
r CLEARED ,E
F.EVIEW ,.F rN*-I:s I? . ! -.)c: NOT I PTLY

cr~~~~ D~TEPAP~rMEN U' 7EEN E
Ty!:"'o S~~. l',-,r - .

.... : ,_ OCT 2 1991 12

Program Translation Tools for Systolic Arrays
N00014-87-K-0385

Final Report

D T I(, Thomas Gross and H. T. Kung

f %. School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 30, 1991

1 Summary.

The work under this contract has concentrated on Parallel Program Generators for a systolic
array (the Warp machine). A Parallel Program Generator (PPG) translates a program description
for a single address space and a single thread of control into code for each of the nodes
in parallel distributed-memory system. We investigated three different approaches, each is
discussed in more detail in a separate section:

" Use of data parallelism to execute independent iterations on different cells

" Transformation of nested loops to systolic programs

" Multi-model code mapping for a side-effect free program.

All PPGs produce code that is then translated into Warp microcode by the W2 compiler
developed with funding from ONR and DARPA.

In addition, we build a debugger for Warp. Most of this work was reported on in the last
interim report and is not repeated here.

These PPGs have simplified the programming of systolic arrays significantly. They have
given us the ability to generate a large number of programs for parallel machines with minimal
effort. This allowed us to use these machines in ways we never expected (today, 5 years after
the Warp machine was put in service, it is still working at Carnegie Mellon, and there is a
secondary market for used Warp machines!). It allowed us to build more machines than we
ever planed (General Electric delivered 18 machines to government and commercial customers).
And it provided the seeds for the integrated iWarp system (the "integrated Warp" designed by
Carnegie Mellon University and its industrial partner, Intel Corp).

91 110 14 91-150684 I5IlEiHI
7' ,-Y'd,?

2 Data parallel programs on Warp

A large number of scientific programs contain data parallelism, but at the time we started
our research, few if any compilers were able to take advantage of this parallelism. For any
computation, there were numerous ways to map the computation onto a parallel machine.
We discovered that some aspects of the mapping process are easy to control for a user (like
deciding if a matrix should be partioned by row or by column), while others are easy to handle
by a programming tool (like keeping track of the details of inserting "send" and "receive"
statements).

One of our Ph. D. students (P. S. Tseng, Ph. D. '89) investigated this area in more
detail and developed the AL (for Array Language) programming model. In the AL model,
a computation is described for a single thread of control. There are two types of variables:
global and private. The programmer is responsible to move data from global to private name
space (a simple copy or assignment operation is sufficient). Thus a user hint determines when
a variable is private and when it is in global, and this information is sufficient to generate
efficient parallel programs. The 24 Livermore Loops can serve as an example to show how
widely this approach is applicable. These loops were translated by hand to the input language
accepted by AL; these changes were syntactic (except that the computation was changed from
double-precision to single-precision since the Warp hardware does not support double-precision
floating point operations). Then hints were added to allow the AL parallel program generator
to distribute the computation over 10 cells. Figure 1 shows the speedup over the 1-cell version,
which is free of any paralelization overhead. As can be seen from this Figure, there are some
loops that are inherently sequential, but for a number of loops, the AL program generator
delivers an impressive speedup.

3 Systolic programs from nested loops

The programs produces with the AL program generator use the high bandwidth of the Warp
machine but use only seldomly the systolic gates. That is, when receiving an item from another
processor, the item is first stored in local memory before it is operated upon. The systolic

program generator (researched by H. Ribas, Ph.D. '90) produces programs that operate directly
on the items received from another cell. That is, these programs are systolic programs.

To produce such code, the PPG must control the details of mapping computation and
communication. That is, the PPG needs exact dependence information, which is not available
for all possible programs. For example, if a program includes an update of an array with
a variable stride, then the PPG cannot obtain exact dependence information. However, for a
large class of computations, the information can be made available; each of these computations r-.

can be described as a set of nested loops, with some constraints on the loop indices. Such a j-
loop nests are the domain of this parallel program generator, and Figure 2 shows the speedup ,

for a subset of the Livermore Loops (using single-precision arithmetic). Since the programs
are systolic, the first and last cell of the array must be used as I/0 staging processors, and this "'.Cat!

limits the maximum number of processors that can be applied to one task to eight.

Q-Th

*AL (10 cells)I

71

1

Figure 1: Speedup for Livermore Loop Kernels (AL) on 10-cell Warp machine

*Systolic (8 cells)

10

9.

3.3

An arrow in Figure 2 indicates that this kernel cannot be translated using the systolic PPG
for nested loops. Either the program is not a perfect loop nest with a loop body of a single basic
block, or the loop counters assume values that make it impossible to obtain exact dependence
information.

4 Comparison

Since a different number of cells can be used by the two parallel program generators, a direct
comparison is difficult. Figure 3 shows how efficiently each system uses the cells that are at
its disposal. We define efficiency = (speedup * lO0)/(numberofcells). [This measure is
not completely perfect either, it is easier to obtain high efficiency for a small number of cells
than for a large number, but we feel it is a reasonable measure in this case here.]

AL (10 calls)
(8cells)I Systolic loops (8cls

100

90

80

70
0 60

nL
50

40

20

10

0 1 1

Figure 3: Efficiency for Livermore Loop Kernels (AL, systolic PPG)

It is not surprising to see that the systolic parallel program generator outperforms the AL
parallel program generator. The systolic programs include fewer memory references and make
better use of the features of the Warp target machine. However, it is also important to note
that there are programs that can only be mapped with the AL program generator.

5 (

Multi-model mapping) All attempts to map a computation are influenced by the quality of
dependence information. If the parallel program generator cannot determine that two operations

4

are independent, it cannot execute these operations in parallel. Often a software tool cannot
safcly determine that two operations are independent although they really are. So it is hard
to distinguish failure to parallelize due to resource constraints, communication overhead, or
other factors under control of the program generator from a failure to identify parallelism.
Furthermore, both AL PPG and systolic PPG for nested loops use a single mapping paradigm.
To understand the effect of these constraints, we investigated the use of a executiong model-
driven parallel program generator that maps SISAL programs onto the Warp machine. A
SISAL program is side-effect free, which means that the programmer has removed all non-
essential dependences. This study then confirmed that simple performance model can predict
the execution behavior sufficiently well to choose an appropriate mapping strategy; this means
that we can automatically make a choice between different mapping strategies. (Further details
are available in A. Sussman's thesis (Ph.D. '91).)

