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PREFACE
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1.0 INTRODUCTION AND OVERVIEW

1.1 BACKGROUND

Discrimination of targets from decoys can be done using imagery

having very fine resolution. The diffraction limit on resolution,

p = XR/D, obtained from an imaging sensor at a range R using wavelength

X and aperture diameter D, implies that, for SDI midcourse

discrimination applications, the wavelength must be very short and/or

the aperture diameter D must be very large. Such very large apertures

would be impractically heavy and difficult to steer rapidly in space if

they were made to be rigid in order to be without aberrations. On the

other hand, mirrors that are inexpensive and lightweight would warp,

causing phase errors and a severe blurring of the imagery.

An approach to circumventing these problems is to employ cheap,

lightweight mirrors and obtain fine-resolution images from them using

phase retrieval algorithms. By this approach, a computer algorithm

corrects the errors after the data is collected. With the increasing

speed and decreasing cost of computers, this trade-off of simpler

optical hardware at the expense of additional computational

requirements is increasingly attractive.

Phase retrieval can be employed to greatly improve the quality of

imagery from a large number of sensors. In this study, we concentrated

on a particular imaging sensor, the Multi-Aperture Amplitude

Interferometer (MAAI), under development at the University of Maryland

(UMd) by the group headed by Doug Currie. It is essentially a multi-

channel, modernized Michelson stellar Interferometer that gathers the

Fourier transform of the target image, with all the spatial frequency

components measured simultaneously. In the process of making those

measurements, all information about the phase of the complex-valued

Fourier transform is lost, and only the magnitude of the Fourier

1



transform (often referred to as the visibility function) is measured.

This limited information is insufficient to compute an image in a

straightforward manner. However with iterative phase retrieval

algorithms, developed under this effort, a diffraction-limited image

can be reconstructed. Aberrations then have no effect on the

reconstructed image, and so fine resolution can be obtained despite

warping of the mirror or, if present, atmospheric turbulence.

In this report is described an investigation using phase retrieval

algorithms to reconstruct fine-resolution images from an aberrated

system (the MAAI) for the SDI midcourse discrimination scenario.

Section 1.2 gives a brief overview of the accomplishments that are

described in detail in the rest of the report. Section 1.3 gives

recommendations for future effort. Section 2 describes the basic

theory behind the MAAI. Section 3 shows the performance of data

estimation and image reconstruction for low light levels. Section 4

describes an analysis of the imaging performance that would be expected

for future SDI experiments. Section 5 discusses the reconstruction of

images for the case of partially-filled apertures as would occur if the

telescope has a central obscuration. Section 6 describes alternative

geometries within the MAAI that would enable it to measure low spatial

frequencies despite a central obscuration, which would be useful for

ground-based experiments. Section 7 describes an alternative new phase

retrieval algorithm based on a blind deconvolution algorithm.

Section 8 explores the probability that an image reconstructed by a

phase retrieval algorithm is not unique. Section 9 shows the

computational requirements for phase retrieval algorithms. Section 10

mentions plans towards reconstruction of images from MAAI data gathered

in the laboratory. Additional details are given in several appendices.

References are found at the end of each section.
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1.2 OVERVIEW OF ACCOMPLISHMENTS

In this section the principal results of the program are briefly

summarized. They are reported in detail in the sections and appendices

that follow.

The basic theory of the MAAI was derived. This is explained in

Section 2.

A signal and noise model for the MAAI was developed and analyzed.

Several estimators for the object's Fourier magnitude from the measured

data were derived, and the variance of the estimate was calculated as a

function of detected photons and visibility magnitude. This leads to

an optimum way to process the raw data prior to phase retrieval.

Digital simulation and reconstruction experiments were performed to

show the quality of imagery that would be reconstructed at different

light levels and for different types of objects. This is described in

Section 3.

For parameters of actual field experiments that were to be

performed, the data was simulated and images were reconstructed. The

scenario that was simulated was the imaging of the first Firefly

exercise (piggybacking on the MIT Lincoln Laboratory laser radar

experiment) launched from Wallops Island as would be viewed by the MAAI

attached to the 48-inch telescope at Goddard Space Flight Center.

Light levels received by the MAAI assuming sun illumination of the

target, were computed, the detected data was simulated, and images were

reconstructed. The results predicted that the images produced from the

MAAI data from the Goddard 48-inch telescope would be of poor quality.

A limiting factor was that the Goddard 48-inch telescope has a large

central obscuration, preventing the measurement of the low-to-mid

spatial frequencies, where most of the information resides. However,

if the low spatial frequencies were measured, then it was shown that

3
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good quality imagery could be reconstructed. This could be

accomplished by changes in the MAAI (which will be described later) or

by using a telescope which has a small central obscuration, such as the

24-inch at the Innovative Science and Technology Experimental Facility

(ISTEF). Then for the same scenario, high-quality images would be

reconstructed with resolution several times better than that ordinarily

allowed by atmospheric turbulence. Furthermore, if the same experiment

were performed in a space-borne MAAI at the same range, then excellent

results would be obtained, even with shorter integration times. This

is described in Section 4.

For the case of partially-filled aperture, including central

obscurations or multiple-mirror telescopes, portions of the spatial

frequency domain are not measured. Then the reconstruction algorithm

must simultaneously interpolate the phase and magnitude values where

they are missing while retrieving the phase where the magnitude is

measured. This is a particularly difficult task if the lower spatial

frequencies are missing because of a central obscuration of the

telescope, since the visibility magnitude at lower spatial frequencies

is typically much larger than at the higher spatial frequencies.
Algorithms we developed to overcome this problem are described in

Section 5.

Another way to get around the problem of a telescope with a central

obscuration is to change the way that the aperture is sheared by the

interferometer so that it measures the lower spatial frequencies. When

this is done the highest spatial frequencies are lost, but the net

image quality can be far higher than what would be obtained with the

traditional method of shearing the wavefront. This is important for

ground based experiments using existing telescopes, although it would

probably not be a problem for an eventual space-based system for which

a second small telescope could fill the need for the low spatial

frequencies. This is described in Section 6.

4



RIM

An alternative to the iterative transform phase retrieval algorithm

(which was the workhorse algorithm for most of this effort) was

developed. It is a version of the Ayers-Dainty blind deconvolution

algorithm modified to solve the phase retrieval problem, using support

and nonnegativity constraints. This is described in Section 7.

A question that always arises for image reconstruction by phase

retrieval is whether the image obtained is unique. If it were likely

that other images were also consistent with the data and constraints,
then the method would not be reliable. A new methodology of
quantifying the uniqueness of the solution was developed and exercised.
The subspace of all ambiguous solutions was analytically derived for
the case of small (2 x 3 pixels) images. Monte Carlo experiments were
conducted to determine the probability that a random image would lie

within a certain distance of this subspace. The computation was

performed for several different cases. This is reported in Section 8.

The computational requirements for phase retrieval were analyzed.

Versions of the algorithm were also sent to other researchers to

implement on particular computer architectures, such as the Carnegie-
Mellon Warp. These results are described in Section 9.

Laboratory experiments were initiated, including preparation of
target objects and porting software to a computer at the University of

Maryland, as described in Section 10.

Publications arising from this effort are given below.

"Image Reconstruction for an Aberrated Amplitude Interferometer with a
Partially-Filled Aperture," J.R. Fienup and J.D. Gorman, Proceedings of
the NOAO-ESO Conference on High-Resolution Imaging by Interferometry,
15-18 March 1988, Garching bei Munchen, West Germany.

"Estimation and Reconstruction from Aberrated Amplitude Interferometer
Measurements," J.D. Gorman and J.R. Fienup, in D.M. Alloin and J.-M.
Mariotti, eds., Diffraction-Limited Imaqing with Very Large Telescopes,
(Kluwer Academic Publishers, Boston, 1989) pp. 405-414.

5
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"Phase-Retrieval Imaging for SDI Applications," J.R. Fienup,
Proceedings of the SDIO/IST Workshop on Sensor Signal Processing, 25-27
April, 1989, Leesburg, VA.

"Numerical Investigation of Phase Retrieval Uniqueness," J.H. Seldin
and J.R. Fienup, in Signal Recovery and Synthesis III, digest of papers
(Optical Society America, 1989), 14-16 June 1989, N. Falmouth, MA, pp.
120-123.

"Numerical Investigation of the Uniqueness of Phase Retrieval," J.H.
Seldin and J.R. Fienup, J. Opt. Soc. Am. A 7, pp. 412-427, March 1990.

"Phase Retrieval Using Ayers/Dainty Deconvolution," J.H. Seldin and
J.R. Fienup in Signal Recovery and Synthesis III, digest of papers
(O.S.A., 1989), 14-16 June 1989, N. Falmouth, MA, pp. 124-127.

"Iterative Blind Deconvolution Algorithm Applied to Phase Retrieval,"
J.H. Seldin and J.R. Fienup, J. Opt. Soc. Am. A 7, pp. 428-433, March
1990.

"Lower Bounds on Parametric Estimators with Constraints," J.D. Gorman
and A.O. Hero, Fourth Annual ASSP Workshop on Spectrum Estimation and
Modeling, August 1988.

"Lower Bounds for Parametric Estimation with Constraints," J.D. Gorman
and A.O. Hero, IEEE Trans. Inform. Theory 36, 1285-1301 (1990).

1.3 RECOMMENDATIONS

Phase retrieval has been shown via computer simulations to be a

means of obtaining fine-resolution images, important for discriminating

targets from decoys, from a badly-aberrated large-aperture telescope

employing an amplitude interferometer. This will enable the generation

of fine-resolution images from an imaging system that is much cheaper,

simpler, and lighter in weight than what would otherwise be possible

with competing technologies such as adaptive optics. It is recommended

that phase retrieval be used in future imaging experiments to

demonstrate its capabilities in the real world, that it be further

developed to increase its speed and reliability, and that it be

automated. The analysis of the uniqueness of the reconstructed image

should be extended to include the case of larger, more realistic

6
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images. Further analysis should be performed to determine which of the

many known imaging modalities is best suited to the SDI midcourse

discrimination problem. Phase retrieval can also be used to improve

the images obtained with other types of imaging modalities.
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2.0 AMPLITUDE INTERFEROMETER THEORY

2.1 OVERVIEW OF THE INTERFEROMETER

In this section we describe the basic theory behind the amplitude

interferometer and discuss alternative ways to arrive at an estimate of

the magnitude of the coherence function from it.

The multi-aperture amplitude interferometer [2.1,2.2,2.3] is

essentially a highly parallel, multichannel, Michelson stellar

interferometer [2.4] that uses a pair of measurements in an optimized

measurement scheme. It can also be viewed as a dual-channel rotational

shearing interferometer [2.5,2.6] with a 1800 angle of rotation. It is

presently under development by a group at the University of Maryland

headed by D.G. Currie. A full description of the multiaperture

amplitude interferometer has not appeared in the literature, and the

description that follows was arrived at from a combination of the

references cited above, conversations with the University of Maryland

group, and our own analysis.

From the data collected by the amplitude interferometer we can
compute the two-dimensional modulus (magnitude) of. the complex

coherence function of an astronomical object. If the conditions for

the validity of the van-Cittert Zernike theorem are satisfied, then the

complex coherence function is proportional to the Fourier transform of

the two-dimensional intensity (brightness) distribution of the object

under measurement. If both the modulus and phase of the complex

coherence function could be computed, then one could obtain an image of

the object by Fourier transformation. However, atmospheric turbulence

and/or telescope aberrations severely distort the phase, allowing the

determination of only the modulus of the complex coherence function,

which is known as the visibility function.

8
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In the amplitude interferometer, the incoming field is split into

two halves, one of which is rotated by 180° with respect to the other.

The two halves are then interfered and detected. The beamsplitter in

the interferometer causes the interference pattern to appear

simultaneously in two different planes. Both of these interference

patterns, which are similar to one another yet different in a useful

way, are detected. From them the modulus of the complex coherence

function can be computed. The amplitude interferometer has an

advantage over the rotational-shearing interferometer. The measurement

of the pair of interference patterns largely allows for the correction

of the effects of scintillation [2.1].

From the squared modulus of the coherence function we can compute

the autocorrelation function of the object. Reconstruction of an image

of the object requires the retrieval of the phase of the complex

coherence function, which can be accomplished using a phase retrieval

algorithm [2.7,2.8]. By this means an image can be obtained that has

several times finer resolution than what could ordinarily be obtained

through the turbulent atmosphere or through an aberrated telescope.

2.2 THE AMPLITUDE INTERFEROMETER

We make the standard assumptions that the object of interest

radiates incoherently, the interferometer is in the far-field of the

object, and the detected light is quasi-monochromatic. Under these

conditions the van Cittert-Zernike theorem, which states that the

object brightness distribution is the Fourier transform of the complex

coherence function, is valid [2.9]. We also assume isoplanatism: that

the effects of the aberrations are modeled by a random phase-amplitude

screen appearing at the entrance pupil of the interferometer, and its

aberrating effects are space-invariant.

9
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The amplitude interferometer was originally designed to measure

stellar diameters by making one-dimensional measurements of the modulus

of the complex coherence function. This one-dimensional interferometer

receives recollimated light from a telescope, and consists of a

Koster's prism, spectral filters, and photomultiplier tubes at each

output arm of the prism. This arrangement allowed the measurement of

the interference between a pair of pinholes with variable separation.

This type of measurement was sufficient for stellar diameter

measurements. In the current amplitude interferometer, the multi-

aperture amplitude interferometer (MAAI), which is illustrated in

Figure 2-1, the photomultiplier tubes have been replaced by 2-D CCD

arrays and additional optics have been incorporated between the

collimator and the Koster's prism, making it capable of making two-

dimensional measurements. These measurements are made in a plane that

is a demagnified version of the aperture (pupil) plane.

The key optical component of the amplitude interferometer is a

Koster's prism. The prism acts as a beamsplitter, combining two

incident optical fields. If an intensity detector is placed at an

output of the prism, what is measured includes a term proportional to

the coherence function of the incident field. This principle is used

to measure the modulus of the complex coherence function of the object.

In our discussion we assume an ideal Koster's prism. Liewer [2.3]

discusses the effects of a nonideal prism.

A complex-valued optical field U(x,y,t) enters the interferometer

from a telescope and is split into half fields. One half field passes

through two mirror reflections and into one side of the Koster's prism.

The other half passes through three mirror reflections and into the

other side of the prism (Figure 2-1). The mirrors between the

telescope and the prism act to invert one of the halves about the

horizontal axis, making it U(x,-y,t), while the other half remains

unchanged. These two halves are combined with the beamsplitting action

10
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Amplitude >-terferometer (Currie 1967, 1974)

Aperture Plane U(x,Y,,t)

U(X,y,t) U(x,-y~t)

Koster's Prism 
--

V5(x,y,t) I d* v(x,yst)

IS(x,y,t) .Id(X.y,t)

Figure 2-1. Functional Diagram of the Multi-Aperture Amplitude

Interferometer.
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of the prism. A simple ray-tracing argument can be used to show that
the transmitted beam undergoes a constant phase shift of 0T and an
inversion about the vertical axis while the reflected beam undergoes a
constant phase shift of 9R. Assume that U(x,y,t) enters the left side
of the prism and the inverted beam U(x,-y,t) enters the right side of
the prism. Then the complex field of the beam output on the left side
of the prism, denoted as beam 1, is

Vl(x,y,t) -L {U(x,yt) eR + U(-x,-y,t) eD . (2-1)

where the 11/2 factor is required for energy conservation. Similarly,

the output complex field on the right side of the prism is

V2 (x,y,t) _- 1L {U(-xy,t) e•iT + U(x,-y,t) e GR) . (2-2)

Let *>.r denote a time average over the interval [t,t+1r]; that is,

t+,"

I f f(t') dt' (2-3)

t

In the context of our model, r represents the single-frame integration
time of the CCD array, which would typically be on the order of 1 msec
to 10 msec for the case of atmospheric turbulence. Then the detected

intensity of beam I is

Ii(x,y,t) = 2IVl(X#ytt)12 7

I 1 {<!U(xyt)1 2>7 + <iU(_x,-yt)01 2 4

+ (U(x.y,t) U*(-x,-y,t)>r e16 + c.c.}

12
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= 2 I(x,y,t) + I(-x,-yt) + <U(x,y,t) U*(-x,-yt)> e + c.c.

(2-4)

where 6 = eR - eT, I(x,y,t) = <IU(x,y,t) 2>,r, and c.c. denotes the

complex conjugate of the preceding term. For an ideal beamsplitter 6 =

7/2.

The optical field in the aperture plane is assumed to be given by

U(x,y,t) = U0 (x,y,t) exp[a(x,y,t) + ip(x,y,t)] (2-5)

where

U0 (X,y,t) = U0 (x,y) exp(iwt) (2-6)

is the quasimonochromatic optical field of wavelength X = 2rc/w due to

the object in the absence of atmospheric effects, a(x,y,t) is the

intensity-modulating effect (scintillation) of atmospheric turbulence

(the log-amplitude function) [2.9, pp. 398, 404], p(x,y,t) is the phase

error induced by atmospheric turbulence or aberrated optics, and c is

the speed of light.

We assume that the integration time 1 is many times the coherence

time of the optical field, which is approximately the reciprocal of the

bandwidth, Am = Aw/2r, of the radiation. Thus the mutual intensity of

the incident optical field due to the object is given by

r(Ax,Ay) = ir(Ax,Ay)l exp[i#(Ax,Ay)]

- <Uo(x,y,t) U*(x - Ax, y - Ay, t)>D

= 10 7(Ax,Ay) (2-7)

13



where Io = r(O,O) = <IU0 (x,y,t)2 >Tr is the average intensity and the

normalized quantity 7(Ax,Ay) is the complex coherence function.

(7(Ax,Ay) is usually denoted by /12 = 712(0) [2.9, p. 183]; however we

use the symbol 7 to be consistent with the notation of earlier

publications on the amplitude interferometer.)

Inserting Eqs. (2-5) to (2-7) into Eq. (2-4), and assuming that

a(x,y,t) and p(x,y,t) are constant over the time interval r, yields

Ii(xy,t) = (10/2) [exp[2a(x,y,t)] + exp[2a(-x,-y,t)]

+ 7(2x,2y) exp[a(x,y,t) + a(-x,-y,t)

+ ip(x,y,t) - ip(-x,-y,t)] exp(i6) + c.c.). (2-8)

For an ideal beamsplitter, with 6 e R - aT = r/2, this becomes

I1(x,y,t) = (I/2) {exp[2a(x,y,t)] + exp[2a(-x,-y,t)]

- 2 exp[a(x,y,t) + a(-x,-y,t)] 17(2x,2y)l

sin[0(2x,2y) + P(x,y,t) - P(-x,-y,t)]) . (2-9)

171 is the visibility (contrast) of the sinusoidal fringe that was seen

by Michelson. Similarly

I 2 (-x,y,t) = (Io/2) (exp[2a(x,y,t)] + exp[2a(-x,-y,t)]

+ 2 exp[a(x,y,t) + a(-x,-y,t)] 17(2x,2y)l

sin[0(2x,2y) + p(x,y,t) - p(-x,-y,t)]}

(2-10)

A function related to the fringe visibility function is given by

12 - 11 I 2 (-x,y,t) - I1(x,y,t)

12 + I1 I 2 (-x,y,t) + I 1 (x,y,t)

14
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2 expra(xy,t) + a(-x,-y,t)] 17y(2x,2y)1 sinr (2x,2v) + P(xy,t) - 6(-x,-y,t)l
exp[2a(x,y,t)] + exp[2a(-x,-y,t)]

1y(2x,2y)l sin[J(2x,2y) + O(xyt) - P(-x,-y,t)] (2-11)
cosh[a(x,y,t) - a(-x,-y,t)J (

One of the major advantages of the amplitude interferometer over

other rotational shearing interferometers is the suppression of the

effects of the scintillation, a(x,y,t), by the cosh[ ] function in Eq.

(2-11).

In the absence of phase errors, (12 - 11)1(I2 + Ii) of Eq. (2-11)

yields 17(2x,2y)l sin[#(2x,2y)], which is the imaginary part of

7(2x,2y). Under this condition, if the object were to be positioned to

one side of the optical axis, then it could easily be reconstructed by

Fourier transforming the imaginary part of 7(2x,2y) and discarding one

of the resulting twin images. However, the phase errors p(x,y,t)

prevent us from doing this when imaging through the aberrations.

Averaging over a time long compared with the fluctuation time of

p(x,y,t) just causes (12 - 11)/(I2 + Ii) to average out to zero.

Suppose we gather M short exposures (frames), each of duration r,

separated by time At. Further suppose that the total collection time,

T = MAt, is many times the correlation time of the phase error. Then

one way to extract desired quantity, 17(2x,2y)l, from Eq. (2-11) is as

follows. Ignoring a(x,y,t), we can square Eq. (2-11) and obtain

+ i2 J = 17(2x,2y)I 2 sin2 [(2x,2y) + P(x,y,t) - P(-x,-y,t)]. (2-12)

Averaging this quantity over the M frames gives

< P2 Il>T = 17(2x,2y)I2 <sin2 [(2x,2y) + P(x,y,t) - P(-x,-y-t)]>T

15
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17(2x,2y)l 2 M-1 sin 2 [0(2x,2y) + P(x,y,mAt) - P(-x,-y,mAt)]
m=1

- 17(2x,2y)1 2 /2 , (2-13)

where it is assumed that the phase error P varies with time and is
uniformly distributed over (-rr) over the time interval T. Therefore
a reasonable estimator for 17(2x,2y)I2 is

17(2x,2y)l 2 = 2 <( 1 ) > T (2-14)

Currie [2.1,2.2] proposed using the quantity

(AC - CC1/2
17(2x,2y)= OF LAC + CCJ (2-15)

where

AC <12 + I2 (2-16)

and

CC = 2<II I2>T . (2-17)

Inserting Eqs. (2-16) and (2-17) into Eq. (2-15) reveals that this
yields

(( -I)2>T
17(2x, 2y)l 2 <02 (2-18)<(I2 + Ii)2>T (-8

which is similar to the estimator given in Eq. (2-14) but changes the
order of the time averaging operation and the division operation.
However, as will be seen later, the performance of the estimator in Eq.

16
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(2-14) can be shown to be significantly better for the case of low

light levels.

Alternatively if the phase error p(x,y,t) is constant during the

total integration time T, then the fluctuations in p cannot be employed

to cause the average of the sin2[ ] term to be 1/2. Then we can

achieve the same effect by introducing a phase plate, with spatially

uniform phase 0(t), which can change with time, in front of one half of

the Koster's prism. Then Eq. (2-12) is replaced by

12 - I = 17(2x,2y)1 2 sin 2 [0(2x,2y) + p(x,yt) - p(-x,-y,t) -I(t)]
N +'IL(2-19)

One choice of 0(t) would be 0 for half the time and r/2 for the other

half the time. Since sin2 ( 0o + 0) + sin2 (0 - ,/2) = sin2() +

cos 2 (0e) 1, then

< F2 ] 2 >T = 17(2x,2y)1 2  " (2-20)

This scheme has the great advantage that only two frames of data need

taken to estimate 1712, and this maximizes the signal-to-noise ratio

for a given total number of photons, as will be seen later. Another

possible choice for 0(t) is the discrete values {0, r/2, ir, 3r/2}.

Another is to vary 0(t) continuously between 0 and 2r radians, while

integrating over an integer number of frames during each 0 to 21r cycle.

Additional estimators of 1712 can be obtained by averaging then

dividing, i.e. <(I2 - 12)2 >T/<(I2 + I1 2 >T, rather than dividing then

averaging as was -ssumed above.

17



The section that follows treats the case of measurements limited by

photon noise in which case different estimators of 1I71 2 can have

significantly different variances.
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3.0 PERFORMANCE AT LOW LIGHT LEVELS

In this section we examine the performance of the amplitude

interferometer at low light levels, both analytically and through

computer simulation. Continuing the development in Section 2, we

provide a statistical model of the amplitude interferometer and discuss

a method for obtaining diffraction-limited imagery from aberrated, low

light-level measurements of the mutual coherence function. Our basic

approach is to perform a sequence of measurements from which samples of

the modulus of the mutual coherence can be estimated and then to

perform phase retrieval to recover the complex mutual coherence

function. The recovered samples of the coherence function are then

Fourier transformed to yield an image of the object intensity.

The organization of Section 3 is as follows. In Section 3.1, we

present a statistical model for the amplitude interferometer and

discuss three methods for estimating the modulus of the mutual

coherence from low light level amplitude interferometer measurements in

the presence of aberrations. The first two methods, [3.3], which are

suitable for applications in which the aberration in slowly varying,

require a modification of the amplitude interferometer as shown in

Figure 3-1. The third method, proposed by Currie, [3.4,3.5], can be

used in situations where the aberrations are rapidly-varying such as

aberrations caused by atmospheric turbulence. In Section 3.2, we

develop a lower bound on the mean-squared error in estimating the

object intensity from amplitude interferometer measurements, using the

statistical model of Section 3.1. Finally, Section 3.3 contains

results from several digital simulations and image-reconstruction

experiments. As one might expect, the quality of the reconstruction

depends not only on the light level, but also on the content of the

image. The more specular or point-like the object is, the better the

reconstruction; diffuse objects are the most difficult to reconstruct.

These observations are confirmed by the digital simulations in Section

3.3.
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Figure 3-I. Schematic Diagram of a Modified Amplitude Interferometer.
A variable phase plate has been added to allow the
introduction of phase term e(t) into the measurements.
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3.1 MEASUREMENT MODEL

The amplitude interferometer measurements are assumed to consist of
a sequence of pairs of two-dimensional video frames which are the
outputs of the CCD arrays at each of the two output arms of the
interferometer. We denote these measurements as (N0. Ni ), where

1 2 1k ijk)
Nijk and Nijk respectively are the detected output energy at the

(i,j)th detector element and the kth frame of the left and right output
arms of the interferometer. At low light levels and with ideal
detectors, N1  and Ni2 consist of the number of photon eventsijk ijk
detected over each detector element (ij) and over each time frame k.
The counts are well-modeled as Poisson-distributed random variables
[3.13,3.15] with mean values

tk tk

Aik = ( l ijt) + IB] dt, and A 2 (t) + B dt (3-1)
tk-1 tkI

respectively, where IB models contributions due to background light and
the dark current of the CCD arrays and [tk-1, tk] denotes the detector

integration interval for the kth frame. I, (t) and I? (t) denote the
respective instantaneous intensities at the output of the two

interferometer arms.

Expressions for Iý (t) and I 2(t) were previously derived in

Section 2. Here we use the subscript notation to emphasize the fact
that the output intensities I1(x,y,t) and 12 (-x,y,t) of Eqs. (2-9) and

(2-10) are sampled:

(iit) = f f l(x - xi, y - yj, t) dx dy , (3-2)
Ax Ay
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where (xi, yj) denotes the center of the (i,j)th detector element and
(Ax, Ay) is its area. A similar relationship holds for I?.(t). In our

notation for the discretized mutual coherence function, we suppress the

fact that 7 is sampled at half the rate that the output intensities I

and 12 are:

7ij = f f 7(2x - 2xi, 2y - 2yj) dx dy (3-3)
A x Ay

This reduction in sampling rate results from the fact that incident
field components (xi, Yj) and (-xi, -Yj) are interfered to obtain the

mutual coherence component at (2xi, 2yj). This difference in sampling
rates is not important for the discussion in this section, however, it
plays an important factor in the determination of the appropriate
sampling rates in the Firefly simulation discussed in Section 4.3. For
simplicity, we assume the integration interval At = tk - tkI is the

same for each frame. We also assume that IB is explicitly known and,
for simplicity, that it is constant in time and over the entire1 n 2
aperture plane. The intensity parameters A. and Ai are possibly

ijk ijk ar 1osilrandom variables due to the stochastic nature of the phase term Oj(t).

Therefore, processes such as NI and N2ijk ijk are typically called doubly-
stochastic Poisson processes [3.15]. By this we mean that, conditioned
on Ai Ni is a discrete random variable with the probability mass

Aijku ijk
function:

) exp{-Aýjk

Pr{n= n! J (3-4)

A similar relationship holds for N2
ijk'

Assuming an ideal beamsplitter (6 = i/2 in Eq. 2-4) and ignoring

the effects of scintillation, the instantaneous output intensities,
1ij(t) and 12i(t), can be reexpressed as:
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ijl (t)[= Io{- Iyijl sin[arg 7ij + .ij(t)])

2Iij(t) = I{1 + 17iji sin[arg 71j + flj(t)]l (3-5)

where subscripts 1 and 2 denote the left and right output arms of the

interferometer, 7ij denotes the (discretized) normalized complex mutual

coherence function of the incident field, 10 denotes the average

instantaneous detected energy in photons per second, and ij (t) denotes

the phase difference between the input arms of the interferometer and

can include both random and non-random contributions from fixed or

varying system aberrations and atmospheric turbulence.

We assume that 10 is known or can be accurately determined from the

measurements. This is not an unrealistic assumption since, by Eq.

(3-1) 10 can be estimated by forming the sum,

-o 21 I jk+ N ijkJ - 'B " (3-6)

2NK At ijk

Here, N2 denotes the total number of pixels in each of K pairs of
A2

frames in the data collection. 1 I is based upon N2 K independent

measurements and Its variance decreases as the number of frames or

pixels increase.

Our approach to image reconstruction from amplitude interferometer

measurements will be to form an estimate of the modulus of the mutual

coherence functior 17ijl and perform phase retrieval to recover the

phase of the coherence function, Iij = 17iji exp(arg yijl, from its

modulus. A reconstructed image is then formed by inverse Fourier

transformation of the coherence function. An estimator for 17iji can

be determined given the model described above. A reasonable estimate

is to choose the values 1yijl which are most likely to have resulted in
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the measurements (N0jk, Nijk). Such an estimate is obtained by

maximizing the logarithm of the probability of the measurements,

p(N ij N ), with respect to 17ijl. This approach, called maximum-
ijk' ijk)

likelihood estimation, has several desirable features which are

mentioned in [3.15]. For Poisson-distributed random variables, the

logarithm of the probability distribution, denoted L(7), is

L(7) = A + A? + C o 2 Nj

- Aijk +Ak) + F log(Aj Nk klog(A

ijk 13 ijk ijk

(3-7)

where C is a constant which is independent of 17ijI 2 . The maximum-

likelihood estimator for 17ijl, if it exists, is then a solution of the

equation

N1 8A1  N 2  BA2

0 l = k I 0 k + ( 3k "
k Aijk 8 1 7iji k Ak 81 71j8

1jkijk

Equation (3-8) is nonlinear in 17ijl and is generally difficult to
solve. Moreover, no information has been specified about f.ij (t). In

the subsequent discussion, we examine three estimators for 17ijl for

the cases where:

1. t ij (t) is constant over each of K intervals
2. 4.ij (t) varies linearly over the collection period, and

3. *.ij.(t) contains a phase term due to atmospheric turbulence and

changes rapidly over the collection period.

In the first two cases, we assume that the phase term t.ij (t) is given

by

.ij(t) a APlj(t) + 0(t) , (3-9)
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where apij(t) = p(x,y,t) - p(-x,-y,t) from Eq. (2-9), and 0(t) is a
user-controlled phase term introduced into the amplitude

interferometer. One method of incorporating such a phase term is to

place a variable-phase plate over one of the input arms of the

interferometer as shown in Figure 3-1. In the third case, which is

discussed somewhat at the end of Section 2, we assume that Vij (t) is

given by

tij(t) = Apij(t) ,(3-10)

where APij(t) is the phase difference introduced by atmospheric
turbulence as described in Eq. (2-9). In the discussion to follow we

assume that the phase term ij(t) is constant during any integration

interval [tk_1,tk] and denote it as *ijk"

3.1.1 Discrete Stepped-Phase Systems

Consider a stepped-phase system in which 0(t) in Eq. (3-9) is
constant over each of K intervals of length At = T/K, where T is the

total collection period, and denote its value by Ok, k = 1, ... , K.

Here we assume that Apij(t) is constant over T: APij(t) = APijk,
te[tkltk]. Define

gijk= 1 i jl sln[arg 7ij + APij + akJ . (3-11)

ija Ai become, using (3-1), (3-5), and (3-9),
A1jk IoTIo

A ! c -LO and A2 c + gjk} (3-12)

ijk =- c- k Aijk K I ik

where

c = 1 + IB/Io . (3-13)
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If ok is chosen to satisfy

1 K
"K k sin[arg yij + APij + Ok] = 0 for K > 2,

k= 1

and

1 ± sin 2 [arg Y + AP + Bk] = (3-14)
k=ij2

we have that

122= 217ij1 = 2K gj (3-15)

k

Thus the motivation for introducing the controllable phase term ek into

the interferometer is that for a suitable sequence Oki k = 1, ... , K,

one can determine 1712 from (A1  A2  ) regardless of the aberration
ujkI i ik

Apij.

One could consider the two-step process of first computing the

maximum-likelihood estimate of gi2kand then estimating 17ij. 2 from

g using the above equation. Maximization of Eq. (3-7) with respect

to g is much simpler and the maximum-likelihood estimate of g is

given by

Nj c 2  NN~ 1 .lk2

-- c2 "k - jk (3-16)
, ijk +ijk,

where c is given by Eq. (3-13). The resulting estimator for the

squared modulus is then
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2 Ný 2

lii 1 2 = 2>:- 2c2  [Nik -Nijk (3-17)
Kj k gijk 1 K k tNýj+N 0k

We refer to this as "discrete estimator 1" (Dl). For each pixel (ij)

and each frame k, the quantity Ni2  - N0 is normalized by the total

number of counts detected within the pixel and frame, N + N Oneijk ijk On
might also consider performing the normalization operation after frame

averaging; this results in two other estimators which we refer to as

"discrete estimator 2" (D2):

2 7 1T2 [N (j -Nj] (3-18)ij 2K(I )2  k ijk

and "discrete estimator 3" (D3):

2 (N2jk- 
NJAJ

2

lyijl2_ 2cI N2 + 2(3-19)Z• (Nijk + lj)

At extremely low light levels there is a bias term proportional to 1/10

which is present in all three estimators. To account for this bias,

correction terms can be incorporated into the estimators. Bias-

corrected (BC) versions of these estimators are given by

D1-BC:

2=Tij 22- (Njk" NLj - [N2. + NjkJ (3-20)
7 1K k ( 2  2 j tj(N + N _ N + NI

27jk) jk ijk)
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D2-BC:

1 uký - N1j )2 (N + N.J 1(3-21)

2K(Io T)2  k[Nj Nj I

where 10 is given by (3-6)

and D3-BC:
'-.(Nýj N1jj 2 (N~j k +Nik

l 2 -- 2c2 -kY.(N N' )2 (N? 0 (3-22)

k Njk ijkJ (NU.k + Nijk

3.1.2 Continuous-Phase Systems

Another possibility is that the controlled phase term e(t) of Eq.

(3-9) varies linearly from 0 to 2r as t goes from to to to + T: e(t) =
21r(t - t 0 )/T, to 5 t 5 to + T. In this case, Iyijlt2 can be recovered
from a sequence of four frames, each with integration time equal to

T/K, K = 4. Let

t +T/4 to +T/2
A (t)l-I 0 dt, B I f I (t) -1 0 tAij -- -I0 f [1jN )- j Bii-o /(1jt I Iii

0to 0to+T/4

t +3T/4 t 0+T
L 12 I1 dt) Dt f [12 (t I1 (t0] dt.

t+T/2 t0 +3T/4

(3-23)

Then, from Eqs. (3-1) and (3-5),

Io 171jI 2 = (Aij - Cj 2 + (B~j - Dij) 2  . (3-24)
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Arguments similar to those of Section 3.1.1 can be used to derive
another two estimators. Let

N2. - N0 N. 2 0.
A. = c. B i c J' -13

ij N2 + N1  B N2  NI
ij1 iji ij2 ij2

N. - N N2
CN2 -N 1  D. C J4 (3-25)

1j3 ij3 U4 ij4

Then "continuous estimator 1" (CI) is

S2 2
1 7ij 2 = (ij - C 1J) + NJ~ - D1iJ (3-26)

Similarly, let

N2  -NI 2  - 1NIIj I M~ ^ 1 8i NIJ2 l j2

2i 1 22 •

NfU3 - N JD N4 2 .N14
ij4311 411 (3-27)lj 02 210

Then "continuous estimator 2" (C2) is

-= - + - . (3-28)

At low light levels both of these estimators have a bias term which is
proportional to 1/I0. As in the previous section, bias correction
terms can be added to reduce the bias of these estimators.
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3.1.3 Phase Diversity From Atmospheric Turbulence

The third possibility we consider is that the phase error term is
t.ij (t) caused by atmospheric turbulence. Here the frame integration

time At is assumed to be short enough that the phase errors within each
frame are essentially constant. As discussed earlier in Section 2,
this requirement limits At to be less than or equal to the coherence
time of the atmosphere. Typical values for the coherence time of the
atmosphere in the optical regime vary between 5 and 20 ms. Assuming
that the phase error is constant over each frame, t ij(t) = tijk for
tE[tk-1, tk], we can use the discrete-phase estimators discussed in
Section 3.1.1. When tijk' k=1, ... K is uniformly distributed over the
interval [-r, i-] we then have, in the limit for large K,

2 ý sin(arg + -ijk-
k=1

=1 K sin 2 (arg 7ij + * ) ½1 (3-29)
+k=1ij 2

and conditions (3-14) are satisfied.

3.2 ESTIMATOR PERFORMANCE

Here we examine the performance of the estimators described in
Section 3.1. An important measure of performance which we focus on is
the root mean-squared error. In Section 3.2.1, we derive asymptotic

expressions for the bias and squared error which are valid at moderate
to high light levels. The low light level performance of the

estimators is determined by the use of Monte Carlo simulation. In
Section 3.2.2, we derive a lower bound on the expected image-

reconstruction error. An important feature of the bound is that it
accounts for the object support constraint which is imposed in the

reconstruction algorithm.
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3.2.1 Estimator Bias and Squared Error

Asymptotic expressions for the normalized bias (NB), normalized
standard deviation (NSD) and normalized root mean-squared error (NRMSE)
of several of the squared-modulus estimators were derived with the aid
of the symbolic-computation program MAPLE [3.16]. For a given squared-
modulus sample 17ij 2, the NB and NSD are defined as

NB= EI 7ij 2 _ l7jI 2)/17.ijl 2  (3-30a)

and

NSD = [E{(I;ij12 - E{1ij12})2}]" 2 ,7ijl2 , (3-30b)

where Ef.) denotes expectation. The NRMSE can be computed from the NB
and NSD as

NRMSE = INB2 + NSD2  (3-30c)

The expressions for the NB, NSD and NRMSE of each of the four
estimators are complicated functions of the parameters 17ijI, Io, T, K,
and IB' and are therefore omitted here. The expressions for the
unnormalized versions of these quantities and details of their
derivation can be found in Appendix A. We plot the NB, NSD and NRMSE
as a function of 10T, since 10T is the average number of photons
detected during time T in a single detector element (ij) at the output

2of one of the output arms of the interferometer. The estimate 17ijl2,
however, is based upon an average of 21OT photons, since it is based
upon the counts detected In both arms of the Interferometer.

It is also of interest to consider the mean-squared error of the
modulus 17ij. Considering only the leading terms in the mean-squared
error given in Eqs. (A-3) and (A-8) in Appendix A (i.e., moderately
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high light level), c=1 (i.e. no bias exposure) and K=2 frames, the

mean-squared error of lýi1l2 is 217ij1 21/I. By algebraic manipulation

it can be shown that this implies that the mean-squared error of 17ijl
is

MSE fijIl = 1jo (3-31)

Note that this first-order approximation to the mean-squared error of

17ijI is independent of the value of 17ijl.

Plots of the expressions for NB and NSD in Figures 3-2a and 3-2b
show the relative contributions to the NRMS error due to bias and
standard deviation respectively, for each of the four estimators with

17ijl = 0.2, IB = 0.2 10 and IoT varying from 10 to 1000 photons. For
the D1 and D2 estimators, the photon collection was divided into two

frames, with 0 = 0 and 02 = r/2, whereas for the C1 and C2 estimators,
four frames were required. As expected, the estimator performance
improves as IOT, the average total number of photons collected per

detector element, increases. The bias and standard deviation of the D1
and D2 estimators are nearly Identical. A similar trend is observed

for the CI and C2 estimators. The D1 and D2 estimators, which were
based on the discrete-phase system, perform better than the continuous-

phase system CI and C2 estimators. For all four estimators, however,
the NRMS error is dominated by the standard deviation of the estimator,

which has a strong dependence on 17ij1l. This is due to the fact that

the estimators are trying to determine the squared difference between
the means of the two Poisson random variables NN .

ijk ik This
difference is directly proportional to 17ijl [see Equations (3-1) and

(3-5)], and as the value of 17ijl decreases, the average difference

between N1  and N2  diminishes, causing the standard deviation of theujk ujk
estimate to rise dramatically. Thus, although bias corrections can be

easily incorporated into the estimators, they will improve the

estimator performance only slightly.
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Figure 3-2. (a) Bias and (b) Standard Deviation of the Squared-Modulus
Estimators as a Function of the Average Number of Photons
per Detector Element (IoT) for 171 = 0.2 and IB = 0.210.
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Another measure of performance is the number of photons required to

achieve a specified NRMS error in estimating a given squared-modulus

sample, 17ij1 2 . This is illustrated in Figure 3-3 for the D2 estimator

with K = 2 frames and IB = 0.21. To achieve a NRMSE.of 0.1 when 17iji

= 0.25, it would require, on average, 7700 photons per detector. To

achieve a NRMSE of 0.5 when 17i = 0.5, however, requires only 80

photons per detector. On the other hand, if an average of 2000 photons

is collected in each detector element, then the NRMS error in

estimating modulus values which are greater than 0.5 is less than 10

percent, while the error in estimating modulus values which are less

than 0.1 is greater than 50 percent. In general, this would imply that

the performance is better for objects which consist of a small

collection of points, where the mutual coherence modulus samples are

relatively large, than on extended objects, for which the mutual

coherence values are small at higher spatial frequencies. At extremely

low light levels, the expressions derived for NB and NRMSE are not

accurate since they are based on low-order asymptotic expansions in

1/Io T. Investigations of the estimator performance in the low light

regime, IoAt ý 10 photons, were carried out by the use of Monte Carlo

simulation. At each light level, I0At, and visibility level, 7, 1,000

realizations of the output of a single pair of detectors (N JkI Nijk)I

k=1, ... , K was simulated. Each of the three discrete estimators, D1,
D2, and D3 was applied. Then the estimator bias and squared error were

then determined from the sample-mean and sample variance of the

estimates.

Two scenarios were considered. In the first scenario, a spaced-

based interterometer was assumed and a K=2 frame data collection

(01 = 0 and 02 = r/2 In Eq. 3-11) was simulated. In the second

scenario, a ground-based interferometer was assumed and a K=20,000

frame collection with a uniformly-distributed phase error term was

simulated. Figure 3-4 shows the RMS error in the modulus estimate

17ijI (i.e., the square root of 17ijJ2 ) for the two-frame
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Figure 3-4. RMS Error of the Modulus Estimate l~ijl for a Two Frame
Collection.
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Figure 3-5. RMS Error of the Modulus Estimate 171jI for a 20,000 Frame
Collection.
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collection at a range of light levels KIoAt and fringe visibilities

171. Note that the RMS error of 17ijl is nearly independent of 17ijl,

approximately 1/,rT 0 , as predicted. In Figure 3-5 the RMS error of

17ijl is shown for the K = 20,000-frame collection. Comparing the two

cases, we see that about three orders of magnitude more photons are

required in the 20,000-frame collection to achieve a performance

comparable to that of the two-frame collection.

3.2.2 Lower Bounds on Image Reconstruction Error

Asymptotic expansions and Monte Carlo simulations were used in

Section 3.3.1 to derive explicit expressions and plots of the error in

estimating the Fourier intensity components 17ij.2. In assessing the

performance of the image reconstruction algorithm described in Section

3.3, this approach is not feasible since the algorithm is iterative and

nonlinear. Our approach here is to lower bound the image

reconstruction error. In this Subsection we present lower bounds on

the image reconstruction error for the case of image reconstruction

from amplitude interferometer measurements. The bounds derived here

are independent of the procedure used to reconstruct the image and thus

represent the best possible performance of any such estimator. These

bound allow a means of comparing a wide variety ofreconstruction

algorithms against some "best possible" performance standard.

We will denote the object intensity as f(x,y), where we assume that

f(x,y) Ž 0 for all x and y in the field of view and that f has finite

support. This allows f to be described by samples of its Fourier

transform, which we represent in this case by yij. By the use of

Parseval's theorem, we can then represent the squared error between f
A A

and an estimate, say f, as a function of yij and its estimates 7ij:

f f I .(x, ) - f(x, y), 2 dx dy= 7 'ij - 7ij' 2  • (3-32)
ij
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Our strategy is to develop lower bounds on the error term EI7ij

7ij 2.

Appendix B contains a derivation of a Cramer-Rao (CR) type lower

bound [3.15,3.21] which incorporates side information. In the present

application the side information incorporated into the reconstruction

algorithm is the support of the object and its nonnegativity; both are

incorporated into the algorithm described in Section 3.3.

Let 7 ij = 7 R + 17iJ, where the non-subscripted I = J'T. For7ij 'Ij
convenience, we will represent the complex mutual coherence samples

7ij, i, j = 1, ... , N, by the 2N2 -length real vector

~= ( R I R I R T
7= O' 7 0 701 ... 7ij 7iji (3-33)

Denote the estimate by 7. For simplicity we assume 7 is unbiased. In

Appendix B a more general result is derived for biased estimators. The

CR bound of Appendix B can be expressed as (c.f. Theorem I of Appendix

B)

T+Ef(y - 7).(7 - 7)T) k P(PJ_1 P)+ P
7

- Q J- 1  (3-34)
7

where J7 is the Fisher information matrix of 7, defined by Eq. (13) of

Appendix B, T denotes matrix transposition, (+) denotes the Moore-

Penrose pseudo inverse (c.f. Eq. (9), Appendix B) and P and Q are

projection matrices which depend on the object support (c.f. Eqs. (38)

and (50) in Appendix B). In (3-34), Q reflects the amount of

improvement afforded by the use of the support constraint. A bound on

the total or absolute mean squared error of the image reconstruction

can then be found by
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.. ij -7ji2 tr[Ei( - 7) (71 7)T

tr{Q } 7 (3-35)

where tr[-] denotes the matrix trace operation.

The bound in (3-35) is directly applicable in the case where the
aberration *ijk' i, = Is ... , N, k = 1, ... , K, is fixed and

nonrandom. If tijk are unknown or random they are referred to as
nuisance parameters. When nuisance parameters are present, calculation
of an error lower bound is more difficult. One approach for the case
of random nuisance parameters is to determine the minimum lower bound
for the worst case nuisance parameters; such a bound is called a minmax
lower bound. Another approach which is available when the distribution
of the nuisance parameters is known is to derive the Fisher information
matrix J of the augmented vector (-, t), where 9 is the lexicographical
ordering of tijk into a real-valued KN2  length vector as in (3-33).
One can then form a bound similar to (3-35) based on J. U has the form

1 7[ 1 71' 
(3-36)j t7 J. J

where for instance Jt is the Fisher information associated with the
nuisance parameters. The lower bound then takes the form

E(7 - 7) (7 - 7) - ,7 9 J 9,7]P)+ P .3(3-37)
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Equation (3-35) can then be interpreted as the first term in a series

expansion of (3-37). Note that (3-35) and (3-37) are equivalent when

J T = 0; this is the case when the nuisance parameters are

orthogonal to the parameters of interest 7.

We derive the bound of (3-35) for the amplitude interferometer

image reconstruction. In light of the discussion above, this bound may

be overly optimistic, but it should give an indication of the order of

magnitude of the expected image reconstruction error. A

straightforward calculation using Eq. (13) of Appendix B for the Fisher

information matrix and Eq. (3-7) for the likelihood function yields

J7 = (I 0 At) diag(B ij (3-38)

where

Bij bij
B.. b= 1 ?2 (3-39)

( iik)

11 sin2 (argk) .
ck - 17ijI 7ij ( *jk)a

bij = bi21 E Z cos(I ijk) sin (tijk (3-40)
Ij- i k c - 17ijI2 sin2 (arg 7ij + 9ijk)

b 22f=E Co2(tljk 1 (3-41)
bij Eikj c - 17ij12 sin 2 (arg 7ij + fik
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Here diag{B ij) indicates a diagonal matrix with blocks Bij along its

diagonal. Also, recall that c = I + I0/IB and *ijk is given by either

(3-9) or (3-10). Calculation of Q is also straightforward but we omit

the details here. Let S be the Fourier transform of the support

constraint. Then

7ij= Zi:IS1-i,j-j, 71#j (3-42)

This relationship is expressed more compactly as

[I - C] 7 = R7 = 0 , (3-43)

where I is the 2N2 x 2N2  identity matrix and C is a symmetric block-

circulant matrix with entries Slii,. Q then becomes

I0_+1 7 1; R[R J;7' R] +R (3-44)

and the right-hand side of (3-34) is

7 1 = J 71 - 171RRJ71]+RJ7(3-45)

Calculation of the squared-error lower bound of (3-35) requires the

evaluation of (3-40) through (3-45) which can be accomplished

numerically. As a simple example though, consider the case where no

support constraint is in use, Q = I, one frame is collected, K = 1, and

where tijk takes on the values 0 and i/2 with equal probability. Then

b 12= bij = 0 in (3-40) and

11 
1

ij- 17ij12 cos 2 (arg 71j) C2  R- 2j)
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b22 = 1 (3-46)ij 2 C2 - 17ij12 sin 2 (arg 7ij) 2 C2 - (7]

Substituting (3-46) into (3-39), (3-40), (3135) and (3-32) results in

24 22]
1fJV(x, y) - f(x, yAl dx dy I At I [c _ I7ijI] (3-47)

1j 0

We see that the absolute squared error is inversely proportional to the
average light level per collection frame, I 0oAt, and is directly
proportional to the difference

c = I + IB/ 1o - I7ijI2 (3-48)

This bound increases as the background light level T4 increases or as
U

the squared modulus I17ii decreases: either change causes a decrease
in the measurable fringe contrast. Related error behavior is seen in
the digital simulations in Section 3.3. In Section 3.3.2 we observe
that diffuse objects, those which have smaller fringe visibility values

1yijl, are more difficult to reconstruct than objects which contain
specular or glinty components.

.3.3 DIGITAL SIMULATION EXPERIMENTS

Once the squared-modulus of the mutual coherence has been
estimated, an image of the object intensity can be determined by using
the fact that the mutual coherence is just the Fourier transform of the
object image intensity. Therefore, reconstruction of the object
intensity from the squared modulus of the mutual coherence function

requires the retrieval of the phase of the mutual coherence function.
This phase retrieval can be accomplished with the iterative Fourier

transform (IFT) algorithm [3.6,3.7,3.8] using positivity and support
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constraints. The IFT algorithm is closely related to the Gerchberg-

Saxton algorithm [3.11]. Estimates of the object support are formed

from the estimate of 17ijl2 as follows: (i) I^ 1i2 is inverse Fourier

transformed to provide an estimate of the autocorrelation of the

object, (ii) the autocorrelation estimate is then thresholded to

provide an estimate of the support of the autocorrelation of the

object, (iii) an initial estimate of the object support is formed from

the autocorrelation support by using a triple-intersection rule

[3.2,3.9]. This initial object support depends on thresholded values

and thus may exclude parts of the actual object. Hence as the

iterations progress, the support constraint is enlarged by including

neighboring pixels, thus ensuring that the whole object is eventually

contained within the support constraint. Each iteration of the IFT
algorithm consists of the following four steps, as illustrated in

Figure 3-6: (1) the current object intensity estimate is Fourier

transformed to produce an estimate of the Fourier transform of the

object, (Ii) the modulus of the Fourier transform is replaced by the

estimate of 17ijl; (iii) the result is inverse Fourier transformed;

(iv) the object-domain constraints of positivity and support are

enforced using the hybrid input-output algorithm in conjunction with

the error-reduction algorithm [3.6,3.7,3.8].

We performed a number of simulation experiments to determine the

performance of the IFT algorithm for image reconstruction from low

light levels. Three distinct series of simulation experiments were

performed. Initially, a series of simple simulations was performed to

determine the robustness of the IFT algorithm with respect to Fourier

modulus error. Independent and identically distributed Gaussian noise

was added to each Fourier modulus sample to approximate the type of

measurement error that might occur with the amplitude interferometer.

It was found that, for the diffuse object used in the simulation, a

useful reconstruction was obtained even at noise levels which gave a

Fourier modulus error of 25%. This is described in Section 3.3.1. The
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Algorithm.
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second series of simulation experiments was performed to demonstrate
the performance of the discrete stepped-phase system described in

Section 3.1.1 for the case of a two-frame collection, one frame with

O(t) = 0, tf[0, T/2] the other with 6(t) = r/2 tf[T/2, T]. To

demonstrate the object-dependent performance of the imaging system,

three distinct objects were used: a simple object consisting of four

equally-bright points, one being four times the area of the other

three; a satellite which had both specular and diffuse components; and

a completely diffuse image of a simulated post-boost vehicle (BUS) with

several attached re-entry vehicles (RV's) and one detached RV. The
general trend we observed was that the specular objects were easier to
reconstruct and that reasonable reconstructions were obtained with much
less light for specular objects than for diffuse objects. This is
described in Section 3.3.2. In the final series of simulation

experiments we simulated a ground-based amplitude interferometer which

used the effects of turbulent atmosphere to provide phase diversity as

described in Section 3.1.3. The goal was to demonstrate the

performance of the amplitude interferometer imaging system for the
Firefly experiment. Simulations were performed for two cases: a

collection using the 48" Cassegrain telescope facility at Goddard and a

collection using the ISTEF 24" Cessegrain telescope. This is described

later in Section 4.3.

3.3.1 Initial Simulations with Noisy Modulus Data

Clearly, the quality of the reconstructed image has a strong

dependence on the accuracy of the squared modulus estimate, 17ij2.
Since the IFT algorithm is iterative and highly nonlinear, it is

difficult to derive analytically the performance of the IFT as a

function of error in the modulus estimate. Empirical simulation

studies have shown, however, that the algorithm is robust under certain

types of Fourier modulus error [3.5].
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As an initial assessment of the viability of the IFT algorithm for
image reconstruction from noisy Fourier modulus data, we performed a
series of simulations in which Gaussian noise of varying intensities
was added to the Fourier modulus of a diffuse object. This was done to

approximate the types of Fourier modulus error one could expect from
the estimators discussed in Section 3.1. The IFT algorithm was then
used to reconstruct an image from each simulated noisy Fourier modulus
data and the normalized root mean-squared error of the reconstruction
was compared to the error in the Fourier modulus data which was induced
by the added Gaussian noise. Figure 3-7 shows the sequence of
reconstructed images along with the original object used in the
simulation. Figure 3-8 shows the corresponding sequence of Fourier
modulus data. Gaussian noise with variances of 400, 1K, 2.5K, 10K,

40K, lOOK, 300K, 1M, 3M, 1OM, and 30M was added to the modulus data to
obtain the Fourier moduli shown in Figure 3-8 (b) through (1). For
reference, the peak of the Fourier modulus at DC was 187,793. Figure
3-9 shows a plot of the -reconstructed image NRMSE versus the NRMS
Fourier modulus error. The image reconstruction error appears to be
linear with the Fourier modulus error with an error of approximately
4.5% for the case where no noise was added to the modulus. The small
image reconstruction error which occurs at zero Fourier modulus error
is most likely due to the "stripe artifact" discussed in Ref. [3.8].
Above 25% NRMS Fourier modulus error, the reconstruction had an error
of more than 35%, and the object was barely discernible.

3.3.2 Simulations of a Space-Based Amplitude Interferometer

In the second series of simulation experiments we investigated the
performance of the amplitude interferometer assuming the discrete
stepped-phase system described in Section 3.1.1, and the estimator D3-
BC of Eq. (3-22). The number of frames collected was K = 2. Such a
system would be appropriate where the aberration or phase errors are
fixed or slowly varying. Herei we assumed that the aberrations were
fixed over the collection time.
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Figure 3-7. Phase Retrieval Image Reconstructions from Noisy Fourier
Modulus Data.
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Figure 3-8. Noisy Fourier Modulus Data used in the Reconstructions
Shown in Figure 3-7.
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Figure 3-7 as a Function of Fourier Modulus Error.
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Three different objects of increasing complexity were used in the

simulation to demonstrate the overall performance of the combined

modulus estimation/image reconstruction algorithm as a function of

image content. Figures 3-11(a), 3-12(a) and 3-13(a) show the three

objects used. Figure 3-10 shows cuts through the spin-averaged Fourier

modulus of each object. Each of the objects fits within a 64 x 64

pixel square, and a 128 x 128 array was used in the reconstructions.

The object of Figure 3-11(a), called "four points," consists of three

equally-bright unresolved points and a fourth part being a 2 x 4

rectangle. Figure 3-12(a), referred to as "satellite," is a model of a
communications satellite, and the object of Figure 3-13(a), "Bus/RV,"

is a simulated post-boost vehicle with several attached re-entry
vehicles (RV's) and one detached RV. As shown in Figure 3-10, the
Fourier modulus of the "four points" object drops off slowly, while the

moduli of the "satellite" and "Bus/RV" objects drop off more rapidly.

In each of these simulation experiments, one realization of a two-

frame collection was simulated and an estimate of 1712 was formed using

Eq. (3-22). Next, a reconstruction of the complex mutual coherence

(and hence the object itself) was performed by using the iterative

Fourier transform (IFT) algorithm [3.5-3.10], using positivity and

support constraints.

After the object reconstruction was performed, the absolute squared

error between the reconstruction and the original object was measured

to provide a quantitative measure of algorithm performance. Since the

location of the object within the field of view of the interferometer

is not uniquely determined from the modulus estimate, the

reconstruction can be translated with respect to the original object.

Also, both the object and its 1800 rotation have the same Fourier

modulus, so the reconstruction can appear rotated by 1800 with respect

to the original. Therefore the object and reconstruction must be

registered before the absolute difference can be calculated. This

registration is done by using the procedure described in [3.8].
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Figure 3-10. A Plot of Cuts through the Spin-Averaged Fourier Moduli
of the "Four Points," "Satellite," and "Bus/RV" Objects.
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(a) Original

Reconstructions from Unfiltered Fourier Magnitude Data

(b) 10 Phot/Det (c) 20 Phot'Det (d) 100 Phot/Det (e) 500 Phot/Det

Reconstructions from Wiener-Filtered Fourier Manitude Data

(f) 10 Phot/Det (g) 20 Phot'Det (h) 100 Phot!Det (i) 500 Phot/Det

Figure 3-11. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the "Four Points" Object.
(a) Object; (b)-(e) images reconstructed from unfiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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(a) Original

Reconstructions from Unfiltered Fourier Magnitude Data

(b) 100 Phot/aEt (c) 200 Phot/Det (d) 1K Phot/Det (e) 5K PhotiDet

Reconstructions from Wiener-Filtered Fourier Ma nitude Data

(f) 100 Phot/Det (g) 200 Phot/Det (h) 1K Phot'Det (i) 5K Phot/Det

Figure 3-12. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the "Satellite" Object.
(a) Object; (b)-(e) images reconstructed from unIfiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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(a ngtna

Reconstructions from Unfiltered Fourier Magnitude Data

(b) 200 Phot/Det (c) 500 PhotiDet (d) 2K Phot/Det (e) 5K Phot/Det
Reconstructions from Wiener-Filtered Fourier Magnitude Data

(f) 200 Phot/Det (g) 500 hot/ et (h) 2K Phot/Det (i) 5K Phot/Det

Figure 3-13. Images Reconstructed from Simulated Amplitude
Interferometer Measurements of the "Bus/RV" Object. (a)
Object; (b)-(e) images reconstructed from unfiltered
Fourier modulus data; (f)-(i) images reconstructed from
Wiener filtered Fourier modulus data.
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Figures 3-11(b)-(d) show reconstructions from simulated two-frame

measurements of the "four points" object for the case of I0At = 10, 20,

100, and 500 photons per detector per frame. Figures 3-12(b)-(d) show

reconstructions of the "satellite" for the case of 100, 200, 1000, and

5000 photons per detectors per frame. Figures 3-13(b)-(d) show

reconstructions of the "Bus/RV" for simulations of 200, 500, 2000, and

5000 photons per detector per frame. What we see is that the simpler

"four points" object requires far fewer photons for a reasonable

reconstruction then the "Bus/RV" object. The locations of the four

points can be seen with as few as 10 photons per detector per frame.
The "satellite" object, which contains glints, also reconstructs with

recognizable features down to 100 photons per detector per frame.

The impact of Wiener filtering the Fourier modulus estimates before

reconstruction was also investigated. The Wiener filter has been shown

to be the optimal filter in the restoration of images degraded by

additive Gaussian noise [3.17] but it also plays a role in iterative
image reconstruction algorithms [3.18-3.20]. In the current context,

we use the Wiener filter to reduce noise artifacts in the

reconstructions which arise from poor estimates of the high spatial-

frequency components in the modulus. The proper Wiener filter W

requires the squared-modulus IF1 2 of the original object and has the

form

l 2

W(i, j) = F1112IF + o2 (3-49)IFijl 2+a2

where Fij denotes a sample of the Fourier transform F and a2 is the
variance of the estimate 17iji. Note that, to a first-order
approximation, a2 = 1/(21 ) independent of 17ijI. However, IF1 2 is

unavailable. As a first pass, we formed a Wiener filter based upon the

spin-average IFI 2 of the Fourier modulus:

55



ERIM

IF. l2
W(,JI) = 1ijl2 +u2  " (3-50)

Figures 3-11(f)-(i), 3-12(f)-(i) and 3-13(f)-(i) show the corresponding

reconstructions from Wiener-filtered modulus estimates for the three

objects. As one would expect, the high-frequency noise artifacts

present in the reconstructions from the Wiener-filtered data are

greatly diminished, but some of the resolution has also been

sacrificed.

A plot of the absolute root mean-squared error of the various

reconstructions as a function of the number of simulated photons per

detector per frame is shown in Figure 3-14. The Bus/RV object requires

two orders of magnitude greater photons than the four points object to

get roughly the same image quality. On the other hand, the Bus/RV

object has two orders of magnitude more illuminated resolved points

than the four points object. Consequently, image quality was similar

for the same number of photons per detector per illuminated resolved

point on the target.

3.4 SUMMARY

Our proposed method for reconstructing an image from aberrated low-

light level aperture-plane amplitude interferometer measurements is to

first form an estimate of the squared modulus of the mutual coherence

and then to reconstruct a diffraction-limited image by using phase

retrieval.

Two amplitude interferometer systems were analyzed in which a

controllable phase term G(t) was introduced in order to allow

measurement of the squared modulus and aberrated phase of samples of

the discretized mutual coherence function: one In which e(t) took on
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Images Shown in Figures 3-11 through 3-13.
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discrete values 0 and r/2, and the other in which 0(t) varied linearly

over [0,2r]. It was found that squared-modulus estimators for the

discrete-phase system perform better than the estimators for the

continuous-phase system. It was also found that the accuracy of

squared-modulus estimates has a strong dependence on the value of the

squared-modulus, as illustrated in Figs. 3-4 and 3-5, and that the

dominant source of error was the standard deviation of the estimator.

This standard deviation results from the fact that the estimate relies

on the squared difference between the two Poisson random variables,

N2  and N' The dependence of the performance on the value of theijk ijk
squared-modulus of the coherence functions also results in the

performance being much better for point-like objects, for which the

coherence function decreases slowly with increasing spatial frequency,

than for diffuse, extended objects, for which the coherence function

drops rapidly with increasing spatial frequencies.
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4.0 PREDICTION OF IMAGE QUALITY FOR FUTURE EXPERIMENTS

In this section we describe analysis, simulation, and

reconstruction results that would predict, the quality of the imagery

that can be expected to be reconstructed from future field experiments.

The scenario that was simulated was the imaging of the first Firefly

exercise (piggybacking on the MIT Lincoln Laboratory laser radar

experiment) launched from Wallops Island as would be viewed by the MAAI

attached to the 48-inch telescope at Goddard Space Flight Center.

Light levels received by the MAAI, assuming sun illumination of the

target, were computed, the detected data was simulated, and images were

reconstructed from the simulated data. The simulation results predict

that the images produced from the MAAI data from the Goddard 48-inch

telescope would be of poor quality. A limiting factor was that the

Goddard 48-inch telescope has a large central obscuration, preventing

the measurement of the low-to-mid spatial frequencies, where most of

the information resides. However, if the low spatial frequencies were

measured, then it was shown that good quality imagery could be

reconstructed. This could be accomplished by changes in the MAAI

(which will be described later) or by using a telescope, such as the

ISTEF 24-inch, which has a small central obscuration. Then for the

same scenario, images would be reconstructed with resolution far

exceeding that ordinarily allowed by atmospheric turbulence.

Furthermore, if the same experiment were performed in a space-borne

MAAI at the same range, then excellent results would be obtained, even

with shorter integration times.

In Section 4.1 we derive expressions for received light levels for

the cases of (1) blackbody emission by the target, (2) sunlight

reflected by the target and (3) laser illumination reflected by the

target. Then we predict the reflected sunlight levels that would be

obtained for the Firefly experiment in Section 4.2. In Section 4.3, we

comment on the undersampling problem that could occur in the
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experiment. In Section 4.4 we show digital simulation and

reconstruction experiments that demonstrate the image quality that

would be obtained under various assumptions.

4.1 LIGHT LEVEL ESTIMATION - GENERAL CASE

4.1.1 Energy Scattered or Radiated by the Object

There are three cases of interest: objects emitting in the

infrared, objects scattering sunlight in the visible or infrared, and

objects scattering laser illumination that is of sufficiently short

spatial and/or temporal coherence to be effectively incoherent. In the

first two cases, the energy must be weighted by the spectral filter

which determines the wavelength band to be detected. The total energy

is determined by the detector integration time.

Using a blackbody model for infrared emission, the spectral

radiance Ls (energy emitted per unit time per unit area per unit solid

angle per unit wavelength) of an object is:

= hc 2 f (4-1)
X 5[exp(hc/XkT) - 1]

where h is the Planck constant, c is the speed of light, e is the

object emissivity, X is the wavelength, k is the Boltzmann constant,

and T is the object temperature. Ideally, an integration is required

over the surface of the object, including the effects of the angle 0

between the local surface normal on the object and the line of sight to

the sensor and of variations in the emissivity and temperature, to

compute total energy.
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For sunlight illumination, the spectral radiance of an object is

given by the product of (1) the solar spectral irradiance at the

object's altitude, (2) factors depending on the angles between the

object's surface normal and (a) the solar illumination direction and

(b) the line of sight to the sensor, and (3) the object reflectivity.

(Ideally, an integration is required over the surface of the object.)

Solar spectral irradiance tables can be found in The Infrared Handbook,

Section 3.4 [4.1].

For laser illumination, the energy scattered per unit solid angle

is the product of the transmitted laser energy, one way transmittance

losses (e.g., due to atmospheric propagation), the ratio of the object

cross-sectional area to the laser beam area at the object (including
the effect of nonuniform beam intensity), the object reflectivity

(again, including nonuniform effects), and the reciprocal of the

scattering solid angle. For rough objects, the scattering solid angle

can approach 4Y steradians. However, for smooth flat objects, the

solid angle can be so small as to give a glint, so some care must be

taken in estimating this solid angle.

4.1.2 Transmittance Losses

Transmittance losses could be due to propagation through the

atmosphere, transmission through the receiver optics, and use of a

polarizer.

For pulsed laser illumination, there is an additional loss. The

amplitude interferometer can collect data for the entire object only

during the time interval over which light is arriving from all parts of

the object. For a pulse of length Lp and an object of depth AR (along

the line of sight to the amplitude interferometer), the fraction of the

pulse which may be used (i.e., the pulse utilization efficiency) is (Lp
- 2AR)/L . This factor is unity for emissive or continuously

Illuminated objects.
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4.1.3 Receiver Collection Solid Angle

For fixed image resolution, the collection solid angle of each

detector pixel, i.e., the solid angle it subtends with respect to the
object plane, is (da/R) 2  = (X/ad OM)2 where d a2 is the area of a
detector pixel, R is the range to the target, X is the mean wavelength,
a is the desired detector oversampling factor, and dom is the maximum
object diameter. For minimum sampling of amplitude interferometer

data, a = 2.

This result may be derived as follows. For resolution Ad at the
object, the receiver aperture must be of diameter D = XR/Ad. For an
instantaneous field-of-view of diameter (at the object) adom, where dom
is the object's diameter, the Nyquist sample spacing at the aperture
plane is XR/adom. Assuming detector elements of width equal to the
detector spacing, the solid angle of a detector element is therefore

(X/adom)2 There are D/(XR/ado) = adom/Ad detectors across the
aperture.

4.1.4 Parametric Formulas

For thermal emission, the energy per detector Edet (i.e., the
product of the factors discussed above) is:

E hc2 E A cos 0 At AX atm 'opt 'pol X2Edet X5 [exp (hc/XkT) - 1] (ad OM)2

where

c is object emissivity
T Is object temperature

dom is maximum object diameter

A is object cross-sectional area
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X is mean wavelength

AX is wavelength band

At is detector integration time

ratm is atmospheric transmittance

'opt is receiver optics transmittance
rpo1 is polarizer transmittance

a is the desired oversampling

0 is the angle between the object surface normal and the

direction to the sensor

and

h is the Planck constant

k is the Boltzmann constant

c is the speed of light.

Note that all integrations over spatial and wavelength variations have

been approximated. For a = 2 (the minimum allowable), A = r(dom/2) 2

and cos 0 = 1, the formula becomes:

E hc 2 e at "A ratm topt rpol (4-3)
Edet = 16 X3 [exp (hc/XkT) - 1] )

It should be noted that for determination of detected signal-to-noise

ratio, the background light level must also be determined and the

detectivity D of the detector determined.

For sunlight illumination, the energy per detector Edet is:

E E A cos 01 cos 00 robi At AX ratm t opt rpol 2det r (adom) 2
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where

EX is solar spectral irradiance

dom is maximum object diameter

A is object cross-sectional area

robj is object reflectivity

X is mean wavelength

A) is wavelength band

At is detector integration time

ratm is atmospheric transmittance

topt is receiver optics transmittance

rpol is polarizer transmittance
a is desired oversampling

0i is the angle between the object surface normal and the solar

illumination direction

0 is the angle between the object surface normal and the

direction to the sensor

and it has been assumed that the object is a Lambertian scatterer. All

integrations over spatial and wavelength variations have been

approximated. For a = 2, A = r(d om/2) 2, and 0 = e = 450, the formula
becomes

Edet = EX robj At ' 'ratm topt 'rpoi X2
det =32

For laser illumination, the energy per detector Edet is:

EI 2  r2
E atm area robJ Ipulse ropt rpol (4-6)

Edet =0 (adom)2
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where

E is the transmitted laser energy

'r atm is the one way atmospheric transmittance

rarea is the ratio of object to beam area

robj is the object reflectivity

0 is the scattering solid angle

7pulse is the pulse utilization efficiency, (L - 2AR)/L

L is the laser pulse length

AR is the object depth

dom is the object diameter

,opt is the receiver optics transmittance

Tpol is the polarizer transmittance

X is the wavelength
a is the desired oversampling.

Note again that any integrations have been approximated.

4.1.5 Example Calculations

For thermal emission, the energy per detector is 1.2 x 10-15 Joule

or 6 x 104 photons for

c = 0.5

T = 3000K (sun illuminated)

d 5 meters
om
X =10 pm (near blackbody peak)

AX= 0.5 pm

At = 1 ms

Tatm =1.0

Topt = 0.1

Tpo = 0.5

a=2

0 = 0°.
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Note that

hc = 4.81

exp (hc/XkT) - 1 = 121

and

hc = 2 x 10-20 .

For sunlight illumination, the energy per detector is 0.55 x 10-17

Joule or 15 photons for

EX = 1942 W/m2 pm (exo atmospheric)

robj = 0.1

At = 10 ms

X = 0.5 jam

AX = 0.03 pm

'ratm = 1.0

'opt = 0.1

'pol = 0.5
a=2

= 450

0 = 450.

Note that

hc = 4 x 10-19 J.

For laser illumination, the energy per detector per pulse is

1.2 x 10-18 Joule or 6 photons for

E = 1 Joule/pulse
'atm = 1.0
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rarea =0.1
robj = 0.1

0 = 2r

npulse = 0.75 (AR = 5 m, L = 40 m or 130 nsec)

'opt = 0.1

Tpol = 1.0 (no polarizer)

a=2

d om= 5 meters

p= 1 pm.

Note that

hc =2 1x 9m- = 2 X 10 J

In the above,

h = 6.63 x 10-34 Joule sec

c = 3 x 108 m/sec

hc = 1.g9 x 10-25 Joule m

k = 1.38 x 10-23 Joule/°K

hc = 0.0144 mOK

4.2 LIGHT LEVEL ESTIMATION - FIREFLY EXPERIMENTS

In this section we estimate the light level expected from the first

Firefly experiment when imaging the large cylindrical object.

For sunlight illumination, the number of detected photons (photo-

electrons) per detector per frame Is, for a general object,

Npe = nq Edet/(hc/X) (4-7a)
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= 'q EX AX At(X/hc) robj (A cosGi cosao/r) 'atm 'opt 'rpol (d• 1d/R 2 )

(4-7b)
SqEX AX At(X/hc) rob[(Ldo/21r) V(fi + to)] 'ra 'rp rpol (d• d/2 ).

qtX/c robj o 1 0 atm opt pla IdR

(4-7c)

The parameters in this expression and their estimated values for

the Firefly experiment are listed in Table 4-1. Equation (4-7b) was

obtained from Eq. (4-4) by replacing the oversampling ratio, a, by

a = XR (4-8)
da dom

where da is the detector spacing and Id da 2 is the area per detector

element. Equation (4-7c) is obtained making the further substitution

of (Ld0 /2w) V(ti + * ) for (A cos 0 cos 0 )/w for the cylindrical

target in the Firefly experiment. The object is assumed to be a

cylinder of length L and diameter do. In Appendix C the theory of a

reflecting cylinder is worked out in detail, and the energy reflected

by the cylinder, assumed to be a Lambertian reflector, is proportional

to

V(fi + €o) = (1/2) [sin(@i + 9o) - (9i + 1o) cos(ti + #o)] (4-9)

where *i is the angle of the sun below the horizontal and 1o is the

angle of the receiver below the horizontal, as seen from the target.

For the Firefly cylinder, V(9i - 0o) is about 0.292, as compared with a

maximum possible value of ir/2 = 1.57 for illumination from the same

angle as the sensor views the object (i.e., for the sun behind the

sensor).
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Table 4-1

Parameters for Firefly

Parameter Parameter Parameter

Value Symbol Name

0.10 2 I1q detector quantum efficiency

1942 W/m /Um EX solar spectral irradiance

0.50 #m X mean wavelength

4 x 10-19j hc/X energy per photon

0.03 #m AX wavelength band

10 msec At detector frame integration time

2.4 m L = dom maximum object diameter

varies 0i the angle between the object surface
normal and the solar illumination
direction

varies 00 the angle between the object surface

normal and the direction to the sensor

0.8 Tatm atmospheric transmittance

0.056 "Opt 7pol receiver optics transmittance

600 km R range to target

0.4 nd fractional active detector area

(3 cm x 4 cm) dau x d av detector element center-to-center spacing
0.0009 m2  ndda 2  area per detector element

For the cylindrical object:

0.4 m d0  cylinder diameter

2.4 m L cylinder length

100 ti solar angle below horizon

550 + 80 to sensor angle below object plane

1070 1800-ti-€0 bistatic angle
730 Wi + 9o 1800 - (bistatic angle)

0.292 V(€i + 0o) reflectivity factor (Appendix C)
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For the parameters listed in Table 4-1, Npe = 0.1 photo-electrons

per detector (in 10 msec). In one second this would be 10 photo-

electrons, and in 150 sec of observing time 1500 photo-electrons would

be detected. As seen in Table 4-2, 150 sec would be available between

times 200 sec and 350 sec from launch, during which period the target

would appear to be relatively stationary as viewed from the Goddard

site. At most, 3200 photons could be detected during the 320 seconds

between times 130 and 450 seconds from launch.

At 3,200 photo-electrons per detector, one can achieve a normalized

mean-squared error (NRMSE) of 0.1 (suitable for phase retrieval) for

171 down to 0.5, and one can achieve a NRMSE of 0.5 (suitable for
parameter estimation from the Fourier modulus) for 171 down to about

0.1.

4.3 SAMPLING REQUIREMENTS

For the parameters listed in Table 4-1, a = 2.08 if the 3 cm

detector spacing direction is oriented along the long axis of the
cylinder, but a = 1.56 if it is oriented in the opposite way. Recall

that a = 2.0 is required for Nyquist sampling of 1712. Since this

opposite orientation was contemplated, serious problems could arise.
For this reason it is worthwhile to review the basis for this sampling

requirement.

For a shear of Au, 7(Au) requires a sample spacing of

Au -5 (4-10)

in order to avoid aliasing and satisfy the Nyquist criterion, where L

is the length of the target. Recall from Section 2 that the

interferometer measures 17(2Au, 2Av)l2 for a detector at location
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Table 4-2

Firefly Launch Parameters as Viewed from Goddard

Time Range Elevation Bistatic angle Comment
(sec) (km) (deg) (deg)

130 379 50.3 112.5 Rising fast

200 506 55.6 107.5

350 664 55.4 108.3 Release cannister

450 685 50.7 113.4 Dropping fast
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(Au,Av). Therefore a doubling of the sampling rate is required because

of the squaring operation (a function squared has twice the bandwidth

as the original function), and another doubling of the sampling rate is

required because of the 1800 rotational shear giving the spacing

(2Au,2Av). Therefore the detector spacing must be

d R (4-11)

a 4L

which is 3.1 cm for R = 600 km, X = 0.5 x 10-6 m and L = 2.4 m.

4.4 DIGITAL SIMULATION EXPERIMENTS

A model of the Firefly payload is shown in Figure 4-1. In this

case we are imaging the cylindrical object (which later separates into

two parts) 2.4 m long and 0.4 m diameter with a nozzle at one cnd.

(The simulated reentry vehicle was judged to be too small and dim for

an initial demonstration of amplitude interferometry.) Because of the

oblique illumination angle, it would not be realistic to use a

digitized version of this photograph as the object for our digital

experiments. So instead, we fashioned a three-dimensional shape from

wood and painted it white with a black stripe. Shown in the CCD-camera

image in Figure 4-2(a), it has features that are similar to those of

the Firefly object. Figure 4-2(b) is a photograph of the same object

illuminated from below and behind at an angle approximating the one at

which the sun would be shining at the Firefly object. At the nearly

grazing angle involved, a weak glint on the left half of the object

appeared despite the fact that the paint used (Liquid Paper white-out)

was not glossy.

Figure 4-2(c) shows the image as would be seen from a diffraction-

limited phase-measuring amplitude interferometer (as though there were

such a thing) of aperture diameter 1.2 m (48 in), operating at a
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wavelength of 0.5 am at a range of 600 km, with no noise. This image

was obtained by Fourier transforming the object shown in Figure 4-2(b),

multiplying by a circular aperture in the Fourier plane of the

appropriate size, and inverse Fourier transforming. From this we see

that for the large cylindrical object under this illumination

condition, even under the most ideal conditions the best that could

ever be done with a 1.2 m telescope is to see a thin line that curves

upward at one end (where it is thinner at the nozzle) and has a barely

discernible dark band near the other end. This illustrates the need

for very large apertures for discrimination.

Figure 4-2(d) shows an image that would be obtained from a

diffraction-limited phase-measuring MAAI using a 1.2 m aperture having

a 0.6 m central obscuration, like the Goddard 48-inch telescope has.

Because of the large central obscuration, all the low-to-mid spatial

frequencies are not measured -- only the high spatial frequencies are

measured, and the result is a high-pass filtered version of the image

shown in Figure 4-2(b). The same image features are seen, but very

large ringing artifacts dominate the image. The narrow width of the

image can no longer be reliably estimated. Discrimination would be

difficult with this aperture even with ideal imaging with the phase.

To get an image comparable to that shown in Figure 4-2(c), the Fourier

data would have to be interpolated from the high spatial frequencies

into the mid and low spatial frequencies.

Figure 4-2(e) shows the image that would be obtained from a

diffraction-limited phase-measuring MAAI using a 0.6 m (24 inch) filled

aperture, and Figure 4-2(f) shows the image that would be obtained from

a diffraction-limited phase-measuring MAAI using a 0.6 m aperture with

a 0.1 m central obscuration, like a telescope that is available at the

Innovative Science and Technology Experimental Facility (ISTEF) on Cape

Canaveral. The image is lower in resolution by a factor of two, as

expected, but the ringing artifacts are much less pronounced than for
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the Goddard 48-inch, since the ISTEF 24-inch has a very small central

obscuration.

If the telescope were being operated in space, and if the

aberrations were unknown but were slowly varying over the integration

time, then the method using only two frames, described in Section 3,

could be used. As discussed in Section 4.2, for the first Firefly

experiment with the Goddard 48-inch telescope and the then-current

implementation of the MAAI, about 1,500 to 3,200 photons per detector

could be obtained during the integration time. Data was simulated with

2,000 photons per detector over two frames for each of the four

apertures described above. The iterative transform algorithm was used

to retrieve the phase over the aperture and, for the annular apertures,

simultaneously interpolate the complex values into the mid and low

spatial frequencies where no data would be measured. (Section 5.0 and

Appendix D describe the algorithm in more detail.) The reconstructed

images, shown in Figure 4-2(g)-(j), are comparable in quality to the

diffraction-limited images from the filled apertures. In fact, for the

48-inch Goddard annular aperture, the reconstructed image is actually

better than a diffraction-limited image with a phase-measuring MAAI

[compare Figure 4-2(h) with 4-2(d)]. This results from the success of

the interpolation of the mid and low spatial frequencies that would

otherwise be lost. This is a remarkable success for the phase

retrieval/interpolation algorithm operating on MAAI data.

We also performed experiments with lower numbers of photons,

corresponding to proportionally shorter integration times. For only

400 total photons per detector over the two frames, which is 1/5 the

light level expected for the Firefly experiment, the major features of

the object are still seen in the reconstructed image, although the

image is noticeably noisier than the one for 2,000 photons per

detector.
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For an earth-bound telescope, atmospheric turbulence limits the

integration time for a single frame to about 10 msec. Therefore during

a 200 sec total integration time, one must collect 20,000 frames of

data of exposure time 10 msec each. We simulated 4,000 total photons

per detector over the 20,000 frames. Note that this is equivalent to

an average of 1/5 photon per detector per frame. That is, most

detectors would receive zero photons in a given frame. This data is

extremely noisy, to say the least. By summing over 20,000 frames the

signal-to-noise ratio is built up. The image reconstructed from this

simulated data for the Goddard 48-inch and ISTEF 24-inch annular
apertures are shown in Figtre 4-3(e) and (h) respectively. For the

Goddard 48-inch aperture, large amounts of noise fill the support

constraint used during the iterations. A hint of the long, thin object

is seen in the image, but the high level of noise would cause one to
have little confidence in it. This illustrates the fact that, even if

a large number of photons are collected, if they are spread over too

many frames, they are not as effective as the same number of photons

spread over a small number of frames. The interpolation, which worked

well for the case of 2 frames for a space-based sensor, work poorly

here since the coherence function squared-modulus estimate is so much

noisier. As shown in Figure 4-3(h), the image reconstructed from the

same number of photons per detector and the same number of frames, but

for the ISTEF 24-inch aperture, is much less noisy and clearly shows

the major features of the object although at only half the resolution.

This greatly improved result is due to the fact that the much-smaller

central obscuration requires far less interpolation. Then the

interpolation task is much easier and the image quality is limited only

by the aperture size and the performance of the phase retrieval

algorithm.

Since the atmospheric "seeing" can be expected to have a

correlation distance of about 0.05 meters under these circumstances,

the ISTEF 24-inch (0.6 m) image shown in Figure 4-2(h) has resolution
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On inal Obect

fai Dtffuse Itlumination (b) Sunlit

Simulated Collection Through Goddard Aperture (20K Frms, 4K Phot Tot.)

(c) Diff. Lir. Image (d) Founer Mag. (e) Reconstructed Image

Simulated Collection Through ISTEF Aperture (20K Frms, 4K Phot Tot.)

(f) Diff. Lim. Image (q) Fourier Mag. (h) Reconstructed Image

Figure 4-3. Object and Reconstructed Images for Simulation of Ground-
Based Imaging through Atmospheric Turbulence with the
Amplitude Interferometer. (a) Model diffusely
illuminated; (b) model illuminated by spotlight; for the
Goddard 48-inch aperture: (c) diffraction-limited image,
(d) Fourier modulus, (e) reconstructed image; for the
ISTEF 24-inch aperture: (f) diffraction-limited image,
(g) Fourier modulus, (h) reconstructed image.
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about (O.6m/0.05m) = 12 times better than what would be seen with a
diffraction-limited telescope viewing the same object through the same

turbulent atmosphere. In fact, the blur circle for atmospheric-limited

imaging in this case would be XR/ro = 6 m, which is 2.5 times wider

than the length of the target. Therefore an image of this target from

a conventional diffraction-limited telescope would be a large blob

showing no detail whatsoever, whereas the image from the MAAI operating

with the ISTEF 24-inch would show recognizable features of the object.

This demonstrates the tremendous advantage of using the MAAI under the

right circumstances.

Figures 4-2(d) and 4-2(g) show the MAAI data (squared-modulus of

the coherence function) simulated over the 48-inch Goddard aperture and

the 24-inch ISTEF aperture for the ground-based case. The vertical

streak down their centers is due to the fact that the target is long

and thin in the opposite direction. The holes in the centers are due

to the central obscurations of the telescopes. Note that in the

horizontal dimension, in which the target is resolved, the signal-to-
noise ratio rapidly drops away from the center. This helps to explain

why the Goddard aperture worked so poorly. The central obscuration of

the Goddard 48-inch is about the same size as the entire 24-inch ISTEF
aperture. That is, the annulus of data gathered by the Goddard 48-inch

would only start beyond the outer diameter of the ISTEF 24-inch. Since

at this point the data has become quite noisy, we see that the Goddard

48-inch would miss the data where the signal-to-noise ratio is good and
measure it where the signal-to-noise ratio is primarily poor. For this

reason it is important to change the way that the MAAI measures data

with telescopes like the Goddard 48-inch -- modifications are necessary

to measure the low spatial frequencies, even if it means missing some

of the highest spatial freqjencies. This is described in Section 6.
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5.0 IMAGE RECONSTRUCTION WITH A PARTIALLY-FILLED APERTURE

For the case of partially-filled aperture, including central

obscurations or multiple-mirror telescopes, portions of the spatial

frequency domain are not measured. One way to get around this problem is

to change the way that the aperture is sheared by the interferometer so

that it measures the lower spatial frequencies. When this is done the

highest spatial frequencies are lost, but the net image quality can be far

higher than what would be obtained with the traditional method of shearing

the wavefront. This alternative shearing approach is described in

Section 6. If the alternative shearing approach is not taken, then the

reconstruction algorithm must simultaneously interpolate the missing phase

and modulus values where they are missing while retrieving the phase where

the modulus is measured. This is necessary because the impulse response

of a partially-filled aperture usually has large sidelobes that go both

positive and negative, which interferes with both the support constraint

and the nonnegativity constraint used by the phase retrieval algorithm.

This is a particularly difficult task if the lower spatial frequencies are

missing because of a central obscuration of the telescope, since the

visibility modulus at lower spatial frequencies is typically much larger

than at the higher spatial frequencies. How we accomplished this and the

results are briefly summarized below. A detailed description is given in

Appendix D.

The method of simultaneous phase retrieval and interpolation is a

modification of the standard iterative transform algorithm. One iteration

consists of the usual four steps, but with the following change in the

second step in the Fourier domain: where the Fourier modulus is measured,

the computed Fourier modulus is replaced by the measured modulus; where

the Fourier modulus is not measured but is within the area that would have

been occupied by a filled aperture of the same diameter, the Fourier

modulus is unchanged; and beyond the area that would have been occupied by

the filled aperture, the Fourier modulus is set to zero. If any phase

information has been measured in any region, then in that region the

computed phase is replaced by the measured phase.
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We found that for filled apertures with no phase information, the

iterative transform algorithm usually converges reasonably quickly to the

correct solution. For a partially filled aperture with no phase

information, for which both phase retrieval and interpolation are

required, successful reconstructions were obtained, but only when the

central obscuration was small. This was for the case of a very extended

object. As was seen in Section 4, for a simpler object, reconstructions

of this type are also possible with a larger central obscuration if the

signal-to-noise ratio (light level) is very high.

We also experimented with interpolation when the phase is measured.

Problems with nonunique solutions were encountered if the missing region

was large. Therefore the difficulty with combined phase retrieval and

interpolation may be limited more by the interpolation than by the phase

retrieval in some circumstances.
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6.0 ALTERNATIVE AMPLITUDE INTERFEROMETER FOR GROUND-BASED EXPERIMENTS

In order to avoid the problems with the reconstruction algorithms

that occur when the telescope has a central obscuration, the way that the

aperture is sheared by the interferometer can be changed so that it

measures the lower spatial frequencies. When this is done the highest

spatial frequencies are lost, but the net image quality can be far higher

than what would be obtained with the traditional method of shearing the

wavefront. This is important for ground based experiments using existing

telescopes, although it would probably not be a problem for an eventual

space-based system for which a second small telescope could fill the need

for the low spatial frequencies.

The usual geometry for the 180" rotational shear and the detectors

is shown in Figure 6-1(A). Only the right half of Figures 6-1(A), (B) and

(C) get through one side of tht Koster's prism. The annular aperture is

rotate 180" about its center and interfered, so that, for a symmetric

aperture, the sheared and combined fields occupy the same area as the

original aperture. The detector array (shown shaded), on one of the two

sides of the Koster's prism, covers only half of the aperture, but that is

all that is needed since the coherence function is symmetric about the

origin. The low to mid spatial frequencies surrounding the origin in

spatial frequency space, indicated by a dot in the figure, are all

missing. The low to mid spatial frequencies are measured by either of the

alternative geometries shown in Figure 6-1(B) and (C). In these cases the

fields are translated horizontally (B) or vertically (C) prior to rotation

by 180" so they are rotated about points other than the center of the

aperture. For the cases shown in Figure 6-1(B) and (C), the rotations are

about points half way between the inner and outer radii of the annulus.

That point is the location of the origin of spatial frequency space, and

all the low to mid spatial frequencies around it are measured. This can

be accomplished simply by shifting the optical axis of the interferometer

making it offset with respect to the optical axis of the telescope. For

a ratio of radii of 2:1, for the geometry of Figure 6-1(B) in the

horizontal direction the highest spatial frequency passed is reduced to
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(A) Annular Aperture (B) Offset Annular Aperture No. 1

(C) Offset Annular Aperture No. 2

Figure 6-1. Alternative Pupil Shearing and Detection Geometries for
Annular Apertures. The shaded rectangles are potential
areas for the detector array to cover. (A) Conventional
geometry; (B) alternative geometry with horizontal effort;
(C) alternative geometry with vertical offset.
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1/4 that of the usual geometry, and in the vertical direction the highest

spatial frequency passed is Vr7/11 = 0.66 that of the usual geometry.

Since the width of the overlap region is narrow near the highest spatial

frequencies, the highest practical spatial frequency is about 1/2 that of
the usual geometry. This dimension should be oriented along the dimension
for which resolution is most important.

For the geometry of Figure 6-1(C), the highest spatial frequency
passed is 0.66 that of the usual geometry in the horizontal direction and
1/4 in the vertical dimension compared with the usual geometry, and the
detector array is closer to a square shape.

In these cases, for the same number of detector elements, the
alternative geometries have twice the field-of-view in each dimension as
the usual geometry, and the fraction of detector elements that are used is
increased from 58.9% to 82.6%. Most importantly, the low and mid spatial
frequencies, where viI is large, are measured, enabling image
reconstruction at much lower light levels.

Another potential operating mode would be to have a system which
flips between the two geometries, which could be accomplished with, say,
a movable mirror. Then alternately both the low spatial frequencies and
the highest spatial frequencies could be measured.
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7.0 IMAGE RECONSTRUCTION USING A DECONVOLUTION ALGORITHM

An alternative to the iterative transform phase retrieval algorithm

(which was the workhorse algorithm for most of this effort) was developed.

It is a version of the Ayers-Dainty blind deconvolution algorithm modified

to solve the phase retrieval problem, using support and nonnegativity

constraints.

In the blind deconvolution problem, one is given an image g(x) which

is the convolution of two arrays, f(x) and h(x), neither of which is

known, and both of which we wish to reconstruct from g(x). The Fourier
transform, G(u), of g(x) is given by the product of the Fourier transforms

of f(x) and h(x):

G(u) = F(u) H(u) (7-1)

Phase retrieval is a special case of blind deconvolution for which g(x) is

the autocorrelation of the object (given by the inverse Fourier transform

of the squared Fourier modulus), f(x) is the unknown object, and h(x) is

the twin image (hermitian conjugate) of f(x), and we are given IF(u)1 2 =

F(u) F*(u). The Ayers/Dainty algorithm iteratively estimates F, f, H, and
h by inverting Eq. (7-1) and using constraints, such as support and

nonnegativity, on f and h.

Our analysis showed that the algorithm, modified to the phase

retrieval problem, has properties similar to the error-reduction version

of the iterative transform algorithm. It converges slowly but seems to

handle noise well, perhaps due to a built-in Wiener filter that we use to

invert Eq. (7-1).

A detailed description of the -ew phase retrieval algorithm and some
results of computer simulations and reconstructions are given in

Appendix E.
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8.0 NUMERICAL INVESTIGATION OF PHASE RETRIEVAL UNIQUENESS

A question that always arises for image reconstruction by phase

retrieval is whether the image obtained is unique. If it were likely that

other images were also consistent with the data and constraints, then the

method would not be reliable. A new methodology of quantifying the

uniqueness of the solution was developed and exercised. The subspace of

all ambiguous solutions was analytically derived for the case of small (up

to 3 x 3 pixels) images. If an image is a distance from this subspace

less than the measurement noise of the Fourier modulus data, then it is

consistent with an ambiguous image. If the ambiguous counterpart to the

ambiguous image is very different from the original object, then the

solution is ambiguous in a practical sense. For 2 x 2 and 3 x 2 images,

Monte Carlo experiments were conducted to determine the probability that

a random image would lie within a certain distance of this subspace. It

involved a reduced-gradient search along the subspace of ambiguous images

to determine the ambiguous image closest to a given image. It was found

that for small amounts of noise, the probability of having an ambiguous

image is small. As the noise level increases, the probability of having

a practical ambiguity increases.

The surface of ambiguous images for the 3 x 2 case is

five-dimensional, embedded in a six-dimensional space. On the other hand,

for the 3 x 3 case, the ambiguous images lie in a seven-dimensional

surface embedded in a nine-dimensional space. Since the ambiguous images

in the latter case have dimension two less than the space, it seems that

they would be far less likely to occur. Therefore, for larger images of

practical interest, the probability of ambiguity is probably less than

what we computed for the 3 x 2 images.

We also explored the relationship between ambiguous solutions and

local minima encountered by phase retrieval algorithms.

The most important aspect of this task was the development of a

methodology for determining the probability of uniqueness in a practical
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sense. If successfully extended to the larger images of interest, it

could yield a practical estimate of probability of ambiguity, and of the

reliability of phase retrieval.

A detailed description of this study of the uniqueness of phase
retrieval is given in Appendix F.
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9.0 ASSESSMENT OF COMPUTATIONAL REQUIREMENTS

The computational requirements for phase retrieval were analyzed.

Versions of the algorithm were also sent to other researchers to implement

on particular computer architectures, such as the Carnegie-Mellon Warp.

Each iteration of the iterative transform phase-retrieval algorithm

involves two 2-D fast Fourier transforms (FFT's) and some additional

operations in the two domains. These additional operations include

addition, subtraction, multiplication, division, and square root. For

some versions of the algorithm it is also necessary to compute sin, cos,

arctangent (i.e. conversion between real-imaginary and modulus-phase),

logical NOT, and clipping (2 0). All of these operations are done

independently on 2-D arrays of numbers, so that they are well-suited to

vector processor or parallel computing architectures. The 2-0 FFT's are

similarly well-suited to vector or parallel architectures, since the row

(or column) I-D FFT's can be done in parallel. If fully optimized, the

largest computational burden will ordinarily be the FFT's. Since

typically dozens to hundreds of iterations are required for convergence,

depending on the difficulty of the particular reconstruction problem, the

primary computational burden is dozens to hundreds of FFT's to compute a

single image. For the SDI discrimination application, all this must be

done in a short time, say 20 msec. Consider this example: if the FFT

array size were N x N = 64 x 64, considering that each 2-D FFT requires

about 2N2  log2N complex floating-point operations (CFLOP's), the

computational rate required to perform 100 iterations (200 FFT's) in 20

msec would be about 500 MegaCFLOP/sec. Consequently, substantial

parallelism in the computing architecture is currently necessary to

perform these algorithms in the short times allowed. This could be done

currently with a Cray Y/MP supercomputer. Efforts are underway to put

this level of computing power in a small package (a size less than that of

a five-pound coffee can).
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Our own computing hardware experience has seen a substantial speed-

up over time with machines of comparable cost. A single iteration for

array size N x N = 128 x 128 took 1.00 seconds with a Floating Point

Systems AP120B array processor in 1980, 0.60 seconds with a Mars Numerix

432 array processor in 1986, and 0.15 seconds with the Carnegie-Mellon

Warp computer (tests performed by H.T. Kung's group) in 1988. The latter

time was dominated by (a) a non-optimized, slow square root function and

(b) a corner-turn required to be performed in the host computer rather

than interior to the Warp. With an optimized square root function and a

larger memory within the Warp, this time could be reduced by a factor of

two.

In a realistic space-based scenario, special-purpose electronic

processors would be used instead of the general-purpose processors

described above. Typical speed-ups of special-purpose electronic

processors over general-purpose processors is typically in the range of

100 times to 1,000 times. Projected general-purpose processors should be

adequate for the job. Therefore, if special-purpose electronic processors

were developed, then the computational requirements for phase retrieval

would be easily achieved.
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10.0 LABORATORY EXPERIMENTS

It was intended that images be reconstructed from MAAI data

gathered in the laboratory. The data was to be collected by the

University of Maryland (UMd) in their laboratories. ERIM prepared test

targets of appropriate objects for use in the experiments and delivered

them to UMd. The targets were those digitized images shown in Section

2.2. They were written onto fine-grained film using an Eikonix laser-

beam recording system. Transparencies, as opposed to reflective

objects, were used in order to maximize the intensity of the light that

would enter the MAAI. Transparencies were produced at a variety of

magnifications In order to match the size requirements of the

experimental setup. Special care was taken to make the background

density of the transparencies as dark as possible to avoid a background

term. No MAAI data was gathered in the laboratory during this effort.

Phase retrieval/image reconstruction software that resided on a

Heurikon-hosted Mercury Zip Array Processor at ERIM was delivered to

UMd and extensive assistance was given to UMd by ERIM to get the

software to work on the Micro-Vax-hosted Zip at UMd. Considerable

effort was required to overcome operating system incompatibilities

(Unix vs. VMS). This transition was made to enable UMd to perform

image reconstruction both at UMd locally and at remote test range

sites.
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APPENDIX A

EXPRESSIONS FOR BIAS AND MEAN-SQUARED-ERROR

In this Appendix, approximate algebraic expressions are derived for the bias and

mean-squared error (MSE) of several of the estimators for 11Yi. 2 discussed in Sec-

tion 3. These bias and MSE expressions can then be used to compute the normalized

bias (NB) and normalized root mean-squared error given by Equations (3-30). To

aid in the computation of expressions for the bias and MSE, the symbolic compu-

tation software Maple [A-i] was used. Section A.1 contains expressions for the bias

and and MSE for four estimators: D1, Equation (3-17); D2, Equation (3-18); C1,

Equation (3-26); and C2, Equation (3-28). Listings of the Maple sources used to

generate the resulting expressions are given in Section A.2

A.1 ALGEBRAIC EXPRESSIONS

The following methodology was used in computing expressions for the bias and

MSE associated with estimators DI and C1. Note that estimator D1 consists of

a sum of terms which involve the ratio of the photon difference -, -'k N1',k to the

photon sum NAk + AN'k, as in (3-17). Similar ratios are required for Estimator C1.

Consequently, direct expressions for bias and mean-squared error associated with

DI and C1 are difficult to compute. Instead, to compute the bias and MSE of these

two estimators, we use asymptotic expansions for terms involving (N,.k + NA',k) 1.

The resulting expressions for bias and MSE can then be expressed in terms of a

power series in lo 1 . Approximate expressions for bias and MSE are then calculated

by truncating the respective series representations after the first few terms. In

the expressions below, the first four terms (zeroth, first, second and third-order)

are maintained and the resulting accuracy of the expressions for bias and MSE

are therefore of order O(l'&). Maple was used as an aid performing the required

symbolic computations. In the following expressions, the subscripts denote the

estimator, c is defined in (3-13), and the term Q is related to the number of frames
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as:

Q - Esin(arg yia±+ Ti'k) (A-1)
Ik=1

ESTIMATOR D1:

BiaSDl 2012±2 __ ~ _I A +20 (A-2)
K C K c2  C3  cK

MSEDl 41,J' C-tj, 81, 1 -yi 4Q
K cK

51 2 -Yj2  61J2 'yj,3 Q 1~24 32

K K c2  2K
1 3,~j 516 .5 1

3'y,,4 Q _6.5 Ij3 -y~j2  3.5IJý3 C
C3 c3Ki cK K J2 (A3

ESTIMATOR Cl:

Biasci 21ý c - 1.3837286371" -.Yj2

÷12 _ .6918643184I,
2 -y~j2

45.87288805Ij-3 yI, 2 + j-3  (A-4)
C3  C

MSEc 1  20.51851925I1' C. 2 _ 22.647947861J1' -Y.4

C2

+8.5Iý 3C _ 15-50759459hj3 ,yj2  901 .26I2945Iý3 ,y4 . A-5
C C3 (A5

An alternative methodology was used in the computation of expressions for the

bias and MSE associated with estimators D2 and C2. Expressions for the bias and
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mean-squared error for estimators D2 and C2 are simplified by ignoring the variance

and higher-order moments of denominator term involving io. As can be seen from

Equation (3-6), the standard deviation of io is inversely proportional to the square-

root of the product of the number of pixels N2 , the number of frames K, and the

integration time At. Furthermore, since (A1"k + Nk) is a Poisson random variable,

its standard deviation is the square-root of its expectation, i.e.. v/o- Combining

these relationships, the normalized standard deviation of jo is:

Std. Dev. 0o A lo (A-6)

Therefore, for sufficiently large 10, N and K, we can ignore fluctuations in io in

the computation of the bias and mean-squared error of estimators D2 and C2. As

a result, formulas for the first and second moments of estimators D2 and C2 are

straightforward to compute. Again, Maple was used as an aid in the computation.

Estimator D2:

BiasD2 - (A-=)

MSED 4 + 2C + + -I--c (A-8)

D2- JK K 2

Estimator C2:

BiasC2 = 21oI c (A-9)

MSEc 2 " 20.51851925_Y1j 2 clj1
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+81o 2C2 + 5.129629813IJ
2 Y.:2

Jý3c (A-10)

References:

[A-l] Char, B. W., Geddes, K. 0., Gaston, H. G, Monagan, M. B., and Watt, S. M.,
Maple Reference Manual, 5th ed., WATCOM Pub. Ltd., Waterloo, Ont, 1988.

A.2 MAPLE SOURCE CODE

Listings of the Maple input used to generate expressions for NB and NRMSE for
each of the four estimators considered above are included in this section. The fol-
lowing file visibility contains procedures used in all of the computations. Maple

listings related to each of the estimators D1, D2, C1 and C2 follow.

visibility:

# File: visibility
# Date: 18 Jul 88
# Author: J. D. Gorman, ERIM

# Intent: Computes an expansion for the fringe visibility measurement V
# in terms of two new random variables PSI and ETA, and raises it to
# the Nth power.
# Let NS(K) and ND(K) be the number of photons detected at the
# sinisterous and dexterous arms of the amplitude interferometer
# respectively so that:
# E{ ND(K) } = IO (I - Gm(K)) = LambdaD(K)
# E{ NS(K) } I.O (I + Gm(K)) - LambdaS(K).

* Then we define the random variables:

S PSI(K) - {[ND(K)-LambdaD(K)] + [NS(K)-LambdaS(K)]}/ sqrt(2 I-0)

S ETA(K) a C*{[ND(K)-LambdaD(K)) - ENS(K)-LambdaS(K)]}
/ {Gm(K)*sqrt(21I0)),
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# where:
# C = {I + 2*IBckgnd}/I.O.

# The result is that:

# [ND(K) - NS(K)] [I + ETA(K)]
# --------------- =------

# [ND(K) + NS(K)] [I + PSI(K)]

# This ratio is expanded as a series and then the terms of order 0 or
# greater are retained.

meanratio := proc(K)
result := expand( (Gm(K)'I) * simplify( expectation( visibility(l,K),K ) ) );
end;

mean-ratio-sq := proc(K)
result := expand( (Gm(K)-2) * simplify( expectation( visibility(2,K),K ) ) );
end;

mean-ratio-t := proc(K)
result := expand( (Gm(K)-3) * simplify( expectation( visibility(3,K),K ) ) 1;
end;

mean.ratio-q := proc(K)
result := expand( (Gm(K)-4) * simplify( expectation( visibility(4,K),K ) ) 1;
end;

visibility := proc(N, K)
local tmp, result;
tmp := subs( X=psi(K), convert( taylor(1/(1+X),X=0,10), polynom ) );
result := (1+eta(K))-N * tmp-N;
end;

ls :- proc(K)
result := (c - Gm(K))/(ioinv);
end;

ld := proc(K)
result :- (c + Gm(K))/(iOinv);
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end;

I The following procedures are used to calculate the expectation of
4 various moments of the fringe visibility.

etapsi :=proc(m, n, k)
local i, j , jnki, jnkj , result, rsum, t1, t2, t3;
opt ion remember;
if type(m,integer) and m > 0 and type(n,integer) and n > 0 then
rsum :=0;
for i from 0 by 1 to m do
for j from 0 by 1 to n do
,jnki i
jnkj j
ti binomial(m,i) * binomial(n,j)*
t2 pcm(ls(k),i+j) * pcm(ld(k),m+n-i-j);
t3 ((2.0*Gm(k)/ioinv)-m) * ((2.O*c/iOinv)-n);
rsum := rsum + ((ti *t2)/t3);
od;
od;
elif type(m,integer) and m > 0 and type(n,integer) and n 0 then
rsum :- 0;
for i from 0 by 1 to m do
jnki:=i
ti binomial(m,i) * (-l)-i;
t2 pcm(ls(k),i) * pcm(ld(k),m-i);
t3 (2.0*Gm(k)/iOinv)-m;
rsum :=rsum + ((ti *t2)/t3);
od;
elif type(m,integer) and m = 0 and type(n,integer) and n > 0 then
rsum := 0;
for j from 0 by 1 to n do
jnkj :=j

tl binomial(n,j);
t2 :pcm(ls(k),j) * pcm(ld(k),n-j);

rsum := rsum + ((tI *t2)/t3);
od;
fi;
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result : = rsum;
end;

subetapsi := proc(X,K)
local i, result, tI, t2;

option remember;
tt := X;
for i from 12 by -1 to 1 eo
for j from 12 by -1 to 1 do

if i > 5 or j > 5 then

t2 := subs( eta(K)-i * psi(K)-j = 0, tl );

else
t2 subs( eta(K)-i * psi(K)-j - etapsi(i,j,K), tl );

fi;
tl t2;
od
od
end;

subpsi := proc(X,K)
local i, result, t1, t2;

option remember;
tl := X;
for i from 12 by -1 to 1 do

if i > 5 then
t2 := subs( psi(K)Yi = 0, tI )
else
t2 :=subs( psi(K)-i = etapsi(O,i,K), tl )

fi;
tl t2;
od
end;

subeta := proc(X,K)
local i, result, tI, t2;
option remember;
ti := X;
for i from 12 by -1 to 1 do

if i > 5 then

t2 := subs( eta(K)-i - 0, t1 )

A-7



else
t2 subs( eta(K)-i etapsi(i,O,K), tI )
fi;
t : t2;
od
end;

expectation := proc(X,K)
local result, t1, t2;
option remember;
tI expand(X);
t2 subetapsi(tl,K);
tI subeta(t2,K);
t2 subpsi(tl,K);
result := t2;
end;

# This procedure calculates the Nth central moment of a Poisson
# random variable having parameter X.
#

pcm := proc(X,N)
local result, Y, tmp;
if type(N,integer) then
if N - 0 then result := 1
elif N - 1 then result : 0
elif N = 2 then result X
elif N = 3 then result : X
elif N - 4 then result : X + 3*X-2
elif N - 5 then result : X + 10*X'2
elif N - 6 then result : X + 25*X-2 + 15*X-3
elif N - 7 then result : X + 56*X'2 + 105*X-3
elif N - 8 then result : X + 119*X2 + 409*X3 + 105*X-4
else
tmp :- Y*N*pcm(Y,(N-2)) + diff( pcm(Y,(N-1)), Y );
result :- subs(Y-X, tmp);

fi;
fi;
result
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end;
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Estimator Di:

read( visibility )

# File: Ncurrie-.mse
# Date: 19 Oct 88
* Author: J. D. Gorman

mea~n-.ratio-.sq-.K := mean-.ratio-.sq(K):

*Calculate BIAS of Discrete-Phase Normalized Estimator

sum-.mean..ratio-.sq :- proc()
local tmpl, tmp2, result;
tmpl :expand( meaxi-ratio-.sq-.K )
tmp2 :=subs( Gm(K)-2 =GM-2*(nframues/2), tmpl )
result := tmp2;
end;

bias := simplify( ((2/nframes)*sum-..mean-.ratio-.sqo) - GM2 )

# Calculate Terms in MSE

sq-.sum-nean-.ratio...sq :- proco
local tmpl, result;
tmpl := suin-.mean-.ratio..sqo;
result := expand( tmp,12 )
end;

sum-.sq-.mea~n-.ratio-.sq := proco
local tmpl, tmp2, tmp3, tmp4, resul~t;
tmpl :mea~n.ratio..sq-.K;

tmp2 :expand( tmpl-2 );
tmp3 :subs( Gm(K)^4 -GM-4*(qsum*nframes), tmp2 )
tmp4 :subs( Gm(K)^2 = GM-2*(nframes/2), tmp3 )
result := tmp4;
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end;

sum-.mean-.ratio-.q :=proc()
local tmpl, tmp2, tmp3, result;
tmpl expand( mean-.ratio-.q(K) )

tmp2 subs( Gm(K)-4 =GM-4*(qsum*nframes), tmpl )

tmp3 subs( Gm(K)2 = GM-2*(nframes/2), tmp2 )

result :=tmp3;
end;

expected..quad-.term :=(4/nframes-2) *(sum-.mean-.ratio-.q()

- sum-.sq...mean..ratio-.sq() + sq-.sum-.mean-.ratio-.sq() );

mse := simplify( expected-.quad..term - GM-4 - (2*bias*GM-2) )

#Simplify BIAS and MSE

bias :=simplify( expand( bias ))
mse :=simplify( expand( mse ))

bias-cO :=simplify( coeff( expand( bias ),iOinv, 0 ) )
bias..cl simplify( coeff( expand( bias ),i~inv, 1 ) )
bias-,c2 simplify( coeff( expanid( bias ),iOinv, 2 ) )
bias-.c3 simplify( coeff( expand( bias ),iOinv, 3 ) )

mse..c0 simplify( coeff( mse, i~inv, 0 ))
mse-.cl :=simplify( coeff( mse, iOinv, 1 ))
mse-.c2 simplify( coeff( mse, i~inv, 2 ))
mse..c3 simnplify( coeff( mse, i~inv, 3 ))

bias..cO expand( bias~c0 )

bias-.cl expand( bias..cl )

bias..c2 :=expand( bias..c2 )
bias..c3 :expand( bias..c3 )

mse-.c0 expand( mse..co )

mse-.c1 : expand( mse~.c1 )

mse-.c2 expand( mse-.c2 )

mse..c3 :=expand( mse..c3 )
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bias-.expr :=bias...cO + bias..c1*iollv + bias-.c2*(iOilv-2) + bia~s-.c3* (iOiflv'
3);

mse-.expr mse..cO + mse-.c1*iOiflv + mse-.c2*(iOilv-2) + mse-.c3*(iOinv 3),

snr-.expr mse..expr - bias-expr-2 ;

bias-.expr expand( bias..expr )

mse-.expr expand( mse-.expr )

snr-.expr expand( snr-.expr )

latex( bias..expr )

latex( mse-.expr )

latex( snr-.expr )

quit;
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Estimator D2:

read( visibility ):

# File: ac-mse
# Date: 19 Oct 88
# Author: John D. Gorman
#

ND := proc(k)
result := ld(k) + dd(k);
end;

NS := proc(k)
result := ls(k) + ds(k);

end;

mean-diff := proc()
result := expectddds( expand( (0.5*iOinv)-l * (ND(K) - NS(K))l ), K );
end;

meavndiff-sq :- proc()
result := expectddds( expand( (0.5*iOinv)'2 * (ND(K) - NS(K))-2 ), K );
end;

mean.diff-t := proco
result := expectddds( expand( (0.5*iOinv)-3 * (ND(K) - NS(K))-3 ), K );
end;

mea~n.diff.q := proco
result := expectddds( expand( (0.5*iOinv)-4 * (ND(K) - NS(K))-4 ), K );
end;

expectddds := proc(X,K)
local i, result, tI, t2, t3;
option remember;
tl :- X;
for i from 4 by -1 to 1 do
t2 : subs( ( dd(K) )-i = pcm( id(K), i ), tl );
t3 : subs( ( ds(K) )-i = pcm( is(K), i ), t2 );
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ti := t3;
od
end;

mea~n-.diff-.sq-.K expand( mean-.diff-.sq(K) )

U Calculate BIAS of Discrete-Phase Normalized Estimator

sum-.mean..diff-.sq :=proc()
local tmpl, tmp2, tmp3, result;
tmpl mean-.diff..sq..K;
tmp2 expand( tmpl );
tmp3 subs( Gm(K)-2 =GM-2*(nfranies/2), tmp2 )
result :=tmp3;
end;

bias :-simplify( ((2/nframes)*sum-mean,.diff-.sqo) - GM2 )

UCalculate Terms in MSE

sq-.sum..mean-.diff-.sq :=proc()
local tmpl, result;
tmpl :=sum-.mean-.diff-.sqo;
result :-expand( tmpl2 )
end;

sum..sq-mean..diff-sq :- proc()
local tmpl, tmp2, tmp3, tmp4, tmp5, result;
tmpl mean-.diff-.sq..K;
tmp2 expand( tmpl2 )
tmp3 subs( Gm(K)-4 aGM-4*(qsum*nframes), tmp2 )
tmp4 :=subs( Gm(K)-2 a GM-2*(nframes/2), tmp3 )
result :- tmp4;
end;

suin..mean..diffq := proc()
local tmpl, tmp2, tmp3, tmp4, result;
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tmpl mean-diff-.q(K);
tmp2 expand( tmpl ) ;
tmp3 subs( Gm(K)-4 = GM-4*(qsum*nframes), tmp2 )
tmp4 :=subs( Gm(K)2 = GM-2*(nframes/2), tmp3 )
result :=tmp4;
end;

expected-.quad-.term :=(4/nframes-2) *(sq-.sum-.mean-.diff-.sq() sum-.sq-.mean-.diff.

mse := simplify( expected-.quad-.term -GM-4 - (2*bias*GM-2) )

# Simplify BIAS and MSE

bias simplify( expand( bias ))
mse :=simplify( expand( mse ) )

bias-.cO :=simplify( coeff( expanid( bias ),iOinv, 0 ) )
bias-.cl simplify( coeff( expand( bias ),i~inv, 1 ) )
bias-.c2 :=simplify( coeff( expand( bias ),i~inv, 2 ) )
bias-.c3 simplify( coeff( expand( bias ),i~inv, 3 ) )

mse..cO :=simplify( coeff( mse, i~inv, 0 ))
mse-.cl simplify( coeff( mse, iOinv, 1 ))
mse..c2 simplify( coeff( mse, i~inv, 2 ))
mse-c3 simplify( coeff( mse, i~inv, 3 ))

bias..c0 expand( bias..cO )
bias..cl expand( bias-.cl )
bias..c2 expand( bias...c2 )
bias..c3 expand( bias-.c3 )

mse-c0 expand( mse~cO )
mse-.cl :=expand( mse-.cl )
mse-.c2 :=expanid( mse-.c2 )
mse-.c3 expand( mse-.c3 )

bias-.expr :bias-.cO + bias-.cl*i~inv + bias~c2*(i~inv-2) + bias-.c3*(i~inv-3);
mse-.expr :mse..cO + mse-.cl*iOinv + mse-c2*(iOinv-2) + mse-.c3*(iOinv'3);
snr-.expr :mse-expr -bias-.expr-2;
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bias-.expr :=expand( bias-.expr )

mse..expr expand( mse-.expr )

snr..expr expand( snr-.expr )

latex( bias-.expr )

latex( mse-.expr )

latex( snr-.expr )

quit;
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Estimnator Cl:

# File: Nac..mse
# Date: 22 Aug 88
# Author: John D. Gorman

read( visibility )

G :- expa~nd( (A C-2 + (B - D)-2)
Gsq := expand( G-2)

tildeGA := expand( (tildeA - tildeC)-2 + (tildeB -tildeD)-2 )

tildeGAsq := expand( tildeGA-2 );

tildeGB :subs( tildeA-2 =tildeAsq, tildeGA )

tildeGBq :=subs( tildeA-4 =tildeAq, tildeGAsq )
tildeGBt :=subs( tildeA-3 =tildeAt, ti~ldeGBq )

tildeGBsq :subs( tildeA-2 =tildeAsq, tildeGBt )

tildeGC :=subs( tildeB-2. tildeBsq, tildeGB );

tildeGCq :=subs( tildeB-4 = tildeBq, tildeGBsq )
tildeGCt :=subs( tildeB-3 = tildeBt, tildeGCq )
tildeGCsq :subs( tildeB-2 = tildeBsq, tildeGCt )

tildeGD :subs( tildeC-2 = tildeCsq, tildeGC );
tildeGDq :=subs( tildeC-4 = tildeCq, tildeGCsq )
tildeGDt :=subs( tildeC-3 =tildeCt, tildeGDq )

tildeGDsq :=subs( tildeC-2 = tildeCsq, tildeGDt )

tildeG :expand( subs( tildeD-2 - tildeDsq, tildeGD ))
tildeGq :=subs( tildeD-4 = tildeDq, tildeGDsq )
tildeGt :subs( tildeD-3 = tildeDt, tildeGq );
tildeGsq :expa~nd( subs( tildeD-2 = tildeDsq, tildeGt ))

A :Gm(1);
B :Gm(2);
C :Gm(3);
D :Gm(4);

tildeA := mean-.ratio(1):
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tildeAsq := mean-.ratio-.sq(l):
tildeAt mean-.ratio...t(l):
tildeAq mean-.ratio...q(l):

tildeB mean-.ratio(2):
tildeBsq Umea~n-.ratio-.sq(2):

tildeBt mean-ratio..t(2):
tildeBq meaxi..ratio-q(2):

tildeC :=mean-.ratio(3):
tildeCsq :=mean-.ratio-.sq(3):
tildeCt mean-.ratio-.t(3):
tildeCq mea~n-.ratio-.q(3):

tildeD :- mean-.ratio(4):
tildeDsq :=mean-.ratio-.sq(4):
tildeDt mean-.ratio-.t(4):
tildeDq mean-.ratio..q(4):

tildeGexp :=expand( tildeG )
tildeGsqexp :=expand( tildeGsq )

bias :=tildeGexp - G

sqterm tildeGsqexp -Gsq;

oterm expa~nd( 2 * G *bias )
mse :=sqterm - oterm;

#Simplify BIAS and MSE

bias :=simplify( expand( bias ))
mse :simplify( expa~nd( mse ) )

bias..cO :=simplify( coeff( expand( bias ),iOinv, 0 ) )
bias-.cl :=simplify( coeff( expand( bias ),i~inv, 1 ) )
bias..c2 :=simplify( coeff( expand( bias ),i~inv, 2 ) )
bias..c3 :simplify( coeff( expand( bias ),i~inv, 3 ) )

mse-.cO Usimplify( coeff( mse, i~inv, 0 ))
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xnse..cl simplify( coeff( mse, iOinv, 1 ) )
mse-.c2 simplify( coeff( mse, iOinv, 2 ) )
inse-c3 simplify( coeff( mse, iOinv, 3 ) )

bias..c0 expand( bias..cO )
bias-.cl expand( bias-c1 )
bias-.c2 expanid( bias~.c2 )
bias-.c3 expand( bias..c3 )

mse..cO expand( mse-.c0 )
mse-.cl expand( mse..cl )
mse-.c2 expand( mse-c2 )
mse..c3 expand( mse-.c3 )

bias..expr bias-c0 + bias-.cl*iOinv + bias-.c2*(iOinv-2) + bias-.c3*(iOinv-3);
mse-.expr mse..c0 + mse-.cl*iOinv + mse-.c2*(iOinv-2) + mse..c3*(iOinv-3);
snr..expr mse-expr - bias..expr-2;

bias-.expr expand( bias..expr )
mse-.expr expand( mse-.expr )
snr-.expr expand( snr..expr )

latex( bias..expr )
latex( mse-.expr )
latex( snr..expr )

quit,
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Estimator C2:

# File: ac-mse

# Date: 22 Aug 88

# Author: John D. Gorman

read( visibility ):

ND := proc(k)

result := ld(k) + dd(k);

end;

NS : proc(k)

result := ls(k) + ds(k);

end;

G := expand( (A - C)-2 + (B - D)2 );

Gsq := expand( G-2 );

tildeG := expand( (tildeA - tildeC)-2 + (tildeB - tildeD)2 );

tildeGsq := expand( tildeG'2 );

A : Gm(1);
B : Gm(2);

C : Gm(3);

D :Gm(4)

tildeA 0.5 * iOinv * (ND(1) - NS(1));

tildeB : 0.5 * iOinv * (ND(2) - NS(2));

tildeC : 0.5 * iOinv * (ND(3) - NS(3));

tildeD : 0.5 * iOinv * (ND(4) - NS(4));

expectddds :- proc(X)

local i, j, result, tI, t2, t3;

option remember;

tI :- X;

for i from 4 by -1 to 1 do

for j from 1 by 1 to 4 do

t2 :- subs( ( dd(j) )-i - pcm( ld(j), i ), tl );
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t3 subs( (ds(j) )-i = pcm( ls(j), i ), t2 );
tl t3;
od
od
end;

tildeGexp := expectddds( expand( tildeG ) );
tildeGsqexp := expectddds( expand( tildeGsq ) );

bias := tildeGexp - G;

sqterm tildeGsqexp - Gsq;
oterm := expand( 2 * G * bias );
mse := sqterm - oterm;

# Simplify BIAS and MSE

bias simplify( expand( bias ) );
mse := simplify( expand( mse ) );

bias-cO = simplify( coeff( expand( bias ), iOinv, 0 ) );
bias-cl := simplify( coeff( expand( bias ), iOinv, 1 ) );
bias-c2 simplify( coeff( expand( bias ), iOinv, 2 ) );
bias-c3 simplify( coeff( expand( bias ), iOinv, 3 ) );

mse-cO simplify( coeff( mse, iOinv, 0 ) );
mse-cl simplify( coeff( mse, iOinv, 1 ) );
mse-c2 simplify( cr-ff( mse, iOinv, 2 ) );
mse-c3 simplify( coeff( mse, iOinv, 3 ) );

bias-cO expand( bias-cO );
bias-cl expand( biascl );
bias.c2 expand( bias-c2 );
bias-c3 expand( bias-c3 );

mse-cO : expand( mse-cO );
mse-cl : expand( mse_cl );
rse-c2 : expand( mse-c2 );
mse-c3 := expand( msec3 );
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bias-.expr :=bias...cO + bias-.cl*iOinv + bias-.c2*(iOinv-2) + bias...c3*(iOinv-3);

mse..expr mse-c0 + mse-.cl*iOinv + mse-.c2*(iOinv-2) + mse-.c3*(iOinv-3);

snr-.expr mse-.expr - bias-.expr-2;

bias..expr expand( bias..expr )

mse-.expr expand( mse-.expr )

snr-.expr expand( snr-.expr )

latex( bias-.expr )

latex( mse-.expr )

latex( snr-.expr )

quit;
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Abstract -A Chapman-Robbins form of the Barankin bound is used derivations. for instance [27. Section 2.4]. ma, not exphc-
to derive a multiparameter Cramer-Rao (CR1 type lower bound on itiv make the assumption. the CR bound is typicalk
eslimator error covariance when the parameter 0,E - " is constrained to derived under the assumption that the parameter space is
lie in a subset of the parameter space. A simple form for the constrained
CR bound is obtained when the constraint set i-i can be espressed as a an open subset of
smooth functional inequality constraint. 0, = 0S .49 ý 0). 'e show that ever, the parameter is constrained to lie in a proper
the constrained CR bound is identical to the unconstrained CR bound at non-open subset of the original parameter space. Some
the regular points of 0,. i.e. where no equalin constraints are active. examples are: bandwidth, support. and positivitm con-
On the other hand. at those points 0 (-E, where pure equality con. straints in phase retrieval [5]. [9] and tomographic recon-
straints are active the full-rank Fisher information matrix in the uncon-
strained CR bound must be replaced by a rank-reduced Fisher informa- struction [24]. [29]: kernel-sieve constraints in probabilitt-
tion matrix obtained as a projection of the full-rank Fisher matrix onto density estimation [25]: array geometr%'. constraints in
the tangent hyperplane of the constraint set at 0. A necessary and estimation of coupled times-of-arrival across multiple-
suffcieni condition involving the forms of the constraint and the likeli- sensor arrays [28]: and auto-correlation lag constraints in
hood function is given for the bound to be achievable, and examples for maximum-entropy spectral analysis and image reconstruc-
which the bound is achieved are presented. In addition to providing a
useful generalization of the CR bound, our results permit analysis of the tion [231- Constraints restrict the allowable parameter
gain in achievable mse performance due to the imposition of particular variations and hence the local structure of the log-likeli-
constraints on the parameter space without the need for a global hood function over the constrained parameter space ma%
reparameterization. For the purpose of illustration, we apply the con- be changed. Specifically. the average curvature of the
strained bound to problems involving linear constraints and quadratic log-likelihood function, and in particular the Fisher infor-

constraints. Specific examples considered include: linear constraints for

Gaussian linear models, object support constraints in image reconstruc- mation matrix. may be affected. thereby invalidating the
tion. signal subspace constraints in sensor array processing. and aver- unconstrained CR bound.
age power constraints in spectral estimation and signal extraction. We present a multiparameter CR type bound for para-

Index Termsu-Constrained estimation. Cramir-Rao bounds, multiple metric estimators when the vector parameter 6 is con-
parameter estimation, spectrum estimation, strained to lie in a subset El of '". We refer to this

bound as a constrained CR bound. The constrained CR
1. INTRODuc-rTION bound is derived directly from a version of the Barankin

bound: the multiple parameter Chapman-Robbins bound.HE MULTIPLE PARAMETER Cramer-Rao (CR) The tightest such Barankin bound is nonincreasing as 0,
lower bound is widely used to investigate the funda- decreases. Thus, in general. a bound reduction occurs as a

mental limits on estimator performance in multidimen- result of incorporating constraints. When e is a nontso-
sional parameter estimation problems. and in single pa- lated point in a locally convex region of (7. dnrd the
rameter estimation problems involving unknown nuisance log-likelihood function is smooth, the constrained CR
parameters. The CR bound or estimator error covariance bound depends on Oc only through the linear span of a
is computed as the inverse of the Fisher information set of basis vectors for the region. When the constraints
matrix premultiplied and postmultiplied by the gradient on the parameter take the form of smooth functional
of the mean vector of the estimator. Although elementary inequality constraints 4-'0-5 0 more explicit results are

obtained. Specifically. let the inequality constraint be
Manuscript received April 26. 1959; revised November 2?. 1989. This decomposed into a finite vector of equality constraints

work was supported in part by the Office of Naval Research under G= 0 and a finite vector of pure inequality constraints
contract N00011-81e-C-0587 and in part by the National Cancer Institute He <0
of the National Institutes of Health. DHHS, under PHS Grant Rol- (defined in Section lI-C). Then the constrained
CA46622-01 This work was presented in part at the Fourth Annual CR bound is obtained by implementing the classical un-ASSP Workshop on Spectrum Estimation and Modeling. August 1988. constrained CR bound with a different "'constrained"

1. D Gorman is with the Department of Electrical Engineering and Fisher matrix. The structure of the constrained Fisher
Computer Science. University of Michigan, Ann Arbor. MI 48109 and
also with Environmental Research Institute of Michigan. Box 8618. Ann matrix depends on whether or not S is a regular point ofArbor. MI 48107-8618 Oc, where a regular point is a point where no equality

A 0 Hero is with the Department of Electrical Engineering and constraints are active. As examples. points on the interior
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regular points It is showkn that it 0 is a regular point then parameter, a,, compared to the unconstrained parrmcicr
the constrained Fisher matrix is identical to the uncon- for %%hich all local trajectories arc allowcd. This rcuir, in
strained Fisher matrix for that point. Conversel.. if 8 is, a change in the associated Fisher intormation mat\ri and
not a regular point, the constrained Fisher matrix is the a ditterent CR bound. This constrained CR hound dc.-
product of the unconstrained F;'shcr matrix and a 0-de- pends on the constraint set onLi through it, tangen! -pac
pendent. rank-deficient. idempotent matrix %.hos. it the point 0.
columns span a h.perplane that is tangent to the con- It is interesting to note that tangent lpace approxima-
straint set at 6. lions to subsets of parameter space arise in gencr',.

The constrained CR bound presented here has the as.mptotic statistical theor, [15]. [lIJ] and specitic applica-
following attributes. tions hae appeared in the statistical literature. For exam-

ple tangent spaces, arise in: the stud.' [71 of the asmptotic" For range constraints. orthant constraints. positit distribution of the likelihood ratio for testing composite
constraints, and an. other constraint sets (-N, ,ith no hdipotherei uinvoltinh smooth houndaries: the studi com[ ot

isolated boundaries, the constrained CR bound is "the asymptotic distribution of a specific estimator aristn,
identical to the unconstrained CR bound restricted to

stypes o con- in a composite detection problem \ith inequalit\ con().Hence the incorporation of thesetyeofon
straints straints on the unknown parameter: the stud\ [-I! ,tstansprovides no CR bound reduction.a

"* For constraints which restrict 0 to a lo%%er-dimen- asymptotic eftticiency of estimators in partiall.% parametric

sional manifold of parameter space. e.g.. through models: the study [I] of te asymptotic distribution ot
active equality constraints of the form G, = 0. the maximum likelihood estimators subilect to equali.* con-straints. Whiie the study offnt ape Rbud n
unconstrained CR bound is invalid and a reduced- f finite sample CR bounds and

the study of asymptotic properties of estimator, hbae"ran Fise at mqusvalt beused, unco points in common, it is important to distinguish beteen
strained parameter estimation problem can some- the results of this paper and the aforementioned refer-
strainesbespecifed viaaparameteres p obe n sofame- ences. First. our result is a general finite sample CR lower
times be specified via a reparameterization of param- bound on estimator covariance for fully parametric mod-eler space, such a global reparameterization is not
necessary for the c-,mputation of the constrained CR els. Second. the bound is of a simple and explicit form
bound. Rather, the constrained CR bound only de- which is useful for studying the impact of particular

parameter constraints on estimation error co.ariance.pends on the local properties of the constraint set hird, while the CR bound holds for an% estimator whosethrough its tangent hvperplanes. Since the tangentThr.wieteRbonhodfoansimorvoctheroughits canety perplane Sonce th tane mean is smooth, the CR bound is not applicable to cases
easily than can typical bep comptedi muchomore where the estimator has a nondifferentiable mean. such
earsily' than ca obal reparameterization of param- as the estimator considered in [18]. Furthermore. since
eter space. the amount of bound reduction due to meth-
particular constraints is more easily analyzed. the ou ia fo

* Conditions under which the constrained CR bound is ge sample theor% are not needed for our derisa-
achieved are similar to those required for achieve- lion permitting a more elementars. and therefore more
ment of the unconstrained CR bound. Examples are accessible. presentation.
provided for which the constrained CR bound is To illustrate the utilit\ of the constrained CR bound.
achievable, we investigate the effect of constraints on the achie' able

estimator error for several representative problem, in
signal processing. First we consider the problem of esti-

The following geometrical interpretation is helpful in mation of parameters subject to linear constraints, in the
interpreting the effect of constraints on the CR bound. general linear Gaussian model. For this problem the
The Fisher information matrix J, being the expected tangent hyperplanes of the constraint set are functionallk
value of the Hessian matrix of the (n-dimensional) log- independent of the parameter 0. and hence the con-
likelihood surface at 0. can be related to the average strained CR lower bound can be achieved b. prolecting
curvature of the log-likelihood surface at 0 along n differ- the unconstrained minimum variance unbiased (MVL'i
ent directions in R". Thus the unconstrained CR bound is estimator onto the tangent hvperplane. The amount o1
a function of the variation of the likelihood surface over bound reduction depends on the rank of the projection (i
an n-dimensional neighborhood of 6. When the parame- the covariance matrix of the unconstrained MVU onto
ter constraint G. - 0. u e P". is introduced, local parame- the linear constraint subspace.
ter variations will generally be restricted to lie in a lower Second. we consider the problem of image reconstruc-
dimensional neighborhood. This neighborhood is con- tion subject to support constraints on the image. The
tained in the linear vector space which is tangent to the constrained CR bound is equal to the pseudo-inerse of a
constraint set (u: G. = 0) at the point u = 0. As the constrained Fisher matrix, obtained byi zeroing out the
parameter varies over the lower-dimensional neighbor- rows and columns of the unconstrained. Fisher inlorma-
hood. only certain "constrained" trajectories are tra- tion matrix which are associated with estimator errors
versed on the likelihood surface. Thus the average curva- outside of the region of support. It is significant that this
ture of the surface appears different for the constrained is not generall. the same as zeroing out rows and columns
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of the unconstrained CR bound, unless the image pixels II. LOWER BOLDS ON THE ERROR CO%,ARIACE

are statistically independent. This establishes that. if an Throughout the paper the notation 0 and [8,], - , will
efficient estimator of the unconstrained image exists. ze- denote a column vector. [0h- o-.tt. of unknown param-
roing the unconstrained efficient estimator outside of the eters contained in the unconstrained parameter space
support region does not. in general, provide an efficient 0 = For a particular value of the vector 8 %e specif% aconstrainedatiulr ale oestimcor0 atore.f,
constrained estimator. probabilit% distribution P, governing the observations X.

Third. power spectral density (PSD) estimation subject taking values x in a sample space f). The collection of
to average power constraints over disjoint frequency in- probability spaces ý' = {(f. ..P,)), defines a 8-
tervals. called frequenc% bands. is considered. For the indexed set of possible models for X. and is called a
case where the unconstrained Fisher information matrix statind cal experiment over l. If it is known that 0 is
is diagonal. corresponding to large observation time, it is
shown that tne constrained Fisher matrix is block diago- restricted to a subset of 0. called the constrained param-

nal. This means that average power constraints effectively eter space 0, . the relevant statistical experiment becomesn al T h s m a n s t h a a v r a g p o e r o n s r ai t s ff e ti v ly th e r e d u c e d s e t o f m o d e ls 6' c = {(( .. Y . P * )} e ., •in th is

couple the PSD estimation errors over a particular fre-

quency band. but do not couple errors across different context, the constrained parameter estimation problem

frequency bands. Within a particular frequency band can be stated as follows: given a statistical experiment o
a random variable X is observed which has distribution

where average power constraints are active, our results P,: the objective is to specify an estimator 0 = 0(X) c 0
indicate that bound reduction is greatest over frequency for the parameter vector 0. Define the vector mean
bands where there are highly resolved spectral peaks. def -
while there is virtually no reduction over bands where the m. = E*{O) of 0. where E, denotes expectation with re-

true spectrum is smooth. This suggests that average power spect to the distribution P,. The objective of this paper is

constraints make peaks easier to estimate but have little to investigate the impact of parameter constraints on
impact on the estimation of the rest of the spectrum. bounds for the minimum estimation error. where error is

Fourth. the estimation of the eigenvalues of a struc- measured by the covariance matrix

tured covariance matrix subject to signal subspace con- t. =frEf(• - - oT(
straints is considered. We put this problem in the context E - MOO m M.)

of estimating the eigenvalues and eigenvectors of the We say that a matrix B is a lower bound on a matrix .4 if
array covariance matrix when it is known a priori that p ,4 > in the sense that A - B is nonnegative definite.
of the eigenvalues. the "'signal dependent eigenvalues,"
are larger than the remaining eigenvalues. the "noise A. A Multiple Parameter Barankin Bound
eigenvalues.'" and that these latter eigenvalues are identi-
cal. When the unconstrained Fisher matrix is block diago- We first present a Chapman-Robbins version of the
nal. the constrained CR bound can be achieved by averag- multiple parameter Barankin lower bound on the covari-
ing the noise eigenvalues of an efficient unconstrained ance matrix 1, for the case where 0 e 0,. Unlike the CR
estimator, if one exists, bound, the Barankin bound requires no regularity condi-

Finally. we consider the problem of estimation of a tions on the distribution P,. To achieve a unified treat-
deterministic time varying signal. and its Fourier trans- ment of the cases of continuous and discrete random
form. subject to average power constraints applied to its variables X. we let P, have a density function f. = f( x)
spectrum (squared Fourier magnitudes). Unlike the PSD with respect to some reference measure u. P,(.4i=
estimation problem previously mentioned, here the con- IAf0dM-. where P*(A) is the probability that A'E .4.
straints on the parameters (the signal) are nonlinear. A f- F. For a continuous sample space II the previous
Nonetheless, it is shown that if the unconstrained Fisher integral can be interpreted as the standard (Lebesgue)
information is an identity matrix, e.g., corresponding to integral over A. while for discrete f0. A is the counting
observation of the signal in additive-white-Gaussian noise, measure and the integral can be interpreted as a sum over
the structure of the constrained Fisher matrix is identical elements x E A.
to the structure found in the PSD estimation problem, For arbitrary vectors ,.. -. r, R" and scalars
with the signal spectrum taking the place of the PSD. A,. ". A- , e R, define the scalar and vector finite differ-

An outline of the paper is as follows. Section 1I is ences, 8,f0 and 5,m,. of the density function and of the
divided into several subsections. In Section II-A a mean vector for 6. respectively, which are produced by a
Barankin lower bound on the estimator covariance is change in the underlying parameter from the point 0 to
given for general constrained parameters. In Section Il-B the point 6 + A,v,:
the constrained CR bound is derived from this Barankin
bound for locally convex regions of the constrained pa- Af*dt*"'-f (2)

rameter space 0,. In Section Ii-C the constrained CR A,
bound of Section Il-B is extended to the case of smooth dcf Me..,,, -MS
nonlinear functional inequality constraints. In Section I1l, 8, , (3)
examples of the implementation of the constrained CR A,
bound are presented. These finite differences are the variations in f, and m.
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along the directions of the vectors v,..v,: a set of admissible test points in the parameter space. Hence

vectors which are henceforth referred to as directio, constraining the parameter space can onl`, reduce the

cectors. Define the roy, %ector of k finite differences. (greatest) loswer bound of the form t)). Thus it is clear

that ,ome bound reduction can occur due to incorpora-
'• to [6,fe -o. ] tion of parameter constraints. Due to the difficult% in

and the n , k matrix of tinitc differences finding the best test ,ectors for ih). hosse`er. the amount

ot bound reduction is difficult to quantit, in general. In

tim0 = [6ime. .*mi]. (5) the next section we "ill derive a constrained CR bound .,,

With these definitions we have the follosing multiple a limiting form of the bound (h) for w.hich the impact ot

parameter Chapman-Robbins iersion of the Barankin constraints will be much easier to evaluate.

bound [6]. 117] when 0 is constrained to lie in the set 0-,. The proof of Proposition I depends on the tollosing
broundh -. generalized version of the Cauchv-SchA.arz ineoualt`,.
Proposition I.- Let the k I vectors 0.0 - A...-. 0 -A)

A, b, be arbitrarN points contained in the constrained Lemma 1: Let U I ;" and V E -' be random column
6 vectors. Then

parameter set o-, c. Then for any estimator 0 having
mean mi. the estimator error covariance matrix Z, satis- E,{ULr} > E,(I1rT)}[E { E.( 11} E,{I.' ). (I0)
fies the matrix inequality where the plus sign denotes pseudo-inverse. Moreo.er.

12e R, (6) equality holds if and onlh if there is an n x k nonrandom
wshere matrix F such that L-= F' %%.p.l.

Note that if the k x k matrLx El{i r) is nonsingular.

B,=hm JIL - fI - I [8m] =r, (7) the matrix inequality (10) is the standard Cauch.-Schwarz
~I I.fe0 fe J 0 inequality for random vectors.

and the plus sign denotes pseudo-inverse. Equality holds Proof of Lemma I: Define the -;-' vector Z=
in (6) if and only if there exists a nonrandom n xk matrix iLtTAT]T. Then E,1ZZT) _ 0 implies the matrix inequalit.
F such that the estimator 0 satisfies

M f, i E,{ZZT)=E., 4 ULr7j>(.0-m.=r/l -L (w.p.1). (8) eL JT ; 1 )''r -

fe I Let D be the n x(n - k) partitioned matrix

In Proposition 1. the pseudo-inverse of a matrix A is D [ E-L.;.rTEi.Tilr1
defined as the unique matrix A- that satisfies the =I E ur tlr .
Moore-Penrose conditions [2, Ch. 31. [21, Section I.b5j: where / is the n x n identity. Since EliZZr} is symmetric

1) A.4- and A A are symmetric, and nonnegative-definite, it has a nonnegative square
root: ES(ZZT) = E. . 2{ZZT)ET I{ZZT). Thus. DE•(ZZT )

2) AA -A = A. Dr=[DE, 2
jzZT)1[DE. :(ZZ)rr>_ 0. and use of prop-

3) A 'AA= A. (9) errs 3) of (9) results in

The conditions 1)-3) are a statement of the fact that E.(UUr) -Q UUVT)[E("r}- T) EQtt 12!_0.
.44 - and A -A are pro)ection operators onto the range of
A and A -. respectively. Pseudo-inverses always exist, are This equation can be reexpressed as E,{(L - FVtX V -def

continuous under certain conditions (261. and if A is FV)) a_0. where r = E{(LTV)[ E•4( V -r]. EqualitN holds
invertible A- = A - 1. if and only if the eigenvalues. A,. of the matrix EI(/" -

Before proving Proposition 1. we make the following rvxu- rv)Tr) are zero. Furthermore, the nonnegative
observations. Since only a pseudo-inverse is required for definiteness of this matrix implies that A, A= . ,, = ,0
the bound B, of Proposition 1. the covariance matrix, if and only if 0 = !A, = trd E{(L. - )X V - F' )T)] =

Eeliff/ fsrfiI/f,). of the finite difference vector does E.f(u- rv)rT(L,, - rV)). Hence, equality holds in (10) if
not have to be invertible. This general form is necessary and only if U = rv w.p.l.
for the present application since parameter constraints
can reduce the rank of the covariance matrix. In view of Using the previous Lemma, Proposition I is proven

the definition (4) of the finite difference vector l5fe the next.

bound (6) is a measure of the variation of the probability Proof of Prý,osiuon 1: Define the n-vector U and the
density f, relative to the set of "test" points 0 + k-vector V
,,VI...- -1,v,. which are arbitrarily specified in the del.

constrained parameter space 0,.. On the other hand. UL= 0-i,
since 0, C_ 0. it is obvious that

max 8, _ max B,."H 0, Lf0
where each maximization is performed over the set of where m, is the mean vector of 0 and 5]f is the vector of
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finite differences defined in (4). With these definitions. regularity conditions [13. Lemma 8.1]. [27. Section 2.41.
application of Lemma I gives a lower bound involving the the Fisher matrtx is equivalent to
pseudo-inverse of the k x × matrix E,{It'V7) and the
k x n and n x A matrices E,{(V'}) and E,10 Ir). respec-
tively. If it can !e shown that Ee{(,'1 "' = 6m, Proposition where V' Inf, is the Hessian matrix of partial derivati•es
I would be established. Consider the jth column of of In Ie with respect to elements of 0. This motivates the
Eo(L'"} and recall the definition (4) of 6f,` following lemma.

Lemma 2: Let the sector 0 be in the constrained

= E. [6 - in] parameter space -, c::;. and let {v,},"-, be k linearl.
" independent vectors such that 0 - -. v, E 0,) for all suffi-

f f ciently small A, > 0. t = 1, -. k. Then for any estimator i

= E[ 16 me] M - having mean min. the estimator error covariance matrix
f. I -1 satisfies the matrix inequality

Ea, -,{ - mi)- E(i{- me. i2> B, - limsup B,
Sat. .a, -I'

where B, is the bound (6) of Proposition I. If in addition
me-.a - me the following four regularity conditions hold:

*, * i has finite variance: var {,) < : (15)
= m'. , "e has continuous partial derivatives: (16)

B. The Constrained CR bound * Id In f. d In f (17)
We first obtain a constrained CR bound for locally ti, I ,

convex Oc directly from the bound (6). We then show
that the same bound holds for points 0 c- , at which EO, 0 the matrixE{["Inf.] T* In[f]} is positive definite:
can be approximated by a union of locally convex sets. (18)
These results are then used in Section 1I-C to construct then
CR bounds when El is specified by continuously differ-
entiable functional constraints. B,=[Vm,]A[ATJA A _VmI

T. (19)
Let 0 and the k linearly independent test vectors where J, is the positive definite n x n Fisher matrix (12).

O-t. --. 0 + ' .+ v, be contained in the reduced pa- and A is any n x n matrix whose column space equals
rameter space E), for all sufficiently small A,. i = 1.. k. spant v,, y-I* Under these regularity conditions, equal-
Such test vectors can always be found for points 0 that ity is achieved in the lower bound (14) if and only if there
are in locally convex regions of 0 c with dimension at exists a non-random n x n matrix r such that:
least k. Assuming the exchange of limiting and expecta-
tion operations is valid, the limit of the bound Be,, (6) of 0 - m, = rAr[Vlnf*]r (w.p.l). 120)
Proposition I. as A, -. 0. i = 1," ". k. gives a bound which If such an estimator 6 exists, this estimator is called an
depends only on the directional derivatives, lim,_lf" efficient constrained estimator.
and lima, -... ,mi. of f, and the mean vector, ms, along
the directions of the vectors v,, i - 1." - ", k. at the point 0. Proof of Lemma 2: By assumption. 0 + A,,.. - -0
Specifically, by the chain rule we would have: ,.1AK, are contained in e, for all .1, sufficiently small.
lim., .. ,, , 5fe = fK and lim,. ., .,-, 6m, VmK, i = 1. " ",k, and the bound (14) follows directly from the
where K = [ v. • .vY] is the n x k matrix of direction Barankin bound of Proposition 1.
vectors: fe is the I x n (row-vector) gradient of fe; and The regularity conditions (15)-(17) ensure that the
Vrn* is the n X n matrix whose rows are the gradient Fisher matrix J, (12) exists and has bounded elements
vectors associated with each scalar component of mi. If [13. Section 1.7], and condition (18) says that J, is positive
we could substitute the above limiting expressions into definite.
the right-hand side of (6) we would obtain We first derive the limits as ,,- •.., -. 0 of the

•,>Ž [Vimo]K[ KTJoK] K[T(moIr. (11) matrices E,[-JI (-f, J and b•t, under the stated regular-

where ity conditions of Lemma 2. Define %tf max, I.,I. Let K
T be the n x k matrix with columns v,. -. 11. By condition

(16) and the chain rule
lim 

-= I Vf*K= E ,{[ r In f ] Tr[ In f o']) (12) f,. ,-e

is the n x n Fisher information matrix. Under appropriate = V In f.K.
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From this, and the stated continuity of TIn f,. condition matrix and fK J1hAI- = '.K-'I' Since the matr\
e t f ] is dominated K 98 K is symmetric and positive definite the cigensalue-

n f, -n .T of the perturbed matrix K 'J.K - E arc posati.c tor t

K, K_ -' 0(A). which has finite ex- sufficientl, small matrix perturbation E [12. Coroll.,r
L.3.4J. This implies that the nmerse of A .'AK is •'nuinu-

pectation by condition (17). Hence. b\ dominated con'er- ous in perturbation' of its elements
gence [3. Theorem 16.4]. we have the finite limit

lim EEKVK-OA

=K'E,{[rln f.jT[lnfT}I = [K'JeK] ,_ I). (23,

=KrJK. K21 where 0(A) and o(1) are matrices %%hosc element ,arc ot

Next consider the n x k matrix order 0(A) and of order o(I). respectiel.. In %iexk ol t21 I
Me-1 ,m.] we therefore have

lim sup B.= lim [1m6 ]
SA,. .A, -0

__________E,_ 
6f,] T

A=. lima E -

[~f.-A fe I lim [5_.]T
= E , f] At,. ..1, -

= E f i4 E,6 = [7mIK[ KTJKI -K T[rM,] T. (4
=, = E0�e-, It remains to show that the bound (24) depends onl, on

the range space of K =[ v,". .]. Let A be an i x n

=E { M e6 ) matrix whose column span is identical to the span of

fe E, -V/.-,k.. Since the column spaces of .- and K are
w e ud , identical, there exists an invertible n x n matrix T such

where the last equality results from the identity E = that

0. Now from condition (16) the elements of the n x k [K 0, 1T = A,
matrix (0-mo),Sf*/fo are equal to the elements of
(6- m)V In fK to order 0(A). The Schwarz inequality where 0, is an n x(n - k) matrix of zeros. Let 0, and
and the regularityconditions(15)and(17)can be used to 0, be(n-k)x(n -k)and k x(n-k)matricesof zeros.

establish that the elements of the latter matrix have finite respectively. Then,

absolute expectation A[ ATJoA] AAr

En { Ifi

do, 01 )

o O I O j I' O

Hence, by dominated convergence. the limit =[K 0 ,1fKrK 0 [
~K T{ ,1 o

exists and is equal to the finite matrix r[I01 KTJ.Kj 0 1, Kr

lim 6m,= E,[ i K [ O L Ij I

= VE({ }K = K[_ K TJK Kr.

Vm, K. (22) where the second equality follows from (65) of Lemma 5
"in the Appendix.

Since the columns, (v,},. , of K are linearly indepen. The condition for equality in the bound (14). under the
dent, by condition (18) KTJ.K is a full rank invertible regularity conditions (15)-(17). can be obtained by mak-
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ine the identifications, L' = (08- 0). V = K '[7 In I,] in it\ of the inverse of the full rank matrix K 'J, K.
Lemma 1. seritine that the rie-ht side of the resultant
bound 110) IN identical to thQ richt side of the hound ( 14)
and insokiniz the necessars and sufficient condition forE{ KJA (lI
equalits in ()(n- C=I for some k it matris 1'. This

=K AJ ol. K 1 2t

-. rK/ '[ In f ( sp. 11. wkhere ot D) is a matri\ that has o(l 1)entries that 20t to zero

Since .4 has the identicai column span a' K. the abose as the 1 *s go toi zero. In a similar manner it can be shown
equisalent to condition (211. - that A n = Vmk o I) %khich. vhen taken %%ith

The constrained CR bound (19) ofi Lemma 2 is in a 2i.mpesB B-ol.Thsetbie heem.
general form that is applicable to nonisolated points. 8 in
localh\ conse\ regions oif the parameter space H, . It is C. Functional Constraints
sienificant that. unlike the Barankin bound of Proposition
1. the constrained CR bound 119) onl\ depends on the Often the constrained parameter space 0-, can be
test points through the span of the set (v,. --. i'j. In defined in terms of an implicit functional inequalit\ con-
particular. \,hen (-)( is onl\ p-dimensional in the neigh- straint of the form
borhood of 0. and p < it. all p-dimensional sets of test
points are equi~alent in the sense that the limit ( 19) of the .ýC 0. (271
Barankin bound is the same. %%here .Y' '17' . is a vector function on

The construction of Lemma 2 requires that 0, be .: :R,. and the inequalitN is to be interpreted ele-
localh% conse.\ Or star-shaped in the neighborhood of 0. ment bv element. We will assume that the inequalirs
Lemma 2 can be extended to include nonisolated points constraints arc consistent. i.e.. there exists at least one
in regions of M(N that have the property that local neigh- 0 E -;" that satisfies (27). and that .~is continuousl\
borhoods can be approximated to order 0(.1) b% locally differentiable in the sense that the q x n gradient matrix
convex neighborhoods. The result is the following lemma.

Lemnma 3: Let the vector 0 be in the constrained d. 1;10 ýf1
parameter space Hca" and let {M> be k linearlyk ,

all A1, sufficientl% small. i= I. -. k. %here o(.%,) is a R'-. (28)

vector whose length is of order o(.1, . Then the conclu- dq
sions of Lemma 2 remain valid when the vectors 0 A ,v,
are replaced bN 0 - A,i' - ot,), i = I.- -. k. .

Proo -f of Lemma 3: Similarly to (2). let S'fii denote exists and has continuous elements.
the A-length vector of scalar differences 6*jf - With the parameterization (27) of e.the boundary of

[( i 6j ~fo where 0, is defined as the set of points where at least one

dc ,- fe component. Sý. of the vector function .-ir is equal to
'Jet(25) zero. The interior of f0, is defined as the set 10: S, < 01,

=, A, 25 where the strict inequality means S(' < 0. for each
1--. .q.

Define &~m. similarby. Let Bý denote the Barankin bound Note that equality constraints can be imbedded in (27)
of Proposition I formed with the k test points 10 - A1,v, by letting . =-4'for some i. j. i*- j. It is customary
M( ANI,. .0 -Avý ot. 1 . I). We need to establish that to' extract the equality constraints from the inequalit%
the limits lim sup,, , Bý and lim sup,. .., -4 B,, (14) constraints (27). denoti'ng what remains as pure inequality
are identical. constraints. This vielIds the equivalent description of 0,(

B% assumption 16f) /~is continuous and therefore:
fe-A . 0.1 j*-A - o(tA,). In view of (25) this implies G,-0. (29)

I. A*, A where G-'[G'.- -. G'I and H =LH'. .- .H are vec-
tot functions of 0. G: R' - 9; " H: A" - '. We will say

~5f I o(,)that the equality constraint (29) is actie if it restricts 0 to
f* * Aa lower dimensional subset of R1. Otherwise the equality

fej~i 1 constraint is said to be inactive.

V In flK o( I. The decomposition (29) and (30) is accomplished by
partitioning the constraint set 0, into a set of regular

Using the definition of the Fisher matrix and the continu- points and nonregular points.
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Defintiton 11b. Section 9.41: The point 0, E " is called and J. is the Fisher matrix (12). Equalit% holds in (311 it

a regular point of the inequalit% ."e -< 0 (a regular point ol and onl, if there exists an n x n matrix F such that
the constraint set 0-)• if: .•• _< 0I and if there exists a m- , = t I'n f]13
V z" •such that i.o - V.! •, <0.

There can he no active equalit% constraints at a regular It such an estimator 0 exists. it is called an efficient
point 0. Specificall\. it can he shown that 0., is a regular unconstrained estimator.
point o 0-), it and onl% it j.% , . < I for some v E Proof of Lemma 4 Since 0 is a regular point, there
and all suffictentl, small > I) (see proof of Lemma 41. exists a v e such that tor all -. 0 < - < 1. we ha~e:
This implies that there exits a sequence of interior points (I - A ).-ee < I) and A[.4( - V.t] < 0. Hence ( I - •1•.• -
(e.g.. 10,, - v),, that converge to 0. Hence regular points <[. - V.si] - V.(sA < 0. Since for fixed v
are points that are in the closure of the interior of (%.c. In V
particular. all interior points of 0-,• are regular points and ', - 0- V evA = o1 .
points on the boundary of pure inequalit\ constraints

S0 are regular points. sSee Figs. I and 2 for graphical it follows that for all sufficientl% small -.. 4, < 0. in a

illustrations. similar manner, it can be verified that there exists an
e > 0 such that for all g e ;" with length ý,.. < I

•• .e_.,,_•, 0. for all sufficientl,, small A > 0. (34)

that is. 0 - 1v is an interior point of 0. Choose n
linearly independent unit length vectors 4 .. -. g, and

-k519 define Y, = v - eg, i = 1.- . i. Then. using (34) it is seen
that {0 -, 1v,),". is a set of n linearly independent vectors

;o ="contained 0, for all sufficiently small A > 0. Application
of Lemma 2 thus gives the lower bound on the covariance

Fig I Equahl. constraint G. = 0 - 08' :1- -o ,)- - a- = ( Here matrix
6 can onl% ".art alone boundarv of disk Set of admissible directions.
(v 1. in whtch parameter can move must lie on tangent hyperplane B, rm,]A =,A A'[ er,
//, Since 0( has no interior points, there are no regular points of
constraint set. where A is any n x n matrix with identical column space

as [V,1 ... vj. But the column space of this latter matrix
is identical to 7". by linear independence of the , "s. so
taking A = I in the previous equation for B, we obtain

B =B, = [m,IJi[VM,]T.

The bound (31) of Lemma 4 is identical to the classical
multiparameter unconstrained CR bound [21]. [271. Since
no equality constraints can be active at the regular points
of 0.. the Lemma establishes that pure inequalit% con-

Fg , . -straints on 0 do not affect the CR bound on the errorPig 2 Inequahit}-coinstraint li*_< 0. where H* = i8e - 6•' -*O covariance of estimators having a given mean gradient
0%'. - a' Here 0 can move into interior of disk. Set of admissible
directions is contained in half-space no1 that is supported bN tangent T'me. A number of parameter estimation problems have
hvperplane .4'1 Since an% point Se Ec can be represented as a limit parameter constraint sets for which all of the points are
of interior points, all points in 0 ( are regular points, regular. Examples include: orthant constraints. e.g.. posi-
The followin Lemma shows that if 0 is a regular p tivity of each of the elements 6, in the parameter vector

e point 0: range constraints. e.g.. magnitude of 0. less than 1:
of u the constrained CR bound is identical to the length constraints. e.g.. E'-. , _< 1. For these types of
uconstraints the classical unconstrained CR bound applies

Lemma 4: Assume that the conditions (15)-(18) of toaints in cou
Lemma 2 hold. Let the parameter space Oc be defined by to all points in mas

thegeera ieqaliv onsrantSo s whreth veto.- On the other hand. many estimation problems are
the general inequalit constraint , _ 0 where the vector formulated with parameter constraint sets for which some
function ._ =[. .-.. ] is differentiable. Let 0 be a or all of the points are not regular. In particular. as
regular point of 0. Then for any estimator 0 having previously mentioned, for the case of active equality con-
mean the. the estimator error Cov'ariance matrix * satis- straints (29). if (O, is a k-dimensional surface, k < n. then
fies the classical unconstrained CR matrix inequality Oc contains no regular points. Examples of these prob-

, 2! B,. (31) lems are provided in Section III of this paper. For this
case. the classical CR bound is invalid and bound reduc-

where tion occurs due to the constraints.
Bef T r We now consider the construction of a CR bound

B,,= [Vm]JJ- [Tm0] (32) under continuously differentiable equality constraints. As-
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sume the equality constraint G, = 0 (29) is active at 0. BE (-). B. the assumed continuous differentiability of
Define the k x it gradient matrix. rG0, of the function G. Go. TG0, = M(A):
Also define the hvperplane. -#/. tangent to the constraint 0= G,. - G,
set 0( at the point 0:

•= {V . Go = 01. (35) - o( i• )

If G is a linear function. e.g.. G, = FO for some n x k ='Ge- o( A). (40)
matrix F..// =- 0-), . Otherwise, when G is a continuousl,
differentiable function. any set ot points in 0-4, that are in wk here o(A) is a vector of length o(.1). No%, define P,=
the local .1-neighborhood of the point 0 E (-)( are approx- I - VG•[ GVGrG]" rG'. P,, is an orthogonal-projection
imated to o(.1) by a set of points in the tangent hv- operator onto the null space of VG.. i.e.. onto -#' [21.

perplane .#//. Using Lemma 3 this implies that the Section 1c.4]. This induces an orthogonal decomposition

constrained CR hound B(0) depends on the equality- of C = (tA) relative to .- ,: • = P,I -[I - P.] . From

constraint function G only through its associated tangent (40), [I - P .Ig = TGr[VGTG ]- 7"04= o=(..) so that

hyperplane at the point 0.
The constrained CR bound for smooth inequality con- 0( A). (4])

straints is given in.the following theorem.
Theorem 1: Let the regularity conditions (15)-(18) of Hence to order A.. is equal to the vector P,,. that is

Lemma 2 be satisfied. Let the parameter space , c z;" contained in _o..
be defined by the consistent set of equality and pure Now let (B-*-•:(0 , ),ý be k sequences in 0,.k indexed
inequality constraints: G. = 0. H, s0. where the vector by A1 .... such that P•*,)= Av,. l= 1. .k'
functions G =[G'.. .. G'I' and H=[H'.' " -. H] are where Y,.-.-. v, are fixed linearlh independent vectors
continuousl, differentiable. Assume that the k x n gradi- and 0 < k _< n - p. Since G, is continuously differentiable
ent matrLx VG. has rank p, p < k. Then for any estimator and "4', has dimension n - p. such sequences exist [8.
0 having mean m0 . the estimator error covariance matrix Prop. 26.1]. Hence. in view of (41). for fixed A.-
i. satisfies the matrix inequality the k test points 0 + 4.- 1 ). • .- . C (.A ) are equal to

S2t B,. (36) 0 )A,+ o(A ). .0 - 'A v•-+-o(.A). Define B t(O-

where >( (At).'".0-"(.A)) the Barankin bound of Proposi-

B, =T[tm.QJ;1[Tm]
T. (37) tion I evaluated at these test points and define

B,(v,. .-v) the CR bound of Lemma 2 evaluated vwith
and Q, is the n x n. idempotent. rank n - p matrix

Q . if 0 is a regular point of 0-

Qo I- J['[tGoITr([rGo]J;'rG]} [VGol. otherwise. (38)
the direction vectors i',. .. v•, L.emma 3 implies

Furthermore. equality holds in (36) if and only if there Bt(e + d( A.ector -v V L( A. imp)l)

exists an n x n matrix r such that
= B,(v...) ol

i-,no=rQTrvlnf,]r (w.p.l). (39) =VeAA~A'r~%ro1.12

where o(I) is a matrix of o(l) elements that go to zero asIf such an estimator 1 exists, it is called an efficient w
the A,'s go to zero, and A is an n x n matrix wirth columnspace equal to the span of V,1.. V.A

Proof of Theorem 1: For the case that 0 is a regular Next we show that if v1,. ... v, and v,;.. -,• are sets
point, in view of Lemma 4, there is nothing left to prove, of vectors in W..# such that span (v,..... V, D
Conversely, suppose that 0 is not a regular point. We will span (v',"'. V} then A[ATJA]A AT 2t B[BTJB] BT.
show that any sequence of test points in 0. that con- where A and B are n X n matrices which have identical
verges to 0 approximates an equivalent sequence in .Wt,. column spaces as span(v,.... . R,4} and span(-;. - .. V'}.
Then, for 0 < k :5 n - p. we define k sequences of test respectively. Since by definition v , .EI, t = 1. -. , k. this
points in 0. whose associated approximating sequences will establish that the matrix [rm.]A[ATJ,,A.4T[Vm,]T
in .4,W converge to 0 along linearly independent line on the right of (42) is maximized when the column space
paths 0-,- IAv,,....0 .B ,. ,,. -0. v, e..'. Fi- of A is equal to 4',. With JI M.2 the positive square root
nally, with B, the Barankin bound (7). we show that matrix corresponding to J;'. the previous relation be-
lim sup Bh is equal to the expression (37) for B,. where tween the two spans holds if and only if span{J' (J,•
the "limsup" is taken over all such sequences of test .", J' 1':vk)span(J;1 "2 v;.....J1;' "v). Hence it is
points. sufficient to show that A[Ar44]Ar>__ B(BTB]-BT when

Let g. = (A) be a vector such that Il1(A)II s A -. 0 and the column space of A contains the column space of B.
assume that 0 + 4 is a vector in Ec that converges to Now A[ATA]'AT and I - B[BTrB]BT are idempotent.
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ssmmetric. orthoconal-projection matrices onto the col- and Q. has n - p lincarlk independent column' Sin'c

unmn space of A- and the null space of B [21. Section these column' are contained in //. and sinceo -

ile., respecinelrc. Therefore. since the column space of rank {TG.) = n - p is h.hc dimension of //, this cth-

.4 contain, the column ,pace of B: .- 1-.4 A.4'B = B and lishes that the column space ot Q. is idcnti,:ci to ,',

B'.41.4'.41 -A' = B'. Since idempotent matrices are non- Hence. usin,- 4 = Q. in Lemma 2. Ae obtain the hound

netcatise definite. it follols that .4 AA]'.A -. 4A' - [ Q[Q'JQ
B(B'BI-' = .41.4.A-'[I - BIB'B ' I - = 4[.441A B, [ ].. [Vm]
A',[ - BtB'B B' ]I.[.4'4-.A'. %%hich is nonncgatic- NoA it is evident from smmeti that Q..J, =J, J .C"
definite. Therefore ssc hasc from (42) Define Q, O •= ý Q•.. One can terit. that the mtiri\

limsupn = JVm,].4JA[ .4]'-.4r[Tm,]'. (43) (..J4' = 4J Q' satisfies the Penrose conditions (-h tor

%%here A is a matrix hose column ,span equals ../. the pseudo-inverse. J, . of J,. Lsing these results and the

Finalh we show% that the column span of Q, (38) is tact that (Q., and Q.• are idempotent results, in

equal to 1/. and that. setting A4 = (., in (431. %%e obtain Q.[Q.J.,Q,] " (2.,) = iJ,-, C.'
(37). Since 7G, has rank p. there exists a row%-echelon = .
representation

'G,= 
= 

TOB 
QOJ.

where T is a nonsingular k x k matrix. B is a p 'x =nQ J I

full-row-rank matrix, and 0 is a (k - p)x nt matrix of Hence 37 is established,
zeros. Let 0.. 0, and 0, denote matrices of zeros having

dimensions (k - p)xIk - p). (k - p)x p and k x n. re- In reference to Theorem I %ke make the follos~inL

spectvely. Use of (38) and (65) of Lemma 5 in the remarks.

Appendix results in Remark I.- If the set of constraints G, = ( is defined so

B 1[that the rows of TG, are linearlk independent, the k ,k
BG9Q T J; I [B 7OT] matrix [TG.]J; '[T'G]' %ill be of full rank and (.., 13S)

S0] will only involve the more familiar in.erse matri\
T B -' T T0 \ B If 7, J ' G In~ G T) - ' Although a reformulation eliminai-0i; , OT ing redundant constraints can always be accomplished.

B 1 frequently the most natural description of a constraint
ST 0 _ Bj;iJBT oT] involves a rank-deficient rG,. e.g.. see Example 4 of

Section II1. In this case the general result of Theorem I is

, 0[Br Remark, 2: Comparison between the bound of Lemma .4

T 0TJand the bound of Theorem I indicates that the presence

= T B - of constraints on the parameter space has the effect of
[O. 0. reducing the rank of the Fisher information matrix. In

r-[ B ]T o] particular if the k equality constraints G., = 0 reduce the
0 BJB O B dimension of the parameter space from n to n - p then

0 O+ 0 the rank n inverse Fisher information J.-' becomes the

[B 1, lr J rank n - p inverse constrained Fisher inkifomation Q,J 0-'= T - Hence active equality constraints have the effect of reduc-

O 0 iing the rank of the Fisher information matrix. In the

= 0. proof of Theorem I it was shown that the column span of

where the invertibility of the full rank p x p matrix Q9 is the tangent hyperplane .#,. and that QJ4'

BJ;'BT has been used on the third line of this equation. Q#[QJIQ-Q'p . Furthermore. by Lemma 2.

This establishes that the columns of Q9 are contained in Q[JQT .]-Q= A[A rA.A]-.'

the hyperplane ."1. A straightforward calculation shows

that QQ, = Q, and QTQI = QT, i.e., both Q, and Qr if A has the same column span as Q,. Using these facts

are idempotent. Hence the rank of Q, is equal to its trace we have

rank (Q,} Q6J4 = P,.[ P1,J.PJ . P,
= tr(QG} where P,. = I - ['G9]{([TG,]['G9]IT) [VG.] is the n x ,t

tr(I- j-i[VG ]T([ }G ]JI[ T ' [ I orthogonal-projection matrix that projects vectors in ;"
onto .1,. Hence the inverse constrained Fisher matrix

_n triiVG1JiiVG.r1TVG1J IT ) QJ;' is obtained from a projection of the rows and
columns of the unconstrained Fisher matrix J, onto the

-n- p. tangent hyperplanes of the constraint set.
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Remark 3: The matrix B (37) in Theorem I can be local ,ariations of a parameter at the boundar% kit He

represented as the quantitt does not affect the CR bound.
Remark 7 While Theorem I is stated as a lower bound

B, E(rVm.P,.II( E',tr In f.P,.J'[ . In 1,Pn ., on the estimator error coariance matrix. it can be uscd to

",pecijt a bound on the mean-square error (msc) matrix.

. L,1(4 O 0'(0 - 0)']. Specifically. since the mse matrix ,

equal to 1,-e - eO m. - 0)1. application ot the theo-

where P,,. i,, the protection operator defined in Remark rem eises a constrained CR bound on mse:
2 The vectors Vm,P . and V In.fP,. are the projec-
tions of the unconstrained gradients of the mean and Le{( 0 - o)1- 0) B - m, - o( m - )'.

log-likelihood (score) functions onto the constraint tan- where B is eisen b\ 07).
gent h~perplane .W,. that is. these vectors correspond to R
constrained radie ectors. In 101 these constrainedRemarks and 7 notithstandin hen ,

corresponds to a pure inequalit, constraint Theorem I
gradient %ectors were used along with Lemma I to give an does not impl. that improvement in mse is impossible.
alternatise derixation of the inequalit\ 1. > B. Indeed the minimum-distance projection of an uncon-

Remark 4 Theorem I indicates that a certain bound
reduction is induced by adding constraints on 0. In partic- lower mse than that of 0,,. Such an estimator arises in the

ular. it is eas, to sho%. that the constrained CR bound B, e ram

of Theorem I is always less than the unconstrained CR pie studied in (181. Ho~keser. if the estimators differ
ound B n the sense that B,- B, is nonnegative defi- the projected estimator mai, have a different mean trom

hou B, in tthat of 0,, which generalli is not differentiable. where..s
nite. This follows from: 1) the idempotence of I - Q,. Theorem I applies to classes of estimators with identical
2) the svmmetry of J-' and Qe'-. which implk that

( I - Q I)J = J 1(- - Qe)r: and 3) the nonnegative defi- differentiable means m,-
Remark 9: In the course of proof of Theorem I it wasniteness of J•-. 1, particular, for unbiased estimators

nite aness oestablished that the lower bound B, (36) is the tightest
Vine land bound of the form (14) in the sense that B =

B, = Q9J' lim sup , -, B5,( - g ,(. ). ". 0- kk(.., )) \, here

{e-; I,(. ,)16are k arbitrary sequences con, erging to 0
= -!- QS) along paths whose projections onto the tangent plane //e

J ( I - Q.)( -Q,)J• are k linearly independent line segments. 0 < k S n - p.
For linear constraints and exponential families of f, more

J;' I1- -Qe)J( I - Q9) can be proven: B, is the "limsup" of the Barankin bound

:i J - B,,. (44) B, (7) with respect to arbitrary seauenkes of test points
hincorporation converging to 0. i.e.. B, is the tightest local Barankin

An important implication of (44) is that the ibound.
of constraints can only reduce the CR bound on the
component error variances.

Remark 5: In many examples of interest Q, is nondiag- Ill. APPLICATIONS

onal. accounting for the functional relationships between In this section we illustrate the application of the
individual components of 0 introduced by the constraint, constrained CR bound (37) by snecializing to the cases of

Thus even if J, is diagonal. suggesting uncorrelated un- linear and quadratic constraints.
constrained estimator errors, the rank-reduced inverse Example 1) Linearly Constrained Gauss-Markor Prob-

Fisher information QJ;' in Theorem I can have off- lem: Let F be an m x n matrix of rank n. i. - m. and
diagonal terms, suggesting correlated constrained estima- suppose that one observes the vector X
tor errors.

Remark 6: A result of Lemma 4 and Theorem I is that X = FO +

pure inequality constaints H, 5 0 do not affect the CR where O c R", iq e R1" and -q is a zero-mean Gaussian
bound on error covariance of estimators with a given vector with nonsingular m x m covariance matrix K =

mean gradient .m,. This is true even when 0 is on the E(.,I-qrT}. Since the model is linear and Gaussian. the
boundary of this set. An interpretation of this fact is Fisher information matrix is simply calculated as J =• J =
obtained by recalling that the Fisher information matrix F rK- 'F. which is independent of 6. Furthermore. hi the

1, (12) is a function of the gradient of the likelihood Gauss-Markov theorem (21. Ch. 41. the minimum variance

surface at 0. For a smooth surface, the gradient of the unbiased (MVU) estimator 0,, is a linear function of X.
surface at 0 is completely determined by the set of = 1- FrK- A.
directional derivatives along directions contained in a

convex cone with vertex at 0, e.g.. the half-space indicated The error covariance of 9, is
in Fig. 2. In the case of one-dimensional differentiable
functions, this simply reflects the equivalence of right and J-

left derivatives. Therefore, the restriction of allowable Thus i,, achieves the unconstrained CR bound. 031) of
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Lemma 2. for unbiased estimators. (Recall that for unbi- TGO = [/- I1 it is eas. to \erif.:
ased estimators. 7in, = /A

Consider. ho,%eser. tne problem of estimating 0 subject Q6 " -JO[ I - I

to the k linear equalit. constraints G, = .40 = ). %khere A {[/ - [/-1,}'[/_ l,]J,
is a A ; n matrix. k _< 1. Using the fact that VG, = .4.

Theorem I eises the constrained CR bound B. =T' , - [ [-1,
[rVnJQJ - I[iVmnI'. where

Q = Q, =/I- J -'A-'[,4J-'A] A . (h(4.h)

Since the matrix Q is independent of 0. one can define
the estimator where , = T1JJT and T is an orthogonal matrix such

that
8=Q1 F'K- 'X [%= Iý1 01]T',(7

=QO,,. (45) 1,= T 0 O :T1 .047)

Due to the constraint .40 =0 0 is unbiased where 0, and 0. are zero matrices. In other words. T is
a transtormation that rearranges the image pLxels so that

EQ{)} = (I - J-'Ar[ A J-'A ) .40=0. the support is in the upper left hand corner ot the image.

The error co,ariance of 6 can be calculated directly from Now let .7 an.7 have the partitions

(45) using the idempotence of Q: 1-A B]
il = Q-i_ 

Br C(8

-[K L 1.
= QQJ_ L T. (49)

= QJ- where A and K are matrices of the same dimension as

the identity matrix I on the right-hand side of (47). With
= B,. this notation [I- I ].--'[I - SI ] is the partitioned ma-

where B, is the constrained CR bound. (37) of Theorem trix 0 " ( 1 where 0, is a zero matrix ot the appropri-
1. for unbiased estimation. This establishes that: 1) the t0  fJ"
estimator e of (45) is the MVU constrained estimator, ate dimensions. Therefore the pseudo-inverse on the

and 2) the constrained CR bound of Theorem I is achiev- right-hand side of (46) is simply /o, %t - Pertormin,
able for the Gaussian linear model with linear constraints, the rest of the matrix algebra indicated on the right-hand

Example 2) Image Reconstruction with a Support Con- side of (46) we obtain
straint: Support constraints are frequently used in image
reconstruction problems such as those arising in tomo- QJ'= T K-LM-Tr O, ]
graphic imaging [24]. [29] and phase retrieval [5]. [9].[iTT
Suppose that the parameter vector of interest consists of
a sampled two-dimensional image that is represented by a Using identities for the inverse of a partitioned matrix
complex-valued vector with elements 0,,.k:, kl,k [11, Theorem 8.2.1] and the definitions of A.B.C and

0. 1.. M - 1. We will represent the parameter vector 0 K. L. AM. (48) and (49). the matrix K - LM -'L can be

as the R" vector identified as the inverse of the biock matrix A. Hence.
O'R.t• O ', ". 0• l it .. Am ~ 0,J T=

8.1 , M_ -. 0- i. m Q.J. T 0' O.

where the superscripts R and I denote respectively the
real and imaginary parts of 0,• :,. = T A 01 Tr

If the support of the object is known, it can be used as 0'r 0I
a constraint in the estimation of 0. Let S be the support
of 0. ýý1 0, J A ~ 1

=T,ý o, o. BT cj 1, o.11T
5= ((k,.k.): 0,A,.*0 k,.k. =-0.. .. M- •}. - J

Let 1, denote the 2M, x2M diagonal matrix with [!J,] = (1{sJolls}) (50)

= I if the ith element of 0 lies inside the support set S where the last equality follows by the orthogonality of T.
and [1,I, = 0 otherwise, i.e.. 1s is the matrix indicator the application of(47). (48). and the identification T.-7T'
function of S. The support constraint then has the form - J,. For the case of unbiased estimation rm, = I and
G=, - I s]0 = 0. From Theorem I we have the con- (50) is the constrained CR bound. Comparing the con-
strained CR bound B, = [rVm]Q.J i[Vme] T . Using strained CR bound (50) to the unconstrained CR bound
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J; ' it is evident that the incorporation of support con- equal to I if i c- Sr and 0 otherwise. i.e.. Xr is the ,ector

straints has the effect of zeroing out those rows and indicator function of Sr. The gradient matrix VG. is gpven

columns of the Fisher information matrix corresponding b% 'G0 =[xT . -.x,.1' resulting in
to image pixels 0 for ,hich it is known a priori that the I- J'[X " ]

pixel %alues are zero. w IX
It is useful to compare the covariance of the estimator 3 -•J X x.. Je- Xr X1

errors %.ithin the support region for the unconstrained I
cases. Usine the same transformation T (47) as before. we • ' . (53)
can assume without loss of generalit. that the support is I J J xI X I J
in the upper left corner ot image. i.e.. the support matrix

i fno I. The structure of QOJ is considerably simplified %%hen
indicator function is 1,= 0L (.: In this case the un- J0 is the diagonal matrix:

constrained bound within the support region is (A4- J,=diag,-0-
BC- 'Br)- I. hich is the upper left block element of the
Inverse matrix JI-' = 2-- (-18). while the constrained which is appropriate for the case of Gaussian observa-

CR bound for these pixels is .4 -'. If the Fisher matrix is tions (X,),. I and large N. Since the frequency hands {S,)

block diagonal then B is a matrix of zeros in (48). indicat- are nonoverlapping the pseudo-inverse on the right-hand

ing that the errors of an unbiased efficient estimator of side of (53) becomes the pseudo-inverse of a diagonal

pixels inside and outside of the support region are uncor- matrix and

related: in this case the constrained CR bound is identical P j4 'x,xjT'
to the unconstrained CR bound. If the Fisher matrix is Q J - (rj a0, .54)

not block diagonal, however, there mav be substantial X,

reduction in the constrained CR bound over the support Let e, = [0. -.0. 1.0. .0]r denote the Ith standard

region. It is also significant that. unless J, is block diago- basis vector in ?". Let I be an index in the constraint set

nal. setting the pixels of an efficient (CR bound achiev- St,. Then for an unbiased estimator. i. the constrained

ing) unconstrained estimator to zero outside the image CR bound on the variance of the Ith component. 8.. is

support region does not produce an estimator that obtained from (54)

achieves the constrained CR bound. This is in contrast to [B ] e ,eB, e,
the results obtained in [5] for diagonal J1.

Example 3) Spectrum Estimation with Power Constraints: - e -I , 'x x'
When there is prior information on the power of a ran- X Ti- X I
dom process over some regions of frequency, it is reason-
able to expect that the achieveable error covariance of ( [Je] t
spectral estimators will be affected. This example quanti- = [i. '1] 1 - J- I,;
fies the effect of such prior information on the con- E [ ; I,
strained CR bound. 1, I SO

Let (X,)•., be a segment of a real wide sense stationary Using the unconstrained CR bound [B,, I,, = 0/ = .f,).
random process with power spectral density (PSD) we obtain the relative reduction in the CR bound due to

{.9(f)), - , 1 2. The objective is to estimate the PSD. the constraint
def

, = . (f). at n distinct frequencies f , f. Let the [B] 1 (56)
average power of {X,) be known over P nonoverlapping B,,,I ( f)
frequenc% bands 1 + 2(f,)

S, = Er. P= 1, P (51) Since the term on the right hand side of (56) is between 0
and i. the average power constraint induces a CR bound

where S,, is the index set of the pth frequency band, and reduction on the component PSD estimation errors. The
E, is the known average power of {X,} over this frequency bound reduction factor (56) is independent of the other
band. The equations (51) correspond to P linear con- constraint sets S,. k = 1. ., P. k * p. and therefore a% -

straints on the unknown PSD. known as the P-point erage power constraints over S. do not affect PSD esti-
constraint in robust Wiener filtering theory [20]. The mator errors at frequencies outside of S,,. The amount of
concatenation of the P equalities (51) gives the P equa- bound reduction depends on two factors: 1) the relative
tions magnitude of the spectral component of interest. .9 2(f,).

Oil E, Icompared to the magnitude of the other frequency com-
: O : (5 ponents within the frequency band S,; and 2) the length.

G (52) IStI = number of indices, of S,. In particular. little or no
•T 8,,E' P reduction in the variance bound occurs for the case where

•:([/•'f,)is small for all i r= S,.t= * . However,

where X,, is an n x I column vector with ith element when ,i0-(f,) is large compared to the other i9(f ).
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5 E S,. a substantial reduction in the bound occurs. This the n = m element parameter vector 0 [A,,,..
implies that the most bound reduction will he achieved A1,p,,,.- .pf 1'. The constraint c) can be then he ex-
over those const-aint recions S where the PSD has a high pressed as the (ni - p) x n matrix constraint
dvnamic range. i.e.. large peaks. The particular dynamic [ 1 1
range required tor a significant bound reduction is pro- G - 1I!0; 0.
portional to) S,,. As a rule of thumb, for a reduction in L n P I
the CR bound at frequency f b\ a factor a or more. the where 1, denotes a k "- k identity matrix. 0, is a (m - p1)
ratio of A L, to the root mean-squared \alue of the X×(n - m - p) matrix of zero entries, and I is a ( ti - pI-
remaining spectral components in S,. vector of ones.

_,del Observe that the ro%4, of TG, are no( linearl.% indepen-
=. ) dent due to the fact that there is one redundant con-

Straint in c) of (57). Obsenre also that the equality
constraint c) creates a dimension n - m - p I linear

must satisfy subspace in the unconstrained parameter space 2., Hence.
. l I, l-c despite the presence of inequality constaints a) and b).

---- [.,-] . the constrained parameter space 6, contains no regular
points, and. b, Theorem 1. the constraints a). b) do not

Example 4j Sigtnal Siubspace Constraints: Signal sub- impact the form of the constrained CR bound.
space constraints are used in sensor array processing As in Example 2. partition J, according to
estimation problems to take account of a particular struc- [ -B
ture of the array coyariance matrix [14]. Specifically. as- J- B .
sume that p zero-mean Gaussian signals arrive at differ-
ent angles of incidence on an rn-sensor array having a where A is(m - p)x (m - p).B is("I - p)x(n - m p).
zero-mean, spatially incoherent array noise of power a-. and C is (n-rmn p)x(n-m-p). Then the n X n in-
Further. assume that p < m. Then the covariance matrix verse constrained Fisher matrix. QJ@'. of Theorem I is
of the set of sensor outputs has the singular value decom- given by
position I o° 0

R = l ,',v" - a--'I -

1 0,a',v,".

= I where 0, and 0, are zero matrices of dimensions
where uv,-,' are the eigenvectors of Rand ,,., are the (m - p)x(n - m + p) and n-m - p)n ( n - m - p). re-
eigenvalues: spectively. and Z is the (m - p)x (m - p) matrix

A, A i= 1..'p Z rG, ;tc,]T

-= !,_ - I- IT [A -BC-'B ]
and (A),,:- denote the signal-dependent eigenvalues of R.
The span of r,. .,up is called the signal subspace.

Consider the problem of estimating the eigenvalues of • - (58)
R when p is known but all of the other parameters are
unknown. This partial knowledge induces the following As a simple example. consider the case where the
constraints on the A,: Fisher information matrix is block diagonal with: B = 0,

a) A,>0. j and A=cr a,,_,-,. Then Z=a;r1[,,,.,, - I- llT]. Using
condition 3) of (9) it is easy to show that Z = A'[ I,,

b) A, 1 A j-1I'- ll r- . This results in
M P I P

In QJ I oa; 11r O1

c) A,- I A,=O. j=p+l..m (57) . (59)
M- P ,-P-i

where constraint a) arises from the assumed positive-defi- Suppose there exists an efficient unbiased estimator 6,
niteness of R. constraint b) takes account of the positivity for the eigenvalues and eigenvectors which satisfies con-
of the signal eigenvalues (A'',•. :. and constraint c) reflects straints a) and bK. and assume that the Fisher information
the equality of the m - p noise eigenvalues. is block diagonal as previously specified. The right-hand

Let each unknown eigenvector iL, 6 R" be parameter- side of (59) is then the covariance matrix of the estimator
ized by its rn - I direction cosines, p, - p,,, p .,]1T obtained by replacing each of the m - p noise eigenvalue

= I. .. m. The combination of the m unknown eigen- estimates in 6,, by their average &7z.__x-, A,. Hence, if
values and the m(m - 1) unknown direction cosines yields an efficient unconstrained estimator of the eigenvalues
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can be found that has positive elements. the estimator E,.(Qjf1 - EjI[e], -). is obtained b% ealuating the
obtained h% aeraging oer the tn - p smallest eigenval- quadratic forms el I 'll"Q@J Ile and e' ilfIl. ;l1e

ues of the efficient estimator achie.es the constrained CR B ],
hound. hl-- = - 3

Examph' .) Si•tnal Ltinalionu,n iith Polter Con strinnti: [ B,,],: [I.],
Consider the problem okt estimating the discrete-time ,Il-_ . , [f1e] -

nal saseform. 9,. -. 0_ subject io eonstrainis on the
squared-modulus ot the DFT of 0. Here. the sum of the This is of identical form to the expression obtained for
squared moduli over each of P nonoverlapping trequenc% constrained PSD estimation. (55) of Example 3. when the
internals IS constrained to be equal to known constants power spectral densit.. f(.t ). is identified %ith the mau-
E,. p = I. - P. While similar to the case studied in nitude spectrum ([WO, .?I=l. .n. For unbiased estima-
Example 3. this problem involves nonlinear quadratic tors. a bound on the total mean-squared error in estimat-
constraints on the parameters. and time rather than fre- rip the time domain signal O0s can be determined from
qucnc. domain estimation is performed- (ht3) b. using the unitary propertr of the DFT matrix it

Let III = [1. .- It",] denote the n x it unitary matrix of (Parseval's Theorem):
orthonormal discrete Fourier transform columns: W, =

e.\[l.e - ..... ,1] 1 = I..n. Now 19,!'-'=tr{•,}
suppose that for P s it the constraint takes the form ,

I , ve], ,= E t, p = 1. . . P . (6(11 > trfQ J -'}

= 0'tr if"[I- _______

Here. S, denotes the index set of the pth interval and 8" - it. 1.0 I"I
[W'O), is ith component of the n-point DFT of 0. When
P = ?1. (60) specifies the modulus Fourier transform of 0. P

As in Example 2. we let IT, denote the-n x n diagonal =o-' tr I- 0
matrix with 1,],, = I if i E S. and [1I,],, = 0 otherwise. 8' 1 0 f
Then the constraint (60) can be written as the set of P = - )[n - P].
equations Therefore. on the average, the constraints produce a

[f 10s"i: Ie [ 1 01 El ) factor of I1- P/ n reduction in the CR bound on the
G,= . I - = [ variances of unbiased estimators of the 0,'s.

o T' wHIOW@ E, J IV. COCLtSiO',

where the superscript H denotes hermitian transpose. A constrained Cramdr-Rao (CR) lov.k:r bound on the
The gradient TG, is the P x it matrix error covariance of estimators of multidimensional pa-

r 2oTw, I,W rameters has been obtained. The constrained CR bound1 was derived from a limiting form of a multiparameter
= J. (61) Barankin-type bound. For constraint sets defined b, a

20T 14,1-1, ,g, general smooth functional inequality constraint of the
form ., _ 0. the constrained CR bound is equivalent to

We now specialize to the linear observation model: the unconstrained CR bound evaluated with a **con-
X, = e-+-r7,. i = l.--.n strained" Fisher information matrix. This constrained

Fisher matrix was shown to be identical to the classical
ance a-'. Recalling Example 1, Ja can be seen to be the unconstrained Fisher matrix at all regular points of the
as Rcaled ing Eatrixample. Let can bedseno t obe the nxnze constraint set, e.g.. at interior points. However at nonreg-
scaled identity matrix o'-'1. Let 0 denote the n x n zerouarpitscasonsgveedbe

ular points. such as points governed by equality con-
matrix. Usine (61) and the fact that the intervals S, are straints, the constrained Fisher matrix is a rank-deficient
nonoverlapping !,!, = 0. t * j. the inverse constrained .arn-eiinmatrix. This constrained Fisher matrix is equivalent to aFisher matrix of Theorem I is the n x n matrix matrix of orthogonal projections of the rows and columns

S'_ P I,wsr1 wI,] of the unconstrained Fisher matrix onto the tangent h.-
Q.J;i=o:l4/-[- . W. (62) perplanes of the constraint set. The simple form of theOliw •constrained CR bound allows the effect of particular

Since If is the (linear) DFT operator. the matrix o2'- - equality and inequality constraints to be easily studied
D,(.)] on the right-hand side of (62) is the inverse con- through comparisons between the constrained and uncon-
strained Fisher information matrix for estimation of the strained CR bounds. It was shown that the incorporation
DFT WO. As in Example 3. let the index I be constrained of functional constraints necessarily decreases the CR
in S,. Then the ratio between the constrained and uncon- bound for unbiased estimators, Not surprisingly, the con-
strained CR bounds on the variance, varU{el'J,) = strained bound was shown to be achievable for the lin-
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early-constrained Gauss-Mlarkos, problem. To illustrate W, - If P: P =P, nd P P. = P- Howc\ cr. P P =I In'-i

the application of the constrained CR bound, several phlsFŽ P P22 Prop d of Section 111-41. and hcncýe P' I'

applications in the area of signal processing were consid- To show tf05). firs( olisct~c that. due toi psitOc detiinitcfl-

ered. These included support constraints in imape recon- there esist,. an invertibile main, J such that J J DliL

struction. signal subspace constraints in arraý processing 2. RTenIiý ed

and average power constraints, in spectral estimation and J Q (T[T'Q'QT]' T71
in signial estimation.= )' Q

In their present form, the results obtained in this paper
only directly apply to a finite dimensional parameter which follows dircciI% from (t)4) Thi' linishes the proot ofl

space and a non-stochastic constraint. A generalization of Lemma .

these results to infinite dimensional parameter spaces
would be useful for the studv of constraints in filtering. RFR\

prediction. and smoothing problems. Theorem I could EFRML

perhaps be applied to complete separable infinite-dimen- [Ij J Aitchison and S D Silves. Mivimum*-ickelthiod esicmatioii oi
sional parameter spaces. e.g.. a separable Hilbert space. paramneter' cablect to resiraintsj -inn Vtlah Slat . cccl 2'Li pp
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APPENDIX C

REFLECTION BY AN ILLUMINATED CYLINDER

Figure C-i depicts a cross-section of a cylinder illuminated from

an angle 0 i below the horizon and viewed from an angle Wo below the

horizon. For simplicity we assume that the sun illuminates it at

broadside and we are viewing it from broadside. Let 00 be the

clockwise angle between the viewing angle and the surface normal at a

given point on the surface, and let 0i be the counterclockwise angle

between the illumination angle and the surface normal at a given point.

Then

0=r- = i - Wo - .0 (C-i)

Let the diameter of the cylinder be d . The distance from a given

point on the surface and the center of the cylinder, projected along

the perpendicular to the viewer's line-of-sight is

Xp = (d 0 /2) sin 00 . (C-2)

The illuminated part of the cylinder seen by the viewer goes fromo =

,x/2, at the edge of the cylinder as seen by the viewer, where

oi(00 = r/2) = r/2 - - to (C-3)

and

x p(0 =-Y/2) = do/2 (C-4)

to the edge of the shadow (at 0 = Jr/2), where

eo(0i = F/2) =Y/2 - t 0 (C-5)
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Figure C-1. Illumination and Viewing Geometry of a Cylinder (Axis
Normal to the Plane of the Page).
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and

Xp(0i = r/2) = (do/2) cos(ti +*) 0 (C-6)

(Note that a negative value of xp would indicate a point

counterclockwise from the viewing angle.) The illuminated width of the

cylinder from the viewing perspective is

dp = xp(O0 = r/2) - xp(01 = i/2) = (d0/2) [1 - cos(9i + *0)] (C-7)

The angles over which light is scattered toward the viewing angle are

jr/2 -i - to ei r/2 (C-8a)

and

ir/2 0 0o • r/2 -@ , to (C-8b)

Consider a reflecting area

AA = hy(do/2) deo (C-9)

where hy is the length of the area along the axis perpendicular to the

plane of Figure C-1. For a Lambertian surface of reflectivity ro, the

energy density scattered into a solid angle d0o is

AEo = (roor) Ei cos 01 cos 00 AA dgo

= (ro do/2r) hy E, cos 01 cos 00 dO0 dO0  (C-10)

[where Eq. (C-8) is valid], where Ei is the incident energy density.

The apparent spatial brightness distribution of the object depends

on the projection of this area onto the plane perpendicular to the

line-of-sight, where the projected area is

C-3.



AAp = AA cos o . (C-11)

This comes from the fact that from Eq. (C-2)

dxp = (do0 /2) cos 00 dO0  . (C-12)

Consequently the projected energy is

AEop = (ro/r) Ay EI cos 9i dxp dDo . (C-13)

From Eqs. (C-i) and (C-2),

cos 01 = cos(r - #I - - 00)

= sin(#I + # - r/2 + 8o) (C-14a)

=-cos(tI + # cos 0 + sin(@I + 0o) sin e0 (C-14b)

= -cos(fi + #o) JI - (2xp /ao0 + sln(fi + 0o) (2x p/d ).(C-14c)

Eqs. (C-13) and (C-14c) give the apparent brightness as a function of

the viewed coordinate, xp, Figure C-2 shows Eq. (C-13) plotted as a

function of x p for (t I + 0) = 200 to 1800 in 200 increments. [Note

that the apparently continuous curves at xp = 1 are pairs of curves

that approach xP= 1 with the same values and slopes, one of the pair

of curves for (fi + #o) and the other for (1800 - 9i - 9o).]

Now consider the total energy density arriving at a detector. This

can be obtained by a integrating Eq. (C-13) over x or by integrating

Eq. (C-10), using Eq. (C-14b), over dO . The latter is given by
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Figure C-2. Relative Brightness (Intensity) Across the Projected Image
of the Cylinder, for (91 + to) = 20 to 1800 In 200
Increments.
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L r/2

f A f (do0 2) dOO AE0
0 ir/2-ti -to

r/2
= L(r 0 d0/2r) E1 do0  f [-cos(Ii + 1o) cos 00

v/2-40 -9o

+ sin(9i + 9o) sin 00] cos 00 dOo

= L(rodo/4r) Ei[sin(ti + to) - (ti + 9o) cos(tI + 0o)] d~o

SL(r odo/2r) Ei V(#i + #o) dDo (C-15)

where dO0 is the angular subtense of a detector as viewed from the

target. The function

V(ti + #o) = (1/2) [sin(#1 + #o) - (tt + #o) cos(tI + #9)] (C-16)

is shown in Figure C-3, plotted as a function of (ti + 0) (in
degrees).

Example

Suppose that tI = 100 and to = 550 so that ('i + #o) = 65. Then

the illuminated region can be seen for 250 5 S 900, for which 900
Oi Ž 250. The relative perceived reflectivity, given by Eqs. (13) and
(14) is proportional to cos Oi, which varies from 0 to cos 250 = 0.906,
following a curve slightly above the 600 curve shown in Figure C-2.
The perceived width of the cylinder is dp = (d /2) (1 - cos 650) =

0.577 (d /2); so for a 0.8m diameter cylinder, the perceived width
would be 0.231m. From Eq. (C-16), V(650) = 0.213 (as compared with the

maximum possible value of r/2).
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Figure C-3. Relative Energy Density Arriving at an Aperture-Plane
Detector as a Function of (ti + *0) (in Degrees).
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IMAGE RECONSTRUCTION FOR AN ABERRATED AMPLITUDE
INTERFEROMETER WITH A PARTIALLY-FILLED APERTURE

J. R. Fienup and J. D. Gorman

Optical Science Laboratory
Environmental Research Institute of Michigan

P.O. Box 8618, Ann Arbor, Michigan 48107-8618. USA

1. Introduction

Measurements obtained with an aperture-plane amplitude interferometer I.21 utilizing a

180* rotational shear through a telescope having a partially-flled aperture can have missing

"Fpatial frequency bands corresponding to the aperture-plane regions where there is no aperture

fill. The system transfer function in this case is a scaled version of the telescope aperture func-

tion. and the missing Fourier-domain data causes the resulting images to be highly distorted

[Figures 1(e) and 1(f) for examplel. This is in contrast to conventional focal-plane imaging

systems where the system transfer function is the autocorrelation of the telescope aperture

function. in which case Wiener filtering can often be used to level the transfer function. A

further complication arising in the image formation process is that for realistic imaging sys-

tems, the phase of the Fourier data can be corrupted or completely lost in the presence of

atmospheric turbulence or optical aberrations. Thus there are two difficulties which compli-

cate the reconstruction of images from aperture-plane amplitude interferometer measurements:

the absence of particular spatial frequency bands and the possible corruption of the phase of

the data. This paper examines an application of the iterative Fourier transform algorithm

'3.4.51 to the problem of reconstructing missing Fourier-domain information from aberrated

aperture-plane amplitude interferometer measurements to obtain diffraction-limited imagery

corresponding to a filled aperture.

Common examples of collection systems having partially-filled apertures are telescopes with

a central obscuration, for which the low and middle spatial-frequency bands are blocked by

the secondary mirror; and segmented or multiple-mirror telescopes, for which certain middle

and high spatial-frequency bands are lost. Two types of aperture functions were considered

in this study: an annular aperture which will be denoted as aperture A. and a segmented

aperture consisting of a hexagonal arrangement of seven smaller circular apertures. which shall

denoted as aperture H. Figure 1(d) shows the original object used in the simulations. Its

Fourier transform, the magnitude of which is shown in Figure 1(a), was multiplied by aperture

A to obtain the aperture plane data of Figure 1(b) and corresponding image, Figure lie). The

transform was also multiplied by aperture H to obtain the aperture plane dato of Figure ii c)
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and corresponding image, Figure 1(f). The dynamic range of the Fourier magnitude data in

Figures 1(a-c), 3(a-c) and 4(a-c) is quite large, so the square root of the Fourier magnitude is

displayed.

Three scenarios were investigated: (i) the Fourier magnitude is measured over a filled

aperture. (ii) the Fourier magnitude and phase are measured over a partial aperture. and

(iii) the Fourier magnitude is measured over a partial aperture and no phase information is

measured. The iterative Fourier transform is used to reconstruct the missing data for all these

cases.

Case (i) corresponds to the situation in which the Fourier magnitude is known over an

entire filled aperture. Here, the image reconstruction problem is equivalent to reconstructing

the Fourier phase over the aperture and the problem is that of phaae retrieval. The iterative

transform algorithm is robust in this case. Examples of such reconstructions will not be given

here since they can be found in References [3,4,5,6], including the case where large amounts of

noise are present [6]. Case (ii) corresponds to the situation where there are no aberrations, but

the complex Fourier data is incomplete due to missing frequency bands. The reconstruction

of an image from such data requires that the Fourier magnitude and phase be reconstructed

within the missing frequency bands to obtain an estimate of a filled aperture plane. Hence the

problem is equivalent to that of interpolation. The iterative algorithm is used to interpolate

the missing spatial frequency bands. One could also consider eztrapolating the Fourier domain

data out to higher spatial frequencies; however this problem is known to be very ill-posed and

it is not considered here. Case (iii) corresponds to the situation in which there is no phase

information at all and the Fourier magnitude is known only over a partial aperture. Here

the image reconstruction problem requires both phase retrieval and interpolation. This case

is perhaps the most realistic setting, in which aberrated measurements are taken through a

telescope with a partially-filled aperture. Unfortunately, out of the three cases investigated it

also poses the most difficult reconstruction problem.

In the following discussion, reconstruction examples for cases (ii) and (iii) will be described.

In each of these cases, the iterative Fourier transform algorithm was applied, each iteration

consisting of the following four steps, as illustrated in Figure 2:

1. The current image estimate is Fourier transformed to produce an estimate of the object's

Fourier transform over the entire Fourier domain.

2. Fourier-domain constraints corresponding to the measured data are satisfied by: (a

replacing the magnitude and phase of the current estimate with the measured magnitude

and phase within the region of the aperture plane corresponding to the telescope aperture
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function 'note that in cases (i) and (iii) the phase is not measured and only the magnitude

is replaced], (b) leaving the Fourier transform unaltered over the missing frequency bands

within the filled aperture, and (c) setting the Fourier transform to zero outside the filled

aperture.

3. The result is inverse Fourier transformed.

4. The object-domain constraints of positivity and object support are satisfied using one of

two methods: Error Reduction (ER), which is a Gerchberg-type algorithm [7] or Hybrid

Input/Output (HIO) (3.4.51.

The object-domain support constraint is determined from the measured data in one of two

ways. If the phase is known over part of the Fourier domain, then one can form a degraded

image from the partial Fourier magnitude and phase data. An initial support constraint can

then be formed by thresholding the magnitude of the degraded image. To minimize the ringing

effects due to the partial fill of the aperture, it is necessary to first apply a weighting func-

tion to the Fourier magnitude data. If there is no measured phase, then an object-domain

support is determined from the Fourier magnitude as follows. The magnitude is squared and

inverse Fourier transformed to obtain the autocorrelation of the object. Again, weighting of the

Fourier-domain squared magnitude may be necessary to avoid excessive ringing in the autocor-

relation. The autocorrelation is then thresbolded to obtain an estimate of the autocorreiation

support. An initial estimate of the object support is then obtained from the autocorrelation

support by using a triple-intersection rule [8.9]. For future reference, the object support es-

timate determined according to this rule will be called the triple-Intersection qupport. It is

important to note that in both cases the object support estimates described above rely on

thresholded values and thus may exclude parts of the actual object. Hence as the iterations

progress. the support constraint is enlarged by including neighboring pixels, thus ensuring that

the whole object is eventually contained within the support constraint.

2. Case (ii), Partial Fourier Magnitude and Phase

Figures 3 and 4 show examples of the iterative transform algorithm applied to the problem

of interpolation. The measured data was assumed to consist of the Fourier magnitude and

phase over a partial aperture. Figure 3(b) shows the simulation of measurements over aper-

ture A. for which the Fourier data over a central disk 1/3 the diameter of the filled aperture

was blocked. Hence the ratio of the area of the blocked region to the entire filled aperture

was 1/9. Figure 4(b) shows -he data corresponding to aperture H, for which Fourier data was

only collected over seven small circular subapertures. The ratio of the area where there was
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no Fourier information to the area of a filled aperture encompassing aperture H was 1/2. The

images corresponding to the data collected in apertures top A and H are shown in Figures 3(e)

and 4(e) respectively. These images were used as the initial object estimates for the iterative

transform algorithm.

For the case of aperture A. Figure 3(g) shows the initial support constraint, which was a

thresholded version of the degraded image shown in Figure 3(e). Enlarged support constraints

which were used as the iterations progressed are shown in Figures 3(h) and 3(i). With the

support constraint of Figure 3(i) in place, the algorithm converged quite quickly to a solution

consistent with the support constraint and the measured Fourier data, yet it did not converge

to the true solution. The resulting reconstructed image, shown in Figure 3(f), still has some

distortion; nevertheless it appears to be better than the initial estimate, shown in Figure 3(e).

Similar reconstruction results were obtained for case of aperture H and are shown in Figure 4.

An examination of the Fourier magnitude of the reconstructed image, shown in Figure

3(c), indicates that part of the problem in the reconstruction may be that the magnitude in

the interpolated region of the Fourier plane is underestimated. Figure 5 shows a plot of cuts

through the filled-aperture Fourier magnitude and the interpolated Fourier magnitude. Over

the blocked central region, the peaks of the estimated Fourier magnitude appear to be in the

right place but they are smaller and show less contrast than the true Fourier magnitude.

Thus, for the case of interpolation only, the algorithm converged quickly, but the recon-

structed image was of mediocre quality. The fast convergence is due to the fact that the

constraints in each domain form a convex set. The ER algorithm for this case is a projection

onto convex sets (POCS) algorithm. POCS algorithms are known to have strong convergence

properties [10]. However, the poor quality of the reconstructed images, despite the absence of

noise in the measurements, can be an indication that the interpolation problem is ill-posed.

3. Case (iii), Partial Fourier Magnitude and No Phase

Figure 6 shows an example of the iterative transform algorithm applied to the problem

of simultaneous phase retrieval and interpolation. In this case, an aberrated aperture-plane

measurement was simulated for a centrally-blocked aperture in which the central obscuration
was a circle with 1/8th the diameter of the filled aperture. The phase was assumed to be too

corrupted to be useful, so that the only input data to the algorithm was the Fourier magnitude

over a partial aperture having an annular shape.
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Figure 6(a) shows the original object used in the simulation. For reierence. Figure 6(b,

shows the image corresponding to error-free magnitude and phase measurements over the

centrally-obscured aperture. This image was assumed to be unavailable since the Fourier

phase is unknown. The initial triple-intersection object support constraint computed from the

given Fourier magnitude is shown in Figure 6(d). Enlarged versions of the support constraint

are shown in Figures 6(e) and 6(f). The initial estimate for the object was obtained by filling

the support shown in Figure 6(d) with uniformly distributed random numbers. A partially-

reconstructed image was obtained from the partial Fourier magnitude data using the support

constraints shown in Figures 6(d-f). The algorithm was then rerun using a different sequence

of random numbers. yielding a second partially-reconstructed image. Two more partially-

reconstructed images were obtained similarly, using a second initial support constraint. This

second support constraint was generated by applying a triple-intersection rule to an autocor-

relation support computed with a different threshold value. The four partially-reconstructed

images then were combined to form a composite image by using the stripe-removal methods

described in Reference [5]. The resulting reconstructed image, shown in Figure 6(c). still has

some stripe artifacts but is otherwise a faithful representation of the true object. The ex-

periment was repeated with much larger central obscurations but the quality of the resulting

reconstructed images was significantly degraded.

4. Conclusions

In practical optical systems, the measurements made in aperture-plane amplitude interfer-

ometry can have missing spatial frequency bands. Moreover. the phase of these measurements

can be corrupted by atmospheric turbulence or aberrations present in the optical system. The

reconstruction of an extended object from these measurements thus involves the interpolation

of the missing frequency bands and the retrieval of the missing or aberrated phase. In this

paper we demonstrated that the iterative transform algorithm can be used for piije retrieval

or interpolation or both simultaneously.

It was found that, for the phase-retrieval problem of reconstructing an image from filled-

aperture magnitude and no phase. the algorithm converges reasonably quickly to the correct

solution. For the interpolation problem it was found that the algorithm converged quickly to a

solution, but that the solution is not necessarily close to the original object, indicating that the

problem of interpolation is not a well-posed problem. The most realistic problem is the case

where the magnitude is measured over a partial aperture and the phase is not available at all.

In this case, the problem is that of simultaneous phase retrieval and interpolation. For the case

where the missing Fourier magnitude covered . region about the origin with 1/64th the area of
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the filled aperture. a good reconstruction was obtained using the iterative transform algorithm

augmented by the stripe-removal methods of [5]. Thus it is possible to combine phase retrieval

and interpolation in the reconstruction of an image from partial Fourier magnitude information

if the interpolation is confined to a small region of the aperture plane.
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Figure 1. Aperture-piane measurements and corresponding images: (a) f lled-aper:ure Four:er
magn:*:ude. (b) Fourier magnitude over aperture A. (c) Fourier magnitude over aperture H.
(d) EýIed-aperzure image. (e) aperture A image. (f) aperture H image.

Iterati e Reconstrcrion Algorithm

S7T-RT

&

rl . New Tn7.r.t S.,:s'v Fc I!!

I ?-.Se.,.
e

Fig ure 2. ricnsfortr. ai-orim•,l?.

D-8



Figure 3. Interpolation from Fourier magnitude and phase over aperture A: (a) filled-aperture
Fourier magnitude. (b) Fourier magnitude over aperture A, (c) Fourier magnitude of recon-
structed image. (d) filled-aperture image, (e) aperture A image, (f) reconstructed irnage.
(g) support formed from thresholding aperture A image, (h) enlarged support constraint. (i)
further-eniarged support constraint.

Figure 4. Interpolation from Fourier magnitude and phase over aperture Ii. 'See caz:icn :o
Figure 37
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Cuts Through Origin of Fourier Magnitudes
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Figure 5. Cuts through the filled-aperture Fourier magnitude (dotted line) and Fourier mag-
nitude of the reconstructed image of Figure 3 (solid line).

Figure 6. Interpolation and phase retrieval from partial-aperture Fourier magnitude: (a)
filled-aperture image, (b) partial-aperture image with correct Fourier phase. (c) reconstructed,
image, (d) triple-intersection support constraint, (e) enlarged support constraint, (f) further-
enlarged support constraint.
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The iterative blind deconvolution algorithm proposed by Ayers and Dainty lOpt. Lett. 13, 547 (1988)1 and improved
on by Davey et al. lOpt. Commun. 69,353 (1989)] is applied to the problem of phase retrieval, which is a special case
of the blind deconvolution problern. A close relationship between this algorithm and the error-reduction version of
the iterative Fourier-transform phase-retrieval algorithm is shown analytically. The performance of the blind
deconvolution algorithm is compared with the error-reduction and hybrid input-output versions of the iterative
Fourier-transform algorithm by reconstruction experiments on real-valued, nonnegative images with and without
noise.

1. INTRODUCTION Comparing Eqs. (1) (with n(0) = 01 and (4). we find that

Blind deconvolution is the problem of finding two unknown phase retrieval can be considered a special case of blind
fu , and g(:0, from a noisy measurement, c, of deconvolution, in which we deconvolve f(i) and f* (-i) fromfunctions, der n d m asu r(i). Because the AD algorithm represents a new. practical

the convolution of these functions, defined as algorithm for blind deconvolution, we will apply it to phase

"CM f f(')g(U - x')dx' + ,$.) retrieval and compare it with two existing phase-retrieval
algorithms. We will begin by describing the AD algorithm
and adaptations of the algorithm appropriate for phase re-

- f(k) * g(t) + n(2), (1) trieval. Because its structure closely resembles that of the
error-reduction (ER) algorithm commonly used for phase

or in the Fourier domain as retrieval,2-4 the AD algorithm is compared both analytically
C(a) - F(t)G(a) + N(M), (2) and experimentally with ER. The performance of both of

these algorithms is compared with the faster hybrid input-
where C, F, G. and N are the Fourier transforms of c, f, g, and output (HIO) algorithm 2-4 for real, nonnegative objects for
n, respectively. Ayers and Dainty' recently proposed a the cases of known and unknown support, using Fourier
practical, two-dimensional blind deconvolution algorithm intensity data with different levels of additive Gaussian
for the noise-free case, where the additive noise term n(.0 noise.
0.

In this paper we apply the Ayers-Dainty (AD) algorithm
to the phase-retrieval problem, in which we desire to recover 2. DESCRIPTION OF THE ALGORITHM
an image, f(A), from the modulus, IF(0)I, of its Fourier trans-
form: A. Blind Deconvolution

The AD blind deconvolution algorithm' ( 'ig. 1) alternates
F(,a) = IF(2)I expfiV(W)] - f./(i)J between the object domain and the Fourier domain, enforc-

ing known constraints in each domain. Object-domain con-

f I' f(±)exp[-i2w(,•, x)ldz. (3) straints such as support and nonnegativity are combined
f-, -with the Fourier-domain constraint of Eq. (2) to produce

new estimates of f and g, I, and J,, respectively, at each
Phase retrieval is equivalent to the reconstruction of the iteration. Note that each AD loop produces two estimates
Fourier phase, #(a), from the Fourier modulus and to the ofF (and G): (1) Ph, the Fourier transform of 1k, and (2) the
rectios n of/() or •4a•) from the autocorrelation func- estimate obtained by imposing the Fourier-domain con-
tion: straint of Eq. (2). These two estimates are averaged by

r(±) = f(±')'(2' - x)dx' using the scalar 0 (0 < B < 1) to form F*, a composite
estimate of F. Ayers and Dainty proposed the following
estimate of F from Ph and Ok. the Fourier transform of 1h:

- :-•[~a)'(a] -:7-[1F(a)12]. (4)

The phase-retrieval problem arises in several disciplines in- if IC(0)0 < noise level,
cluding optical and radio astronomy, wave-front sensing,
holography, and remote sensing. F5(a) - h,(a); (Sa)

0740-3232/90/030428-06302.00 C 1990 Optical Society of America
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3 FOURIER CONS
T

RAINT F,( - -" 002,), (10)

IfFk G- k 10wF+ 'A 1a

WOJRIER where (• is the latest estimate of G. the constant Ca is an
INVERSE FOJRIER TRANSFORM estimate of (IN1), and 1A, is used to estimate (!Fl-'). A

TRANSF'ORM AND filter similar to this was used with the AD algorithm by
I DC.NORMALIZE ,-

f f Davey et al.6 for the blind deconvolution of noisy, complex-
I ,AG�Egw valued images. We have approximated (IN12) with a con-

CONSTRAIN'S IMAGE PLANE stant based on the assumption that n(±) is a delta-correlat-
CONSTRAINTS I ed, Gaussian random process. If the ensemble-averaged

energy spectrum of the noise is known, it should replace a- in
F OURIER 

9 q 1)
TRANSFORM INVERSE FOURIER To estimate G from C and Ph, the latest estimate of F. in

ANCTRANSFORM Eq. (10) we replace F h with Gk, Ck with Ph, and, following the

Gk indexing of Fig. 1, Ph with (O. 1:
-FOURIER CONSTRAINTG( 'or (a),, 

G k(a) -= - 015). (I

Fig. 1. AD blind deconvolution algorithm. AP,(u)V2 +

We have also used an even simpler Wiener-type filter,
formed by replacing the term ea/I,12 in the denominator of

if 1Gk(Ci)1 > IC(i2) Eq. (10) with a constant, a:

F,() = (1 - 8)AA() + 8 C(C)) (5b) C(a)
0fd *)= T-015). (2

(;k (aI2 + a (2

if 1Gk(al) < 1C()0, We will refer to this simpler filter as AD Filter 1. and the

-I 8 + (() filter in Eq. (10) as ADFilter 2. We make the same substitu-
+F,(() ' (c),) 00 tions that are made for Eq. (10) to obtain the following

expression for G,(,i) from Eq. (12):

Rather than implementing Eqs. (5), we use a Wiener-type ta () a)
filter based on the following imaging model: G+(o) =,C(a))- (

c(i) = s(i) * f( l) + n(.), 
(6)

or in the Fourier domain B. Phase Retrieval
As we noted in Section 1, phase retrieval can be viewed as the

C(a) = S()F() + N(), (7) process of blindly deconvolving a function f(±) and its twin.
f*(-.f). Thus for phase retrieval the noisy measurements of

where c is the measured image, f is the object, s is the impulse r(.0 and IF(a)12 take on the roles of c(± and C(a), respective-
response [the Fourier transform of which is S(,), the optical ly, and F,(a) and G (a) become estimates of F(D) and F(D),
transfer function], and n is the noise. Assuming thatf and n- respectively. Because the two convolution factors are twins.
are independent, zero-mean, Gaussian random processes, the AD algorithm actually produces two estimates of f per
the minimum mean-squared-error linear estimator for f(l) iteration. Therefore we need only consider half of the AD
is' 1•() = 57-1P(01), where loop (Fig. 2); i.e., instead of estimating F(0) and f*(-f) we

forego the second half of the loop and find a new estimate of
Act) - W(alC(a), (8) F() by conjugating GA(a), the estimate of F(W). Replacing

C with 1FI
2, we conjugate Eq. (13) to obtain the AD Filter

the Wiener-Helstrom filter is phase-retrieval Fourier-domain constraint:

M l () F,(a) 0:(a)
IS( ol 2 + (IN( Cs) f 2)/(IF(0)1

2) 
()

Pa) IF(a012. (14)

and (IN(C)1 2) and (IF(0)1 2) are the ensemble-averaged ener- [KAX(U'W + a
gy spectra of the noise and the object, respectively. Al- AD Filter 2 is modified in a similar manner by conjugating
though the images generally will not satisfy the statistical ii

assumptions stated above, the filter is still effective and Eq. (11)and substituting IP612 for lOa,-I2:
simple to implement. The Wiener-Helstrom filter of Eq. Fk(C) P ,(a)
(9) is often used for image restoration. lp,(S)1 + j'2APF()1 g)1. (15)

To apply Eq. (9) to the problem of estimating F from C
and 0, we relate Eq. (2) to Eq. (7) land, hence, Eq. (1) to Eq. Note that for photon (shot) noise in the measurement of
(6)] by allowing G(0) to play the role of S(W). The resulting C(A), which would have a variance proportional to the mean
Fourier-domain constraint (with 0 - 1) is of 1Fl2, the quantity V2/IFP(Q)12 is equivalent to a in Eq. (14).
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IMAGE PLANE know the original object,f(f). Recalling that the estimate of
CONSTRAINTS f(i) after the kth iteration is ld(), we define the NRMS

k kerror,

ANSFOOURM 67'(i - 1",) - fF

Fk FOURIER 7 CON-STIRAINT ABSER I' \If(j±12f() 1 18

Fig. 2. AD blind deconvolution algorithm applied to phase retriev- Lal. where xo maximizes the cross correlation between f and f1
and

C. Comparison with Error Reduction
The flow chart in Fig. 2 of the AD algorithm applied to phase
retrieval is identical in form to the ER algorithm. The
difference between the ER algorithm and the AD algorithm (A)
lies with the Fourier-domain constraint. In the ER algo-
rithm the Fourier-domain constraint is imposed by substi-
tuting the known modulus, IF(o)I, for ITdk(1), the modulus of
the Fourier transform oflk(r), the estimate of the object. If
we write A(() - I[A(,)l expli4(u)], then the Fourier-do-
main step in the ER algorithm gives

Fk(,) = IF(,a)Iexp[i4ik(a• )- PW() F - (16)

If for simplicity we assume that we are using an inverse filter
[which corresponds to the noise-free case and is obtained by (C)
setting a - 0 in Eq. (14) or or = 0 in Eq. (15)], then the AD
Fourier-domain constraint can be written as

F w I•(o01--- (17)

Comparison of Eqs. (16) and (17) shows that, for the noise-
free case, the Fourier-domain constraint of the AD algo-
rithm is similar to that of the ER algorithm: they both
produce estimates with the same phase, and the magnitudes Fig. 3. Comparison of phase-retrieval using AD blind deconvolu-
of both estimates are boosted (or attenuated) where [•/iri tion with the HIO and ER iterative transform algorithms for a real-valued, nonnegative object with known support and no Fourier> I (or < 1). Because the object-domain operations are modulus error. Reconstructed images: (A) HIO/ER (indistin-
identical and the Fourier-domain constraints are so similar, guishable from the original object); (B) ER: (C) AD with the Fourier
we expect the AD and ER algorithms to behave similarly, constraint of Eq. (14); (D) AD with the Fourier constraint of Eq.

(15).

3. EXPERIMENTAL SIMULATIONS
The two versions of the AD algorithm (AD Filters 1 and 2)
were compared experimentally with each other, with ER,
and with a combination of HIO and ER (HIO/ER) for two 0.2
cases: (1) a real-valued, nonnegative object with a priori I No Nose:
known triangular support of side 128 pixels embedded in a C HIO/ER
256 X 256 array and (2) a real-valued, nonnegative object sis 0 ER
with unknown support (approximately 40 X 60 pixels) in a M A AD FL ER :I
128 X 128 array. The triangular support in case (1) was x ..:-'ER 2

chosen to allow for rapid convergence even for the slower 0.i AD FILTER 2
algorithms.-, For case (1) we also added Gaussian noise to AD FILTER
the Fourier intensity data. The reconstructions for case (2) ER
are more difficult because the support is unknown and be- 0.s5
cause it is of a less-favorable shape.- For each case, the same
initial guess is used to begin all the algorithms. HIO/ER

A useful error metric for measuring the success of the 0 20
reconstruction is the normalized root-mean-squared :TERTnION NUmBER
(NRMS) error with the original object. This error metric Fig. 4. ABSERR versus iteration number for the reconstructions
takes advantage of the fact that, in a simulation like this, we of Fig. 3.

E-3



J. H. Seldin and J. R. Fienup Vol. 7, No. 3/March 1990/J. Opt. Soc. Am. A 431

The reconstructions for case (1) with noise-free Fourier
intensity data are shown in Fig. 3 [AD Filter 1 corresponds to
Eq. (14), and AD Filter 2 to Eq. (15)]. The ER and AD
images exhibit similar striping artifacts, which are frequent-
ly seen in iterative reconstruction.' Methods developed for
eliminating the stripes4 were not attempted here. The HIO/
ER image avoids this stagnation effect and converges more
quickly to a solution indistinguishable from the original ob-
ject. Figure 4 is a plot of ABSERR versus iteration number
for the reconstructions of Fig. 3. The AD and ER algo-
rithms stagnated after approximately 50 iterations, while
HIO/ER converged to the solution in fewer than 100 itera-

tions. Because we used filter parameters a and a- that were

.A (C6.

Fig. S. Comparison of the effect of the pre-Wiener filtering of noisy
Fourier intensity data on reconstructions with the ER algorithm.
Reconstructed images after 1000 iterations: (A) 5% FME. no pre-
Wiener filtering; (B) 5% FME, pre-Wiener filtering; (C) 20% FME,
no pre-Wiener filtering; (D) 20% FME, pre-Wiener filtering.

Fig. 7. Comparison of phase rem.ieval ;sing AD. HIO. and ER for a
real-valued, nonnegative object with known support and 201c FME.
Reconstructed images: (A) HIO/ER, (B1 ER, (C) AD with the
Fourier constraint of Eq. (14). (D) AD with the Fourier constraint of
Eq. (15).

(C)%

C EQ

015

0.2 x -: -:'r

Fig 6. Comparison of phase retrieval using AD. HIO, and ER for a
real-valued, nonnegative object with known support and 5% FME.
Reconstructed images: (A) HIO/ER, (B) ER. (C) AD with the •
Fourier constraint of Eq. (14), (D) AD with the Fourier constraint of 0---
Eq. (15).

'-" f(±)q (t - o÷

o (19)
2000 0-00 60C 00

ITERQ':ON NuflER

Fig, 8. ABSERR versus iteration number for the reconstructions
is a scalar that can be shown to minimize ABSERR. of Fig. 7.
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with 5% and 20% FME. Because the AD algorithm has a
Wiener-type filter built into it. a less-prejudiced comparison
between algorithms is obtained if we filter the noisy Fourier
intensity betore use with the ER and HIO algorithms. The
pre-Wiener-filtered modulus that is used in this case is

S1 1,-2
I1a~ + >~ l ( ) 4 IF (0 1l ; l , (2) .110 I = + G4•F(U,)I ]J (1

where a, is the variance of the noise added to the Fourier
intensity. Figure 5 demonstrates the effect of Eq. (21) on
ER reconstructions for the two noisy cases. The smoothing
of the pre-Wiener filter has a negligible effect for the 5%
FME data but is more significant for the 20% FME data.

The reconstructions from all four algorithms for the case
of 5% FME are shown in Fig. 6. Since the pre-Wiener
filtering of Eq. (21) was insignificant at the 5% FME noise
level, it was not used in these HIO and ER reconstructions.
The 5% level of noise has little effect on visual image quality.
and the performance of the algorithms relative to one anoth-

Fig. 9. Comparison of phase retrieval using AD, HIO, and ER for a er is similar to that for the noiseless case. Reconstructions
real-valued, nonnegative object with unknown support and no with 20% FME are shown in Fig. 7. This level of noise
FME. (A) Object. Reconstructed images: (B) HIO/ER, (C) ER, significantly degrades the visual image quality. and the pre-
(D) AD with the Fourier constraint of Eq. (14), (E) AD with the Wiener filtering was implemented for the HIO and ER re-
Fourier constraint of Eq. (15). constructions. The AD Filter 1 image of Fig. 7(C) has no

striping artifacts and is comparable in quality with the HIO/
No Noset. eKo"w SýDo•o,. ER reconstruction of Fig. 7(A), whereas AD Filter 2 stag-

Z .::/R nates with stripes after starting with the same initial guess.
1: EllEP The low-pass nature of the Wient-type filter has a smooth-
a sPC0 r'.-ER I ing effect that is evident in the AD reconstructions. The
x__PC___F% _________2 amount of smoothing depends on the filter paaetr and

2a2: the larger these parameter are, the larger t1,1 attenua-
tion of high frequencies and th. smoother the reconstruc-
tion. In this case the two AD reconstructions achieve a
smaller ABSERR than either ER or HIO/ER (Fig. 8) but at
the expense of image sharpness. The reconstructions stag-
nate almost immediately, but a change in a after 400 itera-

.2. tions moves the AD Filter 1 image out of stripe stagnation.
The ability to vary the built-in Wiener-tvne filter parame-
ters may be an advantage of the AD algorithm. The AD

0 Calgorithm also may be making better use of the Wiener filter.
:7.RO-I3N NUMBER and a few iterations of AD Filter 1 on the HIO/ER image of

Fig. 10. ABSERR versus iteration number for the reconstructions Fig. 7(A) yields an image that is similar to th 'ig. 7(C).
of Fig. 9. Figure 9 shows the reconstructions from all four algo-

rithms for case (2), a real-valued, nonnegative image with
unknown support in a 128 x 128 array. The support was

small (to account for computer roundoff error) for the noise- estimated from the support of the autocorrelation. rti±) us-
less case, there is little difference between the two AD filters, ing a triple-intersection algorithm.S Figure 10 is a plot of
and the corresponding reconstructions are almost identical. ABSERR versus iteration number for the reconstructions of
We expect the differences between the filters to become Fig. 9. The HIO/ER algorithm converged close to the solu-
more apparent for the case of noisy Fourier intensity data. tion in fewer than 200 iterations, whereas AD and ER both

We now consider the same image with Gaussian noise converged more slowly and stagnated after approximately
added to the Fourier intensity. When the noisy Fourier 400 iterations. The error of the ER reconstruction is signifi-
intensity is denoted by IF(iwI, the Fourier-modulus error cantly lower than that of the AD algorithms. For this more-
(FME) with respect to the original Fourier intensity, IF(0)12, difficult case, we find again that the AD and ER algorithms
is perform comparably (ER somewhat better than AD), and

1/2 HIOIER is still more effective than either.
[IFi2)1, - F01

FME - . . (20) 4. CONCLUSION

-'IF()I2 l We have shown that the Ayers-Dainty (AD) blind deconvo-
lution algorithm applied to phase retrieval is similar to the
error-reduction (ER) iterative Fourier-transform algorithm,

We performed reconstructions for single realizations of IF1n both in form and in performance. A nice feature of the AD
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Both a new iterative grid-search technique and the iterative Fourier-transform algorithm are used to illuminate the
relationships among the ambiguous images nearest a given object, error metric minima, and stagnation points of
phase-retrieval algorithms. Analytic expressions for the subspace of ambiguous solutions to the phase-retrieval
problem are derived for 2 X 2 and 3 x 2 objects. Monte Carlo digital experiments using a reduced-gradient search of
these subspaces are used to estimate the probability that the worst-case nearest ambiguous image to a given object
has a Fourier modulus error of less than a prescribed amount. Probability distributions for nearest ambiguities are
estimated for different object-domain constraints.

1. INTRODUCTION available for specific applications; in this paper we consider

The phase-retrieval problem considered in this paper is the real-valued objects with known support, both with and with-

reconstruction ofean object function f(x, y hi from the modulus out a nonnegativity constraint.
reontu ction of its F ouriertrsfnior: yUntil the late 1970's, there was much doubt that the
IF(Ls, v)l of its Fourier transform: phase-retrieval problem could be solved or that the solution

Flu, v) IF(u, v)Iexp[iý(u, v)] = 57 [f(x, y)] would be useful, because the one-dimensional theory of ana-
lytic functions available at the time indicated that there

= j f(x, y)exp[-i27r(ux + vy)]dxdy. (1) were ordinarily a huge number of ambiguous solutions.'-:'
The first indications that the two-dimensional (2-D) case

It is equivalent to the reconstruction of the Fourier phase is usually unique, despite the lack of uniqueness in one

0'(u, v) from the Fourier modulus and to the reconstruction dimension, came from empirical reconstruction results" 5:

of f(x, y) or 4,(u, v) from the autocorrelation function images that were reconstructed resembled the original simu-
lated objects used to compute the Fourier modulus data.

rlx, y) ffi-1F(u, v)I2. (2) These results gave hope that 2-D phase-retrieval problems

This problem arises in several disciplines, including optical might be solvable and unique. (Other phase-retrieval prob-

and radio astronomy, wave-front sensing, holography, and lems, such as in electron microscopy in which one has

remote sensing. squared-modulus measurements in each of two domainsb

There are the omnipresent ambiguities: that the object and in x-ray crystallography in which one has the a priori

f(x,y), any translation of the object f(x - xo, y - yo), the twin information that the object consists of a finite collection of

image f° (-x - x0 , -y - yo), and any of these multiplied by a atoms,7 had been solved; but those earlier successes depend-

constant of unit magnitude exp(ioc) all have exactly the ed on much greater object-domain constraints than just non-

same Fourier modulus. These ambiguities change only the negativity and support.) Those empirical results gave im-

object's position or orientation, not its appearance. If they petus to attempts to extend the one-dimensional (1-D) the-

are the only ambiguities, then we refer to the object as being ory to two dimensions. Although progress has been made,-&13

unique. A solution is considered to be ambiguous only if it the level of understanding of the 2-D problem has not yet

differs from the object in ways other than these omnipresent matched that of the 1-D problem.

ambiguities. One of the most enlightening developments has been the
If nothing is known about the object, then reconstruction work of Bruck and Sodin,14 who modeled the object distribu-

from its Fourier modulus is generally ambiguous except for tion as an array of delta functions on a regular grid. Then
special cases. Fortunately, for many applications one has the continuous Fourier transform becomes the discrete Fou-
additional a priori knowledge about or constraints on the rier transform (DFT),
object. In the astronomy application, for example, the ob- Flu, v) IF(u, v)exp!i~Uu, 0)J = DFT[f(x, y))
ject's spatial brightness distribution, f(x, y), is a real, non- M-1 X
negative function. For several applications, one has a sup- ,(xy)exJj2 (
port constraint, i.e., the object is known to be zero outside X' - + 2N ,(
some finite area. Even if the support constraint is not x-0 -O
known a priori, upper bounds can be placed on the support where the DFT is taken over a 2M x 2N array but f(x, v) is
of the object since it can be no larger than half the diameter zero outside an M X N array in order to avoid aliasing in the
of the autocorrelation along any direction. Additional inea- computation of r(x, y) -knd IF(u, v)12. For this discrete case
surements or other forms of a priori information may be the Fourier transform gi. •, in Eq. (3) can then be expressed

0740-3232/90/030412-16502.00 C 1990 Optical Society of America
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as a polynomial of two complex variables, z = expjpru/A! consistent (to within the noise) with the noisy Fourier-mod-
and u, = expti~rL/AN). It is also equivalent to the z transform. ulus data. Under this circumstance the object may be con-
Then the presence of ambiguity in the phase-retrieval prob- sidered to be ambiguous in a practical sense. even though it
lem is equivalent to the factorability of the polynomial. may be unique, traditionally speaking. Up to this point it
This explains the vast difference between the I-D and 2-D was not known how close an arbitrary polynomial is. on the
cases, because polynomials (of degree 2 or greater) of a single average, to a factorable polynomial. Furthermore. the exis-
complex variable are always factorable, whereas polynomi- tence of ambiguous objects close to a given object is likely to
als of two (or more) complex variables are rarely factor- cause the existence of local minima in which iterative recon-
able.--"', Other interesting results have been obained by struction algorithms will become trapped. Current theory
exploiting this discrete model. Fiddy et al.'7 and Nieto- has not adequately addressed these questions. even for the
Vesperinas and Daintyv5 described an object support that, discrete model. These questions can be answered. though.
by virtue of Eisenstein's irreducibility theorem, guarantees by numerical means, as will be seen below.
uniqueness. Brames' 9 showed that any discrete object hav- One way to test for practical uniqueness is the use of the
ing a support whose convex hull has no parallel sides is iterative Fourier-transform algorithm,.-'2--2 ' "f multiple so-
unique among objects with supports having the same convex lutions exist, then the algorithm tends to find all of them if
hull. so if the convex hull of the support of such an object is many reconstructions are performed, each starting from a
known a priori, then it is unique. For these cases, there also different array of random numbers as the initial estimate.2 •
exists a closed-form recursive reconstruction algorithm.20 .2  In most instances investigated, when the algorithm is ap-

Whether the objects are discrete or continuous, it is easy plied to the Fourier modulus of an object of interest, if it
to make up cases that are ambiguous. If g(x, y) and h(x, y) does not stagnate25 it reconstructs essentially the correct
are two functions of finite support with Fourier transforms object,2" giving strong evidence of uniqueness for those types
G(u, c) and H(u, 0) respectively, then the convolutions of object. Furthermore, when noise is added to the Fourier-

modulus data, the result is usually a noisy image of the
object rather than a completely different reconstruction.2 -9

and contrary to some predictions. 30  While this approach has
provided some assurance that the phase-retrieval problem is

f,(x, y) = gtx, y) * h'(-x, -y) (5) usually unique in the practical sense even in the presence of

are different objects as long as neither g nor h is conjugate noise, it has not yielded any quantitative results on the
aredifr ent objey has long ueiter transformis conprobability of uniqueness for any given level of noise.

An important consideration in the probability of unique-

F,(u, 0) i G(u, til(u, 0) (6) ness is the set of constraints placed on the object. In all

and cases we assume that the object has finite support (it is zero
outside some finite region). The support of the object plays

F0 (u, v0 - G(u, ')H*(u, v) (7) a crucial role. If the object has a delta function known to
satisfy the holography condition." then it is unique. As

that have the same modulus, mentioned above, discrete objects having certain supports
IF,(u, v)0 = IF.(u. v) - IG(u, v)[[H(u, v)0, (8) are guaranteed to be unique.'I1 9 In addition, objects having

separated parts are more likely to be unique. 2 Although it
and the objects f, and f2 are ambiguous. This demonstrates is less well understood. nonnegativity also plays an impor-
the equivalence of phase-retrieval ambiguity to convolutions tant role in uniqueness.
in the object domain (Eqs. (4) and (5)] and factorability in In this paper we establish a methodology for determining
the Fourier domain [Eqs. (6) and (7)]. Furthermore, if there the probability of phase-retrieval uniqueness in the practi-
are K irreducible Fourier factors, then there are 2 K'-I ambig- cal sense. We have developed a method, suitable for small
uous solutions. By this convolutional (products or factors in images, for answering the questions: Given an arbitrary
the Fourier domain) method, it is possible to make up an object and its Fourier polynomial, how close is the nearest
uncountably infinite number of ambiguous cases even factorable polynomial, and does it have an ambiguous solu-
though the theory indicates that ambiguity is rare (of zero tion that is significantly different from the given object? In
probability) in two dimensions. Consider that it is also true this paper we explore this question for the case of objects
that any randomly chosen real number has probability zero defined within 2 X 2 and 3 X 2 supports. A derivation of
of being a rational number (almost all are irrational num- object-domain conditions for factorability provides a means
bers). Yet any real number, even if irrational, can be ap- for finding nearest factorable polynomials through a con-
proximated arbitrarily well by a rational number. Thus the strained-minimization search over the space of 2 X 2 or 3 x 2
fact that the probability of any given object's being ambigu- ambiguous images. These searches are implemented with
ous (the Fourier transform being factorable) is zero is not different object-domain constraints in a Monte Carlo simu-
necessarily comforting. lation to estimate the probability that the nearest factorable

Sanz et al. have shown that the "uniqueness condition is polynomial, with an ambiguous solution that is significantly
stable in the sense that it is not sensitive to noise. "- How- different from a given object, is within some distance of the
ever, their analysis does not shed light on a more practical given polynomial. Before describing these main results, we
definition of uniqueness. If a given nonfactorable polyno- first define the pertinent error metrics and discuss some
mial is near enough (in an integrated mean-squared differ- preliminary results of a grid-search method for finding local
ence sense) to a factorable polynomial, then the ambiguous minima in phase retrieval, and relationships among minima,
solutions associrited with the factorable polynomial will be ambiguities, and phase-retrieval stagnation.
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2. OBJECT-TO-FREQUENCY-DOMAIN
MAPPINGS AND ERROR METRICS [ag(x, V) - #X. y)I

A useful means for visualizing the ambiguity problem is b(g, P Q 1)
through a mapping between the space of objects (images) V f-, x, N)and the space of Fourier moduli as illustrated in Fig. 1. InFig. I each domain is a finite -dimensional space in which any ..

one point represents a 2-D function. In this diagram iF(U,. where
0l1 represents Fourier-modulus data for a unique object and
IG0Iu. t0)1 modulus data for an ambiguous object, since both
g,, and g., map into it. We refer to g, and ga, as ambiguous
counterparts of each other, gotten by conjugating one or
more of the Fourier-domain polynomial factors. For the and x and v summations are taken over 0,. .... M- 1 and0.
case depicted in Fig. 1. as indicated by the distances between 1 .. N - 1, respectively. The parameter a(, takes into
the points, two widely different images, f and g8., may have account any differences in scaling and polarity between g
similar, but not identical, Fourier moduli. Thus, although f and f. Translations are ignored here because the support
is unique, one might unknowingly reconstruct g., by a phase- constraint automatically rules them out. Because g(x. y)
retrieval algorithm given a noisy measurement of LF1. and its twin, g(M - 1 - x, N - 1 - y), share the same Fourier

The following error metrics provide a means for quantify- modulus, we compute 6(g, f) for both g(x, y) and its twin and
ing differences in both domains. These metrics are the use the smaller of the two values of 6. Of particular interest
focus of the numerical approach presented in this paper, from the point of view of phase retrieval are images that have
(Other related error metrics are also useful.) Given two a small Fourier-moeulus error f, but a large object-domain
real-valued functions g(x, y) and f(x, y) defined on an M X N error 6, since these images mey be ambiguous in the practical
support and zero padded to a 2M x 2N array, we define the sense.
Fourier-modulus error, the error (distance) between IF(u, v)l
and IG(u. 0I, as 3. GRID SEARCHES

V2 Our first approach to understanding the relationship be--. 01 I u)01 1
I' tween and 6, for a collection of images g relative to a given

ea*JG(u, c)I - Flu, object f, was by a grid search. What we mean by a grid
dg, )a (9) search is illustrated as follows for the case of 3 x 2 (M = 3. Nji = 2) objects. Given a 3 X 2 objectf, we calculate and b for•" IF~, v~l:all 3 × 2 images g -f g,,f + gin¢, where g,.f is another 3 × 2 real-

L valued image and
where rs 1 S2 s31

gn, = [S 'J, (13)

IF(u, 01)2  where, given a real-valued increment As, each s, can assume
a/= (10) valuesinthesetlkAs;k - -L,-L+1,.... 0.1,.... LI. Ifwe

V )J OFthink of both f and g as points in a six-dimensional (6-D)
SIG(u. space, then we are calculating ( and 6 for all g's sampled on a

"symmetric 6-D grid of step size As centered about the point
ig.f, with the grid width equal to 2L'+ 1 steps in each of theis an energy normalization factor, G(u, v) = DFTIg(x, y)}. si iesos

and u and v summations are taken over the intervals 0. , This search can become quite extensive as the grid width
.... 2M - 1 and 0. 1 ... , 2N - 1, respectively, increases. Since the number of different gse 's (grid points)

A similar metric defines the object-domain error between is e n aive-te ser of 2)reure s 1r.625v{~ ) and g(x. y,): is (2L. + I)6, even a rive-step search (L -f 2) requires 15.625calculations of f and 6. If the search uses the zero image for

gr,, we can cut down on redundant calculations of e by

Spac of Objects Spae of Fourier Modulus eliminating twin images and images with polarity [sign of
------ --- -----.- F(0, 0)] opposite f. Note that the saving is in the calculation

of f. which is computationally more expensive than the cal-S•!~liiii•! :!li~~Ii! culation of 6.

v 7 :4 Grid-Search ExampleP •lu!v)Ii! The use of a successively finer grid search to find minima in,
* - (which could constitute a phase-retrieval algorithm) and

f shed light on the properties of e and 6 is illustrated in the
following example. An integer-valued image / was chosen:

Fig. 1. Object-space to Fourier- modulus-space mappings of a r 2 =
unique object / and a pair of ambiguous images (g., g.,), with error f[. [ -14)
metrics 6 ande . 2 1 2(
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*°ST of 6. The minimum value of e for this grid search corre-

sponds to the image

S0.9:-÷
91 (16)i:.,!-2 -7 '16

5. with 6(g1, f) f 0.704 and (g1, f) = 0.0648.
We performed a third five-step search, with gre, = g, and

- U As = 1/9. The image corresponding to the minimum ( for
5 :this search is

g, 3 9 119

0 9. (17)

6 (OJECT-0O0tIN ERROR)

Fig. 2. Fourier-modulus error versus object-domain error 6 for a with 6492, f) = 0.666 and f((2, P) f 0.0569.
five-step grid search with step size As = 1. The minimum value of(
(excluding g = f) is boxed. Iterative Grid Searches

The iterative searching above is an approach for finding
minima of c. It is summarized more generally by the follow-

A five-step search (L = 2) was implemented with gref equal to ing steps for the case of M X N = 3 X 2.
the zero function and with As = I; i.e.. the pixel values ofg are
taken from the set 1-2, -1, 0, 1, 21. Since the search is (1) Initialize. Choose gre,. the number of search steps
centered about the zero function, the twin and polarity (2L + 1), the step size (As), and a step-size reduction factor
search-reduction techniques mentioned above were imple- (r).
mented. The results are displayed in Fig. 2 in the form of a (2) Perform a 6-D (2L + 1)-step search with g = g,,f +
scatter plot of ( versus 6. Several features of the scatter plot gino where
are noted:

(1) e is less than or equal to 6. The proof of this fact is rs1  s s
given in Appendix A. mnc =| " J (18)

(2) The vertical striping reflects the discrete nature of Ls s4 "6

the search, i.e., the elements of g take on only integer values, and each si, j = 1, 2-... 6, is from the set lkas; k = -L, -L +
(3) 1 and b can both be greater than unity, despite the I_ 0, Lt.

normalization that takes place in the denominators of Eqs. (3) Set gO f equal to the image. g, which has the minimum
(9) and (11). value of t found in the search of the previous step.

(4) The scatter plot exhibits a banded type of structure, (4) Set As equal to Asrh.
i.e., the points tend to cluster in a region where both 6 ande (5) Stop if the stopping criterion is met; otherwise go to
are large. This is not surprising, since we expect most im- step 2.
ages that are quite different in the object domain to be quite
different in the Fourier-modulus domain as well.

The single point of greatest interest, an outlier with large 6
and relatively small t, is outlined by a box in Fig. 2. It
corresponds to the image

go = ' (15) [.1

with b(gn, f) - 0.714 and E(go, f) - 0.124. It is the point 2
within the grid search with the lowest value of e aside from g 5
=/. Since it represents the point on the grid search closest 0.01
to being a serious ambiguity, we explored it further by per-
forming another five-step search, with g,. - go of Eq. (15)
and a step size of As - 1/3. Because g,,f is not the zero
function, no data reduction was implemented, and e and t
were calculated for the 15,625 different grid points. Figure 0.05
3 shows the scatter plot for this second search for e < 0.125. 6 (OBJECT-ODOMAIN ERROR)
It is apparent that our initial search with unit steps was quite Fig. 3. Fourier-modulus error e versus object-domain error 6 for a
coarse and that, compared with go, there are images with five-step grid search with As - 1/3 about the minimum of the grid
significantly smaller values of ( and comparably large values search of Fig. 2. All points satisfyinge < 0.125 are shown here.
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The stopping criterion is based on the percentage change
in the minimum value of e from iteration to iteration, or set
for a maximum number of iterations, whichever is satisfied
first. For a large value of L. the search time is prohibitive,
but the sampling is finer. Also, the initial step-size and )......... 6

step-reduction factor must be chosen carefully, since the 1. OBEV-2O:- 4 EQROR

step size at the kth iteration is As/(r•-). If r is chosen too _
large, the grid may shrink too quickly to progress to a mini-
mum. If As is too small, the minimum might not be found =
because it lies outside the initial grid. The most reliable Ei

search uses a slowly shrinking grid with a large number of -

grid points (large L) that samples the space over a large
region. The more finely we sample the space, the more
computationally burdensome the algorithm becomes, yet a
coarser grid would leave doubt about the reliability of our
minimum. -0

This iterative search could constitute a phase-retrieval
algorithm. However, it would be a computationally ineffi- Fig. 4. (g.• f and 6(g, versus t for g f + tt•g, - f3. the line
cient algorithm, requiring many thousands of DFT's to con- joining f and g ....
verge to a solution for the case of larger objects. Here we are
using it only to find a local minimum (the global minimum is
at g = f for whiche = 6 = 0). When ER is performed on IFl with g,,, as the initial guess.

The iterative grid search was tested for f given by Eq. (14) stagnation occurs immediately, giving further evidence of

and with the following three sets of parameters: (1) L = 1. the presence of a local minimum.

As = 1/2, r = 2; (2) L = 2, As = 1/3, r = 3; and (3) L = 3, As = As another test of ER's tendency to stagnate at a mini-

1/4. r = 4. Each iterative search started with grf = go given mum in e, we use g's corresponding to different values of t in

by Eq. (15), corresponding to the minimum f found in the Eq. (20) as initial guesses. These values are selected on both

first search described above. Each of these searches found a sides of the peak in the t curve in Fig. 4. We might expect

scalar multiple of the same image, gmn, given by values of t chosen on the right-hand side of the peak to

-1 correspond to initial guesses that stagnate at gi,,, and guess-
a 0L.623 -0.749 -2.53, (19) es chosen to the left of the peak to converge to the correct

g- = Ll-149 -0.659 -2 .5 3 0j' solution, f. Several values of t were selected on both sides of

with 6(gin,n, f) = 0.667 and I(gmn, o - 0.0558. This probably the peak, and the predicted result was verified for all initial

represents a deep local minimum for the phase-retrieval guesses.

problem and could represent a practical ambiguity if the The hybrid input-output (HIO) version of the iterative

noise in the Fourier modulus data were to exceed ngmln, Ao Fourier-transform algorithm24 is one way of climbing out of
local minima. Simulated annealing33 is another. Cycles of
HIO iterations followed by ER iterations2 4 were used with a

4. MINIMA AND PHASE RETRIEVAL variety of starting points: go, g1 , g., and g,,,,. In each case

The minimum in e, represented by g.n,, found in the iterative the HIO/ER combination converged to the correct solution.

grid searches described above, represents two potential f, although ER by itself stagnated in each of these same

problems for phase retrieval. First, a relatively small error cases. As we will see below, HIO is not always sufficient to

in the modulus data (5.58%) could cau.- the data to be overcome stagnation.

consistent with gr,, which, if reconstructed, would have a
very large object-domain error (66.7%). Second, even when S. MINIMA AND AMBIGUOUS IMAGES
it is performing phase retrieval with error-free modulus
data, the algorithm could get trapped and stagnate at this A clue to the understanding of the stagnation point de-

local minimum. In particular, the error-reduction (ER) ver- scribed above is its relationship to ambiguous images. Con-

sion of the iterative transform algorithm is equivalent to a sider again the object f given by Eq. (14). Using methods

steepest-descent gradient search method on a cost function that are described below, one can verify that the 3 X 2

closely related to (.2
4 Thus, if the local minimum found in ambiguous image whose Fourier modulus is closest to the

our iterative searches were a true local minimum, the ER Fourier modulus of the object f is
algorithm could stagnate at this image, unable to find a
direction in which to descend. To visualize how and 6 vary gJ 0 .3594 1.624 -1.211], (21)
around gra,, we plot i and 6 along the line joining f [Eq. (14)] L2 . 3 30  1.415 -. 7 3 0

and g,,, [Eq. (19)J. Figure 4 shows eig, f) and 6(g, f) versus t
for with 6(g.. f) , 0.217 and e(g., f) - 0.0859. The ambiguous

counterpart tog. (gotten by conjugating one of the factors of
g = f + t(gA,. - A). (20) Go(u. v)] is

While Fig. 4 represents only a 1-D slice through a 6-D space, = [-0.363 -0.618 1.9871
it gives the appearance of a minimum in t at t - I(1 - g,,), g _-1.422 0.600 2.837]' (22)
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with 6(gac, [) = 0.677 and t(g,, f) = 0.0859. A comparison of Space of Oblaci Spsee of Fouaer Modulus

gmn [Eq. (19)] with -g., iwhich. for our purposes, is equiva-

lent to g,,) reveals a similarity between this pair of images.

The error metrics reveal their similarity in both domains:

{-ga, gm,) = Mg,, g,,,) = 0.113 and E(ga, gm,nI = 0.0663. gag

Because -g,. and gi,, are quit similar, we might expect

the ER algorithm with an initial guess of -g,, to stagnate at 0 0 IF-

... This is indeed the case after approximately 50 itera- f
tions. This result, coupled with the similarity between /
[Eq. (14)] and its nearest ambiguity, ga. might lead us to ,

conclude that ER would find the correct solution if it were . L . .._I

started with an initial guess of go. This is not the case. Fig. 6. Object-space to Fourier-modulus-space mappings of an ob-

however, and the algorithm stagnates after fewer than 20 ject f, two stagnated images g,,,, and R,_. and the nearest ambigu-

iterations at ous image to f with respect to the Fourier-modulus error ig,. g,, .

[0.694 1.778 -1.010] (23) [0.476 3.244 1.379]

= 2.235 1.355 -1.856J f =[1.659 2.939 1.102' (24)

r0°'867 3.521 1.2781

with 6(g,,., f) = 0.152 and t(g,,,. f) = 0.0631. This stagna- go 1.867 3.651 1.278]J (25)

tion point is close to go, with 6(g., g,,,,) = 0.0828 and e(go. 1.679 2.651 0. 7 9 6

gj,=) = 0.0577. Because gsts is not in the range of the g = [0.350 2.146 3.171],
iterative grid searches that found g,,, it was not found =0.677 2.475 1.974J (26)

earlier. A plot of ( and 6 along the line joining / and g,,, is
shown in Fig. 5. Despite the difference in vertical scaling, with 6(go, f) = 0.128. 6(g.,, f) = 0.502. and (go, f) = ( 41 =

the minimum in Fig. 5 does not appear to be as deep as that 0.00861. This is a case of a close ambiguity; i.e.. the object. f.
in Fig. 4, so one would suspect there might be a good chance would be ambiguous in the practical sense unless the data.
of perturbing gwg enough to get the algorithm out of stagna- IFl, were low in noise. The ER algorithm was run close to
tion, As with gn,,, it was verified that the HIO is able to 900 times on IFI using a nonnegativity constraint, each time
move out of stagnation at g,,., and to the solution. with a different random initial start. The algorithm con-

Figure 6 depicts the possible relationships in both do- verged to the correct solution f of Eq. (241 only I0c of the
mains between f, its nearest ambiguous image and counter- time. The algorithm stagnated near go approximately 9c of
part, and the two stagnation points. From the previous the time and at several images close tog , , the restofthe time
results we form the following conjecture: For a given object (81%). When a combination of HIO and ER was used with
f and its Fourier modulus IF1, stagnation points of the itera- the same set of random starts, convergence to the solution I
tive transform algorithm (particularly ER) tend to be near was improved to a 26% rate. 74% of the time the algorithm
ambiguous images that have Fourier moduli close to IF1. stagnated at one of two different minima. g.: and g,. each
This conjecture is supported more strongly by the following close to the image gc in Eq. (26):
example.

Consider the following image f and its nearest ambiguity, g=i [0.353 2.143 3.172] (27)
go, with ambiguous counterpart g.c: 10.684 2.470 1

35% of the time, with 6(gsi, gec) = 0.00195 and e(g 1, g,,) =
o - 0.00144, and

9 0.266 1.876 2.971]
_g 2  [0.746 2.711 2.222] (28)

0.3 , 0u~it5-,00uLu5 (5505 39% of the time, with 6(g,2, gd) = 0.0978 and e(g,_, g.,) =
(O0JEC-0OMaIN ERROR) 0.0115. The imagesgs, andg.,2 are analogous tOg,, in Fig. 6.

While convergence to g,, is bad in the sense that gI is differ-

S:.2 ent from the solution f (6(g,h, f) "0.502], it is still consistent

with the given data [e(gI,/1 ff 0.00848] and could be consid-
ered a solution (albeit the wrong one). The stagnation at g,:
is even more troublesome since it is not only similarly consis-

- tent with the given data (Eg9,2 f) = 0.00869] and far from f
[49(2,/,) - 0.511] but also is not so close to g.c t6(g.I, go,) f
0.09781.

A complete understanding of phase-retrieval stagnation
.0 points and their relationship to ambiguous images is not yet

available. However, from the limited number of experi-

Fig. 5. t(., f) and Mg, f) versus t for g - f + - f), the line ments of the type described above, we can say that stagna-
joining fand g,-m. tion points are often related to ambiguous images.
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6. NEAREST AMBIGUITIES Note that the inequalities of relation (32b) combined with

In this section we investigate the space of ambiguous images Eq. (32a) imply that Ibi * (dl * Id.

in order to gain some insight into just how close the nearest Equation (32a) describes a three-dimensional surface in

ambiguous image is to a typical image. This may in turn the four-dimensional space of real-valued 2 X 2 images.

have implications about how nearest ambiguities relate to While it is accepted that there is zero probability that an

stagnation points encountered in iterative phase retrieval, arbitrarily selected object will land on this surface, i.e., the

It also will tell is the probability of an ambiguity in the phase-retrieval problem is almost always (with probability

practical sense, as a function of the noise in the Fourier- 1) unique, in this paper we are concerned with how close the

modulus data. Fourier modulus of a given object is likely to be to the
Fourier moduli of images lying upon this surface.

Object-Domain Conditions for Ambiguity
As described above, ambiguous images are characterized in 3 X 2 Ambiguity Conditions

the Fourier domain by factorable Fourier transforms and in The same approach is used to formulate object-domain am-

the object domain by being expressible as the convolution of biguity conditions for 3 x 2 images. A 3 x 2 image results

two or more smaller images. We choose the object-domain from convolving either (a) a 3 X 1 sequence with a 1 x 2

relationship to characterize the space of ambiguous images. sequence or (b) a 2 I sequence with a 2 X 2 image. Since it

We begin by deriving the ambiguity condition for the small- is known that any I-D sequence can always be written as the

est possible 2-D ambiguous image (2 X 2 support) and then convolution of smaller sequences, we can write the 3 x I

similarly derive it for a 3 x 2 support. sequence of case (a) as the convolution of two 2 X I se-
quences. We can then combine one of these factors with the

2 x 2 Ambiguity Conditions I X 2 factor to give case (b). Thus we need only consider

Consider the case of a real-valued image on a 2 X 2 support. case (b), and our 3 X 2 image is ambiguous if

It is ambiguous if it can be expressed as the convolution of a b c i
two 1-D sequences: [ b de ][g It[ I ]

[a d ]= [ý ].i h][gi hi +gj hi] (3

h] 
gk hk + gi hi

ffi fh]' (29) where g and h are nonzero and none of the pairs (i and j) or ( i
and k) or (j and 1) or (k and 1) is zero. This gives six

where e, J, g, and h are all nonzero (for simplicity only the nonlinear equations for a, b, c, d, e, and f in terms of g, h, i. j,

nonzero rows and columns of the arrays are shown). This k. and 1. As is shown in Appendix B, these equations can be
gives the following equations for a, b, c, and d: solved to give the following ambiguity condition:

a = eg, (30a) (af - cd)2 - (ae - bd)(bf - ce) = 0. (34)

b = eh, (30b) Equation (34) describes a five-dimensional surface in the 6-
c = fg, (30c) D space of real-valued 3 X 2 images. In comparison, for the

d = fh. (30d) 2 X 2 case the ambiguity surface describes a three-dimen-

Multiplying Eq. (30a) with Eq. (30d) and Eq. (30b) with sional surface embedded within a four-dimensional space.

Eq. (30c), we arrive at the following 2 X 2 convolution condi- Appendix B also shows that Eq. (34) can be solved to give.
tion: for example, b in terms of the remaining five values:

ad =bc. (31) b .~[e( + a) + (e' - 4df)1V2 ( a -(3))

In this case a single ambiguous counterpart to an image

satisfying Eq. (31) is generated by convolving one of the I -D An ambiguous, real-valued 3 X 2 image arising from the

sequences by the flip (rotation by 1800) of the other (equiva- convolution of a 2 x 1 sequence with a nonfactorable 2 X 2

lent to conjugating the corresponding Fourier factor). How- image can be shown to have an ambiguous counterpart that

ever, if e - f and/or g = h (i.e., one of the I-D sequences is must also be real valued. Hbwever, if the 2 X 2 convolution

symmetric), then flipping the factor has no effect, and the factor of Eq. (33) can itself be factored, then we have the case

image is still unique. Furthermore. if e -f and/or g w -h, of a 3 X 2 image resulting from the convolution of a 3 X I
then a flip of either convolution factor becomes the negative sequence with a 1 X 2 sequence. An ambiguous, real-valued

of the original factor. Since we do not consider two images image formed in this way will have rows that are scalar

that differ by a scalar multiple (-1 in this case) as ambigu- multiples of one another; i.e., a - Kd, b - Ke, and c = Kf for

ous counterparts, we must also rule out this special case of some scalar K. This condition makes each difference term
negative symmetric factors. Therefore the image is unique in Eq. (34) equal to zero. It is straightforward to show that if

if lel- i/A or if •gi (hi. From Eqs. (30) we see that, if lal = 1cl b 2 < 4ac, then this real-valued ambiguity will have a com-

or IbN - dl, then lel -, K and if lal - Ibi or [cl - (dl, then Wi - plex-valued ambiguous counterpart. If the image is con-

lhl. When these special cases are combined with Eq. (31), strained to be real valued, then this complex-valued image
the ambiguity condition for the case of 2 X 2 support be- does not constitute an ambiguity within the space of real-
comes valued images, Furthermore, because this special case is a

small subset of the entire ambiguity surface, we expect it to
ad - bc. (32a) have a relatively minor effect on the likelihood of stagnation

IbI * lal P, I. %32b) due to nearby ambiguities.
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....~a ~a~O .o..,o S •*'~ ~ uouE Given an object f, find the i that minimizes the objective

function E(k) subject to the ambiguity condition hi±) = 0.

" " .The two image supports for which we have derived ambi-
.'I. *.1,o guity conditions [Eqs. (32) and (34)] give rise to the followingS• , • 0 • ". ,"-- •' {)

uNICUE Eý 3- 4

i INIQ UE 2x 2 Images(L = 41

a h(i) =ad - bc =O, (37)
• C I UNIQUE

3 x 2 Images (L - 61

h(i) = (af - cd)2 - (ae - bd)(bf - ce = 0. (38)
0. -*4. " °" SIGUOUS

0•. , o a C,•

'ES

o . , 1' UNIQUE Iterative Constrained Minimization
SUsing the mathematical framework developed above, we

AfASGUOUS now implement a generalized reduced-gradient (sometimes
Fig. 7. Flow chart for determining the ambiguity of the 3 X 2 real- referred to as a gradient-projection) method.4 to find the
valued image of Eq. (33). Multiple conditions in a box must all be nearest ambiguity to a given image. This method is ex-
satisfied for "YES." except where "ur" is specified. plained in detail in Appendix C and is summarized below.

In an unconstrained gradient-search method, we search
for a minimum to the objective function Eli) in the direction

The ability to factor an image into the convolution of two of -vE(&), the negative gradient of that function. In a
or more images is necessary, but not sufficient, for determin- constrained search we still would like to follow the negative
ing ambiguity. When we discussed the ambiguity condition gradient, but we are constrained to move along a particular
for 2 x 2 images, we considered the special cases of what we surface within the space, described by the equation h (.) = 0.
called symmetric and negative-symmetric convolution fac- We alter the search direction by projecting -VE(x) onto a
tors. These special cases, as well as the effect of zero-valued tangent plane of h(i), and we then move along the plane in
pixels, also must be considered for 3 x 2 images. To save the direction of the projection, p, as depicted in Fig. 8.
space, rather than discussing these exceptions in detail we Then, from a point along p, which is generally not on the
summarize them in the ambiguity flow chart in Fig. 71 constraint surface, we find a nearby (not necessarily the

closest) point on the constraint surface. The method used
Nearest Ambiguity by Means of Constrained here to return to the constraint surface is detailed in Appen-
Minimization dix C. The search for the solution is iterative, and we define
The mathematical description of ambiguities for 2 X 2 and 3 our estimate of the solution after the kth iteration as ti. At
x 2 images can be used to investigate the nearness of a given the solution, t,, -VE(i) is perpendicular to the tangent
object to an ambiguous image. We formulate the task of plane to the constraint surface, and the projection onto the
finding the ambiguous image nearest a given object as a tangent plane is zero.
multidimensional constrained-minimization problem. By It is difficult to determine whether the minimum found is
nearest ambiguity we mean the image on the ambiguity indeed the global minimum or just a local minimum. In a
surface for which some objective function involving the am- numerical simulation such as this, one can gain confidence in
biguous image and the given object is minimized. For the claiming a minimum as global only through repeated search-
objective function we choose ing with different initial guesses. Our practical criteria for

claiming that a minimum, t,, is global is that E(i,) is the
E(g, I -• [JIG(u. v)0 - IF(u, v)1]2, (36) smallest among all minima found and that it is found more

7, than twice as many times as the total number of minima

which is just (2 (g, f) of Eq. (9) with at - 1 and without the
normalization. rh() .vE(Rk)

Each M X N image, having L - M X N pixel values, can be h() #vE(•k
thought of as a single point in an L-dimensional vector space. _,
To emphasize this fact we can denote an image g by the L- Ok
dimensional vector 1, where 2 - (a b c d)0 for the 2 X 2 case
and I - (a b c d e f)' for the 3 X 2 case (the ordering of the
pixels in the vector x is arbitrary). Therefore, for a given
image f, we desire to find t (or g) on the ambiguity surface
that minimizes E(1) a E(g, f). (Note that if we did not
constrain I to be on the ambiguity surface, then we would
just be solving the phase-retrieval problem!) If we define Fig. 8. Gradient-projection constrsined-minimization algorithm.

The search direction is determined by projec•tng the negative gradi-the ambiguity surface by h(2t) - 0, then the problem of ent of the objective function onto the tangent plane to the constraint
finding the nearest ambiguity to f can be stated as follows: surface.
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found, which must be more than four. If the above criteria cases: (1) 2 X 2 objects without a nonnegativity constraint
are not satisfied after 40 different minima are found, then on f, (2) 2 X 2 objects with a nonnegativity constraint, (3) 3 x
the one that minimizes E({ is chosen (and we simply realize 2 objects without a nonnegativity constraint, (4) 3 X 2 ob-
that it may not be the global minimum). It should be noted jects with a nonnegativity constraint, and (5) L-shaped (with
that at points on the surface where vh(i) = 0 the tangent b = c = 0)3 x 2objectswithanonnegativityconstraint. The
plane is not defined. If such a singular point is encountered five cases above represent different constraints on f. The
the search may terminate without satisfying a convergence only constraint on the worst-case nearest ambiguity, ga,, is
criterion, but the estimate at the singular point may still that it lie upon the ambiguity surface corresponding to the
minimize the objective function over all other estimates (see support off.
Appendix C). A typical scatter plot of -4000 points required -110 h for

Although the constrained-minimization algorithm mini- the 2 x 2 objects and - 1500 h for the 3 x 2 objects on an IBM
mizes an objective function defined in Fourier-modulus AT personal computer.
space, the search itself takes place on surfaces in object The scatter plots of t versus 6 for the 2 X 2 support cases
space. The minima found on the surface of Eq. (37) will (1) and (2) are shown in Fig. 9. The points that would cause
always correspond to images with two convolution factors, trouble are those that have small Fourier-modulus error
and that usually will be the case for the minima found on the (FME), f, and significantly larger object-domain error
surface of Eq. (38) as well. Thus the nearest ambiguity in (ODE), 6. These troublesome points are likely to induce
Fourier-modulus space to an object f corresponds in object phase-retrieval algorithm stagnation and/or are ambiguous
space to any of four imag.s (not counting scalar multiples of from a practical point of view when the Fourier-modulus
these images): the ambiguity, its ambiguous counterpart, data are sufficiently noisy. One definition of a trouble re-
and the twin image of each. So, once we have an estimate of
the global minimum with respect to Fourier-domain error
[Eq. (36)], denoted by gi, we calculate the object-domain 0.5,
error 6 for g, and its twin image, retaining the smaller of the
two values. We then find the ambiguous counterpart to gi,
denoted bygl, by convolving one of the factors ofg, with the 1 ". :0

0
twin of the other. After finding the smaller 6 for gl, and its .
twin, we keep as the worst-case nearest ambiguity the larger
of this 6 and the one retained for g, and its twin. Referring 0 0.3

back to Fig. 1, the smaller value of 6 corresponds to the
nearest ambiguity in the object domain, g., and the larger
retained value of 6 corresponds to its ambiguous counter- 0.2

part, g., the worst-case nearest ambiguity. Although go and
g., are both nearest ambiguities to f with respect to Fourier- !
domain error, we differentiate them by defining the worst- • 0.
case nearest ambiguity as the one with the larger value of the
object-domain error, 6. with respect to /. The worse-case

nearest ambiguity corresponds to the point in object space 0 0.5
farthest from the true image that either is likely to cause 6 (o8J_- T0,31A:N E ;:

local minima to trap phase-retrieval algorithms or could be (a)
confused with the true image if the squared error in the data
exceeds E(U).

Monte Carlo Simulations

To investigate the prevalence of ambiguities we implement-
ed the constrained-minimization nearest-ambiguity search .
in a Monte Carlo simulation in which nearest ambiguous • -
images were found for a large number of random objects f(x,
y). Each pixel of the object was an independent, real-valued • t
random number uniformly distributed on the interval [-2, 1 0.2.

21 or 10, 4) for nonnegative objects. The results of the Monte :
Carlo simulations are presented in the form of scatter plots -
of f versus 6 for the worst-case nearest ambiguity. For each .

random object f, the value of t for the nearest ambiguity is
plotted versus the worst-case 6. The interpretation of these
scatter plots should not be confused with that of the grid- C

search scatter plots shown above. Recall that all the (6, e) 6 O 1T-OOmUN ERROR)
pairs in a grid-search scatter plot are calculated by using a
single object f and have nothing to do with ambiguities, while (b)
each (6, 0) point in Monte Carlo scatter plot represents met- Fig. 9. Fourier-modulus error ( versuis object-domain error 6 for

worst-case nearest ambiguities to 2 X 2 objects. (a) No nonnegati-
rics for the worst-case nearest ambiguity to a different ran- vity constraint. 4752 objects; (b) nonnegativity constraint, 4486
dom object f. We computed these plots for five separate objects.
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.2 :--L-S and (4)) reveals the opposite trend. Figure 11 shows the i

S C N '. versus 6 scatter plots for the nearest 3 X 2 ambiguities with

S!c::-- and without a nonnegativity constraint on f. With no non-

S, ". > 4E negativity constraint. the scatter plot of Fig. I I (a) is uniform
.0::-, 6 > :0c in appearance. indicating a greater likelihood of nearby am-

biguities in the trouble regions. With the nonnegativity
constraint. Fig. 11(b) shows a high concentration of points in

- "the large f, large 6 region of the plot. away from the trouble
"region. It is the nonnegativity constraint that creates the
favorable banding effect for the 3 x 2 case. Integrating
these plots below the K = 4 and K = 10 lines yields the
probability distributions of Fig. 12. In comparison with the
example given for the 2 X 2 nonnegative case. the probability

C: c of finding a worst-case nearest ambiguity with FME f < 0.04
and ODE b > 0.16 is increased to 17% without nonnegativity
but reduced by approximately one half to 9% with the non-

, :6 C :2 3,1 2 negativity constraint on I.
E ;_--: ERRO R; One possible reason that nonnegativity reduces the proba-

Fig. 10. Monte Carlo estimates of the probability that the worst- bility of significant ambiguity for the 3 X 2 case is as follows.
case nearest ambiguity to 2 x 2 objects with and without a nonnega- From Eq. (35) we see that there are no real-valued ambigu-
tivity constraint has a Fourier-modulus error less than ( and an
object-domain error greater than Ke (K = 4 and K = 10).

0.5T

gion is all the points below the line 6 = K, shown in Fig. 9 for
K = 4 and K = 10. That is, we do not consider the practical .
ambiguity problem to be significant unless the error, 6. in the
ambiguous reconstruction or stagnation point exceeds 4 t
times for 10 times) the error in the Fourier-modulus data. .
Only then would we consider the ambiguity to be significant.
(Although it was easy to show in Appendix A that 6 > e for + "

any pair of images, an analgous relationship for an image and • .. -
its worst-case nearest ambiguity has not been developed.) ; - -

Figure 9(a) (no nonnegativity constraint on f) exhibits a ,
banded structure with a higher density of points above the 6 0,
=4t line, which effectively reduces the probability of nearest
ambiguities in the trouble region. Figure 9(b) (nonnegati-
vity constraint on f) reveals a higher density of points in the :
trouble region, particularly for 6 <0.5. Thus the nonnegati- 6 (BJE T-O!1•IN
vity constraint on f actually increases the probability that a

random object's Fourier modulus is close to that of an am- (a)

biguous image for the 2 X 2 case. 0.5
One way to estimate the probability of significant ambigu-

ity is to integrate these scatter plots in the trouble region f
below the line 6 = Kt. If we bin the points below this line 0.1
with respect to (, we can obtain an estimate of the probabili- .
ty-density function of the probability that the worst-case ..
nearest ambiguity has FME e and 6 > K(. Integrating this 0. ,
estimated probability-density function from 0 to t yields an ,
estimate of the probability that the worst-case nearest ambi-
guity to an arbitrary object has less than e FME and ODE a > 0 .

KE. These cumulative probability distributions define what • .
we mean by the probability of significant ambiguity. These ' . :
distributions for cases (1) and (2) are shown in Fig. 10 for K 0.
= 4 and K = 10. Figure 10 verifies our previous observation
that the nonnegativity constraint actually improves the | -

chance of significant ambiguity. For example, these esti- 0.5 5
mated distributions tell us that, given an arbitrary, real- 6 (OBJECT-OOMAIN EQOR1

valued 2 x 2 object, the probability of finding a worst-case
nearest ambiguity with FME , < 0.04 and ODE 6 > 0.16 is (b)
10% forfwithout nonnegativityand 18% for/with nonnega- Fig. 11. Fourier-modulus error f versus object-domain error 6 for

wort-case nearest ambiguities to 3 x 2 objects. (a) No nonnegati-
tivity. vity constraint, 4112 objects; (b) nonnegativity constraint, 4601

The same analysis for the 3 X 2 object support [cases (3) objects.
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.-: and, compared w;-h the 26c, success rate for [with HIO. the

-=': • -•.. -•true solution was found 48%. 49c. and 59- of the time.
respectively, by using HIO on these three objects. Aswithf.

S:Z..: - E: - 4 when the true solution was not found, the algorithm stagnat-
- ed near the worst-case nearest ambiguity 1g., ) to each of the

three objects. Two objects with a worst-case nearest ambi-
guity with i t- 0.10 converged to the true solution 78% and

11: 100% of the time, and another object with a worst-case near-
est ambiguity with = 0.30 converged to the solution 100% of
the time. Thus stagnation tends to decrease as the nearest

. .. -•ambiguities move farther away with respect to t (equivalent-

S ..- ly, as the significance of ambiguity decreases). As men-

tioned above, the limited number of experiments of this type
has not yet provided us with a complete understanding of

.7 phase-retrieval stagnation points and their relationship to
worst-case nearest ambiguous images. Nevertheless. the

Z, - *2 correlation of the object's worst-case nearest ambiguity hav-
e ing large 6 and small if <0.05 for our experiments) with the

Fig. 12. Monte Carlo estimates of the probability that the worst- presence of stagnation points has been convincingly estab-
case nearest ambiguity to 3 X 2 objects with and without a nonnega- lished.
tivitv constraint has a Fourier-modulus error less than e and an The final case investigated is nonnegative. 3 X 2 objects
object-domain error greater than Kt (K = 4 and K = 10).

with b - c = 0. which we call L-shaped objects. The L-
shaped support itself mandates uniqueness; i.e.. it is not

ous images for which e - 4df < 0. Since -4df is negative for possible to convolve two nontrivial functions to obtain an
positive d and f, but is positive if one of them is negative, e- - image with this support. After running the Monte Carlo
4df is more often negative for nonnegative images. Thus simulation for these objects, we discovered a class of L-
nonnegative objects are less likely to have nearest ambigu- shaped ambiguities that gives rise to misleading results.
ities that are nearby (in the object domain) than are objects Consider the object
without a nonnegativity constraint. Since objects that are [1.48155 0 0 3
similar in the object domain will tend to be similar in the =0 0. 16
Fourier-modulus domain, the nearest ambiguities to non- 2.01553 3.97050 0.16831

negative objects are less likely to be nearby with respect to with nearest 3 X 2 ambiguous image
Fourier modulus as well. [1.48170 6.29E-4 -2.78E-31

An important point that should be stressed is that the g0 =12.01419 3.97109 0.16907.]
nonnegativity constraint discussed in this section is on the
object f and not on the nearest ambiguity. Because of this f [1 0.04354] 1.48170 -0.063881 (40)
fact, the nearest ambiguous image to a nonnegative object [2.01419 3.88340]

might not be nonnegative itself; it could contain one or two
negative-valued pixels. Thus a nonnegativity constraint in with 6(., f) = 7.015E-4 and f(go, 4.167E-4. The ambig-

a phase-retrieval algorithm may help to move the image uous counterpart to go, obtained by flipping the first convo-

away from a stagnation point near the ambiguity, and the lution factor in Eq. (40), is

probability of ambiguity in the practical sense would be 10.045354 1] [1.48170 -0.06388]
reduced compared with the results shown here. 1 -2.01419 3.88340J

At this point it is useful to recall the conjecture made in f [0.06451 1.47892 -0.063881.
Section 5, i.e.. that stagnation points of the iterative Fourier- =.0.08769 2.18326 3.88340J (41)
transform algorithm tend to be near ambiguous images that 0

have Fourier moduli close to the given Fourier modulus, Ft. The object-domain error between f and g., as defined by Eq.
The example given in Section 5 used an object f and its (11) is 6(g.,, f) = 1.0629. However. comparison of f and ga,
nearest ambiguity [Eqs. (24)-(26)] taken from the Monte reveals that the image g., is similar to the image [ shifted by
Carlo experiment with 3 X 2 nonnegative objects. Recall one pixel to the right. This is because the first convolution
that, for the object [ of Eq. (24), after numerous trials we factor of Eq. (41) is nearly a delta function, and the second
found two stagnation points, g,1 andg,,, of both the HIO and factor is very similar to the image [ without its right-hand
ER versions of the iterative Fourier-transform algorithm, column. The first convolution factor causes a tapering of
The closeness in both domains of these stagnation points to the image, making one column much smaller in value than
the worst-case nearest ambiguity, g., [Eq. (26)], was shown. the other nonzero pixels. Flipping one of the convolution
A few more simulations of this type were performed for factors simply shifts the significant pixels and moves the
different nonnegative 3 X 2 objects. Objects were selected tapered column to the other side of the image. Because the
based on the locations in Fig. 11(b) of their worst-case near- object-domain error metric 6 does not take such shifts into
est-ambiguity error metrics. All objects selected had a account, the value of 6(g.c, f) calculated for this case is much
worst-case nearest ambiguity with 0.45 < 6 < 0.55. Three too large, resulting in a misleading point on the scatter plot.
objects with (significant) worst-case nearest ambiguities (If the calculations were to be redone, then this problem
with i < 0.05 [as was the case for I of Eq. (24)] were selected, could be accounted for by cross correlating gc with I and
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shifting g., according to the cross-correlation peak to mini- -s- -- :" --

m ize 6.) .--o o~s ness ) :10 . 6 > 4E

A similar problem may occur if the shorter leg of the L- C -- oos.-,ss > ::.. 6 > :cc
shaped support is tapered, leading to nearest ambiguities a - >--oo.,,'f.• 25%. 6 > 4C

that are close to 1-D sequences. To reduce the misleading x . -- o0s-ess > 25%. 6 > :OC

effects of tapered images on our analysis, we consider only ,
those images that satisfy a bound on the robustness of the L 30

shape. An L-shaped image I 1 has L robustness R%,
defined by

mi = minla,f a + d- + e + f-)/4] "2. (42) •
100

Images with large R are robustly L shaped, whereas images i

with small R (strongly tapered) are only weakly L shaped.
It should be noted that the same taper problem can also

cause misleading ODE calculations of worst-case nearest C 0. 9 : i2 : :2
ambiguities for the 2 X 2 and 3 X 2 images in cases (1)-W4). £ -
In these cases, whole rows or columns would have to be Fig. 14. Monte Carlo estimates of the probability that the worst.
significantly smaller than the rms pixel intensity of the im- case nearest ambiguity to 3 x 2, nonnegative, L-shaped objects with
age. Since the images are random, it is much less likely for L robustness greater than R% (R = 10 and R - 251 has a Fourier-

modulus error less than e and an object-domain error greater than
Kt (K - 4 and K - 10).

this to occur in cases Q1)-(4) for which two or more pixels
-! I must be small simultaneously than for the L-shaped case (5)

for which only a single pixel must be small.
The worst-case nearest-ambiguity scatter plots for non-

... + negative, L-shaped images with L robustness greater than
" ... -10% and 25% are shown in Fig. 13. As the L-robustness

S-. L .- .'requirement is increased, many points clustered about the 6
0. .. -- " axis disappear. (Had we been able to calculate 6 with image

shifts taken into account, we would have found these points
+
S"..moving horizontally into the small 6, small e region of the

w 0.1" - plot.) Despite the nonnegativity of f, these scatter plots are
I -. "less banded than for general 3 x 2 nonnegative objects-case

(4) in Fig. 11(b). This is verified by the estimated distribu-
0 0 tions for both tnper percentages (Fig. 14). For the case of L

(OBJECT-DOMAIN ERROR) robustness greater than 25%. the distributions of Fig. 14
achieve a lower probability than does case (4) for values of(a) less than 0.07, reflected by the small number of points near

0. the origin of the plots in Fig. 13. Therefore, for the low-
noise case, the L-shaped support constraint not only pre-
vents ambiguity in the absolute sense but it also makes

0.. . . ambiguity less likely in the practical sense.

. - :.:.". 7. SUMMARY AND CONCLUSIONS
- ,An ambiguous image is one whose Fourier modulus is identi-

cal to the Fourier modulus of a second image that is other
S. .... . . ". . than a scaled version. a translation, or a twin of the image.

. : -"-Arbitrary objects are almost never (i.e., with probability
0 "'zero) ambiguous. Nevertheless, the existence of an ambigu-

.•i .ous image close to a given object has two harmful effects: it
causes stagnation points for phase-retrieval algorithms and,
for the case of noisy Fourier-modulus data, it may cause the

0 solution to be ambiguous in the practical sense. Because of
(OBJECT-DOMAIN ERROR) the nonlinearity of the phase-retrieval problem, these issues

(b) are difficult to characterize analytically. We investigated
Fig. 13. Fourier-modulus error c versus object-domain error 6 for the prevalence of ambiguous images for the phase-retrieval
worst-case nearest ambiguities to 3 x 2, nonnegative. L-shaped problem, using numerical approaches. This is practical be-
objects. (a) L robustness > 10%. 3190 objects; (b) L robustness > cause we considered the case of small objects defined on 2 X
25%, 2714 objects. 2 and 3 X 2 supports.
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Using both a new iterative grid-search algorithm and the a b
iterative Fourier-transform algorithm, multiple phase-re- e
trieval experiments were performed, and stagnation points fwere found that correspond to local minima in the Fourier-

domain error metric. These stagnation points were shown factoring into a (3 X 2) convolved with a (I X 2). the ambigu-
to be close to ambiguous images whose Fourier moduli are
close to the modulus of the Fourier transform of the object. ity condition is given by the simultaneous equations
The implication is that the existence of the ambiguous im- (ah - bg)2 - (ae - bd)(dh - eg) = 0 143)
ages causes the local minima to occur. However, the precise
relationship between the local minima and the ambiguous and

images is not yet understood, and nearest ambiguities may (ah - bg)(a/ - cd) - (ae - bd)(ai - cg) = 0. (44)
not be the sole cause of stagnation.

The prevalence of ambiguities close (with respect to Fou- These describe two eight-dimensional surfaces embedded in

rier modulus) to a given object was explored by a Monte a nine-dimensional space of 3 x 3 real-valued objects, the

Carlo experiment in which nearest ambiguities were found. intersection of which would ordinarily be expected to be a
First, object-domain analytic expressions for the set of am- seven-dimensional surface embedded in the nine-dimen-

biguous images were derived for both the 2 X 2 and 3 x 2 sional space. The ambiguity condition for the factoring of a

supports (Eqs. (37) and (38)]. For the 2 X 2 case, the set of 3 x 3 object into a (2 x 2) convolved with another (2 X 2) is

ambiguous images forms a three-dimensional surface em- also given by a pair of simultaneous equations describing two

bedded in the four-dimensional space of 2 X 2 real-valued eight-dimensional surfaces embedded in a nine-dimensional

images. For the 3 x 2 case, the set of ambiguous images space, the intersection of which would ordinarily be a seven-

forms a five-dimensional surface embedded in the 6-D space dimensional surface in the nine-dimensional space. Thus
of 3 x 2 real-valued images. Next, a reduced-gradient for these larger images the dimensionality of the surface of
search technique was used to search along the surfaces of ambiguous images is smaller relative to the space of all ob-
ambiguous images to find the ambiguous image nearest a jects than for the 2 x 2 or 3 x 2 case; consequently one would
given object with respect to Fourier modulus. Of the nearest- expect the probability of significant ambiguity to be less for
ambiguity pair of images, one is usually close to the object f, these larger images. The importance of the shape of the
while its ambiguous counterpart is usually a worse case: it is support constraint (convex versus nonconvex versus sepa-
much farther from the given object, yet it has a Fourier rated parts, etc.) may also reveal itself more forcefully for
modulus identical to the ambiguous image that is close to f. larger supports. Finally, a better understanding of the pre-
Histograms of Fourier-modulus-domain versus object-do- cise relationship between local minima and nearest ambigu-
main errors were accumulated in Monte Carlo experiments ous images could lead to methods for avoiding phase-retriev-
involving numerous random objects and their worst-case al algorithm stagnation at local minima.
nearest ambiguities. Integration of the histograms, over the
points for which the object-domain error is large relative to APPENDIX A: PROOF THAT e 5 a
the Fourier-modulus error, yielded estimates of the proba-
bility that a significant ambiguity would occur within a given Bydefinition, Ia0=a, orca 0 = :af. The proof that etg,f) _<
Fourier-modulus error tolerance. It was found that nonneg- b(g, f) can be given by using Parseval's theorem with the
ativity of the object decreased the probability of significant definition of 6(g, f):

ambiguity for the 3 X 2 case (as anticipated) but increased
the probability of significant ambiguity for the 2 X 2 case. , 2

However, since the ambiguous images were allowed to have 4(g4) 7 Iaog(xy) - f(xy)]2 {2(1 )
negative values even when the objects were restricted to be L .'
nonnegative, it is likely that the imposition of a nonnegativ-r1
ity constraint in a phase-retrieval algorithm would help to = IEafG(u, 0 - F(u, v)12- ' IFlu, V)l- •
avoid some of those ambiguities. L-shaped images, whose
support guarantees uniqueness in the absolute sense, were
also investigated. It was found that, for low-noise data, the (Al)
L-shaped support of the object also makes ambiguity less
likely in the practical sense. By the triangle inequality, given two vectors, v1 and v,, It', -

Future work should include the application of this ap- V212 > I[VIl - 1V21)2. Therefore
proach to objects with larger supports. This is important
since it is difficult to extrapolate from these results for 2 X 2 kka1 G(u, 0) - F(u, v01 >_ [aAG(u, v)0 - IF(u. v)0]1. (A2)
and 3 X 2 supports to the case of most interest: supports
with many pixels in each dimension. The probability of Inserting inequality (A2) into Eq. (Al, we have
significant ambiguity for the 3 X 2 case was of similar magni-
tude to that of the 2 X 2 case. This is probably because the
ambiguity surfaces in both cases were of dimension one less
than the dimension of the space of objects. When larger , f> loG(u, 0I1 - IF(u, v)]2 IF(u, OF

objects are considered, however, this changes. For example,
for 3 X 3 objects -=(.g,f). (A3)
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APPENDIX B: DERIVATION OF 3 X 2 Simply stated, all vectors 'i in the tangent plane T are per-

AMBIGUITY CONDITION pendicular to the gradient of h(.0 at V.

Equation 133) gives us the following six equations: In an unconstrained gradient-search method. we would
search for a minimum to the objective function ELs i in the

a =. gBlal direction of the negative gradient of that function. -VEti ±.

b = hi + g. (Bib) In a constrained search, however, the solution is constrained

c = hj. iBic) to a particular surface within the space, and we must alter
the direction of the search to remain on the surface. We do
this by projecting -VE(i) onto a tangent plane of htxi and

e = hk + gi. IBle) moving along the plane in the direction of the projection. p.
f = hi. (Bifi Because points lying along p in general will not lie upon the

constraint surface, the goal is to move along p and then to
return to the suria:e h(±t) = 0 such that there is a sufficient

of= ghil. (B2) decrease in the objective function. More will be said below
about how to return to the surface from the projection onto

and multiplying Eqs. (Blid and (Bid) gives the tangent plane.
cd = ghjk. (B3) The solution point, i._ satisfies the following fi-st-order

condition:
Combining these yields

84f - cd)2 
= g2h2(il - jk -}. (B4) All 5. satisfying vh(i.) - i5 = 0 (in the tangent plane at i. J

must also satisfy -vE(±,. * = 0.
From Eqs. (Bib), (Bic), (Ble), and (Bif) we have

(bf - ce) = h"(il - jk), (B5) The above definition implies that, at the solution, -vE is
parallel to Vh. which in turn implies that the projection p is

and from Eqs (Bla), (Bib). (Bid), and (Ble) we have zero. Note that the above definition applies to any mini-

(ae - bd) _ g 2(il - jk). (B6) mum and not just to the global minimum.
The search is iterative, and we define xk as our estimate of

Taking the product of Eqs. (B5) and (B6) yields the solution after k iterations. The goal is to find t.-I such

(ae - bd)(bf - ce) = gh-(il - jk) 2. (BT) that E(k) significantly decreases at each iteration and to
continue iterating until the first-order condition above is

From Eqs. (B4) and (B7) we arrive at the result satisfied with a sufficient degree of confidence.
We now discuss the reduced-gradient method in more

(a -- cd)2 - (ae - bd)(bf- ce) = 0. (B8) specific terms for the case of a single homogeneous con-

This equation is the condition that must be met in order for straint. Let us assume we are working in an L-dimensional
the 3 x 2 image of Eq. (33) to be ambiguous. space. A tanger, plane to h(•) can bethought of as a surface

From Eq. (B8) we can solve for any of the six variables in of dimension one less than the space in which it lies. In
terms of the other five. For example, by expanding and order to use projection ideas from linear algebra. we define

collecting powers of b, we arrive at the tangent plane as a space spanned by a set of basis vec
tots.

b-(df) - b(aef + cde) + ace2 + (af - cd)2 = 0. (B9) A vector that is perpendicular to the tangent plane to h (x)

The solution of Eq. (B9), naich is quadratic in b, is given by ata point i= (X1 X2. .. XLY is

I ~ ~ ~~ Of (t d)h Oh Oh 1C1
b e(a/ - cd) (e2 - 4d/ 2 (af-cd, Vh(±) 1 ... d I. ,C)

2df L

A set of L - 1 linearly independent L-dimensional basis
= !I(~ (e2 

4 dfio ~ (13 10) vectorsthat span the space perpendicular t- vhut( ii.e.. the
2  f d, fI d tangent plane) is (assuming that Oh/Ox1 t 0)

APPENDIX C: GENERALIZED REDUCED- ±)-I (-1 1 0 0 ... 0
GRADIENT METHOD ax,-(x) a•1, / 0 .

The generalized reduced-gradient method is 9 gradient-pro- ,h- 0 1 0, 0
jection technique used to apply a set of constraints to a -, (x)k )
minimization problem. The application discussed here uses
a single nonlinear homogeneous constraint, h (2) - 0, and the
discussion is presented with this assumption. We begin by r/oh -i /d_\ 1
defining the tangent plane to a surface: 6L-] =. cl x / 0 0 0... 1 (('2)

Given a point " satisfying h(W ) - 0. the tangent plane T The set of basis vectors defined in Eqs. (C2) enables us to
at that point is T - ': vh(.t*) -5. - 01, where V denotes the define a projection onto the tangent plane to ht). If we let
gradient with respect to i and • denotes the dot product. the b's be the columns of an L X (L - 1) matrix.
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Z E 5,. (C3) (5) Ifl"',, - 112.1 < 3. then ',• - : and stop: otherwise
continue with step (6).

then the projection of an arbitrary L-dimensional vector. &. (61 Of',', ,_,and "; .. find the two that are closest to 1,...
onto the space spanned by the columns of Z is , Call these -), i and _, I

p = Z(Z'ZIZr'Z . (C4) (7) Set: " .Ei,- El', ).

irom Eq. (C4). the projection of -VE(i) onto the tangent ', - ',. E', - E',.)
plane to h(xt) is just -,. -

p -ZiZ'Z)-1ZrvE(±t). (C5) (8) Go to step (3).

For each estimate ., of the solution we have h U, J = 0. The initial values of and ", should be chosen based on
The reduced-gradient method calculates vhl)±), Z,. and experimentatior and observation of typical Ei-,1 versus I
- E(xJ and uses these with Eq. (CS) to determine the new curves. These values are not crucial to the success of the
search direction: quadratic fit but should be spaced well enough to give a

Z,( (C6) reasonable initial fit. The value of the termination parame-
ter 3 should be based on the degree of accuracy needed and

Once P, is determined, we must move from x. in the direc- should be chosen large enough to avoid excessive iterations.

tion of p, to find the next estimate i.. 1. However, we must The success of the IQF depends largely on the shape of

have h(±r , 1) = 0, and. in general. it is not possible to find a E(-Y). IfE(Y) is not fairlv smooth, the lQF may not find the

step size 1, • 0 along P/ such that h(±, + "rkp,) = 0. It actual minimum; this is not a problem if a sufficient decrease

becomes necessary to deviate from p., to return to the surface in E is achieved. A more difficult problem occurs when the

for our next estimate. This estimate becomes projection onto the tangent plane extends into a region of
the 6-D space for which the equation for a return to the

-tk.1 = 1ý + lP, + Qk. (CT) surface is not defined. As an example. consider using Eq.

with (35) to return to the surface by calculating b given the other
five variables. If a range of values of -y exists for which 1,p,

h = 0. (C8) extends into the region where e2 - 4df < 0. then b (which is

where' , and Q, are chosen such that E(,. 1) < Elt,). De- by definition real valued) and hence E(() will not be defined
termining the scalar step size ",k and the direction back to over this range. When we encountered a case such as this.
the surface, q•,. in Eq. (C-) that minimize E(±t,÷) can be a we implemented a Fibonacci line search" to estimate the
complicated subproblem. minimum ofE(-y) on the interval ' for which Ei-ý I is defined.

Rather than spending too much computation time deter- It should be stressed that these potential problems arise out
mining the optimal "* and Q,, we opt for a simpler approach of the method used here to return to the ambiguity surface.
to finding an i., I that produces a sufficient decrease in the and other methods exist that may circumvent this but that
objective function. We do this by (1) selecting a value for -Y,, are more computationally burdensome.
then (2) using ik + -,yp, for all but one of the components of
i, 1, and then (3) using Eq. (C8) to determine the last com- SPECIFICS TO THE NEAREST-AMBIGUITY SEARCH
ponent. Equation (35) is an example of Eq. (C8) for solving Since we have discussed the constrained-mit z ization tech-
for the component b. The objective function is evaluated to nique in somewhat general terms to this point, let us now
determine whether there is a sufficient decrease. If we are mention some details and summarize the procedure.
not satisfied with the new estimate, we choose another value The gradient ofE(±) of Eq. (36) can be computed by using
of i,, and repeat the procedure. Using this procedure, we the following relationship-":
can think of the objective function as a function of ', and can dE
set -, to the value of ', that minimizes E(-y). One could use - a 2MN[g(x. y) - g')x. y). iC9
any of a number of standard line search techniques to esti- 8g(x, y)

mate k,,, but we used a slightly different method to estimate where
this minimum and to findtk.,. I Fu. v)

DFTIg'(x. y)l = w--4* Gfu. c. (C10)
Iterative Quadratic Fit OGu. i)I

The techr~que implemented to minimize E(y) with respect Since the ordering of the pixels ofgxx, y in the vector x is
to ' can best be described as an iterative quadratic fit (IQF). defined, Eq. (C9) can be used to calculate the components of
It uses quadratic curve fitting to approximate the minimum VE(.) using two DFT's Isince IFfu. 0i is giveni.
of E&y) iteratively and thus determine -yi. The description The various steps of the reduced-gradient constrained-
of the IQF below assumes the ability to fit a quad- minimization algorithm are as follows:
ratic polynomial to three points:

1. Initialization

(Il Initialize: IT = 1 p, = 0. 2,. (a) Determine IF(u. 01.
(2) Calculate E(iý11, E-r.). and Ei', o. (b) Make an initial guess. ±,,. such that hx.) = 0.
(3) Calculate ',,,.the value of ' that corresponds to the (c) Compute E(io.

minimum of the quadratic polynomial in ', fit to the points id) k - 0.
I', , E('- )]. 1-y., E)(-y), 1-y.j E(-y,•). 2. Calculating the search direction. p,

(4) Calcul-iteE(t-1,). (al Compute vhii).
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(b) Form Z•, Z'. 11. R. Barakat and G. Newsarn. "Necessary conditions for a unique
(c) Compute rE(,o. solution to two-dimensional phase recovery." J. Math. Phys. 25,
(d) Compute Pk = -Zi(Z'Zd)'Zý VE(±. 12.3190-3193 (1984).

1o- Z 12. J. L. C. Sanz and T. S. Huang, "Unique reconstruction of a3. Iterative Quadratic Fit to find iAI from i,. and P, band-limited multidimensional signal from its phase or magni-
4. If [E(.t) - Eu*.j )I/E(u) < a, tude." J. Opt. Soc. Am. 73, 1446-1450 (1983).

then: Done: estimate of minimum is±i+ .. 13. 1. S. Stefanescu, "On the phase retrieval problem in two dimen-
else: (a) k - k + 1. sions," J. Math. Phys. 26, 2141-2160 (1985).

14. Yu. M. Bruck and L. G. Sodin, "On the ambiguity of the image(b) Go to step 2. reconstruction problem," Opt. Commun. 30, 304-308 (1979,.
The termination condition in step 4 above is based on a 15. L. Carlitz. "The distribution of irreducible polynomials in sev-

percentage change between successive iterations. The era] indeterminates," Ill. J. Math. 7,371-375 (1963).
bound a is selected to reflect the precision of the estimate of 16. M. H. Hayes and J. H. McClellan, "Reducible polynomials in

more than one variable," Proc. IEEE 70, 197-198 (1982).the minimum. While it may be tempting to use the condi- 17. M. A. Fiddy, B. J. Brames. and J. C. Dainty. "Enforcing irreduc-tion that - VE is perpendicular to the tangent plane, that is, ibility for phase retrieval in two dimensions," Opt. Lett. 8,96-98
(1983).

-vE(4÷1) •/N+1 < r' (Cll) 18. M. Nieto-Vesperinas and J. C. Dainty, "A note on Eisenstein's
irreducibility criterion for two-dimensional sampled objects."

for some small P, it is also difficult to pick the value of •" that Opt. Commun. 54, 333-334 (1985).
will consistently give us the same confidence in the precision 19. B. J. Brames, "Unique phase retrieval with explicit support
of our estimate without choosing it so small that it causes information," Opt. Lett. 11, 61-63 (1986).
needless iterations in many cases. 20. J. R. Fienup. "Reconstruction of objects having latent reference

points," J. Opt. Soc. Am. 73. 1421-1426 (1983).
21. T. R. Crimmins, "Phase retrieval for discrete functions with
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