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1 Overview

This research explores the relation between mental models and rule-based models
of problem solving skill. The objective is a theory of the background knowledge
that underlies problem solving rules and is needed for explanations. The instruc-
tional objective is to investigate how to construct an explanation that incorporates
a description of the rule to be learned and its underlying justification.

We are now pursuing a research program that draws on four areas:

GIL The Graphical Instruction in LISP system is an intelligent tutoring system for
programming that constructs explanations directly from its problem solving
knowledge. We are using GIL to investigate how to represent information for
explanations and to conduct empirical studies that examine the effects of the
timing and content of explanatory feedback on learning.

GLEE The Graphical LISP Ezploratorj Environment is a graphical programming
environment based on the graphical representations used in GIL, but providing
the students more freedom to explore and test their hypotheses. We are using
GLEE to investigate how visual representations facilitate problem solving and
to examine students' strategies for exploration.

Human Tutors We are conducting experiments to investigate the tutoring strate-
gies and learning consequences of instruction by human tutors and consultants.
Our comparison groups are students learning on their own and in collaborative
learning situations.
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BATBook The Behavioral Analogy Tracing Enironment is an online book and
problem solving environment that facilitates students' use of examples in a
text book and use of their own solutions to previous problems. We are using
BATBook to investigate how students remember previous solutions and adapt
them to new problems.

In the second year of this contract, we have made substantial progress in devel-
oping the GIL and GLEE systems and have initiated a series of experiments using
GIL to study explanations. We have run a large instructional experiment investigat-
ing human tutors in a variety of contexts. Finally, we have developed the BATBook
system and used it in a first experiment to investigate analogical retrieval.

2 The GIL Tutoring System

We have made substantial progress in the development of GIL this year. We have
greatly modified and extended the prototype system that we developed during the
first year of the contract. GIL and GLEE together now contain approximately 23000
lines of LISP and LOOPS code. The GIL system contains four major components,
the Interface, the Problem Solver, the Model Tracer, and the Explainer. We will
describe the advances in each of these components in the following sections. The
version of GIL described below is GIL 1.2, dated August 1989.

The personnel on the GIL and GLEE portions of this project during the second
year of the contract included the following students and staff (some supported by
this contract, others by funding for the Cognitive Science Laboratory): Michael
Ranney (Postdoctoral Research Associate), Antonio Romero (research assistant),
Alka Tyle (graduate student, Rutgers University), Adnan Harnid (undergraduate),
Dan Kimberg (undergraduate), and Marsha Lovett (undergraduate) contributed to
various components of the GIL and GLEE code. Shari Landes (research assistant)
and John Connelly (undergraduate) ran Experiments 1 and 2, and John Gaskins
(graduate student) has an experiment now in progress.

2.1 The GIL Interface

During the second year, we made substantial revisions in the prototype GIL in-
terface developed during the first year. These revisions were suggested by several
series of pilot subjects and feedback from our colleagues at a workshop of ITS and
CAI researchers in March 1988 (sponsored by the Cognitive Studies for Educational
Practice Program of the McDonnell Foundation). These changes concerned a facility
for typing new data directly into the graph instead of separate input windows, the
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use of a "click and drag" method for bringing functions and nodes into the program
graph (the method used for moving icons in the Macintosh Finder and therefore in-
stantly recognized by most novices), the placement of a problem statement window,
explanation windows, buttons, and many other details. The resulting interface is
now quite easy for novices to master. We find that students in our experiment who
have no prior programming experience can learn to use GIL with a short five minute
demonstration and can work through two chapters of material without having any
questions on the interface.

2.2 Production Rule Problem Solver

The architecture of the production rule problem solver was developed in the first
year. The major advance in the production rule system in our second year has been
the extension of the production rules and plans to complete the first two chapters
of problems. GIL 1.2 contains 182 rules (approximately 7500 lines of code) and 13
plans. The rule set contains 78 forward enable rules, 84 backward rules, and 20
achieve rules. The GIL problem solver differs from other production rule problem
solvers used in intelligent tutoring systems in a number of respects. First, the
problem solver combines reasoning in two directions. The system contains rules
for reasoning forward from the given data toward the goal, and rules for doing goal
decomposition by reasoning backward from the goal toward the given data. Another
unique characteristic is the use of inheritance hierarchies in the semantic predicates
in the pattern matcher and in the organizations of the rules themselves. If more
specific information has been inferred in a particular problem, the more general
predicate in a rule will match against the subordinate predicate in a proposition in
working memory. In this way, the propositions included as the conditions of rules
can be written at the level of abstraction appropriate for the type of rule. The
hierarchy of rules makes it possible to organize similar problem solving steps into
families of related rules, and to encode more specific versions of general strategies.
The problem solver traverses the hierarchy to find the most specific rules that match
the current facts in working memory.

The problem solving plans in GIL represent important sequences of steps to
achieve a particular type of subgoal. Many of GIL's rules either initiate a plan or
are applied only if a particular plan has been undertaken. Thus, GIL can use these
plans to explain the larger context in which a step occurs.

The first two chapters in the curriculum contain 15 problems currently being
used. Now that the rules are stable, more problems can be developed simply by
adding appropriate working memory descriptions. These problems contain up to 14
unique solution graphs each, and up to 1720 different paths or different sequences
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of steps that a student can take in each problem. We have developed the Pathfinder
Solution Generator (described in the next section) to test the solutions permitted
by GIL for these problems and ensure that students can solve each problem using
any possible sequence of steps.

2.3 The "Pathfinder" Solution Generator

The flexibility allowed by GIL posed serious difficulties for debugging the problems
in the curriculum. Even problems that contain only 5 or 6 functions in the solution
may be solved with as many as 14 different solution graphs. Since GIL allows both
forward and backward reasoning, and allows the student to pursue any path at each
point in the problem, there are typically 4-8 moves possible at any point. In some
of the more complex problems, there may be more than 1700 different sequences of
correct steps logically possible. Thus, it is simply not feasible to "manually" test
all possible sequences to ensure that they are allowed by GIL.

For this reason, we developed a solution generator program, called "Pathfinder",
to help automate the debugging process. The Pathfinder exercises the problem
solver through each problem to construct every solution allowed by the rules and
thereby determines all sequences of steps that are permitted. The Pathfinder finds
any dead ends (sequences of steps that result in a state from which it is not possible
to reach a solution), missing paths (a sequence of correct steps not allowed by the
rules), extra steps (rules which match when the solution is complete), and rule
redundancies (a case in which two rules match to a state but the two rules have the
same effect and therefore are redundant). The Pathfinder program made it possible
to debug and fine-tune our rule set during this year and finalize the curriculum for
the first two chapters of material. Our Pathfinder results guarantee that students
can solve each problem using any order of steps.

2.4 The Compiled Problem Spaces Model Tracer

We implemented a major improvement in the speed of GIL's response with the use of
compiled problem spaces. Since the Pathfinder has already worked out all possible
sequences of production rule firings that can be used to solve the problem, the GIL
Model Tracer can use this generated problem space to trace the student's reasoning.
Thus, rather than matching production rules on each cycle, the Model Tracer simply
accesses the stored conflict set of matched productions and examines that to evaluate
the student's step. This technique results in extremely fast responses to each student
action, less than 2 sec/step.

4



2.5 The Conditionals Curriculum: A Plan-Based Model
Tracer

A major focus of our research efforts in the second half of this year has been on
the representation of conditional expressions (Chapter 3 in our curriculum). Our
experience in building the production rule problem solver for the first two chapters
of material has revealed some limitations in the production rule approach when
students are given complete freedom to work on any part of the problem at any
point. The large number of contexts in which a particular step may be taken results
in a large increase in the number of rules that are necessary. Our attempts to build
a prototype rule set for conditional expressions suggested that a greater reliance on
problem solving plans would facilitate the construction of the problem solver, and
would help us to tackle the issue of providing more global explanations.

We have constructed an extension of the production rule problem solver that
uses plans rather than individual production rules. The problem solver constructs
a complete and/or tree of steps for a problem. We completed work on the plan-
based problem solver during the second year, and are currently writing the plan set
necessary for the Chapter 3 problems.

We have also constructed a prototype model tracer that uses the plan represen-
tations. In the next quarter we will fine-tune the interface and model tracer to work
with these new representations.

2.6 The GIL Explainer

GIL has two features which make it unique as a tutoring system. The first is the
graphical representations that students use to build programs. The second is the
GIL explainer that dynamically generates feedback directly from its problem solving
knowledge, rather than relying on canned text written by the system's programmers.
Furthermore, the GIL explainer does not require a bug catalogue such as found in
most tutoring systems. GIL responds to student errors and requests for guidance
by finding the relevant problem solving rules and plans and generating explanatory
feedback to guide the student's reasoning. If an error in a student step is found,
GIL's explainer analyzes the discrepancies between the student's step and the closest
matching correct rule and offers suggestions to the student about how to improve
the step. Explanations may draw upon the problem solving rule, general knowledge
about the operator being used, and the higher-level plan of which the step is a part.

We constructed the prototype explainer system in the first year of the contract.
In the second year, we redesigned and extended the explainer into a robust system.
The explainer contains 15 general bug categories that diagnose whether the error
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is a legal error (in which the step in the program does not correctly manipulate
the selected data) or a strategic error (in which the chosen step is a" legal LISP
operation but is not strategically useful). In constructing the explanation GIL may
access general information about the LISP operator, the particular rule specifying
the strategic constraints for applying that operator and its effects on the current
problem state, and the inferred student plan. GIL first describes what is good
about the student's step and then points out the ways in which the step is in error
or could be improved by explaining how the student's input, output, or function
deviates from the properties in the correct rule. An example of GIL's response to a
strategic error is shown in Figure 1.

The explainer contains a natural language generator for propositions which en-
ables it to express any proposition from the condition or action component of a
rule as an English clause. The explainer is sensitive to focus, so it will express a
particular proposition differently depending on which argument of the proposition
is the focus in the current explanation context. The explainer can also handle em-
bedded relations, in which it explains the connection between two objects in the
problem that are connected by a chain of propositions (e.g., "the first element of
the reverse of the original input list"). The explainer also contains facilities for
recognizing and pruning redundant information. For example, if it decides to point
out that a particular student input should be a list, it is smart enough to exclude
from its explanation other violated properties that cannot be satisfied if this more
basic property is violated.

2.7 The GIL Graph Viewer

In examining the data from subjects in our experiments (described below), we found
it important to observe the appearance of the graph, rather than simply relying on
a list of its contents. Often the layout of the graph is a clue to students' intentions.
For this reason, GIL now stores the state of the program graph after each correct or
incorrect step. The Graph Viewer program can be used to replay a subject's series
of steps for a problem. An example is shown in Figure 2.

2.8 Use of GIL within the ARl Basic Research Office

During the second year of the contract, we began a collaboration with Susan Viscuso,
a National Research Council Associate at the Army Research Institute. Dr. Viscuso
is interested in investigating the manner in which graphical representations facilitate
problem solving and the types of difficulties students have learning to plan LISP
solutions and learning the syntax of LISP. She is comparing one group of subjects
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Write a program that takes one list as an
argument and produces as output a list
containing the first and last element of
that argument. For example. If the
argument were (a b C then the

ERB output would be (a C.

OK. I think I see what you are trying to
do. Are you trying to use RESTs on
(a b c ca to get the list (d)? It's not a bad
idea. but unfortunately it won't be a
vary general solution. Remember that
your program should work for an input
lIst of any length. not just for (ha b a

ew te ore Ino

lCod)

REST

Figure 1. An explanation constructed by GIL in response to a strategic error.
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learning to program in GIL with another group of subjects who program in standard
LISP but are given an instructional text that demonstrates LISP functions using
GIL graphical representations in addition to standard text L'SP. In her experime- ,
GIL subjects are also trained in standard LISP by translatirg each GIL graph into
text LISP. This provides a common language in which to evaluate the learning of
both groups of subjects.

3 The GLEE Discovery System

The GLEE system is an exploratory system based on the graphical representa-
tions used in GIL. We began construction of GLEE during the second year of the
contract. A complete version is now ready and we are about to test GLEE with
subjects. GLEE provides students the graphical representations of GIL, but without
the tutoring assistance and the model tracing constraint. This enables students to
explore.

There is much rhetoric in the education field about the virtues of discovery and
exploration. However, there has been little attempt to demonstrate the important
features of a successful exploratory system. Furthermore, there has been little em-
pirical demonstration of the advantages of learning by discovery. GLEE and GIL
provide us the opportunity to investigate these issues. There is no clear guidance
from the education community on the design of an effective exploratory system.
There is much more to a successful exploratory system than simply removing the
tutorial guidance from a tutoring system. We are attempting to develop a set of
pedagogical principles for an exploratory system in our work on GLEE.

The GLEE system provides students more freedom than students in GIL. First,
students in GIL are constrained to include three components in each step - a
function, the input, and the output. In GLEE, the student is not constrained to
take steps in this fashion. Instead, the students can bring in as many functions
and data nodes and in whatever order that is desired. Because of this, GLEE can
not infer whether a data node is intended as input or output or will be attached
to a function that has not yet been brought into the graph. Therefore, unlike GIL,
GLEE does not draw any links between functions and data nodes. Instead the
student links any nodes desired by clicking on a node and dragging a line over to
another node and releasing the mouse button. Furthermore, unlike GIL, the student
is not constrained to build graphs only from the bottom up and top down. Instead,
the student can place any functions and data nodes anywhere in the graph and link
them in whatever order desired. Figure 3 displays a partial solution in GLEE. Note
that the student has begun two forward paths, and has also constructed a portion
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Write a program that produces a list of
the first two elements of a list. For
example, If the list were (a b c d a),
then the result would be (a b).

_______ __________ ade

rTnun

(anowd)

Figure 3. A partial solution in the GLEE exploratory environment.
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of the graph that has not yet been connected (the LIST of b to get b)).
In GLEE, students are given the opportunity to construct graphs in arbitrary

order and without constraining them to correct errors as they are made. For this
reason, it is important to provide students with methods for deleting and editing
portions of a graph. In GIL, since errors are corrected as soon as they are made,
the only delete capability is the "Oops" button which can be used to delete the
last portion of the current step, or to delete the entire step. GLEE contains three
types of graph modification routines. First, the delete key (shaped like a typewriter
backspace key) can be used to delete any node in the graph. The student selects the
delete key and then clicks on any function or data node in the graph. That node
is then deleted, and any links to the node are removed. Second, GLEE contains a
"Replace" key. After selecting a Replace, the student is prompted to click on an
item in the graph. If the student clicks on a function, then a click on a function in
the Function Menu causes the selected function to replace the function in the graph.
If the student clicks on a data node, then the node changes to an empty data node,
and the student can simply type in the new value. The third type of deletion is the
"Break Link" key (the wire cutters icon in the menu). This is used to break a link
between two nodes in the graph.

We argue that an effective discovery system must do more than refrain from
telling students when they make mistakes. Unless the system provides the student
the opportunity to test hypotheses, there seems little chance of learning from the
exploration. Thus, a crucial component of discovery systems is the ability to elicit
feedback from the system when desired, so that the student can test hypotheses.
For this reason, GLEE contains a "Test" button. When selected, the student can
then click on any node in the graph. The system then begins with the initial input
and tests the paths up to the target node. If GLEE finds any data nodes that are
incorrect, or any functions that cannot be applied to the input data, then it points
out the error. Figure 4 displays GLEE's response to an error. Of course, GLEE
responds to legal errors, and does not comment on the student's strategy.

GLEE also contains a "Submit" button that is used to submit a completed
solution. When the student has tested a solution and feels it is correct, the Submit
button will test the student's program against a set of examples associated with
the problem to determine whether the program computes the correct result for each
example. If the student's program satisfies the problem constraints, then GLEE
presents the next problem in the curriculum. If the student's program only works
for the original example but is not general enough to work for the other examples,
GLEE informs the student of the example that does not work and gives the student
the opportunity to attempt to modify the program.
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Write a program that produces a list of
CM the first two elements of a list. For

example, if the list were (a Ib c d a.
then the result would be (a b).

Sorry, your output is wrong. The result
of FAST here will not be (al.

(b) ~FIFST acting on (a b a d) will give
(a) you the result a

IrMST

(boade)
FIRST

LIIST

(a b a d e)

Figure 4. Feedback on an incorrect solution in GLEE.
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4 Experiments Using GIL and GLEE

4.1 Experiment 1: Comparison of GIL and Standard LISP

We have begun to evaluate the effectiveness of GIL. Our first study, presented at
the 1989 Al and Education conference, compared students learning to program
with GIL with another group of students learning the same programming concepts
in traditional text-based format. Students found the program graphs much eas-
ier to construct than standard LISP syntax. However, even after the control group
students had mastered the syntax of LISP definitions, there was a substantial advan-
tage for using GIL to solve problems. Students working with GIL solved comparable
problems in approximately 1/4 the time of students working in standard LISP. We
believe that the faster learning of the GIL students is due to two aspects of the
environment: the model tracing nature of GIL and the nature of interacting with
GIL's graphical programming environment.

The model tracing nature of GIL provides feedback for students somewhat simi-
lar to the type of feedback that human tutors provide. GIL's feedback achieves the
same purpose as a human tutor's constant feedback: it keeps the student from going
too far off the track and minimizes the consequences of errors. The GIL feedback
points out whenever a step is in error. This feedback helps the student locate the
error by marking the portion of the student's step that needs to be modified in the
graph. In addition, the feedback briefly describes how the step can be improved.
The feedback is in the form of a hint, in that it describes the nature of the difference
between what the student has and what is needed, but does not provide the cor-
rect answer (unless the student requests "More Info"). In addition, GIL's feedback
distinguishes between a variety of errors in reasoning about LISP's behavior (legal
errors) and poor strategies (strategic errors). The error feedback and hints appear
to greatly reduce the students' time to construct a solution.

Another advantage of the GIL tutor that appears to account for its effectiveness
is that the environment is more congruent with the reasoning students need to do
to construct programs than the standard LISP environment is. Students can more
easily understand how LISP works and more easily plan algorithms using GIL. The
most striking evidence for this concerns their use of forward and backward reasoning
- subjects showed a strong tendency to work forward from the given data toward
the goal. In contrast, the order of the functions in text form of the code corresponds
to a complete top-down or backward solution. If subjects' reliance on forward steps
in GIL is a true representation of their reasoning, then novices do not appear to plan
their programs in the order in which the functions appear in the completed solution.
Forcing students to enter their code in the outside-in left-to-right fashion required
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by standard LISP interpreters forces students into a different strategy than the one
in which they can work through the algorithm in the order in which it. transforms
the data.

4.2 Experiment 2: Content of Explanations

A second GIL study, conducted by John Connelly, demonstrates the importance of
GIL's explanations. This experiment employed two modified feedback conditions, in
addition to the standard explanatory GIL condition. In the minimal feedback case,
GIL merely indicated whether each step was correct or not, and provided students
the opportunity to request the correct step, without an explanation of the error or
the aptness of the correct step. In the location feedback condition, GIL indicated
which part of the step was incorrect and indicated how to fix it upon request,
but again provided no explanations. Subjects in these conditions relied more on
the second level of help to be told how to fix the error. In spite of this greater
reliance on being told the right answer, these subjects exhibited longer error-fixing
episodes and poorer performance on post-tests than those receiving explanations
upon errors. Location feedback subjects performed better than minimal feedback
subjects, but both groups fared worse on all measures than the explanatory GIL
feedback subjects. The study suggests that GIL's facilitation of students' learning is
not merely providing feedback on the correctness of the steps or in leading students
to a solution by telling them the answer. Rather the positive effects of GIL lie in the
way in which the explanations enable students to fix their errors and understand
why their fixes are successful.

4.3 Experiments Now in Progress

There are a number of studies now in progress in our laboratory. In one study, be-
ing conducted by John Gaskins, we are investigating the transfer from the graphical
representations used in GIL to the standard text-based syntax of LISP. Students
solve each problem in GIL and then translate the program graph into text LISP.
A control group solves each problem in standard text LISP. Even though the con-
trol group has been using text LISP to solve all their problems and therefore will
have more experience with this form of LISP, we predict that the GIL group will
perform better on post-tests in text LISP, because they will have acquired a better
understanding of how functions operate in LISP and will be better able to construct
algorithms to solve problems.

A second experiment continues our investigations of the effectiveness of expla-
nations in learning. The procedure is similar to Experiment 2 described above with
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an important modification. In Experiment 2, subjects were given the "More Info"
option in the Minimal Explanation and Location conditions. In these. conditions,
selecting this option simply told the subject how to fix the step, without explaining
why the fix was necessary or effective. We found that subjects were more likely to
rely on the More Info option in these conditions than in the standard GIL condi-
tion. One possible explanation for the superiority of the GIL condition is that when
subjects are given hints they try to fix the error themselves, while in the Minimal
Explanation and Location conditions subjects were less motivated to try to reason
through the fix of the error and therefore relied more on being told what to do. It
may be that the effects of the experiment were due not to the explanations per se,
but rather to the subjects relying on being told what to do instead of discovering
how to fix the errors themselves. In the current experiment, subjects are never given
the More Info option, and therefore must fix all of their errors themselves. A differ-
ence in performance between the groups in this experiment will be stronger evidence
for the role the explanations themselves are playing in the subjects' acquisition of
the target knowledge.

In the next quarter, we hope to begin pilot testing of GLEE with subjects and
comparisons of several versions of GLEE. These experiments will investigate the
effectiveness of intermediate products in the graphical representations and the utility
of stepwise feedback.

5 Experiments With Human Tutors

Another component of our research program is the investigation of effective human
tutors. We are currently studying human tutors in a variety of instructional contexts
in order to investigate tutoring strategies, the timing of feedback, contingency of
feedback on models of the individual student, and the type of explanations used by
tutors.

In one study, currently in progress, we examined students learning to program
in a variety of learning situations. All subjects read the first three chapters of our
LISP programming textbook (Essential LISP), which covered the topics of using
LISP functions to manipulate numbers and lists, defining new functions, and writ-
ing programs using predicates, conditionals, and logical functions. Subjects read
the text and solved the problems in each chapter, using a LISP interpreter and a
simplified screen editor to modify their programs. The experiment required between
3 and 5 sessions totalling between 6 and 15 hours.

The study included four learning conditions: No Tutor, Tutor, Consultant, and
Collaborative Learning. The No Tutor subjects were instructed to read the text

15



and solve the problems on their own, and ask questions only if necessary. At the
end of each chapter, these subjects presented their solutions to the experimenter,
who graded each solution as correct or incorrect, whereupon subjects were given
an opportunity to attempt to correct their mistakes. In the Collaborative Learning
condition students worked in pairs with the same instructions as the No Tutor
subjects. The Tutor subjects worked through the same material with an experienced
human tutor. In the Consultant condition, the tutors were present only a few feet
away in an adjacent room in the laboratory suite, within sight of the subjects.
Subjects in the Consultant condition were instructed to ask as many questions as
they wished of the human tutors. When asked, the tutor would sit down next to the
subject and help with whatever problem or confusion the student had encountered,
until the tutor felt the topic was completed, typically 5-10 minutes later. The
purpose of this condition was to compare a natural tutoring situation with one in
which the tutoring interactions were initiated only by the student. We employed
two tutors, one male and one female, both Princeton undergraduates. Subjects were
matched with the tutor of the same gender in the Tutor and Consultant conditions.

The results demonstrated a dramatic advantage for the Tutor subjects. The sub-
jects completed the material approximately 40% faster than the No Tutor subjects,
and completed the problems with only one-third the number of solution attempts.
The Collaborative Learning subjects were only slightly faster than the No Tutor sub-
jects. Learning times for the Consultant subjects fell between these groups, slower
than the Tutor subjects but faster than the No Tutor and Collaborative subjects.
Interestingly, although the subjects in this condition asked relatively few questions,
(approximately 3 questions per chapter, or 1 question every 45 minutes), this help at
presumably crucial points in the subject's problem solving resulted in faster learning
than the No Tutor subjects.

We are currently examining the tutoring protocols to analyze the intervention
and tutoring strategies employed by the tutors. Our initial analyses (presented at
the 1989 AERA conference) suggest a view of tutors as safety nets for learning
by doing. Although the solutions to these programming problems were typically
programs no longer than 5-10 lines, many were relatively difficult and could require
up to 45 minutes to solve. The sessions were highly interactive, as tutors helped the
students set goals, pointed out errors, provided guidance in fixing the errors, and
provided hints for steps in the solution. The students relied on continual feedback
from the tutors. Tutors reacted to each step with confirmations, questions, prodding,
asking for justifications, etc. In most cases, the tutor's feedback, although indirect,
enabled subjects to quickly determine whether a solution path was correct or likely
to succeed. The tutors, through questions and hints, were able to focus students on
the part of a solution that needed elaboration or repair.
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The tutors' feedback varied in its timing and content. In some cases, the tutors
just prompted the student to rethink a step, whereupon the student would initiate
a repair of the partial solution. In other cases, the tutors interrupted to tell the
students something that was missing or incorrect. In contrast, the tutors also let
some types of errors go, returning to them at the end of the solution when the
student was ready to check the program by running it. Thus, the tutors appeared
to modulate their responses depending upon the potential learning consequences of
the error. Tutors quickly corrected errors that would be distracting and might lead
to floundering, and did not comment during the solution on errors that might lead
to productive learning episodes later. Instead, they made sure that the subject dis-
covered the error at an appropriate point, and then helped to diagnose the problem
and fix the solution.

Through hints, leading questions, and continual confirmatory feedback, the tu-
tors guided the students' problem solving, and prevented the students from reaching
error states from which it would be too difficult to recover. This enabled the stu-
dents to master the material more quickly than students working on their own. Our
consideration of these results suggests similar pedagogical benefits for the model
tracing design of intelligent tutors, as well as ways in which human tutors have not
yet been paralleled in intelligent tutors (Reiser, 1989c).

6 BATBook: An Environment to Study Analo-
gies in Programming

An important issue that has arisen in constructing explanations is the use of specific
examples and general principles in tutorial explanations. There are few guidelines
to determine the situations in which a tutor should provide an explanation based on
general principles, and when reminding the student of a previous solution would be
advantageous. Furthermore, the circumstances governing the retrieval of previous
examples from memory is a central controversy in current research on analogy. We
have developed BATBook (Behavioral Analogy Tracing Environment), an online
book and problem solving environment, to examine how subjects use examples in
text and memories for their previous solutions during learning.

We designed and constructed our original version of BATBook during the first
year of the contract. During the first year, we ran an experiment using this version
of BATBook to teach two chapters of material. During the second year, we com-
pleted this experiment by extending BATBook to cover three chapters of material
so that we could investigate students' use of examples on a more difficult selection of
material. Much of our work on this part of the project has been devoted to analyses
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of the results and the lesign of a follow-up experiment (described below). During
the second year, we also extended the design of BATBook to include facilities for
searching text examples.

The BATBook environment runs on Sun workstations in the SunView window
system. BATBook is written in C, Franz LISP, GNU Emacs LISP, and the Lex
lexical analyzer. The majority of the interface for displaying and searching text is
written in C, using Lex string handling functions. The problem solving environment
for LISP is written in Franz LISP, including the modified LISP interpreter and
solution analysis routines. The current version of BATBook contains a total of 5900
lines of C code, 3200 lines of Franz Lisp and GNU Emacs Lisp code, and 90 lines of
Lex code. BATBook was written by Jerry Faries (graduate student), with assistance
from Eric Ho (research assistant) and Antonio Romero (research assistant).

The basic paradigm in BATBook is that the subject reads a textbook on the
computer screen, interspersed with example solutions to problems and with problems
for the subject to solve. Subjects progress forward and backward through the text
by pages and can search the expository text and worked solutions for any particular
content they can specify. While working on exercises, subjects are free to search the
instructional material in the text, the examples contained in the text, and their past
work. Subjects store their completed solutions and can request to see a previous
solution at any time. They are free to retrieve as few or as many examples as they
find useful. BATBook records all interactions, including the time spent reading
each page, searches of the text, all problem solving work, and successful and failed
searches of text examples and previous solutions.

In this way, we can examine the reminding and use of previous examples in a
situation in which subjects are engaged in learning a new domain and solving prob-
lems. Retrieving a study example, an example of an error encountered previously,
or a successful solution are all methods in the student's battery of learning strate-
gies. With this method, we can investigate the use of examples in a natural context,
where the examples are used as part of the problem solving. Furthermore, the simi-
larities subjects notice between problems are made explicit by the descriptions they
use to request the retrieval of a previous example.

We have now run an experiment using the BATBook electronic book environ-
ment examining the circumstances under which subjects decide to access a previous
solution as an analogy to help solve a new problem. In our first experiment, novices
used BATBook to read the first two chapters of our LISP textbook, Essential LISP.

Each chapter of the text contains several short sections of instruction followed by
problems that apply the knowledge introduced in the section. In addition to the
regular problems in the text, we added a second set of problems to Chapter Two.
These problems were designed so that each problem contained a cover story simi-
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lar to a previous problem and was structurally similar to a different problem from
the first half. We were interested in whether subjects would retrieve solutions from
the first half of the chapter while working on the second half, and whether these
retrievals would be governed by surface or structural similarities. In addition, we
included two variations on the method for storing previous solutions. One group
provided a verbal label for each solution they constructed and later could use this
verbal label to retrieve a previous solution, while the other group did not label their
solutions and could retrieve them only by referring to the problem description or
content of the solution. Figure 5 displays a student retrieving a previous solution
using a word from the problem statement as a search key.

The results (presented at the 1988 Cognitive Science Conference) provide strong
evidence that people in a clearly defined problem solving situation are sensitive to
and are able to make use of structural correspondences between problems. The
subjects were rarely misled by the superficial correspondences and were able to
identify and make use of structural similarities between problems. They may not
have had all the well formulated rules they needed, but they were sensitive to the
structural nature of the problems and could therefore detect functional similarities.
The efficient use of examples requires subjects to have encoded the relevance of
particular examples, and to remember enough about them to generate successful
retrieval descriptions.

During the second year of the contract, we have extended this study by running
another group of subjects through the first two chapters as well as a third chap-
ter. The third chapter contained 13 questions with an additional 12 test questions.
Each test question had one structural antecedent and one superficial antecedent.
This additional data was collected for two reasons. First we wanted to better assess
differences between the label and non-label group. In addition we wanted to ex-
amine whether the trends would hold with more complex problems involving more
sophisticated programming structures.

The addition of this new data gives us confidence in the main finding that sub-
jects are able to identify structurally related previous problems despite superficial
differences between them. This finding held even for the more complicated problems.
The difference between the labeling conditions, however, disappeared.

During the second year, we also modified the BATBook environment to conduct
a second experiment which will compare the memory for previous problems depend-
ing on whether one actually solves the earlier problems or only studies worked-out
solutions. In our first study we found evidence that subjects solving problems are
able to notice significant similarities. We have suggested that novices may have a
memory for the previous problems based on the kinds of problem solving obsta-
cles, discriminations, and decisions made while solving the problem. If this is true
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Figure 5. Retrieval of a student's earlier solution in BATBook.
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then we should expect a significantly greater amount of structurally related search
activity for subjects who solve a problem that for those who simply study it. An-
other motivation for this study is that earlier work by Ross demonstrating a greater
influence of superficial similarities. His subjects were only asked to study the an-
tecedent problems and solutions. We consider this to be a crucial difference between
our study and his and speculate that it may explain the discrepancies between our
respective findings. We plan to begin this experiment in the next quarter.

7 Publications and Presentations of the Research

7.1 Invited Papers and Colloquia

The Principal Investigator was an invited participant in several workshops on cog-
nitive science and instruction during the second year of the contract. Reiser was an
invited participant in the NATO Science Committee Workshop on New Directions
in Educational Technology, November 1988, to discuss the future of research on
educational technology. Reiser also presented an invited paper at the Seminar on
Computers and Learning sponsored by the Social Science Research Council, held
June 1989 in Tortola, BVI.

Colloquia describing this research were presented by the Principal Investigator
at the University of Chicago, McGill University, BBN Laboratories, and Bell Com-
munications Research.

7.2 Conference Presentations and Publications

We presented our research in a number of international education, Al, and cognitive
science conferences during the second year of this contract. Talks were presented
at the American Educational Research Association, the National Educational Com-
puting Conference, the Cognitive Science Conference, and the Artificial Intelligence
and Education Conference.

Faries, J. M., & Reiser, B. J. (1988). Access and use of previous solutions in a
problem solving situation. Proceedings of the Tenth Annual Conference of the
Cognitive Science Society, Montreal, pp. 433-439.

Reiser, B. J. (1989a). Pedagogical strategies for human and computer tutoring.
Paper presented at the Annual Meeting of the American Educational Research
Association, San Francisco, CA, March 1989.
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Reiser, B. J. (1989b). An intelligent tutoring system for facilitating students' rea-
soning about computer programs. Paper presented at NECC '89: National
Educational Computing Conference, Boston, MA, June 1989.

Reiser, B. J. (1989c). Pedagogical strategies for human and computer tutor' -g.
Technical Report #38, Cognitive Science Laboratory, Princeton University.

Reiser, B. J., Ranney, M., Lovett, M. C., & Kimberg, D. Y. (1989). Facilitating
students' reasoning with causal explanations and visual representations. In
D. Biernan, J. Breuker, & J. Sandberg, Eds. Proceedings of the Fourth Inter-
national Conference on Artificial Intelligence and Education. Springfield, VA:
IOS.

Faries, J. M., & Reiser, B. J. (in press). BATBook: An online book and prob-
lem solving environment for the studyj of skill acquisition. Technical Report,
Cognitive Science Laboratory, Princeton University.

Ranney, M., & Reiser, B. J. (in press). Reasoning and explanation in an intelligent
tutoring system for programming. To appear in the Proceedings of the Third
International Conference on Human-Computer Interaction, Elsevier Science
Publishers, 1989.

Reiser, B. J. (in press). Problem solving and explanation in intelligent tutoring
systems: Issues for future research. To appear in E. Scanlon & T. O'Shea,
Eds., Proceedings of NATO Workshop on Educational Technology, Springer-
Verlag.

Reiser, B. J., Kimberg, D. Y., Lovett, M. C., & Ranney, M. (in press). Knowledge
representation and explanation in GIL, an intelligent tutor for programming.
In J. Larkin, R. Chabay, & C. Scheftic (Edo.), Computer Assisted Instruction
and Intelligent Tutoring Systems: Establishing Communication and Collabo-
ration, Hillsdale, NJ: Erlbaum.

7.3 Awards and Offices

The Principal Investigator was awarded the Princeton University Class of 1936 Bi-
centennial Preceptorship, 7/1/88-6/30/91. This award provides the PI with one
year's sabbatical leave, to be taken from September 1989 through June 1990. The
PI will spend the year in residence at Princeton University to pursue research on
the contract while released from teaching and administrative duties.
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Reiser was also elected President of the Special Interest Group on Artificial
Intelligence and Education of the American Educational Research Association at
the 1989 Annual Meeting.
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