
-~o A242 r96
AD-A242 89 TATION PAGE orm Aove0

P* pw umue. kckiig owi. mne t wmlm'k kwmubw bwrdg eQ da am=es plwkVn u mOmiig m
flu 1 1 11 11 4-MmefU or my o0w upea d ft cofbtn d rwmalo-. I I Ajug bu for fresuir ft btoftn. lo W I go

AG -CY USEiiin IN 1VMOb . SUM 1204. Adnglo VA 222Q302. WWI ft ie OWi0 ci kimdon mid N MloksK 0I1s i

1. AGENCY USE ONLY (Leave Blank) n 2. REPORT DAT ' I3. REPORT TYPE AND DATES COVERED

I I Final: 25 Oct 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Digital Equipment Corporation, DEC Ada
Version 1.0, DECstation 5000 Model 200 (Host & Target), 911025S1.11226

6. AUTHOR(S)'

National Institute of Standards and Technology w
Gaithersburg, MD
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S.PROMN OGNZTONational Institute of Standards and Technology C REPORT NUMBER

National Computer Systems Laboratory NIST90DEC30_1_1.11
Bld('. 255, Rm A266 ,,
G.,dthersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, RM 3El14
Washington, D.C. 20301- 31

11. SUPPLEMENTARY NOTES -

Digital Equipment Corporation, DEC Ada, Version 1.0, Gaithersburg, MD, DECsta:rn:= 5000 Model 200 (Host & Target),
ACVC 1.11.

12a. DISTRIBLION/AVAILABIUTY STATEMENT 12b. DISIRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 wvrd)

Digital Equipment Corporation, DEC Ada, Versioa 1.0, Gaithersburg, MD, DECstation 5000

Model 200 (Host & Target), ACVC 1.11.

91-16069hu 11 i l ill!lllllliii' 11I1ll li
14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORTI I OF ABSTRACT

UNCLASSIFIED I UNCLASSIFED UNCLASSIFIED

NSN 7540-01-2R0-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sd. 239-128

AVF Control Number: NIST90DEC53011.11
DATE COMPLETED

BEFORE ON-SITE: 1991-09-30
AFTER ON-SITE: 1991-10-28
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 911025S1.11226
Digital Equipment Corporation

DEC Ada, Version 1.0
DECstation 5000 Model 200 => DECstation 5000 Model 200

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

Ac. 81a s For
.... ii

DItAA'

AVF Control Number: NIST90DEC530_1_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on 1991-10-25.

Compiler Name and Version: DEC Ada, Version 1.0

Host Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

Target Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
911025S1.11226 is awarded to Digital Equipment Corporation. This
certificate expires on 01 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility Ada ation Facility
Dr. David K. Jefferson Mr. L. ArnoldJohnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada Validation Organization Ada Joint Program Office
I- Director, Computer & Software / Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

AVF Control Number: NIST90DEC530 1 1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on 1991-10-25.

Compiler Name and Version: DEC Ada, Version 1.0

Host Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

Target Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
911025S1.11226 is awarded to Digital Equipment Corporation. This
certificate expires on 01 June 1993.

This report has been reviewed and is approved.

A a Va F c ity Ada Va dati acility
Dr. David K. Jef eson Mr. L. Arnold nson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

V

_ _

Ada Validation Organization Ada Joint Program Office
- Director Computer & Software Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

NIST90DEC530_11.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: Digital Equipment Corporation

Certificate Awardee: Digital Equipment Corporation

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DEC Ada, Version 1.0

Host Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

Target Computer System: DECstation 5000 Model 200 running
ULTRIX Version 4.2

Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

Customer Signature Date
Company Digital Equipment Corporation
Title Ada Project Leader

Certificate Awardee Signature Date
Company Digital Equipment Corporation
Title Ada Project Leader

TABLE OF CONTENTS

CHAPTER 1 1-1
INTRODUCTION .. i-i

1.1 USE OF THIS VALIDATION SUMMARY REPORT I-i
1.2 REFERENCES 1-1
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-1
MACRO PARAMETERS A-i

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS B-1
LINKER OPTIONS B-2

APPENDIX C C-I
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro9O]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada ProgramminQ LanQuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>.'

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro9O].

1-4

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPEN)ENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A ADlB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 198 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..V (11 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113W..Y (3 tests) use a line length in the input file which
exceeds 255 characters.

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

B91001H checks that an address clause may not precede an entry
declaration; this implementation does not support address clauses
for entries. (See section 2.3.)

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

2-2

CD2Bl5B checks that STORAGE ERROR is raised when the storage size
specified for a collection is too small to hold a single value of
the designated type; this implementation allocates more space than
was specified by the length clause, as allowed by AI-00558.

BD8001A, BD8003A, BD8004A..B (2 tests), and ADS011A use machine
code insertions; this implementation provides no package
MACHINECODE.

The 18 tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT--IO
CE2102N OPEN IN_FILE SEQUENTIAL 10
CE21020 RESET IN_ FILE SEQUENTIAL IO
CE2102P OPEN OUTFILE SEQUENTIAL_IO
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT I0
CE2102S RESET INOUT-FILE DIRECT 10
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUTFILE DIRECT IO
CE3102F RESET Any Mode TEXT I0
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUTFILE TEXTIO

The tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE INFILE SEQUENTIAL 10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE INFILE TEXTI

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USEERROR is raised because temporary files have no name.

2-3

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the completion of those tests; for this implementation, temporary
files have no name.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2401H, EE2401D, and EE2401G use instantiations of DIRECT I0 with
unconstrained array and record types; this implementation raises
USEERROR on the attempt to create a file of such types.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; -this implementation cannot
restrict file capacity.

CE3304A checks that SETLINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

MODIFICATIONS (SEE SECTION 1.3) WERE REQUIRED FOR 20 TESTS.

The 19 tests listed below were graded passed by Processing
Modificatiun as directed by the AVO. These tests make various
checks that CONSTRAINT ERROR is raised for certain operations when
the resultant values lie outside of the range of the subtype.
However, in many of the particular checks that these tests make,
the exception-raising operation may be avoided as per LRM 11.6(7)
by optimization that removes the operation if its only possible
effect is to raise an exception (e.g., an assignment to a variable
that is not later referenced). In the list below, beside the name
of each affected test is given the line number of either the check
that is skipped, or the call to FAILED that is made--numbers will
be within brackets in the latter case. These tests were processed
both with and without optimization: the tests reported a passed
result without optimization; with optimization, the checks
indicated below were skipped and REPORT.FAILED was called (in the
case of C38202A, execution is suspended as one task waits for a
call that is avoided).

2-4

Check [Failed] Line #

Optimization: Elimination of assignment statements

C36204A 113 & 118
C36305A 53 & 48
C38202A 35 (task DRIVER hangs)
C45614A 47 & 59
C94001E & C94001F 36
CC3305A 37
CC3305B..D 33

Optimization: Elimination of parameter assignments

C64103A 51, 91, & 119
C64103B 90 & 99
C64104A 90, 103, 114, 126, 142, 158, & 174
C64104N [62]
CE3704C 109
CE3804F 114
CE3804P 113

Optimization: Dead-store elimination

CB4006A [41 & 60]
(line 29 initialization is eliminated)

Optimization: Elimination of generic actual parameter
evaluation.

CC3125C 51, 64, 100, & 113

B91001H was graded inapplicable by Evaluation Modification as
directed by the AVO. This test expects an error to be cited for an
entry declaration that follows an address clause for a preceding
entry; but this implementation does not support address clauses for
entries (rather, it provides a package that allows a task to wait
for the delivery of one or more signals), and so rejects the
address clause.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical and sales information about this Ada implementation,
contact:

Attn: Pat Bernard
Ada Product Manager

Digital Equipment Corporation
110 Spit Brook Road (ZKO2-1/Mll)

Nashua, NH 03062
(603) 881-0247

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3788

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 287

3-1

d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 287 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

The default compiler options were used except as follows:

The source listing option (-V) was specified to obtain source
listings for some tests and a high error limit (-e99999) was
also specified. (By default a compilation is aborted once 30
errors have been reported.)

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in (UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 255 -- Value of V

$BIGIDl (1..V-1 => 'A', V => 'I')

$BIGID2 (l..V-l => 'A', V => '2')

SBIGID3 (l..V/2 => 'A') & '3' & (1..V-I-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (l..V-l-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-I-V/2 => 'A') & 'I' & '"'

SBLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

SMAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (l..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_647

$DEFAULTMEMSIZE 2**31-1

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME RISCULTRIX

$DELTADOC 2.0**(-31)

SENTRYADDRESS FCNDECL.ENTRYADDRESS

$ENTRYADDRESSI FCNDECL.ENTRYADDRESS1

$ENTRYADDRESS2 FCNDECL.ENTRYADDRESS2

SFIELDLAST 2_147_483_647

$FILETERMINATOR I I

$FIXEDNAME NOSUCHFIXEDTYPE

SFLOATNAME NOSUCHTYPE

SFORMSTRING ""

SFORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHANDURATION 75_000.0

$GREATERTHANDURATIONBASELAST 131_073.0

SGREATERTHANFLOATBASELAST 1.80141E+38

$GREATERTHANFLOATSAFELARGE 1.7014117E+38

SGREATERTHANSHORTFLOATSAFELARGE 1.0E308

$HIGHPRIORITY 15

A-2

SILLEGALEXTERNALFILENAME1 BAD/CHAR-@.-!

SILLEGALEXTERNALFILENAME2 x"l&(1. .256->Ic')&"fy

$ INAPPROPRIATELINELENGTH -1

$ INAPPROPRIATEPAGELENGTH -1

SINCLUDEPRAGI PRAGI4A INCLUDE ("A28006D . TST"l)

$INCLUDEPRAG4A2 PRAGI4A INCLUDE ("IB28006E1 TST')

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2_147_483_648

S INTERFACELANGUAGE C

SLESSTHANDURATION -75_000.0

SLESSTHANDURATIONBASEFIRST -131_073.0

$LINETERMINATORII

$LOWPRIORITY -0

$IACHINECODESTATEMENT NULL;

$IACHINECODETYPE NOSUCHTYPE

$ZANTISSADOC 31

S$(AXDIGITS 15

S14AXINT 2147483647

$IAXINTPLUS_1 2_147_483_648

$MININT -2147483648

$NAME SHORTSHORTINTEGER

$NAMELIST RISCULTRIX

SNAMESPECIFICATIONi /usr/var/tmp/X2120A

SNAMESPECIFICATION2 /usr/var/tmp/X2 120B

$ NAMESPECIFICATION3 /usr/var/tmp/X3 119A

A-3

$NEG BASED INT 16#FFFFFFFE#

SNEW MEM SIZE 1 048 576

$NEWSTORUNIT 8

$NEWSYSNAME RISCULTRIX

$PAGETERMINATOR ASCII.LF & ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

SRECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

STASK-STORAGESIZE 0

STICK 3.906 * 1O.0**(-3)

SVARIABLEADDRESS FCNDECL.VARIABLEADDRESS

$VARIABLEADDRESS 1 FCNDECL. VARIABLEADDRESS 1

$VARIABLEADDRESS2 FCNDECL.VARIABLEADDRESS2

$YOUR-PRAGMA EXPORTOBJECT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

The DEC Ada compiler options and defaults are summarized as follows:

o -a

Writes a data analysis file containing source code cross-referencing and
static analysis information. By default, this file is not written.

o -A

Specifies the program library context to be used for the compilation.The
default is the context defined by environment variable ADALIB.

o -CO or -Cl

Controls whether run-time error checking is suppressed. (Use of -CO is
equivalent to giving all possible suppress pragmas in the source
program.) The default is -Cl (error checking is not suppressed except by
pragma).

o -e

Controls the number of error level diagnostics that are allowed within a
single compilation unit before the compilation is aborted. By default
the error limit is set to 30 errors.

o -gO, -gl, -g2, -g3

Controls the inclusion of debugging symbol table information in the
compiled object module. The default is to include partial debugging
symbol table information (-gl).

o -iO, -il, -i2

Controls generic processing. By default (-il), instances are compiled
separately from the unit in which an instantiation occurred unless a
pragma INLINE GENERIC applies.-iO disables inline expansion of generics.
-i2 provides maximal inline expansion of generics.

o -J

Enables maximal inline expansion of subprograms. By default, subprograms

B-1

to which an INLINE pragma applies are expanded inline under certain

conditions.

o -n

Suppresses updating the program library with the results of a
compilation. By default, the library is updated when a unit compiles
without errors.

o -o0, -o1, -02, -03, -04

Controls the level of optimization applied in producing the compiled
code. The default is full optimization with time as the primary
optimization criterion (-o4).

o -QO, -Qi

With -QI, the compiler makes a copy of the source file in the program
library when a unit is successfully compiled. No copy is made under -QO.
The default is -QO.

o -V

Produces a source listing. A source listing is not made by default.

o -w

Suppresses warning messages. By default warning messages are not
suppressed.

o -y

Syntax checks the specified input file. By default, the input file is
compiled.

0 -z

Processes the input file as a detailed design. By default, the input
file is compiled.

B-2

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

Linker options

Linking was done using the DEC Ada ald command. The ald command checks
the currency of all units in the execution closure of a program, and, if
current, invokes ld, the standard ULTRIX linker. The default ald options
were used.

The DEC Ada ald command options are summarized below:

o -A

Specifies the program library context to be used. The default is the
context defined by environment variable ADALIB.

o -j elabrtn

Used when linking Ada code with a non-Ada main program. By default, the
main program is the Ada main program unit named as an argument to the ald
command.

o -L ldflags

Passes 'ildflags' as options to the ld linker. By default, no .ption
flags are passed.

o -n

Do not invoke the id linker. By default, the ld linker is invoked. If
the -n option is specified, the ald command determines if all units are
current and generates the object file needed to elaborate library units,
but does not do the actual link.

o -o out

Names the output file 'out' rather than a.out.

o -r

Retains relocation entries in the output object file. Relocation entries
must be saved if the output object file is to become an input file in a
subsequent link. By default, relocation entries are not retained.

o -u

B-3

Displays the units that are to be linked. By default, they are not

displayed.

0 -V

Displays the id command that is executed. By default, it is not
displayed.

B-4

APPENDIX C

APPENDIX F oF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORT_'HORT INTEGER is range -128..127;
type SHORTINTEGER is range -32768..32768;
type INTEGER is range -2147483648..2147483647;

type FLOAT is digits 6 range -3.40282E+38..3.40282E+38;
type LONGFLOAT is digits 15 range

-1.7976931348623E+308..l.7976931348623E+308;

type DURATION is delta 1.OE-4 range -131072.0..131071.9999;

end STANDARD;

C-1

The following are attached:

1. Predefined language pragmas.

2. Implementation-dependent characteristics

Together these describe implementation-dependent characteristics and
contain relevant Appendix F material. Note that both are extracted
from documentation that is used for both DEC Ada on ULTRIX systems and
VAX Ada on VMS systems. Information applies to both ULTRIX and VMS
unless otherwise stated; information that only applies to VAX VMS
systems is identified with "on VMS systems only."

1
Predefined Language Pragmas

I This annex defines the pragmas LIST PAGE, and OPTIMIZE, and summarizes
the definitions given elsewhere of the remaining language-defined pragmas.

The DEC Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma Meaning

AST..ENTRY On VMS systems only.

Takes the simple name of a single
entry as the single argument; at most
one AST_-ENTRY pragma is allowed
for any given entry. This pragma
must be used in combination with the
AST_-ENTRY attribute, and is only
allowed after the entry declaration and
in the same task type specification or
single task as the entry to which it
applies. This pragma specifies that the
given entry may be used to handle a
VMS asynchronous system trap (AST)
resulting from a VMS system service
call. The pragma does not affect
normal use of the entry (see 9.12a).

COMMONOBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker storage area) and a size as
arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a variable
declared by an earlier declarative item
of the same declarative part or package

1-1

Predeflned Language Pragmas

specification. The variable must
have a size that is known at compile
time, and it cannot have an initial
value. This pragma is not allowed
for objects declared with a renaming
declaration.This pragma enables the
shared use of objects that are stored in
overlaid storage areas (see 13.9a.2.3).

COMPONENT-ALIGNMENT Takes an alignment choice and
optionally the simple name of an array
or record type as arguments. If a type
simple name is specified, the pragma
applies only to that type. In this case,
the pragma and the type declaration
must both occur immediately within
the same declarative part, package
specification, or task specification;
the declaration must occur before the
pragma. The position of the pragma
and the restrictions on the named type
are governed by the same rules as
those for a representation clause. If a
type simple name is not specified, the
pragma affects all array or record types
declared in the program library, except
those specified in a pragma PACK or
a representation clause or in another
pragma COMPONENT-ALIGNMENT.
In this case, the pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation). This pragma specifies
the kind of alignment used for the
components of the array or record types
to which it applies (see 13.1a).

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immediately
within the declarative part or package
specification that contains the
declaration of the access type; the
declaration must occur before the

1-2

Predefilned Language Pragmas

pragma. This pragma is not allowed for
a derived type. This pragma specifies
that automatic storage reclamation
must not be performed for objects
designated by values of the access type,
except upon leaving the innermost
block statement, subprogram body, or
task body that encloses the access type
declaration, or after leaving the main
program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed
immediately after the context clause
of a compilation unit (before the
subsequent library unit or secondary
unit). Each argument must be
the simple name of a library unit
mentioned by the context clause.
This pragma specifies that the
corresponding library unit body
must be elaborated before the
given compilation unit. If the given
compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

EXPORT-EXCEPTION On VMS systems only.

Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VMS Linker global symbol),
a form (ADA or VMS), and a code
(a static integer expression that is
interpreted as a VAX condition code)
as arguments. A code value must be
specified when the form is VMS (the
default if the form is not specified).
This pragma is only allowed at the
place of a declarative item, and must
apply to an exception declared by

1-3

Predeflned Language Pragmas

an earlier declarative item of the
same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration or for an exception declared
in a generic unit. This pragma permits
an Ada exception to be handled
by programs written in other VAX
languages (see 13.9a.3.2).

EXPORTFUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before
any subsequent compilation unit.
This pragma is not allowed for a
function declared with a renaming
declaration, and it is not allowed for a
generic function (it may be given for
a generic instantiation). This pragma
permits an Ada function to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORT._OBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a linker global
symbol) and size option (a linker
absolute global symbol that will be
defined in the object module-useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and must

1-4

Predefined Language Pragmas

apply to a constant or a variable
declared by an earlier declarative
item of the same declarative part or
package specification; the declaration
must occur at the outermost level of a
library package specification or body.
The object to be exported must have
a size that is known at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit.
This pragma permits an Ada object to
be referred to by a routine written in
another programming language (see
13.9a.2.2).

EXPORT-PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORTYVALUEDPROCEDURE Takes an internal name denoting
a piocedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter

1-5

Predefined Language Pragmas

types, and parameter mechanisms
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma is
not allowed for a procedure declared
with a renaming declaration and is not
allowed for a generic procedure (it may
be given for a generic instantiation).
This pragma permits an Ada procedure
to behave as a function that both
returns a value and causes side effects
on its parameters when it is called
from a routine written in another
programming language (see 13.9a.L3).

IDENT Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pragma IDENT (string literal);

This pragma is allowed only in
the outermost declarative part or
declarative items of a compilation unit.
The given string is used to identify
the object module associated with the
compilation unit in which the pragma
IDENT occurs.

IMPORTEXCEPTION On VMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
VMS Linker global symbol), a form
(ADA or VMS), and a code (a static

1-6

Predeflned Language Pragmas

integer expression that is interpreted
as a VAX condition code) as arguments.
A code value is allowed only when the
form is VMS (the default if the form
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, a
VAX condition) to be handled by an
Ada program (see 13.9a.3.1).

IMPORTFUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
On VMS systems, a first optional
parameter is also available as an
argument. The pragma INTERFACE
must be used with this pragma (see
13.9). This pragma is only allowed at
the place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before any
subsequent compilation unit. This
pragma is allowed for a function
declared with a renaming declaration;
it is not allowed for a generic function
or a generic function instantiation.
This pragma permits a non-Ada
routine to be used as an Ada function
(see 13.9a.1.1).

1-7

Predefined Language Pragmas

IMPORT-OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker global symbol) and size (a linker
absolute global symbol that will be
defined in the object module-useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a variable declared
by an earlier declarative item of the
same declarative part or package
specification. The variable must have
a size that is known at compile time,
and it cannot have an initial value.
This pragma is not allowed for objects
declared with a renaming declaration.
This pragma permits storage declared
in a non-Ada routine to be referred to
by an Ada program (see 13.9a.2.1).

IMPORTPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. On VMS systems,
a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration;
it is not allowed for a generic procedure

1-8

Predefined Language Pragmas

or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure
(see 13.9a.1.1).

IMPORTVALUEDPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. On VMS systems,
a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma
is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This
pragma permits a non-Ada routine that
returns a value and causes side effects
on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

ILINTE Takes one or more names as
arguments; each name is either the
name of a subprogram or the name of
a generic subprogram. This pragma
is only allowed at the place of a
declarative item in a declarative part
or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. This
pragma specifies that the subprogram

1-9

Predefined Language Pragmas

bodies should be expanded inline at
each call whenever possible; in the case
of a generic subprogram, the pragma
applies to calls of its instantiations
(see 6.3.2).

IN4L _GENERIC Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit
in a compilation, but before any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,
or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by
an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that inline expansion of the generic
body is desired for each instantiation
of the named generic declarations or
of the particular named instances;
the pragma does not apply to calls of
instances of generic subprograms
(see 12.1a).

S ITERFACE Takes a language name and a
subprogram name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in this case
the pragma must appear after the
subprogram declaration, and before
any subsequent compilation unit. This

1-10

Predefilned Language Pragmas

pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object module will be supplied for the
corresponding subprogram (see 13.9).
In DEC Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORT_FUNCTION,
DdPORTPROCEDURE, and
IMPORTYALUEDPROCEDURE
when any of those pragmas are used
(see 13.9a.1).

LIST Takes one of the identifiers ON or
OFF as the single argument. This
pragma is allowed anywhere a pragma
is allowed. It specifies that listing of
the compilation is to be ccntinued or
suspended until a LIST pragma with
the opposite argument is given within
the same compilation. The pragma
itself is always listed if the compiler is
producing a listing.

LONG_FLOAT On VMS systems only.

Takes either DFLOAT or _FLOAT
as the single argument. The default
is G_FLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation.It specifies
the choice of representation to be used
for the predefined type LONG-FLOAT
in the package STANDARD, and for
floating point type declarations with
digits specified in the range 7 .. 15
(see 3.5.7a).

MAINSTORAGE Takes one or two nonnegative static
simple expressions of some integer type
as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most

1-11

Predefined Language Pragmas

one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created
for a main task (the task associated
with a main program), and determines
the number of storage units (bytes)
to be allocated for the stack working
storage area or guard pages or both.
The value specified for either or both
the working storage area and guard
pages is rounded up to an appropriate
boundary. A value of zero for the
working storage area results in the use
of a default size; a value of zero for
the guard pages results in no guard
storage. A negative value for either
working storage or guard pages causes
the pragma to be ignored (see 13.2b).

MEMORYSIZE Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (1 any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number MEMORYSIZE
(see 13.7).

OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primary optimization criterion.

In DEC Ada, this pragma is only
allowed immediately within a
declarative part of a body declarm tion.

PACK Takes the simple name of a record or
array type as the single argument. The

1-12

Predefined Language Pragmas

allowed positions for this pragma, and
the restrictions on the named type,
are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when
selecting the representation of the
given type (see 13.1).

10 PAGE This pragma has no argument, and is
allowed anywhere a pragma is allowed.
It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

11 PRIORITY Takes a static expression of the
predefined integer subtype PRIORITY
as the single argument. This pragma is
only allowed within the specification of

a task unit or immediately within the
outermost declarative part of a main
program. It specifies the priority of the
task (or tasks of the task type) or the
priority of the main program (see 9.8).

PSECTOBJECT On VMS systems only.

Has the same syntax and the same
effect as the pragma COMMON-
OBJECT (see 13.9a.2.3).

12 SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type
is a scalar or access type; the variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update of
the variable is a synchronization point
for that variable. An implementation
must restrict the objects for which

1-13

Predefined Language Pragmas

this pragma is allowed to objects
for which each of direct reading and
direct updating is implemented as an
indivisible operation (see 9.11).

SHAREGENERIC On VMS systems only.

Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit in a
compilation, but before any subsequent
compilation unit. Each argument
either must be the simple name of a
generic subprogram or package, or it
must be a (nongeneric) subprogram
or package that is an instance of a
generic subprogram or package. If the
argument is an instance of a generic
subprogram or package, then it must
be declared by an earlier declarative
item of the same declarative part or
package specification. This pragma
specifies that generic code sharing is
desired for each instantiation of the
named generic declarations or of the
particular named instances (see 12.1b).

13 STORAGE_UNIT Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number STORAGEUNIT
(see 13.7).
In DEC Ada, the only argument
allowed for this pragma is 8 (bits).

1-14

Predefined Language Pragmas

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also the
name of either an object, a type or
subtype, a subprogram, a task unit, or
a generic unit. This pragma is only
allowed either immediately within a
declarative part or immediately within
a package specification. In the latter
case, the only allowed form is with a
name that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to omit
the given check extends from the
place of the pragma to the end of the
declarative region associated with the
innermost enclosing block statement or
program unit. For a pragma given in a
package specification, the peroussion
extends to the end of the scope of the
named entity,

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type of a
named type or subtype; for calls of a
named subprogram; for activations of
tasks of the named task type; or for
instantiations of the given generic unit
(see 11.7).

SUPPRESSALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that
all run-time checks in the unit are
suppressed (see 11.7).

is SYSTEM-NAME Takes an enumeration literal as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation. The effect of

1-15

Predefined Language Pragmas

this pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEM-NAME. This pragma is
only allowed if the specified identifier
corresponds to one of the literals of the
type NAME declared in the package
SYSTEM (see 13.7).

TASK-STORAGE Takes the simple name of a task
type and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that a
task storage specification is allowed;
that is, the declaration of the task
type to which the pragma applies and
the pragma must both occur (in this
order) immediately within the same
declarative part, package specification,
or task specification. The effect of
this pragma is to use the value of the
expression as the number of storage
units (bytes) to be allocated as guard
storage. The value is rounded up to
an appropriate boundary. A negative
value causes the pragma to be ignored.
A zero value has system-specific
results: on VMS systems, a value
of zero results in no guard storage;
on ULTRIX systems, a value of zero
results in a minimal guard area (see
13.2a).

TIMESLICE On VMS systems only.

Takes a static expression of the
predefined fixed point type DURATION
(in the package STANDARD) as the
single argument. This pragma is only
allowed in the outermost declarative
part of a library subprogram, and at
most one such pragma is allowed in a
library subprogram. It has an effect
only when the subprogram to which

1-16

Predefined Language Pragmas

it applies is used as a main program.
This pragma causes the task scheduler
to limit the amount of continuous
execution time given to a task
(see 9.8a).

TITLE Takes a title or a subtitle string, or
both, as arguments. The pragma
TITLE has the following form:

pragm TITLE (titling-option

(,titlincg-option]);

titl.ng-option :-
(TITLE ->] stringlitoeral

I (SUBTITLE ->] string literal

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title and/or
subtitle portions of a compilation
listing.

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. The pragma
must appear before any occurrence of
the name of the variable other than
in an address clause or in one of the
DEC Ada pragmas IMPORT-OBJECT,
EXPORTOBJECT, COMMON-
OBJECT, or PSECTOBJECT. The
variable cannot be declared by a
renaming declaration. The pragma
VOLATILE specifies that the variable
may be modified asynchronously. This
pragma instructs the compiler to obtain
the value of a variable from memory
each time it is used (see 9.11).

1-17

2
Implementation-Dependent Characteristics

_ Note

This appendix is not part of the standard definition of the Ada
programming language.

This appendix summarizes the implementation-dependent characteristics of

DEC Ada by presenting the following-

* Lists of the DEC Ada pragmas and attributes.

* The specification of the package SYSTEM.

" The restrictions on representation clauses and unchecked type conversions.

" The conventions for names denoting implementation-dependent
components in record representation clauses.

* The interpretation of expressions in address clauses.

* The implementation-dependent characteristics of the input-output
packages.

* Other implementation-dependent characteristics.

F.1 Implementation-Dependent Pragmas
DEC Ada provides the following pragmas, which are defined elsewhere in the
text. In addition, DEC Ada restricts the predefined language pragmas INIJNE
and INTERFACE. See Annex B for a descriptive pragma summary.

2-1 Implementation-Dependent Pragmas I1

Implementation-Dependent Characteristics

DEC Ads
syst-
on which It

Pragma applies Section

ASTENTRY VMS 9.12a
COMMON_OBJECT All 13.9a.2.3
COMPONENTALIGNMENT All 13.la
EXPORT_EXCEPTION VMS 13.9a.3.2

EXPORTFUNCTION All 13.9a.1.3
EXORT_OBJECT All 13.9a.2.2

EXPORT_PROCEDURE All 13.9a.1.3
WCPORTVALUEDPROCEDURE All 13.9a.1.3

IENT All Annex B
BAPORT_EXCEPTION VMS 13.9a.3.1
IWPORTFUNCTICN All 13.9a.L1
MPORTOBJECT . All 13.9a.2.1

IMPORTPROCEDURE All 13.9a.1.1

IMPORTYALUED_PROCEDURE All 13.9a.1.1
INLINEGENERIC All 12.1a

LONGFLOAT VMS 3.5.7a

MAIN-STORAGE All 13.2b
PSECTOBJECT VMS 13.9a.2.3
SHAREGENERIC All 12.1b

SUPPRESS-ALL All 11.7
TASK-STORAGE All 13.2a

TIM -SLICE All 9.8a
TITLE All Annex B
VOLATILE An 9.11

F.2 Implementation-Dependent Attributes
DEC Ada provides the following attributes, which are defined elsewhere in the
text. See Annex A for a descriptive attribute summary.

F.2 Implementation-Dependent Attributes 2-2

Implementation-Dependent Characteristics

DEC Ada
"yst-

on which It
Attribute applies Section

ASTENTRY VMS 9.12a

BIT An 13.7.2

MACHINE_=SIZ All 13.7.2

NULL-PARAMETER VMS 13.9a.1.2
TYPE-CLASS An 13.7a.2

F.3 Specification of the Package System
DEC Ada provides a system-specific version of the package SYSTEM for
each system on which it is supported. The individual package SYSTEM
specifications appear in the following sections.

F.3.1 The Package System on VMS Systems
package SYSTEM is

type NAME is (VAX VMS, VAXIMN);
for NAME use (1, 2);

SYSTEM NAM constant NAME :- VAX-VMS;
STORAG UNIT constant :- 8;
MEMORY SIZE constant :- 2**31-1;
MAX INT : constant := 2**31-1;
MIN-INT constant :-(2'31);
MAX-DIGITS constant := 33;
MAX-MANTISSA constant := 31;
FINE DELTA constant :2.0*(-31);
TICK- constant :10.0*(-2);

subtype PRIORITY is INTEGER range 0 .. 15;

-- Address type

type ADDRESS is private;

ADDRESS-ZERO : constant ADDRESS;

function "+" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;
function "+" (LEFT INTEGER; RIGHT ADDRESS) return ADDRESS;
function "-" (LEFT ADDRESS; RIGHT ADDRESS) return INTEGER;
function "-" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;

2-3 The Package System on VMS Systems F.3.1

Implementmtion-Dependent Characteristcs

-- function "-" (LEFT, RIGHT ADDRESS) return BOOLEAN;
-- function "/-" (LEFT, RIGHT ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function "<-" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">-" (LEFT, RIGHT ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "-" and "/-" are already available and
-- do not have to be explicitly defined

generic
type TARGET is private;

function FETCH FROM ADDRESS (A ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGN TO ADDRESS (A ADDRESS; T TARGET);

-- DEC Ada floating point type declarations for the VAX
hardware floating point data types

type F FLOAT is implementation defined;
type D-FLOAT is implementation defined;
type G-FLOAT is implementationidefined;
type H-FLOAT is implementation defined;

type TYPE CLASS is (TYPE CLASSENUMERATION,
TYPE CLASS INTEGER,
TYPE CLASS FIXED POINT,
TYPE CLASS FLOATING POINT,
TYPE CLASS ARRAY,
TYPE CLASS RECORD,
TYPE CLASS ACCESS,
TYPE CLASS TASK,
TYPE CLASS ADDRESS);

AST handler type

type AST HANDLER is limited private;

NO ASTHANDLER : constant ASTHANDLER;

Non-Ada exception

NONADAERROR : exception;

Hardware-oriented types and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BITARRAY);

subtype BIT ARRAY 8 is BIT ARRAY (0 .. 7);
subtype BIT -ARRA 16 is BIT-ARRAY (0 .. 15);
subtype BIT- ARPAY'32 is BIT-ARRAY (0 .. 31);
subtype BITARRAY-64 is B IT ARRAY (0 .. 63);

F.3.1 The Package System on VMS Systems 2-4

Implementation-Dependent Characteristics

type UNSIGNED BYTE is rang. 0 .. 255;
for UNSIGNED BYTE'SIZE use 8;

function "not" (LEFT UNS IGNED BYTE) return UNSIGNED-BYTE;
function "and" (LEFT, RIGHT UNS IGNED-BYTE) return UNSIGNED-BYTE;
function "or" (LEFT, RIGHT UNSIGNED-BYTE) return UNSIGNED-BYTE;
function "zor" (LEFT, RIGHT UNS IGNED-BYTE) return UNSIGNED-BYTE;

function TO BNINE BYT (X BTARY8 return UNSIGNED BYTE;
fuctonT0S- ARW8 (X:UNSIGNED BYTE) return BIT ABRAY 8;

type UNSIGNED BYTE-AP.RAY is array (INTEGER range -() of UNSIGNED-BYTE;

type UNSIGNED-WORD is range 0 .. 65535;
for UNSIGNED WORD'SIZE use 16;

function "not" (L.EFT UNSIGNED-WORD) return UNSIGNED-WORD;
function "and" (LEFT, RIGHT UNSIGNED-WORD) return UNSIGNED-WORD;
function "or" (LEFT, RIGHT UNS IGNED-WORD) return UNSIGNED-WORD;
function "zor" (LEFT, RIGHT UNSIGNED-WORD) return UNSIGNED WORD;

function TO UNSIGNED WORD (X BIT ARRAY 16) return UNSIGNED WORD;
function TO -BIT -ARRAY 16 (X UNSIGNED WORD) return BIT-AP.RAY 16;

type UNSIGNED WORD ARRAY is array (INTEGER range <>) of UNSIGNED-WORD;

type UNSIGNED LONGWORD is range MN IN iT .. MAX lINT;
for UNSIGNED LONGWORD' SIZE use 32;

function "not" (LEFT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "and" (LEFT, RIGHT UNSIGNED LONGWFORD) return UNSIGNED LONGWORD;
function "or" (LEFT, RIGHT UNSIGNED LON17WORD) return UNSIGNED LONGWORD;
function "%or" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;

function TO UNSIGNED LONGWORD (X :BIT ARRAY 32)
return UNSIGNED LONGWORD;

function TO-BIT-ARRAY-32 (X UNSIGNED LONGWORD) return BIT ARRAY 32;

type UNSIGNED LONGWORD ARRAY is
array (INTEGER range <>) of UNSIGNED LONGWORD;

type UNSIGNED QUADWORD is record
LO UNSIGNED LONGWORD;
Ll UNSIGNED LONGWORD;
end record;

for UNSIGNED QUADWORD' SIZE use 64;

function "not" (LEFT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "and" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED -QUADWORD;
function "or" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "zcor" (LEFT, RIGHT UNSIGNEDQUADWORD) return UNSIGNED QUADWORD;

function TO UNS IGNED QUADWORD (X :BIT ARRAY 64)
return UNfSIGNED QUADWORD;

function TO-BIT-ARPAY-64 (X :UNSIGNED QUAD WORD) return BIT ARRAY 64;

type UNSIGNED QUADWORD ARRAY is
array (INTEGER range <>) of UNSIGNED QUAD WORD;

2-5 The Package System on VMS Systems F.3.1

Implementatlon-Dspenclent Characteristics

function TO ADDRESS (X fINTEGER) return ADDRESS;
function TO-ADDRESS (X UNSIGNED LONGWORD) return ADDRESS;
function TO -ADDR.ESS (X LwiversaZ integer) return ADDRESS;

function To INTEE (X ADDRESS) return INTEE;
function TO UNSIGNED LONGWORD (X ADDRESS) return UNSIGNED LONGUORD;

function TO UNSIGNED LONGWORD (X AST-HANDLER) return UNSIGNED-LONGWORD;

-- Conventional nas for static subtypes of type UNSIGNED LONGWORD,

subtype UNSIGNED 1 is UNSIGNED LONGWORD range 0 2"* 1-1;
subtype UNSIGNED 2 is UNSIGNED LONGNORD range 0 2"* 2-1;
subtype UNSIGNED 3 is UNSIGNED LONGNORD range 0 2"* 3-1;
subtype UNSIGNED 4 is UNSIGNED LONGWORD range 0 .. 2" 4-1;
subtype UNSIGNED 5 is UNSIGNED LONGWORD range 0 .. 2" 5-1;
subtype UNSIGNED -6 is UNSIGNED LONGWORD range 0 2"* 6-1;
subtype UNSIGNED7 is UNSIGNED LONGWORD range 0 2"* 7-1;
subtype UNSIGNED 8 is UNSIGNED LONGWORD range 0 2"* 8-1;
subtype UNSIGNED 9 is UNSIGNED LONGWORD range 0 1"* 9-1;
subtype UNSIGNED 10 is UNSIGNED I.ONGWORD range 0 2**10-1;
subtype UNSIGNED 11 is UNSIGNED LONGWORD, range 0 2**11-1;
subtype UNSIGNED 12 is UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED 13 is UNSIGNED LONGWORD range 0 2"*13-1;
subtype UNSIGNED-14 is UNINDLNWR range 0 2**14-1;
subtype UNSIGNED-15 is UNSIGNED LONGWORD range 0 2"*15-1;
subtype UNSIGNED-16 is UNSIGNED LONGUORD range 0 2"*16-1;
subtype UNSIGNED-17 is UNSIGNED LONGWORD range 0 .. 2*17-1;
subtype UNSIGNED -18 is UNSIGNED LONGWORD range 0 .. 2"18-1;
subtype UNSIGNED-19 is UNSIGNED LONGWORD range 0 2**19-1;
subtype UNSIGNED-20 is UNSIGNED LONGWORD range 0 .. 2*20-1;
subtype UNSIGNED 21 is UNSIGNED -LONGWORD range 0 2"*21-1;
subtype UNSIGNED 22 is UNSIGNED -LONGWORD range 0 2**22-1;
subtype UNSIGNED-23 is UNSIGNED -LONGWORD range 0 .. 2"23-1;
subtype UNSIGNED 24 is UNSIGNED LONGNORD range 0 2"*24-1;
subtype UNSIGNED 25 is UNSIGNED LONGWORD range 0 2"*25-1;
subtype UNSIGNED 26 is UNSIGNED LONGWORD range 0 2"*26-1;
subtype UNSIGNED 27 is UNSIGNED LONGWORD range 0 2"*27-1;
subtype UNSIGNED -28 is UNSIGNED LONGWORD range 0 2"*28-1;
subtype UNSIGNED29 is UNSIGNED LONGWORD range 0 2**29-l;
subtype UNSIGNED -30 is UNSIGNED LONGWORD range 0 2**30-1;
subtype UNSIGNED-31 is UNSIGNED LONGWORD range 0 .. 2*31-1;

-- Function for obtaining global symbol values

function nI30RT VALUE (SYMBOL :STRING) return UNSIGNED LONGWORD;

-- VAX device and process register operations

function READ-REGISTER (SOURCE UNSIGNED-BYTE)
return UNSIGNED-BYTE;

function READ-REGISTER (SOURCE UNSIGNED-WORD)
return UNSIGNED-WORD;

function READ-REGISTER (SOURCE UNSIGNED LONGUORD)
return UNSIGNED LONGWORD;

F.3.1 The Package System on VMS Systems 2-6

Implementation-Dependent ChamctertsUcs

pzocedue WRITE REGISTER(SOURCE UNSIGNED BYTE;
TARGET out UNSIGNED BYTE);

procedure WRITEREGISTER(SOURCE UNSIGNED WORD;
TARGET out UNSIGNED WORD);

procedue WRITE-REGISTER (SOURCE UNSIGNED LONGWORD;
TARGET out UNSIGNEDLONGWORD);

function MFPR (REG-NUMBER INTEGER) retuzn UNSIGNEDLONGWORD;
procedure MTPR. (REG NUMBER INTEGER;

SOURCE UNSIGNEDLONGWORD);

VAX interlocked-instruction procedures

procedure CLEAR INTERLOCKD (BIT in out BOOLEAN;
OLD VALUE out BOOLEAN);

procedure SETINTERLOCXD (BIT in out BOOLEAN;
OLD VALUE out BOOLEAN);

type ALIGNED WORD is
record

VALUE : SHORT INTEGER;
end record;

for ALIGNED WORD use
record

at mod 2;
end record;

procedure ADDINTERLOCZED (ADDEND in SHORT INTEGER;
AUGEND in out ALIGNED WORD;
SIGN out INTEGER);

type INSQSTATUS is (OK NOT FIRST, FAIL NO LOCK, OKFIRST);
type REMQSTATUS is (OK NOT EMTY, FAIL NO LOCK,

OETY, FAILWAS-E-TY);

procedure INSQHI (ITEM in ADDRESS;
HEADER in ADDRESS;
STATUS out INSQ STATUS);

procedure REMQHI (HEADER in ADDRESS;
ITEM out ADDRESS;
STATUS out REMQSTATUS);

procedure INSQTI (ITEM in ADDRESS;
HEADER in ADDRESS;
STATUS out INSQ.STATUS);

procedure REMQTI (HEADER in ADDRESS;
ITEM out ADDRESS;
STATUS out REMO STATUS);

private

-- Not shown

end SYSTEM;

2-7 The Package System on VMS Systems F.3.1

Implementation-Dependent Characteristics

F.3.2 The Package System on ULTRIX Systems
package SYSTEM is

typ NAME is (RISC ULTRIX);
for NAME use (RISCbLTRIX => 6);

SYSTEM NAME : constant NAM :- RISC ULTRIX;
STORAGE UNIT : constant :-8;
MhMORY SIZE : constant :- 2"31-1;
MAX InT : constant :- 2**31-1;
M33INT : constant :-(2*31);
Mi0-DIGITS : constant : 15;
MAX-MANTISSA : constant :-31;
FINE DELTA : constant :- 0*(-31)
TIC- constant :- 3.906 * 10.0"*(-3);

subtype PRIORITY is INTEGER range 0 .. 15;

-- Address type

type ADDRESS is private;

ADDRESS ZERO : constant ADDRESS;

function "+" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;
function "4" (LEFT INTEGER; RIGHT ADDRESS) return ADDRESS;
function "-" (LEFT ADDRESS; RIGHT ADDRESS) return INTEGER;
function "-" (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;

function -" (LEFT, RIGHT ADDRESS) return BOOLEAN;
-- function "/-" (LEFT, RIGHT ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function "<-" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT ADDRESS) return BOOLEAN;
function ">-" (LEFT, RIGHT ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "-" and "/-" are already available and
-- do not have to be e.licitly defined

generic
type TARGET is private;

function FETCH FROM ADDRESS (A ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGN TOADDRESS (A ADDRESS; T : TARGET);

-- DEC Ada floating point type declarations for the I=EE
-- floating point data types

type IEEE SINGLE FLOAT is (digits 6);
type IEE-DOUB L-FLOAT is (digits 15);

F.3.2 The Package System on ULTRIX Systems 2-8

Implemientation-Dependent Characteristics

type TYPE-CLASS is (TYPE CLASS ENUMERATION,
TYPE CLASSINTEGER,
TYPE CLASSFIXED_POINT,
TYPE CLASS FLOATING-POINT,
TYPE CLASS ARRAY,
TYPE CLASSRECORD,
TYPE CLASSACCESS,
TYPE CLASS TASK,
TYPECLASS ADDRESS);

-- Non-Ada exception

NON ADA ERROR :exception;

-- ardware-oriented types and functions

type BIT ARRAY is array (INTEGER range V>) of BOOLEAN;
pragna PACK (BIT ARRAY);

subtype BIT AP.RAY 8 is BIT -ARRAY (0 7);
subtype BIT ARA 6 is BIT -ARRAY (0 15);
subtype BIT-ARRAY-32 is BIT -ARRAY (0 31);
subtype BIT -ARR.AY -64 is BIT-ARRAY (0 63);

type UNSIGNED-BYTE is range 0 .. 255;
for UNSIGNED-BYTE'SIZE use 8;

function "not" (LEFT UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "and" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNED -BYTE;
function "xor" (LEFT, RIGHT UNSIGNEDBYTE) return UNSIGNED-BYTE;

function TO BNINDBT (X BI ARRAY 8) return UNSIGNEDBYE
funtio T-BIARRAY-8 (X :UNS IGNEDBYTE) return BIT ARRAY_8;

type UNSIGNED-BYTE ARA is array (INTEGER range w>) of UNSIGNED-BYTE;

type UNSIGNED-WORD is range 0 .. 65535;
for UNSIGNED-WORD'SIZE use 16;

function "not" (LEFT UNSIGNED WORD) return UNSIGNED WORD;
function "and" (LEFT, RIGHT UNSIGNED WORD) return UNSIGNED WORD;
function "or" (LEFT, RIGHT UNSIGNED -WORD) return UNSIGNED WORD;
function "xor" (LEFT, RIGHT UNSIGNED-WORD) return UNSIGNED-WORD;

function TO UNINE WOR (X BTARRAY 16) return UNSIGNED WORD;
fuctonTO- BTARRAY 16 (X UNSIGNED WORD) return BIT ARRAY 16;

type UNSIGNED WORD- ARY is array (INTEGER range w>) of UNSIGNED-WORD;

type UNSIGNED -LONGWORD is range MN -IN . MAX lINT;
for UNSIGNEDLONGWORD' SIZE use 32;

function "not" (LEFT UNSIGNED -LONGWORD) return UNSIGNED LONGWORD;
function "and" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "or" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;
function "xor" (LEFT, RIGHT UNSIGNED LONGWORD) return UNSIGNED LONGWORD;

2-9 The Pack~age System on ULTRIX Systems F.3.2

Implementaton-Dp~dent Characteristics

function TO-UNSIGNED LONGRORD (X BIT-ARRAY32
return UNSIGNED LONGWORD;-

function TO-BIT-APRAY-32 (X :UNSIGNED LONGWORD) return BIT IAPRAX 32;

type UNSIGNED LONGWORD-ARRAY is
array (INTEGER range <>) of UNSIGNED LONGWORD;

type UNSIGNED QUADWORD is record
LO UNSIGNED LONGWOP.D;
Li UNSIGNED LONGWORD;
end record;

for UNSIGNED QUAD WORD' SIZE use 64;

function "not" (LEFT UNSIGNED QUADWORD) return UNSINDQUADWORD;
function "and" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "or" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "xor" (LEFT, RIGHT UNSIGNED QUADWORD) return UNSIGNED QUADWORD;

function TO IUNSIGNED QUADWORD (X :BIT ARRAY64)
return UNSIGNED QUADWORD;

function TO-BIT-ARRAY-64 (X UNSIGNED QUADWORD) return BIT-ARRAY 64;

type UNSIGNED QUADWORD-ARRAY is
array (INTEGER range <>) of UNSIGNED QUADWORD;

function TO-ADDRESS (X INTEGER) return ADDRESS;
function TO-ADDRESS (X UNSIGNED LONGWORD) return ADDRESS;
function TO -ADDRESS (X (universal -integerl) return ADDRESS;

function TO-INTEGER (X ADDRESS) return INTEGER;
function TO-hNSIGNED LONGWORD (X ADDRESS) return UNSIGNED LONGWORD;

-- Conventional names for static subtypes of type UNSIGNED LONGWORD

subtype UNSIGNED 1 is UNSIGNED LONGWORD range 0 2** 1-1;
subtype UNSIGNED-2 is UNSIGNED LONGWORD range 0 2** 2-1;
subtype UNSIGNED-3 is UNSIGNED LONGWORD rang* 0 2** 3-1;
subtype UNSIGNED 4 is UNSIGNED -LONGWORD range 0 2** 4-1;
subtype UNSIGNED 5 is UNSIGNED -LOUGNORD range 0 2** 5-1;
subtype UNSIGNED 6 is UNSIGNED -LONGWOD range 0 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED -LONGWORD range 0 2** 7-1;
subtype UNSIGNED 8 is UNSIGNED -LONGWORD rang. 0 2** 8-1;
subtype UNSIGNED 9 is UNSIGNED LONGWORD range 0 2** 9-1;
subtype UNSIGNED-10 is UNSIGNED LONGWORD range 0 2**10-1;
subtype UNSIGNED -11 is UNSIGNEDLONGWO R range 2*11-l;
subtype UNSIGNED-12 is UNSIGNED LONGWORD range 0 2**12-1;
subtype UNSIGNED 13 is UNSIGNED LONGWORD range 0 2**13-1;
subtype UNSIGNED-14 is UNSIGNED LONGWORD range 0 2"*14-l;
subtype UNSIGNED 15 is UNSIGNED LONGWORD range 0 2**15-1;
subtype UNSIGNED-16 is UNSIGNED LONGWORD range 0 2**16-1;
subtype UNSIGNED 17 is UNSIGNED LONGWORD range 0 2**17-1;
subtype UNSIGNED 18 is UNSIGNED -LONGWORD range 0 2**18-1;
subtype UNSIGNED 19 is UNSIGNED LONGWORD range 0 2**19-1;
subtype UNSIGNEDZ20 is UNSIGNED LONGWORD range 0 2**20-1;

F.3.2 The Package System on ULTRIX Systems 2-10

Implementation-Dependent Characteristics

subtype UNSIGNED 21 is UNSIGNED LONGWORD range 0 2**21-1;
subtype UNSIGNED-22 is UNSIGNED-LONGWORD range 0 2**22-1;
subtype UNSIGNED -23 is UNSIGNED-LONGWORD range 0 2**23-1;
subtype UNSIGNED -24 is UNSIGNED-LONGWORD range 0 2**24-1;
subtype UNSIGNED 25 is UNSIGNED-LONGWORD range 0 2"'25-I;
sub" UNSIGNED-26 is UNSIGNED-LONGWORD range 0 2**26-1;
subtype UNSIGNED 27 is UNSIGNED-LONGWORD range 0 2**27-1;
subtype UNSIGNED 28 is UNSIGNED-LONGWORD range 0 2**28-1;
subtype UNSIGNED -29 is UNSIGNED-LONGWORD range 0 2**29-1;
subtype UNSIGNED -30 is UNSIGNED-LONGWORD range 0 2**30-1;
subtype UNSIGNED-31 is UNSIGNED-LONGWORD range 0 2**31-1;

-- Function for obtaining global symbol values

function IMPORTVALUE (SYMBOL : STRING) return UNSIGNED LONGWORD;

private

-- Not shown

end SYSTEM;

F4 Restrictions on Representation Clauses
The representation clauses allowed in DEC Ada are length, enumeration,
record representation, and address clauses.

In DEC Ada, a representation clause for a generic formal type or a type that
depends on a generic formal type is not allowed. In addition, a representation
clause for a composite type that has a component or subcomponent of a generic
formal type or a type derived from a generic formal type is not allowed.

F.5 Restrictions on Unchecked Type Conversions
DEC Ada supports the generic function UNCHECIKED_CONVERSION with
the following restrictions on the class of types involved:

* The actual subtype corresponding to the formal type TARGET must not be

an unconstrained array type.

* The actual subtype corresponding to the formal type TARGET must not be

an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKEDCONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

2-11 Restrictions on Unchecked Type Conversions F.5

Implementaton-Dependent CharacterisUcs

If the size of the source value is greater than the size of the target subtype,
then the high order bits of the value are ignored (truncated); if the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

DEC Ada does not allocate implementation-dependent components in records.

F.7 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In DEC Ada, values of
type SYSTEM-ADDRESS are interpreted as virtual addresses in the machine's
address space.

DEC Ada allows address clauses for objects (see 13.5).

DEC Ada does not support interrupts as defined in section 13.5.1.

On VMS systems, DEC Ada provides the pragma AST .ENTRY and the
AST-ENTRY attribute as alternative mechanisms for handling asynchronous
interrupts from the VMS operating system (see 9.12a).

.8 Implementation-Dependent Characteristics of
Input-Output Packages

In addition to the standard predefined input-output packages
(SEQUENTIAL-IO, DIRECT-IO, TEXTIO, and IOEXCEPTIONS), DEC Ada
provides packages for handling sequential and direct files with mixed-type
elements:

* SEQUENTIALMIXEDJO (see 14.2b.4).

* DIRECTMIXEDIO (see 14.2b.6).

DEC Ada does not provide the package LOW_LEVELIO (except as part of
the implementation of the other input-output packages, and in a nonstandard
form).

F.S Implementation-Dependent Characteristics of Input-Output Packages 2-12

Implementaton.Dependent Characteristics

As specified in section 14.4, DEC Ada raises the following language-defined
exceptions for error conditions that occur during input-output operations:
STATUSERROR, MODEERROR, NAME-ERROR, USE-ERROR, END_
ERROR, DATA_ERROR, and LAYOUTERROR. DEC Ada does not raise the
language-defined exception DEVICE-ERROR, device-related errors cause the
exception USEERROR to be raised.

The exception USEERROR is raised under the following conditions:

* If the capacity of the external file has been exceeded.

* In all CREATE operations if the mode specified is INFILE.

* In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package.

* In all CREATE, OPEN, DELETE, and RESET operations if, for the
specified mode, the environment does not support the operation for an
external fie.

* In all NAME operations if the file has no name.

* In the SET_LINE_LENGTH and SETPAGELENGTH operations on text
files if the lengths specified are inappropriate for the external file.

" In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file.

DEC Ada provides other input-output packages that are available on specific
systems. The following sections outline those packages. The following sections
also give system-specific information about the overall set of DEC Ada
input-output packages and input-output exceptions.

F.8.1 DEC Ada Input-Output Packages on VMS Systems
On VMS systems, the DEC Ada predefined packages and their operations are
implemented using VMS Record Management Services (RMS) file organizations
and facilities. To give users the maximum benefit of the underlying VMS RMS
input-output facilities, DEC Ada provides the following VMS-specific packages:

* RELATIVE-1O (see 14.2a.3).

" INDEXEDIO (see 14.2a.5).

" RELATiVEMIXEDJO (see 142b.8).

* INDEXED_MIEDIO (see 14.2b.10).

* AUX_10_EXCEPTIONS (see 14.5a).

2-13 DEC Ada Input-Output Packages on VMS Systems F.8.1

Implementation-Dependent Characteristics

The following sections summarize the implementation-dependent characteris-
tics of the DEC Ada input-output packages. The VAXAda Run-7ime Reference
Manual discusses these characteristics in more detail.

F.8.1.1 Interpretation of the FORM Parameter on VMS Systems
On VMS systems, the value of the FORM parameter may be a string of
statements of the VMS Record Management Services (RMS) File Definition
Language (FDL), or it may be a string referring to a text file of FDL statements
(called an FDL file).

FDL is a special-purpose VMS language for writing file specifications. These
specifications are then used by DEC Ada run-time routines to create or open
files. See the VAX Ada Run-Tme Reference Manual for the rules governing the
FORM parameter and for a general description of FDL. See the Guide to VMS
File Applications and the VMS File Definition Language Facility Manual for
complete information on FDL.

On VMS systems, each input-output package has a default string of FDL
statements that is used to open or create a file. Thus, in general, specification
of a FORM parameter is not necessary: it is never necessary in an OPEN
procedure; it may be necessary in a CREATE procedure. The packages for
which a value for the FORM parameter must be specified in a CREATE
procedure are as follows:

• The packages DIRECTJO and RELATIVEJO require that a maximum
element (record) size be specified in the FORM parameter if the item with
which the package is instantiated is unconstrained.

* The packages DIRECTMIXED_-O and RELATIVE_MIXEDIO require
that a maimunm element (record) size be specified in the FORM parameter.

* The packages INDEXED-1O and INDEXEDMIXEDJO require that
information about keys be specified in the FORM parameter.

Any explicit FORM specification supersedes the default attributes of the
governing input-output package. The VAX Ada Run-Thne Reference Manual
describes the default external file attributes of each input-output package.

The use of the FORM parameter is described for each input-output package in
chapter 14. For information on the default FORM parameters for each DEC
Ada input-output package and for information on using the FORM parameter
to specify external file attributes, see the VAXAda Run-Thme Reference
Manual. For information on FDL, see the Guide to VMS File Applications
and the VMS File Definition Language Facility Manual.

Interpretation of the FORM Parameter on VMS Systems F.8.1.1 2-14

Implementation-Dependent Characteristics

F.8.1.2 Input-Output Exceptions on VMS Systems
In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on VMS systems:
* The DEC Ada exceptions LOCK-ERROR, EXISTENCEERROR, and KEY_

ERROR are raised for relative and indexed input-output operations.
* The exception USEERROR is raised as follows in relative and indexed

files:

- In the WRITE operations on relative or indexed files if the element in
the position indicated has already been written.

- In the DELETEELEMENT operations on relative and indexed files if
the current element is undefined at the start of the operation.

- In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes.

* The exception NAMEERROR is raised as specified in section 14.4: by a
call of a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. On VMS
systems, the value of a NAME parameter can be a string that denotes a
VMS fie specification or a VMS logical name (in either case, the string
names an external file). For a CREATE procedure, the value of a NAME
parameter can also be a null string, in which case it names a temporary
external file that is deleted when the main program exits. The VAXAda
Run-Time Reference Manual explains the naming of external files in more
detail.

* The exception LAYOUTERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value returned exceeds
COUNT' LAST. The exception LAYOUTERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUT-ERROR is raised by GET-ITEM if no more items can be read
from the file buffer, it is raised by PUTJTEM if the current position
exceeds the file buffer size.

2-15 Input-Output Packages on ULTRIX Systems F8.2

Implementation-Dependent Characteristics

F.8.2 Input-Output Packages on ULTRIX Systems
On ULTRIX systems, the DEC Ada predefined packages and their operations
are implemented using ULTRIX file facilities. DEC Ada provides no additional
input-output packages specifically related to ULTRIX systems.

The following sections summarize the ULTRIX-specific characteristics of the
DEC Ada input-output packages. The DEC Ada Run-1me Reference Manual
for ULRI Systems discusses these characteristics in more detail.

F.8.1 Interpretation of the FORM Parameter on ULTRIX Systems
On ULTRIX systems, the value of the FORM parameter must be a character
string, defined as follows:

string ::- "[field {,field)]"

field ::, fieldid -> field-value

field id : BUFFER SIZE I ELEMENT SIZE I FILE DESCRIPTOR

field value : digit -{digit)

Depending on the fields specified, the value of the FORM parameter may
represent one or more of the following-.

" The size of the buffer used during file operations. The field value specifies
the number of bytes in the buffer.

" The maximum element size for a direct file. The field value specifies the
marilmum number of bytes in the element.

* An ULTRIX file descriptor for the Ada file being opened. The ULTRIX file
descriptor must be open.

If the file descriptor is not open, or if it refers to an Ada file that is
already open, then the exception USE-ERROR is raised. Note that the
file descriptor option can be used only in the FORM parameter of an OPEN
procedure.

Each input-output package has an implementation-defined value form string
that is used to open or create a file. Thus, in general, specification of a FORM
parameter is not necessary. The packages for which a value for the FORM
parameter must be specified in a CREATE procedure are as follows:

* The package DIRECTJO requires that a maximum element size be
specified in the FORM parameter if the item with which the package is
instantiated is unconstrained.

* The package DIRECTMIXEDIO requires that a maximum element size
be specified in the FORM parameter.

Interpretation of the FORM Parameter on ULTRIX Systems F.B.2.1 2-16

Implementation-Dependent Characteristics

The use of the FORM parameter is described for each input-output package in
chapter 14. For information on using the FORM parameter to specify external
file attributes, see the DEC Ada Run-7me Reference Manual for ULTRIX
Systems.

F.8.2.2 Input-Output Exceptions on ULTRIX Systems
In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on ULTRIX systems:

The exception NAMEERROR is raised as specified in section 14.4: by a
call of a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. On ULTRIX
systems, the value of a NAME parameter can be a string that denotes an
ULTRIX file specification. For a CREATE procedure, the value of a NAME
parameter can also be a null string, in which case it names a temporary
external file that is deleted when the main program exits. The DEC Ada
Run-2Tme Reference Manual for ULTRIX Systems explains the naming of
external files in more detail.

The exception LAYOUT-ERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value returned exceeds
COUNT' LAST. The exception LAYOUTERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUT FRROR is raised by GET rr-FM if no more items can be read
from the file buffer, it is raised by PUT_ITEM if the current position
exceeds the file buffer size.

F.9 Other Implementation Characteristics
Implementation characteristics relating to the definition of a main program,
various numeric ranges, and implementation limits are summarized in the
following sections.

F.9.1 Definition of a Main Program
DEC Ada permits a library unit to be used as a main program under the
following conditions:

* If it is a procedure with no formal parameters.

On VMS systems, the status returned to the VMS environment upon
normal completion of the procedure is the value 1.

On ULTRIX systems, the status returned to the ULTRIX environment
upon normal completion of the procedure is the value 0.

2-17 Definition of a Main Program F.9.1

Implementation-Dependent Characteristics

* If it is a function with no formal parameters whose returned value is of
a discrete type. In this case, the status returned to the operating-system
environment upon normal completion of the function is the function value.

* If it is a procedure declared with the pragma EXPORT_VALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the operating-system environment
upon normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the pragma
EXPORT_.VALUED_PROCEDURE returns a discrete value whose size is less
than 32 bits, the value is zero- or sign-extended as appropriate.

F.9.2 Values of Integer Attributes
The ranges of values for integer types declared in the package STANDARD are
as follows:

Systems on which It
Integer type Range applies

SHORTSHORT_INTEGER -128.. 127 All
SHORT_INTEGER -32768.. 32767 All
INTEGER -2147483648.. 2147483647 AH

F9.2 Values of Integer Attributes 2-18

Implementatlon-Dependent Characteristics

For the applicable input-output packages, the ranges of values for the types
COUNT and POSITIVE_.COUNT are as follows:

COUNT 0.. INTEGER' LAST
POSITIE..COUNT 1 .. INTEGER' LAST

For the package TEXTJO, the range of values for the type FIELD is as follows:

FIELD 0.. INTEGER' LAST

F.9.3 Values of Floating Point Attiributes
DEC Ada provides a number of predefined floating point types, as shown in the
following table:

Systems
on which It

Type Represntton applies Section

FLOAT F-.floating VMS 3.5.7
IEEE single float ULTRIlC

LONG-FLOAT D..floating or G-.Aoating VMS 3.5.7
IEEE double float ULTRIX~

LONG-.LONGJFLOAT H..floating VMS 3.5.7

F..FLOAT F...loating VMS 3.5.7

D_.FLOAT D-.floating VMS 3.5.7

G-FLOAT G..floating VMS 3.5.7

H-FLOAT H-floating VMS 3.5.7

IEEE...SINGLE-.FLOAT IEEE single float ULTRIXC 3.5.7

IEEE-.DOUBLE-YLOAT IEEE- double float ULTREX 3.5.7

The values of the floating point attributes for the different floating point
representations appear in the following tables.

P.9.3.1 Fjiloatlng Characteristics

_fjloatlng value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 6

MANTISSA 21

2-19 F.9.3.1 F floating Characteristics

Implementation-Dependent Chamacteristics

Fjoating value and approximate decimal equivalent
Attribute (where applicable)

EMAX 84
EPSILON 1600. 1000-.000#e-4

approximately 9.536743r-0

SMALL 1600.8000..000#e-21
approximately 2.58494E-26

LARGE 16#0.FFF7FSO..21
approximately 1.93428E.25

SAFE-.EMAX 127

SAFE-.SMALL 160.1000...00#"l
approximately 2.938743r-39

SAFE-.LARGE 16*0.7FFF.FCO#e+i32
approximately 1.70141E+38

FIRST -16*0. 7FFF..FF8#..32
approximately -1.70141E+38

LAST 160.7FFPFF6...32
approximately 1.70141E+38

MACHINE-RADIX 2

MACHINE-.MANTISSA 24

MACHLINE-.EMAX 127

MACHINE-.EMIN -127
MACHXNE_.ROUNDS True

MACHIINE-.OVEEFLOWS True

F.9.3.2 Djiloating Characteristics

D fioating value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 9

MANTISSA 31
EMAX 124

EPSILON 1600.4000.0000..000...000#.--7
approximately 9.3132257461548E-10

Djloating Characteristics F.9.3.2 2-20

Implementation-Dependent Characteristics

Djoating value and approximate decimnal equivalent
Attribute (where applicable)

SMALL 160.8000_0000)000Q0ooo.-31
approximately 2.3509887016446E-38

LARGE 160.FFPYFFE..O0O...O00#e+31
approximately 2.1267647922655E+37

SAF&_EMAX 127
SAFE_.SMALL 1640.1000.0000..000.000#.-31

approximately 2.9387358770557E.-49
SAFE-.LARGE 16#0.7FFFFFOOO0..00#.+32

approximately 1.7014118338124E+38
FIRST -160.7FFFYFFF.FFFF.F'F8#e+32

approximately -L7014118346047E.38
LAST 1640.7FFFFFFFFFF."S4e432

approximately 1.7014118346047E+38
MACHEINE-.RADIX 2

MACHIINE-.MANTISSA. 56

MACHINE-.EMAX 127
MACHINE..EMIN -127

MACKINE.-ROUNDS True

MACHINE.OVERFLOWS True

F.9.3.3 Gjfloatlng Characteristics

Gjfloating value and approximate decimnal equivalent
Attribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 164040000.0000j000j0e-12
approximately 8.881784197001E-16

SMALL 160.8000)000..9000...O0#e-51i
approximately 1.944692274332E-62

LARGE 16#0.FFFFFFFFFFF.E#*+51
approximately 2.571100870814E+61

2-21 F.9.3.3 Gjfloating Characteristics

Implementation-Dependent Characteristics

G.loating value and approximate decimal equivalent
Attribute (where applicable)

SAFEEMAX 1023

SAFESMALL 16#0.1000_0000__000._00#e-255
approximately 5.562684646268F.-309

SAFE-LARGE 16*0.7FFF_FFFF_FFFF_F0#e+256
approximately 8.988465674312E+307

FIRST -16#0.7FFFFFFFF_FC#+256
approximately -8.988465674312E+307

LAST 16#0. 7FFFFFFFFFFFFCe+256
approximately 8.988465674312E+307

MACHINERADIX 2

MACHINEMANTISSA 53

MACHINE-EMAX 1023

MACHINEEMIN -1023

MACHINE_ROUNDS True
MACHINE..OVERFLOWS True

F.9.3.4 H.floating Characteristics

H floating value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 33

MANTISSA 111

EMAX 444

EPSILON 16#0.4000_0000_00_00000_00000000_0000_0#..27
approximately 7.7037197775489434122239117703397E-34

SMALL 1680.8000_0000_0000_0000.0000000000000e-111
approximately 1.1006568214637918210934318020936E-134

LARGE 160.FFFFF.fFFFF..FFFFFFFFFFFE O#e+111
approximately 4.5427420268475430659332737993000E+ 133

SAFEEMAX 16383

SAFE-SMALL 1680.10000000_0000_OO0_000_0000_0000_0#-4095
approximately 8.4052578577802337656566945433044E-4933

H.floating Characteristics F.9.3.4 2-22

Implementation-Dependent Characteristics

Hfloating value and approximate decimal equivalent
Attribute (where applicable)

SAFE-LARGE 1600.7FFFFFFFF FFFFFFFFTFFF F0#e+4096
approxmately 5.9486574767861588254287966331400E+4931

FIRST -160.7FFFYF'FFFF7FFFFF.FFFFFFFChe w4096
approximately -5.9486574767861588254287966331400E+4931

LAST 160.7FFFFFFFFFFFFFFFFFFFFFFFFFFFC#e+4096
approximately 5.9486574767861588254287966331400E+4931

MACHINE-RADIX 2
MACHINE-MANTISSA 113

MACI EEMAX 16383

MACHINEEMIN -16383
MACHINE-ROUNDS True

MACHINEOVERFLOWS True

F.9.3.5 IEEE Single Float Characteristics

IEEE single float value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 6
MANTISSA 21

EMAX 84

EPSILON 160. 1000ooo#e-4
approximately 9.53674E-07

SMALL 16#0.8000_000e-21
approximately 2.5849E-26

LARGE 160.FFFF00E+21
approximately 1.93428E+25

SAFE-EMAX 125

SAFE-SMALL
approximately 1.17549E-38

SAFE-LARGE
approximately 4.25353E+37

FIRST
approximately -3.40282E+38

2-23 19.3.5 IEEE Single Float Characteristics

Implementation-Dependent Chairacterlstlcs;

IEEE single float valu, and approximate decimal equivalent
Attribute (where applicable)

LAST
approximately 3.40282E+38

MACHINE_.RADIX 2

MACHINE_.MANTISSA 24

MACINE..EMAX 128

MACHINEIl -125

MACHINE-RQUNDS True

MACH3INE-.OVERFLOWS True

P.9.3.6 IEEE Double Float Characteristics

IEEE double float value and approximate decimal equivalent
Attribute (where applicable)

DIGITS 1

MANTISSA 51
EMAX 204

EPSILON
approximately 8.8817841970012E--16

SMALL
approximately 1.9446922743316E-62

LARGE
approximately 2.57110087081"4E+61

SAFE..EMAX 1021

SAFE-.SMALL
approximately 2.22507385850720E-308

SAFE-LARGE
approximately 2.2471164185779E+307

FIRST
approximately -1.7976931348623E+308

LAST
approximately 1.7976931348623E+308

MACHM-R..ADIX 2

MACIHtNE-v[ANTISSA 53

IEEE Double Float Characteristics P.9.3.6 2-24

Implementation-Dependent Chamcteristlcs

IEEE double float value and approximate decimal equivalent
Attlrbute (where applicable)

MACHEINEEMAX 1024
MACHINEEMIN -1021

MACINE._ROUNDS True

MACHINE_OVERFLOWS True

F.9.4 Attributes of Type DURATION
The values of the signiicant attributes of the type DURATION are as follows:

DURATION' DELTA 0.0001
DURATION' SMALL 2-14

DURATION' FIRST -131072.0000

DURATION' LAST 131071.9999
DURATION' LARGE 131071.9999

F.9.5 Implementation Limits

DEC
systems
on which It

Umit applies Value

Maximum number of formal parameters in a All 32
subprogram or entry declaration that are of an
unconstrained record type

Maximum identifier length (number of characters) All 255
Maximum number of characters in a source line All 255
Maximum number of discrimmants for a record type All 245
Maximum number of formal parameters in an entry or All 246
subprogram declaration
Maximum number of dimensions in an array type All 255
Maximum number of library units and subunits in a All 4095
compilation closure1

1he compilation louee of a given unit is the total sat of units that the given unit depends on,
directly and indirectly.

2-25 Implementation Limits F.9.5

Implementation-Dependent Characteristics

DEC

on which It
Umnit apple Value
Maximum number of library units and subunits in an All 16383
execution closure2

Maximum number of *bact@ declared with the pragma All 32757
COMMON._OBJECT or PSECT-OBJECT
Maximum number of enumeration literals in an All 65535
enumeraion type definition
Maxmum number of lnes in a source file A 65534
Maximum number of bits in any object A 231 - 1
Maximum size of the static portion of a stack frame A 2"' - 12 *
2Mie cution closurs of a pveu unit is the compdation domen plus nil aaocated. secondary units
(library bodies and subuzuta).

F.9.5 Implementation Limits 2-26

