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Abstract

A new technique for proving timing properties for timing-based algorithms is described; it
is an extension of the mapping techniques previously used in proofs of safety properties for
asynchronous concurrent systems. The key to the method is a way of representing a system
with timing constraints as an automaton whose state includes predictive timing information.
Timing assumptions and timing requirements for the system are both represented in this way.
A multi-valued mapping from the “assumptions automaton” to the “requirements automaton”
is then used to show that the given system satisfies the requirements. One type of mapping
is based on a collection of “progress functions” providing measures of progress toward timing
goals. The technique is illustrated with two examples, a simple resource manager and a two-
process race system.

Keywords: Timing properties, timing-based algorithms, formal specification, formal verifi-
cation, assertional reasoning, possibilities mappings, timed automata, I/O automata, progress
functions.




1 Introduction

Assertional reasoning is a useful technique for proving safety properties of sequential and
concurrent algorithms. This proof method involves describing the algorithm of interest as a
state machine, and defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are reachable in a
computation of the machine, i.e., that it is an invariant of the machine. The assertion is
defined so that it implies the safety property to be proved. Assertional reasoning is a rigorous,
simple and general proof technique. Furthermore, the assertions usually provide an intuitively
appealing explanation of why the algorithm satisfies the property.

One kind of assertional reasoning uses a mapping to describe a correspondence between
the given algorithm and a higher-level algorithm used as a specification of correctness. (See,
for example, (15, 19, 23].) Such mappings may be single-valued or multi-valued.

So far, assertional reasoning has been used primarily to prove properties of sequential
algorithms and synchronous and asynchronous concurrent algorithms. We would also like
to use this technique to prove properties of concurrent algorithms whose operation depends
on time, e.g., ones that arise in real-time systems or ones that rely on clocks that tick at
approximately known rates. Also, the kinds of properties generally proved using assertional
reasoning have been “ordinary” safety properties; we would like to use similar methods to
prove timing properties (upper and lower bounds on time) for algorithms that have timing
assumptions. Predictable performance is often a desirable characteristic of real-time systems
[38]; assertional techniques could be very helpful in proving such performancc properties.

In this paper, we describe one way in which assertional reasoning can be used to prove tim-
ing properties for algorithms that have timing assumptions. Our method involves constructing
a multi-valued mapping from an automaton representing the given algorithm to another au-
tomaton representing the timing requirements. The key to our method is a way of representing
a system with timing constraints as an automaton whose state includes predictive timing infor-
mation. Timing assumptions and timing requirements for the system are both represented in
this way, and the mappings we construct map from the “assumptions automaton” to the “re-
quirements automaton”. One type of mapping is based on a collection of “progress functions”
providing measures of progress toward timing goals.

We describe our method in terms of the timed automaton model, a slight variant of the
time constrained automaton model of [27]. We use this model to state the requirements to be
satisfied, to define the basic architectural and timing assumptions, to describe the algorithms,
and to prove their correctness and timing properties. A timed automaton is a pair (4,b),
consisting of an I/O automaton [23, 24], A, together with a boundmap, b, which is a formal
descziztion of the timing assumptions for the components of the system. A timed automaton
generates a set of timed ezecutions which describe the operation of the algorithm, acd a cor-
responding set of timed behaviors which describe the algorithm’s externally-visible activity. In
this paper, a timed automaton (A4, b) is used to describe the given system (including its timing




assumptions), and another timed automaton (A’,b’) is used to describe the correctness and
timing requirements.

While convenient for specifying timing assumptions and requirements, timed automata are
not directly suited for carrying out assertional proofs about timing properties, because timing
properties are described externally (by boundmaps) rather than being built into the automaton
itself. We therefore introduce a way of incorporating timing conditions into an automaton
definition. For a given timed automaton (A,b), we define the automaton time(A4,b) to be an
ordinary I/0 automaton (not a timed automaton) whose state includes predictive information
describing the first and last times at which various events can next occur; this information is
designed to enforce the timing conditions expressed by the boundmap b. The I/O automaton
time(A,b) is related to the timed automaton (A,b) in that a certain subset of the behaviors
of time(A,b), which we call the “admissible” behaviors, is exactly equal to the set of timed
behaviors of (A4,b).

We apply this construction to both the system description (A,b) and the requirements
description (A',b’); our “assumptions automaton” is defined to be time(4, b) and our “require-
ments automaton” is time(A’,b’). Then the problem of showing that a given algorithm (A, b)
satisfies the timing requirements amounts to that of showing that any admissible behavior of
the automaton time(A,b) is also an admissible behavior of time(A’,b'). We do this by using
invariant assertion techniques; in particular, we demonstrate a multi-valued mapping from
states of time(A, b) to states of time(A', V).

We define a special class of multi-valued mappings that appears to be especially useful.
Each such mapping is defined by a collection of inequalities relating the time bounds to be
proved (those expressed by b’) to the values of a collection of “progress functions” defined on
the states of time(A,b). These progress functions provide upper and lower bound measures
of progress toward the timing goals expressed by b'. These functions generalize the notion
of progress function commonly used to prove termination of sequential programs and asyn-
chronous concurrent programs (see, e.g., the description of the method of well-founded sets
in [26]), to allow real-valued rather than just discrete measures, and to allow proofs of lower
bounds as well as upper bounds.

In order to demonstrate the use of our technique, we apply it to two examples. The first
example is a simple timing-dependent resource granting system, consisting of two concurrently-
operating components, a clock and a manager. The manager monitors the clock ticks, which
occur at an approximately known rate, and whenever a certain number have occurred, it grants
the resource. We prove upper and lower bounds on the amount of time prior to the first grant
and between each successive pair of grants.

The second example involves one process incrementing a counter until another process
modifies a flag, and then decrementing the counter. When the counter reaches 0, the first
process announces that it is done. We show upper and lower bounds on the time until the
“done” announcement occurs.

Technically, mapyinLg techniques of the sort used in this paper are only capable of proving
safety properties, but not liveness properties. Timing properties have aspects of both safety




and liveness. A timing lower bound asserts that an event cannot occur before a certain amount
of time has elapsed; a violation of this property is detectable after a finite prefix of a timed
execution, and so a timing lower bound can be regarded as a safety property. A timing upper
bound asserts that an event must occur before a certain amount of time has elapsed. This
can be regarded as making two separate claims: that the designated amount of time does in
fact elapse (a liveness property), and that this amount of time cannot elapse without the event
having occurred (a safety property). In this paper, we assume the liveness property that time
increases without bound, so that all the remaining properties that need to be proved in order
to prove either upper or lower time bounds are safety properties. Thus, our mapping technique

provides complete proofs for timing properties without requiring any additional techniques for
arguing liveness.

There has been some prior work on using assertional reasoning to prove timing properties.
In particular, Haase [9], Hooman [11)], Shankar and Lam [35], Tel [39], Schneider [34], Lewis
[17], Abadi and Lamport (2, 16], Lamport and Neumann [29] and Shaw [36] have all developed
models for timing-based systems that incorporate time information into the state, and have
used invariant assertions to prove timing properties. In [39] and [17], in fact, the information
that is included is similar to ours in that it is also predictive timing information (but not exactly
the same information as ours). None of this work has been based on mappings, however.

Lynch and Vaandrager {25] describe a wide range of mapping proof techniques for timing-
based systems, in the setting of a very general timed automaton model. One of the techniques
considered there, forward simulation, is very similar to our general multi-valued mapping
method. However, the model in [25] has less structure than the one considered here; in par-
ticular, it lacks the component structure that is needed to describe our progress function
technique.

Several other, quite different formal approaches to proving timing properties have also been
developed, based on state machines (e.g., [8]), first-order logic (e.g., [12, 13]), temporal logic
(e.g., [3, 6, 10, 30, 32]), Petri nets (e.g., [7, 37]) and process algebras (e.g., [14, 40]). (See the
survey by Ostroff [31].)

An earlier version of this paper appears in [21].

The rest of the paper is organized as follows. Section 2 contains a description of the under-
lying formal models: I/O automata and timed automata. Section 3 contains the construction
used to incorporate timing conditions into I/O automata, and some basic properties of these
automata. Section 4 contains our definitions for mappings and for collections of progress
functions, and shows that the existence of such mappings and collections imply that a given
algorithm satisfies a given set of timing requirements. Section 5 contains our examples, the
simple resource-granting system and the two-process race system. For each of these examples,
this section contains a description of the system, a description of the corresponding require-
ments automaton, and a correctness proof using mappings. We conclude with a discussion in
Section 6.




2 Formal Model

In this section, we present the definitions for the underlying formal model. In particular, we
define I/O automata, timed automata and timing conditions. We also present some of their
relevant properties.

2.1 I/0 Automata

We begin by summarizing some of the key definitions for the I/O automaton model. We refer
the reader to (23, 24] for a complete presentation of the model and its properties.

An I/O automaton, A, consists of the following pieces: acts(A), a set of actions, classified
as output, input and internal (input and output actions are called ezternal); states(A), a set of
states, including a distinguished subset, start(A), of start states; steps(A), a set of steps, where
a step is defined to be a (state, action, state) triple; and part(A), a partition of the locally
controlled (output and internal) actions into equivalence classes; the partition groups together
actions that are to be thought of as under the control of the same underlying process.

An action « is said to be enabled in a state s’ provided that there is a step of the form
(¢',7,3). An automaton is required to be input enabled, which means that every input action
must be enabled in every state. For any set Il C acts(A), we denote by enabled(A,II) the set
of states of A in which some action in II is enabled, and by disabled(A,II) be the set of all
states of A not in enabled(A, II), that is, disabled(A,Il) = states(A) \ enabled(A,1I). We use
the term event to refer to an occurrence of an action in a sequence.

An ezecution fragment of an I/O automaton A is a sequence (finite or infinite) of alternating
states and actions

80, T1,81y -3 8i+1, Wiy iy .-«

where for every ¢, (8;,_1,7;,3;) € steps(A). (If the sequence is finite, then it is required to =nd
with a state.) An ezecution is an execution fragment with s, € start(A). The schedule of an
execution a is the subsequence of a consisting of all the events appearing in a, and the behavior
of a is the subsequence consisting of all the external events. The schedules and behaviors of A
are just those of the executions of A. An ertended step is a triple (s',8, s) for which there is
an execution fragment that starts and ends with s’ and s, respectively, and whose schedule is

B.

Concurrent systems are modeled by compositions of I/O automatz., as defined in [23, 24]. In
order to be composed, automata must be strongly compatible; this means that no action can be
an output of more than one component, that internal actions of one component are not shared
by any other component, and that no action is shared by infinitely many components. The
result of such a composition is another I/O automaton. The hiding operator can be applied to
reclassify output actions as internal actions.




2.2 Timed Automata

In this subsection, we augment the I/O automaton model to allow discussion of timing prop-
erties. The treatment here is similar to the one described in [5] and is a special case of the
definitions proposed in [27]. A boundmap for an I/O automaton A is a 2 mapping that asso-
ciates a closed subinterval of [0, 0] with each class in part(A), where the lower bound of each
interval is not oo and the upper bound is nonzero. Intuitively, the interval associated with a
class C by the boundmap represents the range of possible lengths of time between successive
times when C “gets a chance” to perform an action. We sometimes use the notation b,(C) to
denote the lower bound assigned by boundmap b to class C, and b,(C) for the corresponding
upper bound. A timed automaton is a pair (A,b), where A is an I/O automaton and b is a
boundmap for A.

We require notions of “timed execution”, “timed schedule” and “timed behavior” for timed
automata, corresponding to executions, schedules and behaviors for ordinary I/O automata.
These will all include time information. We begin by defining the basic type of sequence that
underlies the definition of a timed execution.

Definition 2.1 A timed sequence (for an I/O automaton A) is a (finite or infinite) sequence
of alternating states and (action,time) pairs,
30, (71, 1), 81, (%3, 82), ...

satisfying the following conditions.

1. The states sq, s,, ... are in states(A).

2. The actions 7y, 73,... are in acts(A).

3. The times ty, t;,... are successively nondecreasing nonnegative real numbers.

4. If the sequence is finite, then it ends in a state s;.

5. If the sequence is infinite then the times are unbounded.

For a given timed sequence, we use the convention that ¢, = 0. For any finite timed
sequence a, we define endtime(a) to be the time of the last event in a, if a contains any
(action,time) pairs, or 0, if a contains no such pairs. Also, we define endstate(a) to be the last
state in a. We denote by ord(a) (the “ordinary” part of a) the sequence

30,71,31,%2y 0

i.e., a with time information removed.

If i is a nonnegative integer and C € part(A), we say that i is an instial indez for C in a if
s; € enabled(A,C) and either i = 0 or s;_, € disabled(A,C) or 7; € C. Thus, an initial index
for class C is the index of an event at which C becomes enabled; it indicates a point in a from
which we will begin measuring upper and lower time bounds.
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Definition 2.2 Suppose (A,b) is a timed automaton. Then a timed sequence a is a timed
execution of (A,b) provided that ord(a) is an ezecution of A and a satisfies the following
conditions, for each class C € part(A) and every initial indez i for C in a.

1. If b,(C) < oo then there ezists j > i with t; < t; + b,(C) such that either x; € C or
3; € disabled(A,C).

2. There does not ezist j > i with t; < t; + b,(C) and 7; in C.

The first condition says that, starting from an initial index for C, within time b,(C) either
some action in C occurs or there is a point at which no such action is enabled. Note that if
b,(C) = o0, no upper bound requirement is imposed. The second condition says that, again
starting from an initial index for C, no action in C can occur before time b,(C) has elapsed.
Note in particular that if a class C becomes disabled and then enabled once again, the lower
bound calculation gets “restarted” at the point where the class becomes re-enabled.

The timed schedule of a timed execution of a timed automaton (A, b) is the subsequence
consisting of the (action,time) pairs, and the timed behavior is the subsequence consisting of the
(action,time) pairs for which the action is external. The timed schedules and timed behaviors
of (A,b) are just those of the timed executions of (A4, b).

We model each timing-dependent concurrent system as a single timed automaton (A4,b),
where A is a composition of ordinary I/O automata (possibly with some output actions
hidden).! We also model problem specifications, including timing properties, in terms of timed
automata.

We note that the definition we use for timed automata may not be sufficiently general to
capture all interesting systems and timing requirements. It does capture many, however; we
discuss this further in Section 6.

3 Incorporating Timing Conditions imo I/O Automata

In order to use invariant assertion techniques to reason about timed automata, we define an
ordinary I/O automaton time(A,b) corresponding to a given timed automaton (A,b). This
new automaton has the timing restrictions imposed by b on A built into its transition rules,
based on predictions about when the next event from each set of actions will occur. In this
section, we give the construction of time(A,b) and also give results that relate the executions
and behaviors of time(A,b) to the timed executions and timed behaviors of (A4, b).

The close relationships between (A,b) and time(A,b) suggest the possibility of avoiding
the timed automaton definition entirely, instead using the time(A,b) notion as the starting

! An equivalent way of looking at each system is as a composition of timed sutomata. An appropriate defini-
tion for a composition of timed automsta is developed in [27), together with theorems showing the equivalence
of the two viewpoints.




point for our work. We prefer to begin with the timed automaton definition because we
regard that definition as the more fundamental of the two, expressed as it is in terms of a
traditional asynchronous system with some additional timing restrictions. As will be seen
helow, the time(A, b) definition introduces special constructs (e.g., special NULL actions and
special variables such as time), which are quite useful in proofs, but which do not seem to be
fundamental parts of system descriptions. Another reason we prefer to begin with the timed
automaton definition is that it has already been used elsewhere ([27, 5]). Moreover, we believe
that the elegant relationship between the two expressed by Theorem 3.1 is interesting in its
own right.

3.1 Definition of time(A,b)

Given any timed automaton (A,b), we define the ordinary I/O automaton time(A,bd). The
automaton time(A,b) has as its actions wil pairs of the form (,t), where x is an clemeni of
acts(A) U {NULL} and t is a nonnegative real number; here NULL is a “null action” that
represents the passage of time. The classification of actions into input, outpu* and internal
actions is derived from that for A, with the additional stipulation that each (NULL,t) is an
internal action. (The NULL action is similar to the unit action, 1, of SCCS (28] and to the
time-passage actions of [25].) Each of the states of time(A4,b) consists of a state, basic, of A,
augmented with a variable time, and, for each class C of the partition of A, two variables
first(C) and last(C). The value of the time variable represents the time of the last preceding
event. The values of the first(C) and last(C) variables represent, respectively, the first and
last times at which an event in class C is permitted to occur.

We use record notation to denote the various components of the state of time(A,b): for
instance, s.basic denotes the state of A included in state s of time(A,b). Each start state of
time( A, b) consists of a start state s of A, plus time = 0, plus values of first(C) and last(C)
with the following property: if there is an action in C enabled in s, then s.first(C) = b,(C) and
s.last(C) = b,(C); otherwise, s.first(C) = 0 and s.last(C) = oo. That is, if the start state of A
has an action in C enabled, then the predicted times are the ones specified in the boundmap
for C; otherwise, they are set to default values.

If (7,t) is an action of time(A,b), then (s,(7,t),s) is defined to be a step of time(A,b)
exactly if all of the following conditions hold.

1. If * € acts(A) then:

(a) ¢'.time =t = s.time.
(b) (8'.basic, x, s.basic) € steps(A).
(c) For each C € part(A):
i. If 7 € C then o' first(C) < t.
ii. If s.basic € enabled(A,C) and r ¢ C and s'.basic € enabled(A,C) then
s.first(C) = &'.first(C) and s.last(C) = o' .last(C).
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iii. If s.basic € enabled(4,C) and either x € C or s'.basic € disabled(A,C) then
s.first(C) = t + b,(C) and and s.last(C) = t + b,(C).
iv. If s.basic € disabled(A,C), then s.first(C) = 0 and s.last(C) = .

2. fx = NULL then

(a) ¢'.time < t = s.time.

(b) s.basic = s'.basic.

(c) t < &'.last(C), for each C € part(A).

(d) s.first(C) = &'.first(C) and s.last(C) = s'.last(C), for each C € part(A).

The meaning of these conditions is as follows. Condition 1 describes restrictions for the case
where 7 is an action of A. Condition 1(a) says that time does not pass during the performance
of non-null actions, and Condition 1(b) says that the steps associated with non-null actions
correctly simulate steps of A. Condition 1(c) describes the use and manipulation of the first
and last variables during non-null steps. Condition 1(c)i says that a locally controlled step is
only permitted to occur at a time that is at least as great as the first time specified for that
action’s partition class. Condition 1(c)ii says that an action not in a particular class that keeps
the class enabled does not alter the timing predictions for that class. Condition 1(c)iii says
that an action that enables a particular class sets the timing predictions for that class to the
values specified by the boundmap. Finally, Condition 1(c)iv says that an action that leaves a
particular class disabled sets the timing predictions to the default values.

Similarly, Condition 2 describes restrictions for the case where x is the special null action.
Condition 2(a) says that time cannot move backwards when a null action is performed, and
Condition 2(b) says that the steps associated with null actions do not cause any changes to
the underlying state of A. Condition 2(c) says that time cannot pass beyond the latest time
specified for any class, and Condition 2(d) says that timing predictions are unaltered by the
passage of time.

It is easy to check that for any reachable state of time( A, b) and any class C of the partition,
the following facts are true. First, it must be the case that s.last(C) > s.time (although it
is possible to have s.first(C) < s.time). Second, if s.basic € enabled(A,C) then s.last <
a.time + b,(C) and s.first < s.time + b,(C). Third, if s.basic € disabled(A,C) then both the
last(C) and first(C) variables have their default values (oo and 0, respectively).

The partition classes for time(A,b) are derived one-for-one from those of A, with the
addition of a single new class for all the (NULL,t) actions.? Note that a similar automaton
was defined in (5, 21); it differs in not containing special “null” actions.

We will be particularly interested in a subset of the executions of time(A4,b), that we call
the “admissible executions”. Informally, the admissible executions are those in which time
continues to pass without bound.

3We will not need these classes in this paper, however, since the purpose of I/O automaton partition classes
is to enforce fairness to the components of the system, and we will not require such fairness conditions.




Definition 3.1 An ezecution of time(A,b) is said to be admissible provided the times asso-
ciated with the NULL events in the ezecution are unbounded. The admissible schedules and
admissible behaviors of time(A,b) are defined to be the schedules and behaviors, respectively,
of admissible ezecutions of time(A,b).

Note that any admissible execution must have infinitely many NULL events, in order that
the associated times might be unbounded. In each of our examples in this paper, we will
apply the time(A, b) construction to a timed automaton A modeling the entire system under
consideration.

3.2 Relationship between (A4,b) and time(A4,d)

In this subsection, we relate a timed automaton (A4,5) to the corresponding I/O automaton
time( A, b); specifically, we prove the following main theorem, Theorem 3.1, which relates the
timed behaviors of (4, b) and the admissible behaviors of time(4, ). (Note that both behaviors
are sequences of pairs of the form (r,t), where  is an action and ¢ is a time.)

Theorem 3.1 The set of timed behaviors of (A, b) is the same aa the set of admissible behaviors
of time( A, b).

This theorem implies that properties of timed behaviors of a timed automaton (A, ) can
be proved by proving them about the set of admissible behaviors of the ccrresponding I/0
automaton time(A,b). The iatter task is more amenable to treatment using assertional tech-
niques.

The rest of this subsection is devoted to proving Theorem 3.1. The concepts and lemmas
used in this proof are not needed outside of the proof, so the reader may wish to skip the rest
of this subsection on a first reading.

First, the definition of a timed execution contains aspects of both safety and liveness. In
the proof, it is useful to focus first on the safety aspects alone. We thus define the notion of a
“timed semi-execution” to capture the safety part of the definition of a timed execution.

Definition 8.2 Suppose (A,b) is a timed automaton. Then a finite timed sequence a is a
timed semi-execution of (4,b) provided that ord(a) is an ezecution of A and a satisfies the
Jollowing conditions, for each class C of part(A) and every initial indez i for C in a.

1. Ifby(C) < oo then either endtime(a) < t;+by(C) or there ezists j > i with t; < t;4+b.(C)
such that either x; € C or s; € disabled(A,C).

2. There does not ezist j > & with t; < t; + b,(C) and x; in C.




This definition is identical to that of a finite timed execution (Definition 2.2), except for the
“either” clause in the first item. This clause allows an action to fail to occur if insufficient time
has passed by the end of the execution. (Recall that endtsme(a) refers to the time of the last
event in a.) We prove two technical lemmas about the properties of timed semi-executions.
The first lemma gives a condition on a timed semi-execution that ensures that it is a timed
execution.

Lemma 8.2 Suppose that a s a timed semi-ezecution of a timed automaton (A,b). Then a
is a timed ezecution if and only if each locally controlled action of A that is enabled in state
endstate(a) is in a partition class C in part(A) such that b,(C) = oo.

Proof: Straightforward. [

The second lemma says that the limit of a sequence of timed semi-executions in which the
times are unbounded must be a timed execution.

Lemma 3.8 Let {a;}2, be a sequence of timed semi-ezecutions of (A, b) such that the follow-
ing conditions hold.

1. For any 1 > 1, o; is a prefiz of a;y,.
2. lim;_, o, endtime(o;) = o0.
Then the limit of the a; under the extension ordering is a timed ezecution of (4,b)

Proof: Straightforward. [ |

We now show a simple correspondence between the timed semi-executions of (A4, b) and the
finite executions of time(A,b). We require an auxiliary definition. Namely, if a is an execution
of time( A, b), we define project(a) to be the timed sequence obtained from a by mapping each
occurrence of a state s in a to s.basic while keeping the (action,time) pairs intact, and then
removing any NULL events, together with their immediately following states.

Lemma 3.4 Let (A,b) be a timed automaton.

1. Ifa’ is a timed semi-ezecution of (A, b), then there ezists a finite ezecution a of time( A, b)
such that a’ = project(a).

2. If a is a finite ezecution of time( A, b), then project(a) is a timed semi-ezecution of (A, b).
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Proof: 1. Suppose that o' is a timed semi-execution of (4,b). First we construct a”, an
alternating sequence of states of A and actions of time(A,b), by inserting exactly one
NULL event before the first event in o' and between every pair of events in a’; more
precisely, if s and (7,t) occur consecutively in o', then o replaces this pair with the
sequence s,(NULL,t),s,(x,t). (The reason we need to insert the NULL events is that
they are the only kinds of events of time(A4,b) that allow time to pass.)

Now we modify a” to obtain a, a finite sequence of alternating states and actions of
time(A,b), by adding time, last and first variables to all the states in o’. We do this in
the unique way that guarantees that the first state is a start state of time(A, b) and that
Conditions 1(a), 1(c)ii-iv, 2(a) and 2(d) of the definition of time( A, b) are satisfied. Then
a' = project(a). We show that a is an execution of time(A, b) by showing that each step
of a satisfies the remaining conditions of the definition of time(A,b).

The fact that o is a timed semi-execution of (A, b) implies Condition 1(b), and Condition
2(b) holds by construction. Condition 1 of Definition 3.2 ensures Condition 2(c) of the
definition of time(A,b), while Condition 2 of Definition 3.2 ensures Condition 1(c)i of
the definition of time(A, b).

2. Let o' = project(a). By Conditions 1(b) and 2(b) of the definition of time(A,b), ord(a’)
is an execution of the ordinary I/O automaton A. It remains to show that for every class
C, o satisfies Conditions 1 and 2 of Definition 3.2 for C (and every i > 0).

The initialization and Condition 1(c)iii of the definition of time(A,b) imply that the
correct upper bounds are assigned to the last(C) variable whenever C becomes enabled,
and Conditions 1(c)ii and 2(d) imply that those bounds do not change until an action in
C occurs or C becomes disabled. Condition 2(c) then implies that the upper bounds are
respected, which implies Condition 1 of Definition 3.2 for C. Similarly, the initialization
and Condition 1(c)iii imply that the correct lower bounds are assigned to the first(C)
variable whenever C becomes enabled, and Conditions 1(c)ii and 2(d) imply that those
bounds do not change until an action in C occurs or C becomes disabled. Condition 1(c)i
then implies that the lower bound is respected, which implies Condition 2 of Definition
3.2for C.

Next, we show a correspondence between the timed executions of (A4,5) and the admissible
executions of time(4,b).

Lemma 8.5 1. Ifa’ is a timed ezecution of (A,b), then there ezists an admissible ezecution
a of time(A,b) such that o' = project(a).

2. If a is an admissible ezecution of time(A,b), then project(a) is a timed ezecution of
(A,0).
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Proof: 1. Suppose o’ is a timed execution of (A,b). We carry out a similar construction
to that in Part 1 of Lemma 3.4, except that if o’ is finite, we augment a with an infinite
suffix of NULL actions, associated with times that increase without bound. The argument
is similar to before; the main difference is that we must argue that that Condition
2(c) of the definitions of time(A,b) is not violated by the trailing NULL events. More
specifically, if ' is finite, then since it is a timed execution, Lemma 3.2 implies that
each locally controlled action that is enabled in state endstate(a’) is in a partition class
C with b,(C) = oo. Then the definition of time(A,b) implies that last(C) = oo for all
C € part(A), in all states of a just prior to the trailing NULL events. This implies that
the trailing NULL events cannot cause violations of 2(c).

2. Suppose that a = so,(7y,%1),31,... i8 an admissible execution of time(A,b), and let
o = project(a). Let a; be the prefix of a ending with s;, and let a; = project(a;), for
each i > 0. Then each o] is a prefix of aj ,, and o' is the limit of the a} under the
extension ordering. Since a; is a finite execution of time(A,b), Part 2 of Lemma 3.4
implies that af is a timed semi-execution of (A4, ), for each i > 0. We consider two cases.

First, suppose o' is infinite. Then a does not have a suffix consisting entirely of NULL
events. Since the times of the actions in a are unbounded, and a does not have a
suffix consisting entirely of NULL events, it follows that lim;_,,, endtime(a) = 0co. Then
Lemma 3.3 implies that o' is a timed execution of (4,b).

Second, suppose that a’ is finite. Then a has a suffix consisting entirely of NULL events,
say starting after s;, for some fixed j, and o’ = aj. As argued above, a; is a timed
semi-execution of (4,b), so a’ is a timed semi-execution of (A4,b). Condition 2(c) of the
time( A, b) definition and the fact that times increase without bound in a imply that each
locally controlled action of A that is enabled in state s;.basic is in a partition class C in
part(A) such that b,(C) = oo. Since endstate(a’) = s;.basic, Lemma 3.2 implies that o'
is a timed execution of (A4, ).

Proof: (of Theorem 3.1) Immediate by Lemma 3.5. (]

4 Sufficient Conditions for Inclusion of Timed Behavior Sets

In this section, we describe a method for showing that the tim=d behaviors of one timed
automaton, (4, b), are also timed behaviors of another timed automaton, (4’, ). This method
uses the construction in Section 3; i.e., it involves showing that the admissible behaviors of
time(A, b) are also admissible behaviors of time(A’,'). As we describe in Subsection 4.1, our
basic method involves mapping states of time(A,b) to sets of states of time(A’,b’) and is a
special case of the possibilities mapping method described in [23, 24].

In the examples later in this paper (as well as others to which we have applied this mapping
method), the mappings that are constructed are expressible in a particular form: in terms
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of inequalities involving the values of the state variables of the time(A,b) and time(A’,b')
automata. In particular, these inequalities assert that the value of each last(C) variable of
time(A’, V') is at least as great as a certain real-valued “progress function” of the values of the
state variables of time(A,b), and also that the value of each first(C) variable of time(4’,d’)
is no greater than another such function. These functions can be thought of as measures
of progress of the system time(A,b) toward the goals of producing events from the various
partition classes C of time(A’,b’). In Subsection 4.2, we define our notion of progress function
and show how they can be used to generate correct mappings.

Our notion of progress function is similar to the notion of progress function commonly used
to prove liveness properties of sequential and asynchronous concurrent programs (e.g., in [26]);
however, our notion generalizes the usual notion in that ours allows real-valued rather than
just discrete measures, and that ours applies to lower bounds as well as upper bounds.

4.1 Strong Possibilities Mappings

In this subsection, we define the notion of a strong possibilities mapping from an automaton
of the form time(A,b) to another automaton time(A’,b').> We then prove our basic theorem
about strong possibilities mappings, namely, that the existence of such a mapping implies that
the timed behaviors of (A4, b) are all timed behaviors of (4',V’).

Recall from Section 2.1 the definition of an eztended step of an arbitrary I/O automaton.

Deflnition 4.1 Let (A,b) and (A’,') be timed automata with the same set Il of ezternal
actions. Let f be a mapping from states of time(A,b) to sets of states of time(A’,¥'). The
mapping f is a strong possibilities mapping from time(A,b) to time(A’,b’) provided that the
followtng conditions hold:

1. For every start state s of time(A,b), there is a start state u of time(A',b') such that
u € f(s).

2. If &' is a reachable state of time(A,b), u' € f(s') is a reachable state of time(A',b') and
(8',(x,t), s) is a step of time(A,b), then there is an eztended step (v, B, u) of time(A', V),
such that u € f(s) and B|(II x R) = (=, ¢t)}(I x R).*

3. If s and u are reachable states of time(A,b) and time(A',b'), respectively, and u € f(s),
then u.time = s.time.

3This is a strengthened version of the definition of “possibilities mapping” in [24], where the strengthening
involves the addition of the third condition. The term “possibilities® is used to suggest the different possible
states in an image set. An alternative formulation is in terms of relations rather than mappings, as is described
in [25).

‘We use the notation R in this paper to represent the nonnegative real numbers,
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The first condition in the mapping definition establishes a correspondence between start
states of the two automata, while the second condition establishes a correspondence between
steps of time(A,b) and extended steps (as defined in Section 2.1) of time(A’,b’); this corre-
spondence must preserve the sequences of timed external events. The third condition simply
asserts that the current times of corresponding states must be identical.

The following key lemma says that the existence of a strong possibilities mapping is a
sufficient condition for the inclusion of admissible behaviors.

Lemma 4.1 Suppose that there is a strong possibilities mapping from time(A, b) to time(A’,b’).
Then any admissible behavior of time(A,b) is an admissible behavior of time(A',V’).

Proof: Let § be an admissible behavior of time(A,b), and let a be an admissible execution
of time(A,b) whose behavior is 8. For each finite prefix a; of a that ends with a state, it
is possible to construct a finite execution, af, of time(A’,}’) having the same behavior as
a; and such that the values of the time variables of the final states of both executions are
identical. Moreover, it is possible to do this in such a way that each af is a prefix of af,,.
(The construction is by induction on ¢, using Conditions 1 and 2 of Definition 4.1.) Let o' be
the limit of the af; then a’ is an execution of time(A’,b'), and the behavior of a’ is the same
as the behavior of a, which is 8.

Since a is admissible, the values of the time variables of the final states of the a; increase
without bound as 1 approaches infinity. Since the values of the ¢ime variables are the same in
the final states of a; and af, the values of the time variables of the final states of the a; also
increase without bound as i approaches infinity. It follows that a' is an admissible execution
of time(A’,b’) with behavior 8. Thus, 8 is an admissible behavior of time(A’,V'). ]

Now we give the main theorem of this subsection, which expresses the basic mapping
technique for timed automata.

Theorem 4.2 Suppose that there is a strong possibilities mapping from time(A, b) to time(A’, V).
Then any timed behavior of (A,b) is a timed behavior of (A', V).

Proof: Immediate from Lemma 4.1 and Theorem 3.1. [ ]

This theorem says that the existence of a strong possibilities mapping is sufficient by itself
to yield the desired inclusion result for timed behaviors. Since the timed behaviors of a timed
automaton embody both safety and liveness restrictions, it follows that this mapping technique
suffices to show both types of properties. This is in contrast to the situation for non-timed
systems, where analogous mapping techniques only yield safety properties. (In [1], for example,
extra machinery in the form of a “supplementary property” is added to the mapping machinery
in order to allow proofs of liveness properties.)
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Lynch and Vaandrager [25] generalize our Lemma 4.1 to the setting of a more general and
abstract timed automaton model. However, there is no corollary analogous to our Theorem
4.2 in that paper; also, the model in [25] lacks the partition class structure of the model of this

paper, which is needed to describe the progress function technique we describe in the following
subsection.

4.2 Progress Function Collections

In this subsection, we define our notion of progress functions and show how they can be used
to generate strong possibilities mappings.

The progress function definition is presented in terms of a pair of timed automata, (4, b) and
(A',b'), where (A, b) describes the system under study and (A’,b’) describes the requirements
to be satisfied. The underlying automaton, A’, of (A’,¥’) is used to describe correctness
requirements that do not involve time, whereas the boundmap b’ is used to describe timing
requirements; more specifically, b’ specifies upper and lower bounds for various kinds of events
to occur, where each “kind of event” corresponds to a partition class C of A’. Thus, for
each class C, the definition mentions one progress function gc to describe progress toward
guaranteeing the upper bound requirement given by b,(C), and another progress function he
to describe progress toward guaranteeing the lower bound requirement given by bj(C). Each of
these progress functions is a function from the state of automaton time(A, b) to RUoo. Along
with the functions g¢ and Ac, the definition also uses another function f that describes a
correspondence between states of the underlying automata A and A’.®> The various conditions
in the definition assert that the function f is a correct correspondence between states of A
and A’, and that the functions gc and hc provide correct measures of progress toward their
respective goals.

We caution the reader that this definition is somewhat technical. One aspect that may
seem confusing is that it is based on a mixture of the two styles of definition, time(A, b) versus
(A’,¥'). However, note that the mixture is completely consistent, always using the time(A,b)
definition at the lower level and the (A’,b’') at the higher level. The time(A,b) definition is
used at the lower level because the progress measures are naturally defined in terms of states
of time(A,b) (in particular, in terms of the values of the first and last variables). On the
other hand, the (A4’,}’) definition is used at the higher level because it permits decomposition
of the properties that need to be shown to demonstrate the existence of a strong possibilities
mapping into very small pieces.

In Section 5, we verify timing properties for two examples using progress functions. We
note that it is possible to avoid the progress function definition entirely, and verify correctness
and timing properties for our examples directly from Theorem 4.2. (In fact, that is how similar
proofs are carried out in the preliminary version of this paper {21].) However, examination

This function could also be replaced by s multi-valued mapping, but this causes notational complications
we thought it best to avoid.
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of our proofs based on Theorem 4.2 shows that they all use the notion of progress function
implicitly. This subsection is our attempt to make this strategy explicit.

Definition 4.2 Let (A,b) and (A, V') be timed automata with the same set Il of ezternal
actions. Let f be a mapping from states of time(A,b) to states of A'. For each C € part(4'),
let gc and hc be mappings from states of time(A,b) to RUoco. Then the collection of mappings

(f, (9c, hc)ceparyay) 18 @ progress function collection from (4,5) to (A’, ') provided that the
following conditions hold:

1. If s is a start state of time(A,b) and v = f(s), then v is a start state of A'. Moreover,
for each C € part(A') such that v € enabled(A’, C), we have gc(s) < b,(C) and he(s) >
(C)-

2. Suppose ' is a reachable state of time(A,b) and (.s' (7,t),8) is a step of time( A, b), where
x # NULL. Suppose v' = f(.s’), v= (3), and v' is a reachable state of A'. Then there
is an ezecution fragment a of A' beginning and ending with v' and v respectively, such
that:

(a) a|ll = «|II.
(b) For each C € part(A’):
i. Ifb)(C) > 0 and a C event occurs in a, then there is only one C event in a, all
states occurring in a prior to the C event are in enabled(A’,C) and t > he(s).
. If all states in a are in enabled(A’',C) and if no C events occur in a then
gc(.’) < gc(a’) and hc(.’) > hc(.").
i, If v € enabled(A',C), and if esther there is a state in a in disabled(A’,C) or if
a C event occurs in a, then go(s) < t+ b,(C) and he(s) >t + b)(C).

3. Suppose s' is a reachable state of time(A,b) and (s',(NULL,t), s) is a step of time(A,b).
Suppose v' = f(s'), v = f(s), and v’ is a reachable state of A'. Then:

(a) v =v.
(b) For each C € part(A'):
i. t < gc(s).
#. gc(8) < go(s') and he(s) > he(s').

The meaning of these conditions is as follows. Condition 1 asserts that any start state s
of time(A,b) corresponds to a start state of A’; moreover, the value for each progress function
in state s is defined in an appropriate way to enable proof of the desired bound. For example,
consider the upper bound requirement for claas C, as specified by the boundmap value 4,(C).
If class C is enabled in state v and remains enabled, then we will wish to prove that some
action in C will occur by time at most b,(C). In order to use the progress function g¢c as a
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progress measure to prove this upper bound, we require that the initial value of gc should be
no greater than the bound 4(C) to be proved.

Condition 2 asserts that each non-null step of time(A,b) has a corresponding execution
fragment of A’ satisfying certain properties. Condition 2(a) says that the execution fragment
exhibits the same external behavior as the given step, while Condition 2(b) says that the
values of the progress function are handled appropriately to enable proof of the desired bounds.
Condition 2(b)i says that each progress function hc does in fact describe a lower bound on the
time by which an action in C may occur. If the lower bound specified by the boundmap ¥ for
C is 0, then there is nothing to show for this condition; if it is nonzero, then a C event should
only occur if the time at which it occurs is at least as great as the time hc(s’'). However, there
is a technicality that arises in this condition: recall that the lower bound requirement for C
is restarted whenever C becomes enabled or a C event occurs. This means that a violation
of the lower bound requirement given by b}(C) could occur in the given execution fragment if
class C becomes enabled in the fragment or a C event occurs, and then a subsequent event
of C occurs; even though the time for this C event is at least hc(s’), that time might not
be sufficiently great to satisfy the restarted lower bound requirement. In order to cope with
this troublesome situation, we simply rule out this pattern from the execution fragments we
consider.

Condition 2(b)ii simply says that the progress functions are maintained properly when
no relevant steps occur; for example, consider the upper bound requirement for class C. If
no events in C occur and C remains enabled, then the progress function used as a progress
measure for C’s upper bound may decrease, but it should not be allowed to increase. Finally,
Condition 2(b)iii says that the progress functions are restarted properly when a clazs C becomes
enabled or when an event in C occurs. The considerations are analogous to those for proper
initialization.

Condition 3 describes what must happen whan a null step of time(A, b) occurs. Condition
3(a) says that a null step does not change the state of A’. Condition 3(b)i says that each
progress function g does in fact describe an upper bound on the time by which an action in C
must occur. That is, if the system time(A4,b) is in state s, then it is not permissible for time
to pass beyond time gc(s') without some action in C occurring. Condition 3(b)ii is similar
to Condition 2(b)ii, in that it says that the progress functions are maintained properly when
nothing of interest occurs.

We now show how progress function collections can be used to generate strong possibilities
mappings. Let (f,(gc,hc)cepert(a’)) be a progress function collection from (4,5) to (4',V).
Then we define a mapping f from states of time(A,b) to sets of states of time(4',V') by:
u € f(s) iff

1. u.basic = f(s),
2. u.time = s.time,

3. u.last(C) 2 gc(s) for each C € part(A’), and
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4. u.first(C) < h¢(s) for each C € part(A').

The next lemma shows that f is a strong possibilities mapping.

Lemma 4.3 Suppose that (A,b) and (A', V') are timed automata with the same set of ezternal
actions, and suppose that (f,(gc, hc)cepari(a’)) 18 a progress function collection from (4,b) to
(A',¥'). Let f be the corresponding mapping defined just above. Then f is a strong possibilities
mapping from time(A,b) to time(A', V).

Proof: We show the three conditions of Definition 4.1. Condition 3 is immediate by defini-
tion.

For Condition 1, let s be a start state of time(A,b). Then Condition 1 of Definition 4.2 yields
a start state v of A’ such that v = f(s) and, for all C € part(4'), if v € enabled(A’,C) then
gc(s) < b,(C) and he(s) > b)(C). Define u to be the (unique) start state of time(A’, ') having
u.basic = v. By definition of the start states of time(A4’, '), it follows that u.téme = 0 = s.time,
u.last(C) = b,(C) if v € enabled(A’,C) and u.last(C) = oo otherwise, and u.first(C) = ¥;(C)
if v € enabled(A',C) and u.first(C) = 0 otherwise. Then we have u.basic = v = f(s),
u.time = s.time, and u.last(C) > go(s) and u.first(C) < he(s) for all C, which implies that
u € f(s), as needed.

Now we show Condition 2 of Definition 4.1. Let II be the common set of external actions for
(A,b) and (A4’,b’). Suppose that &' is a reachable state of time(A4,b), w' € f(s') is a reachable
state of time(4', V), and (s',(x,t),s) is a step of time(A,b). Since v’ € f(s'), it follows that
u'.basic = f(s'), u'.time = o .time, and u'.last(C) > gc(s') and w'.first(C) < he(s') for all
C € part(A’). Also, since u' is a reachable state of time(A’,¥'), it follows that «'.basic is a
reachable state of A’'.

We consider two cases:

1. = # NULL.

Then Condition 2 of Definition 4.2 yields an execution fragment a of A’ with the prop-
erties detailed in that definition. We modify a to obtain an execution fragment o' of
time(A’, V'), by using the same sequence of events as in a, associating time ¢ with each
event, and filling in the values of the time, last and first variables as determined by the
definition of time(A’, ).

In order to show that the resulting o’ is an execution fragment of time(A’,d’'), we must
argue that the designated times of events are within the bounds allowed by the definition
of time(A',¥’). The only interesting condition to show is Condition 1(c)i of the definition
of time(A',b'), for a class C that has b)(C) > 0: we must show that if any action in such
a class C occurs in o, then u".first(C) < t, where u” is the state of time(A’, V') just prior
to that C event. By Condition 2(b)i of Definition 4.2, there is only one C event in a,
and all states in a prior to the given C event are in enabled(A4’,C); by the definition of
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time( A’, b'), this implies that u".first(C) = v'.first(C). Condition 2(b)i of Definition 4.2
also implies that t > h¢(s'); since u'.first(C) < hg(s'), this implies that u'.first(C) < t,
so that u".first{C') < ¢, as needed.

Now we define the extended step (u', 8, u) of time(A’, ') that arises from a; that is, u is
the last state in a’' and # is the schedule of a’. We show that this extended step satisfies
the conditions required in Definition 4.1. First, we must show that u € f(s), that is, that
u.basic = f(s), u.time = s.time, and that u.last(C) > gc(s) and u.first(C) < he(s) for
all C. But u.basic = f(s) by the definition of @, and u.time = t = s.time, showing the
first two of these conditions. To see that u.last(C) > gc(s), note that u'.last(C) > gc(s')
since u' € f(s'); Conditions 2(b)ii and 2(b)iii of Definition 4.2 and the definition of
time(A,b) then imply the needed inequality. A similar argument holds for the lower
bound condition.

Also, since a|ll = =|II, it follows that F|II x R = (x,¢)|II x R. Thus, Condition 2 of
Definition 4.1 is satisfied.

. # = NULL.

Define state u of time(A’,b’) to be the same as state u', except that u.time = t. We
claim that (w',(NULL,t), u) is the required extended step of time(A4',¥).

First, we argue that (u', (NULL, t), u) is a step of time(A’, ¥’). By definition of time(4’, V'),
the only interesting condition to check is that ¢t < u'.last(C) for all C € part(4').
So fix C € part(A’). Condition 3(b)i of Definition 4.2 implies that ¢ < gc(s'); since
u'.last(C) > gc(s'), we have t < '.last(C), as needed.

Now we check the remaining requirements for Condition 2 of Definition 4.1. The cor-
respondence between external action sequences is easy to see. We argue that u € f(s).
Since u.basic = u'.basic, f(s) = f(.s’ ) (by Condition 3(a) of Definition 4.2), and u’.basic =
f(8"), it follows that u.basic = f(s). Also, u.time =t = s.time. Let C € part(A’). Then
u.last(C) = v'.last(C) > go(s'), and go(s') 2 gc(s) by Condition 3(b)ii of Definition
4.2. Therefore, u.last(C) > gc(s). A similar argument shows that u.first(C) < he(s).
Therefore, Condition 2 of Definition 4.1 holds, as needed.

Now we give the main theorem about progress function collections, saying that their exis-

tence implies timed behavior inclusion.

Theorem 4.4 Suppose that (A,b) and (A', V') are timed automata with the same set of external
actions. If there ezists a progress function collection from (A,b) to (A',V), then every timed
behavior of (A,b) is a timed behavior of (A',V').

Proof: By Lemma 4.3 and Theorem 4.2. a
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5 Examples

In this section, we present two examples for which we prove time upper and lower bounds
using our mapping techniques, (in particular, using progress function collections).

5.1 Resource Manager

Our first example is a simple resource-granting system adapted from an algorithm in [5]. The
system consists of two components, a clock and a manager. The clock ticks at an approximately-
predictable rate, and the manager counts ticks in order to decide when to grant a resource.
We wish to analyze the time until the first grant, and the time between each successive pair
of grants. :

We describe the algorithm and its timing assumptions as a timed automaton (A4,b). The
required timing behavior is presented as a timed automaton (A’, b'); we prove that the algorithm
satisfies the requirements by exhibiting a progress function collection from (A, b) to (4',d').

5.1.1 The Algorithm

The algorithm consists of two components, a clock and a manager. The clock has only one
action, the output TICK, which is always enabled, and has no effect on the clock’s state. It
can be described as the particular one-state I/O automaton with the following steps.®

TICK
Precondition:
true
Effect:
none

The partition contains a single class, which contains the single output event TICK. For
convenience, we overload the notation and designate this singleton class as TICK also.

The manager can be described as another I/0 automaton, this one having one input action,
TICK and one output action, GRANT. The manager waits a particular number k£ > 0 of clock
ticks before issuing each GRANT, counting from the beginning or from the last preceding
GRANT. The manager’s state has one variable: timer, holding an integer, initially k.

The manager’s algorithm is as follows:

®In the notation we use for sutomats, s separate description is given for the steps involving each action.
Instead of listing the steps, we provide a “precondition” which describes the set of states in which the action
is enabled, and an “effect” which describes the changes caused by the action. Input actions do not have a
precondition, because they are always enabled.
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TICK
Effect:
timer .= timer —1

GRANT
Precondition:
ttmer <0
Effect:
timer .= k

Thus, in the situation we are modeling, when the GRANT action’s precondition becomes
satisfied, the action does not occur instantly — the action waits until the automaton’s next local
step occurs. The partition has a single class, containing the single output action GRANT; we
call this class GRANT as well. Fix A to be the I/O automaton which is the composition of the
clock and manager automata, with the TICK output action hidden (using the I/O automaton
hiding operator to convert it to an internal action); thus, the only external action of A is the
output action GRANT.

The boundmap b associates the lower bound ¢, and upper bound ¢; with the class TICK,
where 0 < ¢; < ¢; < o0; this means that the times between successive TICK events, and the
time of the first TICK event, are in the interval [c;,c;]. The boundmap b also associates the
lower bound 0 and upper bound ! with the class GRANT, where 0 < | < co; which means that
the times between successive chances for the manager to take a step, and the time of the first
such chance, are in the interval [0,1]. We assume that ¢, > 1.7 We wish to chow that all the
timed behaviors of (A, b) satisfy certain upper and lower bounds on the time up to the first
GRANT and the time between consecutive pairs of GRANT events.

We begin our analysis by stating some useful invariant properties of the algorithm. In order
to do this, we need timing information to be included in the state, so we consider the automaton
time(A,b), constructed as described in Section 3. Note that in this case, the automaton
time( A, b) has the following variables: basic, time, first(TICK), last(TICK), first(GRANT),
ar ! last(GRANT). The next lemma states invariant properties of the automaton time(A4,b).
Notice that the second property involves the time prediction variables.

We again use record notation to designate state components, e.g., we use s.timer to denote
the value of the timer component of s.bassc.

Lemma 5.1 The following are true about any reachable state s of time(A,b).

1. s.timer > 0.

2. If s.timer = 0 then s.first(TICK) > s.last(GRANT) + ¢, — .

"This sssumption is needed, for example, for Lemma 5.1. Other assumptions could be used, but they would
lead to alightly different bounds.
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Proof: By induction on the length of an execution leading to s. If the length is 0, then
s.timer = k > 0, so the conditions are easily seen to be true. So suppose that (s',(7,t),s)is
a step of time(A,b), where o' is reachable in n steps and the conditions are true for s'. We
consider cases.

1. » = GRANT.
Then the effect of the GRANT action implies that s.timer = k > 0, which implies both
conditions.

2. » = TICK.

Suppose that s.timer < 0. Then s'.timer = 0, by the effect of the step and the inductive
hypothesis. The inductive hypothesis also implies that s'.first( TICK) > s'.last(GRANT)+
¢y — . Since ¢; > I (by assumption), this implies that s'.first( TICK) > s'.last(GRANT).
Since s'.last(GRANT) > s'.time = t, it follows that &'.first(TICK) > t. But then the
definition of time(A,b) implies that TICK is not enabled in ', a contradiction. Thus,
s.timer > 0, showing the first condition.

Now, s.first( TICK) = t+c, and s.last(GRANT) < t+l. This implies that s.first( TICK) >
s.last{GRANT) + ¢, — |, showing the second condition.

3. » = NULL.

Then all of the terms involved in the two conditions are the same in &' and s, so the
conditions are preserved.

5.1.2 The Requirements Automaton
We show the following, for any timed behavior 8 of (A4, b):

1. There are infinitely many GRANT events in §.

2. If t is the time of the first GRANT event in §,then k-¢; - I<t<k-c;+ 1.

3. If t; and t; are the times of any two consecutive GRANT events in J, then
koe,—l<ti-tySk-ca+l

We let P denote the set of sequences of (action, time) pairs, where the only action is GRANT,
satisfying the above three conditions.

We specify P in terms of another timed automaton, (A’,b'). Define A’ to have a single
state and a single GRANT output action enabled in that state, and define the boundmap b’ to
assign to the unique class of A’ the lower and upper bounds k- ¢, —{ and k- c; + [, respectively.

Note that the timed behaviors of (A’,}’) are exactly the sequences in P.
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5.1.83 The P:oof

In this subsection, we give a progress function collection from (A4, b) to (A4’,d’), thereby show-
ing that all timed behaviors of (A,b) are also timed behaviors of (A’,4’). This fact yields
Theorem 5.3, which says that all timed behaviors of (A4, b) are in P.

The mapping is defined by means of a progress function collection, ( f, 9GRANT, RgraNT),
where f(s.basic) is the unique state of A’, for all s, and

(s) s.last(TICK) + (s.timer — 1)e; +1 if s.timer > 0,
JoRANT s.last(GRANT) otherwise,
and
_ s.first(TICK) + (s.timer -1)c, if s.timer >0,
haranz(s) = { s.time otherwise.

The progress functions give explicit upper and lower bounds for the time of the next
GRANT event, in terms of the values of the variables in the state of time{A,b). For instance,
if s.timer > 0, a TICK event must happen within time s.last(TICK), and then after s.timer~1
additional ticks, each happening after at most ¢, time, timer will become 0, thus enabling the
GRANT, which will happen within time at most [.

Since there is only one class in the partition of A/, we drop the subscript GRANT on the
progress functions for the rest of this example, writing simply ¢ and h in place of ggranr and
herant.

Lemma 5.2 The triple (f,g,h) is a progress function collection from (A,b) to (4, V).
Proof: Let s be the unique start state of time(A,b). Then s.timer = k > 0, s.last( TICK) =
¢; and s.first( TICK) = ¢, so that

9(8) = s.last(TICK) + (s.timer — 1)ca + I =k-c3 +1

o h(s) = s.first(TICK) + (s.timer — 1)e; = k-¢e; 2 k-¢; = L.
Let v = f(s.basic). Then v is the unique start state of A’. Also,
b.(GRANT)=k-c3+1=g(s)
and
{(GRANT) = k-c, — 1 < h(s).
This shows Condition 1 of Definition 4.2.

Now we show Condition 2. Suppose that &' is a reachable state of time(A, b) and (#', (%, 1), s)
is a step of time(A,b), where 7 is nonnull. Let v denote the unique state of A'. We consider
cases.
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1. = = GRANT.

Then s'.timer < 0 and s.timer = k > 0, by the precondition and effect of GRANT in
A; thus, s'.timer = 0 by Lemma 5.1. Lemma 5.1 also implies that s'.first(TICK) >
s'.last(GRANT) + ¢, - L.

Let a be the execution fragment (v, GRANT,v) of A’. Then Condition 2(a) of Defini-
tion 4.2 is immediate. For Condition 2(b)i, the enabling and uniqueness conditions are
immediate; moreover,

t = 4s'.time by definition of time(4,)),
= h(s') since s'.timer = 0,

as needed.

Condition 2(b)ii is vacuously true, since a GRANT event occurs in a. For Condition
2(b)iii, we must show that g(s) < t + b,(GRANT) and h(s) > t + b),(GRANT). For the
upper bound, we have that s.last( TICK) < t + c,, by definition of time( A, d). Therefore,

g(s) 8.last(TICK) + (k — 1)c, + ! since s.timer = k > 0,
t + k +Cy + l,

t + b,(GRANT),

oAl

as needed.

For the lower bound, we have that s.first(TICK) = #'.first( TICK) and s'.last(GRANT) >
t, by definition of time( A, b). Therefore,

h(s) s.first(TICK) + (k — 1)e,, since s.timer > 0,

s first(TICK) + (k - 1)cy,

> 4&.last(GRANT)+ k-¢, — | by Lemma 5.1,
> t+ k- ¢ — ',
= t+ by(GRANT),
as needed.
2. = = TICK.

Then s.timer = s'.timer — 1. Let a be the trivial execution fragment v of A’. Once
again, Conditions 2(a) of Definition 4.2 is immediate. Conditions 2(b)i and 2(b)iii are
vacuously true. For Condition 2(b)ii, we must show that g(s) < g(#’) and h(s) > h(s’).
There are two cases.

(a) s.timer > 0.
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For the upper bound, we have that s.last(TICK) = t + ¢; and ¢ < &'.last( TICK),
by definition of time(A,b); therefore, s.last(TICK) < '.last( TICK) + ¢;. Thus,

9(s) = s.last(TICK) + (s.timer — 1)c; + 1,
= s.last(TICK) + (s'.timer — 2)c; + I since s.timer = o'.timer — 1,
< 4.last(TICK) + (&' .timer — 1)c; + 1,
= g(s),
as needed.

For the lower bound, we have that s.first( TICK) = t + ¢, and &' .first( TICK) < t by
the definition of time(A,b); therefore, s.first(TICK) > s'.first(TICK) + ¢,. Thus,

h(s) = s.first(TICK) + (s.timer — 1)c,,
> o.first(TICK) + c, + (s.timer — 1)c,,
= 4 .first( TICK) + (s'.timer — 1)c, since s.timer = s'.timer — 1,
= h(s'),
as needed.

(b) s.timer =0.
Then &'.timer = 1. For the upper bound, we have that s.last(GRANT) < t + 1
and ¢t < #'.last(TICK), so that s.last(GRANT) < #'.last( TICK) + I, by definition
of time(A,b). Therefore,

g(s) s.last(GRANT),
o' .last(TICK) + 1,

g(s'),

A

as needed.

For the lower bound, we have that s.time = t and ¢ .first(TICK) < t, so that
s.time > & .first(TICK). Therefore,

h(s) s.time,
o .first(TICK),

h(s'),

niv

as néeded.

Now consider a step (s', (NULL, t), s) of time( A, b), where &' is a reachable state of time( 4, b).
Condition 3(a) of Definition 4.2 is immediate. Now,

(&) = o .last(TICK) + ('.timer — 1)c; + 1 if &' .timer > 0,
99I=1 +.last(GRANT) otherwise.
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Therefore, g(s') > min(s'.last( TICK), s'.last(GRANT)). By the definition of time(4, b), it
must be that ¢ < min(s'.last(TICK), s'.last(GRANT)); thus, t < g(s'), which shows Condition
3(b)i of Definition 4.2. For Condition 3(b)ii, we must show that g(s) < g(s') and A(s) > h(s').
But since only the value of time is different in s and &', and s.time > s'.time, these inequalities
follow immediately from the definitions of the progress functions g and A. [ |

Now we can put the pieces together.
Theorem 5.3 All timed behaviors of (A,b) are in P.

Proof: Lemma 5.2 yields a progress function collection from (A,b) to (A4’,b'). Thus, by
Theorem 4.4, any timed behavior 8 of (A,b) is a timed behavior of (4’,b’). This implies that
BeP. [ ]

5.1.4 Discussion

The bounds that we have proved above are nearly tight, Specifically, it is possible to produce
four timed executions of (A, b) that exhibit the following types of behavior:

1. The time until the first GRANT is exactly k - ;.

2. The time until the first GRANT is exactly k- ¢c; + I.

3. The time between the first and second GRANT events is exactly k-¢; — [.
4. The time between the first and second GRANT events is exactly k- c; + 1.

The only discrepancy between these bounds and those proved above is a difference of  in the
lower bound for the first GRANT.

For example, the first bound is realized by the timed execution of (4,) that has the
following timed schedule:

(TICK,c,),(TICK,2 - c,),...,(TICK,k - c,),(GRANT, k - c;).
The second bound is realized by the timed execution that has the following timed schedule:
(TICK,c,),(TICK,2¢c;),...,(TICK, k- c;),(GRANT, k - c; + 1).
The third bound is realized by:
(TICK,c,),(TICK,2 ¢,),...,(TICK,k-¢,),(GRANT k- ¢, + [)
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(TICK,(k +1)- c1),(TICK, (k+2) - c1),...,(TICK, 2k - ¢;), (GRANT, 2k - c;).

Finally, the fourth bound is realized by:

(TICK,c,),(TICK,2 - c3),...,(TICK, k - c3), (GRANT, k - ¢5)
(TICK, (k + 1) ¢;),(TICK, (k + 2) - c3), .. ., (TICK, 2k - c;), (GRANT, 2k - c3 + ).

Note that it is possible to modify our proof to give the tight lower bound of k - ¢, for the
first GRANT; the idea is to split the requirements to be proved so they are expressed by two
separate partition classes in (A’,}’), one for the first GRANT and one for the time between
pairs of GRANT events. The two classes will have different lower bounds. There is a slight
technical difficulty in that the algorithm (A4, ) would have to be modified slightly in order to
distinguish the first GRANT event from successive GRANT events, but there is no problem
in principle.

Note that our resource manager is much simpler than the usual examples of resource-
granting systems; in particular, there is no request input that triggers the GRANT output.
We do not think that adding such structure would increase the conceptual difficulty of the
example or expose any interesting property of the methodology we suggest here; however, it
would make the analysis somewhat longer.

5.2 Two-Process Race System

We consider a system composed of two processes, X and Y. Process X increments a counter
until process Y modifies a flag, and then decrements the counter. When the counter reaches
0, process X announces that it is done. We are interested in upper and lower bounds on the
time until a “done” announcement occurs. An interesting aspect of this example is the fact
that the worst-case time is not attained in the case where the processes both continually take
steps at their slowest possible rates. Rather, it is attained when process Y takes steps at its
slowest possible rate, while process X takes steps at its fastest rate until the flag is set, and
then takes steps at its slowest rate until the counter reaches 0.

As in the previous example, we describe the algorithm and its timing assumptions as a timed
automaton (A, b), and the required timing behavior as another timed automaton (4’,V’), and
produce a progress function collection from (A, b) to (4’,%’).

5.2.1 The Algorithm

The system is described as a single timed automaton (A, b) containing two classes representing
the two processes X and Y. Automaton A has state variables z, y and done, where z and y are
integers, initially 0, and done is a Boolean, initially false. There are one output action, DONE,
three internal actions, SET, INC and DEC, and no input actions. The partition classes are
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X = {INC,DEC,DONE} and Y = {SET}. Intuitively, there are two sequential processes
(using shared memory), one of which performs the SET action and one of which performs the
other three actions. The transitions are as follows.

SET
Precondition:
y=0
Effect:
y:=1
INC
Precondition:
y=20
Effect:
z:=z+41
DEC
Precondition:
y=1
z>0
Effect:
z:=z-1
DONE
Precondition:
y=1
=0
done = false
Effect:
done := true

The boundmap b for A assigns the lower bound !, and the upper bound {;, where 0 < I; <
Iz < oo, with each of the two partition classes, indicating that the time between successive
steps of each of the two processes is in the interval {l;,l;]. We are interested in determining
the maximum and minimum times taken by the timed a:tomaton (4,5) from the beginning
until the DONE action occurs.

5.2.2 The Requirements Automaton |

We will show that any timed behavior § of (A, b) contains exactly one DONE event, occurring
at a time in the interval [I,,(2 + |{2])ls]. The intuition for the lower bound should be clear:
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this is the earliest time at which the flag can be set, and hence the earliest at which the DONE
event can occur. The intuition for the upper bound is a little more complex: if process Y sets
the flag at the latest possible time [;, then there is time for process X to take approximately %f
steps before the flag is set, if X takes steps as quickly as possible. This will cause the counter
to be set to approximately . f X then decrements the counter as slowly as possible, with
time l; between successive steps then the total time to decrement is approximately (-1)13 The

precise bound involves some roundoffs and additive constants, and is obtained using some trial
and error.

Let P denote the set of sequences of (action,time) pairs, where the only action is DONE,
satisfying the condition that the DONE event occurs at a time in the interval [l3, (2+ | 2])4].

We specify P in terms of a timed automaton (A’,V’), defined as follows. A’ has two states,
active and inactive, with start state active, and a single action, DONE, which is an output
action enabled in state active and whose effect is to change the state to inactive. The boundmap
Y assigns to the single class DONE the lower and upper bounds I, and (2+ |2 | )3, respectively.
Note that the timed behaviors of (A’, b’) are exactly the sequences in P.

5.2.3 The Proof

In this subsection, we define a progress function collection from (4,b) to (4’,%'), which
implies that every timed behavior of (A,b) satisfies P. The progress function collection,
(f,gpoyg,hpoug), has f(a basic) = active if s.done = false and inactive if s.done = true,
and

_ [ slast(Y) + (s.z +2+ |2letloefnlX) |y, if 5.y = 0 and s.first(X) < s.last(Y)
gooma(s) = s.last(X)+ 8.z -1 ~ otherwise, -
and
h ) s.first(X) + (s.z+2)l, if s.y=0and s.first(Y) > s.last(X)
pows(s) = s.first(X)+ sz -1, otherwise.

We give some intuition for the first, more complicated case of each inequality. For the upper
bound, this is the case where another step of X can occur before the next (and only) step of
Y occurs. In this case, | -letY)-e. ""“nj measures how many additional steps of X (after the
indicated step of X) can fit before Y must take a step, and (8.2 + 2 + | = "‘L"‘ Lret(X) )1,
is the longest time it can take from the time SET occurs (which is at most s. laat(Y)) until
DONE occurs. In more detail, at the time the SET occurs, the value of z is at most s.z +1 +
| leselN)e. ""(X)J, 80 it takes this number of DEC events (each consuming at most [, time)
until z getu set to 0, and at most another l; until DONE occurs.

For the lower bound, the first case is the case where another step of X must occur before
the next (and first) step of Y occurs. In this case, z will be increased at time at least s.first(X)
and it will take at least z + 1 DEC operations (each consuming at least I, time) until z gets
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set to 0 and another /; time until DONE occurs. The second cases of both inequalities are
similar, but simpler.

Again, since there is only one class in the partition of A’, we will drop the subscript DONE
on the progress functions for the rest of this example, writing simply g and h in place of gponz
and hpows-

Lemma 5.4 The triple ( f.a, h) is a progress function collection from (A,b) to (A',b').
Proof: Let s be the unique start state of time(A4,b). Then s.first(X) = s.first(Y) = I,
s.last(X) = s.last(Y) = l;, s.z = s.y = 0, and s.done = false. Then

o(s) = slast(Y)+ (s.c+2+ | 2t¥) ;l’ﬁ"‘(x ) )iz

Iy -1
= l,+(2+[’l1 I)IA

@+ ),

and
h(s) = s.first(X)+ s.z- 1, = 4.

Let v = f(a.basic). Then v = active, by definition of f, which is the start state of A'.
Also, b,(DONE) = (2 + ()lz = g(s) and by(DONE) = I, = h(s). This shows Condition 1 of
Definition 4.2.

Now we show Condition 2. Suppose that s’ is a reachable state of time( 4, b) and (s, (7, t), )
is a step of time(A,b), where x is nonnull. Also suppose that v' = f(s'.basic) and v =
f(s.basic). We consider cases.

1. » = DONE.

Then s'.y = 1, s'.z = 0, s'.done = false, and s.done = true, by the precondition
and effect of DONE in A, and s'.first(X) < ¢, by the definition of time(A4,b). Also,
v’ = f(s'.basic) = active and v = f(s.basic) = inactive.

Let a be the execution fragment (v', DONE, v) of A'. Condition 2(a) is immediate. For
Condition 2(b)i, the uniqueness and enabling conditions are immediate; moreover,
t > 4. first(X),
= h(s') since s'.y=1and s'.z =0,

as needed.

Condition 2(b)ii is vacuously true, since 8 DONE event occurs in a. Condition 2(b)iii is
also vacuously true, since v ¢ enabled(A’, DONE).
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2. » = SET.

Then s'.y = 0, s.y = 1, &'.z = s.z, by the precondition and effect of SET in A. Moreover,
8'.done = s.done = false, which implies that v = v = active. Also, s.last(X) =
s'.last(X), s.first(X) = o .first(X), s.last(X) < t + I3, t < 8'.last(Y'), t < &'.last(X) and
& first(Y) < t, by definition of time(A4,b).

Let a be the trivial execution fragment v’ of A’. Condition 2(a) is immediate, and 2(b)i
and 2(b)iii are vacuously true. For Condition 2(b)ii, we must show that g(s) < g(s') and
h(s) > h(s’). For the upper bound, we consider two cases.

(a) &'.first(X) > o'.last(Y).

Then
g(s) = s.last(X)+ (s.z)l; since s.y =1,
= '.last(X)+ (s'.2)l,
= g(s),
which suffices.
(b) o'.first(X) < #'.last(Y).
Then
g(s) = s.last(X)+ (s.2)l;,
< t+ 13 + (3.3)’3,
< t+(s.z+2),
< s.last(Y)+ (s'.z + 2)l,,
< Slast(Y)+(sdz+2+ I..s’.last(Y) ;1’ ﬁnt(x)])l,,
= g(s),
as needed.

For the lower bound, we see that o'.first(Y) < o' .last(X), since t < #'.last(X) and
s'.first(Y') < t. Therefore,

h(s) = a.first(X)+ (s.2)ly,
s first(X) + (8'.2)ly,
= h(s"),

which suffices.
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3. » = INC.

Then s'.y = 8.y = 0 and s.z = s'.z + 1, by the definition of INC. Also, &' first(X) <
t < &.last(Y), s.last(Y) = 4'.last(Y), s.last(X) = t + I3, s.first(X) = t + 1;, and
s.first(Y) < t + l;, by definition of time(A,b). Thus, g(s') = s'.last(Y) + (s'.z + 2 +

la'.laam;‘l'-ﬂ"ﬂx)J )12

Let a be the trivial execution fragment v’ of A’. As before, the only nontrivial condition
to show is Condition 2(b)ii, that g(s) < g(s') and h(s) > h(s'). For the upper bound, we
consider two cases.

(3) s.first(X) < s.last(Y).
Then g(s) = s.last(Y) + (s.z+2 + ["'“m;‘ﬁ'“ix)_l)lg. Now,

s.last(Y) — s.first(X)

s.dast(Y) - (t+ 1)
l. ll

=404,
1
since s.first(X) =t + |,

I+1 = |

Ls’ dast(Y) ;1 s first(X) |

since t > & .first(X) and s.last(Y) = ¢'.last(Y).

IA

So

o(s) = sdast(Y)+(az+2+ ) L"ﬁ”‘(x ),

= slast(Y)+ (dz 43+ I-.s.laat(Y) -l—la.ﬁrst(X)J')lz’

8 last(Y) — &'.first(X)
ll J)lh

< dlast(Y)+(sz+2+]|
= g("’)a
as needed.

(b) s.first(X) > s.last(Y).
Then g(s) = s.last(X) + (s.z)l5. Then

g(s) = s.last(X)+ (s.z)ls,

= s.last(X)+ (s'.z + 1)k,
t+h+ (s z+1)l,,
s.last(Y)+ L+ (dz+ 1)y

8.last(Y)+(s'.z +2),
olast(Y)+(dz+2+|

Al

8 .last(Y) - o.first(X)
ll J )13

IA
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since 8'.first(X) < &'.last(Y),
= g(+),
as needed.
For the lower bound, notice that
s.first(Y)<t+1l <t+l;=s.last(X).
Thus, we have h(s) = s.first(X) + (s.z)!,. There are two cases.
(a) ¢ .first(Y) < o'.last(X).

Then
h(s) = s.first(X)+ (s.2)4,
> s.first(X) + (s 2)ly,
> t4 (82,
> & .first(X)+ (s .2)ly,
= h(s"),
as needed.
(b) o'.first(Y) > o' .last(X).
Then
h(s) = s.first(X) + (s.z)ly,
= s.first(X)+ (s'.z + 1),
= s.first(X) -4+ (8.2 + 2,
= t+(s.z+2),,
> o first(X)+ (82 +2),4,
= h(s'),
as needed.
4. » = DEC.

Once again, let a be the trivial execution fragment v' of A’. As before, the only nontrivial
condition to show is Condition 2(b)ii, that g(s) < g(s’) and h(s) > h(s’). By the
definition of DEC, &'.y = s.y = 1 and s.z = s'.z - 1. Also, s.last(X) = t+1,, s.first(X) =
t+1,t < s.last(X), and ¢t > s'.first(X), by definition of time(A,d).
For the upper bound, we have that

g9(s) = s.last(X)+ (s.z)la,
i+ lz + (8.2)'2,
8. last(X) + I3 + (s.z)l,
s last(X) + (s’ .2)ly,
9(s'),
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as needed.

For the lower bound, we have that

h(s)

s.first(X) + (s.z)ly,

t+ U+ (s.2)y,
s'.first(X) + U + (s.2)ly,
s first(X) + (s'.z)ly,
h(s),

v

as needed.

Now consider a step (s', (NULL, t), s) of time( A, b), where &' is a reachable state of time(A4, b).
Condition 3(a) of Definition 4.2 is immediate. Now,

g(s') = { s last(Y)+(s'z+2+ ["‘“"Y),'l"ﬁ"‘(x)j)l, if /.y = 0 and &' .first(X) < o'.last(Y),

d.last(X)+ sz 1, otherwise.

Thus, g(s') > min(s'.last(Y),s'.last(X)). By the definition of time(A4,b), it must be that
t < min(s'.iast(Y), s'.last(X)); thus, t < g(s'), which shows Condition 3(b)i of Definition
4.2. For Condition 3(b)ii, note that there are no changes in any of the terms involved in the
definitions of g and A, so g(s) = g(s') and h(s) = h(s'). ‘ [

Theorem 5.5 All timed behaviors of (A,b) are in P.

Proof: As for Theorem 5.3, using Lemma 5.4. [ ]

5.2.4 Discussion

For this example, the bounds we have proved are attainable. That is, there is a timed execution
of (A,b) for which the time until a DONE event occurs is exactly /,, and another timed
execution for which the time until a DONE event occurs is exactly (2 + [#])ls.

For exa.mplé, the bound /; is realized by the timed execution that has the timed schedule
(SET,l,),(DONE,,). The bound (2+ |{2])l; is realized by the timed execution having the
timed schedule

(INC, aks), (INC,2aks),....,(INC, | 2| aky), (SET, ),
1
(DEC, 24), (DEC, 3h),....,(DEC, (1 + | 2]}, (DONE, (2-+ (£ )i,
1
where a = 1/ I_{TJ This timed execution involves the SET happening at the latest possible

time, ;. The maximum possible number of INC events occur prior to the SET, and the last
of these occurs at the same time as the SET. The DEC events occur as late as possible.
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6 Conclusions and Further Work

In this paper, we have described a way to carry out assertional proofs for timing properties of
algorithms that have timing assumptions. The method invoives expressing an algorithm and
its timing assumptions as a timed automaton (4, b), and expressing the timing requirements
in terms of a second timed automaton (A4’,%). Then we convert the timed automata (4, %) and
(A’,b') into ordinary (not timed) I/O automata, time(A,b) and time(A’,¥) respectively, us-
ing a general construction that builds predictive timing information into the antomaton state.
Then the goal of proving timing requirements can be met by demonstrating the existence of
a certain type of mapping called a “strong possibilities mapping” from the “assumptions au-
tomaton” time(A,b) to the “requirements automaton” time(A4’,5’). One way of demoastrating
the existence of such a mapping is based on a collection of progress functions, each designed
to measure progress toward the fulfillment of one of the upper or lower bound requirements
expressed by (A’,V’). These progress functions generalize those used elsewhere for program
verification in that they are real-valued rather than discrete, and that they are used for lower
as well as upper bounds.

We have applied this method in this paper to analyze the timing properties of two systems
- a simple resource-granting system and a race system involving two processes. The analyses
of these two examples are straightforward; they consist of case analyses based directly on the
conditions specified in the definition of a progress function collection. The style and level of
difficulty of these proofs is exactly the same as that of typical inductive proofs of invariant
assertions. As do other proofs of that type, these remove the need for complex dynamic
arguments about the behavior of the algorithm, replacing them with simple checks involving
individual algorithm steps. Because of the need to check many cases, the proofs are not
extremely short (the proof for each of our examples is about three pages long); however, this
style should scale very well because of the local nature of the checks performed. Also, as for
other assertional proofs, it seems likely that proofs using this method can someday be checked
using machine-verification technology.

We do not have an easy method for finding an appropriate progress function. Just as
for finding invariant assertions, finding the right progress function is a creative task, which
depends on an understanding of how the system operates. There are alternative methods
which do not require human intervention, e.g., those based on model-checking [4, 17]. However,
these methods apply only to finite-state algorithms, and are known to be expensive or even
undecidable [4]. Moreover, these methods do not give the benefit of the mnghtl provided by
a good invariant or progress function.

The two examples in this paper are not the only examples to which this method has been
applied. In a project carried out for Digital Equipment Corporation, several timing properties
(including self-stabilisation properties) were proved for a new link state packet distribution
protocol [18]. Some of the timing properties proved were unexpected, and were discovered in
the course of applying the methods of this paper. Although it is possible to provide some
informal intuitions for these properties using ad hoc arguments, we do not know a better
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way than the method of this paper to provide complete and convincing proofs that these
properties hold. We have found that progress functions provides a natural and intuitive way of
thinking about the reasons the timing properties hold, as 1.ell as a basis for formal correctness
arguments. Based on the examples that have been tried so far, we believe that the method
may be practical for use in verifying timing properties for real timing-based algorithms. It
remains to test this hypothesis by applying the technique to more examples; good sources for
examples are the areas of real-time computing and communication.

In some of the proofs we give for the DEC protocol, we do not give bounds that are as
tight as those we have given for the simple examples in this paper. This is not surprising: in
general, for complex algorithms, it is often much easier to prove bounds that are somewhat
loose than to prove bounds that are actually attainable by some execution. The method of
this paper supports the proof of loose bounds just as easily as that of tight bounds.

A good technique for proving timing properties of systems with timing assumptions should
be rigorous, simple and general. Our technique is certainly rigorous, and we think it is also
reasonably simple. We consider its generality. Although it seems to us that timed automata
are probably sufficiently general to describe typical implementations, they may not be suffi-
ciently general to describe all interesting requirements specifications. For example, as currently
defined, they cannot specify bounds for reaching certain states, but only for the occurrence of
certain actions. In [27], the authors express a similar doubt, and address it by generalizing the
notion of a boundmap to include certain more general timing conditions. While we could make
a similar extension here (indeed, we do make such an extension in an earlier version of this
paper [21]), the extra notation required for doing so seems to obscure the essentially simple
ideas of our method. Moreover, there is no guarantee that the resulting extension will yet be
sufficiently expressive. (Although we state a completeness result in [21] for the generalized
specifications, this completeness result is relative to the restriction, not used in this paper,
that the underlying automata A and A’ are identical.) We have chosen to present our method
here using a model that is possibly somewhat too restrictive, and to leave the appropriate
generalization for future work.

It remains to relate our method to other methods for proving timing properties. One
method we have considered is the one used for several algorithms in [22], based on bounding
the time for the occurrence of intermediate milestones. Such a proof can be expressed by a
series of proofs in our method, one for each intermediate milestone. A good example to consider
is the tournament algorithm for mutual exclusion in [33]. The proof sketched in [22] for this
algorithm uses recurrence inequalities to bound the time until a given process wins at various
levels of the tournament tree. It should be possible to recast this proof as a sequence of proofs,
one for each level of the tree, where the proof for each level of the tree is a generic argument
based on a single use of the main recurrence inequality. Although we have not worked out this
example in detail, we have done a complete proof [20, 21] of a simpler example motivated by
this one (based on a line rather than a tree). In principle, it seems that the ideas should extend
to the more complex example, but this remains to be done. Some other techniqnes to relate
to this one include those hased on bounded-time temporal logic (e.g., [6]). Also, it remains to
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see how proofs using our techniques can be applied in a modular way for the verification of
timing properties of large and complex timing-based systems.
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