the previous equation for B. we obtain

B =B,={Smy)J;'[Sm,] .

The bound (31) of Lemma 4 is identical to the classical
multiparameter unconstrained CR bound {21]. [27]. Since
no equality constraints can be active at the regular points
of ©.. the Lemma establishes that pure inequality con-
straints on 8 do not affect the CR bound on the error
covariance of estimators having a given mean gradient
Vm,. A number of parameter estimation problems have
parameter constraint sets for which all of the points are
regular. Examples include: orthant constraints. e.g.. posi-
tivity of each of the elements 6, in the parameter vector
8. range constraints. e.g.. magnitude of 6, less than 1:
length constraints. e.g.. £7.,87 < 1. For these tvpes of
constraints the classical unconstrained CR bound applies
to ali points in O,

On the other hand. many estimation problems are
formulated with parameter constraint sets for which some
or all of the points are not regular. in particular. as
previously mentioned. for the case of active equaiity con-
straints (29). if O is a k-dimensional surface. & < . then
Oc contains no tegular points. Examples of these prob-
fems are provided in Section IIT of this paper. For this
case. the classical CR bound is invalid and bound reduc-
tion occurs due to the constraints.

We now consider the construction of a CR bound
under continuously differentiable equalitv constraints. As-

—_
—
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sume the cquality constraint G, =0 (29) is active at 8.
Define the & x n gradient matrix. VG,. of the function G.
Also define the hyperplane. .#,. tangent to the constraint
set O, at the point 8:

Hy={yEE": TGy =1}
If G is a linear function. e.g.. G, = FO for some n ¥ k
matrix F..#, =6, . Otherwise. when G 18 a cortinuously
differentiable function. any set of points in € that are in
the local A-neighborhood of the point 8 € O are approx-
imated to o(A)} by a set of points in the tangent hy-
perplane .#, Using Lemma 3} this imphes that the
constrained CR hound B (8) depends on the equality-
constraint function G onlyv through its associated tangent
hyperplane at the point 6.

The constrained CR bound for smooth inequality con-
straints is given in.the following theorem.

Theorem I: Let the regularity conditions (15)-(18) of
Lemma 2 be satisfied. Let the parameter space 0, C ="
be defined by the consistent set of equality and pure
inequality constramts: Go = 0. Hy < 0. where the vector
functions G =[G'.---.G*)" and H=[H'. - H') are
continuously differentiable. Assume that the k x n gradi-
ent matrix VG, has rank p. p < k. Then for any estimator
6 having mean m,. the estimator error covariance matrix
I, satisfies the matrix inequality

.2 8.
B = [v”'o]ono—l[vme]T~
and Q, is the n X n. idempotent. rank n — p matrix

Qo=}'l.

(35)

(36)
(37)

where

Furthermore. equality holds in (36) if and oniy if there
exists an n x n matrix I' such that

8-my=TQ{[Tinf,]" (w.p.1). (39)

If such an estimator ® exists, it is called an efficient
constrained estimator.

Proof of Theorem 1: For the case that @ is a regular
point. in view of Lemma 4, there is nothing left to prove.
Conversely, suppose that 8 is not a regular point. We will
show that any sequence of test points in @, that con-
verges 10 @ approximates an equivalent sequence in .#,.
Then. for 0 <k < n - p. we define k sequences of test
points in ©, whose associated approximating sequences
in .#, converge to 0 along linearly independent line
paths 8+ Aw, - - 0+ 2,v.2,, .4, =0. v, €4, Fi-
nally, with B, the Barankin bound (7). we show that
limsup B, is equal to the expression (37) for B,. where
the “limsup™ is taken over all such sequences of test
points.

Let & = £(A) be a vector such that IE(A)ll< A — 0 and
assume that @+ § is a vector in ©, that converges to

8 < 0O,. Bv the assumed continuous differentiability of
Gy .VGoE =0lA)

0=G,., -Gy
=VGq& ~ oliiE")
=TGot ~0(d). (40

where o(3) is a vector of length of3). Now define P, =
1 -YG,[VGTGy] VG, P,, is an orthogonal-projection
operator onto the null space of VG,. i.c.. onto .#, [21.
Section 1c.4]. This induces an orthogonal decomposition
of €=£(J) relative 10 #,: §=P_ & ~[1- P, g From
(40). {7 = P, JE =TG4 [VGTG{]™ TGyk = 01 2) 50 that

§=P,E~0(d). (41)
Hence to order A.§ 15 equal 1o the vector P E that is
contained in .#,.

Now let {8 + £.(A))%., be k sequences in ©, indexed
by A 3, such that P_Eg(d)=2w. 1=1-" -k
where v,.---.v, are fixed linearly independent vectors
and 0 < k < n - p. Since G, is continuously differentiable
and #, has dimension n — p. such sequences exist (8.
Prop. 26.1]. Hence. in view of (41). for fixed J,.- .3,
the & test points 8+ §,(3,).-- .08+ E,(),) are equal to
0+Jdv +0(d) .8+ 17y, +0t]d,) Define B0~
£(3))---.0+E,(3, ) the Barankin bound of Proposi-
tion 1 evaluated at these test points and define
B.v,.---.v,) the CR bound of Lemma 2 evaluated with

if @ is a regular point of ©,
(38)

\:-1,-'[vc,]’([vc.u_;'[vc.]f}‘[vc,]. otherwise.

the direction vectors v, - -.v,. Lemma 3 implies
B(0+E(A). -.80+E,(A,)

=B((v,."‘.vk)+(=)(l}
=[¥my)A[ 4TI 4] AT[Vm,])" = o(1). (32)

where o(1) is a matrix of o(1) elements that go to zero as
the 3,'s go to zero, and A is an n X n matrix with column

space equal to the span of v,.- - v,.
Next we show that if w,.--- v, and v;.- - - v, are sets
of vectors in .#, such that spani{w,. - . v]}>

span {v;,---.v;} then A[AJ,A]"AT = B[B"J,B]"B".
where A and B are n x n matrices which have identical
column spaces as span{v,.---.v,} and span{w;.---.v}.
respectively. Since by definition v, € .#,. i = 1.--- k. this
will establish that the matrix (Vm,]A[ A7), A]"47[Vm,]”
on the right of (42) is maximized when the column space
of A is equal to .#,. With J, ' * the positive square root
matrix corresponding to J, '. the previous relation be-
tween the two spans holds if and only if span{/y ' “w,.
o J9V v ospanidy e 0y Tv)). Hence it s
sufficient to show that A[(.474]°47 > B[B'B]* B” when
the column space of A4 contains the column space of B.
Now A[A'A}"AT and I~ B{B"B}"B7 are idempotent.

B-10
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symmetric. orthogonal-projection matrices onto the col-
umn space of 4 and the null space of B [21. Section
lc.4). respecinely. Therefore, since the column space ot
A contains the column space of B: A[4'4]"4'B = B and
B'4[A'4] 4’ = B'. Since idempotent matrices are non-
negative  definite. 1t follows that  A[474] 74 -
BIB'BI B! = AlA'4)"4'[ - B(B'BI B} = Al4'4]
A'[1-B[B'B] B')4[4'4]"4". which s nonncgative-
definite. Therefore we huse from (42)
limsup B, = [Tm,] A 474 4] " A [Tmy]' . (43)
where A is a matrix whose column span equals . #,.
Finally we show that the column span of (Jg {38) 15
equal to .#, and that. sctting A = Qg in (43). we obtain
{37). Since VG, has rank p. there exists a row-echelon
representation
B
o]

where T is a nonsingular kK Xk matrix. B 1s a pxn
full-row-rank matrix. and O, is a (k — p)x n matrix of
zeros. Let O.. O, and O, denote matrices of zeros having
dimensions (k — p)x(k — p). (k—p}x p and k x n. re-
spectively. Use of (38) and (65) of Lemma 5 in the
Appendix resuits in

VG,Q,=T[OB|”I—.I,"[B’ o7}
Lt gI]J;‘[BT of]rf}'r[gl”

A|[8 8 i ter on

vc,=r[

~

0,

{afste o 3]
i R ]
[ 2] )
i8)-la, el

where the invertibility of the full rank p X p matrix
BJy'B” has been used on the third line of this equation.
This establishes that the columns of Q, are contained in
the hyperplane .#,. A straightforward calculation shows

that 0,0, =Q, and QIQJ =01, ie. both @, and Q]
are idempotent. Hence the rank of Q, is equal to its trace

rank {Q,}
=1tr{Q,)

=t {1- J{'[VG){[VGo )i '[FG, )} [¥6,])

= n =t {[5G 5 '[SG (VG105 156,)7) )
=n-p.
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and O, has 1= p Lincarly independent columas. Since
these columns are contained in#, and
rank {TG,l = 1 — p v the dimension of .7, this ostib-
Iishes that the column space ot O, s adenticut o 7
Hence. using 4 = Q, in Lemma 20 we obtun the hound
B = [vme]Qu[Qo:quo] (.’oi[‘-mu]‘
Now 1t is evident from ssmmetns that Qudy = Jy Ua
Jet .
Define /, = ()} /eQls. One can venty that the mairn
Qols ' = Jo ‘(s ~atisties the Penrose conditions (9} tor
the pseudo-inverse. J, . of J, . Using these resufts and the
fact that Q, and () are rdempotent results in
Qo[ QalaQa] Q4 =001 00
- ?
=Q0{Qe-/o ]Qe
=Qe/s ‘Qé
=0uQs/e :
=QuJds "

SMAce -

Hence (37) is established.

In reference to Theorem 1| we make the following
remarks.

Remark 1. If the set of constraints G, = 0 1s defined o
that the rows of VG, are linearly independent. the A ~ A
matris [TG4l/5 '[VG,) will be of full rank and (), (3%
will only involve the more familiar inverse matry
{{YGel/s [FG,) ) 1. Although a reformulation climinat-
ing redundant constraints can alwavs be accomphshed.
frequently the most natural description ot a constraint
involves a rank-deficient VG,. e.g.. sce Example 4 of
Section 111. In this case the general result of Theorem [ 1»
applicable.

Remark 2: Comparison between the bound of Lemma 4
and the bound of Theorem 1| indicates that the presence
of constraints on the parameter space has the effect of
reducing the rank of the Fisher information matrix. In
particular if the & equality constraints G4 = U reduce the
dimension of the parameter space from »n to n — p then
the rank n inverse Fisher information J, ' becomes the
rank n — p inverse constrained Fisher informanon QgJy "
Hence active equality constraints have the effect of reduc-
ing the rank of the Fisher information matrix. In the
proof of Theorem 1 it was shown that the column span ot
Q, is the tangent hyperplane .#,. and that Q,/, '
Qo 0i1sQ,]” Q1. Furthermore. by Lemma 2.

04 Q314Q] " Q4 = A[AT1A] " A
if A has the same column span as Q4. Using these tacts
we have

Qely ' = P:.[PL.-’oP:,] ’ P:.-

where P, = 1=[VGV{VG TG,V ) [YGylis the nx n
orthogonal-projection matrix that projects vectors in ="
onto .#,. Hence the inverse constrained Fisher matrix
Qe/s ' is obtained from a projection of the rows and
columns of the unconstrained Fisher matrix J, onto the
tangent hyperplanes of the constraint set.
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Remark 3: The matrix B (37) in Theorem ] can be
represented as the quantity

B~ E{[Smer I EL[Sn s, ] [Fin P ]} ]

Ty
e

Ell Sm,P.,.|

where P s the projection operator defined in Remark
2 The vectors Ym, P, and VinfP,, are the projpc-
tions of the unconstramned gradients of the mean and
log-likelihood (score) functions onto the constrant tan-
gent hyperplane .#,. that is. these vectors correspond to
constrained gradient vectors. In [10] these constrained
gradient vectors were used along with Lemma | to give an
alternative dermvation of the inequality T42 B,

Remark 4: Theorem 1 indicates that a certain bound
reduction 1s induced by adding constraints on 8. In partic-
ular. it is easy to show that the constrained CR bound B,
of Theorem ) is alwavs less than the unconstrained CR
bound B, in the sense that B, — B, is nonnegative defi-
nite. This foliows from: 1) the idempotence of [ — Q4
2) the symmetry of Jg' and (/s '. which imply that
(1 - Qg)y "' =Jg 't - Q) and 3) the nonnegative defi-
niteness of J; '. In particular, for unbiased estimators
Vmy =1 and

B =05
=Jg -1 = Q5"
=g = (1= Q)1 - Qe)J5"
=Jg == Q)5 (1= Q)
<J;'=8B

An important implication of (44} is that the incorporation
of constraints can onlv reduce the CR bound on the
component error variances.

Remark 5. In many examples of interest Q, is nondiag-
onal. accounting for the functional relationships between
individual components of 8 introduced by the constraint.
Thus even if J, is diagonal. suggesting uncorrelated un-
constrained estimator errors. the rank-reduced inverse
Fisher information Q,J, ' in Theorem 1 can have off-
diagonal terms, suggesting correlated constrained estima-
tor errors.

Remark 6: A result of Lemma 4 and Theorem 1 is that
pure inequality constaints H, <0 do not affect the CR
bound on error covariance of estimators with a given
mean gradient Ym,. This is true even when 8 is on the
boundary of this set. An interpretation of this fact is
obtained by recalling that the Fisher information matrix
Jo (12} is a function of the gradient of the likelihood
surface at 8. For a smooth surface, the gradient of the
surface at @ is completely determined by the set of
directional derivatives along directions contained in a
convex cone with vertex at @, e.g., the half-space indicated
in Fig. 2. In the case of one-dimensional differentiable
functions, this simply reflects the equivaience of right and
left derivatives. Therefore, the restriction of allowable

(44)

'

local variations of a parameter at the boundan ot Hy <)
does not atfect the CR bound.

Remark 7 While Theorem 1 1s stated as a lower bound
on the estimator error covariance matn. i can be used 1o
specify @ bound on the mean-square error (mse) matris.
Eft8 — 048 - 8"} Specifically. wince the mse mutrin .~
cqual 10 Sq~tmy - 8Xm, — ). apphcation ot the theo-
rem gives a constrained CR bound on mse:

Eo{(6-8)0~8) )28 ~imy-8)my-0)
where B i1s given by (37).

Remark 8: Remarks 6 and 7 notwithstanding. when 6,
corresponds 1o a pure inequality constraint Theorem |
does not imply that improvement in mse is 1mpossible.
Indeed the minimum-distance projection of an uncon-
strained estimator 8, onto O, can vield an estimator with
lower mse than that of @,. Such an estimator arises in the
example studied in {18]. However. if the estimators differ
the projected estimator may have a different mean trom
that of 8, which generally is not differentiable. wherews
Theorem | applies to classes of estimators with identical
differentiable means m,.

Remark 9: In the course of proof of Theorem | it was
established that the lower bound B _(36) is the tightest
bound of the form (14) in the sense that B =
Hmsupy, 5, =0 Bul® = £(3))- - 8~ £, ) where
{8+ £,A)), are k arbitrary sequences converging to 0
along paths whose projections onto the tangent plane .#,
are k linearly independent line segments. 0 <A <n - p.
For linear constraints and exponential families of f, more
can be proven: B, is the “limsup” of the Barankin bound
B,, (7) with respect to arbitrary sequences of test points
converging to 8. i.e. B is the tightest local Barankin
bound.

1.  ArppLiCATIONS

In this section we illustrate the application of the
constrained CR bound (37) by srecializing to the cases of
linear and quadratic constraints.

Example 1) Linearly Constrained Gauss-Markot Prob-
lem: Let F be an m X n matrix of rankn. + <m. and

- —m
=

suppose that one observes the vector X = =27,
X=F8+m,

where 8€R", n€R™ and w is a zero-mean Gaussian
vector with nonsingular m X m covariance matrix K =
Eysm’). Since the model is linear and Gaussian. the

Fisher information matrix is simply calculated as Jd: Jo=
F7K~'F. which is independent of . Furthermore. by the
Gauss-Markov theorem (21, Ch. 4]. the minimum variance
unbiased (MVLU) estimator 8, is a linear function of X,

8,=J'FTK'X.
The error covariance of 8, is
Se=J""

Thus 6,, achieves the unconstrained CR bound. (31) of

B-12
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Lemma 2. for unbiased estimators. {Recall that for unbi-
ased estimators. Smg = 1)

Consider. however, tne problem of estimating 8 subject
to the & hinear equahity constraints G, = 49 = (. where 4
18 a A > n matrix. & <n. Using the fact that VG, = 4.
Theorem | gnes the constramed CR bound: B, =
[Cmg)Q/ '[Vm,). where

QEQ, =1-1"A[474T]) A
Since the matrix Q is independent of 6. one can define
the estimator

6=0QJ 'F'K'X
=08,

Due to the constraint 40 = 0, 8 is unbiased

(35)

Eof8)={1-J7AT[747) Aje=0.

The error covariance of 8 can be calculated directly from
(43) using the idempotence of Q:

S,=0QI" IQT
- 00s”!

=QJ"!
= B,.

where B, is the constrained CR bound. (37) of Theorem
1. for unbiased estimation. This establishes that: 1) the
estimator 8 of (45) is the MVU constrained estimator,
and 2) the constrained CR bound of Theorem 1 is achiev-
able for the Gaussian linear model with linear constraints.

Example 2) Image Reconstruction with a Support Con-
straint: Support constraints are frequently used in image
reconstruction problems such as those arising in tomo-
graphic imaging [24). [29] and phase retrieval [S]. [9].
Suppose that the parameter vector of interest consists of
a sampled two-dimensional image that is represented by a
complex-valued vector with elements 8, .. k, k.=
0.1.---. M -1 We will represent the parameter vector 6
as the =YY vector

T
= R 1 R / R U
0= [Gm.(l\'e(ll uvom.wo(u.h' 'B(M-l.M-l\‘o(M- |.M—|\l .

where the superscripts R and / denote respectively the
real and imaginary parts of 6, , .,

If the support of the object is known. it can be used as
a constraint in the estimation of 8. Let S be the support
of 8,

S={(k,.k:): 6, ., *0:k k=01~ M~-1}.

Let 1 denote the 2M* x2M* diagonal matrix with (1,],
=1 if the rth element of @ lies inside the support set §
and [15], =0 otherwise, i.e.. 1 is the matrix indicator
function of §. The support constraint then has the form
G,=11-1,18=0. From Theorem 1 we have the con-
strained CR bound B, =[V¥m,]Q,Js'[¥m,)". Using

ITED TRANSACTIONS ON INFOURMATION THEORY. Mon

360N bl SO AT RN
VG, =[1-1,]1tis easy torernify:
(-)ﬁjﬂilzjo. ‘ ‘jo-'[l'lxll
NN I NN E NI
‘[l _‘\]I

{tr=v) -0} -

=T =

1 7

T
(d6)

where .» = T'JyT and T & an orthogonal matrix such

that

I o,

T!. 17
ol o. (47)

1,=T7

where O, and O- are zero matrices. In other words. T 1s
a transformation that rearranges the image puxels so that
the support is in the upper left hand corner vt the 1mage.
Now let .27 anc .~ "' have the partitions

.14 B .
7 =[B7 C] (438)
Ik L
. = 49
g [L’ M) 39)

where A4 and K are matrices of the same dimension as
the identity matrix / on the right-hand side of (47). With
this notation [/ - 1,]5 "'[1 - 1) is the partitioned ma-

o, o . .
trix of w| where O, is a zero matrix of the appropri-
ate dimensions. Therefore the pseudo-inverse on the

. .
e Pertorming

the rest of the matrix aigebra indicated on the night-hand
side of (46) we obtain

right-hand side of (46) is simply [::,

K-LM'L" O,

7T
ol 0-

ono_l =T

Using identities for the inverse of a partitioned matrn
[11, Theorem 8.2.1] and the definitions of 4.B.C and
K.L.M. (48) and (49), the matrix K — LM~'L’ can be
identified as the inverse of the biock matrix 4. Hence.

JeT A 0, .
Qule = o’ o,

A o1 _,

=T o o. T
f1r o4 81 Ol

=T o
{(o] o.||87 c{lo] o.}

={1,J,15} ", (50)

where the last equality follows by the orthogonality of 7.
the application of (47). (48). and the identification 7.7 T/
= Jo. For the case of unbiased estimation Vmqy =/ and
(50) is the constrained CR bound. Comparing the con-
strained CR bound (50) to the unconstrained CR bound

B-13
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Jg ! it 1s evident that the incorporation of support con-
straints has the etfect of zeroing out those rows and
columns of the Fisher information matrix corresponding
to image pixels 8 for which it 1s known a prion that the
pixel values are zero.

It s useful to compare the covariance of the estimator
errors within the support region for the unconstrained
cases. Using the same transformation 7 (47) as before, we
can assume without loss of generality that the support s

in the upper left corner of image. i.e.. the support matrix

! 0,

indicator function is b= ] In this case the un-

O
constrained bound within the support region is (A4 -
BC~'B7)!. which is the upper feft biock element of the
inverse matnix Jy '= .7 7' (38). while the constrained
CR bound for these pixels is .4 ~'. If the Fisher matrix is
block diagonal then B is a matrix of zeros in (48). indicat-
ing that the errors of an unbiased efficient estimator of
pixels inside and outside of the support region are uncor-
related: in this case the constrained CR bound is identical
1o the unconstrained CR bound. If the Fisher matrix is
not block diagonal, however, there may be substantial
reduction in the constrained CR bound over the support
region. It 1s also significant that. unless Jq is block diago-
nal. setting the pixels of an efficient (CR bound achiev-
ing) unconstrained estimator to zero outside the image
support region does not produce an estimator that
achieves the constrained CR bound. This is in contrast to
the results obtained in [S] for diagonal J.

Example 3) Spectrum Esumation with Power Constraints:
When there is prior information on the power of a ran-
dom process over some regions of frequency. it is reason-
able 10 expect that the achieveable error covariance of
spectral estimators will be affected. This example quanti-
fies the effect of such prior information on the con-
strained CR bound.

Let {X,)%, be a segment of a real wide sense stationary
random process with power spectral density (PSD)
{#Cf ), o1 =1 3 The objective is to estimate the PSD.

def

6 = .#(f). at n distinct frequencies f,,---.f,. Let the
average power of {X,} be known over P nonoverlapping
frequency bands

Yo =E,.
M

p=1,--.P, (51)

r

where S, is the index set of the pth frequency band, and
E_ is the known average power of { X} over this frequency
band. The equations (51) correspond to P linear con-
straints on the unknown PSD, known as the P-point
constraint in robust Wiener filtering theory [20]. The
concatenation of the P equalities (51) gives the P equa-
tions

(52)

where x, is an nx1 column vector with ith element

equal to 1 if 1 € 5, and 0 otherwise. ie. x, 15 the vector
indicator function of S,. The gradient matrix ¥G, 1s given
by ¥Go =lx,. - . xp)’. resulting in

Quds ' =Js" _J;|[X| e xp)

xiJs 'xi xie 'xr | | X

xrJde 'xu xkls 'xr | Ixp
The structure of Q4Jy ' is considerably simplified when
Jo is the diagonal matrix:

Jo = diag, {8,°).
which is appropriate for the case of Gaussian observa-
tions { X}, and large A. Since the frequency bands (S}
are nonoverlapping the pseudo-inverse on the right-hand
side of (53) becomes the pseudo-inverse of a diagonal
matrix and
P j— Ix xT ~1
L s X.X.7e
S
Let e, =[0.---.0.1.0,-- -.0]" denote the /th standard

basis vector in R”. Let / be an index in the constraint set
S,. Then for an unbiased estimator. 6. the constrained
CR bound on the variance of the /th component. 8.. 1s
obtained from (54)

[B.),= e/Be,

(34)

[ Podstxax e
el oy 2 Y,
e E’, xJg'x, |
_ [4.), .
=[‘]OI]H 1= z [‘II’_.‘]_ (3%)
e s,

Using the unconstrained CR bound [B,], =67 = #°(f).
we obtain the relative reduction in the CR bound due to
the constraint

[Bc]l/__l_ 1
(8.1,

1+ ¥

(1€ Sy =i}

(36}

2(f)
2 f)

Since the term on the right hand side of (56) is between 0
and 1. the average power constraint induces a CR bound
reduction on the component PSD estimation errors. The
bound reduction factor (56) is independent of the other
constraint sets S,. k=1.---,P. k = p_ and therefore av-
erage power constraints over §, do not affect PSD esu-
mator errors at frequencies outside of §,. The amount of
bound reduction depends on two factors: 1) the relative
magnitude of the spectral component of interest. .#°( f,),
compared to the magnitude of the other frequency com-
ponents within the frequency band S, and 2) the length.
{S,| = number of indices. of S,. In particuiar. little or no
reduction in the variance bound occurs for the case where
P[P HS) is small for all 1€S,.i=1. However
when #°(f) 15 large compared to the other .#°(f),
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1€ S,. a substantial reduction in the bound occurs. This
imphes that the most bound reduction will be achieved
over those constraint regions S, where the PSD has a high
dvnamic range. 1e.. large peaks. The particular dvnamic
range required tor 4 wignificant bound reduction 1s pro-
portional to S, As a rule of thumb. for a reduction in
the CR bound at frequency £ by a factor a or more. the
ratio of () w the root mean-squared value of the

remaining spectral components in § ..

—det I .
F= — T Ef).
" ‘S/-_‘ I N
must satisfy
AL 1-a ,
= _>_‘ » [,S,,!—l].

Example 4) Sumal Subspace Constraints: Signal sub-
space constraints are used 1N SeNsOr array processing
estmation problems to take account of a particular struc-
ture of the arrav covariance matrix [14]. Specifically. as-
sume that p zero-mean Gaussian signals arrive at differ-
ent angles of incidence on an m-sensor array having a
zero-mean, spatially incoherent array noise of power ¢-.
Further. assume that p < m. Then the covariance matrix
of the set of sensor outputs has the singular vajue decom-
position

r m
R=Y Avet+o'l=Y arpl,

1= t=1

where {0} | are the eigenvectors of R and {A,)7 | are the

eigenvalues:

A_)'A)-ro:. i=l,-.p
et i=p+1l,---.m

and {A}}7., denote the signai-dependent eigenvalues of R.
The span of «.---.¢', is called the signal subspace.
Consider the problem of estimating the eigenvalues of
R when p is known but all of the other parameters are
unknown. This partial knowledge induces the following

constraints on the A,:

a) A, >0. j=1m
b) A : )_‘_ 1
- A, ji=lm
m—plil”l
] m
A A-—— ¥ A= j=p+l.--.m (57)
m- i=p~|

where constraint a) arises from the assumed positive-defi-
niteness of R, constraint b) takes account of the positivity
of the signal eigenvalues {A'}2 |, and constraint c) reflects
the equality of the m — p noise eigenvalues.

Let each unknown eigenvector ¢, € R" be parameter-
ized by its m — | direction cosines. p, =[p, .- *.p, .}
t=1.---.m. The combination of the m unknown eigen-
values and the m(m - 1) unknown direction cosines vields
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the n=m" eclement parameter vector 6 =[A, ..
Anpl.--.p'V. The constraint ¢) can be then be ex-
pressed as the (m ~ p)x n matnx constraint

!
- —— 1170, 8.
-p

Gy =
m

wep
where /, denotes a & » A identity matrix. O, is a (m — p)
X{n—m = p) matrix of zero entries. and L 1satm - p)
vector of ones.

Observe that the rows of VG are not linearly indepen-
dent due to the fact that there 1s one redundant con-
straint in ¢) of (57). Observe also that the equality
constraint ¢) creates a dimension n—m - p+1 hnear
subspace in the unconstrained parameter space =”. Hence.
despite the presence of inequalty constaints a) and b),
the constrained parameter space ©, contains no regular
points. and. by Theorem 1. the constraints a). b) do not
impact the form of the constrained CR bound.

As in Example 2. paruuon J, according to
[ A B
BT C|
where Ais(m—p)xXtm—p)Bistm-p)x(n-m~ p).
and C is{n—m=+ p)xXtn—m+ p). Then the n X n n-
verse constrained Fisher matrix. QgJq '. of Theorem 1 1s
given by

Jo=

7-
o7

0,

o i

Qols ' =J5" _jo—l[

where O, and O. are zero matrices of dimensions
(m—-p)xln—m+p)and (n—m<+ p)xin—m-~ p) re-
spectively. and Z is the (m — p)X{m — p) matnx

Z=NG,J, |[vGo]T

]
= [I,,,_p - ;_—pllT][A - BC~'BT]

1 7 _

Ny ——11" | (38)
m-=p

As a simple example. consider the case where the

Fisher infonpaxion matrix is block diagonal with: B = O,

and A=0;"l,_, Then Z=0,"[1,_. - ;==11"]. Using

condition 3) of (9) it is easy to show that Z*~ =¢7{/
— —117}. This results in

m-p

”»t—-p

L1
a,(m_pllr

o/

. 0,
QuJs ' = (59)

C—I

Suppose there exists an efficient unbiased estimator 6,,
for the eigenvalues and eigenvectors which satisfies con-
straints a) and b). and assume that the Fisher information
is block diagonal as previousiy specified. The right-hand
side of (59) is then the covariance matrix of the estimator
obtained by replacing each of the m - p noise eigenvalue
estimates in @, by their average -~—X™  _ A,. Hence. if

o pemimpae]

an efficient unconstrained estimator of the eigenvalues
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can be found that has positive elements. the esumator
obtained by averaging over the m — p smallest eigenval-
ues of the efficient estimator achieves the constrained CR
bound.

Example 3) Sienal Esumanon with Power Constramis:
Consider the problem ot estimating the discrete-time sig-
nal wanetorm. #,.- - 8, subpect to constraints on the
squared-modulfus of the DFT of 8. Here. the sum of the
squared modul over cach of £ nonoverlapping trequency
mtervals i constrained to be equal to known constants
E.. p=1.-.P While similar to the case studied in
Example 3. this problem involves nonlincar quadratic
constraints on the parameters. and time rather than fre-
quency domain estimation is performed.

Let W =[W,.- - W, ] denote the n X i unitary matrix of
orthonormal discrete Fourier transtorm columns: W, =
LAN{Le 77 m so=hboT = - n. Now
suppose that for P < n the constraint takes the form

T (wel = £,

1Y

et

p=1.2.--.P. (60)

Here. S, denotes the index set of the pth interval and
(48] is 1th component of the n-point DFT of 8. When
P = n. (60) specifies the modulus Fourier transform of 6.
As in Example 2. we let 1, denote the-n x n diagonal
matrix with {1.],=1if 1€5, and [1,], =0 otherwise.
Then the constraint (6(0) can be written as the set of P
equations

8 U1 ue E, 0
G, = ol B S B
0" u 1, 1o Ep] LG

where the superscript H denotes hermitian transpose.
The gradient TG, is the P X n matrix

onu/llllu/

vG, = (61)

TwH .
207WH1 0
We now specialize to the linear observation model:

X =8+n. i=),.n

where 1, 1 a zero-mean Gaussian white noise with vari-
ance o°. Recalling Example 1. J, can be seen to be the
scaled identity matrix ¢~ */. Let O denote the n X n zero
matrix. Using (61) and the fact that the intervals S, are
nonoverlapping 1,1, = 0. (= j. the inverse constrained
Fisher matrix of Theorem 1 is the n X n matrix
Fowee’wHy,

Qg ='W - T o —— W

o'W Wwe (62)

1=
Since W' is the (linear) DFT operator. the matrix o {/ -
L(-)] on the right-hand side of (62) is the inverse con-
strained Fisher information matrix for estimation of the
DFT We. As in Example 3. let the index / be constrained
in §,. Then the ratio between the constrained and uncon-
strained CR bounds on the variance, var{[W 0]} =

[N

Eql{10) — E, (18], 7). is obtained by evaluating the
quadratic torms e’ B Q. J, e and e’ W', ‘We
. 1
(5] =1~ = (63)
, ie] -
177 o el
R U )

This is of identical form to the expression obtained for
constrained PSD estimation, (35) of Example 3, when the
power spectral density, .2 f ). 18 identified with the mag-
nitude spectrum {{#$°0] .1 =1.---.n. For unhiased esuima-
tors. a bound on the total mean-squared error in estimat-
ing the time domain signal # s can be determined trom
(63) by using the unitany property of the DFT matria 11
(Parseval’s Theorem):

”n . .

T8, - 67 = tr{X,)

R

2 tr{QsJs ')

. PO ee 1 }
so*tr W I- ) ——F——— W
o-tr \ 1 ’—:I IR |

. PoLHe0 H L
=0 (r\/-lgl ‘——07",”1[“.6 |
=g°[n-P].

Therefore. on the average. the constraints produce u
factor of 1= P/n reduction in the CR bound on the
vaniances of unbiased estimators of the 6,'s.

IV. ConcLusion

A constrained Cramér-Rao (CR) lowzr bound on the
error covariance of estimators of multidimensional pa-
rameters has been obtained. The constrained CR bound
was derived from a limiting form of a multiparameter
Barankin-type bound. For constraint sets defined by a
general smooth functional inequality constraint of the
form £, <0. the constrained CR bound is equivalent to
the unconstrained CR bound evaiuated with a “con-
strained™ Fisher information matrix. This constrained
Fisher matrix was shown to be identical to the classical
unconstrained Fisher matrix at all regular points of the
constraint set. €.g.. at interior points. However at nonreg-
ular points. such as points governed by equality con-
straints, the constrained Fisher matrix is a rank-deficient
matr.x. This constrained Fisher matrix is equivalent to a
matrix of orthogonal projections of the rows and columns
of the unconstrained Fisher matrix onto the tangent hy-
perplanes of the constraint set. The simple form of the
constrained CR bound allows the effect of particular
equality and inequality constraints to be easily studied
through comparisons between the constrained and uncon-
strained CR bounds. It was shown that the incorporation
of functional constraints necessarily decreases the CR
bound for unbiased estimators. Not surprisingly. the con-
strained bound was shown to be achievable for the lin-
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early-constrained Gauss-Markov problem. To illustrate
the application of the constrained CR bound. several
applications in the area of signal processing were consid-
ered. These included support constraints in image recon-
strucuion. signal subspace constraints in array processing.
and average power constraints in spectral estimation and
in signal estimation.

In their present form. the results obtained in this paper
only directly apply to a finite dimensional parameter
space and a non-stochastic constraint. A generalization of
these results to infinite dimensional parameter spaces
would be useful for the study of constraints in filtering.
prediction. and smoothing problems. Theorem 1 could
perhaps be applied to complete separable infinite-dimen-
sional parameter spaces. ¢.g.. a separable Hilbert space.
by taking the formal limit of the elements of the matrix
bound (37) as the dimension of the indicated matrices
goes to infinity. Stochastic constraints are of interest
when the constraint depends on the particular realization
of the statistical experiment. and they provide a model for
partially-known constraints. A main difficulty in obtaining
a generalization of the constrained CR bound to differen-
tiable stochastic constraints is that the column space of
the constraint equality gradient matrix. V.£,. is in general
a random set and therefore Lemma 2 cannot be applied.
On the other hand. a tractible analysis may be possible
for simple stochastic constraints such as constraints ob-
tained from random perturbations of the constraint func-
tion £,.
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APPENDIX

Lemma 5: Let Q be an arbitrary n X m matrix and T be any
m x m invertible matrix. Then

or(T’Q’oT] T'Q"=Q[Q7Q] Q" (64)
where the plus sign denotes (Moore-Penrose) pseudo-inverse.
As a consequence. if R is an arbitrary m x n matrix, J is an
m x m positive definite matrix. and T is an invertible nx n
matrix. then:

RT(T'R7JRT) T'R™=R(RTIR] R'. (65)

Proof of Lemma 5: Let the left and right sides of the
identity (64) be denoted as the n x n matrices P, and P..
respectively. It is easily verified that P, and P, are symmetric
and idempotent. Therefore P, and P. are orthogonal projec-
tions onto respective subsets. .#, and .#. say. of R™ [22,
Section 105]. Furthermore. using properties 1)-3) of (9), it is
casily verified that P.P, P, = P, and P, P,P, = P,. Equivalentiy.
since P, P, and P,P, are projections onto respective subsets of
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# - #. PP =P und PP.=P. Howerer. PP =P m-
phes P > P [22. Prop. d of Section 104 and hence £ = P,

To show (63), first obsenve that. due to positive dehniteness
there custs an imvertible matrn J° * such that J© °J ° Detine
(O =1J" "R Then (63) reads

J :QT[T’Q’QT]. T"'Q"J -

=7 eleie) o

which follows directly trom (6d). This fimishes the proot of
Lemma 5. -
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APPENDIX C
REFLECTION BY AN ILLUMINATED CYLINDER

Figure C-1 depicts a cross-section of a cylinder illuminated from
an angle Wi below the horizon and viewed from an angle ¥, below the
horizon. For simplicity we assume that the sun illuminates it at
broadside and we are viewing it from broadside. Let 00 be the
clockwise angle between the viewing angle and the surface normal at a
given point on the surface, and let oi be the counterclockwise angle
between the illumination angle and the surface normal at a given point.
Then

6, =7 -V, - ¥, - 90 (c-1)
Let the diameter of the cylinder be do' The distance from a given
point on the surface and the center of the cylinder, projected along
the perpendicular to the viewer's line-of-sight is

xp = (d0/2) sin 00 . (c-2)

The illuminated part of the cylinder seen by the viewer goes from_o0 =
x/2, at the edge of the cylinder as seen by the viewer, where

and

x (8

p (6, 7/2) =d /2 (C-4)

to the edge of the shadow (at 01 = x/2), where

80(01 = x/2) = x/2 - ¥, - ¥, (C-5)
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Figure C-1. Illumination and Viewing Geometry of a Cylinder (Axis
Normal to the Plane of the Page).
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and
xp(a1 = x/2) = (d0/2) cos(W1 + Wo) . (C-6)

(Note that a negative value of x would indicate a point
counterclockwise from the viewing angle.) The illuminated width of the
cylinder from the viewing perspective is

dp = xp(eo = x/2) - xp(a1 = x/2) = (d0/2) 1 - cos(ﬁ1 + Wo)] . (€-7)

The angles over which Tight is scattered toward the viewing angle are

and
/2 2 80 2 ¥/2 - ii - 'o . (C-8b)

Consider a reflecting area
AA = Ay(do/Z) doo (C~9)

where Ay is the length of the area along the axis perpendicular to the
plane of Figure C-1. For a Lambertian surface of reflectivity Yo the
energy density scattered into a solid angle dno is

AE, = (rolf) E; cos 6, cos 60 AA dno

(r0 do/Zf) By E; cos 8, cos 8, dao dn° (C-10)

[where Eq. (C-8) is valid], where E; 1s the incident energy density.
The apparent spatial brightness distribution of the object depends
on the projection of this area onto the plane perpendicular to the

line-of-sight, where the projected area is
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AAp = AA cos 8, - (C-11)

This comes from the fact that from £q. (C-2)

dxp = (d°/2) cos 6, doo . (c-12)

Consequently the projected energy is

AEop = (ro/f) Ay E; cos 8, dxp o, . (C-13)

From Egs. (C-1) and (C-2),

cos gy = cos(x - ¥, - ¥, - 00)
= sin(¥, + ¥, - 71/2+6) (C-14a)
= -cos(w1 + ﬁo) cos"ao + sin(t1 + Wo) sin 6, (C-14b)

-cos(w1 + io) ]1 - (2xp/do)2 + sin(w1 + 'o) (2xp/do).(C-14c)

Eqs. (C-13) and (C-14c) give the apparent brightness as a function of
the viewed coordinate, xp. Figure C-2 shows Eq. (C-13) plotted as a
function of Xy for (ii + io) = 20° to 180° in 20° increments. [Note
that the apparently continuous curves at x_. = 1 are pairs of curves
that approach x_ = 1 with the same values and slopes, one of the pair
of curves for (w1 + io) and the other for (180° - ¥, - io).]

Now consider the total energy density arriving at a detector. This

can be obtained by a integrating Eq. (C-13) over xp or by integrating
Eq. (C-10), using Eq. (C-14b), over dao. The latter is given by
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Figure C-2. Relative Brightness (Intensitg) Across the Projected Image
of the Cylinder, for (i1 +¥,) = 20° to 180° in 20°
Increments.
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L x/2
[ay [ (a,2) da, 2,
o w/2-¥-%,
. : /2
= L(r0 do/Zf) E; dn, I [-,cos(vi + wo) cos 6,
I/Z-wi-’o

+ s1n(¢'1 + Wo) sin 00] cos 6, do

L(rodo/4r) Ei[sin(wi + 00) - (i, + ﬁo) cos(wi + Wo)] da,

L(rodo/27) E1 V(W1 + Wo) dﬂo (C-15)

where dn0 is the angular subtense of a detector as viewed from the
target. The function

V(W1 + io) = (1/2) [sin(i1 + io) - (71 + io) cos(i1 + 00)] (C-16)

is shown in Figure C-3, plotted as a function of (!1 + io) (in
degrees).

Example

Suppose that ¥, = 10° and ¥, = 55° so that (#1 + 00) = 65°. Then
the illuminated region can be seen for 25° ¢ 00 S 90°, for which 90° 2
6; 2 25°. The relative perceived reflectivity, given by Eqs. (13) and
(14) is proportional to cos 01, which varies from 0 to cos 25° = 0.906,
following a curve slightly above the 60° curve shown in Figure C-2.
The perceived width of the cylinder is dp = (do/2) (1 - cos 65°) =
0.577 (d°/2): so for a 0.8m diameter cylinder, the perceived width
would be 0.231m. From Eq. (C-16), V(65°) = 0.213 (as compared with the

maximum possible value of »/2).
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IMAGE RECONSTRUCTION FOR AN ABERRATED AMPLITUDE
INTERFEROMETER WITH A PARTIALLY-FILLED APERTURE

J. R. Fienup and J. D. Gorman
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1. Introduction

Measurements obtained with an aperture-plane amplitude interferometer [1.2] utilizing a
180° rotational shear through a telescope having a partially-filled aperture can have missing
spatial frequency bands corresponding to the aperture-plane regions where there is no aperture
fill. The system transfer function in this case is a scaled version of the telescope aperture func-
tion. and the missing Fourier-domain data causes the resulting images to be highly distorted
[Figures 1(e) and 1(f) for example!. This is in contrast to conventional focal-plane imaging
systems where the system transfer function is the autocorrelation of the telescope aperture
function. in which case Wiener filtering can often be used to level the transfer function. A
further complication arising in the image formation process is that for realistic imaging sys-
tems, the phase of the Fourier data can be corrupted or completely lost in the presence of
atmospheric turbulence or optical aberrations. Thus there are two difficulties which compli-
cate the reconstruction of images from aperture-plane amplitude interferometer measurements:
the absence of particular spatial frequency bands and the possible corruption of the phase of
the data. This paper examines an application of the iterative Fourier transform algorithm
{3.4.3] to the problem of reconstructing missing Fourier-domain information from aberrated
aperture-plane amplitude interferometer measurements to obtain diffraction-limited imagery

corresponding to a fiiled aperture.

Common examples of collection systems having partially-filled apertures are telescopes with
a central obscuration. for which the low and middle spatial-frequency bands are blocked by
the secondary mirror; and segmented or multip'e-mirror telescopes, for which certain middle
and high spatial-frequency bands are lost. Two types of aperture functions were considered
in this study: an annular aperture which will be denoted as aperture A. and a segmented
aperture consisting of a hexagonal arrangement of seven smaller circular apertures. which shall
denoted as aperture H. Figure 1(d) shows the original object used in the simulations. Its
Fourier transform, the magnitude of which is shown in Figure 1(a), was multiplied by aperture
A to obtain the aperture plane data of Figure 1(b) and corresponding image, Figure lie). The
transform was also multiplied by aperture H to obtain the aperture plane dat of Figure 1(c)




and corresponding image, Figure 1(f). The dynamic range of the Fourier magnitude data m

Figures 1(a-c), 3(a-c) and 4(a-c) is quite large, so the square root of the Fourier magnitude 1s

displayed.

Three scenarios were investigated: (i) the Fourier magnitude is measured over a filled
aperture. (ii) the Fourier magnitude and phase are measured over a partial aperture. and
(iii) the Fourier magnitude is measured over a partial aperture and no phase information is
measured. The iterative Fourier transform is used to reconstruct the missing data for all these
cases.

Case (i) corresponds to the situation in which the Fourier magnitude is known over an
entire filled aperture. Here, the image reconstruction problem is equivalent to reconstructing
the Fourier phase over the aperture and the problem is that of phase retrieval. The iterative
transform algorithm is robust in this case. Examples of such reconstructions will not be given
here since they can be found in References [3,4,5,6], including the case where large amounts of
noise are present [6]. Case (ii) corresponds to the situation where there are no aberrations. but
the complex Fourier data is incomplete due to missing frequency bands. The reconstruction
of an image from such data requires that the Fourier magnitude and phase be reconstructed
within the missing frequency bands to obtain an estimate of a filled aperture plane. Hence the
problem is equivalent to that of interpolation. The iterative algorithm is used to interpolate
the missing spatial frequency bands. One could also consider eztrapolating the Fourier domain
data out to higher spatial frequencies; however this problem is known to be very ill-posed and
it is not considered here. Case (iii) corresponds to the situation in which there is no phase
information at all and the Fourier magnitude is known only over a partial aperture. Here
the image reconstruction problem requires both phase retrieval and interpolation. This case
is perhaps the most realistic setting, in which aberrated measurements are taken through a
telescope with a partially-filled aperture. Unfortunately, out of the three cases investigated it

also poses the most difficult reconstruction problem.

In the following discussion, reconstruction examples for cases (ii) and (iii) will be described.
In each of these cases, the iterative Fourier transform algorithm was applied. each iteration

consisting of the following four steps, as illustrated in Figure 2:

1. The current image estimate is Fourier transformed to produce an estimate of the object’s

Fourier transform over the entire Fourier domain.

o

Fourier-domain constraints corresponding to the measured data are satisfied by: (a)
replacing the magnitude and phase of the current estimate with the measured magnitude

and phase within the region of the aperture plane corresponding to the telescope aperture
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function [note that in cases (i) and (iii) the phase is not measured and only the magnitude
is replaced|, (b) leaving the Fourier transform unaltered over the missing frequency bands
within the filled aperture, and (c) setting the Fourier transform to zero outside the filled

aperture.
3. The result is inverse Fourier transformed.

4. The object-domain constraints of positivity and object support are satisfied using one of
two methods: Error Reduction (ER), which is a Gerchberg-type algorithm {7} or Hybrid
Input/Output (HIO) (3.4.5].

The object-domain support constraint is determined from the measured data in one of two
ways. If the phase is known over part of the Fourier domain. then one can form a degraded
image from the partial Fourier magnitude and phase data. An initial support constraint can
then be formed by thresholding the magnitude of the degraded image. To minimize the ringing
effects due to the partial fill of the aperture, it is necessary to first apply a weighting func-
tion to the Fourier magnitude data. If there is no measured phase, then an object-domain
support is determined from the Fourier magnitude as follows. The magnitude is squé.red and
inverse Fourier transformed to obtain the autocorrelation of the object. Again, weighting of the
Fourier-domain squared magnitude may be necessary to avoid excessive ringing in the autocor-
relation. The autocorrelation is then thresholded to obtain an estimate of the autocorreiation
support. An initial estimate of the object support is then obtained from the autocorrelation
support by using a triple-intersect.idn rule [8,9]. For future reference, the object support es-
timate determined according to this rule will be called the triple-intersection support. It is
important to note that in both cases the object support estimates described above rely on
thresholded values and thus may exclude parts of the actual object. Hence as the iterations
progress. the support constraint is enlarged by including neighboring pixels. thus ensuring that

the whole object is eventually contained within the support constraint.

2. Case (ii), Partial Fourier Magnitude and Phase

Figures 3 and 4 show examples of the iterative transform algorithm applied to the problem
of interpolation. The measured data was assumed to consist of the Fourier magnitude and
phase over a partial aperture. Figure 3(b) shows the simulation of measurements over aper-
ture A. for which the Fourier data over a central disk 1/3 the diameter of the filled aperture
was blocked. Hence the ratio of the area of the blocked region to the entire filled aperture
was 1/9. Figure 4(b) shows -he data corresponding to aperture H, for which Fourier data was

only collected over seven small circular subapertures. The ratio of the area where there was




no Fourier information to the area of a filled aperture encompassing aperture H was 1/2. The
images corresponding to the data collected in apertures top A and H are shown in Figures 3(e)
and 4(e) respectively. These images were used as the initial object estimates for the iterative

transform algorithm.

For the case of aperture A. Figure 3(g) shows the initial support constraint. which was a
thresholded version of the degraded image shown in Figure 3(e). Enlarged support constraints
which were used as the iterations progressed are shown in Figures 3(h) and 3(i). With the
support constraint of Figure 3(i) in place, the algorithm converged quite quickly to a solution
consistent with the sﬁpport constraint and the measured Fourier data, yet it did not converge
to the true solution. The resulting reconstructed image, shown in Figure 3(f), still has some
distortion; nevertheless it appears to be better than the initial estimate. shown in Figure 3(e).

Similar reconstruction results were obtained for case of aperture H and are shown in Figure 4.

An examination of the Fourier magnitude of the reconstructed image, shown in Figure
3(c), indicates that part of the problem in the reconstruction may be that the magnitude in
the interpolated region of the Fourier plane is underestimated. Figure 5 shows a plot of cuts
through the filled-aperture Fourier magnitude and the interpolated Fourier magnitude. Over
the blocked central region. the peaks of the estimated Fourier magnitude appear to be in the

right place but they are smaller and show less contrast than the true Fourier magnitude.

Thus. for the case of interpolation only, the algorithm converged quickly, but the recon-
structed image was of mediocre quality. The fast convergence is due to the fact that the
constraints in each domain form a convex set. The ER algorithm for this case is a projection
onto convex sets (POCS) algorithm. POCS algorithms are known to have strong convergence
properties [10]. However, the poor quality of the reconstructed images, despite the absence of

noise in the measurements, can be an indication that the interpolation problem is ill-posed.

3. Case (iii), Partial Fourier Magnitude and No Phase

Figure 6 shows an example of the iterative transform algorithm applied to the problem
of simultaneous phase retrieval and interpolation. In this case, an aberrated aperture-plane
measurement was simulated for a centrally-blocked aperture in which the central obscuration
was a circle with 1/8th the diameter of the filled aperture. The phase was assumed to be too
corrupted to be useful, so that the only input data to the algorithm was the Fourier magnitude

over a partial aperture having an annular shape.
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Figure 6(a) shows the original object used in the simulation. For reterence. Figure 6ib)
shows the image corresponding to error-free magnitude and phase measurements over the
centrally-obscured aperture. This image was assumed to be unavailable since the Fourier
phase is unknown. The initial triple-intersection object support constraint computed from the
given Fourier magnitude is shown in Figure 6(d). Enlarged versions of the support constraint
are shown in Figures 6(e) and 6(f). The initial estimate for the object was obtained by filling
the support shown in Figure 6(d) with uniformly distributed random numbers. A partially-
reconstructed image was obtained from the partial Fourier magnitude data using the support
constraints shown in Figures 6(d-f). The algorithm was then rerun using a different sequence
of random numbers. yielding a second partially-reconstructed image. Two more partially-
reconstructed images were obtained similarly, using a second initial support constraint. This
second support constraint was generated by applying a triple-intersection rule to an autocor-
relation support computed with a different threshold value. The four partially-reconstructed
images then were combined to form a composite image by using the stripe-removal methods
described in Reference [5]. The resulting reconstructed image, shown in Figure 6(c). still has
some stripe artifacts but is otherwise a faithful representation of the true object. The ex-
periment was repeated with much larger central obscurations but the quality of the resulting

reconstructed images was significantly degraded.

4. Conclusions

In practical optical systems, the measurements made in aperture-plane amplitude interfer-
ometry can have missing spatial frequency bands. Moreover. the phase of these measurements
can be corrupted by atmospheric turbulence or aberrations present in the optical system. The
reconstruction of an extended object from these measurements thus involves the interpolation
of the missing frequency bands and the retrieval of the missing or aberrated phase. In this
paper we demonstrated that the iterative transform algorithm can be used for phase retrieval

or interpolation or both simultaneously.

It was found that, for the phase-retrieval problem of reconstructing an image from filled-
aperture magnitude and no phase. the algorithm converges reasonably quickly to the correct
solution. For the interpolation problem it was found that the algorithm converged quickly to a
solution, but that the solution is not necessarily close to the original object, indicating that the
problem of interpolation is not a well-posed problem. The most realistic problem is the case
where the magnitude is measured over a partial aperture and the phase is not available at all.
In this case, the problem is that of simultaneous phase retrieval and interpolation. For the case

where the missing Fourier magnitude covered . region about the origin with 1/64th the area of




the filled aperture. a good reconstruction was obtained using the iterative transform algorithm
augmented by the stripe-removal methods of [5]. Thus it is possible to combine phase retrieval
and interpolation in the reconstruction of an image from partial Fourier magnitude information

if the interpolation is confined to a small region of the aperture plane.
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Figure 1. Aperture-plane measurements and corresponding images: (a) filled-aper:ure Fourier
magnitude. (b) Fourier magnitude over aperture A. (c¢) Fourier magnitude over aperiure H
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(d) flled-aperture image. (e) aperture A image. (f) aperture H image.
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Figure 3. Interpolation from Fourier magnitude and phase over aperture A: (a) filled-aperzure
Fourier magnitude. (b) Fourier magnitude over aperture A, (c) Fourier magnitude of recon-
structed image. (d) filled-aperture image, (e) aperture A image, (f) reconstructed image.
(g) support formed from thresholding aperture A image, (h) enlarged support constraint. (i)

further-enlarged support constraint.
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nitude of the reconstructed image of Figure 3 (solid line).
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image, (d) triple-intersection support constraint, (e) enlarged support constraint. (f) further-
enlarged support constraint.
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The iterative blind deconvolution algorithm proposed by Avers and Dainty [Opt. Lett. 13, 547 (1988)] and improved
on by Davey et al. [Opt. Commun. 69, 353 (1989)] is applied to the problem of phase retrieval, which is a special case
of the blind deconvolution problem. A close relationship between this algorithm and the error-reduction version of
the iterative Fourier-transform phase-retrieval algorithm is shown analytically. The performance of the blind
deconvojution algorithm is compared with the error-reduction and hybrid input-output versions of the iterative
Fourier-transform algorithm by reconstruction experiments on real-valued, nonnegative images with and without

noise.

1. INTRODUCTION

Blind deconvolution is the problem of finding two unknown
functions, f(x) and g(z), from a noisy measurement, c(x), of
the convolution of these functions, defined as

(%) = ]. [(®)g(z ~ x)dx’ + n(x)

= f(x) » g(%) + n(%), (1)
or in the Fourier domain as
C(a) = F(2)G(a) + N(a), 2)

where C, F, G, and N are the Fourier transforms of ¢, f, g, and
n, respectively. Ayers and Dainty! recently proposed a
practical, two-dimensional blind deconvolution algorithm
for the noise-free case, where the additive noise term n(z) =
0.

In this paper we apply the Ayers-Dainty (AD) algorithm
to the phase-retrieval problem, in which we desire to recover
an image, f(%), from the modulus, |[F(z)|, of its Fourier trans-
form:

F(a) = |[Fa)l expliy(a)) = Fif(%)]

- [ " f(®)expl=i2n(a - 1))dx. @)

Phase retrieval is equivalent to the reconstruction of the
Fourier phase, ¥(u), from the Fourier modulus and to the
reconstruction of f(x) or y(i2) from the autocorrelation func-
tion:

r(z) = J’ AR - ndy

= - F(@)F*(a)] = - [IF@)!?). 4)

The phase-retrieval problem arises in several disciplines in-
cluding optical and radio astronomy, wave-front sensing,
holography, and remote sensing.

0740-3232/90/030428-06$02.00
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Comparing Egs. (1) [with n{z) = 0] and (4), we find that
phase retrieval can be considered a special case of blind
deconvolution, in which we deconvolve f(z) and f*(—-x) from
r(z). Because the AD algorithm represents a new, practical
algorithm for blind deconvolution, we will apply it to phase
retrieval and compare it with two existing phase-retrieval
algorithms. We will begin by describing the AD algorithm
and adaptations of the algorithm appropriate for phase re-
trieval. Because its structure closely resemblies that of the
error-reduction (ER) algorithm commonly used for phase
retrieval, 2 the AD algorithm is compared both analytically
and experimentally with ER. The performance of both of
these algorithms is compared with the faster hybrid input-
output (HIO) algorithm?~ for real, nonnegative objects for
the cases of known and unknown support, using Fourier
intensity data with different levels of additive Gaussian
noise.

2. DESCRIPTION OF THE ALGORITHM

A. Blind Deconvolution

The AD blind deconvolution algorithm! { 7ig. 1) alternates
between the object domain and the Fourier domain, enforc-
ing known constraints in each domain. Object-domain con-
straints such as support and nonnegativity are combined
with the Fourier-domain constraint of Eq. (2) to produce
new estimates of f and g, f, and 2,, respectively, at each
iteration. Note that each AD loop produces two estimates
of F (and G): (1) F\, the Fourier transform of f,, and (2) the
estimate obtained by imposing the Fourier-domain con-
straint of Eq. (2). These two estimates are averaged by
using the scalar 8 (0 < 8 < 1) to form Fi, a composite
estimate of F. Ayers and Dainty proposed the following
estimate of F from £ and G, the Fourier transform of B

if 1C(@)| < noise levet,
Fy(a) = F (a); (5a)
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Fig. 1. AD blind deconvolution algorithm.

if IGua) > IC@),

Fu@) = (1~ B)F @) + 8 9L, (5b)
G )
if IGe(a)l <lCw)l,
- G.a)
= l. ‘:-4- 8 Ll (5¢)

Rather than implementing Eqs. (5), we use a Wiener-type
filter based on the following imaging model:

c(2) = 5(2) « f(£) + n(2), G
or in the Fourier domain
C(a) = S(a)F(a) + N(a), (7

where c is the measured image, f is the object, s is the impulse
response [the Fourier transform of which is S(z), the optical
transfer function}, and n is the noise. Assuming thatfandn -
are independent, zero-mean, Gaussian random processes,
the minimum mean-squared-error linear estimator for f(x)
is® fix) = 71| F(a)], where

Fa) = W@)C), (8)
the Wiener-Helstrom filter is

. S*(a)
IS@ + (IN@I? /F@)P)

Wi(a) (9)

and (IN(@)?) and (|F(a)I2) are the ensemble-averaged ener-
gy spectra of the noise and the object, respectively. Al-
though the images generally will not satisfy the statistical
assumptions stated above, the filter is still effective and
simple to implement. The Wiener-Helstrom filter of Eq.
(9) is often used for image restoration.

To apply Eq. (9) to the problem of estimating F from C
and G, we relate Eq. (2) to Eq. (7) [and, hence, Eq. (1) to Eq.
(6)] by allowing G(a) to play the role of S(z). The resulting
Fourier-domain constraint (with 8 = 1) is

E-2
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F &) Gu@ Cla) (10)
u) = - - - Cla),
' G @) + o/ E @)

where G. is the latest estimate of G. the constant ¢- is an
estimate of (IN1*), and |F.l* is used to estimate (IF1*). A
filter similar to this was used with the AD algorithm by
Davey et al.? for the blind deconvolution of noisy, complex-
valued images. We have approximated (INI*) with a con-
stant based on the assumption that n(x) is a delta-correlat-
ed, Gaussian random process. If the ensemble-averaged
energy spectrum of the noise is known, it should replace ¢- in
Eq. (10).

To estimate G from C and F,, the latest estimate of F. in
Eq. (10) we replace Fi, with G,, G, with F,, and. following the
indexing of Fig. 1, £, with G-

) Fua)
Gy la) = —— ~ C(a). (1Ip
IF‘(E)}- + a'/lG,-l(ﬂ”‘

We have also used an even simpler Wiener-tvpe filter,
formed by replacing the term o/IF,|? in the denominator of
Eq. (10) with a constant, a:

Gh@)

—— C(@). (12)
G @)+ a

F*(l-l) =

We will refer to this simpler filter as AD Filter 1, and the
filterin Eq. (10) as AD Filter 2. We make the same substitu-
tions that are made for Eq. (10) to obtain the following
expression for G.(a) from Eq. (12):

C@. (13}

B. Phase Retrieval

As we noted in Section 1, phase retrieval can be viewed as the
process of blindly deconvolving a function f() and its twin,
f*(—=2). Thus for phase retrieval the noisy measurements of
r(2) and |F()!? take on the roles of c(x) and C(&), respective-
ly, and Fi(a) and G,.(2) become estimates of F{a) and F* (i),
respectively. Because the two convolution factors are twins,
the AD algorithm actually produces two estimates of f per
iteration. Therefore we need only consider half of the AD
loop (Fig. 2); i.e., instead of estimating F*{) and f*(—%) we
forego the second half of the loop and find a new estimate of
F(a) by conjugating G.(&2), the estimate of F*(z). Replacing
C with |F12, we conjugate Eq. (13) to obtain the AD Filter 1
phase-retrieval Fourier-domain constraint:

Fa) =G

E, @)

= W; IF(a)l. (14)

AD Filter 2 is modified in a similar manner by conjugating
Eq. (11) and substituting |F\}? for 1G.- 1%

Fuo)
Iy @)I? + e F (@)
Note that for photon (shot) noise in the measurement of

C(a), which would have a variance proportional to the mean
of [F12, the quantity ¢2/1F(a)|? is equivalent to a in Eq. (14).

Fya)= IF(@)l2. (15)
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Fig.2. AD blind deconvolution algorithm applied to phase retriev-
al.

C. Comparison with Error Reduction

The flow chart in Fig. 2 of the AD algorithm applied to phase
retrieval is identical in form to the ER algorithm. The
difference between the ER algorithm and the AD algorithm
lies with the Fourier-domain constraint. In the ER algo-
rithm the Fourier-domain constraint is imposed by substi-
tuting the known modulus, |F(a)|, for [Fy ()], the modulus of
the Fourier transform of f,(%), the estimate of the object. If
we write (@) = |Fu(a)l expli®i(a)], then the Fourier-do-
main step in the ER algorithm gives

Fi (@) = |F(@)lexpli®,(@)] = F,(a) I_’;_((%))l—l (16)
X

If for simplicity we assume that we are using an inverse filter
{which corresponds to the noise-free case and is obtained by
setting « = 0 in Eq. (14) or ¢ = 0 in Eq. (15)], then the AD
Fourier-domain constraint can be written as
|F(@a)i?
Fya) = Fa) o——. (17)
* AT

Comparison of Egs. (16) and (17) shows that, for the noise-
free case, the Fourier-domain constraint of the AD algo-
rithm is similar to that of the ER algorithm: they both
produce estimates with the same phase, and the magnitudes
of both estimates are boosted (or attenuated) where |Fi/|F,|
> 1 (or < 1). Because the object-domain operations are
identical and the Fourier-domain constraints are so similar,
we expect the AD and ER algorithms to behave similarly.

3. EXPERIMENTAL SIMULATIONS

The two versions of the AD algorithm (AD Filters 1 and 2)
were compared experimentally with each other, with ER,
and with a combination of HIO and ER (HIO/ER) for two
cases: (1) a real-valued, nonnegative object with a priori
known triangular support of side 128 pixels embedded in a
256 X 256 array and (2) a real-valued, nonnegative object
with unknown support (approximately 40 X 60 pixels) in a
128 X 128 array. The triangular support in case (1) was
chosen to allow for rapid convergence even for the slower
algorithms.” For case (1) we also added Gaussian noise to
the Fourier intensity data. The reconstructions for case (2)
are more difficult because the support is unknown and be-
cause it is of a less-favorable shape.” For each case, the same
initial guess is used to begin all the algorithms.

A useful error metric for measuring the success of the
reconstruction is the normalized root-mean-squared
(NRMS) error with the original object. This error metric
takes advantage of the fact that, in a simulation like this, we
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know the original object, f(). Recalling that the estimate of
f(z) after the kth iteration is f(%), we define the NRMS
error,

Nlafilz - 1) ~ f0)F
ABSERR =] = , (18)
Nzl

where x; maximizes the cross correlation between f and
and

Kl Y

Fig. 3. Comparison of phase-retrieval using AD blind deconvolu-
tion with the HIO and ER iterative transform algorithms for a real-
valued. nonnegative object with known support and no Fourier
modulus error. Reconstructed images: (A) HIO/ER (indistin-
guishable from the original object); (B) ER: (C) AD with the Fourier
constraint of Eq. (14); (D) AD with the Fourier constraint of Eq.
(15). . :
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Fi‘}; 4. ABSERR versus iteration number for the reconstructions
of Fig. 3.
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Fig.5. Comparison of the effect of the pre-Wiener filtering of noisy
Fourier intensity data on reconstructions with the ER algorithm.
Reconstructed images after 1000 iterations: (A) 5% FME, no pre-
Wiener filtering; (B) 5% FME, pre-Wiener filtering; (C) 20% FME,
no pre-Wiener filtering; (D) 20% FME, pre-Wiener filtering.

Fig.6. Comparison of phase retrieval using AD, HIO, and ER for a
real-valued. nonnegative object with known support and 5% FME.
Reconstructed images: (A) HIO/ER, (B) ER. (C} AD with the
Fourier constraint of Eq. (14), (D) AD with the Fourier constraint of

Eq. (15).

N 1o (& - zo)
o= (19)
/ALLE
]

is a scalar that can be shown to minimize ABSERR.
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The reconstructions for case (1) with noise-free Fourier
intensity data are shown in Fig. 3 [AD Filter 1 corresponds to
Eq. (14), and AD Filter 2 to Eq. (15)). The ER and AD
images exhibit similar striping artifacts, which are frequent-
ly seen in iterative reconstruction. Methods developed for
eliminating the stripes® were not attempted here. The HIO/
ER image avoids this stagnation effect and converges more
quickly to a solution indistinguishable from the original ob-
ject. Figure 4 is a plot of ABSERR versus iteration number
for the reconstructions of Fig. 3. The AD and ER algo-
rithms stagnated after approximately 50 iterations, while
HIO/ER converged to the solution in fewer than 100 itera-
tions. Because we used filter parameters a and ¢- that were

Fig. 7. Comparison of phase reivieval 1.sing AD. H1O, and ER for a
real-valued, nonnegative object with known support and 207 FME.
Reconstructed images: (A) HIO/ER, (B) ER. (C) AD with the
Fourier constraint of Eq. (14). (D) AD with the Fourier constraint of

Eq. (15).
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Fig.9. Comparison of phase retrieval using AD, HIO, and ER for a
real-valued, nonnegative object with unknown support and no
FME. (A) Object. Reconstructed images: (B) HIO/ER, (C) ER,
(D) AD with the Fourier constraint of Eq. (14), (E) AD with the
Fourier constraint of Eq. (15).
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Fig. 10. ABSERR versus iteration number for the reconstructions
of Fig. 9.

small (to account for computer roundoff error) for the noise-
less case, there is little difference between the two AD filters,
and the corresponding reconstructions are almost identical.
We expect the differences between the filters to become
more apparent for the case of noisy Fourier intensity data.

We now consider the same image with Gaussian noise
added to the Fourier intensity. When the noisy Fourier
intensity is denoted by |F(2))?2, the Fourier-modulus error
(FME) with respect to the original Fourier intensity, |[F(a)?,
is

12

N IF@), - IF@))?
FME={ -~ . (20)
N IF@)?

We performed reconstructions for single realizations of |Fi?
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with 5% and 20% FME. Because the AD algorithm has a
Wiener-type filter built into it, a less-prejudiced comparison
between algorithms is obtained if we filter the noisy Fourier
intensity beture use with the ER and HIO algorithms. The
pre-Wiener-filtered modulus that is used in this case is

P@) = | ————IFal |, (21)
1+ o*/|IF(@)}
where ¢- is the variance of the noise added to the Fourier
intensity. Figure 5 demonstrates the effect of Eq. (21) on
ER reconstructions for the two noisy cases. The smoothing
of the pre-Wiener filter has a negligible effect for the 5%
FME data but is more significant for the 20% FME data.
The reconstructions from all four algorithms for the case
of 5% FME are shown in Fig. 6. Since the pre-Wiener
filtering of Eq. (21) was insignificant at the 5% FME noise
level, it was not used in these HIO and ER reconstructions.
The 5% level of noise has little effect on visual image quality.
and the performance of the algorithms relative to one anoth-
er is similar to that for the noiseless case. Reconstructions
with 20% FME are shown in Fig. 7. This level of noise
significantly degrades the visual image quality. and the pre-
Wiener filtering was implemented for the HIO and ER re-
constructions. The AD Filter 1 image of Fig. 7(C) has no
striping artifacts and is comparable in quality with the HIOQ/
ER reconstruction of Fig. 7(A), whereas AD Filter 2 stag-
nates with stripes after starting with the same initial guess.
The low-pass nature of the Wiencr -type filter has a smooth-
ing effect that is evident in the AD reconstructions. The
amount of smoothing depends on the filter parameters u and
0% the larger these parameter are, the larger th attenua-
tion of high frequencies and th2 smoother the reconstruc-
tion. In this case the two AD reconstructions achieve a
smaller ABSERR than either ER or HIO/ER (Fig. 8) but at
the expense of image sharpness. The reconstructions stag-
nate almost immediately, but a change in a after 400 itera-
tions moves the AD Filter 1 image out of stripe stagnation.
The ability to vary the built-in Wiener-tvpe filter parame-
ters may be an advantage of the AD algorithm. The AD
algorithm also may be mak:ng better use of the Wiener filter.
and a few iterations of AD Filter 1 on the HIO/ER image of
Fig. 7(A) yields an image that is similar to th ig. T(C).
Figure 9 shows the reconstructions from all four algo-
rithms for case (2), a real-valued, nonnegative image with
unknown support in a 128 X 128 array. The support was
estimated from the support of the autocorrelation, rix), us-
ing a triple-intersection algorithm8 Figure 10 is a plot of
ABSERR versus iteration number for the reconstructions of
Fig. 9. The HIO/ER algorithm converged close to the solu-
tion in fewer than 200 iterations, whereas AD and ER both
converged more slowly and stagnated after approximately
400 iterations. The error of the ER reconstruction is signifi-
cantly lower than that of the AD algorithms. For this more-
difficult case, we find again that the AD and ER algorithms
perform comparably (ER somewhat better than AD), and
HIO/ER is still more effective than either.

4. CONCLUSION

We have shown that the Ayers-Dainty (AD) blind deconvo-
lution algorithm applied to phase retrieval is similar to the
error-reduction (ER) iterative Fourier-transform algorithm.
both in form and in performance. A nice feature of the AD
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algorithm is a built-in Wiener-type filter, which seems to
perform slightly better than the pre-Wiener filter used with
hybrid input-output (HIO) and ER for the noisier case.
The two different Wiener-type filters considered here per-
formed comparably, and the significant difference between

hem is that Filter 1 [Eq. (14)] is simpier to implement than
Filter 2 [Eq. (15)]. For the more difficult case of recon-
structing an object with unknown support, the AD algorithm
was not quite so effective as ER and did not converge close to
a solution as did the combination of HIO and ER (HIO/ER).
HIO/ER is still the most effective reconstruction algorithm
at low noise levels, and at higher levels of noise the AD
algorithm can be used in conjunction with HIO to improve
the quality of the reconstruction.
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Both a new iterative grid-search technique and the iterative Fourier-transform algorithm are used to illuminate the
relationships among the ambiguous images nearest a given object, error metric minima. and stagnation points of
phase-retrieval algorithms. Analytic expressions for the subspace of ambiguous solutions to the phase-retrieval
problem are derived for 2 X 2and 3 X 2 objects. Monte Carlo digital experiments using a reduced-gradient search of
these subspaces are used to estimate the probability that the worst-case nearest ambiguous image to a given object
has a Fourier modulus error of less than a prescribed amount. Probability distributions for nearest ambiguities are

estimated for different object-domain constraints.

1. INTRODUCTION

The phase-retrieval problem considered in this paper is the
reconstruction of an object function f(x, ¥) from the modulus
|[F(u, v)l of its Fourier transform:

F(u, v) = |[F(u, v)lexpliv(u, v)] = F [f(x, y)]

= ” flx, y)exp[=i2x(ux + vy)]dxdy. 1)

It is equivalent to the reconstruction of the Fourier phase
¥lu, v) from the Fourier modulus and to the reconstruction
of f(x, y) or ¥(u, v) from the autocorrelation function

rix, v) = 7 F(u, vl (2

This problem arises in several disciplines, including optical
and radio astronomy, wave-front sensing, holography, and
remote sensing.

There are the omnipresent ambiguities: that the object
f(x, y), any translation of the object f(x — x4, ¥ = yo), the twin
image f*(—x — xo, ~y — yo), and any of these multiplied by a
constant of unit magnitude exp(i¢.) all have exactly the
same Fourier modulus. These ambiguities change only the
object’s position or orientation, not its appearance. If they
are the only ambiguities, then we refer to the object as being
unique. A solution is considered to be ambiguous only if it
differs from the object in ways other than these omnipresent
ambiguities.

If nothing is known about the object, then reconstruction
from its Fourier modulus is generally ambiguous except for
special cases. Fortunately, for many applications one has
additional a priori knowledge about or constraints on the
object. In the astronomy application, for example, the ob-
ject’s spatial brightness distribution, f(x, y), is a real, non-
negative function. For several applications, one has a sup-
port constraint, i.e., the object is known to be zero outside
some finite area. Even if the support constraint is not
known a priori, upper bounds can be piaced on the support
of the object since it can be no larger than half the diameter
of the autocorrelation along any direction. Additional mea-
surements or other forms of a priori information may be

0740-3232/90/030412-16$02.00
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available for specific applications; in this paper we consider
real-valued objects with known support, both with and with-
out a nonnegativity constraint.

Until the late 1970's, there was much doubt that the
phase-retrieval problem could be solved or that the solution
would be useful. because the one-dimensional theory of ana-
lytic functions available at the time indicated that there
were ordinarily a huge number of ambiguous solutions.!-?

The first indications that the two-dimensional (2-D) case
is usually unique, despite the lack of uniqueness in one
dimension, came from empirical reconstruction results’>:
images that were reconstructed resembled the original simu-
lated objects used to compute the Fourier modulus data.
These results gave hope that 2-D phase-retrieval problems
might be solvable and unique. (Other phase-retrieval prob-
lems, such as in electron microscopy in which one has
squared-modulus measurements in each of two domains®
and in x-ray crystallography in which one has the a priori
information that the object consists of a finite collection of
atoms,” had been solved; but those earlier successes depend-
ed on much greater object-domain constraints than just non-
negativity and support.) Those empirical results gave im-
petus to attempts to extend the one-dimensional {(1-D) the-
ory to two dimensions. Although progress has been made,* "
the level of understanding of the 2-D problem has not yet
matched that of the 1-D problem.

One of the most enlightening developments has been the
work of Bruck and Sodin,!* who modeled the object distribu-
tion as an array of delta functions on a regular grid. Then
the continuous Fourier transform becomes the discrete Fou-
rier transform (DFT),

Flu, v) = |F(u, v)lexpliy(u, v)} = DFT{f(z, y))

M=1N-1
= Z S [(z.y)exp[—jh (;—;} + %)] (3)
=) yemy

where the DFT is taken over a 2M X 2N array but f(x, v) is
zero outside an M X N array in order to avoid aliasing in the
computation of r(x, y) and |[F(u, v)l2. For this discrete case
the Fourier transform g1. -n in Eq. (3) can then be expressed
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as a polynomial of two complex variables, z = exp(ru/M)
and w = exptyre/N). Itis also equivalent to the z transform.
Then the presence of ambiguity in the phase-retrieval prob-
lem is equivalent to the factorability of the polynomial.
This explains the vast difference between the 1-D and 2-D
cases. because polvnomials (of degree 2 or greater) of a single
complex variable are always factorable, whereas polynomi-
als of two (or more} complex variables are rarely factor-
able.!*-'¢ Other interesting results have been obrained by
exploiting this discrete model. Fiddy et al.'” and Nieto-
Vesperinas and Dainty** described an object support that,
by virtue of Eisenstein’s irreducibility theorem. guarantees
uniqueness. Brames'? showed that any discrete object hav-
ing a support whose convex hull has no parallel sides is
unique among objects with supports having the same convex
hull: so if the convex hull of the support of such an object is
known a priori. then it is unique. For these cases, there also
exists a closed-form recursive reconstruction algorithm.0-!

Whether the objects are discrete or continuous, it is easy
to make up cases that are ambiguous. If g(x, ¥} and h(x, »)
are two functions of finite support with Fourier transforms
Glu, v) and H{u, v) respectively, then the convolutions

filx,y) = g(x,y) » h(x,y) (4)
and
falx, y) = gix, y) » h*(—x, —v) (5)

are different objects as long as neither g nor A is conjugate
centrosymmetric, they have Fourier transforms

Fylu,v) = Glu, v)H(u, v) (6)
and
Folu, v) = Glu, v)H*(u, v) )
that have the same modulus,
IFyiu, o)l = [Fs(u, v)l = [Glu, v)l[H{u, v), (8)

and the objects f, and f» are ambiguous. This demonstrates
the equivalence of phase-retrieval ambiguity to convolutions
in the object domain {Egs. (4) and (5)] and factorability in
the Fourier domain [Eqs. (6) and (7)]. Furthermore, if there
are K irreducible Fourier factors, then there are 2X-! ambig-
uous solutions. By this convolutional (products or factors in
the Fourier domain) method, it is possible to make up an
uncountably infinite number of ambiguous cases even
though the theory indicates that ambiguity is rare (of zero
probability) in two dimensions. Consider that it is aiso true
that any randomly chosen real number has probability zero
of being a rational number (almost all are irrational num-
bers). Yet any real number, even if irrational, can be ap-
proximated arbitrarily well by a rational number. Thus the
fact that the probability of any given object’s being ambigu-
ous (the Fourier transform being factorable) is zero is not
necessarily comforting.

Sanz et al. have shown that the “uniqueness condition is
stable in the sense that it is not sensitive to noise.”?* How-
ever, their analysis does not shed light on a more practical
definition of uniqueness. If a given nonfactorable polyno-
mial is near enough (in an integrated mean-squared differ-
ence sense) to a factorable polynomial, then the ambiguous
solutions associnted with the factorable polynomial will be

F-2
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consistent (to within the noise) with the noisy Fourier-mod-
ulus data. Under this circumstance the object may be con-
sidered to be ambiguous in a practical sense. even though 1t
may be unique. traditionally speaking. Up to this point it
was not known how close an arbitrary polvnomial is. on the
average, to a factorable polynomial. Furthermore. the exis-
tence of ambiguous objects close to a given object is likely to
cause the existence of local minima in which iterative recon-
struction algorithms will become trapped. Current theory
has not adequately addressed these questions. even for the
discrete model. These questions can be answered. though.
by numerical means. as will be seen below.

One way to test for practical uniqueness is the use of the
iterative Fourier-transform algorithm.?2--* If multiple so-
lutions exist, then the algorithm tends to find all of them if
many reconstructions are performed, each starting from a
different array of random numbers as the initial estimate.**
In most instances investigated. when the algorithm is ap-
plied to the Fourier modulus of an object of interest. if it
does not stagnate? it reconstructs essentiallv the correct
object,” giving strong evidence of uniqueness for those tvpes
of object. Furthermore, when noise is added to the Fourier-
modulus data, the result is usually a noisy image of the
object rather than a completely different reconstruction.>*-*
contrary to some predictions.3® While this approach has
provided some assurance that the phase-retrieval problem is
usually unique in the practical sense even in the presence of
noise, it has not yvielded any quantitative results on the
probability of uniqueness for any given level of noise.

An important consideration in the probability of unique-
ness is the set of constraints placed on the object. In all
cases we assume that the object has finite support (it is zero
outside some finite region). The support of the object playvs
a crucial role. If the object has a delta function known to
satisfy the holography condition.” then it is unique. As
mentioned above, discrete objects having certain supports
are guaranteed to be unique.'*-!® Inaddition. objects having
separated parts are more likely to be unique.*> Although it
is less well understood. nonnegativity also plays an impor-
tant role in uniqueness.

In this paper we establish a methodology for determining
the probability of phase-retrieval uniqueness in the practi-
cal sense. We have developed a method, suitable for small
images, for answering the questions: Given an arbitrary
object and its Fourier polynomial, how close is the nearest
factorable polynomial, and does it have an ambiguous solu-
tion that is significantly different from the given object? In
this paper we explore this question for the case of objects
defined within 2 X 2 and 3 X 2 supports. A derivation of
object-domain conditions for factorability provides a means
for finding nearest factorable polynomials through a con-
strained-minimization search over the space of 2 X 2or 3 X 2
ambiguous images. These searches are implemented with
different object-domain constraints in a Monte Carlo simu-
lation to estimate the probability that the nearest factorable
polynomial, with an ambiguous solution that is significantly
different from a given object, is within some distance of the
given polynomial. Before describing these main results, we
first define the pertinent error metrics and discuss some
preliminary results of a grid-search method for finding local
minima in phase retrieval, and relationships among minima.
ambiguities, and phase-retrieval stagnation.
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2. OBJECT-TO-FREQUENCY-DOMAIN
MAPPINGS AND ERROR METRICS

A useful means for visualizing the ambiguity problem is
through a mapping between the space of objects (images)
and the space of Fourier moduli as illustrated in Fig. 1. In
Fig. 1 each domain is a finite-dimensional space in which any
one point represents a 2-D function. In this diagram {F(u,
)l represents Fourier-modulus data for a unique object and
IG,(u. v) modulus data for an ambiguous object. since both
8. and g, map into it. We refer to g, and g,. as ambiguous
counterparts of each other, gotten by conjugating one or
more of the Fourier-domain polynomial factors. For the
case depicted in Fig. 1, as indicated by the distances between
the points, two widely different images. f and g,., may have
similar, but not identical, Fourier moduli. Thus, although f
is unique, one might unknowingly reconstruct g, by a phase-
retrieval algorithm given a noisy measurement of |Fl.

The following error metrics provide a means for quantify-
ing differences in both domains. These metrics are the
focus of the numerical approach presented in this paper.
(Other related error metrics are also useful.) Given two
real-valued functions g(x, y) and f(x, y) definedonan M X N
support and zero padded to a 2M X 2N array, we define the
Fourier-modulus error, the error (distance) between |F(u, v)|
and IG(u, v)l, as

172
N adGu, o)l ~ IFu, v)l]?

M

g, =)= ) @)
N IR, v)l?
where
12
N, o)l
o = M (10)
NG, vl

Ja.L

is an energy normalization factor, G(u, v) = DFTig(x, y)),
and u and v summations are taken over the intervals 0, 1,
....2M - 1and0,1,...,2N — 1, respectively.

A similar metric defines the object-domain error between
f(x, ¥) and g(x. y):

Spacse of Objects

ﬂ.e/

Space of Fourler Modulus

- > e e e

! \
Fig. 1. Object-space to Fourier-modulus-space mappings of a

unique object f and a pair of ambiguous images (g, g..), with error
metrics é and .
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12

N fangtx, ¥) = fix. ¥

sg n=|= , an
N fix, V)
where
a, = a sign[v flx, y)gix, _v)] (12)
and x and y summations are takenover0,1,... ., M — 1 and 0.
1,.... N — 1, respectively. The parameter a, takes into

account any differences in scaling and polarity between g
and /. Translations are ignored here because the support
constraint automatically rules them out. Because gix. v)
and its twin, g(M — 1 ~x, N = 1 = y), share the same Fourier
modulus, we compute 4(g, f) for both g(x, y) and its twin and
use the smaller of the two values of 8. Of particular interest
from the point of view of phase retrieval are images that have
a small Fourier-mec ulus error ¢, but a large object-domain
error 3, since these images m=v be ambiguous in the practical
sense.

3. GRID SEARCHES

Our first approach to understanding the relationship be-
tween ¢ and §, for a collection of images g relative 10 a given
object f, was by a grid search. What we mean by a grid
search is illustrated as follows for the case of 3 X 2 (M = 3, N
= 2) objects. Given a 3 X 2 object f, we calculate ¢ and 3 for
all 3 X 2images g = gres + ginc, Where g, is another 3 X 2 real-
valued image and

= S (13)
8inc S, S5 Sg ’

where, given a real-valued increment As, each s, can assume
valuesinthesetlkAs;k=—L,—L+1,...,0.1,....L}. Ifwe
think of both f and g as points in a six-dimensional (6-D)
space, then we are calculating ¢ and & for all g's sampled on a
symmetric 6-D grid of step size As centered about the point
&rer, With the grid width equal to 2L'+ 1 steps in each of the
six dimensions.

This search can become quite extensive as the grid width
increases. Since the number of different g,,'s (grid points)
is (2L + 1)%, even a five-step search (L = 2) requires 15.625
calculations of ¢ and &. If the search uses the zero image for
&rer, We can cut down on redundant calculations of ¢ by
eliminating twin images and images with polarity [sign of
F(0,0)] opposite . Note that the saving is in the calculation
of ¢, which is computationally more expensive than the cal-
culation of é.

Grid-Search Example

The use of a successively finer grid search to find minima in ¢
(which could constitute a phase-retrieval algorithm) and
shed light on the properties of ¢ and 3 is illustrated in the
following example. An integer-valued image f was chosen:

1 2 -1
f [2 1 _2]- (14)
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Fig. 2. Fourier-modulus error ¢ versus object-domain error 4 for a
five-step grid search with step size &s = 1. The minimum value of ¢
texcluding g = /) is boxed.

A five-step search (L = 2) was implemented with g,.; equal to
the zero function and with As = I; i.e.. the pixel values of g are
taken from the set |=2, ~1, 0, 1, 2|. Since the search is
centered about the zero function, the twin and polarity
search-reduction techniques mentioned above were imple-
mented. The results are displayed in Fig. 2 in the form of a
scatter plot of ¢ versus 6. Several features of the scatter plot
are noted:

(1) e is less than or equal to 8. The proof of this fact is
given in Appendix A.

(2) The vertical striping reflects the discrete nature of
the search, i.e., the elements of g take on only integer values.

(3) ¢ and 4 can both be greater than unity, despite the
normalization that takes place in the denominators of Egs.
(9) and (11).

(4) The scatter plot exhibits a banded type of structure,
i.e., the points tend to cluster in a region where both 4 and ¢
are large. This is not surprising, since we expect most im-
ages that are quite different in the object domain to be quite
different in the Fourier-modulus domain as well.

The single point of greatest interest, an outlier with large &
and relatively small ¢, is outlined by a box in Fig. 2. It
corresponds to the image

1 1 -2
go-[l - _2]' (15)

with 8(go, ) = 0.714 and e(go, /) = 0.124. It is the point
within the grid search with the lowest value of ¢ aside from g
= f. Since it represents the point on the grid search closest
to being a serious ambiguity, we explored it further by per-
forming another five-step search, with g, = go of Eq. (15)
and a step size of As = 1/3. Because g, is not the zero
function, no data reduction was implemented, and ¢ and &
were calculated for the 15,625 different grid points. Figure
3 shows the scatter plot for this second search for ¢ < 0.125.
It is apparent that our initial search with unit steps was quite
coarse and that, compared with go, there are images with
significantly smaller values of ¢ and comparably large values

F-4
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of 5. The minimum value of ¢ for this grid search corre-
sponds to the image

-2

win
12 W

&= o 7 (16)
1 —— —

3 3
with 5(g,, /) = 0.704 and ¢(g;, N = 0.0648.
We performed a third five-step search, with g..; = g; and
As = 1/9. The image corresponding to the minimum ¢ for
this search is

2 1 -n
3 9 9 -

&= 10 -2 -2 ’ (17)
9 3 9

with &(g,, /) = 0.666 and e(g2, f) = 0.0569.

Iterative Grid Searches

The iterative searching above is an approach for finding
minima of ¢. It is summarized more generally by the follow-
ing steps for the caseof M X N =3 X 2,

(1) Initialize. Choose g, the number of search steps
(2L + 1), the step size (As), and a step-size reduction factor
(r).

(2) Perform a 6-D (2L + 1)-step search with g = g, +

inc, Where
S, S, s
Bune =[ b “] (18)
Sy S5 Sg
and eachs;,j=1,2,...,6,isfrom theset kAs;k = ~L,~L +
0, 1,... L)

(3) Set g,requal to the image. g, which has the minimum
value of ¢ found in the search of the previous step.

(4) Set As equal to As/r.

(5) Stop if the stopping criterion is met; otherwise go to
step 2.
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Fig. 3. Fourier-modulus error ¢ versus object-domain error 5 for a
five-step grid search with As = 1/3 about the minimum of the grid
search of Fig. 2. All pointa satisfying ¢ < 0.125 are shown here.
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The stopping criterion is based on the percentage change
in the minimum value of ¢ from iteration to iteration, or set
for a maximum number of iterations, whichever is satisfied
first. For a large value of L. the search time is prohibitive,
but the sampling is finer. Also, the initial step-size and
step-reduction factor must be chosen carefully, since the
step size at the kth iteration is As/(r*~!). If r is chosen too
large, the grid may shrink too quickly to progress to a mini-
mum. If As is too small, the minimum might not be found
because it lies outside the initial grid. The most reliable
search uses a slowly shrinking grid with a large number of
grid points (large L) that samples the space over a large
region. The more finely we sample the space, the more
computationally burdensome the algorithm becomes, yet a
coarser grid would leave doubt about the reliability of our
minimum.

This iterative search could constitute a phase-retrieval
algorithm. However, it would be a computationally ineffi-
cient algorithm, requiring many thousands of DFT’s to con-
verge to a solution for the case of larger objects. Here we are
using it only to find a local minimum (the global minimum is
atg = f for whiche = 6 = 0).

The iterative grid search was tested for f given by Eq. (14)
and with the following three sets of parameters: (1) L = 1,
As=1/2,r=2,(2)L=2,4s=1/3,r=3,and (31 L =3,4s =
1/4,r = 4. Each iterative search started with g..; = g given
by Eq. (15), corresponding to the minimum ¢ found in the
first search described above. Each of these searches found a
scalar multiple of the same image, £mmn, given by

0623 0749 -1871
1.149 -0.659 =-2.530]

with 8(gmn, f) = 0.667 and e{gmyn, /) = 0.0558. This probably
represents a deep local minimum for the phase-retrieval
problem and could represent a practical ambiguity if the
noise in the Fourier modulus data were to exceed ¢(gmin, f)-

min

(19)

4. MINIMA AND PHASE RETRIEVAL

The minimum in ¢, represented by gmin found in the iterative
grid searches described above, represents two potential
problems for phase retrieval. First, a relatively small error
in the modulus data (5.58%) could cau.~ the data to be
consistent with gm,n, Which, if reconstructed, would have a
very large object-domain error (66.7%). Second, even when
it is performing phase retrieval with error-free modulus
data, the algorithm could get trapped and stagnate at this
local minimum. In particular, the error-reduction (ER) ver-
sion of the iterative transform algorithm is equivalent to a
steepest-descent gradient search method on a cost function
closely related to ¢.2* Thus. if the local minimum found in
our iterative searches were a true local minirmum, the ER
algorithm could stagnate at this image, unable to find a
direction in which to descend. To visualize how ¢ and 5 vary
around gnm.n, we plot ¢ and 4 along the line joining f [Eq. (14)}
and gmin [Eq. (19)]. Figure 4 shows e(g, /) and 8(g, /) versus t
for

g=f+t@nn—h. (20)

While Fig. 4 represents only a 1-D slice through a 6-D space,
it gives the appearance of aminimum ineatt =1 (g =g, ).
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Fig. 4. elg, ) and &(g, ) versus ¢t for g = f + t(gmmn — /). the line

joining f and gmin.

When ER is performed on |Fl with g, as the initial guess.
stagnation occurs immediately, giving further evidence of
the presence of a local minimum.

As another test of ER’s tendency to stagnate at a mini-
mum in ¢, we use g's corresponding to different values of ¢ in
Eq. (20) as initial guesses. These values are selected on both
sides of the peak in the ¢ curve in Fig. 4. We might expect
values of t chosen on the right-hand side of the peak to
correspond to initial guesses that stagnate at gm,» and guess-
es chosen to the left of the peak to converge to the correct
solution, f. Several values of t were selected on both sides of
the peak, and the predicted result was verified for all initial
guesses.

The hybrid input—cutput (HIO) version of the iterative
Fourier-transform algorithm?! is one way of climbing out of
local minima. Simulated annealing®? is another. Cycles of
HIO iterations followed by ER iterations* were used with a
variety of starting points: go, &), £2, and gmin- In each case
the HIO/ER combinacion converged to the correct solution,
f, although ER by itself stagnated in each of these same
cases. As we will see below, HIO is not always sufficient to
overcome stagnation.

5. MINIMA AND AMBIGUOUS IMAGES

A clue to the understanding of the stagnation point de-
scribed above is its relationship to ambiguous images. Con-
sider again the object f given by Eq. (14). Using methods
that are described below, one can verify that the 3 x 2
ambiguous image whose Fourier modulus is closest to the
Fourier modulus of the object f is

2= [0.594 1.624 °n

-1.211
2.330 1.415 '

-1.730

with 5(g,, /) = 0.217 and ¢(g,, /} = 0.0859. The ambiguous
counterpart to g, {gotten by conjugating one of the factors of
Galu,v)] is

~0.363
« [—1.422 (22)

-0.618 1.987
0.600 2.837]
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with 8(g,c. N = 0.677 and €(ga., ) = 0.0859. A comparison of
gmin |[EQ. (19)] with —g,, (which, for our purposes, is equiva-
lent to g,.) reveals a similarity between this pair of images.
The error metrics reveal their similarity in both domains:
8 =Lacs Bmn) = D gacs 8mun) = 0.113 and ¢(gac, Emin) = 0.0663.

Because —g,. and gm» are quit similar, we might expect
the ER algorithm with an initial guess of =g, to stagnate at
gmn This is indeed the case after approximately 30 itera-
tions. This result. coupled with the similarity between f
{Eq. (14)] and its nearest ambiguity. g&. might lead us to
conclude that ER would find the correct solution if it were
started with an initial guess of g,. This is not the case,
however. and the algorithm stagnates after fewer than 20
iterations at

_[0:694
Buee = 2,235

1.778
1.355

—1.010]‘ (23)

—1.856

with 8(g.ee, /) = 0.152 and e(gauag. /) = 0.0631. This stagna-
tion point is close to g,, With 3(g,, £uag) = 0.0828 and elg,.
8wag) = 0.0577. Because gaag is not in the range of the
iterative grid searches that found gmu. it was not found
earlier. A plot of ¢ and & along the line joining f and gyu is
shown in Fig. 5. Despite the difference in vertical scaling,
the minimum in Fig. 5 does not appear to be as deep as that
in Fig. 4, so one would suspect there might be a good chance
of perturbing g..,, enough to get the algorithm out of stagna-
tion. As with gn.,, it was verified that the HIO is able to
move out of stagnation at £, and to the solution.

Figure 6 depicts the possible relationships in both do-
mains between f, its nearest ambiguous image and counter-
part, and the two stagnation points. From the previous
results we form the following conjecture: For a given object
f and its Fourier modulus |F, stagnation points of the itera-
tive transform algorithm (particularly ER) tend to be near
ambiguous images that have Fourier moduli close to |Fl.
This conjecture is supported more strongly by the following
example.

Consider the following image f and its nearest ambiguity,
£, with ambiguous counterpart g,

ca-
— . !
03¢ i (FOURIER-MODULUS ERROR) |
e &
: (0BUEC” -DOMAIN ERROR)
2.2+

t RROR 1t IRIC

Q 1 H
[

Fig. 5. «g. ) and 5(g, /) versus t for g = f + t(gyq — /). the line
joining f and gy,
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Fig.6. Object-space to Fourier-modulus-space mappings of an ob-
ject f, two stagnated images gm.. and £.,,. and the nearest ambigu-
ous image to f with respect to the Fourier-modulus error tg.. g, /.

_[0.476 3.244 1.379 20)

1659 2939 1.102 -

_[o867 3521 1.278] 25)

8711679 2651 0.796 N
0.350 2.146 3.171

= > 2

Eac [0.677 2.475 1.974] (26)

with 8(g,, /) = 0.128, 8(gac, /) = 0.502. and €(ga, N) = €ga. N =
0.00861. This is a case of a close ambiguity: i.e.. the object, f,
would be ambiguous in the practical sense unless the data.
|F}, were low in noise. The ER algorithm was run close to
900 times on |F] using a nonnegativity constraint, each time
with a different random initial start. The algorithm con-
verged to the correct solution f of Eq. (24) only 10% of the
time. The algorithm stagnated near g, approximately 9% oi’
the time and at several images close to g, the rest of the time
(81%). When a combination of HIO and ER was used with
the same set of random starts, convergence to the solution f
was improved to a 26% rate. 74% of the time the algorithm
stagnated at one of two different minima. g.; and g, .. each
close to the image g, in Eq. (26):

=[0.353 2.143 3.172]
sl

20
0.684 2470 1.976

35% of the time, with (g;, g.c) = 0.00195 and e(g.). ga.) =
0.00144, and

(28)

_[0.266 1.876 2.971]
82710746 2711 2.222]

39% of the time, with 5(g3, 8,c) = 0.0978 and e(g.., gu) =
0.0115. The images g,, and g, are analogous to gm.n in Fig. 6.
While convergence to g,; is bad in the sense that g., is differ-
ent from the solution £ {5(g.;, /) = 0.502], it is still consistent
with the given data [e(g;;, /) = 0.00848] and could be consid-
ered a solution (albeit the wrong one). The stagnation at g, .
is even more troublesome since it is not only similarly consis-
tent with the given data (e(g,2. /) = 0.00869] and far from f
{88s2. N = 0.511] but also is not so close to g, [3(g,.. &) =
0.0978].

A complete understanding of phase-retrieval stagnation
points and their relationship to ambiguous images is not vet
available. However, from the limited number of experi-
ments of the type described above, we can say that stagna-
tion points are often related to ambiguous images.
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6. NEAREST AMBIGUITIES

In this section we investigate the space of ambiguous images
in order to gain some insight into just how close the nearest
ambiguous image is to a typical image. This may in turn
have implications about how nearest ambiguities relate to
stagnation points encountered in iterative phase retrieval.
It also will tell is the probability of an ambiguity in the
practical sense, as a function of the noise in the Fourier-
modulus data.

Object-Domain Conditions for Ambiguity

As described above, ambiguous images are characterized in
the Fourier domain by factorable Fourier transforms and in
the object domain by being expressible as the convolution of
two or more smaller images. We choose the object-domain
relationship to characterize the space of ambiguous images.
We begin by deriving the ambiguity condition for the small-
est possible 2-D ambiguous image (2 X 2 support) and then
similarly derive it for a 3 X 2 support.

2 X 2 Ambiguity Conditions

Consider the case of a real-valued image on a 2 X 2 support.
It is ambiguous if it can be expressed as the convolution of
two 1-D sequences:

a b e
¢ =[]
eg eh]
= , (29)
[/g fh
where e, f, g, and h are all nonzero (for simplicity only the

nonzero rows and columns of the arrays are shown). This
gives the following equations for g, b, ¢, and d:

a=eg, (30a)
b=eh, (30b)
c=fg, (30c)
d = fh. (30d)

Multiplying Eq. (30a) with Eq. (30d) and Eq. (30b) with
Eq. (30c), we arrive at the following 2 X 2 convolution condi-
tion:

ad = bc. (31)

In this case a single ambiguous counterpart to an image
satisfying Eq. (31) is generated by convolving one of the 1-D
sequences by the flip (rotation by 180°) of the other (equiva-
lent to conjugating the corresponding Fourier factor). How-
ever, if e = fand/or g = h (i.e., one of the 1-D sequences is
symmetric), then flipping the factor has no effect, and the
image is still unique. Furthermore, ife = ~f and/or g = —h,
then a flip of either convolution factor becomes the negative
of the original factor. Since we do not consider two images
that differ by a scalar multiple (-1 in this case) as ambigu-
ous counterparts, we must aiso rule out this special case of
negative symmetric factors. Therefore the image is unique
iflel = |florif lg| = |k]. From Egs. (30) we see that, if la] = lc|
or {b| = d], then le| = |f], and if lal = |bl or Ic| = |dl, then gl =
lhl. When these special cases are combined with Eq. (31),
the ambiguity condition for the case of 2 X 2 support be-
comes

ad = bc, (32a)
16l » lal » Icl. 132b)
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Note that the inequalities of relation (32b) combined with
Eq. (32a) imply that |bl = Id| 5 lel.

Equation (32a) describes a three-dimensional surface in
the four-dimensional space of real-valued 2 X 2 images.
While it is accepted that there is zero probability that an
arbitrarily selected object will land on this surface. i.e., the
phase-retrieval problem is almost always (with probability
1) unique, in this paper we are concerned with how close the
Fourier modulus of a given object is likely to be to the
Fourier moduli of images lying upon this surface.

3 X 2 Ambiguity Conditions

The same approach is used to formulate object-domain am-
biguity conditions for 3 X 2 images. A 3 X 2 image resuits
from convolving either (a) a 3 X 1 sequence with a 1 X 2
sequence or (b) a 2 X 1 sequence witha 2 X 2image. Since it
is known that any 1-D sequence can always be written as the
convolution of smaller sequences, we can write the 3 X 1
sequence of case (a} as the convolution of two 2 X 1 se-
quences. We can then combine one of these factors with the
1 X 2 factor to give case (b). Thus we need only consider
case (b), and our 3 X 2 image is ambiguous if

a b ¢l _ g
[ ¢ 7w mefi 1]
& hi +gj hj
[gk hk + gl hl]' 33
where g and 4 are nonzero and none of the pairs (i and j) or ti
and k) or ( and !) or (k and !) is zero. This gives six
nonlinear equations for a, b,¢.d, e, and f in terms of g. h. 1. J.
k.and l. Asisshown in Appendix B, these equations can be
solved to give the following ambiguity condition:

{af = cd)? — (ae — bd)(bf ~ ce) = 0. (34)

Equation (34) describes a five-dimensional surface in the 6-
D space of real-valued 3 X 2 images. In comparison, for the
2 X 2 case the ambiguity surface describes a three-dimen-
sional surface embedded within a four-dimensional space.
Appendix B also shows that Eq. (34) can be solved to give.
for example, b in terms of the remaining five values:

b= %[e(? + %) 4 (2 — 4df)'” (; - %)] (35)

An ambiguous, real-valued 3 X 2 image arising from the
convolution of a 2 X 1 sequence with a nonfactorable 2 X 2
image can be shown to have an ambiguous counterpart that
must also be real valued. However, if the 2 X 2 convolution
factor of Eq. (33) can itself be factored, then we have the case
of a 3 X 2 image resulting from the convolution of a 3 X 1
sequence with a 1 X 2 sequence. An ambiguous, real-valued
image formed in this way will have rows that are scalar
multiples of one another; i.e.,a = Kd, b = Ke. and ¢ = Kf for
some scalar K. This condition makes each difference term
in Eq. (34) equal to zero. Itisstraightforward to show that if
b? < 4ac, then this real-valued ambiguity will have a com-
plex-valued ambiguous counterpart. If the image is con-
strained to be real valued, then this complex-valued image
does not constitute an ambiguity within the space of real-
valued images. Furthermore, because this special case is a
small subset of the entire ambiguity surface, we expect it to
have a relatively minor effect on the likelihood of stagnation
due to nearby ambiguities.
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Fig. 7. Flow chart for determining the ambiguity of the 3 X 2 real-
valued image of Eq. (33). Muitiple conditions in a box must all be
satisfied for “YES,” except where “of" is specified.

The ability to factor an image into the convolution of two
or more images is necessary, but not sufficient, for determin-
ing ambiguity. When we discussed the ambiguity condition
for 2 X 2 images, we considered the special cases of what we
called symmetric and negative-symmetric convolution fac-
tors. These special cases, as well as the effect of zero-valued
pixels, also must be considered for 3 X 2 images. To save
space, rather than discussing these exceptions in detail we
summarize them in the ambiguity flow chart in Fig. 7.

Nearest Ambiguity by Means of Constrained
Minimization :

The mathematical description of ambiguities for 2 X 2 and 3
X 2 images can be used to investigate the nearness of a given
object to an ambiguous image. We formulate the task of
finding the ambiguous image nearest a given object as a
multidimensional constrained-minimization problem. By
nearest ambiguity we mean the image on the ambiguity
surface for which some objective function involving the am-
biguous image and the given object is minimized. For the
objective function we choose

E@ N =N G, v) = Fu, v (36)

u.t

which is just ¢*(g, ) of Eq. (9) with a; = 1 and without the
normalization.

Each M X N image, having L = M X N pixel values, can be
thought of as a single point in an L-dimensional vector space.
To emphasize this fact we can denote an image g by the L-
dimensional vector %, where £ = (a b ¢ d)* for the 2 X 2 case
and £ = (g b c d e f)' for the 3 X 2 case (the ordering of the
pixels in the vector £ is arbitrary). Therefore, for a given
image f, we desire to find £ (or g) on the ambiguity surface
that minimizes E(%) = E(g, /). (Note that if we did not
constrain ¥ to be on the ambiguity surface, then we would
just be solving the phase-retrieval problem!) If we define
the ambiguity surface by h(2) = 0, then the problem of
finding the nearest ambiguity to f can be stated as follows:
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Given an object f, find the % that minimizes the objective
function E(%) subject to the ambiguity condition h{x) = 0.

The two image supports for which we have derived ambi-
guity conditions [Eqs. (32) and (34)] give rise to the following
hix):

2x 2 Images(L = 4)

h(x) =ad ~ bc =0, 37)

3 X 2 Images (L = 6}

h(z) = (af = cd)* = (ae — bd)(bf ~ cej = 0. (38)

Iterative Constrained Minimization

Using the mathematical framework developed above, we
now implement a generalized reduced-gradient (sometimes
referred to as a gradient-projection) method® to find the
nearest ambiguity to a given image. This method is ex-
plained in detail in Appendix C and is summarized below.

In an unconstrained gradient-search method, we search
for a minimum to the objective function £(z) in the direction
of —vE(z), the negative gradient of that function. In a
constrained search we still would like to follow the negative
gradient, but we are constrained to move along a particular
surface within the space, described by the equation h(x) = 0.
We alter the search direction by projecting —vE(%) onto a
tangent plane of h(x), and we then move along the plane in
the direction of the projection, p, as depicted in Fig. 8.
Then, from a point along p, which is generally not on the
constraint surface, we find a nearby (not necessarily the
closest) point on the constraint surface. The method used
here to return to the constraint surface is detailed in Appen-
dix C. The search for the solution is iterative, and we define
our estimate of the solution after the kth iteration as .. At
the solution, £,, —VE(%) is perpendicular to the tangent
plane to the constraint surface, and the projection onto the
tangent plane is zero.

It is difficult to determine whether the minimum found is
indeed the global minimum or just a local minimum. Ina
numerical simulation such as this, one can gain confidence in
claiming a minimum as global only through repeated search-
ing with different initial guesses. Our practical criteria for
claiming that a minimum, %,, is global is that E(%,) is the
smallest among all minima found and that it is found more
than twice as many times as the total number of minima

chx,) VE®&)
\

Tangent Piane

Constraint Surtace
hNY) =0

Fig. 8. Gradient-projection constrained-minimization algorithm.
The search direction is determined by projecting the negative gradi-
e::f of the objective function onto the tangent piane to the constraint
surface.
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found, which must be more than four. If the above criteria
are not satisfied after 40 different minima are found. then
the one that minimizes Etx) is chosen (and we simply realize
that it may not be the global minimum). [t should be noted
that at points on the surface where Vh(x) = 0 the tangent
plane is not defined. 1If such a singular point is encountered
the search may terminate without satisfving a convergence
criterion, but the estimate at the singular point may still
minimize the objective function over all other estimates (see
Appendix C).

Although the constrained-minimization algorithm mini-
mizes an objective function defined in Fourier-modulus
space, the search itself takes place on surfaces in object
space. The minima found on the surface of Eq. (37) will
always correspond to images with two convolution factors,
and that usually will be the case for the minima found on the
surface of Eq. (38) as well. Thus the nearest ambiguity in
Fourier-modulus space to an object f corresponds in object
space to any of four imag.s (not counting scalar multiples of
these images): the ambiguity, its ambiguous counterpart,
and the twin image of each. So, once we have an estimate of
the global minimum with respect to Fourier-domain error
|Eq. (36)), denoted by g,, we calculate the object-domain
error 6 for g, and its twin image, retaining the smaller of the
two values. We then find the ambiguous counterpart to g,,
denoted by g,., by convolving one of the factors of g, with the
twin of the other. After finding the smaller é for g, and its
twin, we keep as the worst-case nearest ambiguity the larger
of this 4 and the one retained for g, and its twin. Referring
back to Fig. 1, the smaller value of § corresponds to the
nearest ambiguity in the object domain, g,, and the larger
retained value of & corresponds to its ambiguous counter-
part, £u, the worst-case nearest ambiguity. Although g, and
&ac are both nearest ambiguities to f with respect to Fourier-
domain error, we differentiate them by defining the worst-
case nearest ambiguity as the one with the larger value of the
object-domain error, 4, with respect to /. The worse-case
nearest ambiguity corresponds to the point in object space
farthest from the true image that either is likely to cause
local minima to trap phase-retrieval algorithms or could be
confused with the true image if the squared error in the data
exceeds E(x).

Monte Carlo Simulations

To investigate the prevalence of ambiguities we implement-
ed the constrained-minimization nearest-ambiguity search
in a Monte Carlo simulation in which nearest ambiguous
images were found for a large number of random objects f(x,
¥}. Each pixel of the object was an independent, real-valued
random number uniformly distributed on the interval [-2,
2] or [0, 4] for nonnegative objects. The results of the Monte
Carlo simulations are presented in the form of scatter plots
of ¢ versus § for the worst-case nearest ambiguity. For each
random object f, the value of ¢ for the nearest ambiguity is
plotted versus the worst-case é. The interpretation of these
scatter plots should not be confused with that of the grid-
search scatter plots shown above. Recall that all the (5, ¢)
pairs in a grid-search scatter plot are calculated by using a
single object f and have nothing to do with ambiguities, while
each (9, ¢) point in Monte Carlo scatter plot represents met-
rics for the worst-case nearest ambiguity to a different ran-
dom object f. We computed these plots for five separate
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cases: (1) 2 X 2 objects without a nonnegativity constraint
on/,(2) 2 X 2objects with a nonnegativity constraint, (3) 3 X
2 objects without a nonnegativity constraint, (4) 3 X 2 ob-
jects with a nonnegativity constraint, and (3) L-shaped (with
b = ¢ =0)3 X 2objects with a nonnegativity constraint. The
five cases above represent different constraints on f. The
only constraint on the worst-case nearest ambiguity, g, is
that it lie upon the ambiguity surface corresponding to the
support of f.

A typical scatter plot of ~4000 points required ~110 h for
the 2 X 2 objects and ~1500 h for the 3 X 2 objects on an IBM
AT personal computer.

The scatter plots of ¢ versus 4 for the 2 X 2 support cases
(1) and (2) are shown in Fig. 9. The points that would cause
trouble are those that have small Fourier-modulus error
(FME), ¢, and significantly larger object-domain error
(ODE), é. These troublesome points are likely to induce
phase-retrieval algorithm stagnation and/or are ambiguous
from a practical point of view when the Fourier-modulus
data are sufficiently noisy. One definition of a trouble re-
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& (0BJECT-DOMAIN ERROR)
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Fig. 9. Fourier-modulps error ¢ versus object-domain error § for
worst-case nearest ambiguities to 2 X 2 objects. (a) No nonnegati-

vity constraint, 4752 objects: (b) nonnegativity constraint, 4486
objects.
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Fig. 10. Monte Carlo estimates of the probability that the worst-
case nearest ambiguity to 2 X 2 objects with and without a nonnega-
tivity constraint has a Fourier-modulus error less than ¢ and an
object-domain error greater than Ke (K = 4 and K = 101,

gion is all the points below the line é = K¢, shown in Fig. 9 for
K =4and K = 10. That is, we do not consider the practical
ambiguity problem to be significant unless the error, §, in the
ambiguous reconstruction or stagnation point exceeds 4
times {or 10 times) the error in the Fourier-modulus data.
Only then would we consider the ambiguity to be significant.
{Although it was easy to show in Appendix A that é > ¢ for
any pair of images, an analgous relationship for an image and
its worst-case nearest ambiguity has not been developed.)
Figure 9(a) (no nonnegativity constraint on f) exhibits a
banded structure with a higher density of points above the é
= 4¢ line, which effectively reduces the probability of nearest
ambiguities in the trouble region. Figure 9(b) (nonnegati-
vity constraint on f) reveals a higher density of points in the
trouble region, particularly for § <0.5. Thus the nonnegati-
vity constraint on f actually increases the probability that a
random object’s Fourier modulus is close to that of an am-
biguous image for the 2 X 2 case.

One way to estimate the probability of significant ambigu-
ity is to integrate these scatter plots in the trouble region
below the line 5 = Ke¢. If we bin the points below this line
with respect to ¢, we can obtain an estimate of the probabili-
ty-density function of the probability that the worst-case
nearest ambiguity has FME ¢ and 6 > Ke. Integrating this
estimated probability-density function from 0 to ¢ yields an
estimate of the probability that the worst-case nearest ambi-
guity to an arbitrary object has less than ¢ FME and ODE 5 >
Ke. These cumulative probability distributions define what
we mean by the probability of significant ambiguity. These
distributions for cases (1) and (2) are shown in Fig. 10 for K
= 4and K = 10. Figure 10 verifies our previous observation
that the nonnegativity constraint actually improves the
chance of significant ambiguity. For example, these esti-
mated distributions tell us that, given an arbitrary, real-
valued 2 X 2 object, the probability of finding a worst-case
nearest ambiguity with FME ¢ < 0.04 and ODE § > 0.16 is
10% for f without nonnegativity and 18% for f with nonnega-
tivity.

The same analysis for the 3 X 2 object support [cases (3)
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and (4)] reveals the opposite trend. Figure 11 shows the ¢
versus 6 scatter plots for the nearest 3 X 2 ambiguities with
and without a nonnegativity constraint on /. With no non-
negativity constraint, the scatter plot of Fig. 11(a} is uniform
in appearance, indicating a greater likelihood of nearby am-
biguities in the trouble regions. With the nonnegativity
constraint, Fig. 11(b) shows a high concentration of points in
the large ¢, large 4 region of the plot. away from the trouble
region. It is the nonnegativity constraint that creates the
favorable banding effect for the 3 X 2 case. Integrating
these plots below the K = 4 and K = 10 lines yields the
probability distributions of Fig. 12. In comparison with the
example given for the 2 X 2 nonnegative case, the probability
of finding a worst-case nearest ambiguity with FME ¢ < 0.04
and ODE & > 0.16 is increased to 17% without nonnegativity
but reduced by approximately one half to 9% with the non-
negativity constraint on f.

One possible reason that nonnegativity reduces the proba-
bility of significant ambiguity for the 3 X 2 case is as follows.
From Eq. (35) we see that there are no real-valued ambigu-
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Fig. 11. Fourier-modulus error ¢ versus object-domain error & for
worst-case nearest ambiguities to 3 X 2 objects. (a) No nonnegati-
vity constraint. 4112 objects; (b) nonnegativity constraint, 4601
objects.
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Fig. 12. Monte Carlo estimates of the probability that the worst-
case nearest ambiguity to 3 X 2 objects with and without a nonnega-
tivity constraint has a Fourier-modulus error less than ¢ and an
object-domain error greater than Ae¢ (A = 4and K = 10).

ous images for which e- — 4df < 0. Since —4df is negative for
positive d and f, but is positive if one of them is negative, e- —
4df is more often negative for nonnegative images. Thus
nonnegative objects are less likely to have nearest ambigu-
ities that are nearby (in the object domain} than are objects
without a nonnegativity constraint. Since objects that are
similar in the object domain will tend to be similar in the
Fourier-modulus domain, the nearest ambiguities to non-
negative objects are less likely to be nearby with respect to
Fourier modulus as well.

An important point that should be stressed is that the
nonnegativity constraint discussed in this section is on the
object f and not on the nearest ambiguity. Because of this
fact, the nearest ambiguous image to a nonnegative object
might not be nonnegative itseif; it could contain one or two
negative-valued pixels. Thus a nonnegativity constraint in
a phase-retrieval algorithtn may help to move the image
away from a stagnation point near the ambiguity, and the
probability of ambiguity in the practical sense would be
reduced compared with the results shown here.

At this point it is useful to recall the conjecture made in
Section 3. i.e., that stagnation points of the iterative Fourier-
transform algorithm tend to be near ambiguous images that
have Fourier moduli close to the given Fourier modulus, |F1.
The example given in Section 5 used an object f and its
nearest ambiguity [Eqs. (24)-(26)] taken from the Monte
Carlo experiment with 3 X 2 nonnegative objects. Recall
that, for the object f of Eq. (24), after numerous trials we
found two stagnation points, g, and £.., of both the HIO and
ER versions of the iterative Fourier-transform algorithm.
The closeness in both domains of these stagnation points to
the worst-case nearest ambiguity, g. {Eq. (26)], was shown.
A few more simulations of this type were performed for
different nonnegative 3 X 2 objects. Objects were selected
based on the locations in Fig. 11(b) of their worst-case near-
est-ambiguity error metrics. All objects selected had a
worst-case nearest ambiguity with 0.45 < é < 0.55. Three
objects with (significant) worst-case nearest ambiguities
with ¢ < 0.05 [as was the case for f of Eq. (24)] were selected,

F-11

J. H. Seldin and J. R. Fienup

and, compared wi*h the 26% success rate for f with HIO. the
true solution was found 48%. 49%. and 39% of the time.
respectively, by using HIO on these three objects. As with/.
when the true solution was not found, the algorithm stagnat-
ed near the worst-case nearest ambiguity (£, ) to each of the
three objects. Two objects with a worst-case nearest ambi-
guity with ¢ = 0.10 converged to the true solution 78% and
100% of the time. and another object with a worst-case near-
est ambiguity with ¢ = 0.30 converged to the solution 100% of
the time. Thus stagnation tends to decrease as the nearest
ambiguities move farther away with respect to ¢ (equivalent-
ly. as the significance of ambiguity decreases). As men-
tioned above, the limited number of experiments of this tvpe
has not yet provided us with a complete understanding of
phase-retrieval stagnation points and their relationship to
worst-case nearest ambiguous images. Nevertheless. the
correlation of the object’s worst-case nearest ambiguity hav-
ing large & and small ¢ (¢ < 0.05 for our experiments) with the
presence of stagnation points has been convincingly estab-
lished.

The final case investigated is nonnegative, 3 X 2 objects
with b = ¢ = 0, which we call L-shaped objects. The L-
shaped support itself mandates uniqueness; i.e.. it is not
possible to convolve two nontrivial functions to obtain an
image with this support. After running the Monte Carlo
simulation for these objects. we discovered a class of L-
shaped ambiguities that gives rise to misleading results.
Consider the object

f= [1.48155 0 0 :l
2.01553 3.97050 0.16831
with nearest 3 X 2 ambiguous image
- [1.48170 6.29E-4 -‘2.78E-3]
2.01419 3.97109 0.16907
1.48170 —0.06388]'
2.01419 3.88340

with 8(gs, ) = 7.015E-4 and e(g,, ) = 4.167E-4. The ambig-
uous counterpart to g,, obtained by flipping the first convo-
lution factor in Eq. (40), is

39

=[1 0.04354] » [ (40)

48170 0.
£, = [0.045354 1].[1 8170 006388]

2.01419  3.88340

=[0.06451 1.47892 —0.06388]

0.08769 2.18326  3.88340 4

The object-domain error between f and g, as defined by Eq.
(11) is 8(gac, N = 1.0629. However, comparison of f and g,
reveals that the image g, is similar to the image f shifted by
one pixel to the right. This is because the first convolution
factor of Eq. (41) is nearly a delta function, and the second
factor is very similar to the image f without its right-hand
column. The first convolution factor causes a tapering of
the image, making one column much smaller in value than
the other nonzero pixels. Flipping one of the convolution
factors simply shifts the significant pixels and moves the
tapered column to the other side of the image. Because the
object-domain error metric 6 does not take such shifts into
account, the value of (g, f) calculated for this case is much
too large, resulting in a misleading point on the scatter plot.
(If the caiculations were to be redone, then this problem
could be accounted for by cross correlating g,. with f and
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shifting g, according to the cross-correlation peak to mini-
mize §.)

A similar problem may occur if the shorter leg of the L-
shaped support is tapered, leading to nearest ambiguities
that are close to 1-D sequences. To reduce the misleading
effects of tapered images on our analysis, we consider only
those images that satisfy a bound on the robustness of the L
shape. An L-shaped image [ | }] has L robustness R%,
defined by

R minla, Ai/{(a> + d° + €* + f*)/4]' (42)
100
Images with large R are robustly L shaped, whereas images
with small R (strongly tapered) are only weakiy L shaped.

It should be noted that the same taper problem can also
cause misleading ODE calculations of worst-case nearest
ambiguities for the 2 X 2 and 3 X 2 images in cases (1)-(4).
In these cases, whole rows or columns would have to be
significantly smaller than the rms pixel intensity of the im-
age. Since the images are random, it is much less likely for
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Fig. 13. Fourier-modulus error ¢ versus object-domain error 5 for
worst-case nearest ambiguities to 3 X 2, nonnegative, L-shaped
objects. (a) L robustness > 10%, 3190 objects; (b) L robustness >
25%, 2714 objects.
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Fig. 14. Monte Carlo estimates of the probability that the worst.
case nearest ambiguity to 3 X 2, nonnegative, L-shaped objects with
L robustness greater than R% (R = 10 and R = 25) has a Fourier-
modulus error less than ¢ and an object-domain error greater than
Ke(K = 4and K = 10).

this to occur in cases (1)-(4) for which two or more pixels
must be small simultaneously than for the L-shaped case (5)
for which only a single pixel must be small.

The worst-case nearest-ambiguity scatter plots for non-
negative, L-shaped images with L robustness greater than
10% and 25% are shown in Fig. 13. As the L-robustness
requirement is increased, many points clustered about the §
axis disappear. (Had we been able to calculate 5 with image
shifts taken into account, we would have found these points
moving horizontally into the small 6, small ¢ region of the
plot.) Despite the nonnegativity of f, these scatter plots are
less banded than for general 3 X 2 nonnegative objects-—case
(4) in Fig. 11(b). This is verified by the estimated distribu-
tions for both taper percentages (Fig. 14). For the case of L
robustness greater than 25%, the distributions of Fig. 14
achieve a lower probability than does case (4) for values of ¢
less than 0.07, reflected by the small number of points near
the origin of the plots in Fig. 13. Therefore, for the low-
noise case, the L-shaped support constraint not only pre-
vents ambiguity in the absolute sense but it also makes
ambiguity less likely in the practical sense.

7. SUMMARY AND CONCLUSIONS

An ambiguous image is one whose Fourier modulus is identi-
cal to the Fourier modulus of a second image that is other
than a scaled version. a translation, or a twin of the image.
Arbitrary objects are almost never (i.e., with probability
zero) ambiguous. Nevertheless, the existence of an ambigu-
ous image close to a given object has two harmful effects: it
causes stagnation points for phase-retrieval algorithms and,
for the case of noisy Fourier-modulus data, it may cause the
solution to be ambiguous in the practical sense. Because of
the nonlinearity of the phase-retrieval problem, these issues
are difficult to characterize analytically. We investigated
the prevalence of ambiguous images for the phase-retrieval
problem, using numerical approaches. This is practical be-
cause we considered the case of small objects defined on 2 X
2 and 3 X 2 supports.
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Using both a new iterative grid-search algorithm and the
iterative Fourier-transform algorithm. multiple phase-re-
trieval experiments were performed, and stagnation points
were found that correspond to local minima in the Fourier-
domain error metric. These stagnation points were shown
to be close to ambiguous images whose Fourier moduli are
close to the modulus of the Fourier transform of the object.
The implication is that the existence of the ambiguous im-
ages causes the local minima to occur. However, the precise
relationship between the local minima and the ambiguous
images is not vet understood, and nearest ambiguities may
not be the sole cause of stagnation.

The prevalence of ambiguities close (with respect to Fou-
rier modulus) to a given object was explored by a Monte
Carlo experiment in which nearest ambiguities were found.
First, object-domain analytic expressions for the set of am-
biguous images were derived for both the 2 X 2 and 3 X 2
supports [Egs. (37) and (38)]. For the 2 X 2 case, the set of
ambiguous images forms a three-dimensional surface em-
bedded in the four-dimensional space of 2 X 2 real-valued
images. For the 3 X 2 case, the set of ambiguous images
forms a five-dimensional surface embedded in the 6-D space
of 3 X 2 real-valued images. Next, a reduced-gradient
search technique was used to search along the surfaces of
ambiguous images to find the ambiguous image nearest a
given object with respect to Fourier modulus. Of the nearest-
ambiguity pair of images, one is usually close to the object f,
while its ambiguous counterpart is usually a worse case: it is
much farther from the given object, yet it has a Fourier
modulus identical to the ambiguous image that is close to f.
Histograms of Fourier-modulus-domain versus object-do-
main errors were accumulated in Monte Carlo experiments
involving numerous random objects and their worst-case
nearest ambiguities. Integration of the histograms, over the
points for which the object-domain error is large relative to
the Fourier-modulus error, yielded estimates of the proba-
bility that a significant ambiguity would occur within a given
Fourier-modulus error tolerance. It was found that nonneg-
ativity of the object decreased the probability of significant
ambiguity for the 3 X 2 case (as anticipated) but increased
the probability of significant ambiguity for the 2 X 2 case.
However, since the ambiguous images were allowed to have
negative values even when the objects were restricted to be
nonnegative, it is likely that the imposition of a nonnegativ-
ity constraint in a phase-retrieval algorithm would help to
avoid some of those ambiguities. L-shaped images, whose
support guarantees uniqueness in the absolute sense, were
also investigated. It was found that. for low-noise data, the
L-shaped support of the object also makes ambiguity less
likely in the practical sense.

Future work should include the application of this ap-
proach to objects with larger supports. This is important
since it is difficult to extrapolate from these results for 2 X 2
and 3 X 2 supports to the case of most interest: supports
with many pixels in each dimension. The probability of
significant ambiguity for the 3 X 2 case was of similar magni-
tude to that of the 2 X 2 case. This is probably because the
ambiguity surfaces in both cases were of dimension one less
than the dimension of the space of objects. When larger
objects are considered, however, this changes. For example,
for 3 X 3 objects

J. H. Seldin and J. R. Fienup

a b c
d e f]

g h i

factoring into a (3 X 2) convolved with a (1 X 2), the ambigu-
ity condition is given by the simultaneous equations

(ah — bg)* ~ (ae — bd)idh — eg) = 0 (43)
and
(ah — bg)af ~ cd) — (ae — bd}ai — cg) = 0. 144)

These describe two eight-dimensional surfaces embedded in
a nine-dimensional space of 3 X 3 real-valued objects, the
intersection of which would ordinarily be expected to be a
seven-dimensional surface embedded in the nine-dimen-
sional space. The ambiguity condition for the factoring of a
3 X 3 object into a (2 X 2) convolved with another (2 X 2) is
also given by a pair of simultaneous equations describing two
eight-dimensional surfaces embedded in a nine-dimensional
space, the intersection of which would ordinarily be a seven-
dimensional surface in the nine-dimensional space. Thus
for these larger images the dimensionality of the surface of
ambiguous images is smaller relative to the space of all ab-
jects than for the 2 X 2 or 3 X 2 case; consequently one would
expect the probability of significant ambiguity to be less for
these larger images. The importance of the shape of the
support constraint (convex versus nonconvex versus sepa-
rated parts, etc.) may also reveal itself more forcefully for
larger supports. Finally, a better understanding of the pre-
cise relationship between local minima and nearest ambigu-
ous images could lead to methods for avoiding phase-retriev-
al algorithm stagnation at local minima.

APPENDIX A: PROOF THAT ¢<$

By definition, lagl = ay, or ag = +a;. The proof that (g, ) <
5(g, ) can be given by using Parseval's theorem with the
definition of 8(g, f):

Iy A

12
5g.H = [z (opg(x, ) = fix, y)]z/S fiux, y)}

17
= [V l+a/G(u, v) = Flu, u)lg/v |F(u, ng] .

(A1)

By the triangle inequality, given two vectors, v; and vs. lv; —
val2 2 [log) = lwal]2. Therefore

|£a/G(u, v) = Flu, ) 2 [a)Gu, v)l - [F. v)l]>.  (A2)

Inserting inequality (A2) into Eq. (A1), we have

[TRY

g Nz [E [alGlu, v)l - F(u, u)|]2/v IF(u, v)

—_—

=g, . (A3)
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APPENDIX B: DERIVATION OF 3 x 2
AMBIGUITY CONDITION

Equation 33) gives us the following six equations:

a =g, (Bla)
b=hi+gj. (B1b)
c = hj, iBlc)
d = gk, (Bld)
e=hk + gl (Ble)
f=hl (B1f)
Multiplying Eqs. (Bla) and (BI1f) gives
af = ghil, (B2)
and multiplying Eqgs. (Blc) and (B1d} gives
cd = ghyk. (B3)
Combining these yields
af = ed) = g*h*Ul = Jk)-. (B4)
From Egs. (B1b), (Blc), (Ble), and (B1f) we have
(bf = ce) = h(il = jk), (B5)
and from Eys (Bla), (B1b), (B1d), and (Ble) we have
(ae — bd) = g*(il ~ jk). (B6)
Taking the product of Eqs. (B5) and (B6) vields
(ae — bd)(bf — ce) = g*h*(il — jk)*. (BT
From Eqs. (B4) and (B7) we arrive at the resuit
(af — cd)? — (ae — bd)(bf = ce) = 0. (B8)

This equation is the condition that must be met in order for
the 3 X 2 image of Eq. (33) to be ambiguous.

From Eq. (B8) we can solve for any of the six variables in
terms of the other five. For example, by expanding and
collecting powers of b, we arrive at

b(df) — blaef + cde) + ace® + (af — ¢d)* = 0. (B9)

The solution of Eq. (B9), v aich is quadratic in b, is given by

_ letaf+ ca) # (€’ ~ 4dN'* (af ~ cd)]
2df

(e e o

APPENDIX C: GENERALIZED REDUCED-
GRADIENT METHOD

The generalized reduced-gradient method is a gradient-pro-
jection technique used to apply a set of constraints to a
minimization problem. The application discussed here uses
asingle nonlinear homogeneous constraint, h(£) = 0, and the
discussion is presented with this assumption. We begin by
defining the tangent plane to a surface:

b

Given a point £° satisfying h(£*) = 0, the tangent plane T
at that pointis T = |3: Yh(z*) - 3 = 0}, where ¥ denotes the
gradient with respect to & and - denotes the dot product.
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Simply stated. all vectors 3 in the tangent plane T are per-
pendicular to the gradient of h(x) at &*.

In an unconstrained gradient-search method. we would
search for a minimum to the objective function Etx) in the
direction of the negative gradient of that function. -V Etx.
In a constrained search. however, the solution is constrained
to a particular surface within the space, and we must aiter
the direction of the search to remain on the surface. We do
this by projecting —vE(%) onto a tangent plane of hix) and
moving along the plane in the direction of the projection. p.
Because points lving along p in general will not lie upon the
constraint surface, the goal is to move along p and then to
return to the suriae h{x) = 0 such that there is a sufficient
decrease in the objective function. More will be said below
about how to return to the surface from the projection onto
the tangent plane.

The solution point, i,, satisfies the following first-order
condition:

All ¥ satisfving Yh(z,} - ¥ = O (in the tangent plane at .}
must also satisfy —vE(z.}- v =0.

The above definition implies that, at the solution, =V E is
parallel to Wh. which in turn implies that the projection p is
zero. Note that the above definition applies to any mini-
mum and not just to the global minimum.

The search is iterative, and we define 1, as our estimate of
the solution after & iterations. The goal is to find x.., such
that E(z,) significantiv decreases at each iteration and to
continue iterating until the first-order condition above is
satisfied with a sufficient degree of confidence.

We now discuss the reduced-gradient method in more
specific terms for the case of a singie homogeneous con-
straint. Let us assume we are working in an L-dimensional
space. A tanger.plane to h(x) can be thought of as a surface
of dimension one less than the space in which it lies. In
order to use projection ideas from linear algebra. we define
the tangent plane as a space spanned by a set of basis vec
tors.

A vector that is perpendicular to the tangent plane to h(x!

atapointf = (x; x2...x1)0is
ohy
ax, |’

oh odh

vhiz)={ — —
@ (zixl dx,

A set of L — 1 linearly independent L-dimensional basis

vectors that span the space perpendicular t~ Thi(z) (i.e.. the

tangent plane) is (assuming that 6h./9x, = 0)

(CH

-

[ (oh\~! {dh i
b=~-[—) [—
1‘. (ax,) (ax._‘) 1 0 0...0
[ Ak \-1} I
b, = —(-’i) (ﬁ) 01 0...0
ox, ox,
L .
[ (6n\~! [dh T
by =i~-[{—) (— 1 2
-1 ™ (ax‘) (dx,_) 0 0 0...1 (C2)

The set of basis vectors defined in Eqs. (C2) enables us to
define a projection onto the tangent plane to htz). If we let
the b’s be the columns of an L X (L - 1) matrix.
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2=16 6....6._) (C3)

then the projection of an arbitrary L-dimensional vector. &.
onto the space spanned by the columns of Zis*

p=2Z2Vv'Z%. (C4)

rrom Eq. (C4). the projection of ~VE(%) onto the tangent
plane to h(x) is just

p=-2122y"'Z'vE(%). (C5)

For each estimate %, of the solution we have hix.l = 0.
The reduced-gradient method calculates vhiz,). Z.. and
—vE(x.) and uses these with Eq. (C5) to determine the new
search direction:

p.=-2.(2.2,)'Z.vE(x,). (C6)

Once p. is determined. we must move from %, in the direc-
tion of p, to find the next estimate i..,. However, we must
have hli,.;) = 0, and. in general. it is not possible to find a
step size 7. = O along p. such that hlf. + y¢pe) = 0. It
becomes necessary to deviate from p. to return to the surface
for our next estimate. This estimate becomes

ikol =ix +'7’gpk +‘74—~ (C—:)
with
hix,.,) =0, (C8)

where v, and §. are chosen such that E(%..,) < E(x;). De-
termining the scalar step size v, and the direction back to
the surface, @. in Eq. (C7) that minimize E(%,.,) can be a
complicated subproblem.

Rather than spending too much computation time deter-
mining the optimal 4. and §., we opt for a simpler approach
to finding an .+, that produces a sufficient decrease in the
objective function. We do this by (1) selecting a value for v.,
then (2) using & + v.P. for all but one of the components of
%4+1, and then (3) using Eq. (C8) to determine the last com-
ponent. Equation (35) is an example of Eq. (C8) for solving
for the component b. The objective function is evaluated to
determine whether there is a sufficient decrease. If we are
not satisfied with the new estimate, we choose another value
of y. and repeat the procedure. Using this procedure, we
can think of the objective function as a function of y and can
set v, to the value of v that minimizes E{y). One could use
any of a number of standard line search techniques to esti-
mate 7., but we used a slightly different method to estimate
this minimum and to find %..,.

Iterative Quadratic Fit

The techrique implemented to minimize £(y) with respect
to 7 can best be described as an iterative quadratic fit (I1QF).
It uses quadratic curve fitting to approximate the minimum
of Eivy) iteratively and thus determine v,. The description
of the IQF below assumes the ability to fit a quad-
ratic polynomial to three points:

(1) Initialize: v, = yom: = 0. 92, 71

(2} Calculate Et+,), Etv-). and E(v)).

{3) Calculate y,,. the value of ¥ that corresponds to the
minimum of the quadratic polynomial in v fit to the points
[vi E(y ) Iyz Etya), [y E(ya)].

(4) Calculste E{ym)).
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(5) Iflym; =y~ < 3.then v, =~ .. and stop: otherwise
continue with step (6).
6} Of v,.+.and v.. find the two that are closest to 1.
Call these y,, and v, ..
(Tr Set: vy, =3 . Eiv.)=—Ety ),
Y.~y Eya—Ety )
“y:"‘yml.E(‘).)‘—E(‘,ﬂ.:l.
RETRann BT

{8) Gotostep (3).

The initial values of v and v : should be chosen based on
experimentatior and observation of typical Ei+) versus
curves. These values are not crucial to the success of the
quadratic fit but should be spaced well enough to give a
reasonable initial fit. The value of the termination parame-
ter 3 should be based on the degree of accuracy needed and
should be chosen large enough to avoid excessive iterations.

The success of the IQF depends largely on the shape of
E(y). If E(v)is not fairly smooth, the IQF may not find the
actual minimum; this is not a problem if a sufficient decrease
in E is achieved. A more difficult problem occurs when the
projection onto the tangent plane extends into a region of
the 6-D space for which the equation for a return to the
surface is not defined. As an example. consider using Eq.
(35) to return to the surface by calculating b given the other
five variables. If a range of values of vy exists for which 4 p.
extends into the region where e- ~ 4df < 0. then b (which is
by definition real valued) and hence E(+) will not be defined
over this range. When we encountered a case such as this.
we implemented a Fibonacci line search™ to estimate the
minimum of E(y) on the interval 4 for which E4) is defined.
It should be stressed that these potential problems arse out
of the method used here to return to the ambiguity surface.
and other methods exist that may circumvent this but that
are more computationally burdensome.

SPECIFICS TO THE NEAREST-AMBIGUITY SEARCH
Since we have discussed the constrained-mi: :-aization tech-
nique in somewhat general terms to this point. let us now
mention some details and summarize the procedure.

The gradient of E(z) of Eq. (36) can be computed by using
the following relationship-*:

JE
2MNg(x, v} — g'tx. 3. (C9
o lglx, ») — g'tx. ] C9
where
N ]
DFTlg'(x. v}l = £ G 0, IC10)
1Gtu, o)

Since the ordering of the pixels of g(x, v) in the vector 1 is
defined, Eq. (C9) can be used to calculate the components of
Vv E(%) using two DFT's [since |Fu. v)i is given).

The various steps of the reduced-gradient constrained-
minimization algorithm are as follows:

1. Initialization
(a) Determine |Flu. v)l.
(b) Make an initial guess, .. such that htx.) = 0.
(¢) Compute E(x.).
d) k=90
2. Calculating the search direction. p.
(a) Compute Qhixz,).
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(b} Form Z.. Z;.

(¢) Compute E(x:).

(d) Compute pc = ~Z.(Z(Z,)"'Z; VE(1,).
3. Iterative Quadratic Fit to find ., from %, and pi
4. If [E‘ik) - E(ikq)]/E(ik) < a,

then: Done: estimate of minimum is 4,

else: (a) k—k+ 1

(b} Gotostep2.

The termination condition in step 4 above is based on a
percentage change between successive iterations. The
bound « is selected to reflect the precision of the estimate of
the minimum. While it may be tempting to use the condi-
tion that — v E is perpendicular to the tangent plane, that is,

-9E(&,.)) - ppy < ¢ (C11)
for some small ¢, it is also difficult to pick the value of ! that
will consistently give us the same confidence in the precision
of our estimate without choosing it so small that it causes
needless iterations in many cases.
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