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I Abstract

Neural networks represent a promising alternative to traditional Al approaches.

The development of analog optical implementations of neural networks such as the

I multilayer perceptron with learning by backward error propagation (BEP) requires an

understanding of the noise sensitivity of such architectures. The objective of this

program is to study the effects of component and system noise on the performance of

such optical implementations. The method used is computer simulation.

ri In this first phase of the program, the one-hidden layer perceptron with back

propagation was simulated using a simplified, device-independent noise model. The

results point to a distinct noise threshold above which the learning mechanism is

corrupted. The efficiency of learning based on variations within back propagation and

I on the initializing method was also studied.

In the next phase, device-dependent noise models were used. To this end a

hybrid optical/electronic parallel architecture capable of both the forward pass and

backward error propagation steps of training data presentation was conceived and

modeled. The simulations showed that the most significant effects were due to the

SLMs' nonlinear response. The "noise" processes studied in the simulations included the

SLM nonlinear response, SLM drive circuit noise, nonuniform SLM response, finite SLM

contrast ratio, optical crosstalk, photodiode shot and thermal noise, and CCD shot and

thermal noise. It was found that the SLMs' nonlinear response significantly increases the

number of cycles needed for convergence in learning. Several solutions to this problem

were characterized in the simulations. Another conclusion of the simulation results was

that increasing the hidden layer size increases noise immunity significantly.
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I I. BACKGROUND

IA. Program Motivation

Neural networks are computers that are based on organizational and functional

principles of information processing systems found in nature, like the brain and retina.

Hence, neural nets consist of many analog processing elements that are densely

interconnected and they are applied to problems such as sensor pre-processing, pattern

recognition/classification, and motor control. In neural networks, long-term information

is stored as interconnection weights which signify the efficacy of interaction between

neurons. Transient information is represented by the neural outputs, which, for a given

Sneuron, is a nonlinear function of its state of activation. Each neuron's state of

activation is determined by a number of factors: its external inputs, which are the

Sweighted outputs from other neurons; its previous states of activation; and other specific

and nonspecific global signals. The values of the interconnection weights change more

slowly than the neuron's state of activation. The gradual evolution of the

interconnection weights has been widely postulated as the primary learning mechanism

that makes animals adapt to a constantly changing environment. The proposed neural

net models for problem solving attempt to emulate these intriguing characteristics of

biological information processing systems. References 1, 2, and 3 contain representative

examples of recent research on neural net development.

The primary advantage of adaptive neural net problem solving approaches over

conventional methods is that the networks learn how to solve problems semi-

autonomously; from labeled or unlabeled training data, the network learning rules

calculate weights which will produce the appropriate outputs. Thus, there is no need for

standard artificial intelligence techniques like investigation of the nature of the problem

and extensive programming of solution strategies-all that is required is access to raw

data. This approach is especially useful in several scenarios: when designing systems

that can be applied to a variety of problems with little modification; when the size and

complexity of the problem makes rule discovery by hand prohibitively expensive; when

rapid solution to a problem is desired; when the nature of the problem is dynamic; or

when it is difficult to ascertain the structure of the problem due to noisy and/or

I distorted data.

I
1
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Nonadaptive neural networks are designed to solve splecific problems. With this I
approach, the appropriate set of weights and initial conditions are determined by the

user. Later, when inputs are presented, the state of the network converges to the proper U
answer through the network dynamics. In these networks, either extensive calculations

must be performed to find the appropriate set of weights or a detailed prior knowledge 5
of the desired processing is needed. The network must, therefore, be used many times

to justify the cost of its construction. 4 Hence, this type of network is most suitable for 3
sensor pre-processing type applications where the same operations must be performed on

many data sets. 3
Optical systems have been proposed as candidates for neural network I

implementation for a number of reasons. Foremost are the analog and parallel nature of

neural computation-optical systems have been employed for a number of years to solve

significant problems, like synthetic aperture radar imaging and RF spectrum analysis, 3
with parallel, analog hardware. In addition, neural nets often require complex and dense

interconnections between the neurons-and interconnection and communication are the

primary advantages optics has over electronics. Finally, neural nets require analog

storage of interconnection weights that can be accessed and updated in parallel and

several 2-D and 3-D optical devices exist that can provide this functionality. 6,6

For analog optical numeric processors, the accuracy of the overall computation is I
strongly dependent on the accuracy of the analog optical devices. When such numeric

processors were first proposed, the computations considered for analog optical systems 3
were primarily linear (matrix operations) and the accuracy of devices was quite low;

therefore, so was the accuracy of the overall processor. Hence, the available applications

were limited to those requiring low precision. This motivated the investigation of analog

optical systems for neural nets, which were postulated to require low accuracy

computation. The first neural network that optics researchers chose to implement, the
Hopfield model, 7,8 was indeed relatively insensitive to inaccuracies in the response of the

analog components. As it turns out, the very features of the Hopfield model that make U
it relatively insensitive to inaccurate components, namely the particular type of

distributed and redundant storage/computation, also limits its storage capacity, and 3
hence, its utility.

Since the publication of the Hopfield model, there has been a number of I
potentially useful neural network models reported in the literature along with proposals 5

2



for their optical implementation.9 However, it has been commonly assumed that since

the Hopfield model was relatively impervious to hardware imprecision, so are these other

models. This is not necessarily true-each model must be examined closely to determine

its own sensitivity to analog hardware imprecision. Since many modern neural net

models improve upon the storage capacity of the Hopfield model by means of less

redundant storage techniques, they may lead to systems which are more sensitive to

noise. Dependence of the noise sensitivity on the size of a given neural net model is

another issue of great concern since the neural net approach to problem solving may

become competitive with conventional approaches only when the network is very large.

It is clear from the above discussion that the detailed study of a neural network when

implemented in any analog technology (optical or electronic) is of critical importance.

B. Program Goal

The main goal of the research program was to study the effects of component

and system noise on the performance of optical implementations of selected neural net

models. The noise could be due to variations in the response of different components,
finite accuracy in controlling signal amplitudes, or signal- and time-dependent noise dueI to quantum and thermal fluctuations. Since the size and speed of neural net processors
will be factors that influence their utility, the results of this study will be critical in

determining the ultimate applicability of optical neural nets. The identification of those

parts of the neural net model that are particularly sensitive to system noise will stimulate

investigations into new techniques of data representations and formatting to increase the

"robustness of the models. Similarly, the identification of the limiting devices or

materials in the optical implementation of the selected neural net models will lead to

exploration of different technological and architectural alternatives for improved

performance.

3
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II. TAXONOMY OF NEURAL NETWORKS AND TRAINING METHODS

A. Categories of Neural Network Models and Model Selection Philosophy I

Neural network models can be designed to perform several operations, e.g., 3
associative memory, optimization, filtering, pattern classification. The performance

criteria for a given model are determined by its intended application. We choose neural 3
pattern classifiers for further investigation under this program. For these models one

performance criterion is simply the number of training or test patterns the model

misclassifies. Another is corruption of the learning curve during training. The effect of

system noise on the selected neural net classifiers is investigated using the above-

mentioned criteria. 1
Neural net models can be categorized according to several different parameters. 3

The first one of these parameters is the topology of the neural net (single or multiple

layers of processing elements). The second one is the processing element response 3
(linear, hardclipping nonlinear, or continuous nonlinear). The third parameter deals with

the selection of learning algorithm. Error-driven algorithms can be used with labeled

training data consisting of input patterns along with their correct classification. U
Unlabeled training data uses self-organizing algorithms capable of autonomously

clustering the input patterns into distinct classes and adjusting the internal parameters of U
the neural net to generate the desired classification. I

The limitations of a single layer neural net model in classification have been well

documented.10  Hence we have selected a multilayer neural net classifier. It can be 5
readily seen that a linear processing element response reduces a multilayer neural net to

an equivalent single layer neural net thereby suffering from the same limitations.

Therefore we have chosen a nonlinear (hardclipping or continuous) response for the

processing element. For the purpose of this study we choose the error-driven learning

algorithms that are used with labeled training data. The self-organizing systems were

not selected because optical implementations for them are relatively less developed. I
Figure 1 depicts a taxonomy of multilayer feedforward neural networks. As

shown, each algorithm is spedific to layout (architecture type) and training philosophy. 3

4 I
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B. The Backward Error Propagation Mo0A_ V.

The most prominent multilayer, nonlinear, error-driven neural net is i" a
multilayer perceptron trained by the method of backward error propagation (BEP)."

This is a least mean-square error approach that uses a gradient descent algorithm. The 3
internal parameters of the neural net (thc connection weights and processing element

thresholds) are modified such that the new weights lead to a decrease in the total mean- 1
square error. This model is a direct descendant of the Widrow-Hoff Adaline model that

was developed for a linear, single layer neural net model. 12 It has also been successfully

applied to interesting problems such as distinguishing underwater man-made objects

from natural ones based on their sonar returns13 and solar flare prediction. 14

The BEP model uses a continuously differentiable nonlinear response for the

processing element. Therefore the signals propagating between different layers are fully 3
analog. This could lead to error accumulation. This feature makes the issue of system

noise particularly relevant to the BEP model and hence appropriate for this study. Fully

optical implementations of BEP model have been proposed.15  Hybrid optical-digital

electronic systems have also been proposed in which part of the training procedure is

performed in an auxiliary digital electronic processor. 16,17  The effect of weight

quantization on the learning performance of a BEP model has been previously
reported.1 7,18  These studies were geared towards specific optical or electronic U
implementations in which the connections were stored electronically in a digital

representation. The current study extends that work to quantify the effects of analog 3
system noise in the weights as well as in the processing element computation.

C. Exemplar-based Model

The BEP classifier is characterized by a long training interval in which the I
training pairs have to be presented as many as several thousand times before the ccrrect

weight vectors are identified High computational accuracy may therfore be needed to

achieve convergence. This learning procedure also can have the tendency to get stuck in

a local minimum for the total error function. On the other hand, the number of 3
processing elements (and hence the total weight storage requirement) is independent of

the number of exemplars, i.e., training input patterns. The BEP learning procedure, 3
thus, makes efficient use of resources, in that the number of interior (or hidden)

6 I



processing elements needed is a function of the decision space complexity, rather than

simply the quantity of training data.

Exemplar-based classifiers typically require many hidden processing elements,

but can be trained in a relatively short time and with low accuracy. These tradeoffs

suggest that the exemplar-based classifiers may be more suited to optical technology that

provides large storage capacity but poor computational accuracy. For this reason, we

have been examining exemplar-based classifiers for further study. Optical processors

can be restricted to the first or second layer of the neural net performing the

computationally intensive operations. High precision analog or digital electronics can be

used in the final layers that perform the classification.

I

!
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III. SIMULATIONS OF BACK PROPAGATION I

A. Description of Tool ]

Throughout the program, we have striven to understand the dynamics of a 5
multilayer perceptron which is learning by back propagation of errors, and to observe

the effects of the various noise sources on these dynamics. 1
To these ends we have been using PC-Matlab as a programming and analysis

tool. PC-Matlab works with I-D and 2-D variables. When it is running an ".m" file

(a program), it can display in text or graphical form the ever-changing state of the

network. Information such as a learning curve can be stored in a ".mat" file. 5
The core of our simulation program is found in two modules, "uinit.m" and 3

"uctrain.m." These modules are written specifically for the case of one hidden layer,

although it is simple to modify them to add layers. Among other tasks, "uinit.m" loads

the training data, initializes the weights and biases, and sets up the beginning of a

training session. Then "uctrain.m" iteratively updates the weights, tracks the mean-

square error, and provides for early termination of training upon fulfillment of a

convergence criterion. Note that a training seed (trseed) is used with Matlab's random

number generator, so that an identical set of "random" noise spikes may be used in 3
different runs, if desired.II

These two program modules run as though the hidden layer size, initializing

criteria, the learning rate, and the various noise values are already defined in

PC-Matlab's work space. A ".m" file called "uframe.m" prompts for these data so that
"uinit.m" and "uctrain.m" may be run without causing undefined-variable errors. g

These three ".m" files, as well as some of the nested ".m" files, are listed in the

Appendix. 3
B. Backward Error Propagation Details 3

To provide a deeper understanding of the simulation tools, we shall now describe

exactly how back propagation proceeds, giving due attention to the updating procedure. I
Back propagation is defined for a multilayer perceptron, a neural network containing 1

8
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I nodes configured in an input layer, a number of hidden layers, and an output layer. A

one-hidden-layer architecture is shown in Figure 2. (Strictly speaking, the input layer

units are not full-fledged nodes. They simply broadcast the input signals to the nodes in

the hidden layer. Therefore, many call this a two-layer network.)

Hidden layer Output layer

II SNETj(1) NO(1

Oi() WAMJ k•, )1QJ)NEkl kl

II

IEkK Ok(K)

1 00(J) NETj(J) Oj(J),I
Figure 2. A perceptron with one hidden layer. The network has I inputs

(i = I to 1), J hidden processing units, and K output processing units.
The weight Wji(ij) refers to the connections strength from input unit i to
hidden unit j, and similarly at the next layer. Note that the inputs to the
biases are held at 1. After summing, a given unit performs a sigmoidal
nonlinearity.

The multilayer perceptron learns iteratively, each iteration having two main steps.

In the first of these, it processes the inputs via what is commonly referred to as a

forward pass. The input elements are multiplied by the weights; then they are summed;

this sum is often called the internal activation. It is then transformed ("thresholding")

by a nonlinearity in the hidden nodes. The outputs of the hidden nodes are processed in3 similar fashion. The inputs and outputs (o terms) are unipolar, due to the thresholding;

in some cases, the inputs may be restricted to binary values. The weights and biases are5 bipolar and continuous.

3 In equation form, the forward pass is written:

9I
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Forward Pass I

1. Netj = E oiWji + 0j Oj = 1/(1 + exp(-Netj)) !

2. Netk E • OiWkj + Ok Ok = 1/(1 + exp(-Netk)) 3
J

The two equations on the right express a particular type of thresholding, namely, a

sigmoidal nonlinearity.

1. Gradient Descent

Learning in this context refers to the modification of the weights and biases in a

network. For the network to perform properly, all layers are required to learn.

Gradient descent is a training algorithm which iteratively updates the weights and biases

in a given layer based on its inputs, outputs, and target outputs. That is, the weight

update is supposed to move the weights in a direction in weight space in which the

mean-square error over all training pairs decreases the most. This is expressed

mathematically as a reduction in the mean-square error computed over all components of 3
all training pairs:

AW oc -OE/BWkj 
where E = E E (trk-Ork) 2

r k I
trk and Ork being the target vector's and output vector's kth element, respectively, for the

rth training pair. This is often called the delta rule. The derivative can be computed by

application of the chain rule:

=E/aWkj (=EI8Netk) x (aNetk/8Wkj). !

The quantity aNetk/OWkj is just oj. The other link is called -6k, and is itself I

expressible as a chain: I
aE/lNetk = -6k = (8E/8ok) x (aoklaNetk)

-- -Ok) X (Ok (1-Ok)) I

10 I
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I Note that Ok (0-Ok) = 8(1/(1 + exp(-Netk)))}ONetk; it's the :derivative of the sigmoid

nonlinearity. That is why that particular threshold function is chosen: because it is

I continuous and easily differentiable.

During presentation of an input (forward pass), the values tk and Ok are readily

available at the output layer; tk is one element of the training data. In the hidden layer,3 these terms become tj and oj, of which the the latter is the actual output of the jth

hidden unit upon presentation of training input r. The former, tj, is the jth element of

what is called the internal representation; this is not known a priori.

Back propagation11 represents the first successful method for calculating an

I equivalent of the target-minus-output error for hidden layers. This error term is

calculated by propagating the output layer's error term backward through the output3 layer's weights. That is, it can be shown that

aE/loj =-E 6k Wkj
k

3I The steps within back propagation are thus summarized:

3 Backward Error Provagation

3. 6k= Ok (0-ok) (tk-Ok)

4. 6i Oj (l-oj) E 6•kjJ
k

3 5. AWkj 17 Oj 6 k A nk '7
6

k

6. AWji-- TOi6j ,ij= 176j

I In the PC-Matlab modules, oi is a row vector of length I; Netj, oj, 6j, and 6j areg row vectors of length J, and similarly for k. The variable 17 is called the learning rate.

The derivation, as presented in Reference 11, leaves some questions open. For3 example, are the weights and biases to be updated after presentation of each training

pair (updating by pattern)? Or are the weight changes to be accumulated in a separate

* register over the entire epoch of training pairs and then added to the weights (updating

I
11
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by epoch)? True gradient descent is based on updating by epoch, but some researchers 1
advocate pairwise updating as a means to improved performance. 1

Recall what gradient descent means: the weights change in the direction of

greatest decrease in the total mean-square error. True gradient descent requires 3
infinitesimal weight changes. For larger weight changes, a decrease in mean-square

error is not guaranteed. An error landscape may be convoluted, and an update may 3
move the weights too far, to a point where the error is higher. In other words, a large

learning rate can create oscillations in the plot of mean-square error vs. epoch. A

convoluted landscape possesses local minima, which can halt convergence, with the
network stuck in an unsolved state. I

These problems are often remedied by incorporating a momentum term a which

introduces a component of the previous weight change into the current one. Step 5 3
above becomes

AWkj(n) = t)Oj6k + ctAWkj(n- 1) I
AAk(n) = 176k + aA0k(n-l) 3

and similarly for the hidden layer, where n tabulates the actual update, whether it was

pairwise or not. According to Gilbert,' 8 momentum is used in updating by pattern to 3
incorporate information about the previous pair, making training based on more

complete information. 3
2. Initial Conditions. 5
The convergence behavior produced by the back propagation algorithm depends

on the initial values of the weights and biases. If all weight values start out equal, the
algorithm keeps them so, and the network will not learn. Rumelhart's solution is to

initialize the weights and biases with small random values, to provide symmetry 3
breaking. He does not state what "small" means, however. a

Is there another way to initialize the weights? Our desire is a configuration
which helps the network to solution, but is not specific to any one problem (does not
"cheat"). Sheldon Gilbert18 proposes one method based on Lippmann's 19 discussions on
internal representations. 5

12 I
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I A network which has learned XOR is shown in Figure 3. Figure 4 shows the

output of the upper, j = 1, hidden unit (vertical axis) as a function of the two inputs

(horizontal axes). The magnitude of the input weight vector determines the steepness of

the output-how close the "hill" of Figure 4 is to being a step function. The associated3 decision line, a one- Jimensional hyperplane, is just the intersection of this output with

the plane oj(l) = 0.5. Each hidden unit in Figure 3 is labeled with a diagram of its3 decision region, showing this decision line. The arrow indicates in which half-plane the

output is greater than 0.5. Note that the dividing decision lines actually pass through the

* decision region.

Gilbert's method starts with initially random weights and biases, and scales the

weight vectors to a uniform magnitude. Then it adjusts the biases so that the dividing

hyperplane passes through (0.5, 0.5,...,0.5)-the middle of the decision region. This is

I illustrated in Figure 5. Next, the weights to the output layer are all set to I J, so that,

regardless of the size of J, the output units start out with reasonably-sized Netk's. For

example, even if the initial oj = [1, 1....1], each Netk term (with Ok = 0) will be only J x

(1 x 1/J) = 1, well within the linear region of the sigmoid defined in Equation 2. (In

point of fact, we have initialized the Ok terms to small random values within [-0.5, 0.5]

in our simulations.) In the simulations that Gilbert performed on 2-D problems, the
initializing algorithm went on to force the dividing lines to span 3600. We chose to omit3 this latter restriction for two reasons: first, it seems too "forced" for typical problems,

and second, it encourages deciding which dividing lines should run which way in input5 space, the answer to which is best found by already knowing the final state of the solved

net.

I
I
I
I
I
S
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Oi(1) - 46 1

Oi(2) 6.40 1

01
0 1

Figure 3. A J = 2 solved XOR configuration. I
3. Creating Target Vectors for Classes 3
For classification problems, one can express the classes one of two ways. The 3

first way uses a dedicated output node for each class. A typical training pair has an

input vector and an output vector with all elements low except for that corresponding to

the correct class. The second way uses a binary representation for each class. Here a

four-class problem could be implemented with two instead of four output nodes. g
In addition, how the output training vector expresses "high" and "low" is

important. Since the activation function asymptotically approaches 0 and 1, using these

in the training vector may cause excessively large error signals to be propagated back.

1
I
I
3
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-1 0 1 2 -1 0 1 2

Oi4) Oi(1)

Figure 5. Initial dividing hyperplanes (lines, in this case) before and after
application of Gilbert's method.

All of our simulations were two-class problems, where we used K = I (binary

representation). Also, unless otherwise noted, we trained our output on (0.1, 0.9) rather I
than (0, 1) to avoid the excessive error signals.

C. Summary of Results from Phase I

Earlier Matlab program modules enabled us to run simulations of the back

propagation algorithm using a simplified additive noise model. In that model, small

Gaussian noise terms were added to all of the weights immediately after they were I
updated. We also explored a variety of updating by pattern in which hidden weight

changes were based on propagating the errors through output weights which were I
already updated. Although it is quite afield from true gradient descent, this layered

updating by pattern converged the fastest. However, updating by epoch was found to be

less noise sensitive.

One must also choose a suitable learning rate, large enough to speed performance

without oscillations through the error landscape. Oscillations and entrapment in local

minima can be avoided using the momentum term a, but as we shall see, this does not I
lend itself well to optics. It is also wise to choose targets away from the asymptotic tails

of the threshold function. 3

I
U
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I
I Performance is dramatically improved by initializing' the weights so that the

i dividing hyperplanes created by the hidden units cross the center of the input vector5 space, and normalizing the weight vector magnitudes.

I
I
I
I
I
I
I
I

I

I
I
II
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IV. OPTICAL ARCHITECTURE FOR BEP I

A. Overview I

The simulation of a true optical neural net must incorporate more than simply 3
additive noise applied to the weights and biases after update. It is necessary to take into

account noise introduced by modulators, the optical imaging system, and detectors. This 1
requires designing an architecture capable of handling the whole process, including the

forward pass, error back propagation, accumulation of the AW's over the epoch, and

addition of them at the end. The architecture need not be optimum, only plausible.

Our proposed architecture uses optics to perform operations of O(N2), where N is I
the typical layer size, e.g., I, J or K; other operations may take place in the electrical

domain. The inputs and weight/bias matrices are assumed to be implemented as spatial

light modulators (SLMs). I
Figure 6 shows our multilayer perceptron architecture for a net in which I = 3,

J = 4 and K = 2. SLMs are represented as unshaded planar regions; detectors are shown

shaded. Thick arrows represent the propagation of information-carrying light; thin
arrows refer to signals in the electrical domain. For simplicity, the figure does not show

the necessary cylindrical and spherical imaging lenses, nor the switchable birefringent 5
wave plates needed to direct light the proper way using the polarizing beamsplitters.

Wherever possible, we have striven to use the same weights in backward as in forward 5
passes. This saves hardware and reduces noise accumulation.

As depicted in Figure 6, the architecture is performing a forward pass. Recall

the governing equations presented in Section III. B. 1. The forward passes are vector-

matrix multiplications shown in Figure 6 by black left-to-right arrows. While the inputs I
oi and oj are unipolar and restricted to the interval [0, 1], the weights and biases are

bipolar and can have larger magnitudes. We have tracked the weights and biases 3
through simulations on 2-D and 5-D problems and seen values as large as 25. Since

the SLMs do not amplify, we let them express values Wji/h, where h corresponds to half 3
the actual range of the weights. (For example, if weights range from -25 to 25, h is set

to 25.) Also, we have divided the matrix elements into positive and negative

subelements. The Netj and Netk are also so divided.

18 U
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I

The subtraction of Net(-) from Net(+) is performed electronically. The I
thresholding elements incorporate sigmoids which are a steep, thus performing the

operation I

oj = 1/(1 + exp(a x -Netj/h)) = 1/(1 + exp(-Netj)) 3
when a = h, and similarly for Ok. The constant a is similar to h; we will examine it 1
more closely below.

Figure 7 shows the same architecture, now performing backward propagation of I
errors. The error term Sk is computed electronically (lower right corner of Figure 7).

Note that 6 k is bipolar and usually small. In the Phase I simulations, the largest element I
never exceeded 0.16. To better utilize the full range of the I-D SLMs, we multiply 6 k

by a constant b. Note that 6kb is assign- c to two SLMs; in one, the values of Skb are

sign encoded with (+) and (-) subelements. This SLM is to be used for computing the

outer product as in Equation 5 of the governing equations. The outer product between

this and the unipolar oj results in a bipolar AWkj, in which the elements are divided

horizontally into (+) and (-) subelements. This is compatible with the encoding format

of Wkj; hence, the weight update process is simplified.

The other SLM to which 6kb is assigned is for calculating the vector matrix

multiplication inside Equation 4. Since both Sk and the weight matrix Wkj are bipolar,

this computation is more difficult to implement than the forward pass. This requires 3
dividing the Wkj elements ve7-ically into (+) and (-) subelements as shown. As depicted

by the gray arrow in Figure /, the operation 3
WkjT/h X 6kb I

occurs in two passes, one for each sign of 6 k. In the first pass, 6k(+) is presented; each

element of the receiving detector will evaluate two terms, positive and negative. In the 3
second pass, when 6 k(-) is presented, the formerly positive subelement now receives a

negative term 3

2
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I

(Skb(-) x WkjT/h(+))

-and vice versa. The receiving detector has associated electronic circuitry to handle this I
sign interchange.

When this vector matrix multiplication is complete, 6j (from the rest of Equation

4) can be computed. 1
With 6k and 6j computed, all that remains is two outer products (Equations 5 and I

6). These use the light paths shown in black arrows. The receiving detectors are CCDs

and perform accumulation over the epoch by time integration. Here the operation

multiplies bipolar-by-unipolar, as in the forward passes.

At the end of the epoch, the accumulated AWji and AWkj contain (+) and (-)

terms, all nonzero. For each weight, the difference between its (+) and (-) terms is

computed; then that subelement of the proper sign is set to that value, the other being

set to zero. Finally, all the changes are to be added to the weight matrices themselves,

electronically. The reason these 2-D operations are allowed to be electronic is that they

occur only once per epoch and therefore do not represent a bottleneck.

The Phase II simulations incorporated opto-electronic noise caused by the various I
transductions in the architecture. In addition to random noise such as shot and thermal

noise, the effects of fixed pattern noise, as from nonuniformity and limited contrast 3
ratio, were included. In the next section we take up the mathematical nature of these

imperfections and demonstrate their impact on the convergence properties of the f
algorithm.

B. Individual Imperfections I

A complete simulation accounts for all elements that may, according to good

engineering judgement, present a potential impediment to the normal convergent

behavior of the algorithm. The system described above consists of four subsystems: the 3
sources, the SLMs, the imaging optics, and the detectors. Of these, only the source

imperfections have been left out of our work. Since the input vectors to all operations 3
are themselves implemented using row SLMs, the entire system could be illuminated

with a common, external, ideal laser source. Compared to the imperfections present in

22 I
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I the other three subsystems, we believe that the laser source does indeed behave ideally,

emitting an essentially constant, collimated beam.

For the body of simulations we designed a relatively simple problem we refer to3 as 2-D skewed corners. The problem requires two input nodes, one output node, and

four hidden units to solve. Figure 8 shows the 25 training data used in the training.5 The figure also shows a typical back propagation-induced solution, in the form of a

contour plot. We used Gilbert's method to speed convergence; the steepness constant was

set to 4. We also chose v7 to be 0.45; this was the largest observed value that was not

prone to inducing oscillation. We set the magnitude range a at 20; the simluation

automatically increases a to make up the loss of dynamic range that occurs whenever a

bias is used to smooth the uncompensated weight transfer functions. As for the constant

b, we observed in a trial run that the Sk and 6j terms reached as high as 0.3. We3therefore decided that it was safer simply to leave b at unity.

1OIX 1 0 0 0.8-

o:x :0 0 0.6-------

S0.4...
3C X X X X 0.4 -- -- .......---

0.2-
ox 0 0

0 0 0.2 0.4 0.6 08 1

1 0 1 Oki1)

Oi (1) example of solved state

I 0 Ok=[]
X Ok = [0]

Figure 8. The training set used for most of the simulations. Also shown is a
contour plot for a converged network, with output values at 0.3, 0.5, and
0.7. The dotted lines in this plot represent decision boundaries set by
each hidden unit.
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We chose four representative sets of initial conditions. Using straight back

propagation, the four representative cases take 1010, 1400, 1810, and 1950 (rounded to

the nearest 10) epochs (or cycles) to solve, respectively. Their learning curves are shown I
in Figure 9. Figure 10 shows the same learning curves on individual pairs of axes,

superimposed with plots of the number misclassified. (Strictly speaking, there is no 3
relationship between the units of mean-square error and the number misclassified,

despite their being shown on the same ordinate.) Unless otherwise stated, we let each n

trial run to N = 3000 epochs, regardless of convergence. We also set the simulation to

record its progress every DNth epoch, with DN = 10, to save memory.

At this point some remarks concerning determination of time to convergence are U
in order. As the simulation runs, it creates a long row vector called ldetmse (an

abbreviation for "less detailed mean-square error"). Every DNth epoch, the program

appends to ldetmse an element which is the mean-square error averaged over the last DN

epochs. It also at that time appends to another long row vector, no!!, which is the

number of training pairs misclassified at that time (not an average, unlike Idetmse). 3
Generally, the time to convergence is determined by finding the largest n value for

which no!! is nonzero. In Matlab, this is done as follows: 5
x=O:DN:n; max(x.*(noff-=O))

For simulations without temporal noise, this metric is adequate. However, 3
temporal noise in any element usually manifests itself as spikes in graphs of both

Idetmse and noff. Consider, for example, the plot of no!! shown in Figure 11. In this 3
case, noff remains spiked until it reaches zero at about n - 2400, and then stays at zero

with only an occasional spike to one or two at some higher values. The above metric

would then yield that convergence had been reached at n = 2850, which happened to be I
the last spike generated. This is not useful; our metric should yield an answer close to

2400 for us to compare performance between this and other simulation runs. Our 5
solution is to divide no!! into groups of ten elements (100 cycles each for DN = 10),

take the average over the ten elements, and find the largest n for which this number is 3
above 0.2. In Matlab, the coding reads, for n = 3000,

xblOO0:100:3000; 3
max(xb.*(mean(reshape(noff(2:301), 10,30))>0.2))

I
i
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U

We have found by examination of graphs of noff that this empirical method works well, U
in most cases. In some cases, the spikes are particularly large, and so 0.3 must be used

in place of 0.2. Figure 11 shows the averages with respect to epoch. In those cases

where this yields 3000, the simulation time was too short for convergence to occur

(assuming it would have). In these instances, the next best measure is the average noff

over the last 100 epochs (ten values):

mean~x.*(nof f(292:301))

Initially, we considered each of the various imperfections by itself. Then we

began combining key effects that seemed likely to be the most lethal combinations. I
Finally, we looked at the presence of all imperfections simultaneously. I

1. The SLMs I
Figure 12 shows a summary of the SLM imperfections. In this section we will

expand upon the meanings of these imperfections and describe their effects on 3
convergence.

a. The Effect of Malus's Law I

The input and hidden vectors, as well as the weights, biases, and error terms 6 k 3
and 6j are all represented as the transmittances of SLMs. We have modeled them as

Pockel's-effect devices, built around materials that exhibit a birefringence whose value 3
is proportional to the applied electric field. The Pockel's cell has a known thickness and

is placed between crossed polarizers. Polarized light passes through the cell and, as the

voltage increases from zero, the output polarization gradually becomes elliptical, then

circular, then elliptical with the major axis orthogonal to the input polarization, and

finally linear orthogonal. Further increases in voltage, though avoided, begin to reverse 3
this trend. I

The analyzer is orthogonal to the input polarizer, so that with no voltage applied,

the orthogonal polarization component is minimal and the transmittance is zero. In

operation, then, the modulator's transmittance, what we call the optical weight oW, is

given by

oW = sin2((w/2)eW),

28 I
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U Figure 12. A model of the SLM element and its driving electronics.

where eW is the electrical value of the weight, with 0 _< eW _< 1. (The value eW can be
thought of as being propagated within the "driving electronics" box in Figure 12.) This
relationship is an expression of Malus's law, and it immediately raises an important issue:5 since the transmittance is nonlinearly related to the applied voltage, is it necessary or
desirable to compensate for this effect using electronic predistortion?

Let esW be the value in the electronic storage register where a weight or input is
i stored ("electronic storage weight" in Figure 12). The predistortion is expressed:

eW - (2/r)sin-1(esW½).

i
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This is shown in Figure 12, near the bottom left. We hold that while introducing such i
electronic predistortion into the 1-D SLMs is certainly feasible, having it in the 2-D

SLMs may require undue electronic complexity. So, one set of our simulations is

devoted to determining the effects of a nonlinear mapping between esW and oW.

Figure 13 shows the result of this effect. A sign-encoded pair of 2-D SLM

elements passes light onto the associated detector elements. In each SLM element, the

applied voltage is proportional to the magnitude. The amount of light detected, then, is

proportional to the square of the sine of the magnitude, as shown in the curves. When

(+) and (-) subelements are summed, the resulting transfer function exhibits three

relatively flat regions: one near zero weight and two at the extreme (+) and (-) weight

values.

Flat regions my slow convergence.n

+ - 3

Figure 13. The effect of subelement sign encoding combined with the sine-squared
nonlinearity. i

Figure 14 shows a method to smooth out this transfer function. Instead of i
predistortion, simple biasing electronics reduce the range of input voltages, to avoid

generation of subelement outputs in the flat regions. The price paid is, of course, a

reduction in dynamic range, that is, an increase in sensitivity to stray voltages. Note I
30
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that this reduction has no apparent cost until noise in the driving electronics is included.

If the normalized bias is t (tp2 in the Matlab simulations) the electronic register holds

eW - esW(l -2t) + t.

Ilcuuc +,
+

I

I
Figure 14. Reducing the transfer function nonlinearity by use of a bias.

I This is shown graphically in Figure 12, near the bottom right. As shown in Figure 14, arenormalizing constant is necessary in the post-detection electronics. This effects

stretch in the vertical direction of the transfer function, preserving the integrity of the

algorithm. The renormalizing constant is just

I
I /[sin 2((r/2)(l -t))-sin2 ((7r/2)t)].

Recall the variable a in Figures 5 and 6; it is the product of the renormalizing constant3 and h. Note that if t = 0 (no bias is used) or if predistortion is used, a = h.

In our simulations, we examined the effect of the nonlinearity without the bias

and with different bias values. Figure 15 gives an idea of how much of a bias t

I
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produces significant smoothing; for 1 = 0.15, the transfer function appears practically

linear. 3

II
Weight Mappings

0. ' compensated

0.6 ------- bias of 0.15

"0.4- bias of 0.05 I

I

0.2- 15. --- no bias

-0.2-

0

-0.4-I

-0.6-

-1 -0.8 -0.6 -0.4 -02 0 0.2 0.4 0.6 0.8 1

electronic meight

Figure 15. The SLM nonlinear transfer function for several biases.
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I Recall that in the 1 -D SLMs, we have opted to retain predistortion compensation

for the sine-squared nonlinearity.

For the four sets of initial conditions, we found t-t it the nonlinearity has a

detrimental effect on convergence time; nevertheless the system does eventually

converge, sometimes. Introducing a bias significantly reduces the detrimental effect.

Our biases are in the normalized regime, where a weight element can be at most one.

Generally, as the bias approaches its limit of 0.5, the time to convergence approaches

what it was in the case of predistortion compensation. Table I shows the time to

convergence for each case.

* TABLE I
Simulation results with and without compensation for Malus's law.

1 time to convergence
compensated via bias pure3 I.C.t zero 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 BEP

I 1870 1390 1240 1160 1100 1070 1040 1030 1020 1010 1010
II [stuck] 1740 1530 1520 1580 1760 1750 1600 1420 1390 1400
III >3000 2130 1800 1720 1700 1710 1730 1760 1780 1800 1810
IV 2300 1780 1720 1800 1850 1890 1930 1950 1960 1950 1950

3 ticzeed values for I, II, III, and IV are 419043, 853252, 628191, and 107470, respectively.

b. Temporal Noise

The analog electronics driving the SLMs may exhibit temporal noise. This is5 modelled by additive Gaussian noise as showr in Figure 12, and is expressed in the

equation

I eW .= eW + n

I where n is a random number with a normal probability distribution having j - 0 and a

specific variance a2.

It is important to note that this noise is added to the applied voltage rather than5 to the weight or input itself, whether or not it is preceded by predistortion; that is, it is

applied to eW. Since the sine-squared nonlinearity is then applied to eW, a given noise

U
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spike will have a greater effect for a weight or element near the middle (eW = 0.5) than 1
at the range edges (eW = 0 or 1). 1

As we might expect, temporal noise gives a learning curve of mean-=quare error

a spiked, jagged aspect. Figure 16 shows four learning curves, one from a noise-free

trial, and three with different noise variances, but sharing the same random number

generator seed. The effect of variance is to govern the size of the spikes as well as the 3
degree to which the mean-square error approaches zero.

Table II shows the simulation results. The times to convergence are computed i
using the averaging metric referred to above. To ensure that our results are not too

much an artifact of any one noise history, three different random number generator

seeds were used. U
TABLE II

Simulation results with temporal noise in the SLM driving electonics. Note that, except
for the case of 0 noise, values are rounded to the nearest 100 by our averaging

algorithm.

time to convergence, (noffln=2900:xo:sooo) U
training noise variance

I.C. seedt BEP 0.00125 0.0025 0.005 0.0087 0.015 1
S1 : 010 1100 1500 1600 2800 (0.7)

b 1100 1300 2000 (0.3) (1.4)
c 1100 1400 1800 2800 (0.6) i

II a 1400 1700 1900 2100 2800 (0.8)
b 1700 1900 2500 2900 (2.8)
c 1700 2100 2300 2800 (1.3)

III a 1810 1900 2000 2400 2900 (4.8)
b 2000 2000 2400 (0.4) (5) U
c 1900 2100 2300 2900 (4.5)

IV a 1950 2400 2700 (0.3) (2.5) (3.5)b 1500 2200 2100 2900 (1.6)
c 2400 1700 2400 (0.8) (1)

ttraeed valjes for a, b, and c are 893820, 205464, and 490001, respectively.

I
I
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C. Space-variant Gain I

A given SLM may not be completely uniform across all the elements. This I
nonuniformity is most likely manifest as variation in thickness or electro-optic response.

We model this as a set of element-dependent multipliers to the applied voltages. This set 3
consists of random numbers s whose mean is one and which are normally distributed.

That is,

eW 4= eW x s. 3
Figure 12 illustrates this. Note that if a multiplier exceeds one, then the SLM element

may induce a birefringent phase shift greater than ir/2, creating a decrease in the U
weight. Therefore, with this nonuniformity, the transfer function for a particular

element may not be monotonic.

An element-by-element nonuniformity in the device electro-optic response can 3
be modelled by establishing a different random number multiplier for each element.

The set of random numbers follows a Gaussian distribution with a mean of one and a

known variance.

With reference to Figure 7, the SLMs encode oe, DWji, oj, DWji, 6k (unipolar), 6 k U
(bipolar), and 6j. For our problem, with I = 2, J - 4, and K = 1, the architecture then

possesses only fifty-three elements. In the regime of statistics, this is not a large 3
number. The point is, it is particularly easy to produce a "bad seed" phenomenon, in

the simulations. That is, though the variance of the multipliers may be small, the more

critical elements happen to have the worst deviations-or vice versa. To allow for this

possibility, we performed these simulations using four different seeds for the random

number generator which produces the multipliers.

Table III shows the results. Judging by the low variances, it takes only a small 3
degree of electro-optic nonuniformity to render the architecture unfit for use. While it

may appear that in many instances, convergence time is being reduced, the point is that

it is being drastically changed, and that a different problem of the same size may very

well get stuck. 3
3
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TABLE III
Simulation results with nonuniformity in the SLM electro-optic response.

Itime to convergence
BEP variance of element response multipliers

I.C. seedf BEP 0.0031255 0.0062 0.0125 0.025 0.05

I a 1010 1000 990 990 [stuck] [stuck]
b 1010 1020 1030 1110 1450
c 1020 1030 1050 1280 [stuck]
d 1010 1020 1030 1090 2490

II a 1400 1490 2000 2100 2420 [stuck]
b 1720 1420 1380 1440 1690
c 1460 1630 1870 1790 2980

d 1560 1810 1390 1870 1780

III a 1810 1810 1940 2850 [stuck] [stuck]
b 1920 2090 >3000 [stuck] [stuck]
c 1750 1830 >3000 >3000 [stuck]
d 1810 1850 >3000 [stuck] 1770

IV a 1950 1270 1530 1940 2020 [stuck]
b 1940 1250 1620 1590 [stuck]
c 1660 1730 2020 2400 [stuck]
d 2540 2380 2520 >3000 [stu(.!k

I tsvseed values for a, b, c, and d are 698392, 774772, 200493, and 920145, respectively.

d. Finite Extinction Ratio

The modulator devices are placed between crossed polarizers, themselves a

possible source of error. The error occurs when the polarizers' extinction ratio is finite,

as depicted in Figure 12. If 0i is the reciprocal of the extinction ratio, the modulator's

* transmittance is given by

oW = (l-b)sin2((i/2)eW) + t.

In our design, all elements of a given SLM share the same polarizer and analyzer.

Regardless of which has the finite extinction ratio, the result should be pretty much the

same. For simplicity, we assumed that the same quality of polarizer is used throughout,

and subject all operations to an overall extinction ratio. For example, for an extinction

ratio of 100, all SLM elements set to zero really pass 0.01; those set to one pass one, and

I the entire curve is adjusted for the intermediate values.

I
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Initially we tried a broad range of extinction ratio values, using just I.C. II. I
Table IV shows these preliminary results. Then, using all four sets of I.C.s, we

narrowed our range of interest to that shown in Table V.

TABLE IV I
Preliminary results with finite extinction ratio in the SLMs, using I.C. II.

extinction ratio time to convergence I
oo (pure BEP) 1400
2154 1400
1000 1400
464.2 1400
215.4 1420
100 1480
46.42 1660
25.14 1800
10 2040

II
I
I
I
I
I
U
I
I
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I TABLE V
More detailed results with finite extinction ratio in the SLMs.

I time to convergence
extinction ratio

I.C. c0 100 56.23 31.62 17.18 10 5.623 3.162 1.778

I 1 1010 1060 1110 1190 1360 1730 2860 >3000 >3000t
II 1400 1480 1590 2090 1830 2040 2990 >3000 >3000t
III 1810 1830 1860 1920 2040 2360 >3000 >3000 >3000t
IV 1950 1990 2030 2090 2260 2230 >3000 >3000 >3000t

tlt is uncertain whether these trials were on their way to convergence.

Apparently, the system is very tolerant of finite extinction ratio, showing

convergence even for values less than 10. For the most part, the poorer extinction ratio

seems simply to decrease the effective learning rate.

I 2. The Optical Imaging System

I The optical imaging system consists of that set of lenses and polarizing

beamsplitters which image one device plane onto another. In a given operation, such as

a vector-matrix multiplication, two optical imaging systems are employed: one imaging

the inputs onto the weight matrix, the other imaging the weight matrix onto a detector

array. The chief mechanism by which optical imaging systems introduce error is

crosstalk.

I

I
I
I

Figure 17. Crosstalk in an optical vector-matrix-multiplier.

I
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The process of crosstalk is illustrated in Figure 17. Each input element I

broadcasts to a weight SLM row. Some of the light, say 90%, reaches the appropriate

row. The other 10% is divided between the two adjacent rows. Similarly, each column

is optically summed onto one detector element. 90% of the light reaches that element;

the other 10% goes to the elements adjacent to it. Note that this means some of the 3
light designated for oj(+) adds to oj(-) and oj-l(+). I

When we first proposed this architecture, we considered two encoding layouts.

In one, each individual weight is divided into two side-by-side subelements, namely the

(+) and (-) subelements. This is the approach shown in Figure 17. Another layout

would consist of two noninterlaced submatrices, namely the (+) submatrix and the (-) I
one. We embraced the former approach based on a series of trial vector-matrix

multplies using both approaches. We found the former apprach, that of side-by-side

subelements, to be more crosstalk tolerant in the final answer.

As can be seen in Table VI, the alorithm is sensitive to even small amounts of

crosstalk. Differences in convergence time result from as little as a tenth of a percent

crosstalk. Curiously, the convergence time may decrease. At 1% crosstalk, convergence

times are significantly changed, but the algorithm does converge. At 6%, the network

performance is severely corrupted.

TABLE VI
The effects of crosstalk upon convergence.

time to convergence, (nOffln=29oo:1o:sooo0)

crosstalk
I.C. 0% 0.05% 0.1% 0.2% 0.4% 0.6% 1% 1.4% 2.8% 6% 12%

I 1010 1020 1030 1040 1080 1110 1180 1260 1620 (4) [stuck]
II 1400 1400 1410 1440 1500 1580 1820 2350 2120 (4) [stuck]
III 1810 1810 1820 1830 1850 1870 1940 2030 2380 2360 (6)
IV 1950 1940 1930 1910 1870 1830 1990 1820 1880 (3) (10)

Figure 18 depicts some examples of learning curves for a system with crosstalk.

It is interesting to note that, for this particular initial condition set (as well as others),

increased crosstalk appears to shift the curves to the right. This suggests that crosstalk

has its greatest effect in the beginning stages of learning.
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I I.C. I1010 no crosstalk

8 - 1.4% crosstalk

2.8% crosstalk
Cd

2-j

0 -- --

I

01500 200 2500 3000

I cycle

Figure 18. Learning curves for simulations with crosstalk.

3. The Detectors

We have incorporated into the architecture two varieties of detector arrays. The

three linear arrays that compute oj, ok, and E 6 kWkj are PIN detector arrays. The two

2-D arrays are CCD arrays. They accumulate charge over all passes in an epoch and

then impart this charge to the 2-D SLMs after electronic amplification and other

processing.

Both types of detector exhibit shot noise and thermal noise. Shot noise is signal-

dependent; thermal, signal-independent. The derivations below concern the standard

deviations of each type of noise in each type of detector. They show how to express

these values in terms of the algorithmic units and as a function of maximum signal-to-

noise ratios. This allows one to simply specify these ratios rather than the physical

constants (e.g. operating temperature) and then run the simulations.

I a. PIN Shot Noise

The shot noise manifests itself as variations in the light-induced photocurrent.

The standard deviation is
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oahot = (2qPSB)½

in Amperes, where q is the electronic charge, P is the incident power in Watts, S is the i
sensitivity, or responsivity, in Amperes/Watt, and B is the bandwidth in Hz. Consider

the first-layer forward pass. Let Pm= denote the power when all SLM elements are 3
transparent (have a value of 1). Let oNetj be the normalized value assigned to one of the

two subelements for a given Netj value. Since oNetj can be at most I + I (the "1" is for 3
0j), we can recast the standard deviation as

a=hot = (2q[oNetj/(I + l)]Pma=SB)+. i

The signal-to-noise ratio (SNR) corresponding to maximum available detected i
intensity is

SNRm.C = PmaxS/(2qPxSB)½. I
Using this equation, we can substitute for PmaxS in the shot noise equation to yield

Gahot = PmaxS[oNetj/(l + I)]½/SNRmax I

in Amperes. In terms of oNetj, I

ashot(oNetj) = ashot[(( + l)/(PmazS)J 3
- [oNetj(l + l)]½/SNRmax.

Note that when oNetj reaches its maximum, I + 1, the shot noise o becomes g
(I + 1)/SNRmax.

For our simulations, we chose a broad range of values for the SNRmax. We also I
saw the need for only one training seed, unlike the in other temporal noise simulations.

ThIs is because many more random numbers are called in the detection equation than in

the weight updates, so the "bad seed" phenomenon is less likely to occur.

I
I
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I The results of the simulation are shown in Table VII. The SNR.= threshold

below which significant changes in convergence time occurs seems to be around 21. The

value below which convergence is prevented completely is not far from this.

I TABLE VII
Shot noise in the PIN detectors. Note that, except for the case of oo, values are rounded3 to the nearest 100 by our de-spiking algorithm.

time to convergence, (noffln=2gco:1o:sooo)
SNRmax

I.C. o0 215.4 100 46.42 21.54 10 4.462

I 1010 1000 1000 1000 1100 (0.3) (5.4)
II 1400 1400 1400 1500 1700 (0.5) (6.3)
III 1810 1800 1800 1800 1900 (0.5) (8.1)
IV 1950 2100 2100 2100 2500 (1.2) (7.6)

I b. PIN Thermal Noise

I The thermal noise is a signal-independent function of such parameters as

temperature:

I thermal - (4kBTB/RJL)

3 in Amperes, where kB is Boltzmann's constant, T is the temperature in Kelvins, B is the1 bandwidth, and RL is the load resistance of the detector electronics, in Ohms.

The SNR corresponding to maximum available detected intensity is

SNRmax = PmaxS/(4kBTB/RL)½.I
Substitution for RL½ in the thermal noise equation yields

athermal - PmaxS/SNRmax

I in Amperes. In terms of oNetj,

4
I
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athermal(ONetj) = athermal((I + 1)/(PmaxS))

- (I + I)/SNRmx. .

The simulation results, given in Table VIH, point to a somewhat greater 5
sensitivity to SNRmax than was seen for shot noise. This is not surprising; note that the

standard deviation for thermal noise is signal-independent, actually corresponding to that 3
shot noise whose signal is fixed to the greatest value, I + 1.

TABLE VIII
Thermal noise in the PIN detectors.

time to convergence, (noffln=29oo:1o:sooo)
SNRmax

I.C. 00 215.4 100 46.42 21.54 10 4.462

I 1010 1000 1000 1400 (0.8) (9.1) (8.8)
ii 1400 1400 1500 2000 (0.9) (9.0) (8.8)
III 1810 1800 1800 2100 (5.3) (8.9) (8.8)
IV 1950 2100 2800 2100 (4.3) (9.1) (8.7)

c. CCD Shot Noise 3
The CCD noise equation derivations proceed similarly, except that we measure

quantities in photoelectrons accumulated, rather than current. The CCD noise U
calculations are used once at the end of each epoch.

The standard deviation of the CCD shot noise is

ashot = CNi I
in photoelectrons actually released, where C is a constant, and N is the number of I
photons absorbed (assuming unity quantum efficiency). Consider the first-layer outer

product. Let Nmax denote the number of photons that the detector element would

absorb in all R passes in an epoch were the SLM elements transparent (valued at 1). Let

oDWji be the normalized value assigned to one of the two subelements for a given DWji 3
value. The most oDWji can be, then, is R. We then recast the standard deviation

ashot = C[(ODWji/R)Nmax]½.
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I The SNR corresponding to maximum available absorbed photons is

3 SNRmax = Nzna/[C(Nm½x)]

3 Substitution for Nmax in the shot noise equation yields

3 uashot = Nmax(ODWji1R)1/SNRmax

i in photoelectrons. In terms of oDWji,

iOshot(oDWji) - qghot(R/Nmmx)

= (oDWjiR)1/SNRmax.I
The simulation results are given in Table IX. The transition from the noise just

making a difference to the point at which convergence is prevented is more gradual than

it was for the PIN shot noise case. The algorithm thus seems more tolerant of CCD shot3 noise than PIN shot noise.

TABLE IX

Shot noise in the CCD detectors.

time to convergence, (noffln=2zoi:o:sooo)
" SNRnm

I.C. 0o 215.4 100 46.42 21.54 10 4.462

I 1010 1000 1000 1000 1100 1200 (5.0)
II 1400 1400 1400 1500 1700 2200 (5.6)
II 1810 1900 1900 1900 2200 1200 (4.8)
IV 1950 2000 2500 1800 1900 2000 (5.0)

d. CCD Thermal NoiseI
The CCD thermal noise is independent of the number of incident photons, and is5 instead a function of an arbitrary number n of photons:

g GthermnI = Cn+

in photoelectrons actually released, where C is a constant.
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The SNR corresponding to maximum available absorbed photons is

SNRmax = Nmax/[C(n) A

Substitution for C in the thermal noise equation yields I

athermal = Nmax/SNRmnx f
in photoelectrons. In terms of oDWji, I

athermal(oDWji) f (Nma./SNRm.)(R/Nmax)

= R/SNRmax.

As shown in Table X, the algorithm is quite sensitive to thermal noise in the

CCDs. Generally, convergence is impeded for SNRm. values less than 100 or so. Note 1
that for the three lowest SNRm..X values, the number misclassified is the same for all

four sets of initial conditions. Indeed, at these values, the learning curves are practically

identical and characterized chiefly by the noise.

TABLE X I
Thermal noise in the CCD detectors.

time to convergence, (noffln=29oo:o:sooo)
SNRmax

I.C. 00 215.4 100 46.42 21.54 10 4.462 j
I 1010 1100 1800 (9.8) (12.2) (13.0) (12.5)
II 1400 1900 (4.0) (10.2) (12.2) (13.0) (12.5)
III 1810 1500 1900 (9.8) (12.2) (13.0) (12.5) I
IV 1950 1900 (2.3) (10.0) (12.2) (13.0) (12.5)

e. Realistic Detection Parameters 3
For most of the imperfections, crosstalk for example, it is not difficult to suggest 3

realistic expectations of what a given system might be capable of. At this point, we

shall briefly discuss the PIN detectors.

Recall the PIN shot noise derivation: along the way we found
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U SNRmax = PmaxS/(2qPm.mSB)½.

i The electronic charge q = 1.6× 1 0 -19 Coulombs. Let the bandwidth B = 107/s and the

responsivity S f I Ampere/Watt. For each detector element, assume the maximum lightf power availability to be Pmx - 10-5 Watts. This gives SNRm..(shot) = 1766.

5 In the PIN thermal noise derivation, we found

5 SNRmax = PmaxS/(4kBTB/RL)½

where kB = 1.38x10-23 J/K, and we let T = 300K. RL is the load resistance, which is

if typically 100fl. SNRm.x(thermal) = 246.

3 C. Combinations of Key Effects

5 While two or more given effects may by themselves be small enough to little

affect the network's convergence property, they may combine much more lethally-or

cancel one another. Our approach for any combination is to use two sets of values. The
"I "minimal" set corresponds to those values which by themselves had little effect. The

"maximal" set are those values which by themselves were enough to delay convergence

significantly, but not enough to altogether prevent it from occuring within the normal

number of cycles.

1. Temporal Noise and Malus's Law in the Weights

I As we discussed in Section IV. B. 1. a., Malus's Law effects a nonlinearity in the

weight transfer function. Short of predistortion, this nonlinearity may be reduced using

a bias, at the expense of dynamic range. We should expect the loss in dynamic range to

appear as an increase in the effective temporal noise. (This increase is due to the

renormalizing constant which is necessary to preserve the integrity of the algorithm.)

£ Furthermore, we wished to test the following hypothesis: that there should be a

"sweet spot" in the bias for a given, low, temporal noise value. That is, we can find a

bias which is large enough to help overcome the flat regions of the nonlinearity but

small enough not to significantly increase the effective temporal noise.

I
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To see this effect, we used the very small temporal- noise variances of 0.005, i
0.0025 and 0.00125. Table XI shows the results; Figure 19 shows them graphically.

Indeed, we can observe the existence of a bias "sweet spot," whose value increases with U
decreasing SLM noise. That is, as SLM noise is reduced, larger biases can be used.

TABLE XI I
The combining of the Malus's Law nonlinearity with SLM temporal noise.t

time to convergence, (nofflf=2f2 o:1o:30o0)
bias

variance 0 0.1 0.2 0.3 0.4 5
0.005 2000 2000 (0.3) (1.2) (4.3)
0.0025 2000 1500 1500 2100 (0.5)
0.00125 1900 1500 1400 1400 2100 m

tI.C. I, trned=206464. 3
J= 4, Nonlin. & Temporal SLM Noise

3000 I 1
S2500-

2000 1
1500-

1000

0 0.1 0.2 0.3 0.4

bias

Figure 19. The existence of a "sweet spot" in bias, whereat the bias's benefit and
harm are in balance. The solid curve represents a noise variance of 0.005;
the dashed curve, 0.0025; the dotted curve, 0.00125.

2. Crosstalk and Shot Noise

As a comparisen between Tables XII and VI shows, the inclusion of shot noise U
(in both the PIN and CCD detectors) compounded with the effect with crosstalk, i
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U increases-usually-the convergence time. Table XXII shows -simulation results for two

sets of crosstalk and shot noise values. Note that we did not use the averaging method

to obtain convergence time, even though temporal noise was present-the plots of noff

appeared to be free of the spikes that had necessitated the method for SLM temporal

* noise data.

I TABLE XII

The combining of crosstalk and shot noise.t

5 time to convergence
I.C. BEP minimalt maximaltt

I 1010 1040 1440
II 1400 1440 2480
III 1810 1820 18403 IV 1950 2120 2550

ttrseed=893820

*0.2% croestalk, SNRmx = 100 for both PIN shot and CCD shot noise.I ttl% croestalk, SNRma - 21.54.

3. The Complete Detector Noise Models

Generally, the effects of shot noise and thermal noise in all elements of detection

do accumulate. However, as the data in Table XIII show, the different effects do not

appear to form a lethal combination.S
TABLE XIIII The complete detector noise models.t

time to convergence
l I.C. BEP minimal$ maximaltt

I 1010 1100 1900
II 1400 1600 2000
III 1810 2000 2500
IV 1950 1300 2400

ttrseed89S820ISNRmax(PIN and CCD shot) = 100, SNRmax(PIN thermal) = 215.4, SNRmax(CCD thermal) = 464.2.
ttSNRmax(PIN shot) = 21.54, SNRmax(PIN thermal) = 46.42, SNRmax(CCD shot) = 10, SNRmax(CCDSthermal) = 215.4.

4
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4. The Complete, Compensated SLM Noise Model I

We have never ruled out the possibility of using electronic predistortion to I
compensate for the SLM nonlinearity. As we mentioned in Section IV. B. 1., it may

merely introduce undue complexity into the 2-D SLMs. Recall, too, that in the I-D

SLMs, we always incorporate this predistortion.

Since the lack of a predistortion seems to magnify SLM noise sensitivity, we

opted to test the complete SLM model with compensation. The results appear in Table 5
XIV.

TABLE XIV 1
The complete, compensated SLM noise model.t

time to convergence I
I.C. BEP minimal$ maximaltt

I 1010 1100 2000
II 1400 1800 2200
III 1810 1900 2800
IV 1950 1600 2000 I

ttrseed=205464; evseed=20049g.

-a2 = 0.00125, C2 (s) - 0.004, ext. ratio = 215.4.

t -a2 = 0.005, C72 (-) = 0.01, ext. ratio = 31.62.

D. Hidden-layer Redundancy 3
When more hidden units than are needed to solve a problem are present, the back 3

propagation algorithm often converges more quickly. For the 2-D corners problem, we

have found that back propagation chooses four hidden units, emphasizes them, and

diminishes the others, all via Wkj. Figure 20 dramatically illustrates this trend in I
learning. U

It is possible, too, that an optical architecture with hidden-layer redundancy will

exhibit greater immunity to certain types of noise, and perhaps increased sensitivity to 3
others. In any case, increasing J in an optical architecture is certainly easy, and can be
done at a substantially lower cost in computation time than for a similar increase on a

serial electronic computer.

I
50 I



I
£

J= 8, icseed= 635264

10--

0.8
5 - . 1 0

0.6U 0 r --- -- --- -- -- -- -- -- - --- --

0.4

0.2 . 0

-10 
,.,.,

-- - - --- - - - - -0 500 1000 1500 0 0.2 0.4 0.6 0.8 11Oki)Icycle OK1])

Figure 20. Evolution of connection strengths from the hidden layer of size J = 8,
solving a problem requiring only J - 4. Also shown is a contour plot; the
weakly connected hidden units produce the dashed decision lines (one3 outside of view).

To ascertain such changes in noise sensitivity, we performed a set of simulations

using the same corners problem, but with J - 8-twice the necessary number of hidden

units. Some preliminary runs using straight back propagation pointed us to the use of a3 new learning rate: tj = 1. We still initialized the network using Gilbert's method, with a

hill steepness of 4, as in the J = 4 simulations. Also, we chose four sets of initial3 conditions; the learning curves associated with these are shown in Figure 21. Note that,

though the curves appear to vary, the convergence times are more similar than they were

for J - 4. This is probably due to the fact that Gilbert's method makes the initial

conditions more alike, and more so with redundant hidden units. The times to
convergence are 720, 890, 960, and 920 cycles, respectively. We ran each of the J = 8

I simulations until N = 2500.

I
I
I
I
!
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1. The SLMs 1

a. The Effect of Malus's Law I

As we had when J was 4, we disabled predistortion compensation for the SLM 3
nonlinearity, replacing it with a biased input (see Figure 12). For the most part, the

absence of a bias resulted in the longest convergence times. But, as in the J - 4 case, as 3
the bias approaches its limit, the convergence time approaches its value in the

compensated case. Table XV shows the data. Figure 22 provides for rapid comparison

of the convergence data for both J values.

TABLE XV I
Simulation results with and without compensation for Malus's law, for J = 8.t

time to convergence _

compensated via bias pure
I.C.t zero 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 BEP 3
I 1610 1010 830 830 780 750 730 720 720 720 720
II 1400 1220 1240 1140 940 920 900 900 890 890 890
III 1570 1060 940 900 860 890 960 960 960 960 960
IV [stuck] 1020 890 840 880 890 890 900 910 910 920

ticseed values for I, II, Il, and IV are 822182, 332660, 237064, and 825089, respectively. 1

5
I
I
I
I
U
I
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J= 4, Nonlinearity3000 ,

3 8 2500

0=2000 ',

o z- . .- - -- -

I 1500 "

1000-
0 0.1 0.2 0.3 0.4

bias

I

I J= 8, Nonlinearity
2500 ,I

S2000-

I K
S 1500

1"1000 ----------

I __ __ _ I__ _ I__ __ _

0 0.1 0.2 0.3 0.4

3 bias

3 Figure 22. Convergence time vs. bias for two networks with different hidden layer
sizes.
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b. Temporal Noise

The simulations incorporating temporal noise generated learning curves whose

intermittent spikes in noff were taller. Therefore we modified our averaging metric to

suppress taller spikes: 3
xb=100:100:3000;
max(xb.*(mean(reshape(noff(2:301 ), 10,30))>0.3_) )

The convergence time data appear in Table XVI. Figure 23 shows graphically

the results for both J values. The different line types correspond to different sets of

initial conditions; note three lines per condition (for the three training seeds) appear. It

is difficult to deduce any significant change in SLM noise sensitivity with J. 5
TABLE XVI

Simulation results with temporal noise in the SLM driving electonics, for J = 8. Note
that, except for the case of 0 noise, values are rounded to the nearest 100 by our

modified averaging algorithm.

time to convergence (noffln=240o:1o:2500)
training noise variance

I.C. seedt BEP o.oo0025 0.00125 0.0025 0.005 0.0087 0.015

I a 720 700 700 800 900 (0.5) (1.3)
b 700 700 800 1100 2200 (1.7)
c 700 700 800 1100 2100 (1.1)

II 90 900 900 900 1100 2300 (1.4)
h 900 900 1000 1200 (3.4) (4.5) 3
c 900 900 1000 1100 (0.5) (1.3)

1Il 960 1000 1000 1000 1300 2100 (1.3) 3
b 1000 1000 1100 1300 (0.5) (4.2)
c 1000 1100 1100 1800 2200 (1.3)

IV 920 900 1000 1100 1200 (0.8) (1.9) 1
b 1000 1000 1000 1200 2200 (2.0)
c 1000 1000 900 1300 2200 (1.1)

I
ttrseed values for a, b, and c are 492012, 398092, and 832919, respetively. Due to the increased spike size, the
averaging method is based around 0.3 rather than 0.2. 1

I
I
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J= 4, Temporal SLM Noise1 3000 I I ,

S2500 -

0 2000 3 , ,. .. .' . .
10

E* 1500-.;"'

0 0.002 0.004 0.006 0.008 0.01

noise varianceI
I J= 8, Temporal SLM Noise

2500 , ,

S2000

O 1500-

I ~1000 -I , , _ _ _ _ _ _ _,_ _,_ _ _ _

0 0.002 0.004 0.006 0.008 0.01

I noise variance

3 Figure 23. Convergence time vs. SLM temporal noise variance for two networks with
different hidden layer sizes. Three traces are shown per initial condition

* set-for the three training seeds.
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c. Space-variant Gain I

The results suggest that the larger network is more immune to space-variant gain I
than is the smaller. See Table XVII. Gain variances up to 0.05 did not prevent

convergence, whereas in the J = 4 case (Table III), even variances of 0.025 occasionally 3
did. Figure 24 illustrates the significant increase in allowable gain variance that occurs

with the increased hidden layer size. I
TABLE XVII

Simulation results with nonuniformity in the SLM electro-optic response, for J = 8. 3
time to convergence (noffln=2400:1O:2SOO)
variance of element response multipliers

I.C. seedt BEP 0.003125 0.00625 0.0125 0.025 0.05 0.087

I a 720 720 720 700 710 800 (3)b 720 730 730 770 880 (3)
c 710 690 640 600 550 730

II a 890 870 860 910 1220 1880 (2) 3
b 880 900 1160 1350 1390 (3)
c 890 880 1390 1920 1560 (04-*4)

III a 960 960 840 740 700 680 (0) 1
b 970 920 830 770 840 2080
c 1020 1050 950 880 990 810 1

IV a 920 930 1010 1030 940 1160 (3)
b 1020 1010 890 770 670 1000
c 950 940 920 880 1100 1170 5

tayseed values for a, b, and c wre 573487, 998853, and 893289, respectively. I
I
I
I
I
I
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J=4, Space-variant Gain3 3000 ,,

3 2500 ,"'- - -•/: I
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2000 ... , • .. . . .... " /tI2 0 0-- - ------------ -- -- - - - - - - - -- - - - - - --
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1000
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gain variance

I J= 8, Space-variant Gain

2500 ,,

OU 1500o - -

0 -- -- --------.. .. ..

----------------------

"1000,

0 0.02 0.04 0.06 0.08 0.1
gain variance

IFigure 24. Convergence time vs. space-variant gain for two networks with different

hidden layer sizes. In the J = 4 case are shown four traces per initialcondition set-for the four sets of multipliers s.
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d. Finite Extinction Ratio m

As our results show, the size of the hidden layer seems to have little effect on 1

the change in time to convergence resulting from decreased extinction ratio in the

polarizers. Table V and Table XVIII show the results for J = 4 and J = 8, respectively. 3
Figure 25 shows that increasing J does slightly decrease the rate of change in

convergence time with j--as well as increase the probability of convergence at higher •t'

values.

TABLE XVHI
Simulation results with finite extinction ratio in the SLMs, for J =8.

time to convergence
extinction ratio

I.C. 00 100 56.23 31.62 17.18 10 5.623 3.162 1.778

I 720 750 770 830 920 1130 1680 >2500 [stuck]
II 890 930 960 1010 1130 1340 1940 >2500 [stuck]
ii1 960 1000 1030 1090 1200 1460 2170 >2500 [stuck]
IV 920 960 1000 1060 1180 1450 2090 >2500t [stuck]

tit is uncertain whether this trial was on its way to convergence. I
I
I
I
I
I,
I
I
I
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J= 4, Finite Extinction

3 ~2500-
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I J= 8, Finite Extinction2500 ,
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I I 15001
0

I 1000-
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3 Figure 25. Convergence time vs. tb (the reciprocal of extinction ratio) for two
networks with different hidden layer sizes.
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2. The Optical Imaging System

In the J = 4 simulations (Table VI), we found that large enough values of I
crosstalk had unpredictable effects on convergence time. We also found that, above 6%

the convergence was effectively rendered improlable. For J = 8, the effect is a more 3
predictable increase in convergence time with added crosstalk, as can be seen in Table

XIX. Larger values, above 6%, were tolerable. Figure 26 shows graphically the results 3
for both J values.

I
TABLE XIX

The effects of crosstalk upon convergence, for J = 8. 1
time to convergence

crosstalk
I.C. 0% 0.05% 0.1% 0.2% 0.4% 0.8% 1.6% 3.2% 6.4% 12.8%

I 720 720 720 730 740 770 830 970 1240 [stuck]
II 890 890 900 910 910 940 1000 1290 1240 [stuck]
III 960 960 980 980 990 1000 1030 1130 1410 [stuck]
IV 920 910 910 910 910 950 980 1130 1330 [stuck]

I
I
I
I
I
I
I
I
I
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I Figure 26. Convergence time vs. percent crosstalk for two networks with differenthidden layer sizes.
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3. The Detectors

a. PIN Shot Noise I

Table XX shows the imulation results. As revealed in Figure 27, there is little 3
difference from the J = 4 case in the allowable SNRm. range. Interestingly, though,

unlike in the J = 4 case, the learning curves of noff are remarkably spike-free. The

averaging metric was not needed, therefore, so that the values in the Table are not all

divisible by 100. 3

TABLE XX
Shot noise in the PIN detectors, for J = 8.

time to convergence, (noffln=2400:lO:2500)
SNRmax

I.C. oo 215.4 100 46.42 21.54 10 4.462

I 720 710 720 710 810 (1.1) (6.9) 3
II 890 900 900 900 890 (1.3) (6.1)
Il 960 960 960 960 1010 (1.3) (7.1)
IV 920 920 920 920 990 (1.0) (5.8) 5

I
I
U

I
I
I
I
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J= 4, PIN Shot Noise3 3000 , ,

3 82500.

E 2000 - -£0 U
0

15 0 -- - -. . . . - -- - -

10000
I I II

0 0.01 0.02 0.03 0.04 0.05

1/SNRmaxI

I J= 8, PIN Shot Noise
2500 I ,I
2000

I U.)I

U1000- ------

0 0.01 0.02 0.03 0.04 0.05

5 1 /SNRmax

I Figure 27. Convergence time vs. PIN shot noise for two networks with different
hidden layer sizes.
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b. PIN Thermal Noise

Table XXI shows the simulation results. Here again, little difference in the I
allowable SNRmax range is created by having four additional hidden units. This is

confirmed in Figure 28. 3
TABLE XXI

Thermal noise in the PIN detectors, for J = 8. Note that, except for the case of oo,
values are rounded to the nearest 100 by our de-spiking algorithm.

time to convergence, (noffln=2400:125oo) I
SNRmax

I.C. 00 215.4 100 46.42 21.54 10 4.462 3
1 720 700 700 1300 (2.2) (9.1) (11.0)
II 890 900 900 1300 (2.8) (9.3) (11.5)
Ill 960 1000 1000 1300 (1.5) (9.1) (11.6)
IV 920 900 1000 1300 (1.6) (9.2) (11.1)

I
I
I
I

I
1
U
I
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J= 4, PIN Thermal Noise
I 3000,,

2 1500"

E. 2000 -... .' "

IO
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0 0.005 0.01 0.015 0.02 0.025

1/SNRmax£

I J= 8, PIN Thermal Noise
2500 , ,I

I 2000

B 1500-

4. 1000=

0 0.005 0.01 0.015 0.02 0.025

5 1/SNRmax

3 Figure 28. Convergence time vs. PIN thermal noise for two networks with different
hidden layer sizes.
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c. CCD Shot Noise

Table XXII shows the simulation results. Although this is confirmed by only one I
trial, convergence is possible for an SNRmUX as low as 4.462 for J = 8, unlike for J = 4.

Figure 29 shows the graphical comparison. 3
TABLE XXII 3

Shot noise in the CCD detectors, for J = 8.

time to convergence, (noffln=2400:lo:25oo) I
SNRmax

I.C. 00 215.4 100 46.42 21.54 10 4.462

1 720 720 720 720 750 700 1690 I
H 890 890 890 890 920 910 [stuck]
ITT 960 960 970 990 1000 820 (8.2) 3
IV 920 920 910 890 880 610 (3.5)

I
I
I

I
I
I
I

I
I
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J= 4, CCD Shot NoiseI 23000 , ,
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3 J= 8, CCD Shot Noise
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S1/SNRmax

3Figure 29. Convergence time vs. CCD shot noise for two networks with different
hidden layer sizes.
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d. CCD Thermal Noise

Table XXIII shows the simulation results. Having J = 8 can allow an SNRmax as U
low as 100. Figure 30 shows the graphical comparison.

TABLE XXIII
Thermal noise in the CCD detectors, for J = 8. 3

time to convergence, (noffln=24oo:lo:2500)

SNRniax
I.C. 00 215.4 100 46.42 21.54 10 4.462

I 720 710 610 (6.3) (11.3) (12.9) (12.2)
II 890 920 1620 [stuck] [stuck] [stuck] [stuck]

III 960 1100 950 (9.1) (11.6) (12.9) (12.2)
IV 920 800 600 (6.3) (11.8) (12.9) (12.2)

I
I
I
I

I

I
II
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J= 4, CCD Thermal Noise3 3000 T ,

3 o 2500

I .-
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3Figure 30. Convergence time vs. CCD thermal noise for two networks with different
hidden layer sizes.
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E. Combinations of Key Effects (J =8) )

We performed simulations similar to those combinations we had run with J = 4. 1
1. Temporal Noise and Malus's Law in the Weights 3
As was the case for temporal noise by itself, the learning curve spikes were large 3

enough to require using 0.3 in the averaging metric in place of 0.2. As in the J = 4

case, a sweet spot is manifest for each of the traces.. The results are given in Table 3
XXIV. Figure 31 shows the sweet spots graphically.

TABLE XXIV 3
The combining of the Malus's Law nonlinearity with SLM temporal noise,t for J = 8.

ttime to convergence, (noffln=2400:1o:25oo) 3
bias

varianc 0 0.1 0.2 0.3 0.4

0.005 / 2000 1400 2300 2400 2500 1
0.0025 1700 1000 900 1100 2400
0.001251 1700 1000 900 800 1100

tI.C. 1, trzeed=205464.

72'
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U J= 8, Nonlin. & Temporal SLM Noise
2500

I ~ ~~~20000.02

S 150 k,,,'

IE
1000 , -

0 01020.3 0.4

Figure 31. The existence of a "sweet spot" in bias, whereat the bias's benefit and
harm are in balance. The solid curve represents a noise variance of 0.005;
the dashed curve, 0.0025; the dotted curve, 0.00125.

2. Crosstalk and Shot Noise

3As was the case for J = 4, (See Table X.) crosstalk and shot noise effects

appear to accumulate. This time, however, spikes do appear, and so the averaging3 method, with 0.2, was used. The results are shown in Table XXV.

TABLE XXV
The combining of crosstalk and shot noisel, for J - 8.

time to convergence
I.C. BEP minimalt maximaltt

"1 720 800 2500

I ba

II 890 900 1300
111 960 1000 1300

the3dshed urve IV 920 1000 1000

40.2% crosstrsk, sNRmax(PIN shot) = 100, SNRmsx(CCD shot) = 46.42
tt3.2% croostalk, NRmax(PIN shot) f21.64, SNRmaX(CCD shot) = 10.
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3. The Complete Detector Noise Models I

The results shown in Table XXVI suggest that the degree to which the different I
types of noise detrimentally interact is not significantly reduced by hidden layer

redundancy. The equivalent J = 4 results were presented in Table XIII. 3
TABLE XXVI 3

The complete detector noise modelst, for J = 8.

time to convergence 3
I.C. BEP minimal$ maximaltt

1 720 760 [stuck] 3
II 890 960 [stuck]
III 960 960 [stuck]
IV 920 880 [stuck] 3

ttrseed=606842

t9SNRmax(PIN shot) = 100, SNRmax(CCD shot) = 46.42, SNRmax(PIN thermal) = 100, SNRmax(CCD
thermal) = 464.2.

tSNRmax(PIN shot) = 21.54, SNRmax(PIN thermal) = 46.42, SNRmax(CCD shot) 10, SNRmax(CCD
thermal) = 100.

I
I
I
U
U

I
I
I
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U 4. The Complete, Compensated SLM Noise Model

3 The data are shown in Table XXVII. The "minimal" effects do not seem to
form a lethal combination. However, the learning curves for the "maximal" conditions3 took on an extremely spiked appearance. While in most cases, a few spurious -.ikes
after "convergence" are forgiven, in this case we judged the amount to be unacceptable.3 Figure 32 shows one of the maximal learning curves. Plainly, the excessive spiked

appearance makes the use of an averaging metric a mere exercise.

U TABLE XXVII
The complete, compensated SLM noise model, for J = 8.,'

time to convergence
I.C. BEP minimalt maximaltt

I 720 700 [spiked]
II 890 900 [spiked]
I11 960 940 [spiked]
IV 920 1000 [spiked]

ttrzeed=205464; svased=573487.

ta2 = 0.00125, CT2 (s) = 0.004, ext. ratio = 215.4.
tt02 - 0.005, a 2 (s) - 0.01, ext. ratio = 17.78.

3 This problem did not occur for the J - 4 case. It seems that one price paid for

hidden layer redundancy is in the sensitivity of the system after a convergence of sorts3 has already occured.

7
I
I

I
I
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* F. The Entire Architecture

U We performed several sets of simulations in which all imperfections were

assumed to exist. To allow for the likely possibility that predistortion compensation for3 the SLM nonlinearity would be used, we simulated the network with predistortion

enabled and disabled, using a bias of t = 0.15 in the latter case. Naturally, the values of

* all the other parameters must be chosen with care.

Let us begin with the SLMs. With the current technology in Pockel's-cell

devices, keeping temporal noise in the driving electronics below 0.2% is achievable.

Space-variant gain is a function of fabrication uniformity, primarily in thickness. This

can be controlled typically to within a percent. Extinction ratios on dichroic sheet

polarizers are typically 104; based on our results concerning extinction ratio, and given

imperfect alignment, we allowed extinction ratios to be only 250.

I Crosstalk is an easily-prevented occurence; its prevention simply requires
increased inter-element spacing. We assumed that 0.2% would always be present.

I Our PIN detector noise values were obtained using an analysis like that at the

end of Section IV. B. 3. For these simulations, we used SNRmaX(PIN shct" = 1500, and3 SNRmax(PIN thermal) = 250.

For the CCDs, based on currently available technology, we set SNRmr(CCD

shot) at 500, and SNRm.(CCD thermal) at 1000.

U For these trials we allowed the simulations to run longer than we had for the

previous ones. That is, for J = 4, we set N = 4000; and for J = 8, we set N = 3500.

T'.ables XXVIII and XXIX show the results for four trial sets. Tables XXX and XXI

repeat the same data, except that each trial's simulation time is shown divided by the

corresponding "no effects" time. This makes interpreting the data easier.

The "trial I" data for both J values show, for the most part, an increase in

convergence time. In trial 2, we kept ail parameters the same except for temporal noise,

whose variance we increased to 0.005. We felt that this increased convergence time by

what might might be considered excessive; in some cases, the convergence time doubled,
for J =4. So we backed it down.
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TABLE XXVIII I
Simulation of the entire architecture, for J = 4.f

time to convergence I
I.C. nonlinearity no effects trial I trial 2 trial 3 trial 4

compensated 1010 1300 2100 1400 [stuck] )
biased 1160 1500 3300 1600 [stuck]

II compensated 1400 2900 2200 2300 2200
biased 1520 1800 2800 2000 2300

III compensated 1810 3300 2500 2900 1500
biased 1720 1900 3600 1900 4000

IV compensated 1950 2000 2500 1700 2900
biased 1800 1800 3100 2100 1900

SLM temp. 0.002 0.005 0.002 0.002
s.-v. gain 0.01 0.01 0.01 0.01
ext. ratio 250 250 100 30
crosstalk 0.002 0.002 0.005 0.01
PIN shot 1500 1500 1500 1500 1
PIN thermal 250 250 250 250
CCD shot 500 500 500 250
CCD thermal 1000 1000 1000 500

I
ttrseed=490001; sveeed=598392.

TABLE XXIX U
Simulation of the entire architecture, for J = 8.t

time to convergence I
I.C. nonlinearity no effects trial I trial 2 trial 3 trial 4 I

compensated 720 800 1000 800 1200
biased 830 900 1250 1000 1100

II compensated 890 1000 1200 1000 1100 1
biased 1140 1100 1250 1000 1000

III compensated 960 900 1300 900 1200
biased 900 800 1250 900 1100

IV compensated 920 1200 1300 1000 1200 I
biased 840 1300 1250 1000 2100

SLM temp. 0.002 0.005 0.002 0.002
s.-v. gain 0.01 0.01 0.01 0.01
ext. ratio 250 250 100 30
crosstalk 0.002 0.002 0.005 0.01
PIN shot 1500 1500 1500 1500
PIN thermal 250 250 250 250
CCD shot 500 500 500 250
CCD thermal 1000 1000 1000 500

ttrse.d=492012; avsemd=573487.
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TABLE XXX
Simulation of the entire architecture, for J = 4.t

I time to convergence divided by that for no effects
I.C. nonlinearity no effects trial 1 trial 2 trial 3 trial 4

N I compensated 1 1.29 2.08 1.39 [stuck]
biased 1 1.29 2.84 1.64 [stuck]

II compensated 1 2.07 1.57 1.64 1.57
biased 1 1.18 1.84 1.32 1.51

III compensated 1 1.82 1.38 1.60 0.83
biased 1 1.10 2.09 1.10 2.33

IV compensated 1 1.03 1.28 0.87 1.49
biased 1 1.00 1.72 1.17 1.06

SSLM temp. 0.002 0.005 0.002 0.002

s.-v. gain 0.01 0.01 0.01 0.01
ext. ratio 250 250 100 30
crosstalk 0.002 0.002 0.005 0.01
PIN shot 1500 1500 1500 1500
PIN thermal 250 250 250 250
CCD shot 500 500 500 250
CCD thermal 1000 1000 1000 500

ttrseed=490001; £vseed=698392.

I TABLE XXXI
Simulation of the entire architecture, for J = 8.t

I time to convergence divided by that for no effects
I.C. nonlinearity no effects trial I trial 2 trial 3 trial 4I
I compensated 1 1.11 1.39 1.11 1.67

biased 1 1.08 1.51 1.20 1.33
II compensated 1 1.12 1.35 1.12 1.24

biased 1 0.96 1.10 0.88 0.88
III compensated 1 0.94 1.35 0.94 1.25

biased 1 0.89 1.39 1.00 1.22
IV compensated 1 1.30 1.41 1.09 1.30

biased 1 1.55 1.49 1.19 2.50

SLM temp. 0.002 0.005 0.002 0.002
s.-v. gain 0.01 0.01 0.01 0.01
ext. ratio 250 250 100 30
crosstalk 0.002 0.002 0.005 0.01
PIN shot 1500 1500 1500 1500
PIN thermal 250 250 250 250
CCD shot 500 500 500 250
CCD thermal 1000 1000 1000 500

ttrseed=492012; svseed=573487.
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In trial 3, we increased crosstalk and worsened the extinction ratio. For the most

part, the results are quite similar to those from trial 1. Evidently, these changes,

particularly the one in crosstalk, play a less significant part than a similar change in

SLM temporal noise.

In trial 4, we further worsened extinction ratio and crosstalk, and significantly

reduced the CCD performance. Again, these conditions seemed to have a similar effect 3
to increasing SLM temporal noise, but this time some of the J = 4 runs failed to

converge. 3
In conlusion, an optical back propagation network solving a problem of the size

of 2-D corners will perform best with extra hidden units, and will require conditions at i
least as good as those set in trial 2 or 3.

8

I
I
I
I

I
I
I
I
I
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* V. Exemplar-based Model

i The BEP model for a neural net classifier separates the input patterns by a series

of hyperplanes. As we illustrated in Section III. B. 2., each of the hyperplanes is

associated with a hidden processing element and the orientation and location of the

hyperplane is completely specified by the weight vector associated with that processing

element. One or more layers of hidden processing elements are needed to form an

arbitrary decision boundary via intersections of half spaces. 19

I Exemplar-based classifiers20 use their hidden processing elements somewhat

differently. The weight vectors associated with the processing elements in the first layer

simply represent the input patterns (exemplars). The subsequent layers then group

outputs from the first layer processing elements and make a classification decision. The

subsequent processing differs between k-nearest neighbor classifiers,21,22 Restricted

Coulomb Energy classifiers 23 ,2 4 or Radial Basis Function classifiers.2 5,2 6 The common

characteristic of these models is that they have high storage requirements (proportional

to the exemplars in the training set) but short training times. The error signals in the

training cycle are used mainly to adjust the weights in the subsequent layers or some

simple parameters (e.g., the size of the basin of attraction) associated with the processing

elements in the first layer. Below are some descriptions of those exemplar-based

* networks that we have studied and simulated.

* A. The Nearest-neighbor Network

The simplest exemplar-based approach is to assign to every training pair an
exemplar center. The task of the network would then be to determine which of these
"46"neighbors" is the nearest to the given input. It then outputs the class of the nearest

neighbor. There is no training step, of course, other than the initialization.

The distance computation is based around a vector-matrix multiplication, not

unlike a hyperplane-based network. Let an I-element input vector oi be presented, and

the position vector of the jth hidden unit be Cji. Then the distance is

SIoi-Cji 2 _ 1oi12 + lCjil2 - 2 oi" Cji

I
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and J such distances exist. However, since Iod2 will be the same for all hidden units, all 1

that is needed for comparison is jCji[2 - 20i - Cji. After computing these J comparative

distance terms, the network passes only the output value associated with that hidden unit

whose distance equals the minimum. I
Figure 33 shows how a nearest-neighbor network allocates the decision space for

the 2-D skewed corners problem. Also shown is the network's solution when nine of

the boundary data points are missing. It is interesting to note that back propagation

(with J = 4) was unable to solve this sparse version of the corners problem. While the

network's generalization is good, the efficiency of hidden unit allocation is obviously

13w. One solution might be to use only selected inputs as exemplars.

IR=25 
R=16

0.8 0 0.8--

0.6- 0.6 I
0.4 0.4

0.24 0 0.2 I U
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Oi(1) Oi(l)

Figure 33. The decision regions produced by a nearest-neighbor network for the
2-D skewed corners problem. U

B. The Nestor Learning System 3
The Nestor Learning System, based on Restricted Coulomb Energy methods2 3 ,2 4,

is one system that we have studied. This method dynamically commits new hidden units

(called prototype units) as training progresses, and modifies existing ones, until all

training pairs are correctly classified.

The neighborhoods in this system are hypersherical in shape; their centers are 3
themselves co-located with selected training inputs. Each neighborhood is tagged with

I
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I one of the possible output classes of the network. As each training pair is presented, the

algorithm

reduces the size of those neighborhoods which overlap and conflict with that

pair, and

commits a new prototype unit, centered at that pair, if the pair is unclassified

(that is, if it is located inside no neighborhoods).

I Naturally, the order of presentation of the training data strongly determines

where the neighborhoods will end up; this can give rise to inefficient configurations,

where a large portion of the input space is unidentified or confused. One advantage of

this method is that very few cycles of training data presentation are needed before the

network is solved. It is important to note that what we have here described, somewhat

tersely, is what Nestor Corporation calls a single-layer system (despite the multilayer

nature)-the version that is marketed by Nestor in fact uses a sophisticated multilayer

configuration.

I We wrote a Matlab simulation program for this system. The program is given in

the Appendix, Section C. Figure 34 shows the decision space allocation of a solved

network for the 2-D skewed corners problem with J = 15. In this case, the presentation

order was left-to-right, beginning with the bottom row on the graph. While only three

epochs were needed to solve the problem, the poor generalization is self-evident.

I
I
I
I
I
I
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0 I1" '
identified 0- 0

unidentified []
confused "

III
0 1 0

Figure 34. The decision regions produced by a Nestor Learning System single-layer
network. The network produces identified, unidentified, and confused I
reponses to inputs in the shown regions.

C. Modified BEP I

As mentioned in Figure 1, we at BDM have developed an algorithm which uses a I
gradient descent to effect learning in a radial basis function network. Recall Section III.

B. 1., in which the forward pass equations and the delta rule were used to derive

equations for the weight and bias updates. The same type of derivation can be used for

a network with different forward pass equations. In a radial basis function network, the

hidden units produce outputs which exponentially fall off with increasing input distance

from a centroid. The rate of falloff varies with direction; therefore, surfaces of constant

output are ellipsoids rather than simply hypersheres. The output units form hyperplanes,

just as in traditional BEP. Thus, the forward pass equations are:

Forward Pass I
1. Netj - E (oi-Cj/ji' Oj exp(-Netj)

2. Netk - Oi Wki Ok 1/(1 + exp(-Netk))
J I
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I where CJi represents the locations of the centers, Wkj the weights in the output layer,

and aji is a constant used to shape the ellipsoids.

Recall the delta rule:I
AW cc -aE/aWkj where E = E (Erk-Ork)2r ,k

Since the equations for Netk and Ok are identical to those in conventional BEP, so will be

the equations for 6k and AWkj. For the hidden layer the delta rule calls for aE/aCji,

which can be computed using the chain rule:I
8E/aCji = (aE/cNetj) x (8Netj/aCji).

U We can show that

I ONetj/8Cji = -2 (oi-Cji) / ajil.

This one term is the only term in the sum over all i that is nonconstant with respect to

Cji. The other link we will continue to call -6j:

I aE/aNetj = -6j = (8E/Moj) x (aoj/SNetj)

I of which aoj/aNetj is just -oj. The first link is

I oE/aoj = B/8oj E (aE/ONetk)(aNetk/aoj))
k

U =-E 
6 k a/aoj(E Wkjoi) = -E 6k j1k k k

Therefore,

6j E 6k Wkj Oj

I and k

I
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ACji = -2 A 6j (oi-Cji) / aj2.

where \ is a learning rate constant, similar to 7. I

At this point the hidden ellipsoid sizes aji remain to be computed. Beginning

with the chain rule, I
aE/laji j ji E/8a = (8E/aNet) x (8

We can show that I

8Netj/8aji = -2 (oi-Cji)2 / o:ji$. I

The other link appeared in the hidden center discussion and is the same -6j. The delta

rule then rewritten:

Aoji oc -aE/aji = -2 ý 6j (oi-Cji)2 / aji3  I

where ý is yet a third learning rate variable. In summary, the delta rule yields up the I
following equations for updating the output weights, hidden centers, and hidden sizes:

Gradient Descent Equations I
3. 6 k = Ok (0-Ok) (tk-Ok)

4. 6&J-- -• SkWkjO I

5. AWk= ft Oj 6k

6. ACji -2 A 6j (oi-Cji) / aji2

7. Aoji = -2 C 6j (oi-Cji)2 / aji$ I
In the above equations, the learning rates are given as three different variables--T, A,

and f, because they appear in differing types of equations. However, there is no reason

why hyperplane-based back propagation could not also possess different learning rates

for the different layers.

I
86

I



I

I We coded modified back propagation in the Matlab modules given in the Section

D of Appendix. Figure 35 shows the learning curve of one trial of the system, where 8

hidden units are used; Figure 36 shows the corresponding solution space. Notice that

only 180 iterations were required.I
Modified BEP learning curve

12

10:

I o

6-1, 2i

0 50 100 150 200 250 300 350 400 450 500

3 cycle

Figure 35. A learning curve produced by modified BEP on the 2-D skewed corners
problem, with J = 8.

The solution initially surprised us; rather than drawing nearly circular ellipses

about the corner regions, the network discovered the horizontal and vertical rows of the

other class. Also, the network gives no regard to the exact locations of the corner
training data-outside the narrow ellipses. (By comparison, note Figure 8; the 0.5 output

contour curve generated by back propagation is located halfway between the locations of
the two classes, at all corners.) That the generated solution depends on only some of the

data suggests that the generalization of this network is poor.

Note that the ellipsoidal neighborhoods are restrained to having major axes along

one of the input space axes. However, one could begin with a more elaborate set of3 forward pass equations, based on ellipsoidal regions which can be tilted. It is interesting

to speculate what solutions such a network would generate.
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Figure 36. The decision regions produced by modified BEP. The hidden decision I

bounds are horizontally and vertically oriented ellipses. Solid lines show a
contour plot of the output, similar to that in Figure 7.I
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* VI. DISCUSSION AND CONCLUSIONS

S Our analysis of an optical back propagation architecture was preceded by a study

of the algorithm itself and a technology-independent analysis. In the process, we3discovered an important and usually-overlooked initialization scheme developed by

Sheldon Gilbert. This technique, as well as other enhancements to the original back

propagation, shows promise in significantly reducing the number of cycles to

convergence. We have also studied neighborhood-based multilayer feedforward nets. In

particular, we proposed a novel approach to learning in one such network using radial

basis functions. This, too, shows room for enhancement, though as it is convergence

time is already reduced compared to back propagation.

The technology-dependent analysis of optical neural networks has yielded a3 wealth of useful information. Our requirement of full utilization of the 3-D nature of

optical communications for all operations that warrant it has resulted in the design of a

promising arhcitecture. We have analyzed this architecture in a part-by-part fashion,

developing a rigorous model for the SLMs, imaging system, and detection systems.

Si While excessive noise in a given element may prevent convergence our

simulations have revealed relatively little "noise accumulation." That a learning curve5 can exhibit both a noisy appearance and convergence is evidence of the robustness of the

back propagation algorithm. However, our simulations also show us that the presence of3 Ian uncorrected nonlinearity due to Malus's law will significantly degrade performance.

Introducing a bias is a simple remedy to this problem; nevertheless, it will also be

necessary to insure that noise levels are kept low for this remedy to be useful. This may

not be achievable with present SLM analog driving technology; predistortion
* compensation would then be required.

We have also observed that performance and noise immunity are both greatly3 increased by the use of extra hidden units. Further, extra hidden units are not only easy

to add in an optical architecture; it is also likely they will already exist. That is, the3. number of hidden units for a given complex problem is usually not known a priori, so

that extra hidden units will have to be made available.

I In general, we have shown that an optical back propagation architecture is

capable of full operation with realistic hardware. This is especially true for the case of
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hidden layer redundancy, and where the SLM nonlinearity has been predistortion- I
compensated. 3

!
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IX. CONFERENCE PRESENTATIONS I

James J. Levy, Ravindra A. Athale, and Michael W. Haney presented a paper at I
the Annual Meeting of the Optical Society of America, held November 4-9, 1990 in

Boston. Below are given the abstract and summary, which appeared in the advance 5
program and technical digest, respectively.

Abstract a
Computer simulations reveal the effects of noise in optical weight matrix 5

elements, updated by back propagation, upon the learning curve characteristics.

Summary I
The back propagation algorithm' has become increasingly popular in the neural

net research community. Various optical implementations have been proposed, with the 5
hope of increased performance via the parallelism of optics. Realistic models of opto-

electronic implementations must include the effects of noise. While noise often
"anneals," increasing the convergence rate, excessive noise can effectively transform any
updating algorithm into a random search among weight configurations. For the purpose

of evaluating the effects of component noise on the performance of the back I
propagation algorithm, we have developed a simulation program which allows insertion

of noise terms wherever appropriate. The program introduces noise processes into the 5
weight updating process during the learning phase. The learning curve is defined as the

mean-square error vs. iteration number; our analysis emphasizes examination of learning 3
curves rather than simply probability of convergence. In this paper we describe the

behavior and noise tolerance of back propagation as related to hidden layer size, learning

rate, and initial conditions.

I
I. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal
representations by error propagation," in Parallel Distributed Processing, vol. 1, D. E.
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: M.I.T. Press, 1986, pp. 318-
362.
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APPENDIX: PROGRAM LISTINGS

Below are given the input and output .mat files representing the 2-D skewed

corners problem.

bpin.mat ________

0 0 0.1

0.325 0 0.1
0.425 0 0.9

0.825 0 0.1
1 0 0.1
0 0.225 0.1
0.325 0.225 0.1

0.425 0.225 0.9

0.825 0.225 0.1
1 0.225 0.1
0 0.525 0.9

0.325 0.525 0.9
0.425 0.525 0.9
0.825 0.525 0.9

0 0.525 0.9

0 0.725 0.1

0.325 0.725 0.1

0.425 0.725 0.9
0.825 0.725 0.1

1 0.725 0.1I

0 1 0.1
0.325 1 0.1
0.425 1 0.9
0.825 1 0.1

1 1 0.1

A. Straight Back Propagation

In choosing a problem for simulation, we look for one which is not prone to local

minima. Having chosen the problem, we also fine tune the learning rate and the3 parameters to be used by the Gilbert initialization process. We are not unaware that in

the real world, this luxury is usually not available; nevertheless, we are evaluating not

algorithms, but architectures. Therefore we are justified in fine tuning the solution

process and thereby making the simulations run more easily.

U This procedure requires the performance of many runs quickly. Even with all

the imperfections disabled, the full-blown simulation uses sign encoding, thereby more
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than doubling the computation. We therefore used a straight back propagation series,

the b series, for quick evaluations as these. The b series consists of "bframe.m," which

prompts for the various parameters; "binit.m," which loads the data and sets up the

initial state of the network; and "bctrain.m," which effects the training procedure.

Any function calls which are not part of PC-Matlab are listed in this Appendix.
bframe.m

% bframe script
disp('This Lets you run binit and btrain by having') I
disp('you put in aLt the necessary variabLes beforehand.')

J=input('Enter j: 1);
icseed=input('Enter icseed: ');

smartinit=input('Enter 1 to initiaLize by method of GiLbert: ');

if smartinit==l

steepnessfinput('Enter the initiaL hidden unit hitt steepness: ');

spread=l; I
else

spread=inputC'Enter the initiaL condition spread: '); 3
eta=input('Enter eta: ');

N=input('Enter N: ');
DN=input('Enter DN: ');

msetoL=input('Enter the me betow which training stops: 1);

a=input('Enter the upper (and -Lower) bound: ');

binit.m I
% binit script

Load bpin

Load bpout
I=ncots(bpin)
Kfncols(bpout) 3
Rfnrows( bpout)

if exist('keeplji')

Wjifkeeplji; THETAj=keepTHETAj;

Wkj=keepWkj; THETAk=keepTHETAk;
etse

% InitiaLize the weights and biases

X random numbers about zero center

rand('uniform') I
rand('seed',icseed)

rand(1,3); % to exercise generator

Uji=(rand(I,J)-I ./2)*spread;
THETAj=(rand(1,J)-1 ./2)*spread;

Wkj=(rand(JK)-I ./2)*spread;

THETAkf(rand(1,K)-I ./2)*spread;I
if smartinit==l

% the Wji a
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% numerator is predet. magnitude of weights vector
% which's normat to dividing hyperplane (tine for 1:2)
x-steepness./sqrt~sum(Wji .^2));
Wjin(orws(1,1)*x).*lWji;
% the THETA]
THETAj:.O.5*suICWj i);
% the Wkj

Wkj=(l/J)*ones~j.K);
end

keepl~jil-Wji, keepTHETAj=THETAi
keePljkjzWkj, keepTHETAk=THETAk

end
n=O;
% MSE CALCULATION

% Forward Pass
NETj~tbpin,ones(R. 1)1*[Wji;THETAj];
Oj=1 ./(1+exp(-NETj));
NETk=EOj,ones(R,1)1*NWkj;TIIETAk];

OWl ./(l.expC-NETk));
tdetmse( ¶)=sun(meanc( (Ok- bpout) .^2
% literally, less detailed inse
% this first one's not an average
noff(1 )=sun(sum(CabsCOk-bpout)>0.O4)));
noff2(1 )=sum(sunc(abs(ok-bpout)>O.2)));
clear ans x % temporary variables

bctrai,.m

% bctrain script
% Accuml~aates weight change over epoch, THEN updates...
5tOp~fl4N;

white n~cstop
n=n+1
% Error back propagation
Dk=(bpout-Ok) .Ok.*(1 -Ok);
DWkj=eta*Oj l*Dk;
DTHETAkzeta*ones(1 .R)*Dk;
Djz~j.*(I.Oj).*(Dk*Wkj ');
DWI i=eta*bpinl*Dj;
DTHETAj=eta*ones(1 ,R)*Dj;
% Addition of the deltas to electronic register
Wkj=Wkj+D~kj; THETAk=THETAk+OTHETAk;
Wji-gWji+DWji; THETAI=THETAj+DTHETAj;
% only clipping remains...
Wkj=- (Wkj<ca).*a+(abs(Wkj)c=a).*ukj.(uki~a).*a;
THETAk:- (THETAk<-a).*a.(abs(THETAk):=a).*THETAk+(THETAk~a).*a;
Wji:.(Wji<-a).*a4Cabs(Wji )=ca).*Wji+(Ujiia).*a;
THETAj:- CTHETAj<-a).*a+(abs(THETAj )(:a).*THETAj.(THETAj~a).*a;
% Forward Pass
NETI=Cbpin~ones(R,1)1*r*Wji;THETAJ];

01:1 ./(1+exp(-NETj));
NETk=[Oj,ones(R,1)]*[Wkj;THETAk];

OW: I/(l~exp(-NETk));

detmse:Cdetmse~swn(meanc((Ok-bpout).A2))];
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if rem(n,D)==O i
Ldetmse(n/DN+1 )mean(detmse);

noff(n/DN+l )=sum(sun((abs(Ok-bpout)>0.4)));

no ff2(n/DN+l)=sum(sun((abs(Ok-bpout)>0.2)));
clear detmse

disp(Iconvergence check')

% based on mse over r, not individuals

if Ldetmse(n/DN+ )<=msetoI.

disp('less detaiLed mse within toLerance')

break

end
end

end

clear stop Dk Di % temporary variabLes

meanc.,

function s--neanc(in) I
% out=meanc(in)

% This function returns a column vector with the mean of

% each row of in. This incLudes the case where in has but

% one column (i.e., it won't then return the scalar).

% So it's not strictly the transpose of mean. 3
if ncots(in)==1

s=in;

elseU
s=(mean(in')),;

end

ncoLs.m I

function nc=ncoLs(in)

% outzncols(in)

% This function returns the number of columns

% in the matrix passed to it.

[nr,nc =size( in);

nrows.mI

function nr=nrows(in)

% out=nrowsin)

% This function returns the number of rows

% in the matrix passed to it. I
[nr,nc =size(in);

I
I
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We have also developed a diagnostic program, "cpcofttor.m", that prints out a

contour map of the solved (or unsolved) network, like that shown in Figure 7. This

program is valid only where I = 2, and generates K plots (one for each output node k).

The program graphs J decision lines, delimiting where oj crosses 0.5. Given

more hidden units than are needed for a problem, back propagation usually deems some

as unnecessary and decreases their connections (Wkj) to output nodes. On screen,
"cpcontor.m" color-codes the decision lines accordingly: those associated with the

strongest connections are drawn in white; medium connections yield green decision lines,

and weak connections yield blue ones.

The output Ok is represented as a contour map. Red, green, and blue curves

correspond to ouputs at 0.3, 0.5, and 0.7, respectively.

Incidentally, running "cpcontor.m" on an untrained net initialized with and

without Gilbert's method dramatically illustrates what this method does.

cpcontor.m
% cpcontor script
% This program, valid only for two-input nets, generates the
% contour pLot of each Outout unit, hopefullv stiperimposeA
% with both the hidden unit decision Lines and the input.
toad bpin
load bpout
axis([O 1 0 1]) X a more general statement would be
% axis([min(bpin(:,l)) max(bpin(:,1)) min(bpin(:,2)) max(bpin(:,2))])
axis( 'square')
K=ncots(bpout); R=nrows(bpin);
for k=l:K

if K>1
act= ['subpLot(22'num2str(k) ')V]

evat(act)
end
X Inputs
for r=t:R

if bpout(r,k)>0.5
onpLot=C[onptot;bpin(r, :)];

else
offptot=[offptot;bpin(r,:)];

end
end
plot(onplot(:,l),onpLot(:,2),Sxg,), hold on
pLot(offptot(:,1),offptot(:,2), 'og')
xtabet(COi(1)'), ytabel(1Oi(2),)
X Dividing lines
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bgstumax(abe(Wkj(:,k)'));I
for j=J:-1:1

X20:0.101;
y.(x*W Ii~lij)-ones(1,11)*THETACj j)) ./Uji(2.;

if abs(Wkj(j,k))-c(1I3)*bgst
ptot~x,y, 'bl)

elseif C(abe(wkj(j~k)),.z(1/3)*bgst)&(abscwkj~j~k))<(2/3)*bgst))

ptot(X,Y, g')I

elseif abs(Wkj(!,k))iz(2/3)*bgst

pLot(X,Y, win)

end

% Contour
(xme,Yinel-meshdom(0:0.02: 1,0:0.02:1);
for cotco=1:51 % because of the 0:0.02:1s above

NJ=fxme(: .coico),yme(:,colco),onies(51,1)]r[Wji;THETAji;

OJ=1 ./(l~exp(-NJ));

NK=COJ.ones(51,1)1fl.Ikj;THETAk3;1
0I((:,coLco)ul ./(1+exp(eNK));

coturO,0.3,0.5,0.7],0:0.02:1,0:0.02:1)5
clear onplot offptot x y X Y NJ NK OJ OKC colco jk r xme ymne
hold off

exis( 'normal')I
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B. Optical Back Propagation

The simulation program has been continually evolving since the start of the

contract. In the technology-independent phase, additive noise was applied to the weight

after each change. Technology-dependent modeling requires making a commitment to a

particular architecture, in this case the one in Figure 5. Nevertheless, the basic three-

module series approach has been retained. At the end the weights are coded back to

bipolar form for use by "cpcontor.m."

Naturally, "uframe.m" must ask the user for many more parameters than

"bframe.m" did, most relating to the architecture. Many of the variables that get

defined here act as logical variables that will later determine whether imperfection

equations are performed or skipped. (Only crosstalk is always computed, even if set to

0.) This skipping over of equations not called for significantly shortens simulation time.

uframe..m

% uframe script

% Unlike bframe.m, this is specific to a dedicated sumpixeL

% architecture, with or without correction for NaLus' Law.

disp('This Lets you run uinit and uctrain by having')

disp('you put in all the necessary variables beforehand.')
J=input( Enter J: 1);

icseedinput('Enter icseed: ,);

smartinit=input('Enter 1 to initialize by method of Gilbert: ');

if smartinit==1
steepness=inputC' Enter the initial hidden unit hill steepness: 1);

spread=l;

else

spread=input('Enter the initial condition spread: ');

end

etazinput('Enter eta: ');

N=input('Enter N: ');

DN=input('Enter DN: ');

msetot=irnput('Enter the mae below which training stops: 8);

inject=input('Enter 0 for no noise; 2 for Gaussian noise: ');

if inject-=O

trseed=input(' Enter traeed: ');

end
if inject=2

var=input(' Enter the variance: ');

end

disp('You can introduce apace-variant gain into the')

disp('vottage-birefringence transfer function.')

svgain=input('Enter 0 not to, 1 to: ');

if svgain=:1
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avseed=inputC' Enter the seed: ');U

svvarzinput(' Enter the variance of this gain: ');

end

disp('You can then introduce a finite extinction ratio')U
disp('to the 1-D SLMs.')
poorext~iniput('Enter 0 not to, 1 to: ');
if poorext==1

extratiozinput(' Enter the extinction ratio: ');
end
disp(You can incorporate sine- related nontinearities that')

disp('can occur in architectures without electronic')I
disp('correction for the Law of MaLus.')
rnnLin=input(1Enter 0 not to, 3 for spatial encoding w/ Vbias: ');
if nonlin:=3

tp2=input(' Enter the tp2 of Vbias: ');
end
disp('You can introduce PIN detector noise.')

PlNnoise=input('Enter 1 to do this: ');
if PINnoise==1

if inject==0

trseed=inputC' Enter trseed: ');U
else

disp(' The simulation will share the random number')
disp(' generator with that of weight noise.')

trseedI
end
SNR~smax'~input(' Enter the maximum SNR permitted by shot noise:')

SNRlt=input(I Enter the SNR permitted by thermal noise: 1);I
end

disp('You can introduce CCO detector noise.')
CCDnoise~input('Enter 1 to do this: ');

if CCDnoise~==
if ((PINnoise==0)&(inject==0))

trseed=inpujt(' Enter trseed: ');

elseI
disp(' The simulation will share the random number')
disp(' generator with that of weight noise and/or')

disp(' PIN detector noise.')I
trseed

end
SNR2smax~inpujt(' Enter the maxim~um SNR permitted by shot noise: )

SNR2t=input(' Enter the SNR permitted by thermal noise: ');I

end
hr=input('Enter the upper (anid -tower) boun~d: ');

if nonlin=3I
disp(' The bias-correcting renormatizing constant')
disp(' does not affect this bounld.')

end

b--input('Enter the Dk normalizing constant (1 or greater): 1);

eps=input('Enter the crosstalk fraction: ');
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uinit.m

% ulnit script
% dedicated stdbpixeL architecture

Load bpin
Load bpout

Kancots(bpout)
R=nrows(bpout)
if exist('keep~lji')I ~Wji keep&jii; THETAjzkeepTHETAj;

Wkjzkeep~kj; THETAk~keepTHETAk;
else

% Initialize the weights and biasesI 2% random numb~ers about zero center
rand( 'uni farm')
rand( 'seed', icseed)
rand(l,3); % to exercise generator

THETij(rand(1,j)-1 i2)*spread;

Wkjz(rand(J,K)-l ./2)*spread;

THETAk=( rand(1 K) -1 .12)*spread;
if smartinit==1

% the WjiI % numerator is predet. magnitude of weights vector
% which's normal to dividing hyperpLane (line for 1=2)
x=steepness./sqrtcsuxn(Wji A2));Ij=oe(,)x.Wi
% the THETAj
THETAj=.O.5*swfn(Wj i);
2 the Wkj

en Wkjz(l/J)*ones(J,K);

keep~j iI-j i, keepTHETAj=THETAjI keep~kj=Wkj, keepTHETAk=THETAk
end
if svgainz==

rand( 'normaL')

rand( 'seed' ,svseed)
% Creation of the svgain matrices
svl~kjzaddgauss(ones(J ,2*K) ,svvar)

svTHETAk~addgauss(ones(l ,2*K),svvar)
svijiizaddgauss(ones(I ,2*J),svvar)
svTNETAjzaddgauss(ones(l .2*J),svvar)
svai=ones(R,1)*addgauss(ones(1,I),svvar) 2 tanipotar
svOjsones(R,1)*addgauss(ones(l,J),svvar) 2
svook-ones(R, 1)*addgauss(ones(1 ,2*IC),svvar)

edsvoojuores(R, )*addgauss~ones(1 ,2*J),svvar)

ifpoorext=:1, extbfas=l/extratio; end
a-hr;I ~if nonlinzu3, a-hr/(mat2aC1-tp2)-maL2actp2)); end
% normalizing and encoding (splitting and cLipping)
esWkjsencode(Wkj/hr); esTHETAknencode(THETAk/hr);
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esWjizencode(Wji/hr); esTNETAj~encode(THETAj/hr);I

% No bias yet exists to remove
if nontin--O
% inverse Matus's Law5
el~kj=imaL2a(esWkj); eTHETAk=imal2a(esTHETAk);
eijji=imet2a(esuji); eTIIETAj=imaL2a(esTHETAj);

elseif nontinz=3
e~Ekjznencode(decode(esWkj ),tp2);I
eTHETAk~nencode(decode(esTHETAk) ,tpZ);

e~iji=nenicode(decode(esWji ),tp2);

eTHETAj=nencode~decode~esTHETAj ),tp2);
end
% Add just a pinch of noise
if inject==2

e~Jkjzaddgauss~e~ikj ,var);
eTHETAk=addgauss~eTHETAk, var);

eWi i=addgauss(euj i,var);

eTHETAj=addgauss(eTHETAj ,var);
end
% MuLtipLy by space-variant gain

if svgain=1 I
e~kj~eWkj.*sv~kj; eTHETAkCeTHETAk.*svTHETAk;

eI~ji=eWji .*svljii; eTHETAj=eTHETAj.*svTHETAj;
end

% DisaLtow, vottages<OI
eWkj=(e~Ikj<O).*O + (e~kj~xO).*eI~kj;
eTHETAk=CeTHETAk<O) .*O + (eTHETAk>=O) .*eTHETAk;

eWji=(e~sji<O).*G + (euji>=O).*euji;I
eTHETAj=CeTHETAj<O).*O + (eTHETAj>=O).*eTHETAj;
% FinaLty, the Matus's Law does this: (no if statement)
o~kj=maL2a(e~kj); oTHETAkumat2a(eTHETAk);

o&Jji--maL2a(e~Iji); oTHETAj=iual2a~eTHETAj);
% And there may be that poor extinction ratio
if poorext==1

o~kj(1 .extbi aa)*o~kj+extbi as; 3
oTHETAk-(l extbias)*oTHETAk~extbias;
oljji=(1 extbias)*o~iji+extbias;

edoTHETAj=(l1-extbi as)*oTHETA j~extbi 
as;

% Preparation for mse caLcuLation
% the zeroth-iteration coLumn for mse

n=O;U
% MSE CALCULATION
oOi=imat2a(bpin);

if inject==2, oOizaddgauss(oai,var); endI
if svgain=¶l, oOi~oOi.*svOi; end
oOi=(Ooi<O).*O + (oOi>ZO).*oOi;
oOi=maL2a(oOi);

if poorextz==, oOi=(l-extbias)*oOi~extbias; end
% Forward Pass
oldETj=vucross(Eoo~i,ones(R,1)I ,eps)*Io~ji;oTHETAj];

oNETjuvcross(oNETj ,eps);I
if PINnoiseuzi

varl=((I+ )*oNETJ/SNRlSMAx'2)((C+I1)*ones(R,2*j)/SNRit).A2;3
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I oNETj=vaddgaus~oNETj~varl);
end

NETj=decode(oNETj);
01=1 ./C1+exp(-a*NETj));I ~ ~~ooj=iniaL2a(Oj );agusoo~a) n

if svgain==1, oOj=o~j.*svoj; end

oOj=(o~j<O)-*O + Co~j>O).*o~j;
oojzmai2a(oOj);

if poorext==1, oOj=(l.extbias)*oOj+extbias; endI ~oNETk=vucross( Co~j,ones(R,1)] ,eps)*EoIkj;oTHETAk];
oNdETk~vcross(oNETk,eps);

if PINnoise==1
var1=((J+1)*oNETk/SNRIsmfaXA2),((J+1)*ones(R,2*K)/SNR~t). '2;

oNETk~vaddgaus~oNETk,varl);
end
NETk=decode(oNETK);I Ok=1 ./(l+exp(-a*NETk))
Ldetmse(1 )=swxn~meanc((Ok-bpout)."2));
% Literally, Less detailed mseI % this first one's not an average
noff~l )=sum~susn((abs(ok-bpout)>O.4)));
nof f2(1 )s~an(stsn((abs(Ok-bpout)>O.2)));

clear ans x % temporary variables

uctrain.m

I% uctrain script
% dedicated subpixeL architecture
% AccumuLates weight change over epoch, THEN updates...
if (Cinject==2)I(PlNnoisez==)I(Cconoise==1))

rand( 'normal')
end
if ((n==O)&((inject-=O)I(Plknoise==1)I(Cc~noisez==)))

edrand( 'seed' ,trseed)

stop~n4N;
while n~stop

n~n+l

% Error back propagation

Dkz(bpout-0k).*Ok.*(1 'Ok);I o~k=encode(Dk~b); % always compensated
ook=imaL2a(ook);
if inject-'2, o~kzaddgauss(o~k,var); end
if svgairm==, cok=ook.*svook; end
o~k=(o~k<:.O + (o~k>=O).*cok;

if poorext==1, a~k=(l-extbias)*o~k~extblas; endI % generation of Dj requires re-encoding of Wkj

pPasszvucross~o~k(:,l1:IOeps)*ooljkjl;
pPass=vcross(pPass, eps);
if PiNnoiseuc1

1varlu(K*pPass/SNRIsmxA 2).CK*ones(R,2*j)/SNRlt) .^2;
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pPasszvaddgaus~pPass,varl);
end

riPass=vucross(oDkC .K+1 :2*K),eps)*oo~kj B;

nPass=vcross~nPass, eps);
nPass=EnPass(:,J+1:2*J),nPass(:,I:J)]; % electronic
if Pl~noise==1

var1=(K*nPass/SNRlsmax^Z)4(K*ones(R,2*J)/SNR~t)./2;

nPass=vaddgaus(nPass, vanl);
end
Djza*Oj .*(1 .oj).*decode(pPass+nPass);
oDj~encode(Dj); % again, always compensated
ooj~iiaL2a(ooj);
if inject==2, ooj~addgauss(o~j.,var); end

if svgain==1, o~j~oDj.*svo~j; end

o~j=(o~j<O).*O + (oDj>=O).*oDj;
ooj=mal2a(ooj);

if poorext==1, ooj=C1.extbias)*ooj~extbias; end

DWTk=eta*vuicrossC [oOj,onesCR,1)J ,eps)I*vcross(ook,eps);I

var2:CR*DWTk/SNR2smax'2)+(R*ones(J+1 ,2*K)/SNR2t)./2;

edDWTk=vaddgausCDWTk,var2);

DWTIzeta'vucrossC(to~i,ones(R,1)] ,eps),*vcross~oDj,eps);
if CCDnoise==1

var2=(R*DWTj/SNR2smnx^2)+(R*onesCI+1 ,2*J)/SNR2t)./2;U
DUTj--vaddgaus(DWTj .var2);

end

% Correction for bI
DWTk=DWTk/b; DWTj=DWTj/b;
% Addition of the deltas to electronic storage register
es~kj=es~kj.DWTk(l:J. :)Ihr;

esTHETAk~esTHETAk4.DWTkCJ+1,:/r
esWji=esWji4DUTjC1 :1, :)Ihr;
esTHETAj=esTHETAj4DWTj (1.1.: )lhr;

% Draining off the excessI
esWkj=encode(decode(esWki));

esTHETAk=encode(decode~esTHETAk));

esWji=encode(decode~esWji ));I
esTHETAj=encode(decode(esTHETAj));
% if it's not compensated, it at Least adds a small
% bias and stretches it.

if nonlina=OU
% Inverse MaLus's law

eWkj=iniat2a(esukj); eTHETAk~imslza(esTHETAk);

e~j inimaL2a(esJj i); eTHETAjzimml2a(esTHETAj);I
elseif nonLin==3

eljkjunencode~decode(esukj ),tp2);

eTHETAk-nencode~decode~esTHETAk) ,tp

e~djiznencode~decode~esWji ),tp2);
eTHETAjznencode(decode~esTHETAj ),tp2);

end

% Add just a pinch of noiseI
if lnjectu=2

eWkjzaddgauss~e~Jkj ,var);3
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eTHETAkmaddgauss(eTHETAk,var);

e~j i=addgauss~eWj i,var);

eTMETAjzaddgauss(eTHETAj .var);
end
% MuLtipLy by space-variant gain

if svgaina~l
e~dkj~eIkj .*sv~kj; eTHETAk~eTHETAk.*svTMETAk;

e~j ime~ji.*svMj i; eTHETAj=eTHETAj.*svTHETAj;
end
% DisaLLow voLtages<O

e~kj=(e~kj<0).*O + (eWkj>=O).*e~kj;
eTHETAk=(eTKETAk<O) .*O + (eTIIETAk-O) .*eTIIETAk;

e~ji=(eI~jiO).*0 + (e~ji>=0).*eIjii;
eTHETAIz(eTHETAj<O).*O + (eTHETAj>=0).*eTHETAI;
% Hatus's Law does this: (no if statement)
oI.kj=mat2a(e~kj); oTHETAk=maL2a(eTHETAk);

o'.ji--maL2a(e~Jji); oTHETAj=maL2a(eTHETAj);
if poorext~zl

oI~kj(1 .extbias)*oljkj~extbias;
oTHETAk=(1 -extbi as)*oTHETAk~extbi as;
oI~ji=(1 extbias)*oJji~extbias;

oTNETAj=( 1 extbias)*oTHETAj~extbias;
end
% Forward Pass

oOt =ima L2a(bpin);
if inject==2, oOi-addgauss(oOi,var); end
if svgain==1, oOizoOi.*svOi; end

coiz(oOi<O).*O + (oOi>=G).oO~i;
oOixmat2a(ooi);
if poorextz==, oOi=(1.extbias)*oOi+extbias; end
oNETjxvucross( (oOi~ones(R,1)] .eps)CEo~ji;oTHETAj];
oNETj~vcross~oNETj ,eps);

if PlNnoise==1
varl=((1e1)*oNETj/SNRismax^2).((I.1)*ones(R,2*J)/SNRlt).^2;

oNETjuvaddgaus(oNETj ,varl);
end
NETjzdecode(oNETj);
01=1 ./(l~exp(.a*NETI));

oOjxinaL2a(Oj);
if inject=.4, oojzaddgauss(oOj,var); end
if svgain==l, ooj~oOj.*svoj; end
ooj=(o~j~O).*O + (OojiO).*o~j;
oOj-maL2a(oOj);
if poorextz==, oOj=C1.extbias)*oOj~extbias; end
oNETkzvucross( (oOj,ones(R,1)I ,eps)*Cowkj;oTHETAk3;
oNETk=vcross(oNETk,eps);

if PINnoisezz1
varluC(J.1)*oNETk/SNRlsmax^2)+(CJ,1)*ones(R,2*K)/SNRlt).^2;

oNETkzvaddgaus(oNETk,varl);

end
NETkadecode(oNETk);
Okzl .IC1.exp( -a*NETk));
detme=Cdetmae,sun(meanc((Ok-bpout).AZ))];
if regn~n,DN)x=O
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tdetmse(n/DN+1 )-mean(detmse); I
noff(n/DN+I )asum( sum( (abs(Ok-bpout)>0.4)));

noff2(n/DN+l )=sun(sum((abs(Ok-bpout)>O.2))); U
clear detmse

disp( 'convergence check')

% based on mse over r, not individuals

if tdetmse(n/DN+1)<msetoL

disp('Less detailed mse within tolerance')
break

end

endU
end
% Decoding for conpatibility with diagnostic programs

Wkj=a*decode(oWkj); THETAk=a*decode(oTHETAk); I
Wji=a*decode(oWji); THETAj=a*decode(oTHETAj);

% CLearing of temporary variables

clear stop Dk oDk ooWkj pPass nPass Dj oDj 3
addgauss.m

function ny-addgauss(in, var) 3
% out=addgauss(in,spread)

% This function adds small random numbers

% with a normal probability distribution
% to each of the elements in in.

% NOTE: It is ASSUMED here that the user has

% already switched the rand mode to 'normal'; I
% the default is uniform.

[nrnc]=size(in); 3
ny-in+var*rand(nr,nc);

vaddaaus .m 3
function ny=vaddgaus(in,var)

% out=vaddgaus( in, var) 3%|
% This function adds small random numbers

% with a normal probability distribution

% to each of the elements in in, with a Location-

2 depenedent variance.

% NOTE: It is ASSUMED here that the user has

% already switched the rand mode to 'normal';

% the default is uniform.

[nr,nc] =size( in);

nyr/in+var.*rand(nr,nc);

I
I
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encode.m

function eVJ=encode(W)

% This function splits a normalized r x c matrix W into

X an r x 2c matrix eW wherein one r x c subnmatrix posseses

% all the (+) parts of W, the other (-), one of which is in

% each pair is 0. It also cLips values to 1.
SFor negative elements, the (-) part is > 0.

% Convert W into + and - encoding

W=[((W<O)*O + (W>O).*W),-((W<O).*W + (W>O)*O)];
% clipping

eW=(W<I).*W + (W>zl);

nencode.m

function eW=-nencode(W,tp2)

% This function splits a normalized r x c matrix U into

% an r x 2c matrix eW wherein one r x c submatrix posseses

% all the (+) parts of W, the other (-), one of which is in

Seach pair is tp2. But the proportion isn't one, as

% in mencode.m.
SFor negative elements, the (-) part is > 0.

% Convert W into + and - encoding

SW[((>=O) .*(W*( 1 -2*tp2)+tp2)+(u<O)*tp2), ((u>=O)*tp2+(u<O) .*(W*(2*tp2-1 )+tp2))];

% clipping

eU-(W<=l-tp2).*W + (W>l-tp2).*(l-tp2);

decode.m

function W=decode(eW)

% This function accepts an r x 2c matrix eW, itself

% containing (+) and (-) submatrices ((-)>0),
% and produces W, an r x c matrix in which each element is

% the difference of the two former subeLements.

W=eW(:,1:ncoLs(eW)/2)-eW(:,ncols(eW)/2+1:ncoLs(eW));

mat2a.m

function eW=mat2a(eW)

% This function accepts a normalized r x 2c matrix eW,

% itself containing (+) and (-) submatrices ((-)>0),

% and performs the MaLus's Law nonlinearity on every element

% therein.

jeW=s n(pi/2*eW.2;

imaL2a.m

function ew-UimaL2a(eW)
% This function accepts a normalized matrix eW

% and performs the inverse of Matus's Law on

I% every element therein.

eW=2/pi*asIn(eW.^0.5);
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cross.m

function x=crossC in~ep)

% Performs crosstalk as though in is encodedI
% [inl+,inl-,in2+...3 for NatLab encoding

% [inl+,in2+,...inl-,in2-,...3.

nc~ncoLs( in);

inp~in~l :ncI2);
inn~in(nc/2+1 :nc);

xp=(1-2*ep)*inp+epý*(in+[O~inn(¶:nc/2 1)]);

xn=(1-2*ep)*inn-ep*Cinp.Cinp(:,2:nc/2),O]);I

vcross.mI

function x~vcross(in,ep)
% Performs crosstalk as though in is encoded

% tinl+,inl-,in2+...] for NatLab encoding

nc~ncoLs( in);

nr~nrotas( in);I
inp=in(:,l:nc/2);

innri n(:, ncI2+1:nc);

xp=(1-2*ep)*inp4.ep*(inn4CEzeros(nr,l), in(:,1:nc/2-1)D;

xnw(1-2*ep)*innt+ep*(inp.Cinp(: ,2:ncIZ),zeros(nr.1)3);
x=ECxp,xnJ;

ucross .m3

function x=ucross(in,ep)

%crosstaLk for unipotar vectorsI

x=(1-2*ep)*in+ep*( [O~in(1:nc-1)]+[in(2:nc),OD);

vucross .mI

function x=vucross(in,ep)

% crosstaLk for unipotar matricesI
nc=ncots( in);

nrznrows( in);
x=(1.2*ep)*in~ep*(Ezeros(nr,l),in(:,1:nc.1)34tin(:,2:nc),zeros(nr,1)3);3

110



C. Nestor Learning System

Below are given the input and output .mat files representing the 2-D skewed

corners problem. The output is coded differently than for back propagation.

ntin.mat ntout.mat

0 0 10
0.325 0 1 0

0.425 0 0 1

0.825 0 1 0

1 0 10

0 0.225 1 0

0.325 0.225 1 0

0.425 0.225 0 1

0.825 0.225 1 0

1 0.225 1 0

0 0.525 0 1

0.325 0.525 0 1

0.425 0.525 0 1

0.825 0.525 0 1
1 0.525 0 1

0 0.725 1 0

0.325 0.725 1 0

0.425 0.725 0 1

0.825 0.725 1 0

1 0.725 1 0

0 1 10

0.325 1 1 0

0.425 1 0 1

0.825 1 1 0

1 1 10

We coded the Nestor RCE layer using the same three-module approach as we had

in straight back propagation. Note that the variables regular and minimum do not affect

the learning.
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I

ntframe.m I
X ntframe script
disp('This Lets you run ntinit and nltrain by having') I
disp('you put in all the necessary variables beforehand.')
regutar=input('Enter the regular strength: ');

minimum=input('Enter the minimum strength: ');

% The above strengths do not affect training.
thetamin=input('Enter the minimum neighborhood size: ');

thetamax=input('Enter the maximum neighborhood size: ');
resolution=input('Enter the resolution cell size: '); I
atpha=input('Enter the size reduction factor: ');

nLinit.m 3
% nlinit script
Load nLin
toad niout % I think this should have K at Least two
I=ncots(ntin)
J=1 % at the outset...
K=ncots(ntout)
R=nrows(ntin)
% Initialize the weights---acc. to the first training pair
Wji=ntin(1,:)'
THETAj=thetamax
Wkj=reguLar*ntout(1,:) % does not affect training. However,
cLass(:,1)=nlout(1,:), % does affect it training

distance=sqrt(sum(ntinl.^2)I*ones(1,J) + ones(R,1)*sum(Wji.^2) 2*ntin*Wji) I
n=O

nttrain.m 3
% nttrain script
X We assume it only takes a few iterations, so no need

% to specify N. I
sotved=O; oLdTHETAj=THETAj;
whiLe sotved==O

n=n+l % to track just how few iterations it needs
for r=I:R

r
X Reducing conflicting proto neighborhood size
% computing 1 x J conflict Logical vector
X confLict(j) can = 1 even if jth neighborhood does
% not overlap current feature vector

if K==1 I
conf(ict=(ctass-=ntout(r,:)I*ones(1,J));

else

endsconftict=any(cLass-=nLout(r,:)I*ones(lJ)); 
I

X actual size reduction where needed
THETAj=confLict.*min([THETAj;aLpha*distance(r,:)-resoLution]) + (-confLict).*THETAj;

% except it's no smatter than thetmmin...
THETAj=max([THETAj;thetamin*ones(l,J)]);
% nor bigger than thetamax 5
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THETAjamin(ETHETAj;thetamax'ones(1,J)]);

% Classification and testing of uriidentifiedness

% classify and display
Oj=(distance(r,:)-THETAj-O);

%dispc ['The first 'num2str(K) I rows of the'])
% disp('foL Lowing are the prototype classes.')

% disp('The Last row is the prototype output.')
% disp( 'There are J coLumns.')

% tcLass;Oj]
% test---assunes classes're binary w/ 1 nonO k-element
ncLasses=sun(suzn((cLass.*(ones(K.I)*Oj))I )');
if nctasses>1, disp('It is confused.'), end
if nclasses2=1, disp(lit is identified.'), end

if nctasses==O
disp'Ilt is unidentified.')
% Commiitment of a new prototype unit
J=J*1;
% the class of the new proto
ctass=[ctass,nLout(r,:)'];
% the neighborhood size of the new proto
THETAj(J)-max(min~atpha*distance(r,:)-resotution),thetamin);
THETAj (j )min(THETAj (J ),thetaniax);
% the centroid of the new proto
Wjii=uji,nlin(r,:)'];
newdistances=sqrt~sLuI(nLin'.^2)' +. ones(R,1)*ss~ut(Wji(:,J)./2) 2*nhin*Wjii(:.J));
di stanice= [di stanice, newdi stances];

end
end
% is it solved?
if size(THETAj)=xsize(oLdTHETAj)

if THETAjz=oLdTHETAj, soLved=-1; end
end

oLdTHETAj=THETAj;
end
% Updating the Wkj connections to reflect the newly added

% and/or modified prototype units
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I

D. Modified BEP I

In Section V. C. we posed a new algorithm, one which enables learning in a I
radial basis function network using gradient descent. As in the other algorithms, we

adopted a three-module "frame-init-train" approach. The .mat files containing the

training data are identical in form to those used for the back propagation simulations,

differing in name only.

ef rame. m

% eframe script
disp('This Lets you run einit and ectrain by having')
disp('you put in aLL the necessary variabLes beforehand.')
J=input('Enter J: ,); U
icseed=inputCEnter icseed: a);

spread=irnlut('Enter the initial condition spread: 1);

eta=input('Enter eta: '); I
tamaida=input('Enter tambda: ,);
xifinput(*Enter xi: *);
N=input(,Enter N: 1);
DNfinput('Enter DN: '); i
msetot=iriput('Enter the mse beLow which training stops: ');
nofftoL=input('Enter the noff at which training stops: a);

a=input('Enter the upper (and -tower) bound: ,); I
1

I
I
I
I
I
I
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I % emnit script
Load ein

Load eout

lancots(ein)I =znco~s(eout)

if exist('keepCjil)
CjizkeepCji; SIGMAjiukeepSIGMAji;I ~Wkj=keep"lkj; THETAkzkeepTHETAk;

eLse
% Initiatize the weights and biases
% properLy chosen centersI ~rand( 'uniform')
rand( 'seed', icseed)
rand(1,3); % to exercise generator
SCNji~rond(lij); enesp confineditoipesue nu pc

kji=(rand(I,K); I c/)penescfned; t rsze nu pc

THETAk=(rand(1 ,K)- 1 ./2)*spread;

keepCji=Cji; keepSIGNAjiuSIGMAji;
keepblkj=I~kj; keepTNETAk=THETAk;

% MSE CALCULATION

I % Forward Pass

NETk= COj ,ores(R, 1 )1 Clkj ;THETAk];
Ok=l ./(1*exp(-NETk));I Itdetmsee~l)=sus(meanc((Ok-eout)/^2));
% LiteraLy, Less detaiLed see
% this first one's not an averageI noff(1)2sum(sum((abs(Ok-eout))O0.4)));
noff2(1 )=sun(s'Jn((abs(Ok-eout)>0.2)));

cLear ans; x % temporary variables

1cri~
% ectrain script

% Accwumutates weight change over epoch, THEN updates...
stopen+N;
whiLe ncstopI n-rr4l

% Error beck propagation
Dkz(eaut-0k).*Ok.*(l.Ok);

D~ikjaeta*Ojl'0k;

OTHETAkmeta~ores(I, R )0k;
Dju.Oj.*(Dk*Wjil);
OCj in -aurIbda*SIG4AJl .^(-2).*(ein"*Dj -Cj I .*(one*(1.R)ODj));IDSIGNAjiu-2*xlSIGMAjf.^(-3).*(ein.^21*Dj.2*(einu*Dj).*Cji.(Cjii 2).*(onescIR)*Dj));
% Addition of the deLtas to eLectronic register
Wkjxlkj.DWkj; TNETAkuTHETAk4.OTHETAk;

115



Cji=Cji+DCji; SIGNAji=SIGMAji+DSIGMAji;

% Only clipping remains...

Wkj=-(Wkj<-a).*a+(abs(Wkj )<a).*Wkj+(Wkjas).*a;

C =(jIa).aab(jica*C Cj 'aTHETAk=- (THETAk<-a).*a+Cabs(THETAk).=a) .*THETAk+(THETAk,.a).*a;I

SIGMAji=-(SIGNAji<-a).*a+(absCSIGMAji )=a).*SIGMAji+(SIGMAji~a).*a;
% Forward Pass

NET j~ein. ^2*SIG4A j i.A *2)+ones(R, l)*(CI i./SIGMA ji).A22*2ei n*(Cji./SIGNA ii.A2I
Oj~exp(-NETj);

NETk=EOj,ones(R,1 )1*[Wkj;THETAk];OW .(l~ep(-N~k)I
detmse=Edetmse,suan(meanc((Ok-eout)./2))];
if rern(n,DN)==O

Ldetmse(n/DN.I )=mean(detmse);
noff(n/DN+1 )=sun(sum(Cabs(Ok-eout)>0.4)));I
noff2(n/DN.1 )=sufncsL~mi((abs(Ok-eout)>0.2)));
clear detmse

disp( convergence check')U
% based on mse over r, not individuals
if Ldetmse(n/DN+1 )txmaetoI.

disp(ILess detailed use within tolerance')I

eLseif noff~n/DN+1 )<=nofftoL
disp(Inumber miscLassified within tolerance')
breakI

end
end

endI
% clear stop OkDic %j temporary variables
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