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ABSTRACT

The achievable gain in the radiation resistance and directivity of a

low-frequency underwater transducer due to the presence of an array

of sympathetic resonators has been analyzed. The resonators were all

taken to be air bubbles, and both the resonators and transducer were

taken to be compact (ka << 1). The resonators were taken to be

equally spaced around a circle of radius R, with the transducer located

on the axis. The gain was calculated for various numbers of resonators

as a function of karesonator, katransducer and kR, for the transducer in

the plane of the resonators and out of the plane a distance of one-

quarter wavelength. For the transducer in the plane, a gain in

radiation resistance of approximately two is possible with six or more

resonators. For the transducer out of the plane, it is shown that a

front-to-back discrimination of approximately 8 dB can be achieved, at

the expense of a decrease of approximately ten percent in the

achievable gain in the radiation resistance, compared to the

transducer in the plane of the resonators.
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I. INTRODUCTION

A. BACKGROUND

I. Tolstoy [Ref. 1, Ref. 2], and A. Tolstoy and I. Tolstoy [Ref. 31 have

recently analyzed the multiple-scattering of sound from a collection of

compact (ka << 1) monopole scatterers (e.g. gas-filled bubbles, gas-

filled balloons, and thin shells) in water, insonified by a simple

harmonic plane-wave at frequencies close to the resonance frequency

of an individual scatterer. The response of these systems was

quantified by computing the ratio of the scattered pressure on the

surface of a scatterer in the presence of the other scatterers to that of

the incident plane wave. This ratio was defined as the amplification

factor, gi. They investigated the value of this amplification factor for

various simple geometrical arrangements of monopole resonant

scatterers, and showed that amplification factors of the order of 102

were to be expected for air bubbles in water at one atmosphere

ambient pressure (The amplification factor of a single bubble is about

70.). These svstems were said to be "quasiresonant".

I. Tolstoy [Ref. 4] has also recently analyzed the strength and

directionality of the resonant multiple-scattering of sound from a

linear array of compact monopole resonant scatterers insonified by a

simple harmonic plane wave. He reports that "quasiresonance" effects

exhibit strong directionality in this system, with amplification factors

of up to 700. The potential application of resonant multiple-

scattering, or "quasiresonance", in Tolstoy's words, to improve the

performance of a low frequency active sonar transducer is the subject

9



of the research described in this report.

B. OBJECTIVES

The objectives of this research are multiple. The first is to

reproduce I. Tolstoy's results using network analysis, a tool familiar to

the transducer and array designer. It will be shown that network

analysis gives results identical to Tolstoy's analysis. The existence of

quasiresonance will then applied to a circular array of scatterers,

where the incident plane wave is replaced by an active transducer

located on the axis of the circle and radiating spherical waves. The

acoustic advantage gained in this system will be quantified by the gain

in the radiation resistance seen by the transducer by the introduction

of the array of scatterers. An increase in radiation resistance enables

the transfer of more power to the acoustic field for a given surface

velocity of the transducer (High power low frequency active sonar

transducers tend to be resonant devices that are displacement

limited.). The cases of the transducer in the plane of th! circle and

displaced by one-quarter wavelength out of the plane will 1,e analyzed

for both their increase in radiation resistance and gain ir directivity

over that of a single transducer.
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U. THEORY

A. INTRODUCTION

For simple configurations of compact resonant scatterers insonified

by a simple harmonic plane wave, Tolstoy predicted the existence of

so-called "quasiresonance" using multiple-scattering theory

(Quasiresonance is Tolstoy's term for the dramatic enhancement of

the scattered field of a resonant scatterer as a result of resonant

multiple-scattering.). Tolstoy's analysis will be reviewed and applied

to the simplest case of the scattering of a plane-wave axially incident

upon a pair of resonant scatterers in Section B. In Section C the same

problem is treated using network analysis. It will be shown that this

method produces results identical to Tolstoy's.

B. TOLSTOY'S ANALYSIS OF RESONANT MULTIPLE-SCATTERING

Tolstoy's analysis of the multiple-scattering of a plane wave incident

upon a collection of compact resonant scatterers proceeds using the

linear theory of acoustics. The following development parallels that of

Reference I1l and Reference [3], with the difference being that here

all time-harmonic functions are taken to be of the form eJ( t . This will

result in minor differences in the appearance of otherwise equivalent

equations.

Consider first the case of a single resonant scatterer insonified by

an incident plane-wave. The scatterer is taken to be an air-filled

bubble of radius a, which is assumed small compared to the acoustic

wavelength (ka << 1). From Kinsler, Frey, Coppens, and Sanders [Ref.

11



5, p. 2301, the ratio of the scattered pressure on the surface of the

bubble to the free-field pressure of an incident plane-wave is, in the

notation adopted here (note: the minus sign in Eq. 2-1, which is not

present in Eq. 10-22 of Ref. 5, results from the assumed convention of

positive velocity directed into the water):

Pngle(a) Rr + Jcwmr (2-1)
pf (Rm + Rr) + j(comr - s/o)'

where:

Psngle(a) = scattered acoustic pressure on the bubble surface,
pf = incident free field acoustic pressure,
Rr = bubble mechanical radiation resistance,
mr = bubble mechanical radiation mass,
Rm = bubble internal mechanical resistance,

s = bubble internal mechanical stiffness.

The scattered pressure at any distance r, Pingle(r), Is related to the

scattered pressure at the surface by

Psfngle(r) = a- -rjkr r Jka (2-2)

Psngle(a) r e-Jkr - jkr (1 -Jka) '

where the approximation ka << 1 has been used. Combining Eq. 2-1

and Eq. 2-2 results in the following expression for the ratio of the

scattered acoustic pressure at some radius r from the scatterer,

Pngie(r), to that of the incident pressure, pf:

Psngier) 1 e kr (2-3)
p f jkr

where:

ka

12



and

Wo 3yPO(24
0 pc'V -2  (2-4

In deriving Eq. 2-3, the following assumptions and substitutions have

been made:

(1) Surface tension is neglected, so the only mechanical
stiffness of the bubble is due to internal gas (air) pressure;
(2) The bubble internal mechanical losses due to viscosity and
thermal conductivity are neglected compared to the acoustic
radiation loss, i.e. Rm << Rr;

(3) Rr = 0omr/Q;
(4) Q- I/ (ka);
(5) s = 0oo 2 mr;
(6) ka << 1;
(7) co = coo.

It follows from Eq. 2-3 that the ratio of the scattered acoustic

pressure on the single scatterer's surface to that of the incident free-

field pressure can be written:

Pssngle jka e-Jka. (2-5)

Tolstoy introduces the quantities F a and A by rewriting Equation 2-

3 as Equation 2-6.

Fa Ag eA-J , (2-6)pf Jkr

where:
A = I___ _

1 -J

Fa is the normalized scattered acoustic pressure for a single scatterer

insonified by an incident plane-wave and A is the single-scattering

amplitude coefficient.

13



Now consider a system of N identical interacting scatterers

insonified by a plane-wave. Let pfic(r) represent the scattered acoustic

pressure. An equation for pa(r)/p f, equivalent to that of Equation 2-6

for a single scatterer, can be written as Equation 2-7 for the multiple-

scattering case:

Fbn P p(r) = Bn e-kr (2-7)
pfh Jkr

Fbn is the normalized scattered acoustic pressure irom scatterer n,

insonified by both the incident plane-wave and the fields of the other

scatterers, ph is the free-field pressure of the incident plane-wave at

scatterer n, and Bn is the multiple scattering amplitude coefficient for

scatterer n.

The response of a scatterer to multiple incident pressure fields can

be evaluated by summing up the response to each individual incident

pressure field [Ref. 3]. For a system of N scatterers, this results in

Equation 2-8 for the scattered field at the surface of the nth resonator:

Bn e-Jkan = An (1 + I Bm e-JkLnm eJ'nm e-Jkan (2-8)
jkan Jklnm ) Jkan '

where: Vnm is the phase difference in the incident plane wave

between resonator m and n, and m = 1.. .N. The subscript notation for

A has been added to allow for a system of different-sized scatterers.

Tolstoy defines the amplification factor gt (different from the

scattering amplitude coefficient mentioned previously) to be the

magnitude of the ratio of the scattered acoustic pressure on the

surface of a scatterer, pFc, to the free-field acoustic pressure of the

incident plane-wave, ph. With this definition, Equation 2-9 follows

from Equation 2-7:

14



Rn = -pc _ (2-9)

Tolstoy denotes the amplification factor for a single scatterer as Ito.

Equation 2-10, then, follows from Equation 2-6.

PSnglen =an (2-10)On --- =ka

From Equations 2-9 and 2-10, the gain in the amplification factor

due to multiple-scattering, /IKo, is expressed in terms of Bn/An by

Equation 2-11:

Rfn P pAC =Bn/An "  (2-11)

I'On Psingleei

B.I. APPLICATION OF TOLSTOY'S METHOD TO A SYSTEM OF

TWO RESONANT-SCATTERERS

As an example application, Tolstoy considered a system of two

identical resonators insonified by a plane-wave traveling along the axis

joining their centers, as shown in Figure 2-1.

Resonator of
Incoming Plane Wave radius = a

Figure 2-1. A two-resonator system insonified by a plane-wave
along the axis of the resonators.

Application of Equation 2-8 to the situation shown in Figure 2-1

15



results in the set of Equations 2-12:

B1 e = A - eJ + A e- B2 , e-Jkl e-Jk I (2-12)
jka jka jka jkl

2eJk = A e-Jka + A e-Jka B, eJkl elkI
Jka Jka Jka Jkl

For a system of identical scatterers, the values of Al and A2 are equal;

therefore, the subscript on A in Equation 2-12 has been omitted.

Since all variables in Equation 2-12 are known except B1 and B2 , one

can solve for B 1 /A in terms of A and kl, resulting in Equation 2-13:

1+Ae-*kl e-jkl
B I /A= 1 Jkl e (2-13)

1-{A e-T )2
Jkl !

Substituting the expressions for and 0o/o0 for an air-filled bubble into

the expression for A, B I/A is given in terms of the variables ka, kl, c,

Po, and p by Equation 2-14:

(a ieJ(ka -kI)
S- eJkI kl

I A p -pc (ka) + .ika 3YP )o

B/ = PTJI =pc2(ka) (2-14)
Psingle 1ar~ kI)

pc (ka2 + J ka - 3yPo
pc2(ka)

For bubbles Just under the surface of the ocean:

PO = 10132 Pa (1 atmosphere)

p = 998 kg m- 3

c =1498 m s -1

As observed by Tolstoy [Rf. 31, plots of Equation 2-14 display

spurious peaks. Following Tolstoy, then, the data used to produce the

16



graphs of I BI/A I versus ka and kI, plotted in Figures 2-2a,b, have been

treated to limit peaks in bounded intervals of width less than 2ka

(According to Tolstoy, peaks narrower than 2ka, where 2a equals the

resonator diameter, are not meaningful, since the pressure over a

compact resonator is approximately constant.). The process used

involved comparing three consecutive values of I B1 /AI in the kl

direction for each value of ka (Three consecutive points in the kI

direction span approximately 2ka.). If the value of I B1 /AI for the

middle point was greater than either of its neighboring points (a peak)

then this value was set equal to the mean of the two neighboring

points. This procedure was repeated several times to obtain the

desired smoothing.

Figures 2-2a,b show a maximum response of IB 1/AI equal to 5.5 at

approximately ka = 0.01393 and kI = 0.60. As a result of multiple-

scattering, then, the scattered pressure amplitude of the first bubble

is 5.5 times greater in the presence of the second bubble than in its

absence. Additionally, the value of ka at the maximum response is

shifted from that for a single resonant bubble of 0.01379.
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0.
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b. o0013$ o. oo~oI4

Figure 2-2a,b. Surface (a), and contour (b) plots showing I B1 /A I

for the double-resonator system as a function of ka and kl for
axial incidence of the plane-wave.
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C. NETWORK ANALYSIS OF RESONANT MULTIPLE-SCATTERING

Figure 2-3 displays a network model of N interacting scatterers

insonified by an incident acoustic wave (Note: pressure (p) and

volume velocity (Un) are chosen as the mechanical variables, and the

direction of positive velocity is clockwise.).

Resonators Acoustic Field

U I I

4W rnl = 1... N

Zl

f Ir

p p +m F ZIm (m

19

" 4 pf+ I zkmU M
2 22

i .rpfN + m4 bmUm

Figure 2-3. Network model of N interacting resonators
insonified by a plane-wave.

The network equations for Figure 2-3 are:
N

Pn = Pfi + I zffrUm Pn = -Zft Un ,(2- 15)

where:

Pn = Surface pressure at element n,

19



ph = Free field pressure at element n due to an
externally incident field only,

U n = Volume velocity of element n,
Zan = Acoustic impedance of element n,

7_t r = Acoustic radiation impedance seen by element
n with all other elements blocked (Urn n = 0; m= 1... N),

Zn a = Acoustic transfer impedance from element m to
element n.

Neglecting the effects of surface tension, thermal relaxation, etc.,

the intrinsic acoustic impedance of a small (ka << 1) gas-filled bubble

can be approximated by one of reactance only, given by Kinsler, Frey,

Coppens and Sanders [Ref. 5] as Equation 2-16:

Z = 3yP° Sn -1 (2- 16)
c(kan)

where:

an = radius of element n;

c = speed of sound in water;
k = wave number, o/c;

Po = ambient pressure of environment;

Sn = surface area of element n;

Y = ratio of specific heats (air).

The self acoustic radiation impedance seen by element n, nn' can

be approximated by Equation 2-17.

Z = pc (kan?+jkan) Sn' (2-17)

where p is the density of water. Equation 2-17 is the acoustic

radiation impedance presented to a compact source with no other

active or scattering element3 present. It is also the acoustic radiation

impedance seen by a compact source in the presence of other

compact sources when these sources are blocked (Urn = n 0; m =

20



1...N).

The acoustic transfer impedance from element m to element n is

given by Equation 2-18:

Zar =ZffjA~jeI(kam-klnm). (-8
zn Zkm (km- ~ 2- 18)

In matrix form, the network equations (Equation 2-15) can be

written as Equation 2-19:

(Pn) = [za(Um) + PE)} em,n= 1...N, (2-19)

where:

IXnl; n = 1...N A lxN column matrix, N elements,
[Xnm; n,m = 1...N A NxN square matrix, N2 elements.

Substituting Pn = - ZnUn and rearranging results in Equation 2-20:
_ fl-Z

-Pnl - Z + Zana=] Ur} ; m,n = 1...N, (2-20)

where 8nm is the Kronecker delta function:

nm= 1; m=n
0, m~n

C. I. APPLICATION OF NETWORK ANALYSIS TO A SYSTEM OF

TWO RESONANT-SCATTERERS

Modeling the system of two scatterers shown in Figure 2-1 as a

network, Equation 2-20 becomes Equation 2-21:

iA = lz1 + zf zH U 1  (2-21)

P I Z ZH + z~l U2

Using the relation pac rZnnUn to eliminate Un, the above equations

21



can be written in terms of the scattered acoustic pressure at each

individual resonator, phc, and the incident plane-wave pressures, as

given by Equation set 2-22:

pC = (pi + C12 pYC )D-I , (2-22)

pC = (p + C2 1 p C )DY'

where

Cnm =r -Z

Zxnm

and
Dn -- hZ

Z+Zn

For a system of identical resonators, Cnm and Dn are the same for all m

and n; therefore the subscript notation is not required. Solving

Equation 2-22 for the scattered acoustic pressure at each resonator in

terms of the incident plane-wave pressure results in Equation 2-23 for

the scattered pressure at resonator one:
p jc = Pj D + p. C (2-23)

D2_ C2

The scattered acoustic pressure at the first resonator in the

absence of the second resonator, Psfngle 1 , is obtained using Equation

2-23 by letting the transfer coefficient C equal zero, resulting in

Equation 2-24:

Psshigle I = -i (2-24)

Dividing equation Equation 2-23 by Equation 2-24 results in

Equation 2-25 for the ratio BI/A as defined by Tolstoy:
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1 + (p&/pi) W~
B1 /A- Pg _ 1 (PP)( (2-25)Psingle 1-

Inserting Equations 2-16 thru 2-18 into Equation 2-25, one obtains

an equation for B 1 /A in terms of the variables ka, kI, c, P0 , pj, p , and

P, as given by Equation 2-26:

S kaej(ka - k1 ))
-(p&p+) k _ 3yPo

___ _ pc 2 (ka)
BI/A -C 2 (226)

Psingle1  1gjk - k1)k)2 3

J~a-pc 2(ka)

The incident plane wave pressures pi and p are of equal magnitude

and differ only by the phase factor efld12, resulting in Equation 2-27:

P = e-Jkl (2-27)

pi

Substituting this expression into Equation 2-26, one obtains Equation

2-28:

1-k ei(ka -kiU
PC (kaP + (ka - 3yPo))PBnie 1A -Pae~c pC2 (ka) ~ (2-28)

pC2(ka

Equation 2-28 is identical to Equation 2-14, demonstrating the

equivalence of Tolstoy's method and network analysis.
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D. NETWORK ANALYSIS OF A TRANSDUCER INTERACTING WITH

MULTIPLE RESONANT-SCATTERERS

Network analysis will now be applied to the problem of a compact

transducer in the presence of an array of interacting, compact

resonant scatterers. The procedure is the same here as in section C,

except that the incident plane wave is replaced by an outward-

traveling spherical wave whose source is a compact transducer. A

network model of the transducer and N resonator system is shown in

Figure 2-4.

Acoustic Field

Transducer - m=0...N

Resonators
Pi

7-== Z 1rlm Um

Figure 2-4. Network model of a single transducer and N
interacting resonators.

The network equations for Figure 2-4 are:
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po = TI - ZaOUO, Pn =-ZUn ; n= 1..N, (2-29a)

Pn = I ZrnUm ; m,n = O..N, (2-29b)
m

where

T = transduction coefficient;

Zao = transducer open circuit (I = 0) acoustic impedance,

and the subscript n = 0 denotes the transducer, n * 0 a resonator.

The transducer open-circuit acoustic impedance lZa ° ) and

transduction coefficient (T) are shown only for completeness and will

not be considered further, as the quantity of interest will be the

radiation impedance presented to the transducer.

Using the network Equations 2-29, the matrix equation for the

network model shown in Figure 2-4 is given by Equation 2-30:

PO I I&1~o U0  n,m=l ... N (2-30)
12ft Ip) z [ZU I (Um

where

I Xnt, n = I.. .N denotes a IxN column matrix, N elements,

IXInrn, nm = I.. .N denotes a NxN square matrix, N2 elements,

and the superscript T denotes transpose. Replacing the 1 x N surface

pressure matrix, IPN), with I- ZAUnI, and then normalizing by Uo, the

transducer volume velocity, Equation 2-30 becomes Equation 2-31:

Zfortal IZ-ar 1
-1 Z" - ny f1 1. n,m = I...N,(2-3 1)

$(0-, IUa Izr + lunre

where

Zfrtal = total acoustic radiation impedance seen by the

transducer;
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M ratio of element m's volume velocity to that of the

transducer (U'M = U0/U0).

Equation 2-31 can be written as two separate matrix equations,

Equations 2-32a,b:

Zfortal-- Z6 + (ZUoT(u II, (2-32a){0]~ ~ Ia.II~ (2-32a)
-0 i|gb + Zf + ZASn (Um/rell.

+~~~ Iz ~j~ (2-32b)

Solving Equation 2-32b for Urel) by matrix inversion and substituting

the result into Equation 2-32a, one obtains Equation 2-33, the total

acoustic radiation impedance seen by the transducer.

Z~tai- Z - Tam [Z~ +- Z+nn - (Zb. (2-33)

Equation 2-33 expresses this impedance in terms of the radiation and

transfer impedances of the individual elements.

The total acoustic power radiated by the transducer is given by

Equation 2-34.

-- 1 Ud 2 Re(zrtal)• (2-34)

2

The gain in power delivered to the acoustic field due to the addition of

the sympathetic resonators equals the ratio of total power delivered

with the resonators present to the power delivered when they are

absent, n0 = 1 Ud 2 Re(Z&,). For a displacement-limited source,
2

typical of a sonar projector operated near its resonant frequency, this

ratio reduces to the ratio of the radiation resistances for the two cases.

This gain factor is expressed as Equation 2-35:

GR = Re(Zrtal) (2-35)
RZ86
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III. ANALYSIS

A. INTRODUCTION

The theory developed in the previous chapter will now be applied

to two specific geometric configurations of a transducer and N

identical resonators: a "planar" and a "conical" configuration. The

resonators will be treated as simple gas-filled bubbles. It is assumed

throughout that the acoustic wavelength is much larger than the

dimensions of either the transducer or the resonators. For initial

calculations, ambient pressure is taken to be one atmosphere, and the

radius of the transducer is taken to be equal to that of the resonators

(kao = kan). Later, calculations will be presented for the case of an

ambient pressure of 50 atmospheres, and the restriction kao = kan will

be relaxed.

B. ANALYSIS OF PLANAR CONFIGURATION

The geometry of the first arrangement to be analyzed is shown in

Figure 3-1. It consists of N identical resonators, equally spaced

around a circle of radius Ino. This geometric arrangement will be

referred to as the planar configuration.

For the configuration shown in Figure 3-1, Equation 2-35 becomes

Equation 3- 1:

G=Re( Z& - IZoT[arm + zMnj z~GR - nRe(r Z8 7 n,m = 1...4 (3-1)
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C:;Transducer

Figure 3-1. Resonators equally spaced around transducer
in a planar configuration of radius Ino, N=4.

Using Equations 2-16, 17, and 18, and canceling the common surface

areas Sn, Equation 3-1 can be written in terms of specific acoustic

impedances as Equation 3-2:

GR--Rd6 - (Z~fo)T [z i + zftn-' Czb)).
GR= = [ ; , n,m = 1...4 (3-2)

where:

z86 = Pc ((ka + jka),

zAr + zASnm =- PC ((ka}2 + jka) _j c3ka) ; n = m

c(ka)

zfi + zfAm= zi6=pc((ka)2 +Jka) ka eJ(ka-klnm); n#m,
klnm

4--- cpC((kaP2 +Jka) ka eJ(ka-klno)
klno

and lnm is the distance between element n and m, the subscript 0

denoting the transducer. Using simple trigonometry, klnm for n,m *

0 can be written in terms of m, n, and klno for the planar case as

Equation 3-3:
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klnm = kIno 2 sin(-1-In- M); n,m = 1...N. (3-3)

Using Equations 3-2 and 3-3, the gain in radiation resistance seen by

the transducer, GR, can be expressed in terms of ka and kno.

The gain in radiation resistance for the N = 4 planar configuration

can be plotted in the form of surface and contour plots using Equation

3-1, as shown in Figures 3-2a and 2b. It should be pointed out that

here and in all subsequent surface plots of GR, no spurious peaks were

observed, and no smoothing has been applied. Inspection of these

graphs reveals two local maxima, one of magnitude 4.34 at ka = 0.975

kar, klnO = 0.5, and another of magnitude 1.79 at ka = 1.005 kar, klnO

= 2.7, where kar equals 0.01379, the resonance value of ka for a single

air-filled bubble at one atmosphere ambient pressure. The local

maximum at ka = 0.975 kar, kInO = 0.5 is an artifact of the range of

klno chosen. In fact, the gain in radiation resistance diverges as

(kln0)- ' as kln0 approaches zero. This case is uninteresting and will

not be considered further. The interesting local maximum at ka =

1.005 kar, kln0 = 2.7 represents a gain of almost a factor of two in the

radiation resistance seen by the transducer. Note that kl = n

corresponds to a separation distance of one-half wavelength. For the

N = 4 planar configuration, then, the maximum gain in radiation

resistance is obtained when the resonators are located a distance just

under one-half wavelength from the transducer.

The gain in radiation resistance for the planar configuration where

N is set equal to eight and fifteen is shown in Figures 3-2c thru 3-2f.

These plots display similar characteristics to the N = 4 case. All show

a local maximum of magnitude approximately two at ka a kar--

0.01379 and kInO n-.
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The local maximum values for GR at kln0 =_ n, ka - kar = 0.01379 for

various values of N ranging from 2 to 25 and their associated

parameters are tabulated in Table 3-1. Two major points can be

observed from Table 3-1. First, the resonant bubbles' volume velocity

leads the transducer's by a phase shift of 900 (equivalent to - 2700).

This phase shift is created in two parts. Since the separation between

transducer and resonator is approximately one-half wavelength, this

introduces a shift of - 180* in phase due to simple wave propagation.

The remaining - 90' is introduced at the surface of a compact

resonating bubble between the incident and scattered wave, as

predicted by Equation 2-24. Second, note that little is gained as one

increases the number of resonators beyond about four.

N GR kamax k6,a mag(Unr') arg(Untel )

2 1.26 0.01382 2.65 0.395 90.00
4 1.87 0.01383 2.82 0.649 90.00
6 1.96 0.01385 2.87 0.474 90.00
8 1.96 0.01386 2.87 0.356 90.00

10 1.96 0.01386 2.87 0.285 90.00
15 1.96 0.01385 2.87 0.190 90.00
20 1.96 0.01381 2.87 0.142 90.00
25 1.96 0.01376 2.87 0.114 90.00

Table 3-1. Values of GR for N ranging from 2 to 25 and the

parameters associated with the local maximum at kJno n 7,

ka - kar = 0.01379. Planar configuration.
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00

b. 2k N/

Figure 3-2a,b. Surface and contour plots of GR as a
function of ka and klno for N = 4. Planar configuration. P0

I atm.
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Figure 3-2c,d. Surface and contour plots of G R as a
function of ka and kin0 for N = 8. Planar configuration. Po

I latmn.
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function of ka and kin for N = 15. Planar configuraton.

Po -f I atm.
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B.1. PLANAR CONFIGURATION BEAM PATTERNS

Polar plots of the beam patterns can be developed for the planar

configuration using the axis system defined in Figure 3-3. The origin

is located at the transducer, with the resonators located in the x,y

plane and with 0 being the angle measured from the positive y axis in

the x,y plane.

Figure 3-4 clearly demonstrates the acoustic advantage of the

planar configuration over that of a lone transducer. The zero dB

reference is taken as the field of an identical transducer with equal

volume velocity, in the absence of the resonators.

z axis

z z
:: y axis

xaxis

Y Y

yz plane z.0 =450plane

Figure 3-3. Axis system for beam patterns plots. Planar

configuration. Note the definitions of the y,z and z,O = 45'
planes.
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z axis

0

.. ....... .. . .

, , o 4.i 5 xy planeJSO S0 -5.0 .. 5.0 :' -5.0 S. 5.0

. .. . .LEGEND

" Y PLflNE

Figure 3-4. Beam patterns in the y,z and z,0 = 450 planes.
Planar configuration. P0 = latm. Scale in decibels (dB).

C. ANALYSIS OF CONICAL CONFIGURATION

The second geometric arrangement analyzed was chosen to take

advantage of the 900 phase shift between the volume velocity of the

resonators and the transducer for maximum radiated power. If the

transducer is offset from the plane of the resonators by one-quarter

wavelength along the positive z axis, the radiation from the resonators

will constructively interfere with that of the transducer along the

positive z axis. This configuration will increase the directivity of the

system. This arrangement will be referred to as the conical

configuration, and is shown in Figure 3-5.
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4

Resonator n

Figure 3-5. Resonators equally spaced around transducer
in a conical configuration at radius R. N = 4. The
transducer is displaced out of the plane of the resonators

by a distance of X/4.

The value of GR can again be expressed in terms of ka and kln0

using Equation 3-1, where Equation 3-4 is used to express kln in

terms of n, m, and kInO for the conical configuration.

The gain in radiation resistance for the conical configuration for the

cases N = 4, 8, and 15 are plotted in the form of surface and contour

plots, as shown in Figures 3-6a through 6f. Inspection of these plots

reveals the existence of the same local maximum as the planar

configuration of magnitude slightly less than 2 at kln0 - n and ka -

0.01379. Note that, unlike the planar case, the kl axis of Figures 3-6a

through f begins at kln0 = 1.75 vice 0.5. This is due to the

displacement of the transducer in the positive z direction. This

displacement requires kln0 be at least n/2.

The local maximum values for GR at kin0 = n, ka = 0.01379 for
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various values of N ranging from 2 to 25 and their associated

parameters are tabulated in Table 3-2 for the conical configuration. In

each case the value of GR for the conical configuration is slightly less

than for the planar configuration. Also, the value of klmax is slightly

greater for the the conical configuration, but is still approximately

equal to r (A value of 7E for kln0 corresponds to a value of 30 degrees

for the angle a in Figure 3-5.).

N GR kanax klmax mag(UM1) arg(U 1)

2 1.29 0.01382 2.77 0.429 90.00
4 1.78 0.01383 3.08 0.601 90.00
6 1.82 0.01385 3.12 0.428 90.00
8 1.82 0.01386 3.12 0.321 90.00

10 1.82 0.01385 3.12 0.257 90.OC
15 1.82 0.01383 3.12 0.171 90.00
20 1.82 0.01378 3.12 0.128 90.00
25 1.82 0.01372 3.12 0.103 90.00

Table 3-2. Values of GR for N ranging from 2 to 25 and the

parameters associated with the local maximum at kl = n,

ka = klr = 0.0 1379. Conical configuration.
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Figure 3-6a,b. Surface and contour plots of GR as a
function of ka and klno for N = 4. Conical configuration.
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Figure 3-6(3,d. Surfac3e and c3ontour plots of GR as a
func3tion of ka and klno for N = 8. Conic3al configuration.
Po = I atm.
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f 1.75 3.2S

Figure 3-6e,f. Surface and contour plots of GR as a
function of ka and klno for N = 15. Conical configuration.
P0 = 1 atm.
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C. 1. CONICAL CONFIGURATION BEAM PATTERNS

To demonstrate the improved directivity of the conical

configuration over that of the planar system, polar plots can be

developed using the axis system as defined in Figure 3-7, where the

transducer is displaced in the positive z direction from the plane of

the resonators.

Figure 3-7. Axis system for beam pattern plots. Conical
configuration.

Figure 3-8a shows the beam pattern of the conical configuration in

both the y,z and the z,0 = 450 planes. As expected, the symmetry in

the y,z plane about the z axis is lost, with the sound pressure level

(SPL) in the positive z direction being 8 dB greater than in the

negative z direction. If one compares the beam patterns of the conical

configuration to that of the planar configuration, shown in Figure 3-8b,

one observes that the SPL in the positive z direction for the conical

configuration is 1 dB greater than for the planar configuration, and 10

dB greater than for one transducer alone. Figure 3-8b clearly shows

that significant directional discrimination can be achieved with only a
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minor decrease in total power gain, GR.

z axis

9

LLCEN

Z Y PUlINE UM

Figure 3-8a. Beam patterns in the y,z and z,O = 450 planes.
Conical configuration. P0 = 1 atm. Scale in decibels (dB).

42



z axis
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r -,--- xy plane
.' : 50 -5.0 IS.0 -5.0 5.0

J/

-LEEND
CON I CAL

U, .

Figure 3-8b. Beam-patterns in the y,z plane for the planar
and conical configurations. P 0 = 1 atm. Scale in decibels

(dB).

D. OPTIMUM CONFIGURATION

The results of all calculations performed have been presented in

terms of the dimensionless radius and spacing, ka and kin 0 . The

actual dimensions for the radius a and the separation distance lmax for

a given frequency are obtained using Equation 3-5:

a - kac 1o - klnoc (3-5

2nf 2nf

Taking ka = kar = 0.01379 and kino =-n in Equation 3-5 for the

optimum values of a typical system at an ambient pressure of one

atmosphere, a plot of the resulting dimensions a and In0 as a function

of frequency can be made, as shown in Figures 3-9a and 3-9b:
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Figure 3-9a. Optimum resonator diameter (a) at resonance
versus frequency. P0 - 1 atm.
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Figure 3-9b. Optimum resonator- transducer separation
distance (Ino) for maximum power gain versus frequency.

P0 = I atm.
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E. ANALYSES WITH TRANSDUCER ka = CONSTANT AND P0 = 50

ATM

Two major assumptions that have been made throughout the

analysis up this point are now modified. The first is that the ambient

pressure is one atmosphere and the second is that the radius of the

transducer equals that of the resonators (kao = kan). In the following

analysis, an ambient pressure of 50 atmospheres (:orresponding to a

depth of 500 meters) will be taken as a more realistic value for an

operational system. Since the internal acoustic impedance of a bubble

is a function of depth, the value for kar of a single bubble at resonance

will shift from 0.0 1379 (Po = I atm) to 0.09754 (P0 = 50 atm). Also,

the value of ka0 will no longer be considered equal to that of the

resonators, but will be held constant at various specific values.

In the previous sections it was shown that little is gained when the

number of sympathetic resonators is greater than about four; hence

the following analysis will be restricted to the case N = 4. Conducting

similar calculations as before, contour plots and surface plots have

been generated for the cases N = 4, kao = 0.05, 0.10 and 0.20, for

both the conical configuration (Figures 3-10a through 3-10f) and the

planar configuration (Figures 3-1 la through 3-110. As in the previous

analyses where the ambient pressure was taken to be one atmosphere,

all cases display a local maximum of GR of slightly less than 2 for ka =

kar = 0.09754 and kl - n. These maximum values are tabulated in

Table 3-3. Also tabulated, though not plotted, are the cases kao =

0.025 and 0. 150. The first entry in Table 3-3 for either configuration

was calculated by holding kao equal to kan, as in previous calculations,

vice holding kao constant. A review of Table 3-3 and Figures 3-11 and
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12 demonstrates that the value of kao has little effect on the achievable

power gain.

configuration kao GR kamax klmax mag(Un1 ) arg(Ut ')

planar kan 1.87 0.09987 2.82 0.649 90.00
.025 1.87 0.09987 2.82 0.652 90.00
.050 1.87 0.09987 2.82 0.652 90.00
.100 1.87 0.09987 2.82 0.649 90.00
.150 1.87 0.09987 2.82 0.645 90.00
.200 1.87 0.09998 2.82 0.639 90.00

conical kak 1.78 0.09990 3.08 0.601 90.00
.025 1.78 0.09990 3.08 0.603 90.00
.050 1.78 0.09990 3.08 0.603 90.0c
.100 1.78 0.09990 3.08 0.601 90.00
.150 1.78 0.09990 3.08 0.597 90.00
.200 1.78 0.09990 3.08 0.592 90.00

Table 3-3. Values of GR for various values of kao ranging
from 0.025 to 0.2 and the parameters associated with the
local maximum at kI = n, ka = kar = 0.09754. Conical and
planar configurations. Po " 50 atm.
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Figure 3-10c~d. Surface and contour plots of GR as a
function of ka and kdno for N = 4. Planar configuration. PO
50 atm. ka0 = 0.10.
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Figure 3- l0e,f. Surface and contour plots of GR as a
function of ka and ki,10 for N = 4. Planar configuration. P0

=50 atm. kao = 0.20.
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Figure 3-1 la.b. Surface and contour plots of GR as a
function of ka and k1110 for N = 4. Conical configuration.
P0 = 50 atin. kao 0.05.
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Figure 3-1 lc~d. Surface and contour plots of GR as a
function of ka and kIno for N = 4. Conical configuration.
P = 50 atm. ka0 = 0. 10.
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Figure 3-1 le,f. Surface and contour plots of GR as a
function of ka and klno for N = 4. Conical configuration.
Po = 50 atm. kao = 0.20.
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E.1. BEAM PATTERNS, P 0 = 50 ATM

Since there is no significant variation in gain with the value of kao ,

beam patterns were only developed for the case ka0 = kar , and are

shown in Figures 3-12 through 3-14. These plots show the maximum

SPL in the positive z direction for the conical configuration to be 1.5

dB greater than for the planar case and 10.5 dB greater than for the

transducer in the absence of the resonators.

z axis

xy plane

*LEOEND
- CONI CAL

Figure 3-12. Beam patterns in the y,z plane for the planar
and conical configurations. P0 =50 atm. Scale in decibels
(dB).
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Figure 3-13. Beam patterns in the y,z and z, = 4501
planes. Planar configuration. P0 = 50 atm. Scale in
decibels (dB).
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Figure 3-14. Beam patterns In the y,z and z,O =450

planes. Conical configuration. P0 = 50 atm. Scale in
decibels (dB).
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E.2. OPTIMUM CONFIGURATION, Po = 50 ATM

The actual dimensions of the resonator radius a and the separation

distances In0, for a system operated at an ambient pressure of 50

atmospheres, were calculated using Equation 3-5 using the optimum

values ka = kar = 0.09754 and klno a n. Since the values of Ino are not

depth-dependent, Figure 3-9b still applies. Figure 3-15 displays the

relation between the optimum resonator radius and frequency for an

ambient pressure of 50 atmospheres.

100 .-

1 10 100 1000 10000

frequency (hz)

Figure 3-15. Optimum resonator diameter (a) at
resonance verses frequency. Po = 50 atm.
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IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The problem of multiple-scattering of an incident plane-wave from

a system of compact resonant-scatterers was solved using both

Tolstoy's method and network analysis. It was shown that these two

methods of analysis are equivalent and that both predict the existence

of "quasiresonance". Network analysis was then applied to a circular

array of scatterers, where the incident plane-wave was replaced by

spherical waves radiated from an active transducer, located on the

center axis. The acoustic advantage of this system was quantified by

the gain in the radiation resistance seen by the transducer in the

presence of these scatterers compared to a lone transducer. Two

configurations were analyzed: (1) the transducer in the plane of the

resonators, and (2) the transducer displaced by one-quarter

wavelength from the plane. Both configurations showed a gain in

radiation resistance of almost a factor of two and an improved

directivity over that of a single transducer.

B. CONCLUSIONS

The numerical analysis of a transducer surrounded by a circular

array of sympathetic resonators indicates that a gain in radiation

resistance of about two is obtainable compared to a lone transducer.

The physical dimensions of such a system operating at an ambient

pressure of 50 atmospheres are displayed in Table 4-1 for several

frequencies of interest.
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Frequency Resonator Radius (a) System Radius (R
(Hz) (W) (i)

conical planar

10 0.329 64.9 74.9
100 0.0329 6.49 7.49

1000 0.00329 0.649 0.749

Table 4- 1. Dimensions of planar and conical
configurations for various frequencies. P0 = 50 atm. R is
the radius of the array.

Although the calculations presented here were for spherical

bubbles, the results also apply to more realistic devices (e.g. thin

shelled cavities, balloons, etc) as long as they are compact (ka << 1).

M. Strasberg [Ref. 61 showed that the shape of a resonant body has

little effect on its fundamental resonance frequency. For example, he

calculated that an oblate spheroid with a ratio of lengths of major to

minor axes of four, the fundamental resonance frequency differs by

only a factor of 1.08 from that of a sphere with the same volume.

Therefore, any deformation of the resonators from a true spherical

shape, for example due to forces such as buoyancy, should have little

affect on system performance.

C. RECOMMENDATIONS

The results of the research reported in this thesis are very

encouraging. It is recommended that follow-on work include the

design, construction, and testing of an array to verify the theoretical

predictions presented.

Theoretical analysis remains to be conducted in at least four areas.
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First, in all of the calculations performed, the sympathetic resonators

were assumed to be gas-filled air bubbles executing radial oscillations

only. A more realistic model of a sympathetic resonator may be

required, based upon the properties of a practical device. It is

recommended this be investigated. Second, Tolstoy has shown that

the scattering of an incident plane-wave from a linear array of resonant

scatterers exhibits strong directionality. Perhaps a linear array of

sympathetic resonators offers better performance gain than the

circular arrays considei ed in this research. It is recommended that

such a configuration be investigated. Third, it was shown that in the

optimum conical configuration the ring of sympathetic resonators lies

on a cone with a apex angle of approximately 120 degrees,

independent of frequency. This suggests that a broad-band, constant

directivity system could be constructed using a series of concentric

rings of resonators, each tuned to a slightly different frequency and

placed in its appropriate location along the surface of such a cone, as

indicated in Figure 4-1. It is recommended that the properties of

such a system be investigated. Fourth, in the calculations presented,

the sympathetic resonators were all assumed to be identical, and their

locations were assumed to be precisely known, as well as that of the

transducer. It is recommended that the effects of resonator

nonuniformity and imprecise location be investigated.
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Transducert 1 Resonator r-a'

/'1 120" cone

Resonator r=a

Figure 4-1. Multiple-ring conical configuration allowing an
expanded frequency response. Two concentric rings of
resonators of radii a and a', separated from the transducer
by distances of I and 1', respectively.
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LIST OF SYMBOLS

an  Radius of element n.

c Speed of sound in water.

GR The ratio of the acoustic radiation resistance of a transducer

with sympathetic resonators present to the acoustic radiation
resistance of an identical transducer with no resonators
present.

k Wave number, o/c.

kar The resonance value of ka for a single air-filled bubble.

Inm Separation distance between element n and m.

ph Incident free field acoustic pressure at element n due to
external field only.

Pn Surface pressure at element n.

p C Scattered pressure at the surface of resonator n, in the

presence of other resonators.

Psngle Scattered pressure at the surface of a single resonator. i.e. in

the absence of other resonators.

r Distance from scatterer center to a field point.

z Specific acoustic impedance, pressure divided by surface
normal velocity.

A Single-scattering amplification coefficient of element n.

B Multiple-scattering amplification coefficient of element n.

Cnm Ratio of acoustic impedances, defined as: Cnm - zalr
Znm

Dn  Ratio of acoustic impedances, defined as: Dn - zar + Z
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Fa Scattered acoustic pressure from a single scatterer,
normalized to the incident acoustic field.

Fb Scattered acoustic pressure from a scatterer,interacting with

other scatterers, normalized to the incident acoustic field

I Electrical current.

P0  Ambient pressure of environment.

S n  Surface area of element n.

T Transduction coefficient.

U n  Volume velocity of element n.

Uel Volume velocity of element n, normalized to transducer

volume velocity.

Z Acoustic impedance, pressure divided by volume velocity.

Zn Acoustic impedance of element n.

Zyr  Acoustic radiation impedance seen by element n with all

other elements blocked.

Zyr  Acoustic transfer impedance from element m to element n.

Zfrt The total acoustic radiation impedance seen by transducer in
the presence of sympathetic resonators.

Zao Transducer open circuit (I=0) acoustical impedance.

8nm Kronecker delta function, where: 8nm = 1; m = n

0;m nf

p Density of water.

Ratio of the magnitudes of the scattered acoustic pressure at
the surface of a resonant scatterer to the incident acoustic
pressure in the presence of other scatterers.
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Ratio of the magnitudes of the scattered acoustic pressure at

the surface of a single resonant scattererto the incident
acoustic pressure.

y Ratio of specific heats (air).

(0 Angular frequency of plane wave.

too Angular frequency of scatterer resonance.

Defined as: 0 = (o/2- 1)

ka

IXnI A Nxl column matrix, n = 1...N.

[Xnmj A NxN square matrix, nm = 1...N.
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