R T e ey o s .

N | /
BMO-TR-91-26 A D-A24 O

lIllllﬂJIIIIIIIIIIIIHHHIIIIllﬂ”!ll!ll!

Embedded Fault-Tolerant Computer for
Mission Critical Applications

FINAL TECHNICAL REPORT

DTIC

ELECTE gap
" Qy NOV181991{ &

D Prepared for:
Department of the Air Force
Headquarters Ballistic Systems Division
Air Fo -= Systems Command (AFSC)
Norton Air Force Base, CA 92409-6468

Contract No. F04704-89-C-0044

Prepared by:
ary A. Kravetz
Fail-Safe Technology Corporation
Suite 645
5757 Wecst Century Boulevard
Los Angeles, CA 90045-6407

August 1, 1991

Document No. FST91-281-2

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED.

91-15019
CTUELTIT 91 1104 090

This report has been reviewed and is approved for publication.

A

e Moy e S VG
. Moj, 1$4F MM/
e ¢f Project Offiker " Name and Grade Syfefvisor

Gk [A

r Scientist

(

Al

-—

'm

tmnm

i REPORT DOCUMENTATION PAG

BE TN I . R

1. AGENCY JSE O8N0 Loivw D 201 -,

P . - T ..

A

G 1991 * Fimal Nov %é)fidﬁsA'G> T

' EbeBded Fauiv-Tolerant Corputer for Mission Critical T P0LT032890-0044

Applications

Ea "8 Kravetz

T RERIGLEAG pilah T S R R
EESA O Technolog@ C01poxa 4180~ x N

5757 West Centurv Boulevard

Los Angeles, A 90045-6407

. SPONSORING WONTCF NG AGENCY NAMEIS) AND 2D3TRESS 28

BALLISTIC MISSILE ORGANIZATION/SE
NORTON AFB, CA 92403-6468S

BMO-TR-51-26

i
|

|91, SUTPLEWEN ARY Noois

i
‘ IR DTS IS oONTC e :
P ¥2 “pptoved Toi“Publit YéTédke. Distribution is RS
unlimited.

Faf 542 Fachno1oey°Slccessfully designed and tested a low cost fault-tolerant
computer for mission critical applications. This computer is software and hardware
compatible with the IBM PC and is a viable product for both commercial and government
markets. The report defines the research into the requirements for the corputer and
the architectural tradeoffs and the field test results.

5 — T T5. NUMBEA OF PAGES
FaUtBLFI 'é¥¥At, Fail-Safe, Mission Critical Computer, t

Embedded Computer, Ruggedized Computer

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Starca-d Form 238 (Pev 2-§9)

Prey DAG Dy ANG, S°3 368

2ug.t2 ~
A7

o -

BSMO-TR-91-26 FST91-281-2

Table of Contents

1. Scope 1
1.1 Identification 1
1.2 Purpose 1
1.3 Introduction 1
2. System Development 2
2.1 Evolution 2
2.2 Concept and AFproach 3
2.2.1 Fault-tolerance Design Paradigm 3
2.3 System Specification 5
2.3.1 Basic System Description 5
2.3.2 Fault-tolerance Requirements Definition 5
2.3.3 Detection and Recovery Algorithms 9
2.3.4 System Specification Model 11
3. System Brassboard Design 16
3.1 Hardware 16
3.1.1 Hardware Architecture Overview 16
3.2 Software 18
3.2.1 Software System Architecture 18
4. Application Studies 19
5. System Enhancement Studies 21
5.1 Hardware Configuration 21
5.2 Software Configuration 21
5.3 Basic Operating Principles 23
5.3.1 Initialization 24
5.3.2 Error Detection 24
5.3.3 Error Recovery 24
5.3.4 File Server Operation 25
5.3.5 Terminal Server Operation 25
6. Summary Test Report 26
6.1 Tests with Diversified Technology Single Box PC
Compatible Computer System 26
6.2 NASA System (Unisys computers with Novell 286
network software}_I 26
6.3 Tests with Other Hardware 27
6.4 Conclusion 27
7. References 28

Fail-Safe Technology Corp. i

i — JE——

List of Figures

Baselire File-Server Architecture
Baseline EFTC Architecture.
EFTC System Development Process
Data Context Diagram
Control Context Diagram
DFD 0: Fauit-Tolerant File-Server Operation
CED 0: Fault-Tolerant File-Server Operation
DFD 1: Fault Management Process.
CEFD 1: Fault Management Process
DEFD 2: File-Server Process
CED 2: File-Server Process

.................

o O WDt
9 - o W W)

—
W L
™
i/.:ji
%5
O
L g
o, A,
| vy

g A
(]

ot 3
'TJ‘
=5
QE
;"—0:
58
5 g
@ O
o

=

(o}

[¢]

Fail-Safe Technology Corp. it

[

-

——

List of Tables

1 EFTC Failure and Operating States

- [———— ——— -~ -

Fail-Safe Technology Corp. iii

FSTo1-2£1-2

FSTo1-281-2

1. scope

1.1 Identification

This document is the Fira) Report for contract No. F04704~-89-C-0044
entitled Embedded Fault-Tolerant Computer for Mission-Critical Applca-
tions awarded to Fail-Safe Technology Corporation (FST) bty the Ballistic
Missile Office (BMO) under the Air Force Systems Command (AFSC) as
a Phase II Small Business Innovation Research (SBIR) contract.

~
-

1.2 Purpose -

The objective of this effort is to develop an Embedded Fault-Tolerant Com-
puter (EFTC) using a combination of off-the-shelf and custom hardware
and software components. This prototype will then be analvzed in order
to determire the concept feasibility. »

L — - e

1.3 Introduction

- This report summarizes the main activities and results of the EFTC devel-
opment as it has progressed through Phase II. It describes: the develop-
ment of the EFTC system from evolution through hardware and software
design (Section 2); brassboard implementation of hardware and software
(Section 3); and the successful demonstration of generic capabilities as well
as applications (Section 4). In addition, summaries of various ways in
which the system can be enhanced illustrate the flexibility of the design
(Section 5).

.

Fail-Safe Technology Corp. 1

b et

D
on

1-2

FST91-

2. System Development

In this section we describe the way in which the EFTC system was de-
veloped in terms of the underlying software processes and the hardware

architecture.

2.1 Evolution

The first tack of this SBIR eflort was to determine more detailed require-
ments for the EFTC. We started by discussing exdsting and future projects
with Norton BMO perscnnel. After a few briefings to the Rail Garrison
and Small Missile project offices at Norton, we were directed to vendor
of services and systems to Norton. We talked to Rockwell, TRW, GTE,
and Ford Aerospace about the requirements for fault-tolerant computersin

ICBM systems.

The conclusion was that no great needs could be identified for fault-toler-
ance in the missiles because of short missien duration and existing safety
systems. Also, no new ICBM designs are currently {funded or expected in

the near {uture.

Possible requirements for fault-tolerant computers were identified for the
ICBM ground support equipment (GSE), test equipment, and command,
control and communication (C?) systems. The most common need we found
for fault-tolerant computers was for communication control computers us-
ing a PC-class workstation. Solutions not requiring a fault-tolerant com-
puter had been developed for the exdsting equipment, but a fault-tolerant
computer would have been used if it were available.

In looking at the needs of future programs, no new equipment designs
were identified. Programs like Rail Garrison and small ICBMs were based
on existing designs. The conclusion of this study was that there was a
need for fault-tolerant PC-class computers in new ICBM GSE, C3, and test
equipment, but no new equipment was planned for the foreseeable future.

Personnel at BMO suggested we talk to AFSC for possible applications.
The Advanced Program Office at AFSC indicated that few new satellite
programs were planned, and existing programs had all developed solutions
to meet their reliability requirement. The need for fault-tolerant comput-

Fail-Safe Technology Corp. 2

FSTo1-281-2

ers in new programs was primarily in the GSE. In looking at the typical
requirements for GSE, a PC-class workstzation using Intel 386 or 486 pro-
cessors would meet most requirements.

In addition to the requirements of BMO and AFSC, FST locked at other
government and ccmmercial application customers. We determined that
there was a need for a f{ault-tolerant computer at a lower price than the
existing commercial {ault-tolerant computers such as Tandem and Stra-
tus. In addition, users wani‘ed hardware thzt would run low-cost software
developed for the IBM PC-compatible hardware platforms.

In view of those discussions, the decision was made in conjunction with
BMO to develop the EFTC as a fault-tolerant IBM PC-compatible platform
that functions as a network-based file server.

2.2 Concept and Approach

Developing a fault-tolerant computer is not an easy task. The design is
constrained by many factors that results in several tradeoffs while develnp-
ing and meeting a set of requirements. In order to make this task tractable,
we have approached it by using a well-established and systematic design
paradigm for fault-tolerant systems; the next section outlines the steps ia
this paradigm.

2.2.1 Fault-tolerance Design Paradigm

Given a set of system requirements that define the sarxices ¢35 he delivered
and the service boundaries at which service delivery will take place, the key
steps of the paradigm are as follows:

o — . P e o

1. The dependability goals of the system are specified in terms of relia-
bility, availability, maintainability, safety, and so forth. This requires
three steps.

(a) First, the classes of hardware and sofiware faults that are to
be tolerated over the life of the system are explicitly identified.
Fault classes are chosen such that faults that elicit the same error
syndrome are grouped into the same class, thereby reducing the
scope of the eflort.

Fail-Safe Technology Corp. 3

-t o

ooy e

™)

FSTG1-281-2

(b) Second, quantitative goals for the dependability of system ser-
Vices are specified.

(c) Third, the methods for evaluating the dependability actually
attained by the svstem are specified in detail.

The system is partitioned into subsysterms (bhardware, software, com-
munication, interfaces) for implementation, teking into account both
performance and fauit-tolerance.

Error detection and fault diagnosis algorithms for every subsvstem
are selected. The choices of error detestion ard fault diagnosis tech-
niques are guided by the dependability goals. We ascertain that all
relevant fault classes are detectable, and that the probability of timely
detection is adequate.

. State recovery and fault remecval techriques are devised that are in-

voked by the fault signals from fault detection algorithms. Their geal
is to return the system to some level of proper operation or to shut
it down safely. Fault signal invoked recovery is classified into three
classes during the design process:

(a) recovery to original performance (fail-operational);

(b) recovery to degraded performance (fail-soft);
(c) execution of safe shutdown (fail-safe).
A fourth class of recovery algorithms that does not depend on a faill

signal, but maintains original performance by the use of concurrently
active protective-redundancy is also-considered (masking).

. Subsystem fault-tolerance is integrated into the overall system.

An evaluation of the fault-tolerance of the design and its impact on
performance is then performed via a combination of analytic and
simulation modeling.

. A refinement of the design is then carried out. If the initial evalua-

tion demonstrates that the various hardware and software subsystems
fail to meet the primary dependability specification, or if there are

Fail-Safe Technology Corp. 4

FST¢e1-281-2

unequal contnibutions to the overall system dependability, steps 2

tkrough 6 are repeated. The goal of this refinement step is to balance
the protection provided to each subsystem so that the dependability
goal is achieved without a single dominating contrmbutor to nonde-
pencability, and at the lowest cost of additional resources.

2.3 System Specification

The specification of the EFTC Lkardware and software was accomplshed by
using the design paradigm of Section 2.2.1 in conjunction with a structured
developmert methodology 'HaP88]. The design paradigm defines the key
steps of the design and the structured developmert methodology provides
a stylized mechanism for developing and documenting each step. Our ap-
proach is to first define fault-tolerance requirements for the system based
on its dependability goals, and then develop detailed specifications via a
System Specification Model (SSM).

2.3.1 Basic System Description

The following top-level system description is provided here as a basis for
better understanding the system development process and models that fol-
low.

The EFTC provides file-server (FS) functions for workstations in a local-
area network (LAN) environment. The baseline hardwarc architecture is
depicted in Figure 1. Workstations on the LAN may use the file server as an
information repository or to perform other network-wide services such as a
centralized printer. Workstations interface with the file-server by sending
file-server requests across the LAN, and-receive responses in the form of
data or control messages from the file-server.

The file-server runs the Novell Netware operating system, and workstations
interface to it via Novell-compatible client modules that execute locally.

2.3.2 Fault-Tolerance Requirements Definition

In this section we establish the fault-tolerance requirements for the EFTC
system.

Fail-Safe Technology Corp. 5

FST91-281-2

DIMONPIY IDAIDG-O[] ourppseq 1 oy

140G

Lo i

| |

uoneys nones uoneys
-{10M “Yiopm -Yiop

Fail-Safe Technology Corp.

FSTge1-281-2

2.3.2.1 Fault Set Definition. A comprehensive fault model of the sys-
tem was constructed. This model lists all faults that are to be mitigated and
their attributes. To limst the amount of faults that need to be considered,
faults that generate the same error or failure response were grouped into
the same cless; the objective being to “cover” as many faults as pessible
with as few mechanisms as possible.

The basic fau't set was constructed by assuming that the “service bound-
ary” encapsulates the entire system; the service boundary is an imaginary
interface at which service is delivered to a user. Users in this case are
workstations on the network, or an operator that interfaces directly with
the system via a system console. The faults in the set therefore account for
all possible faults within the system that can lead to a failure from a user’s

perspective. This resulted in the following list:

o Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of system power.

o Any permanent fault that results in loss of the CPU.

e Any permanent fault, or any transient or intermittent fault with a
duration greater than 3 seconds, that results in partial or total loss
of the contents of the RAM.

e Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of the ethernet
controller.

e Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of the SCSI disk

controller.

e Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of critical infor-
mation on a hard-disk that directly supports file-server operations.

The decomposition of this basic fault set into subclasses depends on the
next step in the paradigm, whicl is to partition the system into subsystems
based on system-level fault-tolerance and other requirements.

Fail-Safe Technology Corp. 7 .

FSTo1-281-2

2.3.2.2 Dependability Goals. The fault-tolerant design of the EFTC
depends on its dependability goals. Since it is going to be used in an en-
vironment where manual repair is pessible, we felt that an availability re-
quirement was more imp..tant than a reliability requirement. Whereas
reliability defines the probability of correct service delivery for a specified
“mission time,” availability defines the long-term or steady-state probabil-
ity of correct service delivery. In other words, we {elt it was more important
that the system be operational a large portion of time, even though it may
suffer infrequent outages due to failures. The availability requirement de-
fines the percentage of time the system must be operztional.

For this effort, steady-state availability, 4,,, was defined as:

, ___ MTIF
“# = MTIR + MIIF

where MTTF = 1/A and MTTR = 1/y4, and A and p represent constant
failure and repair rates, respectively. MTTF is defined as the Mean Time
to Failure, and MTTR the Mean Time to Repair. Given this definition,
A,, was determined in the following way: Of all the faults in the basic fault
set (see Section 2.3.2.1), our experience with PC-AT-class machines in a
file-server configuration as depicted in Figure 1 is that hard-disk failures is
the dominant failure class with an approximate MTTF of 5000 hours. Our
experience also is that after a hard-disk failure, the MTTR is anywhere from
2 to 8 hours with a mean of about 4 hours, depending on parts availability.
If spare disks are on-hand, then the repair time is about 2 hours to replace
the disk and perform a restoration from backup volumes. Given an MTTF

" of 5000 hours and an MTTR of 2 hours, A,, for the baseline non-redundant

configuration is 0.996 (99.6%). Our goal was to improve this availability
considerably. Since a hard-disk is a prepackaged unit, there is no way to
improve its MTTF directly. However, effective MTTF of the disk can be
improved via replication of the hard-disk unit. For example, if a second
(physically identical) hard-disk is provided, and if it has a probability of
failure independent of the first hard-disk, then the effective MTTF is the
sum of the MTTF's of both hard-disks. This assumes, of course, that both
hard-disks are configured so that they represent a single logical hard-disk.
The second way to improve the availability is to reduce the MTTR. We
felt that it was possible to reduce the MTTR from two hours to at most

Fail-Safe Technology Corp. 8

At -

R e

FST91-281-2

a few minutes through the judicious application of fault-tolerance. For
example, if the MTTF is reduced to 2500 hours—to be conservative—and
the MTTR to 5 minutes, then .4,, improves to 0.99987. On the basis of
this analvsis, our goal for .4,, was set to > 0.2999 (1his roughly corresponds
to at most 17.5 minutes of unavailability per calendar vear of continuous
operation). An associated maintainability goal was to achjeve an MTTR

of < 5 minutes.

2.3.2.3 Dependability Evaluation. The design paradigm requires that
the methods used to evaluate the dependability goals specified in Sec-

tion 2.3.2.2 be specified at this point. The plan for meeting the main-

tainability goal —MTTR < 5 minutes—was relatively simple: we simply

measure the maximurm time required to recover from all faults in the fault

set. Evaluating availability is more difficult. Evaluating availability by

measuring the ratio of uptime to total time is infeasible since the total time

must be very long so that a statistically meaningful number of system fail-

ures can occur (this time is estimated to be about 10000 hours—roughly

one year of continuous operation). The alternatives were simulation mod-

eling and analytic modeling. Our choice was to use analytic modeling of
the final hardware configuration since the time to develop and run suitable

simulation models is beyond the scope of this effort.

2.3.3 Detection and Recovery Algorithms

The next step of the design paradigm requires that detection and recovery
algorithms be chosen. Although this is an iterative process that cannot
be completed until other steps of the paradigm are complete—such as the
fault set, it was an opportunity to make some high-level decisions about
the way in which detection and recovery will be handled in the EFTC.

One design constraint was the need to reduce the amount of custom hard-
ware and software necessary to implement the EFTC, while retaining com-
patibility with standards—de facto or otherwise—developed for the class
of machines chosen. While it is possible to implement fault-tolerance any-
where from the system to the component level, the cost and complexity
increases the closer we get to the component level. Our first choice, there-

Fail-Safe Technology Corp. 9

FSTe1-281-2

fore, was to determine if the dependability requirements could be met ty
applving fault-tolerance at the system level. If this is not possible, then the
next choice would be fzult-tolerance at the level of individual subsystems,

and so on.

System-level fault-tolerance requires that replication be used at the sys-
tem level; i.e., the entire sysiem is replicated. Error detection algorithms
then monitor and detect errors at the system boundary, and error recovery
involves the dynamic manipulation of entire systems. In the case of the
baseline system (see Figure 1), the “system” that is to be replicated is the
box labeled “File Server” on the diagram. This system is a 386-based PC-
compatible configured to operate as a file server using the Novell Netware
operating system. In our first attempt at applving fault-tolerance, this
system was duplicated in such a way that each duplicate can perform the
necessary file-server functions.

There were several choices of error detection algorithms for a duplexed sys-
tem configuration. One choice was to operate both systems concurrently,
loosely or tightly synchronized, and use a comparison algorithm to deter-
mine when the two systems disagree; diagnostics could then be run on both
systems to determine which one was faulty. Another choice was to design
each system to be self-checking so that it is capable of detecting its own
faults and removing itself from the rest of the system at that time. Our
experience was that such self-checking systems require redundancy at the
very lowest levels of the system in order for it to reliably detect internal
faults—this is what we were trying to avoid from the outset. A third ap-
proach is to treat one of the systems as the “active” system, and the other
as a “standby” system. The standby system does not normally perform
file server operations; but instead monitors the state of the active system.
An error condition in the active system detected by the standby system
results in activation of an error recovery procedure. Our choice of error
detection mechanism was the latter one since it requires no, or relatively
little, custom hardware and software beyond what is already in the system.
In this configuration, our error detection algorithm monitors the state of
the active system by the standby system using the builtin mechanisms of
the Novell Netware operating system and the ethernet hardware. The ba-
sis of the detection algorithm is conceptually simple: any fault that results

Fail-Safe Technology Corp. 10

R ey e

FSTg1-281-2

in the in2bility of the file-server to provide a basic class of service (such
as accessing a file for read and/or write) results in invocation of an error
recovery algorithm. All faults in the basic {ault set are “covered” by this
algorithm. The resulting fault-tolerant system configuration is depicted in
Figure 2.

Given the choice of error detection algoritkm, the recovery algorithm was
chosen to effect recovery subject to the dependability requirements (pri-
marily the recovery latency). In our case, the choice was straightforward.
When an error is detected in the active system, the active system is re-
moved {rom the configuration, and the standby system is initialized and
brought online as the active file server. When the failed system is repaired,
it assumes the role of the standby system.

The detailed design and implementation of these algorithms are presented
in later sections of this report.

2.3.4 System Specification Model

Given a baseline fault-tolerant system configuration, we then constructed a
SSM to define the basic data and control flows necessary to achieve fault-
tolerant file-server functionality, and an appropriate detailed system ar-
chitecture. The resulting SSM comprises a System Requirements Model
(SRM) and a System Architecture Model (SAM). The relationship between
these models is depicted in Figure 3. Our development models were not
automated and, due to the relatively small amount of custom hardware and
software that was used in the brassboard design, only the essential parts of
the development methodology are included in this report.

- - —

2.3.4.1 Requirements Model. Therequirements model abstractly de-
fires the hardware, software, and other requirements of the EFTC. Its
principal tools are flow diagrams—data flow diagrams (DFDs) and control
flow diagrams (CFDs). Figure 4 depicts the data context for the EFTC
via a data context diagram. The corresponding control flow context is de-
picted in Figure 5. The data context diagram depicts the data relationship
between the EFTC and its surrounding environment. The circle in the
diagram represents a “process”—this one representing the EFTC system,

Fail-Safe Technology Corp. 11

1-2

(744
()

FST91-

2IMPNNPIY D I,J5 ouroseq :Z oIndry

aInsopony|

]
_
I
[UEIEINS urysig |
_
|
I

wuelsgng
MO 2L ~-———— ooey109N] ——

12

Fail-Safe Technology Corp.

i

FSTo1-281-2

Specification Model

Architecture Model

User Interface

Requirements Model

Function Model Function Model Output

Input)
Processicg Processirng

Control Model L Control Model

Maintenance, Redundancy and Selftest
Maragement Processing

Figure 3: EFTC System Development Process

Work-
stations

Displays
and
1/0

devices

Operator

Figure 4: Data Context Diagram

Fail-Safe Technology Corp. 13

L B

FSTé&1-281-2

Work-
stations

Displays

Operat and
peralor I/.O

J devices

10.ctrl_out

Figure 5: Control Context Diagram

boxes represent static entities in the environment, and directed arcs repre-
sent the floew of data. For example, a worksta‘ions send and receive data
from the EFTC in the form of file server requests and responses, respec-
tively; the labels on the arcs indicate the class of data flowing zlong that
arc. The data context diagram is the highest level of activity in the system;
it is the top level of a tree of DFD’s, each of which provide successive levels
of refinement in data flow within the EFTC system. The control context
diagram is identical to the data context diagram except that the directed
arcs indicate the flow of control between the EFTC and its environment.
For example, workstations may send discrete control signals to the EFTC
to initiate or abort file server actions, or an operator may issue control com-
mands to the EFTC. Like the data context diagram, the control context
diagram is the top-level of a tree of suchrdiagrams, each of which provide
successive levels of refinement in control flow within the EFTC.

The first level of decomposition in the requirements model results in the
top-level DFD and CFD diagrams depicted in Figures 6 and 7, respectively.

The DFD, and the associated CFD, show three processes. Since we were
not modifying the basic system functions of the EFTC baseline software,
these are lumped into the single process named ‘System’. The file-server
functions were broken out into a separate process since it was necessary
to establish the data relationships between fault-tolerance functions ‘Fault

Fail-Safe Technology Corp. 14

e

FST91-281-2

FS_equests FS_espornses

FS_resporses

Operetor

FS_-equests

Displays

Fault
Maragement

1

Figure 6: DFD 0: Fault-Tolerant File-Server Operation

Management’ and file-server functions ‘File Server’. The CFD shows the
control relationship between these processes.

The second level of decomposition in the requirements model results in
DFD and CFD diagrams depicted in Figures 8 through 11, respectively.

They show decompositions of process 1 ‘Fault Management’ and process 2
‘File server’. Process 1is by far the most important since it requires the
most customization. (In fact, all custom software in the EFTC belongs to

this process.)

2.3.4.2 Architecture Model. The architecture model abstractly de-
fines the configuration of physical modules that perform all the required
data and control processing. The requirements from the requirements
model were mapped into an architecture model taking all design constraints
into account. These constraints included all the requirements defined in the
Configuration Item Development Specification, FST document No. FST91~

281-1, CDRL 002A2.

Fail-Safe Technology Corp. 15

and I/O devices

E:ror
syncrome

Error
Detection

Figure 3: DFD 1: Fault Managemert Process

Error
Recovery

Error
Detection

1.2

1.1

Figure 9: CFD 1: Fault Management Process

FST&1-281-2

- ~ - = Reconfigure

e A local 80 Mbyte hard-disk drive and a 3.5 inch floppy disk drive

accessed via a disk controller card.

¢ A SCSI disk controller that accesses a pair of 80 Mbyte hard-disk

drives.

e An ethernet éontroller card that facilitates communication over the

external ethernet cable.

o A serial I/O interface card that provides several RS232-compatible

ports.

e A card that contains the CPU, RAM, and display-driver subsystems.

A PC compatible keyboard.

A color monitor.

Fail-Safe Technology Corp. 17

§ D

-

FST¢e1-2381-2

FS.out FS.in

FS
Processing

2.3

FS_requests FS_responses

Figure 10: DFD 2: File-Server Process

The backup system has an extra RS232 I/O card that is used to provide
an error signal when an error is detected in the primary system.

The “Switch Box” is a custom-designed subsystem that provides physical
switching of RS232 I/O lines and SCSI disk I/O lines between the two
computers. [t is independently powered from the computers.

3.2 Software --- —
3.2.1 Software System Architecture

Fail-Safe Technology Corp. 18

FSout FS:in
1
A .
i 1
’
AY - ’,
v 7’
A
\ ’
A
s A Y
/ A Y
’ Ay
1 A
1 Y
' 1
FS_requests FS_respozses

Figure 11: CFD 2: File-Server Process

4. Application Studies

Fail-Safe Technology Corp. 19

biq

DINPINNTY orempIny O 7] dandrg

s diyarg

Y

maske Lyunarid g

N q | w“
‘ A A “
A __] 1 q uﬂ
[T SRR n | Plw |
A S a { v o | vV
zla |l YLTO1 210y z a gyl
,“ ? mn g N N X \ N f: 1 n
Pls |y b AR T N A O e
. 94| _ %
: ! o o)
O Y OO0 s | : Slaglmyis|iglaln
, no o Lo N N VR |
TR I wolo \ , d
M1yl Ty 1|t ¥ | o 3
o |’ . s o p
S N d
d 1 9} 4] 1
T S g a
) SR SRR RS SN N -
xof] 1oy
r_——-mvean..uVJ.—.-}I -»~fs‘
N St !
T o8 T fv ' MO zEzsH
Y -0 {
[}
t
- '
S ' i/ﬂ(,
Apledng I 1SS 1 —0 AT _4.@%
Saave g R l_‘m.ummﬂ»m) - ‘ §”“m

20

Fail-Safe Technology Corp.

FSTZ1-281-2

5. System Enhancement Studies

In order to enkance the useability of the EFTC, a study was performed «
cetermine how the architecture could be adap ted to perform as a fille 24
termivel server in a UNLY ernvircnmernt. This section discusses herdware

es zecessery to support a L\I\ ezViTorTert.

[aQ

end soiiwere cheng

5.1 Hardware Cor*’guratlon

We began with tke baseline EFTC hardware depicted in Figure 2. This coz-
figuration was ext d 1toinciude additizzal bardware needed to support 2
typleal UNIX em*.rc*::e::t The revised beseline architecture is depicted in
Figure 13. Tke Interfa Subsystem COup:SG: a mirrcred-cisk subsystem
and an ethernet multiplexer-demultiplexer (EMD), as well as the phy
switching hasdwere. T“ s switching ?“ rdware switches the RS- 32 inputs,
cutputs of the EMD es well as the SCST 2isk cable from cne comput
the otker. Additiozel kardware required azd not shown zre ENDs

werkstaticns; these are not part of tke EFTC.

5.2 Software Configuration

The operating system selected for each PC compatible is UNIN-VR4 (ATLT
UNIX System V, Relezse 4) because of its pcsmon as a de fecelo indusiny
standard. Additionally, each PC compatible is configured with the {ollcw-
ing software:

o A Fault-Tolerance System Manager (FTSM) module for system-level
error detection and error recovery.

e A SCSIdriver.™ ——
e An ethernet driver.

o Network File System (NFS) manager. (Basic NFS is supplied as part
of the operating system.)

¢ Terminal I/O port Manager (TIN).

e Network Manager.

Fail-Safe Technology Corp. 21

oINPMNPIY D5 ompose YINQ (€1 oIy

{1
] HIRSTIAN

2InsoN]

Loy
wo18kg

— — o— s e e | e o

—_— e e e — —

LANYIH

.

MmO 78y -

moshegng
o1y

22

Fail-Safe Technology Corp.

ey

oenc TN

FST¢1-281-2

Tzble 1: EFTIC Failure and Operzating States

Failure | Operational

States States Comment

A B A B

r F |S S Svystem {aled

F F |S A Svstem failed

F F |A S System {ailed

F F [A A System failed

F O S S Transiez

F O[S A System OK (degraded)
F O A S Tracsient

F O A A Systemm OK (degraded)
O F |S S Transient

O F |S A Trazsiert

O F |A S System OK (degraded)
O F |A A System OK (degraded)
O 0O |S S Transient

O O }S A System OK

O O A S System OK

O O |A A Impossible

5.3 Basic Operating Principles

The EFTC would achieve fault-tolerance through system-level error detec-
tion and spare-switching. One PC compatible is designated as “active,”
and the other as a “spare.” Table 1 depicts the failure and operational
states of the system, where ‘F’, ‘O’, ‘A’, and ‘S’ mean failed, operational,
active, and standby, respectively. When a fault is detected in the active
system by the spare system, spare switching occurs and the spare system
becomes the active system; more details of this operation are provided in
the following paragraphs.

Fail-Safe Technology Corp. 23

-

N g

FST&1-281-

5.3.1 Initizlization

ye

oth systems boot UNIX Zrom their local bard-cisks.

suSiciezt for both systems to complete their boot pre-
tervertion from elther system, an initializelion

At system siert p b
After a time pe

cesses, OI upon Operator io
dialogue commences between the two FTSMs 1o determine which system
will be active. The ccifrily protoccl is designed in such a wey tkat, if both
svstems boot correctly, system ‘A° will become the active system; otherwise,
the system ikat boots correctly will become active. Once “mastership™ ke

been established, sysiem operztions may begn.

5.3.2 Error Detection

The EFTC uses system-level error detection; i.e., the spare system is us
to detect errors in the active system. More precisely, the FTSM ia ke
spare system commuricates and coordinzies with the FTSM in the active
system to detect errors and perform recovery actions.

Errors in the active system are detected using the normeal error detection
mechanisms of the system; i.e., the errors detected by the hardware and/cr

the errors detected by the system software. Each error is assigned aa error
cless. The FTSM in the spare system monitors these errors and, based on
their severity, initiates sysiem recovery actions. The FTSM in tke spare
system also detects an error by omisston; ie., if the active system fails to
respond to periodic queries from the FTSM in the spare system, the active
system is deemed to have failed.

5.3.3 Error Recovery

The EFTC uses system-level recovery. The standby system will, as part of
the recovery actions, assume mastership and become the active system. The
terminals and external hard-disks will be physically switched to the new
active system, terminal ports and file systems will be logically connected
to the active system, and system operations resumed.

In order to support Level 2 transparency in file server operations (Level 2
transparency means that users will observe a system outage while error
recovery takes place; they are not able to continue the current session, but
there will be no loss of data due to the failure), file server “transactions”

Fail-Safe Technology Corp. 24

FSTz1-281-2

ace mornitored by the spare system (before the faiure of the active system).
Upon spare-switching, any trazsactiozns thzt had not commitied by the

svstem will be redone by the newly active system. Termirnal pest
zre simplv reconnectied to the active sysiem—users are required 1o relogin.

5.3.4 File Server Operation

Clierts external to the EFTC sysiem meay access and use its fle server func-
tionality. File server functiozs zze accessed via remote file server commmards
across ihe ethernet. The EFTC currently implements the NFS protocol for
remote fle operations. (Other file server protocols can be optionally sup-
ported.)

5.3.5 Terminal Server Operation

Users exterrnal to the EFTC system meay login remotely via the terminzl
server functionality. The EFTC provides a number of serizal ports for this
purpose. During system recovery, all serial ports ate phyvsically switched
from ozne side of the system to the other; any users currently logged in
via oze of these serial ports will have their sessions terminated—they must
login again when recovery is completed.

Fail-Safe Technology Corp. 25

- ey

FST91-281-2
6. Summary Test Report

All of the systems tested by Fail-Safe Techno]o%y (FST) were configured on pairs of
ersonal computers (two computers in one box). Initial tests were run on the Diversified
echnology single box PC-compatible computer system. Netware 286 network software

was installed and failure modes tested. A Netware 286 system was configured on Unisys

computers (supplied by NASA) and returned to them for evaluation.

As NASA’s procurement activities were operating on a large multi-server network with
hundreds of users, their test results were as valid and reliable as the in-house test
performed at Fail-Safe Technology. The NASA tests have been conducted over an 8
month period to ensure comprehensiveness. Fail-Safe Technology then installed Netware
386 network software on an IBM compatible "clone" style computer tower 486 system.

The IBM clone system was never made to work reliably due to a few voids in true
compatibility, which is evident in some brands sold in the marketplace. FST installed the
same software on an NCR desktop computer system. This system worked well and reflected
problem-free operation when switched without open files.

6.1. Tests with Diversified Technology Single Box PC-compatible Computer System

Initial tests were run on this equipment with DOS programs. Software was written
and coded. This operating system add-on program transferred keystrokes from each
PC into a keystroke buffer of the second machine. Hardware was designed,
developed and fabricated to transfer an RS232 communications serial interface
input into both machines within the single box and selected the output of the active
primary computer. This design had limited success. Some off-the-shelf programs
(such as "Windows") did not use the keyboard buffer, therefore, failed to function
with this technique. Other programs (e.g., PC Base 1V) would omit occasional
keystrokes and go out of synchronization. Results of primary market research
conducted on logical potential applications exposed interest from only a limited
number of prospective customers for fault-tolerant DOS applications. There were
few DOS applications identified in the market for critical operational functions.
The few prospects that were interested in fault-tolerant DOS (such as security
monitoring applications) had implemented special programs (custom software).
This is logical.

6.2. NASA System (Unisys computers with Novell 286 network software)

Efforts were concentrated on creating a fault-tolerant system that would operate on
off-the-shelf Novell network programs. FST installed Novell 286 on a hardware
system consisting of two Unisys computers sent to us by NASA-Houston and
returned for installation and test operations.

FST created a software program to monitor the primary network file server from a
backup secondary machine. When the backup was unable to access a file on the
primary it switched the primary SC SI disk to itself and re-booted as the Novell file
server. The system performed without problems in FST’s laboratory and was
shipped to NAsgA for installation and operation in a real-world environment as a
Beta test site. NASA encountered the following problems over time while the
system was in use:

Fail-Safe Technology Corp. 26
gy ~orp FST91-281-2

T

W ey e

6.3

6.4

a. The backup would sometimes log into and monitor another server rather
than its own primary. This was due to the enormous numbers of alternate
servers operating on the system. This was corrected by FST with a software
modification and enhancement.

b. The backup would switch over when long (size and time) file transfers were
tying up the network. FST resolved this problem with a software change
gerrm’tting a lengthier time for the back-up to receive the correct information

om the primary computer.

C. The backup would sometimes not complete its booting without operator
input when the files were open when the switch occurred. This problem was
partially resolved, but, requires additional software enl.ancements to improve
the reliability in this situation. Novell’s program must be modified to
accomplish this.

Tests with Ot..er Hardware

FST installed Netware 286 network software on both of the Diversified Systems
computers with hardware designed and fabricated by FST to troubleshoot the
problems identified by NASA as shown above. FST solved problems a and b with
software modifications and enhancements. Problem ¢ was not totally solved.
Coordination with Novell will be required to alter their software slightly and
accommodate resolution of this problem. It was decided to convert and upgrade the
system to Netware 386, which might not manifest this problem. The Novell Netware
386 would probably be demanded by all future customers, anyway.

FST installed Netware 386 on two IBM compatible "clone" computer towers with
switching hardware and software designed, developed and fabricated by FST. Data
was corrupted on almost every simulated failure during testing. The clones were
returned to the vendors as a result. FST then installed Netware 386 on NCR 3445
computers for further testing. The switchover worked as well on NCR as the
Netware 286 performed on the Diversified System.

Conclusion

The FST fault-tolerant adapter hardware performed very well on the off-the-shelf
rnicrocom%uters most accepted in the marketplace, converting them to fault-tolerant

stems.

roblems were experienced with a single "no name" brand clone, which was

iscovered not to really be 1009 IBM compatible due to design nuances in the hardware.

FST’s hardware has been tested to the point where it is considered to be ready for
production.

Fail-Safe Technology Corp. 27

FST91-281-2

7. References

[HaP88] D. J. Hatley and L. A. Pirbhai, Strategies for Real-Time System Specification.
San Francisco, CA, Dorset House Publishing, 1988.

Fail-Safe Technology Corp. 28

BMO-TR-91-26

INITIAL DISTRIBUTION LIST
for
FINAL TECHNICAL REPORT
for
EMBEDDED FAULT-TOLERANT COMPUTER FOR
MISSION CRITICAL APPLICATIONS
Contract No. F04704-89-C-0044

Ballistic Misssile Organization/SE
Norton Air Force Base, California 92409-6468

James M. Tynan, Major USAF
Sam Crow
R. G. McNeal

Fail-Safe Technology Corporation
Gary A. Kravetz
Kenneth B. Smernoff
Timothy R. Robinson
Dr. Michael W. Sievers

