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1. scope
1.1 Identification

This document is the Final Report for contract No. F04704-S9-C-0044
entitled Embedded Fault-Tolerant Computer for -Afission-Cri:ical Applca-
tions awarded to Fail-Safe Technology Corporation (FST) by the Ballistic
Missile Office (BMO) under the Air Force Sysems Command (AFSC) as
a Phase II Small Business Innovation Research (SBIR) contract.

1.2 Purpose

The objective of this effort is to develop an Embedded Fa-lt-Tolerant Com-
puter (EFTC) using a combination of off-the-shelf and custom hardware
and software components. This prototype will then be analyzed in order
to determine the concept feasibilty.

1.3 rntroduction

This report summarizes the main activities and results of the EFTC devel-
opinent as it has progressed through Phase II. It describes: the develop-
ment of the EFTC system from evolution through hardware and software
design (Section 2); brassboard implementation of hardware and software
(Section 3); and the successful demonstration of generic capabilities as well
as applications (Section 4). In addition, summaries of various ways in
which the system can be enhanced illustrate the flexibility of the design
(Section 5).

Fail-Safe Technology Corp.
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2. System Development

In this section we desc.ribe the way in which the EFTC system was de-
veloped in terms of the under'ing software processes and the hardware
architecture.

2.1 Evolution

The first task of this SBIR effort was to determine more detailed require-
ments for the EFTC. We started by discussing existing and future projects
with Norton BMO personnel. After a few briefings to the Rail Garrison
and Small issile project offices at Norton, we were directed to vendor
of ser'ices and systems to Norton. We talked to Rockwell, TRW, GTE,
and Ford Aerospace about the requirements for fault-tolerant computers in
ICBM systems.

The conclusion was that no great needs could be identif ed for fault-toler-
ance in the missiles because of short mission duration and existing safety
systems. Also, no new ICBM designs are currently funded or expected in
the near future.

Possible requirements for fault-tolerant computers were identified for the
ICBM ground support equipment (GSE), test equipment, and command,
control and communication (C') systems. The most common need we found
for fault-tolerant computers was for communication control computers us-
ing a PC-class workstation. Solutions not requiring a fault-tolerant com-
puter had been developed for the existing equipment, but a fault-tolerant
computer would have been used if it were available.

In looking at the needs of future progr.ams, no new equipment designs
were identified. Programs like Rail Garrison and small ICBMs were based
on existing designs. The conclusion of this study was that there was a
need for fault-tolerant PC-class computers in new ICBM GSE, C3 , and test
equipment, but no new equipment was planned for the foreseeable future.

Personnel at BMO suggested we talk to AFSC for possible applications.
The Advanced Program Office at AFSC indicated that few new satellite
programs were planned, and e>isting programs had all developed solutions
to meet their reliability requirement. The need for fault-tolerant comput-

Fail-Safe Technology Corp. 2
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ers in new programs was primarily in the GSE. In looking at the typical
requirements for GSE, a PC-class worksta:ion using Intel 386 or 4S6 pro-
cessors would meet most requirements.

In addition to the requirements of BMO and AFSC, FST looked at other
government and commercial application customers. We determined that
there was a need for a fault-tolerant computer at a lower price than the
existing commercial fault-tolerant computers such as Tandem and Stra-
tus. In addition, users wanted hardware that would run low-cost software
developed for the IBM PC-compatible hardware platforms.

In view of those discussions, the decision was made in conjunction with
B.MO to develop the EFTC as a fault-tolerant IBM PC-compatible platform
that functions as a network-based file server.

2.2 Concept and Approach

Developing a fault-tolera-nt computer is not an easy task. The design is
constrained bv manv factors that results in several tradeoffs while develop-
ing and meeting a set of requirements. In order to make this task tractable,
we have approached it by using a well-established and systematic design
paradigm for fault-tolerant systems; the next section outlines the steps ia
this paradigm.

2.2.1 Fault-tolerance Design Paradigm

Given a set of system requirements that dcfne the _rfe to be delivered
and the service boundaries at which service delivery will take place, the key
steps of the paradigm are as follows:

1. The dependability goals of the system are specified in terms of relia-
bility, a'-ailability, maintainability, safety, and so forth. This requires
three steps.

(a) First, the classes of hardware and software faults that are to
be tolerated over the life of the system are explicitly identified.
Fault classes are chosen such that faults that elicit the same error
syndrome are grouped into the same class, thereby reducing the
scope of the effort.

Fail-Safe Technology Corp. 3I
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(b) Second, quantitative goals for the dependal-,ili of system ser-
-ices are specified.

(c) Third, the methods for evalua-ing the dependability actua.ly
attained by the system are specified in detail.

2. The system is partitioned into subsystems (hardwaxe, software, com-
munication, interfaces) for implementation, taking into account bo:h
performance and fauLt-tolerance.

3. Error detection and fault diagnosis a!goithms for every subsystem
are selected. The choices of error dete'tion and fault diagnosis tech-
niques are guided by the dependabily goals. We ascertain that all
relevant fault classes are detectable, and that the probability of time'y
detection is adequate.

4. State recovery and fault remu\al techziques are devised that are in-
yoked by the fault signals from fault detection algorithms. Their goal
is to return the system to some level of proper operation or to shut
it down safely. Fault signal invoked recovery is cla.-sified into three
classes during the design process:

(a) recovery to original performance (fail-operational);

(b) recovery to degraded performance (fail-soft);

(c) execution of safe shutdown (fail-safe).

A fourth class of recovery algorithms that does not depend on a fL"
signal, but maintains original performance by the use of concurrently
active protective-redundancy is also considered (masking).

S. Subsystem fault-tolerance is integrated into the overall system.

6. An evaluation of the fault-tolerance of the design and its impact on
performance is then performed via a combination of analytic and
simulation modeling.

7. A refinement of the design is then carried out. If the initial evalua-
tion demonstrates that the various hardware and software subsystems
fail to meet the primary dependability specification, or if there are

Fail-Safe Technology Corp. 4
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unequal contnibutions to the overall slystem dependabiliy, steps 2
through 6 are repeated. The goal of this refinement step is to balance
ihe protection provided to each subsystem so that the dependability
goal is achieved without a single dominating contributor to nonde-
pendabiity, and at the lowest cost of additional resources.

2.3 System Specification

The specication of the EFIC hardware and software was accompli shed bCy
using the design paradigm of Section 2.2.1 in conjunction with a stucture.i
developmert methodology 'HaPSS]. The design paradigm defnes the key
steps of the design and the structured development methodology provides
a stylized mechanism for developing and documenting each step. Our ap-
proach is to first defne fault-to!erance requirements for the system based
on its dependability goals, and then develop detailed specifications via a
System Specification Model (SSM).

2.3.1 Basic System Description

The following top-level system description is pro,ided here as a basis for
better understanding the system development process and models that fol-
low.

The EFTC provides fie-server (FS) functions for workstations in a local-
area network (LAN) environment. The baseline hardware architecture is
depicted in Figure 1. Workstations on the LAN may use the file server as an
information repository or to perform other network-wide serices such as a
centralized printer. Workstations interface with the file-server by sending
file-server requests across the LAN, and-receive responses in the form of
data or control messages from the file-server.

The file-server runs the Novell Netware operating system, and workstations
interface to it via Novell-compatible client modules that execute locally.

2.3.2 Fault-Tolerance Requirements Definition

In this section we establish the fault-tolerance requirements for the EFTC
system.

Fail-Safe Technology Corp. 5
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2.3.2.1 Fault Set Definition. A comprehensive fault model of the sys-
tern was constructed. This model lists all faults that are 'o be mitigated and
their attributes. To limit the amount of faults that need to be considered,
faults that generate the same error or failure response were grouped into
the same class; the objective being to "cover" as many faults as possible
with as few mechanisms as possible.

The basic fault set was constructed by assuming that the "service bound-
ary" encapsulates the entire sysem; the service boundary is an imapnary
interface at which service is delivered to a user. Users in this case are
workstations on the network, or an operator that interfaces directly with
the system %4a a system console. The faults in the set therefore account for
all possible faults within the sy'stem that can lead to a failure from a user's
perspective. This resulted in the following lst:

" Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of system power.

* Any permanent fault that results in loss of the CPU.

* Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in partial or total loss
of the contents of the RAM.

* Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of the ethernet
controller.

" Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that- results in loss of the SCSI disk
controller.

* Any permanent fault, or any transient or intermittent fault with a
duration greater than 5 seconds, that results in loss of critical infor-
mation on a hard-disk that directly supports file-server operations.

The decomposition of this basic fault set into subclasses depends on the
next step in the paradigm, whlicl is to partition the system into subsystems
based on system-level fault-tolerance and other requirements.

Fail-Safe Technology Corp. 7II
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2.3.2.2 Dependability Goals. The fault-tolerant design of the EFTC
depends on its dependability goals. Since it is going to be used in an en-
-6ronment where manual repair is possible, we felt that an availability re-
quirement was more imp..tant than a reliability requirement. Whereas
reliabiLty defines the probability of correct service delivery for a specified
"mission time,"' availability defines the long-term or steady-state probabil-
ity of correct ser-ice delivery. In other words, we felt it was more important
that the system be operational a large portion of time, even though it may
suffer infrequent outages due to failures. The ava ilability requirement de-
fines the percentage of time the system must be operational.

For this effort, steady-state availabiliy, A,,, was defined as:

NMTTF
As$ = MTTR + MTTF

where MTTF = I/A and MTTR. = 1/, and A and /i represent constant
failure and repair rates, respectively. MTTF is defined as the 'Mean Time
to Failure, and .MITTR the Mean Time to Repair. Given this definition,
A,. was determined in the following way: Of afl the faults in the basic fault
set (see Section 2.3.2.1), our experience with PC-AT-class machines in a
file-server configuration as depicted in Figure 1 is that hard-disk failures is
the dominant failure class with an approximate .MTTF of 5000 hours. Our
experience also is that after a hard-disk failure, the MTTR is anywhere from
2 to 8 hours with a mean of about 4 hours, depending on parts availability.
If spare disks are on-hand, then the repair time is about 2 hours to replace
the disk and perform a restoration from backup volumes. Given an MTTF
of 5000 hours and an MTTR of 2 hours, As, for the baseline non-redundant
configuration is 0.996 (99.6%). Our goaL was to improve this availability
considerably. Since a hard-disk is a prepackaged unit, there is no way to
improve its .MTTF directly. However, effective IMTTF of the disk can be
improved v-ia replication of the hard-disk unit. For example, if a second
(physically identical) hard-disk is provided, and if it has a probability of
failure independent of the first hard-disk, then the effective MTTF is the
sum of the MTTFs of both hard-disks. This assumes, of course, that both
hard-disks are configured so that they represent a single logical hard-disk.
The second way to improve the availability is to reduce the MTTR. We
felt that it was possible to reduce the MTTR from two hours to at most

I
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a few minutes through the judicious application of fault-tolerance. For
example, if the MTTF is reduced to 2500 hours-to be conservative-and
the .MTTR to 5 minutes, then .4, improves to 0.99997. On the basis of
this analysis, our goal for .4,, was set to > 0.9999 (this roughly corresponds
to at most 17.5 minutes of unavailability per calendar year of continuous
operation). An associated maintainability goal was to achieve an MTTR
of < 5 minutes.

2.3.2.3 Dependability Evaluation. The design paradigmrequires that
the methods used to evaluate the dependability goals specified in Sec-
tion 2.3.2.2 be specified at this point. The plan for meeting the main-
tainability goal-MTTR < 5 minutes-was relatively simple: we simply
measure the maxdmum time required to recover from all faults in the fault
set. Evaluating availability is more difficult. Evaluating availability by
measuring the ratio of uptime to total time is infeasible since the total time
must be very long so that a statistically meaningful number of system fail-
ures can occur (this time is estimated to be about 10000 hours-roughly
one year of continuous operation). The alternatives were simulation mod-
eling and analytic modeling. Our choice was to use analytic modeling of
the final hardware configuration since the time to develop and run suitable
simulation models is beyond the scope of this effort.

2.3.3 Detection and Recovery Algorithms

The next step of the design paradigm requires that detection and recovery
algorithms be chosen. Although this is an iterative process that cannot
be completed until other steps of the paradigm are complete-such as the
fault set, it was an opportunity to make some high-level decisions about
the way in which detection and recovery will be handled in the EFTC.

One design constraint was the need to reduce the amount of custom hard-
ware and software necessary to implement the EFTC, while retaining com-
patibility with standards-de facio or otherwise-developed for the class
of machines chosen. While it is possible to implement fault-tolerance any-
where from the system to the component level, the cost and complexity
increases the closer we get to the component level. Our first choice, there-

Fail-Safe Technology Corp. 9
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fore, was to determine if the dependability requirements could be met Ly
applying fault-tolerance at the system level. If th:s is not possible, then the
next choice would be fault-tolerance at the level of individual subsystems,
and so on.

System-level fault-tolerance requires that replication be used at the sys-
tem level; i.e., the entire systern is replicated. Error detection algorithms
then monitor and detect errors at the system boundary, and error recovery
involves the dynamic manipulation of entire systems. In the case of the
baseline system (see Figure 1), the "system" that is to be replicated is the
box labeled 'File Server" on the diagram. This system is a 3S6-based PC-
compatible configured to operate as a file server using the Novell Netware
operating system. In our first attempt at applying fault-tolerance, this
system was duplicated in such a way that each duplicate can perform the
necessary file-server functions.

There were several choices of error detection algorithms for a duplexed sys-
tem configuration. One choice was to operate both systems concurrently,
loosely or tightly synchronized, and use a comparison algorithm to deter-
mine when the two systems disagree; diagnostics could then be run on both
systems to determine which one was faulty. Another choice was to design
each system to be self-checking so that it is capable of detecting its own
faults and removing itself from the rest of the system at that time. Our
experience was that such self-checking systems require redundancy at the
very lowest levels of the system in order for it to reliably detect internal
faults-this is what we were trying to avoid from the outset. A third ap-
proach is to treat one of the systems as the "active" system, and the other
as a "standby" system. The standby system does not normally perform
file server operations- but instead monitvrs the state of the active system.
An error condition in the active system detected by the standby system
results in activation of an error recovery procedure. Our choice of error
detection mechanism was the latter one since it requires no, or relatively
little, custom hardware and software beyond what is already in the system.
In this configuration, our error detection algorithm monitors the state of
the active system by the standby system using the builtin mechanisms of
the Novell Netware operating system and the ethernet hardware. The ba-
sis of the detection algorithm is conceptually simple: any fault that results

Fail-Safe Technology Corp. 10I
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in the inability of the file-server to provide a basic class of service (such
as accessing a file for read and/or write) results in invocation of an error
recovery algorithm. All faults in the basic fault set are "covered" by this
algorithm. The resulting fault-tolerant system configuration is depicted in
Figure 2.

Given the choice of error detection algorithm, the recovery algo-ithhm was
chosen to effect recovery subject to the dependability requirements (pri-
marily the recovery latency). In our case, the choice was straightforward.
INhen an error is detected in the active system, the active system is re-
moved from the configuration, and the standby system is initialized and
brought online as the active file server. Wlhen the failed system is repaired,
it assumes the role of the standby system.

The detailed design and implementation of these algorithms are presented
in later sections of ths report.

2.3.4 System Specification Model

Given a baseline fault-tolerant system configuration, we then constructed a
SSM to define the basic data and control flows necessary to achieve fault-
tolerant file-server functionality, and an appropriate detailed system ar-
chitecture. The resulting SSI comprises a System Requirements Model
(S.RM1) and a System Architecture Model (SAM). The relationship between
these models is depicted in Figure 3. Our development models were not
automated and, due to the relatively small amount of custom hardware and
software that was used in the brassboard design, only the essential parts of
the development methodology are included in this report.

2.3.4.1 Requirements Model. The requirements model abstractly de-
fires the hardware, software, and other requirements of the EFTC. Its
principal tools are flow diagrams-data flow diagrams (DFDs) and control
flow diagrams (CFDs). Figure 4 depicts the data context for the EFTC
via a data context diagram. The corresponding control flow context is de-
picted in Figure 5. The data context diagram depicts the data relationship
between the EFTC and its surrounding environment. The circle in the
diagram represents a "process"-this one representing the EFTC system,

Fail-Safe Technology Corp. 11I
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Specification Model

Architecture Model

Requ.rements Model User Interface

Feuncetieon Model

J nciodel Input Funtinode Output

Processing Processing
SControIdl 1 M Control Model ]

Maintenance, Redundancy and Selftest
Management Processing

Figure 3: EFTC System Development Process
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Figure 4: Data Context Diagram
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Work-
stations

WS cmds

OP-crds T t~n DdlyOperator EFTCand I/0devices

Figure 5: Control Context Diagram

boxes represent static entities in the environment, and directed arcs repre-
sent the flcw of data. For example, a workstations send and receive data
from the EFTC in the form of file server requests and responses, respec-
tively; the labels on the arcs indicate the class of data flowing along that
arc. The data context diagram is the highest level of activity in the system;
it is the top level of a tree of DFD's, each of which provide successive levels
of refinement in data flow within the EFTC system. The control context
diagram is identical to the data context diagram except that the directed
arcs indicate the flow of control between the EFTC and its environment.
For example, workstations may send discrete control signals to the EFTC
to initiate or abort file server actions, or an operator may issue control com-
mands to the EFTC. Like the data context diagram, the control context
diagram is the top-level of a tree of such-diagrams, each of which provide
successive levels of refinement in control flow within the EFTC.

The first level of decomposition in the requirements model results in the
top-level DFD and CFD diagrams depicted in Figures 6 and 7, respectively.
The DFD, and the associated CFD, show three processes. Since we were

not modifying the basic system functions of the EFTC baseline software,
these are lumped into the single process named 'System'. The file-server
functions were broken out into a separate process since it was necessary
to establish the data relationships between fault-tolerance functions 'Fault

Fail-Safe Technology Corp. 14
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fs_.;equests FS.:espo.ses

~~Files

FS-responses

Operator

Disp!ays
Faultand 1/0 devices

Figure 6: DFD 0: Fault-Tolerant File-Server Operation

Manage~ent' and file-server functions 'File Server'. The CFD shows the

control relationship between these processes.

The second level of decomposition in the requirements model results in
DFD and CFD diagrams depicted in Figures 8 through 11, respectively.

They show decompositions of process 1 'Fault Management' and process 2
'File server'. Process 1 is by far the most important since it requires the
most customization. (In fact, all custon_ software in the EFTO belongs to

this process.)

2.3.4.2 Architecture Model. The architecture model abstractly de-
fines the configuration of physical modules that perform all the required

data and control processing. The requirements from the requirements
model were mapped into an architecture model taLing all design constraints~into account. These constraints included all the requirements defined in the

Configuration Item Development Specification, FST document No. FST91-
281-1, CDRL 002A2.

Fail-Safe Technology Corp. 15
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Figure 9: CFD 1: Fault Management Process

* A CSI isk ontr -ha acese a pair of8 Mye hard-dsk
detctonves..-

exera etentebe

& A SeralI dicntracecr that proedes seveira ofS20 om ad-ise

ports.
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* A color monitor.
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FSout FSFn

Send Receive

FS.:eqifts FS_-esponses
Figure 10: DFD 2: Fil-e-Server Process

The backup system has an extra RS232 1/0 card that is used to provide
an error signal when an error is detected in the primary system.

The 'Switch Box" is a custom-designed subsystem that provides physical
switching of RS232 I/O lines and SCSI disk I/O lines between the two
computers. It is independently powered from the computers.

3.2 Software ........ .

3.2.1 Software System Architecture

Fail-Safe Technology Corp. 18

II



FS-

FS
P:Ocess:-g

2.3
I%

FS-:eq";:t FS-esponses
FigiUre 11: CED 2: File-Server Process

4. Application Studies
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5. System Enhancement Studies
Inorer to enhance the uebtvof the EFTC, a study ws -efo:e ~

d e or =r ne h ow t he az c tc t zr cc o,- ,lb be ad'apte d e mef'n as a f-'ead
trn1server in a UNIX ernv'ce~t. TL-s sec-.ion discusseLS h-ardware

and sz~aecha:nges ze-cssary "o su .prt a UNIX nicze.

5.1 Hardw-are Cor.F-uration

We becan wit:h the base' hne EFTC hardware depic'ei :a Pig7re 2. TLis czn-
£gua~on asextende:l to include adir hardw-,are needed o sp ota

typical UNIX en-xiron~ent. The revi-sed haseLhne ar:clit'ecture is de-icte! :In
Figure 13. The T_ lerface Subsvstem com---ris=> a - _ rc-dssbsse
and an ether-net muiee-euilxr(EMD), as well as -,he physical_
swic:cU "-'azrVe. Thi-s switchin rwae wtce the 11S-232:n~
outnut"-s of -.he- E-MD as welas the SCSI Lzsk cahi'e from one ccz~:
the otzher. Ad:io')-al hardwiare reqire not sh:ow n a-re EM Ds a-,th
wzrks-a'ionS: th-ese are nrot par:l of the EFTC.

5.2 S oftware Configuration

The oper7ating systen selected for each PC co-_Patib,,e is 'UN1X-VR4 (AT&.T
UNIX System V, Release 4) because cf ;its position as a 2e 'rincstr
standard. AdditionaPv. each PC compatiblc is cornI'ured 'with the folow-
ino, softwa-e:

*A Fault-Tolerance System Mfanagler (FTSM) module for system-level
error detection and error recoverOy.

*A SCSI drivef:-

*An ethernet driver.

*Network File Systemn (NES) manager. (Basic NFS is supplied a-s part
of the operating sy'stem.)

*Terminal 1/0 port Manager (TIM).

*Network Manager.
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Table 1: EFC Failure and Operating States

Failure Opera:ional
States States Comment
A B A I
F F S S System vied
F F S A System failed
F F A S System failed
F F A A System fa.2ed
F 0 S S Transient
F 0 S A System O( (degraded)
F 0 A S Transient
F 0 A A System OK (degraded)
0 F S S Transient
0 F S A Transient
0 F A S System OK (degraded)
O F A A System OK (degraded)
O 0 S S Transient
0 0 S A System OK
0 0 A S System OK
0 0 A A Impossible

5.3 Basic Operating Principles

The EFTC would achieve fault-tolerance through system-level error detec-
tion and spare-switching. One PC compatible is designated as "active,"
and the other as a "spare." Table 1 depicts the failure and operational
states of the system, where 'F', '0', 'A', and :S' mean failed, operational,
active, and standby, respectively. When a fault is detected in the active
system by the spare system, spare switching occurs and the spare system
becomes the active system; more details of this operation are provided in
the following paragraphs.
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5.3.1 Initialization

At system startup, both systems boot .UNL' from their local hard-6iss.

After a time period suciezt for both systems to complete their boot

cesses. or upon operator intervention -c:n either system, an :Mniaza'.2n
dizogue commences betieen the two FTSMs to deter=ine which systema
wil be active. The cct'Yt. protocol is designed in such a way that. if both
svsems boot correct. system wA will become the active svstem; otherw-se.
the system -hat boots correctly will become active. Once 'mastership" has
been established, system operations may begin.

5.3.2 Error Detection

The EFTC uses sysem-level error detection: i.e., the spare system is used
to detect errors in the acLve system. More precisely, the FTSM in te

spare system communcates and coordinates with the FTS'M in the act:ve
system to detect errors and perform recovery actions.

Errors in the active system are detected using the normal error detection
mechanisms of the system; i.e., the errors detected by the hardware and/or
the errors detected Ey the system software. Each error is assigned an e-or
ccsst. The FTSM in the spare system monitors these errors and, based on
their severity, initiates sys'em recovery actions. The FTSM i'n th spare
system also detects an error by omi.ssion: i.e., if the active system fa-, to
respond to periodic queries from the FTSM in the spare system, the active
system is deemed to have failed.

5.3.3 Error Recovery

The EFTC uses system-level recovery. The standby system will, as part of
the recovery actions, assume mastership and become the active system. The
terminals and external hard-disks ill be physically switched to the new
active system, terminal ports and file systems will be logically connected
to the active system, and system operations resumed.

In order to support Level 2 transparency in file server operations (Level 2
transparency means that users will observe a system outage while error
recovery takes place; they are not able to continue the current session, but
there will be no loss of data due to the failure), file server "transactions"
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ar:e mon_;-ored by the spare system (before the fa-ilure of the active svs ter).
upon spare-swxitching, any tranzsactio0ns that had not comrn'tted bv -,he

fled svs'ena w-il be redone 'by the newv active system. Terminal p-c:rts
are sizo N reconnected to the ac::'ve system-users are reauir-ed to relogin.

5.3.4 Fi!e Server Operation

Clients external to the EFTO system may access and u~se i ts LIe server uc
tionaVty. FHe server functions are accessed via remote -fle server comamar.ds
across the ethernet. The EFTC currently implements the _NFS protocol for
remote LIe operations. (Other file server protocols can be optionally sucp-
ported.)

5.3.5 Terminal Server Operation

Users external to the EFTC system may logi-n remotely %4ia, the termi nal
server functionality. The EFTO provides a number of serial ports for this
purpose. During system recovery, all serial ports -ae pLysica~ly switched
fr-om, one side of the system to the other; any users currently logged in
via one of these serial ports will have their sessions termninated-hley must
login again when recovery is completed.
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6. Summary Test Report

All of the systems tested by Fail-Safe Technology (FST) were configured on pairs of
personal computers (two computers in one box). Initial tests were run on the Diversified
Technology single box PC-compatible computer system. Netware 286 network software
was installed and failure modes tested. A Netware 286 system was configured on Unisys
computers (supplied by NASA) and returned to them for evaluation.

As NASA's procurement activities were operating on a large multi-server network with
hundreds of users, their test results were as valid and reliable as the in-house test
performed at Fail-Safe Technology. The NASA tests have been conducted over an 8
month period to ensure comprehensiveness. Fail-Safe Technology then installed Netware
386 network software on an IBM compatible "clone" style computer tower 486 system.

The IBM clone system was never made to work reliably due to a few voids in true
compatibility, which is evident in some brands sold in the marketplace. FST installed the
same software on an NCR desktop computer system. This system worked well and reflected
problem-free operation when switched without open files.

6.1. Tests ,ith Diversified Technology Single Box PC-compatible Computer System

Initial tests were run on this equipment with DOS programs. Software was written
and coded. This operating system add-on program transferred keystrokes from each
PC into a keystroke buffer of the second machine. Hardware was designed,
developed and fabricated to transfer an RS232 communications serial interface
input into both machines within the single box and selected the output of the active
primary computer. This design had limited success. Some off-the-shelf programs
(such as "Windows") did not use the keyboard buffer, therefore, failed to function
with this technique. Other programs (e.g., PC Base IV) would omit occasional
keystrokes and go out of synchronization. Results of primary market research
conducted on logical potential applications exposed interest from only a limited
number of prospective customers for fault-tolerant DOS applications. There were
few DOS applications identified in the market for critical operational functions.
The few prospects that were interested in fault-tolerant DOS (such as security
monitoring applications) had implemented special programs (custom software).
This is logical.

6.2. NASA System (Unisys computers with Novell 286 network software)

Efforts were concentrated on creating a fault-tolerant system that would operate on
off-the-shelf Novell network programs. FST installed Novell 286 on a hardware
system consisting of two Unisys computers sent to us by NASA-Houston and
returned for installation and test operations.

FST created a software program to monitor the primary network file server from a
backup secondary machine. When the backup was unable to access a file on the
primary it switched the primary SC SI disk to itself and re-booted as the Novell file
server. The system performed without problems in FST's laboratory and was
shipped to NASA for installation and operation in a real-world environment as a
Beta test site. NASA encountered the following problems over time while the
system was in use:
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a. The backup would sometimes log into and monitor another server rather
than its own primary. This was due to the enormous numbers of alternate
servers operating on the system. This was corrected by FST with a software
modification and enhancement.

b. The backup would switch over when long (size and time) file transfers were
tying .up the network. FST resolved this problem with a software change
permitting a lengthier time for the back-up to receive the correct information
from the primary computer.

c. The backup would sometimes not complete its booting without operator
input when the files were open when the switch occurred. This problem was
partially resolved, but, requires additional software enLancements to improve
the reliability in this situation. Novell's program must be modified to
accomplish this.

6.3 Tests with OtGer Hardware

FST installed Netware 286 network software on both of the Diversified SNStems
computers with hardware designed and fabricated by FST to troubleshoot the
problems identified by NASA as shown above. FST solved problems a and b with
software modifications and enhancements. Problem c was not totally solved.
Coordination with Novell will be required to alter their software slightly and
accommodate resolution of this problem. It was decided to convert and upgrade the
system to Netware 386, which might not manifest this problem. The Novell Netware
386 would probably be demanded by all future customers, anyway.

FST installed Netware 386 on two IBM compatible "clone" computer towers with
switching hardware and software designed, developed and fabricated by FST. Data
was corrupted on almost every simulated failure during testing. The clones were
returned to the vendors as a result. FST then installed Netware 386 on NCR 3445
computers for further testing. The switchover worked as well on NCR as the
Netware 286 performed on the Diversified System.

6.4 Conclusion

The FST fault-tolerant adapter hardware performed very well on the off-the-shelf
microcomputers most accepted in the marketplace, converting them to fault-tolerant

stems. Problems were experienced with a single "no name" brand clone, which was
discovered not to really be 100% IBM compatible due to design nuances in the hardware.

FST's hardware has been tested to the point where it is considered to be ready for
production.
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