
I 'A'

AD-A242 897 ATION PAGE FormAp0ovedIlltlrl IIt he IWlill fli 1lh hi~ll 11111 Mi. --s fat s -- W Ha--" to don
nedo 11111 M 11111 111 1 W uSAT or "n othe Wed of tis collcion of kimr ddogiin.imk . ua glt for ts nig Mi b den. to Wa
Headcl ~io/ Da* Hi~w/. Sk. 1204. Adipgfl. VA 2 -4302. ar d I O t of kidonman and Rlmgirl . a i d

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final: 01 Dec 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE 7. 5FUlIG NUMBERS

Alsys, AlsyCOMP_034, Version 5.1, Multitech 1100 (Host & Target), ..
90122W1.11103 *.*

6. AUTHIOR(S) 7.

Wright-Patterson AFB, Dayton, OH 0
USA t

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facili ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-440.0891
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGtMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States ":,.ai..nent of Defense
Pentagon, Rm 3El14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION COOE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys, AlsyCOMP_034, Version 5.1, Wright-Patterson, AFB, Multitech 1100 (Host & Target), ACVC 1.11

91-16070

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. [PIE..D

Capability, Val. Testing, Ada Val. Office, Ada Val. Facil;y, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORTI OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIEt')

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)91 1120 055 Prescribed by ANSI SM. 239-128

AVF Control Number: AVF-VSR-440.0891
1 August 1991
90-10-24-ALS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901221W1.11103
Alsys

AlsyCOMP 034, Version 5.1
Multitech 100 -> Multitech 1100

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A' aj2Qla For -

rvi I~
D-is

: 'J7~
I t 'tJ 'Ie "$ 1

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 21 December 1990.

Compiler Name and Version: AlsyCOMP_034, Version 5.1

Host Computer System: Multitech 1100, SCO UNIX 3.2

Target Computer System: Multitech 1100, SCO UNIX 3.2

Customer Agreement Number: 90-10-24-ALS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901221W1.11103 is awarded to Alsys. This certificate expires on 1 March
1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

k Ada Validation Organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

/ Ada Jbint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

CUSTOMER: Alsys, Inc.

ADA VALIDATION FACILITY: Ada Validation Facility (ASD/SCEL)
Computer Operations Division
Information Systems and Technology Center
Wright-Patterson AFB OH 45433-6503

ACVC VERSION: 1.11

ADA IMPLEMENTATION:

COMPILER NAME AND VERSION: ALSYS.COMPC34-UNX
Version 5.1

HOST COMPUTER SYSTEM: Multitech 1100
under SCO Unix 3.2

TARGET COMPUTER SYSTEM: Multitech 1100
under SCO Unix 3.2

CUSTOMER'S DECLARATION:

I, the undersigned, representing Alsys, Inc., declare that Alsys, Inc. has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration.

._ _ _ _

Mike Blanchette, Date
Vice President, Engineering
Alsys, Inc.
67 South Bedford Street
Burlington, MA 01803-5152

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90J against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STTD---lA5lT-F -b-ruary 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Ofice, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 11 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BDlB02B BDlBO6A AD1B08A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A B04008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMLNTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45423A checks that the proper exception is raised if MACHINEOVERFLOWS
is TRUE for the floating point type FLOAT.

C45523A and C45622A check that the proper exception is raised if
MACHINE OVERFLOWS is TRUE for floating point types with digits 5. For
this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

C86001F recompiles package SYSTEM, making package TEXT_1O, and hence

package REPORT, obsolete.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

EE2401D, EE2401G, and CE2401H use instantiations of DIRECT IO with
unconstrained array and record types; this implementation raises
USEERROR on the attempt to create a file of such types.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10 -
CE2102F CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEOUENTIALIO
CE21020 RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-I0
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT-IO
CE31021 CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALI0. This implementation does
not restrict file capacity.

CE2401H raises USE ERROR when CREATE with mode INOUT FILE is used for
unconstrained records with default discriminants.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3202A raises USE ERROR and aborts execution when NAME is called for
STANDARD INPUT or STANDARD OUTPUT. The AVO has ruled that this test may
be ruled-not applicable for this implementation.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 17 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B28003A B32202A B37004A
B61012A B95069A B95069B B97103E BA1101B BC2001D
BC3009A BC3009C

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-lO value as
'SMALL for a fixed-point type. The AVO ruled that, under ACVC 1.11,
support of decimal 'SMALLs may be omitted.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is obeyed
for a function call in each of three contexts and that thus three library
units are made obsolete by the re-compilation of the inlined function's
body, or else the pragma is ignored completely. This implementation obeys
the pragma except when the call is within the package specification. When
the test's files are processed in the given order, only two units are made
obsolete; thus, the expecte' error at line 27 of file EA3004D6M is not
valid and is not flagged. To confirm that indeed the pragma is not obeyed
in this one case, the test was also processed with the files re-ordered so
that the re-compilation follows only the package declaration (and thus the
other library units will not be made obsolete, as they are compiled later);

2-4

IMPLEMENTATION DEPENDENCIES

a "NOT APPLICABLE" result was produced, as expected. The revised order of

files was 0-1-4-5-2-3-6.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

For a point of contact for sales information about this Ada implementation
system, see:

Jerry Rudisin
67 South Bedford Street
Burlington MA 01803-5152

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3798
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 88
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 289 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a VAX 3400 and transferred to the host by
FTP.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

OPTION/SWITCH EFFECT

TEXT => NO Do not show source code in listing
(used for all but the B tests).

3-2

PROCESSING INFORMATION

TEXT -> YES Show source code in listing
(used for the B tests).

SHOW => NO Do not show header nor error summary in listing.

WARNING => NO Do not include warning messages.

GENERIC => STUB Place code of generic instantiation in
separate subunits.

ERROR => 999 Maximum number of compilation errors permitted
before terminating the compilation.

CALLS => INLINED This option allows insertion of code for
subprograms inline and must be set for the
pragma INLINE to be operative.

SEARCH => "/lib/libalsys.a"
Bind option used to get Alsys system call library.

Test output, compiler and linker listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by

the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 255

$BIGID1 (I..V-1 f> 'A', V 1> 1')

$BIGID2 (l..V-I > 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-l-V/2 => WA)

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-I-V/2 => WA)

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 -> '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V-l-V/2 => 'A') & '1' & '"'

$SLANKS (1..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 .> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAXSTRINGLITERAL "& (1. .V-2 -> 'A') & I""

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 4

$COUNT-LAST 2147483647

$DEFAULT-MEMSIZE 2**32

$DEFAULT STOR UNIT 8

$DEFAULTSYSNAME 180386

$DELTADOC 41O-3

SENTRYADDRESS TOADDRESS(16*40*)

$ENTRYADDRESS1 TOADDRESS(16#80*)

SENTRYADDRESS2 TO_-ADDRESS(16#100#)

$FIELD-LAST 255

SPILE_-TERMIENATOR t

$FIXEDNAME NO -SUCH FIXED TYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING i

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

SCREATER THAN DURATION
75000.0

$GREATERTHANDURATION BASE LAST
131o7N.0

$CREATER THANFLOAT BASE LAST
-1.90141E+38

$GREATER THANFLOAT SAFE LARGE
-1.UE308

A-2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
l.OK308-

$HIGHPRIORITY 28

$ILLEGALEXTERAL-FILE NAME1
/NODIRECTORY/FILENAME

$ ILLEGAL-EXTERAL-FILE NAME 2
THIS/FILE/NAME/IS/NOT/ON/MY/SYSTEM

$ INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAl PRAGHA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("IB28006D1.TST")

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER LAST PLUS 1 2147483648

$INTERFACE-LANGUAGE C

SLESSTHAN DURATION -75000.0

$LESSTHANDURATIONBASE FIRST
-15173 .0

$LINE-TERMINATOR ASCII.LF

$LOWPRIORITY 1

$MACHINECODESTATEMENT
NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

$MAX INT PLUS 1 2147483648

$MININT -2147483648

A- 3

MACRO PARAMETERS

$NAME SHORTSHORTINTEGER

SNAMELIST S370, 180X86,I80386 ,MC68OXO,VAX,TRANSPUTER

$NAMESPECIFICATIONi /usr/mitch/acvc_11l/X2102A

$NAMESPECIFICATION2 /usr/mitch/acvc_11/X2102B

$NAMESPECIFICATION3 /usr/mitch/acvc_11/X3119A

$NEGBASEDINT 16#FOOOOOOE#

$NEWKEM SIZE 2**32

$NEWSTORUNIT 16

$NEWSYSNAME 180386

SPAGETERMINATOR ASCII.FF

$RECORDDEFINITION NEW INTEGER

$RECORDNAME NO SUCH MACHINECODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 1.0

$VARIABLEADDRESS FCNDECL.OBJECTADDRESS

$VARIABLEADDRESS1 FCNDECL.OBJECTADDRESS1

$VARIABLEADDRESS2 FCNDECL.OBJECT ADDRESS2

$YOURPRAGMA INTERFACE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

COMPILE (SOURCE => source name I INSTANTIATION,
LIBRARY => libraryname,
OPTIONS =>

(ANNOTATE f> character string,
ERRORS => positive integer,
LEVEL => PARSE I SEMANTIC I CODE [UPDATE,
CHECKS => ALL I STACK I NONE,
GENERICS => STUBS I INLINE,
TASKING => YES I NO,
MEMORY => numberofkbytes),

DISPLAY =>
(OUTPUT => SCREEN I NONE I AUTOMATIC

filename,
WARNING -> YES [NO,
TEXT => YES I NO,
SHOW => BANNER I RECAP I ALL I NONE,
DETAIL .f> YES [NO,
ASSEMBLY => CODE j MAP I ALL I NONE),

ALLOCATION =>
(STACK => positive-integer),

IMPROVE =>
(CALLS => NORMAL I INLINED,
REDUCTION => NONE I PARTIAL I EXTENSIVE,
EXPRESSIONS => NONE I PARTIAL I EXTENSIVE);

KEEP =>
(COPY => YES I NO,
DEBUG => YES [NO,
TREE .> YES [NO));

B-1

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to linker documentation and not
to this report.

BIND (PROGRAM => main program-name,
LIBRARY => library_name,
OPTIONS =>

(LEVEL => CHECK I BIND I LINK,
OBJECT => AUTOMATIC I filename,
UNCALLED => REMOVE I KEEP,
SLICE => NO I positive integer,
BLOCKING => YES I NO I AUTOMATIC),

STACK =>
(MAIN => positive_integer,
TASK => positiveinteger,
HISTORY => YES I NO),

HEAP =>
(SIZE => positive_integer,
INCREMENT => positive_integer),

INTERFACE =>
(DIRECTIVES => options forlinker,
MODULES => file names,
SEARCH => library names),

DISPLAY =>
(OUTPUT => SCREEN I NONE I AUTOMATIC I filename,
DATA => BIND I LINK I ALL I NONE,
WARNING => YES I NO),

KEEP =>
(DEBUG => YES I NO));

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2137483648..2147483647;

type SHORT INTEGER is range -32768..32767;

type SHORTSHORTINTEGER is range -128..127;

type FLOAT is digits 6 range
-2#1.111111111111111111l1111#E+127..
2#1.11111111111111111111111#E+127;

type LONG FLOAT is digits 15 range
-(2.0 - 2.0**(-52)) * 2.0**1023 .. +(2.0 - 2.0**(-52)) * 2.0**1023;

type DURATION is delta 2#0.00000000000001# range
-1310772.0000..131071.99994;

..........

end STANDARD;

C-1

PRE-RELFASE DOCUMENTATION - NOVEMBER 1990

Alsys Ada Development Environment

for UNIX (32-bit mode)

APPENDIX F

Version 5

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: November 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

Alsys, AdaWorld AdaProbe, AdaXref. AdaReformat, and AdaMake arc registered trademarks of Alsvs.
Unix is a registered trademark of AT&T.
386/ix is a registered trademark of Interactive Systems Corporation.
Microsoft is a registered trademark of Microsoft Corporation.
IBM. PC AT and PS/2 are registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Intel Corporation.

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation-Dependent Pragmas 3

1.1 INLINE 3
1.2 INTERFACE 3
1.3 INTERFACE NAME 4
1.4 INDENT 5
1.5 Other Pragmas

2 Implementation-Dependent Attributes 6

2.1 P'IS ARRAY 6
2.2 P-RECORD DESCRIPTOR, P-ARRAYDESCRIPTOR 6
2.3 E'EXCEPTION CODE 6

3 Specification of the package SYSTEM 7

3.1 Package SYSTEM for 386 Mode 7

4 Support for Representation Clauses 12

4.1 Enumeration Types 13
4.1.1 Enumeration Literal Encoding 13
4.1.2 Enumeration Types and Object Sizes 13

4.2 Integer Types 15
4.2.1 Integer Type Representation 15
4.2.2 Integer Type and Object Size 15
Minimum size of an integer subtype 15

4.3 Floating Point Types 17
4.3.1 Floating Point Type Representation 17

Table of Contents I

4.3.2 Floating Point Type and Object Size 17
4.4 Fixed Point Types 18

4.4.1 Fixed Point Type Representation 18
4.4.2 Fixed Point Type and Object Size 20

4.5 Access Types and Collections 22
4.6 Task Types 22
4.7 Array Types 23

4.7.1 Array Layout and Structure and Pragnma PACK 23
4.7.2 Array Subtype and Object Size 27

4.8 Record Types 28
4.8.1 Basic Record Structure 28
4.8.2 Indirect Components 28
4.8.3 Implicit Components 32
4.8.4 Size of Record Types and Objects 36

5 Conventions for Implementation-Generated Names 37

6 Address Clauses 38

6.1 Address Clauses for Objects 38
6.2 Address Clauses for Program Units 39
6.3 Address Clauses for Interrupt Entries 39

7 Unchecked Conversions 40

8 Input-Output Packages 41

8.1 Introduction 41
8.2 The FORM Parameter 42

8.2.1 File Protection 43
8.2.2 File Sharing 44
8.2.3 File Structure 45
8.2.4 Buffering 48
8.2.5 Appending 48
8.2.6 Blocking 48
8.2.7 Terminal Input 49

ii Appendix F, Version 4

9 Characteristics of Numeric Types 50

9.1 Integer Types 50
9.2 Floating Point Type Attributes 51
9.3 Attributes of Type DURATION 52

10 Other Implementation-Dependent Characteristics 53

10.1 Use of the Floating-Point Coprocessor 53
10.2 Characteristics of the Heap 53
10.3 Characteristics of Tasks 54
10.4 Definition of a Main Subprogram 55
10.5 Ordering of Compilation Units 55

11 Limitations 56

11.1 Compiler Limitations 56
11.2 Hardware Related Limitations 56

INDEX 57

Table of Contents

iv Appendix F, Version 4

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
UNIX Ada Compiler. Appendix F is a required part of the Reference Manual for the Ada
Programming Language (called the RM in this appendix).

The sections of this appendix are as follows:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM.

4. The description of the representation clauses.

5. The conventions used for any implementation-generated name denoting im-
plementation-dependent components.

6. The interpretation of expressions that appear in address clauses, including those
for interrupts.

7. Any restrictions on unchecked convenaom.

8. Any implementation-dependent charactensta of the input-output packagcs.

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

11. Compiler limitations.

Appendix F, Implementation-Dependent Characteristics I

The name ALsys Runume Erecutive Programs or simply Runtme Executive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Application
Developer's Guide (for example, parameter passing conventions needed for interface with
assembly routines).

Appendix F, Version 4

Section 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACENAME

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language.name, subprogram name);

where,

" languagename is ASSEMBLER, ADA, or C.

" subprogram.name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer's Guide.

The language name used in the pragma INTERFACE does not have to have any
relationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms

Appendix F, Implenientation-Dependent Characteristics 3

used for parameter passing by the Alsys UNIX Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACENAME

Pragma INTERFACENAME associates the name of the interfaced subprogram with the
external name of the interfaced subprogram. If pragma INTERFACENAME is not used,
then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACENAME (subprogramn!wme, string literal);

where,

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" string.literal is the name by which the interfaced subprogram is referred to at link
time.

The pragma INTERFACE-NAME is used to identify routines in other languages that are
not named with legal Ada identifiers. Ada identifiers can only contain letters, digits, or
underscores, whereas the UNIX Linker allows external names to contain other
characters, for example, the dollar sign (S) or commercial at sign (@). These characters
can be specified in the stringjiteral argument of the pragma INTERFACENAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program as the
pragma INTERFACE. (Location restrictions can be found in section 13.9 of the RM.)
However, the pragma INTERFACE-NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The sringjiteral of the pragma INTERFACENAME is passed through unchanged,
including case sensitivity, to the UNIX object file. There is no limit to the length of the
name.

The user must be aware however, that some tools from other vendors do not fully
support the standard object file format and may restrict the length of symbols. For
example, xxxx

The Runime Frecutive contains several external identifiers. All such identifiers begin
with either the string *ADA" or the string 'ADAS.'. Accordingly, names prefixed by
"ADA2 or 'ADAS "should be avoided by the user.

4 Appendix F, Version 4

Eramp/e

package SAMPLE-DATA is
function SAMPLE-DEVICE (X: INTEGER) return INTEGER;

function PROCESS-SAMPLE (X INTEGER) return INTEGER;

private
pragma INTERFACE (ASSFMBLER, SAMPLE-DEVICE);

pragma INTERFACE (ADA, PROCESS-SAMPLE);

pragma INTERFACE-NAME (SAMPLEDEVICE, *DEVIOSGET _SAMPLE');

end SAMPLE-DATA;

1.4 INDENT

Pragma INDENT is only used with AdaRefomat. AdaReformat is the Alsys reformatter
which offers the functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter. The line

pragma INDENT(OFF);

causesAdaReformat not to modify the source lines after this pragma, while

pragma INDENT(ON);

causes AdaReformat to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS. (See Chapter 4 of the User's Guide.)

Appendix F, Implementation-Dependent Characteristics 5

Section 2

Implementation-Dependent Attributes

2.1 P'I..ARRAY

For a prefix P that denotes any type or subtype, this attribute yields the value TRUE if P
is an array type or an array subtype; otherwise, it yields the value FALSE.

2.2 P'RECORD DESCRIPTOR, P'ARRAY DESCRIPTOR
These attributes are used to control the representation of implicit components of a
record. (See Section 4.8 for more details.)

2.3 E'EXCEPTION CODE

For a prefix E that denotes an exception name, this attribute yields a value that
represents the internal code of the exception. The value of this attribute is of the type
INTEGER.

6 Appendix F, Version 4

Section 3

Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

3.1 Package SYSTEM for 386 Mode

package SYSTEM is

-* * (1) Required Definitions. *

type NAME is (S370, 180x86, 180386, NC68OxO, VAX, TRANSPUTER);

SYSTEM NAME : constant NAME :x 180386;

STORAGE UNIT : constant :z 8;

MEMORY-SIZE : constant :z 2**32;

-- System-Dependent Named Numbers:

NININT : constant : -(2 *31);

MAX INT : constant :u 2*31 - 1;

MAX-DIGITS : constant :a 15;

MAX-MANTISSA : constant :z 31;

FINE-DELTA : constant := 2#1.0#E-31;

-- For the high-resolution timer, the clock resolution is 1.0

TICK : constant :x 1.0;

-- Other System-Dependent Declarations:

subtype PRIORITY is INTEGER range 1 .. 28; -- Lynx

Appendir F, Implementation-Dependent Characteristics 7

subtype PRIORITY is INTEGER range 1 .. 10; -- Other UNIX system

-The type ADDRESS is, in fact, implemented as a

-- 386 bit offsett

type ADDRESS is private;
NULLADDRESS: constant ADDRESS;

8 Appendix F, Version 4

* (2) MACHINE TYPE CONVERSIONS t

If the word / double-word operations below are used on

-- ADDRESS, then MSW yields the segment and LSW yields the

-- offset.

-- In the operations below, a BYTE-TYPE is any simple type

implemented on 8-bits (for example, SHORTSHORT INTEGER), a WORD TYPE is

-- any simple type implemented on 16-bits (for example, SHORTINTEGER), and

a DOUBLEWORDTYPE is any simple type implemented on

-- 32-bits (for example, INTEGER, FLOAT, ADDRESS).

-- Byte <=- Word conversions:

-- Get the most significant byte:

generic

type BYTETYPE is private;

type WORD TYPE is private;

function MSB (W: WORD-TYPE) return BYTE-TYPE;

-- Get the Least significant byte:

generic

type BYTE-TYPE is private;

type WORD-TYPE is private;

function LSB (W: WORD-TYPE) return BYTE TYPE;

-- Compose a word from two bytes:

generic

type BYTE_TYPE is private;

type WORD-TYPE is private;

function WORD (MSB, LSB: BYTE TYPE) return WORD TYPE;

-- Word -ca) Double-Word conversions:

Appendix F, Implementation-Dependent Characteriics 9

-- Get the most significant word:

generic

type WORDYPE is private;

type DOUBLEWORDTYPE is private;

function NSW (W: DOUBLEWORDTYPE) return WORD-TYPE;

-- Get the Least significant word:

generic

type WORDTYPE is private;

type DOUBLEWORDTYPE is private;

function LSW(W: DOUBLEWORD TYPE) return WORD TYPE;

-- Compose a DATA doubLe word from two words.

generic

type WORD-TYPE is private;

The foLLowing type ust be a data type

-- (for example, LONG-INTEGER):

type DATA DOUBLEWORD is private;

function DOUBLE-WORD (MSW, LSW: WORD-TYPE) return DATA.DOUBLE WORD;

"" * (3) OPERATIONS ON ADDRESS '

-- You can get an address via 'ADDRESS attribute or by

-- Some addresses are used by the Compiler. For exampLe,

-- the display is Located at the Low end of the DS segment.

-- Note that no operations are defined to get the vaLues of

-- the segment registers, but if it is necessary an

interfaced function can be written.

generic

type OBJECT is private;

function FETCHFROM ADDRESS (FROM: ADDRESS) return OBJECT;

10 Appendix F, Version 4

generic
type OBJECT is private;

proca~re ASSIGN TO-ADDRESS COSJ: OBJECT; TO: ADDRESS);

private

end SYSTEM;

Appendir F, ImpleMentatiOn-Dependent Characteis1)

Section 4

Support for Representation Clauses

This section explains how objects are represented and allocated by the Alsys UNIX Ada
compiler and how it is possible to control this using representation clauses. Applicable
restrictions on representation clauses are also described.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of array and record types it
is necessary to understand first the representation of their components.
Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, applicable to array types

" a record representation clause

" a size specification

For each class of types the effect of a size specification is described. Interactions among
size specifications, packing and record representation clauses is described under the
discussion of array and record types.

Representation clauses on derived record types or derived tasks types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

12 Appendir F, Version 4

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2,.., n-i.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231-1.

An enumeration value is always represented by its internal code in the program
generated by the compiler.

4.1.2 Enumeration Typeb and Object Sizes

Minimum size of an enumeration subtype

The minimum possible size of an enumeration subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form.

A static subtype, with a null range has a minimum size of 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m > = 0, L is the
smallest positive integer such that M < = 2L-1.For m < 0, L is the smallest positive
integer such that -21.4 < = m and M < = 2L-i1. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK.. WHITE;
-- The minimum size of BLACKAND WHITE is 2 bits.

Appendix F, Implementation.Dependent Characteristics 13

subtype BLACKORWHITE is BLACKAND1 ITE range X..
- Assuming that X is not static, the minimum size of BLACK OR WHITE is
- 2 bits (the same as the minimum size of its type mark BLAC..AND WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8,16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(- The usual ASCII character set.
NUL, SOH, STX, ETX, EOT, ENO, ACK, BEL,

Yx, Y, Yz, '' 1,"' -,DL

- Extended characters
C CEDILLA CAP, U UMLAUT, E ACUTE, ...);

for EXTENDED'SIZE use 8;
- The size of type EXTENDED will be one byte. Its objects will be represented
- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

14 Appendir F, Version 4

4.2 Integer Types

There are three predefined integer types in the Alsys implementation for I80x86
machines:

type SHORTSHORTINTEGER is range -2"*07.. 2"*07-1;
type SHORT-INTEGER Is range -2*15.. 2**15-1;
type INTEGER Is range -2"'31..2"'31-1;

4.2.1 Integer Type Representation

An integer type declared by a declaration of the form:

type T is range L.. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L to R
inclusive.

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

4.2.2 Integer Type and Object Size

Minimum size of an integer subtype

The minimum possible size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M arc
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m >= 0, L is the smallest positive integer such that M < - 2L.4. For m <
0, L is the smallest positive integer that _2L-1 < = m and M < = 2L-1. For example:

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;

Appendix F, Implementation-Dependent Characteristics 15

- Assuming that X and Y are not static, the minimum size of
- D is 3 bits (the same as the minimum size of its type mark S).

Siz of an ner subtype

The sizes of the predefined integer types SHORTSHORTINTEGER, SHORT INTEGER
and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range SO.. 100;
- S is derived from SHORTSHORT INTEGER, its size is
- 8 bits.

type J is range 0 .. 255;
-- J is derived from SHORT INTEGER, its size is 16 bits.

type N is new J range 8O.. 100;
- N is indirectly derived from SHORT INTEGER, its size is
- 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80.. 100,
for S'SIZE use 32;
- S is derived from SHORT SHORT INTEGER, but its size is
- 32 bits because of the size specification.

type J Is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from SHORT INTEGER, but its size is 8 bits
- because of the size specification.

type N Is new J range 80.. 10,
-- N is indirectly derived from SHORT_INTEGER, but its

16 Appendix F, Version 4

- size is 8 bits because N inherits the size specification
- of J.

Sie of the objects of an integer subype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

There are two predefined floating point types in the Alsys implementation for I80x86
machines:

tye FLOAT Is
digits 6 range -(2.0 - 2.0* (-23))*2.0"*127.. (2.0 - 2.0"*(-23))*2.0**127;

type LONG-FLOAT is
digits 15 range -(2.0- 2.0"*(-51))*2.0**1023.. (2.0- 2.0"*(-51))*2.0"'1023.

4.3.1 Floating Point Type Representation

A floating point type declared by a declaration of the form:

type T is digits D [range L.. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG FLOAT are represented using the double float
format. The values of any other floating point type are represented in the same way as
the values of the predefined type from which it derives, directly or indirectly.

4.3.2 Floating Point Type and Object Size

Appendix F, Implementation-Dependent Characteristics 17

The minimum possible size of a floating point subtype is 32 bits if its base type is FLOAT
or a type derived from FLOAT; it is 64 bits if its base type is LONG-FLOAT or a type
derived from LONG-FLOAT.

The sizes of the predefined floating point types FLOAT and LONG-FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

4.4.1 Fixed Point Type Representation

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

To implement fixed point types, the Alsys compiler for 180x86 machines uses a set of
anonymous predefined types of the form:

type SHORTFIXED is delta D range (-2.0O*7-1)*S .. 2.00'7"S;
for SHORT FIXED'SMALL use S;

type FIXED is delta D range (-2.0*15-1)S .. 2.000150S;
for FXED'SMALL use S;

type LONG FIXED is delta D range (-2.0"'31-)*S .. 2.0"'31"S;

for LONGFIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

A fixed point type declared by a declaration of the form:

18 Appendir F, Version 4

tyeT Is deltaD rangeL -R;

Appendix F, Implernentation-Dependent Characteristics 19

possibly with a small specification:

for TrSMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of Tand whose range is the shortest that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:.

V / FBASE'SMALL

4.4.2 Fixed Point Type and Object Size

Minimum size of a fixed point subtype

The minimum possible size of a fixed point subtype is the minimum number of binary
digits that is necessary for representing the values of the range of the subtype using the
small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I < = 2 L-1. For i < 0, L is the smallest positive integer such that
2L.<= i and I <= 2L-1-1.

type F is delta 2.0 range 0.0.. 500.0,
- The minimum size of F is 8 bits.

subtype S Is F delta 16.0 range 0.0.. 250.0;,
- The minimum size of S is 7 bits.

subtype D is S range X. Y;
- Assuming that X and Y are not static, the minimum size of D is 7 bits
- (the same as the minimum size of its type mark S).

20 Appendix F, Version 4

Sizm of a fuwdpoint subtype

The sizes of the predefined fixed point types SHORT IXED, FIXED and LONG-IXED
are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly. For example:

type S is delta 0.01 range 0.8.. 1.0;
-- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F Is delta 0.01 range 0.0.. 2.0;
- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8.. 1.0;
- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8.. 1.0;
for S'SIZE use 32;
-- S is derived from an 8 bit predefined fixed type, but its size is 32 bits
- because of the size specification.

type F Is delta 0.01 range 0.0.. 2.0;
for FSIZE use 8;
-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
- because of the size specification.

type N is new F range 0.8.. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Appendir F, Implenentation-Dependent Characteristics 21

Siz of du objeds of a fvixd point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types and Collections

Access wpo and Objects of Access Types

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Colecton Size

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type.

When no STORAGE-SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE-SIZE is then 0.

The maximum size is limited by the amount of memory available.

4.6 Task Types

Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage space (that is,
the stack size) for the activation of each of the tasks of a given type. Asys also allows the
task stack size, for all tasks, to be established using a Binder option. If a length clause is
given for a task type, the value indicated at bind time is ignored for this task type, and thc
length clause is obeyed. When no length clause is used to specify the storage space to bc
reserved for a task activation, the storage space indicated at bind time is used for this
activation.

A length clause may not be applied to a derived task type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of thc
parent type.

22 Appendir F, Version 4

The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

4.7.1 Array Layout and Structure and Pragma PACK

Component Gap Component Gap Component Gap

If pragma PACK is not specified for an array, the size of the components is the size of thc
subtype of the components:

type A is array (1.. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL-DIGIT Is range 0.. 9,
for DECIMALDIGITSIZE use 4;
type BINARY CODED DECIMAL is

array (INTEGER range < >) of DECIMAL DIGIT;
-- The size of the type DECIMAL-DIGIT is 4 bits. Thus in an array of
-- type BINARY CODED DECIMAL each component will be represented on
-4 bits as in the usual BCD representation.

Appendix F, Implenzentation-Dependent Characteristics 23

If pragma PACK is specified for an array and its components are neither records nor
arrays, the size of the components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
- The size of the components of A is the minimum size of the type BOOLEAN:
- 1 bit.

type DECIMAL-DIGIT is range 0 .. 9;
for DECIMAL-DIGIT'SIZE use 32;
type BINARYCODEDDECIMAL is

array (INTEGER range < >) of DECIMAL DIGIT;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMALDIGIT is 32 bits, but, as
-- BINARYCODED DECIMAL is packed, each component of an array of this
- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays, since records and arrays may be assigned addresses consistent with the
alignment of their subtypes.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R Is
record

K: SHORT INTEGER;
B :BOOLEAN;

end record;
for R use

record
K at 0 range 0 .. 31;
B at 4 range 0 .. 0;

24 Appendix F, Version 4

end record;
- Record type R is byte aligned. Its size is 33 bits.

type A Is array (1 .. 10) of R;
- A gap of 7 bits is inserted after each component in order to respect the
- alignment of type R. The size of an array of type A will be 400 bits.

Appendix F, Implementation-Dependent Characteristics 25

17 f- X0fi f l ...
Component Gap Component Gap CoMPonent Gap

Array of type A: each subcomponent K has an even offseL

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R Is
record

K: SHORT INTEGER;
B : BOOLEAN;

end record;

typeA is array (1 .. 10) of R;
pragma PACK(A);
- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 330 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1.. 10) of NR;
There is no gap in an array of type B because

-- NR has a size specification.
-- The size of an object of type B will be 240 bits.

K K B

Component Component

Array of type A orB

26 Appendir F, Version 4

4.7.2 Array Subtype and Object Size

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps. The consequence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected b%
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

Appendix F, Iniplenzentation-Dependent Characteristics 27

4.8 Record Types

4.8.1 Basic Record Structure

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys
implementation for I80x86 machines there is no restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its size
can be any size from the minimum size to the size of its subtype. If a component is a
record or an array, its size must be the size of its subtype.

Pragma PACK has no effect on records. It is unnecessary because record representation
clauses provide full control over record layout.

A record representation clause need not specify the position and the size for every
component. If no component clause applies to a component of a record, its size is the
size of its subtype.

4.8.2 Indirect Components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

28 Appendir F, Version 4

- *Begimvung of the record

- ~copte tim of fset
DI1RECT

- Copite tim offset
OFFSET

- ERun tim offset

INDIRECT

A direct and an iindirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE Is (SCREEN, PRINTER);

type COLOR Is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range < >)o INTEGER;

type GRAPH (L: NATUJRAL) is
record

X : SERIES(l. L); - The size of X depends on L
Y: SERIES(I.. L); -The size of Ydepends on L

end record;

oQ: POSITIVE;

Appendix F, Implementation-Dependent Characteristics 219

type PICTURE (N: NATURAL; D: DEVICE) is
record

F: GRAPH(N); - The size of F depends on N
S : GRAPH(Q); - The size of S depends on Q
case D Is

when SCREEN - >
C: COLOR;

when PRINTER = >
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D a SCREEN 0 = PRINTER
Na2 Na I

Begining of the record
S OFFSET S OFFSET -

ConpiLe time offsets

F OFFSET F OFFSET

D D

C
Run time offsets F

S

The record type PICTURE: F and S are placed at the end of the record

30 Appendir F, Version 4

Note that Ada does not allow representation clauses for record components with non-
static bounds [RM 13.4.7], so the compiler's grouping of dynamic components does not
conflict with the use of representation clauses.

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginning of the record
•Y OFFSET

L
Compite time offset

L

Compite time offset

X Size dependent on discriminant L

Run time offset

Size dependent on discriminant L

The record type GRAPH the dynamic component X is a direct component

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to siore
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0.. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Appendix F, Implementation-Dependent Characteristics 31

4.8.3 Implicit Components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
recomputation (which would degrade performance) the compiler stores this information
in the record objects, updates it when the values of the discriminants are modified and
uses it when the objects or its components are accessed. This information is stored in
special components called implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD-SIZE and the other VARIANT INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYJDESCRIPTORs or
RECORD DESCRIPTORs.

RECORD-SlZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD-SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD-SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD SIZE. This
allows user control over the position of the implicit component in the record.

32 Appendix F, Version 4

VARUNTINVDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant part are
numbered. These numbers are the possible values of the implicit component
VARIANT INDEX

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE:= CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT CAR = >
WHEELS : INTEGER;
case KIND is

when AIRCRAFT = -1
WINGSPAN: INTEGER;

when others -> -2
null;

end case;
when BOAT = >-- 3

STEAM : BOOLEAN;
when ROCKET = > -4

STAGES : INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

Appendix F, Implenmentation-Dependent Characteristics 33

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component IntervaL

KIND --

SPEED -
WHEELS 1 2
WINGSPAN I I
STEAM 3 .. 3
STAGES 4 4

The implicit component VARIANTINDEX must be large enough to store the number V
of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is 1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX. This
allows user control over the position of the implicit component in the record.

ARR4YDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, size of the component
may be obtained using the ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAY DESCRIPTOR as having
an anonymous array type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name CARRAY DESCRIPTOR.
This allows user control over the position of the implicit component in the record.

34 Appendix F, Version 4

RECORD DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD.DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, the size of the
component may be obtained using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD-DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORD DESCRIPTOR. This allows user control over the position of the implicit
component in the record.

Supp"'.von of Implicit Components

The Alsys implementation provides the capability of suppressing the implicit
components pragma IMPROVE (TIME I SPACE, [ON = >] simple~name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANTINDEX or a
RECORD-SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Appendix F, Implementation-Dependeni Characierisfics 35

4.8.4 Size of Record Types and Objects

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.
The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the object has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

36 Appendix F, Version 4

Section 5

Conventions for Implementation-Generated Names

The Alsys UNIX Ada Compiler may add fields to record objects and have descriptors in
memory for record or array objects. These fields are accessible to the user through
implementation-generated attributes (See Section 2.3).

The following predefined packages are reserved to Alsys and cannot be recompiled in
Version 4.2:

system
atsysaarunt ime
atsysbasicio
atsys_binary_io
calendar
alsys_common io
aIsys_fi temaragefnent
alsysJo traces
unix
syst emenvi roriment
uni xtype
unsigned

Appendix F, Implementation-Dependent Characteristics 37

Section 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM 13.5.
When such a clause applies to an object the compiler does not cause storage to be
allocated for the object. The program accesses the object using the address specified in
the clause. It is the responsibility of the user therefore to make sure that a valid
allocation of storage has been done at the specified address.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in an address
clause. The most direct ways are:

" For the case where the memory is defined in Ada as another object, use the
'ADDRESS attribute to obtain the argument for the address clause for the second
objet.

" For the case where an absolute address is known to the programmer, instantiate thc
generic function SYSTEM.REFERENCE on a 16bit unsigned integer type (either
from package UNSIGNED, or by use of a length clause on a derived integer type or
subtype) and on type SYSTEM.ADDRESS. Then the values of the desired segment
and offset can be passed as the actual parameters to the instantiated function in *hc
simple expression part of the address clause. See Section 3 for the specification of
package SYSTEM.

" For the case where the desired location is memory defined in assembly or another
non-Ada language (is relocatable), an interfaced routine may be used to obtain the
appropriate address from referencing information known to the other language.

In all cases other than the use of an address attribute, the programmer must ensure that
the segment part of the argument is a selector if the program is to run in protected modc.
Refer to the Application Developers' Guide, Section 5.5 for more information on
protected mode machine oriented programming.

38 Appendix F, Version 4

6.2 Address Clauses for Program Units
Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Interrupt Entries
Address clauses for entries are supported. The address is a UNIX signal number. See
the Application Developer's Guide for details.

Appendix F, Implementation-Dependent Characteristics 39

Section 7

Unchecked Conversions

Unchecked conversions are allowed between any types provided the instantiation of
UNCHECKEDCONVERSION is legal Ada. It is the programmer's responsibility to
determine if the desired effect is achieved.

If the target type has a smaller size than the source type then the target is made of the
least significant bits of the source.

40 Appendir F, Version 4

Section 8

Input-Output Packages

In this part of the Appendix the implementation-specific aspects of the input-output
system are described.

8.1 Introduction
In Ada, input-output operations (10) are considered to be performed on objects of a
certain file type rather than being performed directly on external files. An external file is
anything external to the program that can produce a value to be read or receive a value to
be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term fie refers to an object of a certain file type,
whereas a physical manifestation is known as an externalfile. An external file is
characterized by

" Its name, which is a string defining a legal path name under the current version of
the operating system.

" Its form, which gives implementation-dependent information on file characteristics.

Both the name and the form appear explicitly as parameters of the Ada CREATE and
OPEN procedures. Though a file is an object of a certain file type, ultimately the object
has to correspond to an external file. Both CREATE and OPEN associate a NAME of an
external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages [141.

SEQUENTIAL -O A generic package for sequential files of a single element
type.

DIRECTJIO A generic package for direct (random) access files.

TEXT-IO A generic package for human readable (text, ASCII) files.

Appendir F, IJnplementation-Dependent Characteristics 41

1OEXCEPTIONS A package which defines the exceptions needed by the

above three packages.

The generic package LOW-LEVEL-1O is not implemented in this version.

The upper bound for index values in DIRECTIO and for line, column and page numbers
in TEXTJIO is given by

COUNTLAST = 2"*31-1

The upper bound for field widths in TEXTIO is given by

FIELD'LAST = 255

8.2 The FORM Parameter

The FORM parameter of both the CREATE and OPEN procedures in Ada specifies the
characteristics of the external file involved.

The CREATE procedure establishes a new external file, of a given NAME and FORM, and
associates it with a specified program file object. The external file is created (and the file
object set) with a specified (or default) file mode. If the external file already exists, the
file will be erased. The exception USE-ERROR is raised if the file mode is INFILE.

Example:

CREATE (F, OUTFILE, "MY FILE,
FORM = >

"WORLD = > READ, OWNER = > READWRITE");

The OPEN procedure associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the Ada exception USE-ERROR is raised.

The FORM parameter is a string, formed from a list of attributes, with attributes
separated by commas (,). The string is not case sensitive (so that, for example, HERE and
here are treated alike). FORM attributes are distinct from Ada attributes. The attributes
specify:

42 Appendix F, Version 4

* File protection

* File sharing

* File structure

* Buffering

* Appending

* Blocking

* Terminal input

The general form of each attribute is a keyword followed by => and then a qualifier.
The arrow and qualifier may sometimes be omitted. The format for an attribute specificr
is thus either of

KEYWORD

KEYWORD = > QUALIFIER

We will discuss each attribute in turn.

8.2.1 File Protection

These attributes are only meaningful for a call to the CREATE procedure.

File protection involves two independent classifications. The first classification is related
to who may access the file and is specified by the keywords:

OWNER Only the owner of the directory may access this file.

GROUP Only the members of a predefined group of users may access

this file.

WORLD Any user may access this file.

For each type of user who may access a file there are various access rights, and this forms
the basis for the second classification. In general, there are four types of access right,
specified by the qualifiers:

Appendix F, Implententation-Dependent Characteristics 43

READ The user may read from the external file.

WRITE The user may write to the external file.

EXECUTE The user may execute programs stored in the external file.

NONE The user has no access rights to the external file. (This access
right negates any prior privileges.)

More than one access right may be relevant for a particular file, in which case the
qualifiers are linked with underscores (_).

For example, suppose that the WORLD may execute a program in an external file, but
only the OWNER may modify the file.

WORLD = >
EXECUTE,

OWNER =>
READ-WRrrE EXECUTE,

Repetition of the same qualifier within the attributes is illegal:

WORLD = >
EXECUTE-EXECUTE, - NOT legal

but repetition of the entire attribute is allowed:

WORLD = >
EXECUTE,

WORLD = >
EXECUTE, - Legal

8.2.2 File Sharing

An external file can be shared, which means associated simultaneously with several
logical file objects created by the OPEN and CREATE procedures.

The file sharing attribute may restrict or suppress this capability by specifying one of the
following access modes:

44 Appendix F, Version 4

NOTSHARED
Exclusive access - no other logical file may be associated with
the external file

SHARED => READERS
Only logical files opened with mode IN are allowed

SHARED => SINGLEWRITER
Only logical files opened with mode IN and at most one with
mode INOUT or OUT are allowed

SHARED => ANY
No restriction

The exception USE ERROR is raised if, for an external file already associated with an
Ada file object:

. a further OPEN or CREATE specifies a file sharing attribute different from the
current one

. a further OPEN, CREATE or RESET violates the conditions imposed by the current
file sharing attribute.

The restrictions imposed by the file sharing attribute disappear when the last logical file
object linked to the external file is closed,

The file sharing attribute provides control over multiple accesses within the program to a

given external file.

This control does not extend to the whole system.

The default value for the file sharing attribute is SHARED = > ANY

8.2.3 File Structure

Tew Fila

There is no FORM parameter to define the structure of text files.

A text file consists of a sequence of bytes holding the ASCII codes of characters.

The representation of Ada-terminators depends on the file's mode (IN or OUT) and
whether it is associated with a terminal device or a mass-storage file:

Appendir F, Implementanon-Dependent Characteruics 45

- Mass-storage files

end of line: ASCILLF
end of page: ASCII.LF ASCII.FF
end of file: ASCIILF ASCII.EOT

. Terminal device with mode IN

end of line: ASCII.LF
end of page: ASCII.LF ASCILFF
end of file: ASCI.LF ASCILFF

. Terminal device with mode OUT

end of line: ASCII.LF
end of page: ASCIJ.FF
end of file: ASCII.EOT

Two FORM attributes, RECORD SIZE and RECORDUNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:

[HEADER I OBJECT [UNUSED-PART]

and it is formed from up to three items:

. an OBJECT with the exact binary representation of the Ada object in the executable
program, possibly including an object descriptor

- a HEADER consisting of two fields (each of 32 bits):

- the length of the object in bytes

- the length of the descriptor in bytes

. an UNUSED-PART of variable size to permit full control of the record's size

46 Appendix F, Version 4

The HEADER is implemented only if the actual parameter of the instantiation of the 10

package is unconstrained.

The file structure attributes take the form:

RECORD-SIZE = > sizein_bytes

RECORD-UNIT = > size in..bytes

Their meaning depends on the object's type (constrained or not) and the file access mode
(sequential or direct access):

a) If the object's type is constrained:

- The RECORD-UNIT attribute is illegal

- If the RECORD SIZE attribute is omitted, no UNUSED-PART will be
implemented: the default RECORD-SIZE is the object's size

- If present, the RECORD-SIZE attribute must specify a record size greater than
or equal to the object's size, otherwise the exception USE-ERROR will be
raised

b) If the object's type is unconstrained and the file access mode is direct:

- The RECORDUNIT attribute is illegal

. The RECORD-SIZE attribute has no default value, and if it is not specified, a
USE-ERROR will be raised

- An attempt to input or output an object larger than the given RECORD-SIZE
will raise the exception DATAERROR

c) If the object's type is unconstrained and the file access mode is sequential:

- The RECORD SIZE attribute is illegal

- The default value of the RECORD UNIT attribute is 1 (byte)

. The record size will be the smallest multiple of the specified (or default)
RECORD-UNIT that holds the object and its length. This is the only case
where records of a file may have different sizes.

Appendix F, Implemnentation-Dependent Charactesu'cs 47

8.4 Buffering

The buffer size can be specified by the attribute

BUFFER-SIZE = > size.in_bytes

The default value for BUFFER-SIZE is 0 (which means no buffering) for terminal
devices; it is 1 block for disk files.

8.2.5 Appending

Only to be used with the procedure OPEN, the format of this attribute is simply

APPEND

and it means that any output will be placed at the end of the named external file.

In normal circumstances, when an external file is opened, an index is set which points to
the beginning of the file. If the APPEND attribute is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set to one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

8.2.6 Blocking

This attribute has two alternative forms:

BLOCKING,

or

NON-BLOCKING,

This attribute specifies the 10 system behavior desired at any moment that a request for
data transfer cannot be fulfilled. The stoppage may be due, for example, to the
unavailability of data, or to the unavailability of the external file device.

48 Appendir F, Version 4

NOnLOCKING

If this attribute is set, then the task that ordered the data transfer is suspended -
meaning that other tasks can execute. The suspended task is kept in a 'ready' state,
together with other tasks in a ready state at the same priority level (that is, it is
rescheduled).

When the suspended task is next scheduled, the data transfer request is reactivated.
If ready, the transfer is activated, otherwise the rescheduling is repeated. Control
returns to the user program after completion of the data transfer.

BLOCKING

In this case the task waits until the data transfer is complete, and all other tasks are
suspended (or 'blocked'). The system is busy waiting.

The default for this attribute depends on the actual program: it is BLOCKING for
programs without task declarations and NONBLOCKING for a program containing
tasks.

8.2.7 Terminal Input

This attribute takes one of two alternative forms:

TERMINALINPUT = > LINES,

TERMINAL-INPUT = > CHARACIERS,

Terminal input is normally processed in units of a line at a time, where a line is delimited
by a special character. A process attempting to read from the terminal as an external file
will be suspended until a complete line has been typed. At that time, the outstanding
read call (and possibly also later calls) will be satisfied.

The first option specifies line-at-a-time data transfer, which is the default case.

The second option means that data transfer is character by character, and so a complete
line does not have to be entered before the read request can be satisfied. For this option
the BUFFER-SIZE must be zero.

The TERMINAL-INPUT attribute is only applicable to terminal devices.

Appendix F, Implementation-Dependent Characteristics 49

Section 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORTSHORTINTEGER -128 .. 127 -- 2**7 - 1

SHORT-INTEGER -32768 .. 32767 -- 2*15 - 1

INTEGER -214743648 .. 217483647 -- 231 - 1

For the packages DIRECT 10 and TEXT 10, the range of values for types COUNT and

POSITIVE COUNT are as follows:

COUNT 0 21474&3647 -- 2**31 - 1

POSITIVE COUNT 1 2147483647 -- 2"31 - I

For the package TEXT I10, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 " 2**8- I

50 Appendix F, Version 4

9.2 Floating Point Tyrpe Attributes
FLOAT LONG-FLOAT

DIGITS 6 15

MANTISSA 21 51

EMAX 84 20/1

EPSILON 9.53674E-07 8.88178E-16

LARGE 1.93428E*25 2.57110E+61

SAFE-EMAX 125 1021

SAFE-SMALL 1.1754.9E-38 2.22507E-308

SAFEJLARGE 4.25353E+37 2.24712E+307

FIRST -3.40282E+38 -1.79769E+308

LAST 3.40282E+38 1 .79769E+308

MACHINE-RADIX 2 2

MACHINE EMAX 128 1024

MACHINE-EMIN -125 -1021

MACH INE ROUNDS true true

MACHINE OVERFLOWS false false

SIZE 32 64

Appendix F, Inmplementation-Dependent Characteristics 51

9.3 Attributes of Type DURATION
DURATIONIDELTA 2.0 -- (-14)

DURATIONISMALL 2.0 -- (-14)

DURATI0#d'FIRST -131 072.0

DURATIONILAST 131072.0

DURAT IONI*LARGE same as OURATION'LAST

52 Appendix F, Version 4

Section 10

Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor

Floating point coprocessor instructions are used in programs that perform arithmetic on
floating point values in some fixed point operations and when the FLOAT_1O or
FIXED 1O packages of TEXTIO are used. The mantissa of a fixed point value may be
obtained through a conversion to an appropriate integer type. This conversion does not
use floating point operations. On 386/ix the Unix kernel emulates floating point
instructions in software, if no coprocessor is present. On Sun 386i, a coprocessor is
always present. On a Xenix, a coprocessor is required to execute floating point
instructions.

16.2 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Runtme Execu-
tive representation of task objects, including the task stacks, are allocated in the heap.

UNCHECKED DEALL7..ATION is implemented for all Ada access objects except access
objects to tasks. Use of UNCHECKED-DEALLOCATION on a task object will lead to
unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit, whether the exit is normal or due to an exception. Effectively
pragma CONTROLLED is automatically applied to all access types. Moreover, all
compiler temporaries on the heap (generated by such operations as function calls
returning unconstrained arrays, or many concatenations) allocated in a scope are
deallocated upon leaving the scope.

Note that the programmer may force heap reclamation of temporaries associated with
any statements by enclosing the statement in a begin .. end block. This is especially
useful when complex concatenations or other heap-intensive operations are performed
in loops, and can reduce or eliminate STORAGEERRORs that might otherwise occur.

Appendix F, Implementation-Dependent Characteristics 53

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by using
the Binder option STACK.TASK the size for all task stacks in a program may be set to a
size from 1K bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY values are in the
range 1 .. 10. A task with undefined priority (no pragma PRIORITY) is considered to be
lower than priority 1.

The minimum timeable delay is 1.0 seconds. This is the finest resolution provided by
UNIX

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack.
Rendezvous with an empty accept body (for synchronization) does not cause a context
switch.

The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

The message

GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARDOUTPUT when the Runtime Erecutive detects that no furthcr
progress is possible for any task in the program. The execution of the program is then
abandoned.

54 Appendir F, Version 4

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is not
generic and that has no formal parameters.

The Alsys UNIX Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Appendix F, Implementation-Dependent Characteristics 55

Section 11

Limitations

11.1 Compiler Limitations
" The maximum identifier length is 255 characters.

" The maximum line length is 255 characters.

" The maximum number of unique identifiers per compilation unit is 2500.

" The maximum number of compilation units in a library is 1000.

" The maximum number of Ada libraries in a family is 15.

11.2 Hardware Related Limitations

" The maximum amount of data in the heap is limited only by available memory.

" If an unconstrained record type can exceed 4096 bytes, the type is not permitted
(unless constrained) as the element type in the definition of an array or record type.

" A dynamic object bigger than 4096 bytes will be indirectly allocated. Refer to
ALLOCATION parameter in the COMPILE command. (Section 4.2 of the User's
Guide.)

56 Appendix F, Version 4

INDEX

Abnormal completion 54 DURATION'FIRST 52
Aborted task 54 DURATION'LARGE 52
Access types 22 DURATON'LAST 52
Allocators 53 DURATION'SMALL 52
Application Developer's Guide 3
Array gaps 24 E'EXCEPTION CODE 6
Array objects 37 EMAX 51
Array subtype 6 Empty accept body 54
Array subtype and object size 27 Enumeration literal encoding 13
Array type 6 Enumeration subtype size 14
ARRAY DESCRIPTOR 34 Enumeration types 13

Attribute 6 EPSILON 51
ASSEMBLER 3 EXCEPTION-CODE
ASSIGN TO ADDRESS 11 Attribute 6
Attributes of type DURATION 52

FETCH FROM ADDRESS 10
Basic record structure 28 FIELD 50
Binder 54 FIRST 51

Fixed point type representation 18
C 3 Fixed point type size 20
Characteristics of tasks 54 Floating point coprocessor 53
Collection size 22 Floating point type attributes 51
Collections 22 Floating point type representation 17
Compiler limitations 56 Floating point type size 18

maximum identifier length 56
maximum line length 56 GLOBAL BLOCKING SITUATION
maximum number of Ada libraries DETECTED 54

56
maximum number of compilation Hardware limitations

units 56 maximum data in the heap 56
maximum number of unique maximum size of a single array or

identifiers 56 record object 56
COUNT 50 Heap 53

DIGITS 51 Implementation generated names 37
DIRECT 10 50 Implicit component 34,35
DURATION'DELTA 52 Implicit components 32

Index 57

INDENT 5 Number of active tasks 54
Indirect record components 28
Integer type and object size 15 Ordering of compilation units 55
Integer type representation 15
Integer types 50 P'ARRAY DESCRIPTOR 6
INTERFACE 3,4 P'ISARRAY 6
INTERFACENAME 3,4 P'RECORDDESCRIPTOR 6

IS ARRAY PACK 5
Attribute 6 Parameter passing 2

POSITIVECOUNT 50
LARGE 51 Pragma IMPROVE 5,35
LAST 51 Pragma INDENT 5
Layout of a record 28 Pragma INTERFACE 3,4
Library unit 55 Pragma INTERFACE-NAME 4
Limitations 56 Pragma PACK 5,23,24,28

Pragma PRIORITY 5,54
MACHINEEMAX 51 Pragma SUPPRESS 5
MACHINEEMIN 51 Predefined packages 37
MACHINEMANTISSA 51 PRIORITY 5,54
MACHINE OVERFLOWS 51
MACHINERADIX 51 Record objects 37
MACHINEROUNDS 51 RECORD-DESCRIPTOR 35
Main program 54 Attribute 6
Main subprogram 55 RECORD-SIZE 32,35
MANTISSA 51 Rendezvous 54
Maximum data in the heap 56 Representation clauses 12
Maximum identifier length 56 Runtime Executive 2, 4,53,54
Maximum line length 56
Maximum number of Ada libraries 56 SAFEEMAX 51
Maximum number of compilation units SAFE-LARGE 51

56 SAFE SMALL 51
Maximum number of unique identifiers SIZE 51

56 Size of record types 36
Maximum size of a single array or SPACE 35

record object 56 STANDARD OUTPUT 54
Storage reclamation at exit 53

Minimum timeable delay 54 STORAGE-SIZE 22

58 Appendir F, Version 4

SUPPRESS 5
SYSTEM 5

Task activation 22
Task stack size 22, 54
Task stacks 53
Task types 22
Tasks

characteristics of 54
TEXTIO 50
TIME 35

Unchecked conversions 40
UNCHECKED DEALLOCATION

53
UNIX Linker 4

Variant part 33
VARIANT INDEX 33,34,35

Inda 59

