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ABSTRACT

In 1964 P. Huber established the following minimax bias robustness result for esti-

mating the location A in the E-contamination family F(x) +EH(x)

where D is the standard normal distribution and H is an arbitrary distribution function:

The median minimizes the maximum asymptotic bias among all translation equivariant

estimates of location. However, the median efficiency of 2/ir at the Gaussian model

may be unacceptably low in some applications. This motivates one to solve the follow-

ing problem for the ibove -contamination family: Among all location M-estimates.

find the one which minimizes the maximum asymptotic bias subject to a constraint

on efficiency at the Gaussian model. This problem is the dual form analog of Ham-

pel's optimality problem of minimizing the asymptotic variance at the nominal model

(e.g. the Gaussian model) subject to a bound on the gross-error sensitivity. We solve

the global problem completely for the case of a known scale parameter. The main

conclusion is that Hampel's heuristic is essentially correct: the resulting M-estimate

is based on a psi-function which is amazingly close, but not exactly equal, to the Hu-

ber/Hampel optimal 4. It turns out that one pays only a relatively small price in terms

of increase in maximal bias for increasing efficiency from 64% to the range 90% - 95%.

We also present a conjectured solution to the problem, based on heuristic arguments

and numerical calculations, when the nuisance scale parameter is unknown.

Some key words: bias-robustness, minimax, efficiency.



1. INTRODUCTION

Consider the family of f-contaminated Gaussian distribution functions

(1.1) F -{F: F(x) = (1- )to' (X ..") + EH(x)}

where 0 < f < .5 is fixed, (P is the standard normal distribution, and H is an arbitrary

distribution. The main focus will be on estimation of the location parameter U. with .

being a nuisance scale parameter.

In this setup, where the contamination distribution may be asymmetric, all the

"usual" robust estimates of M will be biased asymptotically as well as in finite sample

sizes for many F in the family F. This problem was recognized by Huber(1964) in a

brief section of his seminal paper on robust M-estimation. Huber's primary focus was

on the restricted symmetric form of F, where H is constrained to be any symmetric

distribution, and for this family he obtained the asymptotic variance minimax M-

estimate of p. However, working with the full asymmetric family F, Huber(1964) also

proved the following result: Among all translation equivariant estimates of location.

the sample median minimizes the maximum asymptotic bias over the family (1.1) with

s = 1. His solution also holds with 4 replaced by certain other symmetric distributions.

and for the class of all translation and scale equivariant estimates of location with s

unknown.

The minimax bias robustness problem can be stated formally for a class T of loca-

tion estimates and the family F given by (1.1) as follows. Assuming as usual that T

contains only translation and scale equivariant estimates, one takes y = 0 and s = I

without loss of generality. Let T(F) be the asymptotic value of an estimate T E T.

and let bT(c, F) be the asymptotic bias of T at F. Since pa = 0, we have

br(e,F) = T(F).
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Then the maximum asymptotic bias of T over F is

(1.2) BT() = sup bT(E.F).
FEY

A minimax estimate T," is one which satisfies

(1.3) T" = argmin BT(e)
T

for each e E (0, .5). In general, any estimate which minimizes the maximum asymptotic

bias with respect to specified classes of estimates and mixture distributions will be

called a bias-robust estimate.

Curiously enough, the global problem of constructing bias robust estimates was

ignored for many years following Huber (1964). Only quite recently do we find a

number of results along these lines for problems such as minimum distance estimation

(Donoho and Liu, 1988 a and b); estimation of scale (Martin and Zamar, 1989; Martin

and Zamar, 1990), regression (Martin, Yohai and Zamar, 1989; Yohai, 1990). and

covariance matrices (Maronna and Yohai, 1989). While Huber (1981) found that the

bias robustness problem produced "a rather uneventful theory" in the case of estimating

location, the results cited above indicate that this is not the case for other kinds of

parameter estimation problems.

Of course, one criticism of bias robustness is that this kind of robustness might be

achieved at the expense of a severe loss of efficiency at the central model, e.g., at 4I in

(I.1 ). Indeed this is the case to some extent for the median as a bias robust estf -nate of

location, and to a much more serious extent in the case of regression: Martin, Yohai,

and Zamar (1989) show that among all M-estimates of regression based on bounded

rho-functions, the bias robust estimate minimizes a quantile of the absolute residaals.

This bias robust estimate has the same slow rate of convergence as the least median
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of squared residuals (Rousseeuw, 1984: Rousseeuw and Leroy, 1988), which turns out

to be a quite good approximation to the bias robust M-estimate of regression (Martin.

Yohai and Zamar, 1989).

The slow rate of convergence of the bias robust estimate could be avoided by im-

posing an efficiency constraint at the central model, and this approach could lead tc, a

useful tradeoff between Gaussian-case efficiency and bias control. Because of the rela-

tive simplicity of the location problem, we initiated our efforts to construct efficiency-

constrained bias robust estimates on the location problem for the C-contamination model

(1.1). Thus our problem is to solve:

(1.4) T'- = argmin BT(e)
TET

subject to EFF(T, 0) < e, where EFF(T, ') is the asymptotic efficiency of T at the

standard normal distribution 0, with T in the class _F of M-estimates of location, and

e E (0, 1) a prescribed efficiency.

We remark that this problem could equally well be stated in the dual form

(1.5) T, = argrinVAR(T, O)
TET

subject to BT(e) < b, where VAR(T, t) is the asymptotic variance of T at (P and b > 0

is a prescribed bound on the maximum bias. Stated in this form, it is clear that our

problem of interest is a global form of Hampel's well-known local optimality problem

(see Hampel, 1968, 1974 and Hampel et. al., 1986): Minimize the variance at the

central model, subject to a bound on the gross-error sensitivity (GES). The latter

provides, under regularity, a local linear approximation to the maximum bias of an

estimate for small e (see Section 2.3). Fortuitously, the technique of proof originally

used by Hampel for his local optimality problem turned out to be a key ingredient in
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establishing our global result.

2. MAXIMUM ASYMPTOTIC BIAS WITH NUISANCE SCALE

2.1 The Maximum Bias Functional

A location M-estimate T, is a solution of

1 Sn

We work with the following assumptions

* (Al) 0. is continuous, monotone, odd, and bounded.

9 (A2) s, is an estimate of scale whose almost sure limit l s, defines a scale

functional S(F) for all F E F with the boundedness property: 0 < S(F) <

S(F") = 3 < oo for all F E J" where Fw = (1 - e)Fo + f-b. and 6 is a

point-mass at infinity.

It is easy to check, using (2.2) below, that under the contamination model (1.1) the

maximum asymptotic bias is unbounded for unbounded 0'. Thus the boundedness part

of Al entails no loss of generality. Formulas for computing 3 for the case of M-estimates

of scale can be found in Martin and Zamar (1990).

Huber (1981), Section 3.2, Corollary 2.2 shows that under (Al) and (A2) Tn

converges almost surely to a functional T(F) = T(?k, F) provided this functional is

uniquely defined by the asymptotic estimating equation

(2.2) J 0[(y - T(F))/S(F)]dF(y) = 0.

It is not difficult to see that for our setup T(F) is uniquely defined for all F E F. First



let

t2 .3 ) g(ts) =g",(ts) = I [(y - t)/s](y)dy, s > 0

where :(y) in the standard normal density, and note that for t > 0, we have

(2.4) g(t, s) = sj i(y)[ ,(sy - t) - j(sy + t)] dy.

For all F E F, the equation (2.2), with T(F) replaced by t, can be written as

(2.5) -(1 - e)g[t, S(F)J + f I J?[(y - t)/S(F)]dH(y) = 0.

The function g(t,s) is strictly increasing and continuous in t, with limt-,_ g(ts) =

,(oo) and limt-,._ g(t, s) = -,k(oo). Therefore, for all c < .5, the left-hand-side is

positive for sufficiently large positive t, and negative for sufficiently small negative t.

It follows that the solution (in t) of this equation defines a unique functional T(F).

Furthermore g(t, s) is strictly decreasing in s for s E (0, ) with lim._og(ts) =

[24(t) - 1],0(oo). LFrom this and-the above observations it is easy to verify that under

(Al) and (A2) the maximum asymptotic bias B,(f) is achieved when H is the point

mass ,,, at infinity. Thus BO(f) satisfies the equation

(2.6) - (1 - E)g[B,(f),'1 + f,.(oo) = 0.

We summarize this result as a lemma.

LEMMA 1: If (Al) and (A2) hold then

(2.7) B ,() = ' [,0(oo) --- 1

where gj 1 (.) is the inverse of g(., ) and " = S(F"0) is the maximum asymptotic bias

of the scale estimate.
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2.2 Relation with the Gross-Error-Sensitivity

The influence function of a location M-estimate of T(F) with psi-function L at F0

and x (see Hampel 1968, 1974) is given by

ICV,(x) = T[(l - ,)Fo + 6 1,=o = (

where br is a point-mass at x,

g y(t,s) = (&1/t)(Y~/9sO)g(t,s) a, = 1,2,...

and g9. = gaa(O, 1). The gross-error-sensitivity of T at F0, also introduced by Hampel

(1968), is given by

GES(V)) = sup IICO(x)l = sup, O(x)
~glo

One expects that under sufficient regularity conditions the GES will provide a local

linear approximation to B,0(f) for c near zero, that is, that the GES will be equal to

the derivative B' (0) of the maximal bias function B,(e) at the origin. The following

lemma shows that in fact (Al) and (A2) provide sufficient regularity.

LEMMA 2: Under (Al) and (A2) B' (0) = GES(tk).

Proof: Follows from (2.6) by differentiation.

Figure 1 gives the maximum bias curves, along with the local linear approximations

based on the GES, for the following two location estimators: (1) the median and (2)

Huber M-estimate with with c = 1.5 using the shorth as scale (see comments at the

end of Section 4). Notice that the linear approximation is better for the median than

for the efficient Huber estimate.

2.3 The Unconstrained Bias Robust M-Estimate

For the moment assume that 0(oo) = 1, which entails no loss of generality. ,From

(2.4) and (2.6) and the monotonicity of g(t,'5) in t, it follows that if ?Pj and 7b2 satisfy
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g.,(tg) > g,,(t,') for all t then B, , (f) < Bw,(f). Thus B,,(E) can be minimized by

maximizing the function g,.(t,3) for each t > 0. Noting that [,(-gx - t) - ;(3x + t)] > 0

for all x > 0 and t > 0, one sees that the "sign" function v'(x) = sgn(x) maximizes

g,,(t,9) with respect to tk,. Thus the sample median is the bias-robust M-estimate of

location with rminimax bias

BMEDO() = 4 -' [0.5/(1 - 01].

This is a particular case, for M-estimates. of the more general result obtained by Huber

(1964) for the class of all translation equivariant estimates of location.

3. EFFICIENCY CONSTRAINED SOLUTION WITH SCALE KNOWN

In this section we find the efficiency constrained bias-robust M-estimate of location

for the case where scale is known, taking s = 1 without loss of generality.

3.1 Candidate Solutions via Calculus of Variation

First, we use calculus of variation to give a heuristic derivation of the optimal

psi-function i*. In the next subsection we give a direct proof based on projection

methods.

By definition, an efficiency constrained bias-robust M-estimate of location solves

the following constrained minimization problem:

inf Bk(,)

subject to

(3.1) V(, 0) = .5 fo Ik(x)W(x)dx <

where V(k, 0) is the M-estimate asymptotic variance and e is the desired efficiency.
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In view of (2.4), (2.6) and the strict monotonicity of g(t,s), it suffices to find, for

each t > 0, a score function z4t which maximizes the functional

(3.2) 1~' 00 ( J (x)[,p(x - t) - p(x + t)Idx

subject to the given side constraint. Then, assuming that Jt( 't) is continuous and

monotone increasing in t, the solution to the constraint optimization problem will be

0*= w,*0' where Jto(Oto) = c/(l - f). Since the constraint in (3.1) is not an integral con-

straint and since the objective function Jr(k) is not an integral on a finite interval, it is

convenient to consider instead the following family of standard optimization problems:

Maximize Jr(') subject to th! constraints

(BI) ?(O) = 0, k(c) = M.

(B2) fgc 0(x) p(x)dx + 2[1 - qO(c)]M' < e-'.

(B3) 21 fo V,'(z)p(x)dx = 1.

where c and M are constants such that (B1)-(B3) can be simultaneously satisfied for

at least one 4.

The functional Jt(4') is linear, and hence convex, and the set of 0-functions satis-

fying (B1)-(B3) is convex. Thus we have a convex optimization problem for each fixed

(c, M). At first sight, a natural approach is to solve the convex optimization prob-

lem for each allowable pair (c, M) and then optimize over all allowable (c, M). The

Lagrangian for the problem with (c, M) fixed is

(x, 0, 0') = -(X)[V(x - t) - P(x + t)] + A102(X)P(X) + A20'(x)O(X)

and, by convexity, a sufficient condition for optimality is that the Euler-Lagrange

equation be satisfied:

Go - bG,, = p(z - t) - V(x + t) + 2A1O(x)(p(x) + A2W'(X) = 0.
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Thus for fixed (c, M), the optimal psi-function is of the form
€(Y I t) +-r ,;(x + t) 1I!

(X )
M 1I > C

Notice that a, = I and a2 = 0 gives Huber's 1-function and a, = 0 and a2 = i gives

a ,-function which is proportional to a truncated hyperbolic sine function.

Unfortunately, as c and M vary we no longer have a convex optimization problem

and we were unable to make this variational argument rigorous. In the remainder of

this section we give a direct proof that a solution to the optimization problem actually

exists and is of this form.

3.2 The Dual Problem

Let B be an achievable maximum bias, that is B = B,(E) in (2.7) for some '

satisfying (Al) and (A2). Notice that if BMED = BMED(e) is the maximum bias of the

median then B > BMED. Let 'B be the set of psi-functions satisfying (Al), (A2) and

(Cl) 2 fo t.,(x)x,,p(x)dx = 1

(C2) (1 - E)g (B, 1) = E4(oo).

Since the asymptotic variance VAR(Wk, 0) and bias Bo(c) are invariant under multipli-

cation of ,0 by a constant, the condition C1 above is just a convenient standarization.

Observe that given C1, 0(oo) is the gross-error-sensitivity of the corr'sponding M-

estimate, so we will write GES(Ob) = 4(oo). Also notice that Cl implies

(3.3) GES(i,) >_ (27r)1 / 2 = GES(Median).

The dual optimization problem can now be stated:

Fix B > BMED and find 0, E '1 B which minimizes

(3.4) J( ) = )2(x)p(x) dx.
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We need the following lemma, which states that for any fixed B > BMED and any

nice unbounded, odd function 9(x). there exists a rescaled truncated version of O(x)

which is in %PB. We will denote by 0,(x) the truncation of O(x) at c, that is,

9(X) (x), 'I1 < c

I 9(c)sgn(c) Ixl > c.

LE.LMIA 3: Let O(x) be differentiable, odd and monotone, with lim_,, 9(x) = CO and

E,19(X)l < 0. For each B > BMED there exist co and k0 such that ko9,,(x) E 'PB.

Proof: For fixed c > 0, the function

1 [0
7 (t, c) = () Jo(x)[p(x - t) - o(x + t)]dz = ]c(x-- t),(x)dx

-(C -00

is continuous and monotone increasing in t. By the dominated convergence theorem

limto0-(t,c) = 0 and limt...00 (t, c) = 1 Thus, given 0 < c < co there exists

B(c) such that y[B(c), c] = E/(1 -c). Since B(c) is continuous and non-decreasing with

lirn-O. B(c) = oc and limc.o B(c) = BMED there exists c" such that B(c*) = B. The

lemma follows now with co = c" and ko = [2 f"* '(x),p(x)dx]i- .

3.3 Solution of the Dual Problem

The dual problem we wish to solve is similar to Hampel's optimality problem of

minimizing the variance at the central model subject to a bound on the gross error

sensitivity. See Hampel (1968) and Hampel et. al. (1986). The difference of course

is that we are replacing the bound on infinitesimal bias with a bound on the actual

maximum bias. Nonetheless, Hampel's technique for obtaining a key inequality still

provides an essential step in the solution given here.
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For each b > GES(Median) = bo let TB.b be the subset of all the ( ' E TB with

gross-error-sensitivity equal to b. Then. clearly qVB = Ub>bTB.b. Also, let w,(x) and

w2(x) be the truncated and scaled ?,-functions given by Lemma 3 corresponding to the

identity function I(x) x z and to the function

= -B) - (z+ B) = e-/2 (eBz -

which is proportional to the hyperbolic sine. The gross-error sensitivities are

GES = GES(V).) = ,(c,) , i = 1,2

where cl and c2 are the corresponding trunction constants.

The following theorem shows that, in terms of J(Ok), 01 dominates all 'k in TBb

with bo < b < GES1 and Vk2 dominates all 4 in qVBb with b > GES2.

THEOREM 1: Suppose that 4, E TB satisfies GES(i,) 5 GES1 or GES(4') GES2.

Then J(O) >_ min{J(iki), J( 2)}.

Proof: Assume first that b0 < b = GES(,) ! GES,. Since GES(I) = .5c[A(c) -. 5]- 1

is continuous in c, tends to/b = (7r/2) 1/2 as c --+ 0 and tends to oo as c - oc, there

exists 0 < c < c, such that GES(Ic) = b. The inequality J(ip) > VAR(Ic, $) now

directly follows from Hampel's result of optimality of I, among all functions which

satisfy A1-A2 and have GES bounded above by b. (see for example Hampel et. at.

1986, Theorem 1, Section 2.4, p.l117; see also Theorem 5, Section 2.5d, p. 135). Then,

since VAR(I, $) is a decreasing function of c, one follows that

J(O) VAR(I ,$) VAR(I,,,) = J(01).

We now turn to the optimality of 02 over Ub>GES 2'PB.b. Assume that b = GES(w) >

GES2 = b2 and let

b '
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A(E-z ' ' (c2)(1 -)

Observe that b = 0(o) and so, using C2, one obtains f-* 4 (x)A(x) 7(x)dx = -3 A

similar argument shows that fo ?,-"(x)2(x)-)(x)dx = 3. Using the last two equations
and the fact that -'(x) = ik2(x) for 0 < x < c2 , S(x) > I for . > c2 and -(x) < 1 for

x > 0 one follows that

j 22 (x) ;(x)dx +d = f~x () 2 ()dx

> j0'(P2 (X) - -Nr)]2 p(x)dx

T2 f(x)p(x)dx + d,

where d = -2+ + K2(x)v(x)dz is a constant which does not depend on iZ,. Therefore,

J00~ =j '(x)V:(x)dx > (b/b 2)2j J' T2(x)()dx > J(0k2 ),

completing the proof.

The following theorem is our main result.

THEOREM 21 For each 0, E TB there exist c E [c1, c21, a, > 0, and a2 > 0 such that

{ aI(X) + a2LA(z) 1I1 < c
101 I(C) + a(c))sgn(x) Ixl > c

belongs to %IB and J(O) > J(0c).

Proof: Let k E IVB be such that

GES(0,:) < GES(O) < GES(V12 ).

Note that by Theorem 1, we only need to consider this case because if GES(k 2 ) <

GES( k1 ) then the theorem trivially holds. To fix ideas, suppose that cl > c2. The

cases cl <c 2 and cl = C2 can be handled in a similar way.
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The function 0,(x) = al(c)I(x) + 0 2(c)Ac(x) is in %PB provided that al(c) and Oilc)

are non-negative and satisfy the equations

al(c)AI1 + a 2(c)A 12 = 0

ai(c)A21 + a 2(c)A22 = 1

where

All = jI(x)A(x)V(x) dx - c,

A12 = j A (x) ,)p(x) dx - O(c),

A21 = 2['D(c) - 0.5],

A22 = 2 A'(x),(x) dx = 2B[$(c + B) + ',(c - B) - 11.

with 3 e/(1 - e). Clearly, A21 > 0 and A2 > 0. Also A12 > 0 because

I,(x)tA(x) (x) dx - O 0.

and c < cl implies that Ic(x)/c > I, (x)/cl for all x > 0 with strict inequality for 0 <

x < c. Analogously, using the fact that c > c2 implies Ac(x)/c _ A,(x)/c 2 , for all x >

0 with strict inequality for 0 < x < c, together with fo A,,(x)A(x)W(x) dx -3A(c 2) =

0, one concludes that A1 2 < 0.

Therefore, for all c2 < c < cl we have ac(c) = -Atl/[AtIA2 - A12A21] > 0 and

a 2 (c) = -al(c)A 1 /A 2 > 0. Moreover, since tkc (x) = kd I,, (x) and ikc2(x) = k2Ac, (X)

and since GES(O,) is a continuous function of c, there exist cl < c* < c2 such that

GES(?P) = GES(?Pc.). Let

O() = al(C)I(X) + a 2(c)A(X).
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Notice that 0(x) is strictly increasing and that O(x) > 0I,(x) for all x > c' [because

0(c') = a(c')I(c*) + a 2(c*)A(c') = GES(O,.) = GES(O') = V)(oo)]. Thus

[V()- 9(x)] 2 po(x) dx > [c()-Ox]~x x

The theorem follows now because

j[V,(x) - O(x)]=p(x) dx J(V,) + d

and

- O(x)]2 o(x)dx J(O,'.) + d,

with d = foo 02(x)W(x) dx + 2[a(c) - a2 (c0)/GES(iP)].

3.4 Numerical Results

The numerical calculation of the optimal tk* is done as follows. For a given value

of c (e = 0.05, say) the constants cl and c2 are determined by solving the non-linear

equations

(1 - C 0xA(x)(p(x) dx .+ (1 - 6)ci[0(cj + B) -0c - B - cif = 0

and

(1-f) {C2 A 2(X)(x) dx + A(c2 ) [O(c 2 + B) -'O(C2 - B)I - A(c2 )f = 0.

Our numerical results show that in general ci > c2.

Next, using the fact that for all 04, O(x) and kp(z) determine the same location

estimate, it follows that the optimal 4'* is a truncation at c of the function ax + (1 -

a)A(x), for some 0 < a < 1 and c2 < c < cI.

This psi-function is denoted by ibk(x) and for each c, the value of a is determined

using C2, i.e., solving the linear equation

(1-f) 0 [ax + (1 - a)(x)] A(x)(x) dx+



[ac + (1 - a)A(c)j {[4)(c - B) - 1W + B)](1 -. 6) - = 0.

Finally, the asymptotic variance of o, VAR(i', (P) can be computed. This is done

on a fine grid of values of c in [c2 , c1] {c('), cm2),..., c(')} and c" is approximated by

the grid point that minimizes VAR(0',4). In general, as shown by Figure 2, the

optimal 0,(x) is very well approximated by the Huber's function i,,'(x) having the

same asymptotic bias B, even for values of c near the breakdown point one half.

Figure 3 shows the maximum bias curve of the optimal 0, for several efficiencies.

Notice that a significant increase in efficiency can be obtained in exchange for a fairly

small increase in bias.

Finally we present some numerical results which allow a direct comparison of our

exact approach with that based on the GES linear approximation. Suppose that,

for a given value of e, we want to choose a robust location estimate according to the

following criterion: among all the location estimates T which have a bias-deficiency of

up to 10%, i.e. all T for which

BT() I = BT(f) I = 0.1

BmED(F-) T) - '

choose the T that minimizes the asymptotic variance under the Gaussian model. Note

from Figure 2 that a bias deficiency of 10% corresponds to an efficiency constraint in

the range 85%-90%.

According to the GES approach one would first approximate BT(,) by f . GES(T).

By Hampel's optimality result we can restrict attention to M-estimates with Huber's

0-functions 0. Then we just need to choose the tuning constant c to achieve the 10%

bias deficiency. Since GES(PC) = c/(20(c) - 1) the constant c is determined by the
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non-linear equation

c = 1.14 [ 1 -

24(c) - 1 2(l - ) "

On the other hand, following the exact global approach one would set the maximum

bias B equal to 1.14 -1[.5/(1 -e)] and choose the optimal a-function given by Theorem

2 for such value of B. In view of Figure 2 a good approximation for the optimal ', can

be obtained by restricting attention to 4'-functions of the Huber type. In this case the

tuning constant c is determined by solving the equation

B ¢,(J ) = 1.1 0-  1 2( l )]

Table 1 gives the values of the constant c obtained by the GES and exact approaches

as well as the corresponding bias deficiencies. Notice that the values of c given by the

exact approach does not change much with f (differences only occurred in the third

decimal case) and that the resulting estimate is fairly efficient (eff = 0.85 ). On the

other hand, the values of c given by the GES approximation varies considerably and

tends to be disturbingly unconservative, particularly for moderate to large values of

f. For example, the actual bias deficiency of the estimates chosen according to the

GES approach are 17% for c = 0.05, 22% for e = 0.10, 30% for f = 0.15 and 63% for

= 0.30, instead of the nominal 10%.

4. EFFICIENCY CONSTRAINED SOLUTION WITH

SCALE UNKNOWN

When the scale is unknown the side constraint C2 must be replaced by C3

(1 - f)g(Bj) = fO(oo)
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and consequently the function A(x) must be replaced by

() o('g - B) - ,(7x + B)

AX)

Unfortunately. A(x) is no longer monotone (notice that lim,-,, (x) = 0) and so

Lemma 3 cannot be applied to ensure the existence of a scaled and truncated version

of z(x) which satisfies C1 and C3. However, numerical calculations indicate that the

result of Lemma 3 still holds in this case, that is, that there exist constants k. c3 and

c' (which depend on E) such that the function

13(X) kA(x), IXI 1 c3 or IxI > c3

kA(c 3) c3 < Ixj < 3

satisfies C1 and C3. It can also be proved, using a similar argument as in the proof

of Theorem 1, that the function 013 has the same property as the function V/2 in that

theorem:

GES(Ob) > GES(V)a) implies VAR(p,) > VAR(P 3 ,4b)

for all 1P E T. Thus, as in the known-scale case, attention can be restricted to psi-

functions 0,(x) which are truncated and rescaled versions of

O(x) = ax + (1 - a)A(X) , _< (<_ I

with truncation constant c between cl and c3. Here cl is the value of the tuning

constant of the Huber's psi-function satisfying C1 and C3, and its existence follows

from Lemma 3.

If 0 < a < 1 is such that O(x) > t1(c) for all x > c then

J O(X), IxI _ cCo~x)=

0(c) XI > c

18



On the other hand if a is such that 6(x) is not monotone, as in Figure 4, then{ 0(1), JxJ _< c or c'< Ii < c"

(c) c < IxI < c' or Ix > c"

Unfortunately, the lack of monotonicity of 3L(x) makes the optimality problem much

more involved and one must resort to a combination of analytical derivations and

numerical calculations to obtain the optimal 0,. The main conclusion from our cal-

culations is that, as in the known scale case, Huber's psi-function tI' with the tuning

constant c" determined by the condition C3 is an excellent approximation to the opti-

mal z,'.

Evidently, c" = c*(e,g), depends on the fraction of contamination c and the maxi-

mum value " of the asymptotic scale functional. In fact, it can be easily verified using

the identity it'(x/s) = (1/s)0b,(x) valid for Huber's psi-functions for all s > 0, that

c" = c*(E,3) = c(e)/§, where c(c) is the value of the tuning constant for the nearly

optimal Huber's psi-function in the scale-known case. Thus, the tuning constant c,

for the nearly optimal Huber's psi-function is larger when the maximum asymptotic

functional § of the scale estimate s,, is smaller. Since for Huber's psi-functions iic the

asymptotic variance VAR(0k, 4b) is a decreasing function of c, it becomes evident that

the degree of unconstrained bias-robustness of the scale estimate J will have an im-

pact on the optimal bias-robust location estimate subject to an efficiency constraint.

Therefore, according to the results in Martin and Zamar (1990), an appropriate choice

of the scale estimate S, is given by the shorth (see Andrews et. al. 1972) which is

nearly optimal bias-robust among M-estimates of scale with breakdown-point equal to

one half.
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5. CONCLUDING REMARKS

It has been correctly pointed out by an anonymous referee that the results of this

paper amount to a rigorous analysis of the correctness of Hampel's heuristic approach

in the location setup. Still, one might conjecture by analogy that, in the case of

more complicated models, maximizing the efficiency under a constraint on the gross-

error-sensitivity is almost the same as putting a constraint on the bias. However, the

extension of our technique to more complicated models is by no means straightforward

(if al all possible) and this matter deserves further study.

Another interesting issue brought up by an anonymous referee is that if one leaves

the realm of M-estimates of location, there is not necessarily a pay-off between bias-

robustness and efficiency at the central Gaussian model. This is shown by the following

example (also provided by the referee): Let h : R --+ R be symmetric, differentiable and

non-increasing on [0, oo) with h(x) = 1 for 0 < x < 1 and h(z) = 0 for x > 2. Denote

the mean and the median of a distribution F by Tm(F) and TMED(F) respectively.

For any 6 > 0 let

T5(F) = TMED(F) + [TM(F) - TMED(F)] h [TM(F) - TMED(F)]

where 0.oo = 0 and TM(F) = oo if F doesn't have a finite mean. If the scale also has

to be estimated, 6 can be replaced by 6MAD(F).

Since

1T6(F) - TMED(F)J < C6 , C = sup xh(x) < 2
z>o

the maximum bias of T5(F) exceeds that of the median by at most 26. If F is such

that TM(F) - TMED(F) = 0 (e.g. F is symmetric, with finite mean) then

T6(F,) = TM(F.) , a.s. [F],
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for n sufficiently large. Therefore, Ts(F,) has an asymptotic efficiency of 1 when

F = N(O, 1) but an efficiency of 0 if F has infinite variance.

The following argument shows that there are some merits in considering the opti-

mality problem on the class of M-estimates of location. It is well known that bias-robust

M-estimates of location, that is, M-estimates with a bounded 0,, are variance-robust:

the supremum of their asymptotic variance over symmetric c-contamination neighbor-

hoods of the Gaussian model is finite. This suggests that the efficient bias-robust

M-estimate is not only relatively efficient at the central Gaussian model but also over

a symmetric neighborhood of it. In fact, when the scale parameter is known one can

easily verify that

(1 - e)E4ik 2 (X) + C~p2(0)AV, 7(0) = sup AV(?P,,F)=
F [(1-

Using this formula one can check that the supremum variance of the Huber's M-estimate

of location with c = 1.345 (for instance) is fairly small: ATV = 1.053 when f = 0.

AV = 1.257 when e = .05 and AV = 1.795 when f = .15.
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maximum asymptotic bias subject to a constraint on efficiency at the Gaussian model. This
problem is the dual form analog of Hampel's optimality problem of minimizing the asymp-
totic variance at the nominal model (e.g. the Gaussian model) subject to a bound on the
gross-error sensitivity. We solve the global problem completely for the case of a known scale
parameter. The main conclusion is that Hampel's heuristic is essentially correct: the result-
ing M-estimate is based on a psi-function which is amazingly close, but not exactly equal,
to the Huber/Hampel optimal tP. It turns out that one pays only a relatively small price in
terms of increase in maximal bias for increasing efficiency from 64% to the range 90% - 95%.
We also present a conjectured solution to the problem, based on heuristic arguments and
numerical calculations, when the nuisance scale parameter is unknown.


