
AD-A242 823

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE PROBLEM OF UNIQUE NAME VIOLATIONS

IN DATABASE INTEGRATION

by

Renae M. Beyer

March, 1991

Thesis Advisor: H.K. Bhargava

Approved for public release; distribution is unlimited

91-16278

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School37

6c. ADDRESS (City, State, andZIP Code) 7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Program Element NO Project No Task No. Work Unit Accion

Number

11. TITLE (Include Security Classification)
THE PROBLEM OF UNIQUE NAME VIOLATIONS IN DATABASE INTEGRATION

12. PERSONAL AUTHOR(S) Beyer,Renae M.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 115. PAGE COUt$T
Master's Thesis From To March 1991 _PJ5-

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Synonym, Homonym, Database Integration, Unique Name Violations, Naming Conflicts,
Quiddity

19. ABSTRACT (continue on reverse if necessary and identify by block number)

When multiple database schemas are integrated, there are often conflicts in the naming of attributes within schemas. These conflicts must
be detected and resolved prior to successful integration of the chemas. This thesis describes a method for automatically detecting such
naming conflicts, which adapts and enhances a method for detecting similar conflicts in (mathematical) model integration. The method
relies on the representation of semantic information, not found in data dictionaries, about the data elements or attributes present in the
various schemas. The information about data elements is then used by mechanical inference procedures to automatically determine whether

* two distinctly named elements in fact represent the same object (the synonym problem), or if data elements with the same name in
different schemas actually represent different objects (the homonym problem). The expected accuracy and errors of these procedures, and
results obtained from a set of experiments on the use of this method, are also presented.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

13LUNCLASSIFIEOIUNLIMITED [] SAME AS REPORT [3DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
H. K. Bhargava (408) 646-2264 AS/Bh

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

i

Approved for public release; distribution is unlimited.

The Problem of Unique

Name Violations in

Database Integration

by

Renae M. Beyer

Major, United States Army

B.S., Kearney State College

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

March 1991

Author:_ ______

RenaeM.Be

Approved by. "

Hemant K Bharga Thesis Advisor

Daniel R. Dolk, Second Reader

David X pple,Department of Admiitativ enes

ABSTRACT

When multiple database schemas are integrated, there are often conflicts in the naming of

attributes within the schemas. These conflicts must be detected and resolved prior to successful

integration of the schemas. This thesis describes a method for automatically detecting such

naming conflicts, which adapts and enhances a method for detecting similar conflicts in

(mathematical) model integration. The method relies on the representation of semantic

information, not found in data dictionaries, about the data elements or attributes present in the

various schemas. This information about data elements is then used by mechanical inference

procedures to automatically determine whether two distinctly named elements in fact represent

the same object (the synonym problem), or if data elements with the same name in different

schemas actually represent different objects (the homonym problem). The expected accuracy and

errors of these procedures, and results obtained from a set of experiments on the use of this

method, are also presented.

"- A, -

6"

1~t

Int

TABLE OF CONTENTS

INTRODUCTION ... 1

A. BACKGROUND .. 2

B. PROBLEM DESCRIPTION 3

C. THESIS OBJECTIVES .. 6

1. Quiddity Concept Definition 6

2. Quiddity Acquisition ... 6

3. Quiddity Manipulation and Inferencing Procedures 6

D. METHODOLOGY .. 7

E. THESIS STRUCTURE .. 7

H. REVIEW OF RELATED WORK .. 8

A. SCHEMA INTEGRATION .. 8

B. APPROACHES ADDRESSING NAMING CONFLICTS 9

C. AUTOMATED TOOLS FOR SCHEMA INTEGRATION 9

m. USE OF QUIDDITIES IN AUTOMATIC DETECTION OF NAMING

PROBLEM S .. 11

A. CONCEPT AND MOTIVATION 11

1. Representing Dimensional Information 12

2. Representing Quiddity 12

a. Components of Quiddity 13

iv

b. Formal Representation.................................. 15

C. Validity Rules .. 17

3. General Observations 18

a. Quiddity Component Definitions........................... 18

b. Quiddity Equivalence Rules 20

B. QUIDDITY ACQUISITION 20

1. Preliminary Experiment 21

a. Subjects .. 21

b. Design of Experiment 21

C. Results .. 23

2. Refined Concept .. 26

a. A Linguistic Perspective................................. 27

b. Linguistics Applied to Quiddity Acquisition 30

C. QUIDDITY MANIPULATION ANT) INFERENCING 34

1. Rules for Quiddity Equivalence................................ 34

a. Term Equivalence 35

b. Stuff Set Equivalence 36

C. Stuff Attribute Set Equivalence 38

2. Quiddity Comparison Procedures 38

a. Term Equivalence Rule Set 40

b. Stuff Set Equivalence Rule Set 40

C. Stuff Attribute Equivalence Set 41

d. Procedures .. 41

IV. PRIMARY EXPERIMENT ... 43

A. DESIGN OF EXPERIMENT.....................................43

v

1. Subjects .. 43

2. G oal ... 43

3. Experiment Packet .. 43

4. Procedure ... 44

B. EXPERIMENT RESULTS 45

1. Quiddity Formulation 45

2. Procedures For Quiddity Comparison 48

C. ANALYSIS OF COMPARISON PROCEDURES 49

1. Synonyms ... 49

2. Homonyms .. 50

V. CONCLUSION .. 54

A. CONTRIBUTIONS AND LIMITATIONS 54

B. ISSUES FOR FURTHER RESEARCH 56

APPENDIX A - PRELIMINARY EXPERIMENT 57

APPENDIX B - PROTOTYPE IMPLEMENTATION 83

APPENDIX C - PRIMARY EXPERIMENT 95

LIST OF REFERENCES ... 135

BIBLIOGRAPHY ... 138

INITIAL DISTRIBUTION LIST .. 139

vi

I. INTRODUCTION

This thesis examines and develops a method for automatically detecting possible naming

problems of data elements prior to database integration. These naming problems or conflicts

involve synonyms and homonyms. Synonyms are data elements in two or more different databases

which are given different names but contain information about the same thing. Homonyms are

data elements in two or more different databases which are given the same names but contain

information about different things. For example, one database might call the data element which

contains a person's given name, "FIRSTNAME," while another calls it "FNAME." Conversely,

that same database might call the data element which contains the last name of an individual,

"NAME," while another calls the data element which contains the full name of an individual,

"NAME."

These naming problems have been identified in database literature and it is accepted that

prior to schema integration, naming problems must be detected and resolved (e.g., Bhargava,

Kimbrough, and Krishnan 1990; Kamel and Hsiao 1990; Batini, Lenzerini, and Navathe 1986;

Wang and Madnick 1989; Larson, Navathe, and Elmasri 1989; and Hayne and Ram 1990).

Further, several methodologies have been proposed for detection (e.g., Batini et al. 1986; Larson

et al. 1989; Mannino and Effelsberg 1984), but are not supported with automated tools. The

methodologies require the database designer or administrator to detect the problems by

systematically examining the data elements in each database. The database designer or

administrator are able to locate many of these problems by reviewing the data dictionaries and

additional information about the databases from other sources (e.g., users). As noted, these

methods can be tedious and extremely time-consuming.

1

More recently, a method for supporting automatic detection of possible naming problems

in model integration has been proposed by Bhargava, Kimbrough, and Krishnan, hereafter referred

to as Bhargava et al. (1990). This method requires a database designer to further define each

model variable by providing dimensional information and information (called "quiddity"), see

Chapter IT, about the nature or essence of the data contained in the variable. This thesis

addresses the applicability of quiddity in detecting naming conflicts prior to database integration.

A. BACKGROUND

A database is simply a computerized record-keeping system. The information in a database

is stored (at the lowest level) in units called data elements or data items. Each data element has

a unique name associated with it. For example, the data element which contains an individual's

social security number could be called "SSN." Data elements also have other assigned

characteristics such as type and size. The type tells whether the data element is alphabetic,

numeric, or a special character. The size describes the length of the data element, e.g., the

number of characters that fit in the field. All this information about data, including relationships

between the data elements, comprise the database schema. The schema provides a complete and

logical view of the database. (Date 1990)

With the proliferation of database technology, many organizations need to access and share

information between databases to facilitate decision making, operations planning and control, and

strategic planning.

This situation has led to the emergence of the heterogeneous distributed database scenario.
In this scenario, a variety of large and small computers, each with its own autonomous and
often incompatible DBMS (Database Management System], may be tied together in a
network. This network could consist of local area, wide area, and long-haul networks.
Under current technology, however, a user accessing any database in this network must
abide by the syntactic and semantic rules of that database (Cardenas 1985). ... A true
heterogeneous DBMS should support an environment in which any user in the network is
given an integrated and tailored view, while in fact the data could physically reside on a

2

single or several databases managed by different and possible heterogeneous DBMS. This
level of data access and sharing is known as database integration. (Kamel et al. 1990)

One of the steps to be performed before database integration can occur is schema

integration, i.e., the integration of the local schemas of the databases involved into one global

schema. Several different problems are encountered during schema integration. The one we are

primarily concerned with involves the different ways similar information is captured in the

databases being integrated. The fact that the same data may be described differently in each local

schema presents some very challenging issues. Zviran and Kamel (1989) classify these issues into

four general areas. They are:

1. Name Conflicts. These conflicts exist when there are synonyms, i.e., data elements with
the same name but representing different concepts, and homonyms, i.e., data elements
with different names but representing the same concept. For example, one database
might call the data element which contains a social security number, "SSN," while another
calls it "SSNO" (synonym). Or, two databases might both have data elements called
"DATE" but in the first database the date represents the current date while in the other
it represents an individual's employment date (homonym).

2. Structural Conflicts. These conflicts exist when the same information is represented
in different structures in each schema. For example, an individual's full name (first,
middle, and last) is maintained as a single data element in one database but is split into
three data elements in another.

3. Scale Conflicts. These conflicts exist when the same facts are expressed in different
units of measure in each schema For example, a person's height may be captured in
inches in one schema and feet in another.

4. Conflicts in Application Semantics. These conflicts exist when perceptions about
information differ between schemas. For example, the relationship between two objects
in a schema is represented as "one to many," but is represented in another schema as "one
to one."

Identifying and resolving these conflict issues is a critical step in successful schema integration.

B. PROBLEM DESCRIPTION

While technological improvements have kept pace with the increased requirements for

exchange and sharing of information, automated tools or methods to facilitate the physical

3

integration of the data prior to exchange, i.e., schema integration, have been slow in coming. For

example, those knowledgeable in the process of database integration continually emphasize the

importance of identifying naming conflicts among databases prior to integration but fail to provide

tools with which to accomplish this crucial yet painstaking task (Bhargava et al. 1990).

The problem of naming conflicts, i.e., the violation of the unique names assumption'

(UNV) in database integration occurs when there are synonyms or homonyms among the data

elements. For example, one database might call the data element which contains a social

security number, "SSN," while another calls it "SSNO" (synonym) or that same database might

call the data element which contains the last name of an individual, "NAME," while another calls

the data element which contains the full name of an individual, "NAME" (homonym). Another

interesting twist to the problem is that it is possible to have data elements with different names

containing information about the same thing but having different values. This can happen when

there are small measurement errors. For example, two databases with data elements called

"HEIGHT" and 'IT," respectively, capturing information about the "height" of the same person

could have different values, e.g., 68" versus 67". If the same data element name had been used,

the problem of two different values would be easily detected. Not resolving these and similar

conflicts before integrating would result in a database which clearly has redundant data (e.g., two

data elements containing social security numbers) and would in all likelihood develop serious

consistency problems (e.g., similar fields with different values).

How are these conflicts detected! There are two basic methods currently used in identifying

these conflicts. In the first method, the data element names are compared syntactically, and data

types (e.g., numeric, alphadetic) and field lengths are matched. The second method involves an

'"That every individual has at most one name, unless stated otherwise, is often a useful
and convenient assumption in software systems, and is called the unique name assumption."
(Bhargava et al. 1990)

4

examination of the data dictionary. The data dictionary has more descriptive, semantic information

about the data elements. However, it is written in non-formal, human language, which is not

amenable to machine inference.

How can we identify these conflicts through automation? Clearly, we need more semantic

information: information about what the data element represents. Bhargava et al.'s (1990)

method for supporting automatic detection of possible naming problems requires that each data

element be further defined in terms of dimensional information and information about the nature

or essence (quiddity) of the data contained in the data element. The quiddity of a data element

is specified using various rules of formulation and a given vocabulary. The objective of this

approach is to identify pairs of data elements with possible unique names violations by comparing

the dimensional information and quiddity of each data element in the databases being integrated.

The premise of this approach is that if two data elements have the same quiddity, it is fairly likely

that they refer to the same concept. This automated approach will not specifically identify naming

conflicts, rather, it will result in a list of possible conflicts. Human interaction is required to

confirm specific conflicts. The intent is to develop a list of possible conflicts which comes as close

as possible to the "correct list."

It is fairly straightforward to provide dimensional information for each data element because

there are a finite set of dimensions (e.g., length, mass, time, volume). However, the quiddity of

each data element is more complex to define. Quiddity must be stated in a well defined form, a

type of formal language, in order to be read and compared by a computer. For example, the

quiddity of the data element "NAME" (referring to the last name of an individual) discussed above,

would be "last(name(person)). 2

2The representation of quiddity is discussed in greater detail in Chapter I.

5

C. THESIS OBJECTIVES

The aim of this thesis is to examine several aspects of quiddity, broadly classified into those

dealing with quiddity concept definition, quiddity acquisition, and quiddity manipulation and

inferencing procedures.3 Specifically, the following questions in each area will be addressed.

1. Quiddity Concept Definition

Is the idea of quiddity, as defined by Bhargava el al., a practical tool for use in the

integration of databases? Specifically, is the concept of quiddity sufficiently rich or expressive in

the database context? If not, in what ways can the concept be modified to one that is rich enough?

Can quiddities provide a basis for automatically detecting unique name violations, or will the

quiddities create more problems than they solve?

2. Quiddity Acquisition

Can this method be easily understood and applied by database designers? In other

words, will two individuals always develop the same or equivalent quiddity definition given identical

data elements, information, and training?. If not, how can the acquisition process be supported?

3. Quiddity Manipulation and Inferencing Procedures

What kinds of inference procedures can be defined to utilize this quiddity information

in order to automatically detect naming conflicts? How can these procedures be implemented?

What is the accuracy and error rate of these procedures, in terms of Type I and Type II errors?"

3Bhargava et al. (1990) have discussed a formal, functional representation for quiddities. For
our purposes, a less formal tabular notation will suffice. Hence, this thesis is not concerned with
issues in quiddity representation.

'A Type I error is indicating a naming problem when there is none. A Type U error is failing
to indicate a naming problem when there is one.

6

D. METHODOLOGY

The research for this thesis follows these steps:

1. Conduct preliminary experiment. In this experiment, explain the concept of quiddity to
a group of six Computer Systems Management students and ask them to then develop
"quiddities" for a sample set of data elements in a database. This first experiment will be
primarily used to ensure that all subjects understand the concept and what is being asked
of them, in other words, to eliminate any "noise" which could interfere with the analysis
of the concept itself.

2. Refine, analyze, and enhance the concept based on results of preliminary experiment.
Provide feedback to students on "correctness" of their experiment answers. Develop and
present several procedures for comparing the quiddities in the experiment.

3. Conduct primary experiment with the same individuals who participate in the first
experiment, using a new sample set of data elements. Present any new rules or
instructions in developing quiddity to the students based on the analysis and any
enhancements developed in step 2.

4. Analyze the results of the primary experiment by applying the comparison procedures
developed in step 2 to the students' quiddity definitions.

5. Evaluate results of primary experiment, discussing any shortcomings in the quiddity
concept or inference procedures. Discuss future areas of research.

E. THESIS STRUCTURE

Our research is presented in five chapters. Chapter II provides a general review of related

work in detecting naming conflicts in database integration. Several issues related to our proposed

method for UNV detection are addressed in Chapter III. Section A presents a detailed description

of this proposed method. Results of a preliminary experiment along with a refined concept based

on the experiment analysis appear in Section B. Finally, Section C discusses several quiddity

manipulation and inferencing procedures. Chapter IV describes the primary experiment and

presents detailed experiment results and analyses. Chapter V presents our conclusions and

suggests issues for future research.

7

U. REVIEW OF RELATED WORK

Our aim in this chapter is to present a general overview of current literature pertaining to

database integration, with emphasis on those which address methods for the detection of naming

conflicts or present automated tools for use in detecting such conflicts.

A. SCHEMA INTEGRATION

The literature to date views schema integration in two contexts. The first, commonly

referred to as view integration, generates a global conceptual description or logical integrated

schema of a proposed database during database design. The second, referred to as database

integration, generates the global schema of a group of databases in distributed database

management. (Batini et al. 1986)

Kamel et al. (1990) have reviewed and grouped current literature into the context of view

integration and database integration. Previous research has focused on schema integration in the

context of -iew integration (Batini, Lenzerini, and Moscarini 1983; Elmasri and Navathe 1984;

Elmasri and Wiederhold 1979; Motro and Buneman 1981; Navathe, Sashidhar, Elmasri 1984; and

Sheth, Larson, Cornellio, and Navathe 1987), while some have addressed issues of schema

integration in the context of database integration (Kamel et aL 1990; Dayal and Hwang 1984;

Deen, Amin, and Taylor 1987; DeMichiel 1989; and Wang and Madnick 1989). Batini et al. (1986)

have also provided a general survey on view integration methodologies.

Schema integration, regardless of context, involves many complex issues. One of these

issues is conflict identification and resolution, specifically, conflicts in name or unique names

violations. Although methodologies do address this issue, Bhargava et al. (1990) state that most

methods assume that unique names violations are dealt with prior to integration (Casonova and

8

Vidal 1983; Yao, Waddle and Housel 1982). Others have suggested that naming conflicts can be

easily handled simply by renaming (Dayal and Hwang 1984), but have not proposed how to handle

the conflicts.

B. APPROACHES ADDRESSING NAMING CONFLICTS

Larson et al. (1989) propose a method of schema integration which provides assistance in

the detection of naming conflicts. (This methodology builds on previous works (Elmasri and

Navathe 1984; Navathe, Sashidhar, and Elmasri 1984; and Elmasri, Larson, and Navathe 1986.))

Basically, this method involves the application of certain criteria to attributes (data elements) in

order to determine "attribute equivalence." Equivalent attributes have several characteristics in

common and can be integrated. Examples of attribute characteristics considered are uniqueness,

cardinality, domain, static and dynamic semantic integrity constraints, security constraints,

allowable operations, scale, and others that a database administrator feels are important. Then,

based on certain equivalence properties, the attributes are integrated. This concept is also used

to define object and relationship set equivalences for integration purposes. The criteria for

attribute equivalence is applied to naming conflicts which can then be identified and resolved.

However, this is a tedious, manual process.

Mannino and Effelsberg (1984) have suggested an integration process using assertions, made

by database designers, about semantic equivalence between objects. While very similar to Larson

et al. (1989) above, this methodology is not as detailed in its treatment of equivalence. Here again,

naming conflicts are found through a manual process.

C. AUTOMATED TOOLS FOR SCHEMA INTEGRATION

Larson et al. (1989) have designed and implemented a schema integration tool based

partially on their concept described in Section B. With this tool, the database administrator is

shown descriptions of the schemas being integrated. The database administrator then specifies

9

all equivalences between schema objects and interactively integrates the schema. While this is a

step toward automating the process, the database administrator must still "manually" establish all

equivalence characteristics before the schema is "automatically" integrated.

Hayne and Ram (1990) have developed a knowledge based system called M UVIS (Multi-

User View Integration System) to support the design of distributed object-oriented databases.

This system automates the view integration process as proposed by Navathe et al. (1986). MUVIS

aids designers in modeling user views using the Extended Entity Relationship Model and

integrating these views into a global conceptual view. MUVIS's expert system compares objects

and computes equivalence assertions about these objects using heuristics. Integration rules are

then applied and the designer confirms the integration. The designer determines whether there

is a naming conflict prior to integrating when he or she confirms the integration.

Hayne and Ram (1990) also reviewed other design tools that are currently available. Several

design tools for view modeling and integration have been implemented using the expert system

approach. These systems (Bouzeghoub, Gardarin, and Metais 1985; Choobineh, Mannino,

Nunamaker, and Konsynski 1988; and Dogac, Yuruten, and Spaccapietra 1989) do not provide

graphical interfaces but do allow the specification of incomplete designs and can justify and explain

results produced. Again, these tools may automate part of the integration process but do not

automate the actual detection of naming conflicts. These conflicts are found through interaction

between the designer and the tool.

10

M. USE OF QUIDDITIES IN AUTOMATIC DETECTION OF NAMING PROBLEMS

Our aim in this chapter is to describe in detail a proposed method wherein quiddities of data

elements are declared and used in the automatic detection of naming conflicts. This idea was first

developed by Bhargava et al. (1990), and we present a summary of their approach in Section A.

Section B presents the results of a preliminary experiment conducted to provide initial data about

the applicability of the method in detecting naming conflicts. These results, a deeper analysis, and

a linguistic perspective are employed to propose refinements to the method. Section C proposes

quiddity manipulation and inferencing procedures to be used by the automated process.

A. CONCEPT AND MOTIVATION

Bhargava, Kimbrough, and Krishnan (1990) have proposed a method for supporting

automatic detection of possible naming problems, specifically, unique names violations in model

integration.5 Their contention is that in order for any automated system to recognize that two

variables with different names represent the same information, or vice versa, a system requires

more information about these variables. This method attempts to develop a principled means of

providing and expressing that information. It requires capturing two categories of information

about each variable, its dimension and quiddity. The premise is that if two syntactically distinct

variables have the same or equivalent dimension and quiddity, a possible unique names violation

is indicated. (Bhargava et al. 1990)

!5Ai quotes in this chapter (unless otherwise noted) have been borrowed from Bhargava et al.
1990.

11

1. Representing Dimensional Information

The task of identifying dimensional information for each data element is simple

because there is a small number of dimensions (e.g., length, mass, time, volume) recognized in

most applications. Even if other dimensions such as currency are added, the set has few elements.

Additionally, there is a "place holder" (represented by 1) for dimensionless quantities, such as

percentages. Derived dimensions (e.g., volume, acceleration, weight, power) are also allowed.

For two reasons, Bhargava et al. suggest the use of abstract dimensional expressions,

e.g., currency rather than dollars, even though dimensional information is best captured using

three components: dimension,' unit, and scale. First, the unit information of "dollars" can be

captured by the dimensional component, "currency." Second, the use of the most abstract

dimensional expression reduces Type II errors when discovering naming problems (Bhargava et

al. 1990). For example, suppose a variable is used in two models to measure a quantity of apples.

In the first model, the variable X (for apples) is measured in bushels. In the second model, the

variable Y (also for apples) is measured in quarts. There is a unique names violation, but the

rules will not find it because the dimensions are not the same. Since both bushels and quarts are

measures of volume, the dimension could be stated more generally as "volume," causing the naming

violation to be detected.

2. Representing Quiddity

The task of defining the meaning or the quiddity of each variable is more complex.

The quiddity of a data element provides a description of what the data element is about. Clearly,

quiddities must be stated unambiguously, in a formal language, in order that they be readable and

G"Some authors use the term quantity ... [in place of] ... the term dimension ... [as it is
used here]." (Bhargava et al. 1990)

'"From the Oxford English Dictionary, quiddity is the real nature or essence of a thing, that
which makes a thing what it is.' Of course, ... [the method'al language for expressing quiddities
is only a model, or approximation, of genuine quiddity, if it exists." (Bhargava et al. 1990)

12

comparable by a computer. Bhargava et al. establish five categories for capturing the quiddity of

a variable: stuff, types of stuff, attributes of stuff, types of attributes of stuff, and metafunctions.

To specify valid quiddity expressions, a basic vocabulary for each of the five components is

provided.8 To develop the quiddity of a variable, each of the five components (described below)

are examined and, if applicable, declared. The example shown in Figure 1 is designed to illustrate

this definition process for each of the components.

What is the quiddity for this variable?

" Variable Name: purchasecost

" Data Dictionary Description:

"Average cost of purchasing a Dodge
truck during the month of July."

Figure I Illustration Variable

C Componn* of Quiddity

(1) Stuff. Stuff answers the question "what is the variable about?" Stuff

is usually indicated by a noun, describing individual things or collections of individual things, such

as cars, trucks, or ships. What is the variable, shown in Figure 1, about? It's about a truck.

Therefore, truck is the stuff component of this variable's quiddity.

Additionally, a stuff term may have arity9 if one or more arguments are

required to fully define the stuff term. With quiddity, arguments are added to the definition,

when necessary, to further define stuff. Suppose "path" is the stuff expression. In this case, we

OFor the purposes of the following discussion and examples, assume all terms used in
developing quiddity are a part of an established basic vocabulary.

'Arity identifies the number of arguments required to specify a function. For example, the
function of "addition" has an "arity of 2" because you must have two arguments in order to perform
the function, in other words, to add. Division also has an "arity of 2," whereas the square root
function has an "arity of 1" (you only need one argument to find the square root).

13

would need to know the two end points of the path in order to define the exact path. Thus, "path"

has an arity of 2 since it has two arguments (the two end points). There is no limit for the arity

of a stuff term except that it be finite. Of course, some stuff expressions need no arguments (e.g.,

apple or ship) and have an arity of 0.

In our example, we are interested in a truck purchased during a given

month, July. In this instance, the stuff expression, truck, should be further defined because we

are concerned with the truck at a specific oint in time. Therefore, truck has arity of 1, with

the argument month.

(2) Stuff Type. Stuff type answers the question "what sort of or kind of

stuff is it? Stuff types further describe stuff. For example, with both stuff and stuff type we can

distinguish between a "truck tire" and a "tire truck." In the fh-st case, what is the variable about?

It is about a tire. What sort of tire? A truck tire. Thus the stuff is tire and the stuff type is

truck. However, in the second case, the variable is about a truck. What sort of truck? A tire

truck. Thus the stuff is truck and the stuff type is tire. (Bhargava et al. 1990) To continue with

the example in Figure 1, the stuff type of truck (stuff) is Dodge.

(3) Stuff Attribute. Stuff attributes answer the question "what is it about

the stuffthat you are interested in? Stuff attributes represent information about some aspect

of the stuff we are interested in. From the example above, what is it about a truck that we are

interested in? The cost. Therefore, cost is the stuff attribute of the variable purchase cost.

(4) Stuff Attribute Type. Stuff attribute types answer the question"what sort

of or kind of stuff attribute is it? From above, the stuff attribute was cost. What sort of cost

are we interested in? Purchase cost. Thus, purchase is the stuff attribute type qualifying the

stuff attribute cost.

14

(5) Metafunctions. "Metafunctions capture information about the variable

associated with the quiddity." Examples of metafunctions are average, maximum, minimum, sum,

and variance. Type II errors in indicating possible naming violations can often be reduced by

identifying metafunctions in quiddities. For instance, if A and B are variables for the price of fuel

but A is an average price while B is not, then no unique names violation should be indicated

(Bhargava et al. 1990). From our illustration example, the metafunction associated with the

variable purchasecost is average.

b. Formal Representation

For a computer to be able to compare the quiddities of variables, the quiddities

must be represented in a standard format or formal language. Bhargava et al. (1990) recommend

and develop a rigorous representation in a formal language, for capturing quiddity information.

This representation is illustrated using the purchase-cost variable in Figure 2. In this

representation, there may be instances where there are multiple terms in a component. When this

happens, the terms are listed alphabetically, to remove ambiguity. Three additional examples of

this representation are provided. While these examples are somewhat contrived and simplistic,

they demonstrate the basic steps taken in developing the quiddity for a variable.

Quiddity Representation

Metafunction(Stuff Attribute Type(Stuff Attribute(Stuff Type(Stuff(Arg 1, ..., Arg n))))

Quiddity of purchawcost: average(purchase(cost(Dodge(truck(month)))))

Figure 2 Quiddity Representation

(1) Example 1. Consider a variable which captures information about the

status of an unmanned fighter aircraft. What is the variable about? An aircraft (stuff). Does

aircraft need further definition, or, in other words, is aircraft a function of something else? No,

15

so aircraft has an arity of 0 (no arity arguments). What sort of aircraft (stuff) is it? It is an

unmanned aircraft. It is also a fighter aircraft. We have two stuff types. What is it about the

aircraft that we are interested in? Its tail number10 (stuff attribute). What sort of tail

number is it? We have no further information so we do not have a stuff attribute type. The

quiddity representation for this example is shown in Figure 3.

tail number(fighter,unmanned(aircraft))
A A A A

I STUFF

STUFF ATTRIBUTE STUFF TYPES

Figure 3 Quiddity Representation -- Example 1

(2) Example 2. Consider a variable which captures information about the retail

cost of an IBM personal computer. What is the data element about? A personal computer

(stuff). Do we need any arguments to further define personal computer? No, thus there are

no arity arguments (arity 0). What sort of personal computer (stuff) is it? It is an IBM (stuff

type). What is it about the personal computer that we are interested in? The cost (stuff

attribute). What sort of cost is it? Retail (stuff attribute type) cost. The quiddity representation

is shown in Figure 4.

retail (cost (IH(personal computer)))

8TUFF ATTRIBUTE AA STUFF
TYPE L STUFF TYPE

STUFF ATTRIBUTE

Figure 4 Quiddity Representation -- Example 2

l0 Since tail number is a word phrase denoting one concept, the formal quiddity representation
connects the words in this form "tailnumber." This representation allows us to distinguish
between word phrases which denote one value for a component (e.g., tail number for the stuff
attribute component) and two distinct values for a component (e.g., unmanned and fighter for the
stuff type component).

16

(3) Example 3. Consider a variable which captures information about the

current replacement cost of a foreign car. What is the variable about? A car (stuff). Does car

need any arguments to define it or, in other words, is it a function of something? Yes, we are

interested in a car at a specific point in time. Therefore, car has an "arity of 1" with the

argument time. What sort of car (stuff) is it? It is a foreign (stuff type) car. What is it about

the car that we are interested in? The cost (stuff attribute). What sort of cost is it?

Replacement (stuff attribute type) cost. The quiddity representation is shown in Figure 5.

replacement(cost(foreign(car(time))))
AA A A A

STUFF ATTRIBUTE UARTY

TYPE

STUFF ATTRIBUTE STUFF

STUFF TYPE

Figure 5 Quiddity Representation -- Example 3

c. Validity Rues

Given a basic vocabulary for each category, the following rules for determining

valid stuff terms apply (Bhargava et al. 1990, 15).

1. If a is in the vocabulary of basic stuff expressions, then a is a valid stuff term, providing
that each of its arguments has the form arg(n), where n is an integer identified with a
declared variable (or is a declared variable-indicating expression).

2. If a is in the vocabulary of basic stuff expressions, then a[arg(n)] is a valid stuff term,
where a[arg(n)] has one more argument than a and n is an integer identified with a
declared variable (or is a declared variable-indicating expression) with a quiddity of index.

3. O(a) is a valid stuff term if a is a valid stuff term and 0 is in the vocabulary of stuff types.

4. O(a) is a valid stuff term if a is a valid stuff term and 0 is in the vocabulary of

metafunctions.

5. Nothing else is a valid stuff term.

17

Given the above rules for determining valid stuff terms, the following rules for

determining valid quiddity terms apply (Bhargava et al. 1990, 16).

1. If a is a valid stuff term, then a is a valid quiddity term.

2. 0b(a) is a valid quiddity term if a is a valid stuff term, and 0 is in the vocabulary of stuff
attributes.

3. 0(a) is a valid quiddity term if a is a valid quiddity term and 0 is in the vocabulary of
metafunctions.

4. 0(a) is a valid quiddity term if a is a valid quiddity term and 0 is in the vocabulary of stuff
attribute types.

5. a • B and a / 3 are valid quiddity terms if a and 8 are valid quiddity terms.

6. Nothing else is a valid quiddity term.

3. General Observations

a. Quidd~ty Compowant Definifion.

The stuff term must be correctly identified in order to accurately capture

quiddity because all other quiddity components are built upon the stuff term. If this term is

accurately defined, the other components are determined with relative ease. However, it is

confusing and often difficult to correctly determine the stuff term.

Recall the variable purchase cost which captures information about the cost of

purchasing a Dodge truck in the month of July. Originally, we answered the questions as follows.

What is this variable about? It's about a truck (stuff). In this case, the purchase cost of the

truck is a function of month, therefore the arity argument is month. What sort of truck? A

Dodge (stuff type) truck. What is it about the truck we are interested in? The cost (stuff

attribute). What sort of cost is it? Purchase (stuff attribute type) cost. There is a metafunction

of average. The quiddity representation is shown again in Figure 6, Example (a).

18

What would happen if we identified a different stuff term?" What is this

variable about? It's about purchasing a truck in July. Therefore, the stuff term is purchase

and the arity argument is month. What sort of purchase is it? It is a truck (stuff type)

purchase. What sort of truck? A Dodge (stuff type) truck. What is it about the purchase that

we are interested in? The cost (stuff attribute). What sort of cost? We have no further

information so there is no stuff attribute type. There is a metafunction of average. The quiddity

representation for this set of questions is shown in Figure 6, Example (b).

Although the examples provided are somewhat contrived, they do demonstrate

that the categories of quiddity appear sufficient to capture the meaning of the variables' data.

Yet the method used to determine the component definitions is not structured enough to elicit the

same answer from different people.

Example (a):
average(purchase(cost(Dodge(truck(month)))))

A A A A A A

METAF UNCTION -J ARITY

STUFF ATTRIBUTE TYPE STUFF
L- STUFF TYPE

STUFF ATTRIBUTE

Example (b):
average(cost(Dodge, truck(purchase(month))))

A A A A A A

!4ETAFUNCTION -J

STUFF ATTRIBUTE
--

STUFF

Figure 6 Two Examples of Quiddity Representation for the Variable PurchaseCost

'It is recognized that there would be a set vocabulary available for choosing these terms.
However, a particular word or words can be applied in more than one quiddity category depending
upon need, as shown in paragraph A.2.a.(2), where both truck and tire are stuff and stuff types.

19

b. Quiddity Equivalence Rdes

An important aspect of the authors' premise, i.e., if two syntactically distinct

variables have the same or equivalent dimension and quiddity, a possible unique name violation

is indicated, is the notion of quiddity equivalence. What exactly constitutes quiddity equivalence?

One issue addressed in the paper was whether the order of the quiddity components in the

representation is important in establishing equivalence. For example, does it matter if the

representation is stuff attribute type(stuff attribute(stuff type(stuff))) or stuff attribute(stuff attribute

type(stuff type(stuff))? No conclusion, one way or the other was presented. However, the authors

did state that this ambiguity could be reduced by stipulating validity conditions of quiddity

expressions and introducing equivalence transforms. The quiddity validity conditions were

discussed earlier. An example of an equivalence tri"- - would be to state that stuff

attribute(stuff) = stuff(stuff attribute). 1, L nr, in the implementation, only the most straight

forward pattern matching rule waq used.

There are other aspects of equivalence which were not specifically addressed.

Does it make a difference which category a term falls within as long as the term is included in the

quiddity expression? For example, in Figure 6, are the two quiddities depicted equivalent? The

same words are in each description! Are terms which are synonyms equivalent, i.e., are cost and

price equivalent? These issues are discussed further in following sections.

B. QUIDDITY ACQUISITION

To summarize, Bhargava et al. proposed that each model variable be further defined in

terms of its dimension and quiddity. A UNV is indicated if, and only if, both the dimension and

the quiddity of two variables are equivalent. If the dimensions are not equivalent, it follows that

the variables do not represent the same information and no UNV should be detected. Similarly,

if the quiddities are not equivalent, it again follows that the variables do not represent the same

information and no UNV should be detected. Since this thesis focuses primarily on the feasibility

20

of quiddity as it applies to detecting naming problems during database integration, the dimension

aspect will be ignored in further discussions. It would be unnecessary to examine equivalence of

quiddities of two variables if the dimensions are not equivalent. Thus, when checking for quiddity

equivalence between data elements in our experiments, we will assume that their corresponding

dimensions are equivalent.

1. Preliminary Experiment

The purpose of the preliminary experiment was to provide initial data about the

acquisition of quiddity. Additionally, this experiment was intended to eliminate "noise" in the

primary experiment thus preventing interference with the analysis of the concept itself. In other

words, we wanted to ensure that all subjects had a clear understanding of the concept before

conducting the primary experiment.

a. Subjec-ts

Six Naval Postgraduate students enrolled in the Computer Systems Management

(CSM) Curriculum participated in the experiment. The students were randomly selected and had

varying milit-ry 6ickgrounds; Army (2), Navy (3), and Marine Corps (1). All had varying degrees

of "computer expertise," from little or none when beginning the CSM Curriculum to having an

undergraduate degree in Computer Science. All students had completed a course in the

application of database management systems, so all had a common background in database

technology.

b. Design of Ea iment

(1) Goal. The goal of the experiment was to gather data concerning the

formulation of quiddity for data elements. The intent was to apply any new insights gained here

to the design and execution of the next (primary) experiment.

21

(2) Experiment Packet. Two databases (overlapping in their real world

domains), the Virus Database and the Hardware and Software Tracking System Database,

designed by Naval Postgraduate students as class projects for a database management course,

were used as the basis for the experiment. Twelve data elements from each database were

selected for quiddity formulation. Care was taken to ensure that unique name violations did exist

among the chosen data elements from each database. Each experiment packet contained the

following- an overall information sheet, a work sheet (for practice and instructional purposes prior

to beginning the experiment), a basic instruction sheet, a blank answer sheet, a general vocabulary

list (words were not separated into quiddity component areas), a list of data dictionary entries

pertaining to the selected data elements, and sample reports displaying the data captured by the

selected data elements. A sample of this packet is contained in Appendix A.

(3) Procedure. Prior to beginning the experiment, a general overview of the

thesis objectives was presented to the students. Each student was given an experiment packet,

three students associated with each of the two databases. Next, the students were asked to read

the general information sheet which included the purpose, background, details concerning quiddity

concept and definitions, and examples. Then, the students were provided with instruction on the

concept as well as on the representation and rules for quiddity formulation. Additionally, a work

sheet of sample quiddity problems was provided and discussed with the students. The students

were allowed to ask questions in order to clarify the concept.

Detailed instructions were provided to the students on the conduct of the

actual experiment. Each student was asked to formulate quiddities for the twelve data elements

provided using any and all information provided in the packet. They were asked not to discuss

their answers with the other students nor to seek assistance from them. The students were not

required to construct the quiddity expressions using the representation outlined in Section A of

this chapter. We were more interested in the terms themselves. To avoid confusion, students

22

were required to annotate quiddity terms using a table format. They were asked to provide

comments pertaining to their "thought process" when developing the quiddities. Additionally, they

were asked to comnent on any areas of the concept which seemed difficult or confusing. It was

suggested that they use only the vocabulary provided in the vocabulary list. If the vocabulary list

did not contain a word which the student felt was crucial to forming the correct quiddity, they

were instructed to add this word to the vocabulary and support its selection with a written

justification. There was no set time limit for completion. Students were allowed to take the

experiment packets with them and return them upon completion. This experiment was loosely

controlled in order to gather as much raw input as possible.

c. Results

The goal of this experiment was to investigate several aspects of quiddity

acquisition and formulation which led to the following questions. First, were the quiddities

developed by the students correct? Second, did the students understand the concept and apply

it correctly? Third, were the quiddities developed by students working with the same database

identical?

The experiment results 2 were divided into two groups. The quiddities

pertaining to the Virus Database were placed in Group 1 and the quiddities pertaining to the

Hardware and Software Tracking System (HSTS) Database were placed in Group 2. There are

a total of 36 quiddities in each Group, three for each of the twelve data elements. The correct

quiddity' 3 of each data element was compared with the quiddities developed by the students.

TABLE I shows summary statistics of the correctness of the quiddities in each Group.

12All experiment results are contained in Appendix A.

13A master list of "correct" quiddities was developed prior to the experiment.

23

TABLE I QUIDDITY CORRECTNESS -- PRELIMINARY EXPERIMENT

(TOTAL POSSIBLE ATCHES 36 Group 1 Group 2

Correct Quiddity Matches 0/36 (0%) 7/36 (19%)

Correct Stuff Matches 7/36 (19%) 24/36 (67%)

Correct Stuff Attribute Matches 24/36 (67%) 14/36 (39%)

Stuff Attribute Matching
Correct Stuff 5/36 (14%) 6/36 (17%)

tuff Matching correct
Stuff Attribute 0/36 (0%) 5/36 (14%)

The results suggest that the students did not understand the concept so were not able to

apply it correctly. Few quiddities were correctly defined, i.e., there were no matches 14 between

the correct quiddity and the experiment quiddities in Group 1, and only seven matches (out of a

possible 36) in Group 2. Comparisons by quiddity component also showed some interesting trends.

For the most part, the students were not able to correctly identify the stuff nor were they able

to identify the stuff attribute. In fact, there were some instances where the students confused the

stuff with the stuff attribute. Figure 7 shows specific instances of this confusion taken from the

results.

14In order to be counted as an exact match, the experiment quiddities must be identical, term
for term, to the "correct" quiddity.

24

Examples of data element stuff and stuff attribute confusion:

BOOT-SECTOR (Group 1) VENDER (Group 2)

Master indicator (damage) name (vender)

vs. vs.

Experiment damage(virus) vender(name)

NOTE: Notation - stuff attribute(stuff)

Figure 7 Stuff and Stuff Attribute Confusion

The quiddity comparisons within each Group reflected the same difficulties

previously noted. There were no exact matches' 5 between the three quiddities for each data

element in either Group. Likewise, the definitions of the stuff and stuff attribute components were

seldom in agreement. TABLE II shows statistics of the sameness of the quiddities in each Group.

TABLE II QUIDDITY SAMENESS -- PRELIMINARY EXPERIMENT

* (TOTAL POSSIBLE HATCHES - 12) Group 1 Group 2

Exact Quiddity Matches 0/12 (0%) 0/12 (0%)

Exact Stuff Matches 4/12 (33%) 6/12 (50%)

Exact Stuff Attribute Matches 2/12 (17%) 2/12 (17%)

Student comments taken from discussions and written notes in the experiment

packets also indicate confusion in applying the concept. The method for determining the stuff and

"In order to be counted as an exact match, all three quiddities for the data element must be

identical. Likewise, when counting exact matches between quiddity components, all three
components for that data element must be identical.

25

stuff attribute were not structured enough. The distinction between the stuff and stuff attribute

component was unclear (see example in Section A.3.a of this chapter). This led to the inversion

of both terms. Another problem area centered around the level of detail of the terms. For

example, should the stuff term be vehicle or truck (assuming both words are included in the

vocabulary)? If vehicle is the correct stuff term, the term truck could be the stuff type.

Conversely, if truck is the correct stuff term, the term vehicle is unnecessary, i.e., the term

provides no additional meaning. Arity also caused a great deal of confusion. Most students

seemed at a loss when it came to determining the arity of a stuff term.

2. Refined Concept

We experienced difficulties similar in nature to those indicated by the initial

experiment results when developing the master quiddities for the experiment. Clearly, the

quiddity acquisition process requires refinement. The chief problem areas center around the lack

of clear distinction between the stuff and stuff attribute components. This uncertainty led to

confusion in discerning the arity of the stuff component and in identifying the sortal information

provided by the stuff type and the stuff attribute type. Additionally, the level of detail required

(e.g., virus vs. software) is unclear.

How can these problems be resolved? Clearly, a more descriptive definition of the

quiddity components is needed. In other words, what is the m of each component and what

kinds of information are each meant to supply? We propose that this concept can be clarified by

examining quiddity from a linguistic perspective.

26

a. A Linguistic Pes ei

Linguistics" 6 is the science of language. Linguists divide knowledge about

language into four overlapping components: the lexicon, 7 phonology, 18 syntax, 19 and

semantics.20 We are interested in the grammatical context of syntax and semantics as they

apply to quiddity. The following discussion will draw a parallel between the structure of sentences

and quiddity.

(1) Sentence Structure. A sentence consists of a linear sequence of words, one

following the other. This composition of words follows regular patterns, otherwise known as

syntactic rules, or grammar. Word order is important in English because it is an "analytic

language," which means that the relationships of words in a sentence are indicated by the order

in which the appear (Barnett 1964, 29).

The two essential parts of every sentence are an actor (subject) and an

action (verb). Without these two parts, the meaning or semantics would be unclear. The normal

order of these parts in a simple English sentence is subject/verb. The subject is what a sentence

is about. The verb expresses what action the subject does. To find the verb in a sentence we

often first find the subject. To find the subject, we ask the questions "Who or what is the sentence

about?" or "Who or what is doing something in the sentence?" Then, we name the subject and ask

"From the American Heritage Dictionary, linguistics is "The study of the nature and structure
of human speech."

1
7From the American Heritage Dictionary, lexicon is "The morphemes of a language." A

morpheme is "A meaningful linguistic unit consisting of a word, such as man, or a word element,
such as -ed of walked, that cannot be divided into smaller meaningful parts."

1"From the American Heritage Dictionary, phonology is "The science of speech sounds

19From the American Heritage Dictionary, syntax is (Gram.) "The way in which words are put
together to form phrases and sentences."

2 From the American Heritage Dictionary, semantics is "The study or science of meaning in
language forms

27

the questions "Did what?" or "Does what?" to find the verb. All other words in the sentence

radiate from this subject/verb core. (Osborn 1989, 15-20)

The subject/verb core and all other words in a sentence can also be defined

by the eight parts of speech (Osborn 1989, 67). They are:

1. Noun: any of a class of words naming or denoting a person, place, or thing, idea, quality,
etc.

2. Verb: any of a class of words expressing action, existence, or occurrence; any phrase or
construction used as a verb.

3. Pronoun: a word used in the place of or as a substitute for a noun.

4. Adjective: any of a class of words used to limit or qualify a noun or substantive (a word
or group of words "subbing" as a noun).

5. Adverb: any of a class of words used to modify the meaning of a verb, adjective, or other
adverb, in regard to time, place, manner, means, cause, degree, etc.

6. Preposition: a relational word that connects a noun, pronoun, or noun phrase to another
element of the sentence, such as a verb, a noun, or an adjective.

7. Conjunction: a word used to connect words, phrases, clauses, or sente: .es.

8. Interjection: Wow! Phew! A word expressing emotion or simple exclamation, thrown
into a sentence without grammatical connection.

These definitions will also be used in describing the structure of quiddity.

(2) Quiddity Structure. Similar to a sentence, quiddity consists of a linear

sequence of components (rather than words), one following the other. Within components, the

terms (if there are more than one) are listed alphabetically (a syntactic rule). Unlike sentences,

where the relationships of words are indicated by their order, the relationship of quiddity

components are indicated by their definitions. Because we are dealing with a formal language,

component order, once designated, will never change. Component order is therefore irrelevant to

determining meaning. For example, consider the quiddity cost(truck). If the formal language has

designated the component order to be stuff attribute(stuff), then we know with certainty that cost

28

is the stuff attribute and truck is the stuff. What does this mean? We must know the relationship

between the components (their definitions) to grasp the meaning of the sequence of componelts.

If we know that stuff tells us what the data element is about and that the stuff attribute tells us

what it is about the stuff we are interested in, then we can glean the quiddity's meaning. With

this relationship defined, we now know that the data element captures information about the cost

of a truck. Conversely, consider the quiddity truck(cost). Given that the formal language has

designated the component order to be stuff(stuff attribute) and the definitions for stuff and stuff

attribute stated earlier still apply, we will derive the same meaning. The data element with this

quiddity also captures information about the cost of a truck. It is important to note that

component order is irrelevant in providing meaning only so long as we know for a certainty which

component is which.

As in a sentence, quiddity has two essential components, stuff and stuff

attribute, without which, there would be no meaning. All other quiddity components qualify the

stuff and stuff attribute, just as all other words in a sentence qualify the subject and verb.

Additionally, a parallel can be seen between the "questions" associated with the stuff/stuff attribute

and subject/verb. (Figure 8)

Description

Stuff/Stuff Attribute: Subject/Verb:

* Stuff -- * Subject --

"What is it about?" "Who or what is the sentence
about ?"

*Stuff Attribute -- * Verb --

"What is it about the stuff "(the subject) Did what?"
are you interested in?" "(the subject) Does what?"

Figure 8 Parallel Between Stuff/Stuff Attribute and Subject/Verb

29

b. Linguists Applied D Quiddity Acquiio

It is our premise that certain aspects of sentence structure, when applied to

quiddity, will yield a more descriptive definition of the stuff and stuff attribute components. The

key to developing the "correct" quiddity lies in correctly identiffying the stuff and stuff attribute

components. These components form the core of meaning for quiddity, just as the subject and

verb form the core of a sentence. As presently defined, the stuff component is comprised of only

one value or term while the stuff attribute is comprised of one or more values or terms. This

ambiguity can be reduced by restricting both components to one and only one value or word

phrase per quiddity definition. This parallels sentence structure in that a simple sentence has one

and only one subject and verb.

EvP,,, jgh we have reduced the scope of values for both components, we are

still faced with t).e jack of a clear distinction between them. The quiddity acquisition process

requires tLat one first determine the value of the stuff component. Once the stuff is determined,

the vrjue of the stuff attribute can be captured. While developing the master list of quiddities for

the initial experiment, we found that often the first value to become apparent was actually the

stuff attribute. This led to confusion because the first inclination was to apply the value to the

stuff component. This, of course, will result in an incorrect quiddity definition. 17 How can we

modify the method to allow for first determining the stuff attribute? The first step is to further

define the stuff attribute. If we compare all the stuff attribute values for each of the data elements

in the master quiddity list of the initial experiment, we find that the values have a common

characteristic. Each stuff attribute is a type of MEASURE of the stuff component. For example,

"An example illustrating the reversal of the stuff and stuff attribute component was provided
in Section k3.a. of this chapter.

30

in the quiddities name(software), cost(truck), and tail number(aircraft), each stuff attribute, (i.e.,

name, cost, and tail-number), is a measure of the stuff, (i.e., software, truck, and aircraft,

respectively).

To find this MEASURE, we first view the actual data contained in the field of

the data element. Then we classify the data by grouping the collection under a general heading

or name which answers the question "What is it?" or "What are these?" The aim is to categorize

the actual words, codes, numbers, etc., that we see in the field. We are not concerned with what

the data are representative of in the physical or concrete sense. We are looking for an abstract

noun not a concrete noun.22 The data in the field is a MEASURE of SOMETHING. The

MEASURE is the stuff attribute and the SOMETHING is the stuff. Consider the following

examples. Suppose a list of the data corresponding to values in a data element field appears as

in Figure 9, Example (a).

Example (a): Example (b):

[$12.95] [sofa]
[$16.50] [chair]
[$18.75] [TV]
[$26.75] [table]
[$33.56] [desk]

Figure 9 Examples of Data Element Values

What values do we actually see in the field? We see a list of dollar amounts. What word can we

use to categorize these amounts? Do they have a common characteristic? We can group them

together and classify the amounts as pries or ets. Therefore, (choosing one of the terms) the

stuff attribute is cost (assuming this term is included in the vocabulary list). Now that we have

2 2A concrete noun is the name of anything physical, anything that can be touched, seen, heard,

smelled, or otherwise perceived by the senses and occupies space. An abstract noun is the name
of a quality, state, or action. It is an idea, and so may not be touched, seen, heard, smelled, or
otherwise perceived by the senses. (Osborn 1989, 19)

31

found the stuff attribute we can determine the stuff. The data in the field is the cost of

something. The something is the stuff. It could be the cost of trucks, cars, ships, etc.

Now consider the list of data shown in Example (b) in Figure 9. What do we see

in this field? We see a list of furniture. What word can we use to categorize this list? We might

be tempted to say that the category of this data is "furniture" but we would be wrong. Our aim

is to capture a measure of the data, not what the data represents in the physical sense. What

are these lists of "words" we see in the field? They are names. Therefore, the stuff attribute is

name. We now have names of something. Names of what? Furniture. So, the stuff attribute

is name and the stuff is furniture. Of course, we will also have the data dictionary, a vocabulary,

and any other available information to aid in defining these components.

We can now apply the "questions" in the original method to these examples as

a verification of our answers. The two procedures will complement each other. If the values

chosen for the stuff and stuff attribute components comply with both methods, the chances of

incorrectly defining either component will be minimal. Figure 10 steps through the original

method supporting our selection of values in the examples above.

Original Method

Description:. This variable captures information

about the cost of a truck.

What is it about? A truck (stuff).

what is it about the truck are we interested in?
Its cost.

Description: This variable identifies a specific
piece of furniture.

what is about? Furniture (stuff).

what is it about the furniture are we interested in?
The name (stuff attribute).

Figure 10 Quiddity Acquisition -- Samples of Original Method

32

Additionally, the remaining quiddity components, stuff type, arity argument(s),

and stuff attribute type, as well as stuff and stuff attribute, can be likened to various parts of

speech.2 3 Both the stuff and stuff attribute values are usually indicated with nouns. However,

a subtle difference is that the stuff attribute will generally be represented by an abstract noun

while the stuff is represented by a concrete noun. Stuff types, which qualify stuff, and stuff

attribute types, which qualify stuff attributes, are indicated by adjectives or adverbs. Both stuff

types and stuff attributes may have more than one value in a quiddity definition. This occurs when

there are more than one qualifying terms for the stuff or stuff attribute as shown in the example

depicting the quiddity of an unmanned fighter aircraft. 24 Both unmanned and fighter further

describe the stuff term aircraft and are adjectives. There may be instances where a term is

needed to further describe a stuff type or stuff attribute type term. If this occurs, the term,

generally an adverb, is annotated as an additional stuff type or stuff attribute type term (as

appropriate). When a stuff term has arity, its argument(s) will typically be represented by a

noun(s).

We have suggested several changes in the quiddity acquisition process based on

a linguistic approach. The refined concept for quiddity acquisition presented above is summarized

below.

1. Gather Information. Examine the definition of the data element using the data dictionary
and any other available information.

2. Examine Data. Examine a collection or list of actual data values contained in the data
element field.

3. Classify Data. Classify the data by grouping the collection under a general heading or
name which answers the question "What is it" or "What are these?" Each piece of data is
an instance of the same thing or quality of something. The data is a type of MEASURE
of something. This MEASURE is the stuff attribute.

2 3See Chapter I, Section B.2.a.(1) for a list of the eight parts of speech.

2 4See Chapter III, Section A-2.b.(1).

33

4. Find Stuff Attribute and Stutf. The stuff attribute measures something. The something
is the stuff. The stuff will generally be a noun which is the object of a prepositional
phrase associated with the stuff attribute. For example, if cost is the stuff attribute,
answering the question "Cost of what?" will lead to the stuff term. The what is the stuff
term. The what is also the object of the prepositiG. -' phtrase of what associated with the
stuff attribute term cost.

5. Verify terms. Verify the stuff and stuff attribute terms by referring to the "questions" in
the original method. What is the data element about? The stuff. What is it about the
stuff we are interested in? The stuff attribute. If the terms also satisfy these questions,
continue defining the remaining quiddity components as described in the original method.
If not, return to the first step and begin again.

6. Define Remaining Components. Answer the questions 'What sort of stuff is it? The stuff
type. "What sort of stuff attribute is it?" The stuff attribute type. Is the stuff term a
function of something else? If yes, determine the argument(s).

The refined concept presented in this section addressed the problem of a

lack of clear distinction between the stuff and stuff attribute components in the original concept.

We have yet to address the remaining problem areas identified in the preliminary experiment,

namely, the confusion in discerning the arity of stuff, the sortal information provided by the stuff

type and stuff attribute type, and the level of detail required when defining components. These

issues will be discussed in Chapter IV based on data obtained in the primary experiment.

C. QUIDDITY MANIPULATION AND INFERENCING

Our aim in this section is to present rules for determining quiddity equivalence. Based on

these rules, we present several quiddity comparison procedures, both of which are necessary in

examining the feasibility of quiddity in support of automatic detection of possible naming problems.

1. Rules for Quiddity Equivalence

Recall Bhargava et al.'s (1990) premise, that "if two syntactically distinct variables

have the same or equivalent dimension and quiddity, a possible unique names violation is

indicated. (Recall also that when checking for quiddity equivalence between data elements, we will

assume that their corresponding dimensions are equivalent.) The rules for determining quiddity

equivalence (presented below) are based on the following hypotheses:

34

Hi. Stuff and stuff attribute are the most crucial quiddity components.

H2. Some use more specific terms than others when defining quiddities, e. g., vehicle: truck.

H3. People developing quiddities are likely to confuse the values defining stuff type with the
values defining arity25 (arguments).

H4. Some define quiddities more extensively than others, e. g., two values for stuff type vs. one
value for stuff type.

a. Term Equivalence

What constitutes quiddity equivalence? An obvious answer is that quiddities are

equivalent when they are syntactically identical, term for term. In other words, quiddities are

equivalent when all quiddity components are equivalent. When are quiddity components

equivalent? Again, an obvious answer is that the components are equivalent when the terms or

values in the components are equivalent. We now reach the core of the equivalence process.

When are terms equivalent? Obviously, terms are equivalent when they are syntactically identical,

e.g., cost is equivalent to cost. However, suppose the terms being compared for equivalence are

price and cost. Are these terms equivalent? The words are synonyms and, as such, their meanings

are equivalent. Another aspect of equivalence appears when we compare the terms vehicle and

truck. Are these terms equivalent? A truck is a vehicle. One term is simply more specific than

the other. Vehicle could refer to a truck, but it could also refer to a bus. If we say that these

terms are equivalent when they are really different (e.g., vehicle means bus), we run the risk of

identifying a possible naming problem when it does not exist (Type I error). However, if we say

the terms are not equivalent when they really are (e.g., vehicle means truck) and do not identify

a possible naming problem, we run the risk of not identifying a problem when there really is one

(Type R error). Since we are attempting to detect possible naming problems, we need to minimize

2 5Here, and in subsequent references, we are using the word arity to denote the arguments
which are often needed to further describe stuff.

35

all errors, but specifically, Type II errors. We do not want to miss detecting a possible naming

problem. Our premise is that in order to minimize Type II errors, we need the following three

basic rules for term equivalence:

1. Two terms are equivalent if they are identical, i.e., match syntactically.

2. Two terms are equivalent if they are synonyms.

3. Two terms are equivalent if one term is a specialization of the other in the sense that all
objects in the class represented by that term are also present in the class of objects, e. g.,
truck : vehicle (from H2).

We can now use these three term equivalence rules, singly or in combination,

when determining component equivalence. We have divided the quiddity components into two sets

for comparison. One set, designated the Stuff Set, contains the components stuff, arity, and stuff

type. The other set, designated the Stuff Attribute Set, contains the components stuff attribute

and stuff attribute type. Our premise is that quiddities are equivalent if and only if their

corresponding Stuff Sets and Stuff Attribute Sets are equivalent (from Hl). The following

sections present equivalence rules for each set.

b. Stuff Set Equivaence

Stuff Set equivalence is defined in terms of equivalence of its components. The

most evident and restrictive equivalence rule, alternative 1, is to require all components within the

set to be equivalent (based on the term equivalence rules above) in order to have Stuff Set

equivalence. Based upon the problem areas noted in the preliminary experiment, namely, the

confusion in discerning the arity of stuff, the sortal information provided by the stuff type, and the

level of detail required when defining components, this rule is too restrictive and would most likely

result in a high number of Type II errors (H2 and H4 apply here). For example, the problem

areas noted above will cause quiddities to be developed inconsistently. Even though the Stuff Sets

of two data elements should be equal (because the data elements actually represent the same

36

information), the inconsistency in defining the components would cause this rule to fail. Our

premise is that we can alter this rule in order to compensate for these inconsistencies (in lieu of

further refining the quiddity acquisition process). Consider the following example. The data

element purchasecost in Database A with the quiddity purchase(cost(Dodge,used(truck(month))))

is compared to the data element truck-cost in Database B with the quiddity

purchase(cost(used(truck(month)))). The quiddity of the data element truckcost is certainly less

specific than that of purchasecost. Does this mean that the data elements do not actually

represent the same information? We can not be sure without further examination, so we would

want these data elements flagged as a possible naming violation. For that to happen, their

quiddities (and thus their Stuff Sets) must be determined to be equivalent.

Our rule still states that Stuff Sets are equivalent if their three components are

equivalent. However, now the rules for arity and stuff type equivalence must be altered to the

following. (The stuff components are determined to be equivalent based upon the term

equivalence rules.) Alternative 2 is that the arity of two data elements is equivalent if the arity

arguments of one data element are contained in the arity arguments of the other data element.

Similarly, the stuff type components are equivalent if the stuff type terms of one data element are

contained in the stuff type terms of the other data element. For example, the stuff type term used

(belonging to the data element truck-cost) is contained in the set of stuff type terms Dodge and

used (belonging to the data element purchase-cost). Therefore, the stuff type components of the

data elements are equivalent. It should be noted that term, is contained in a set of terms if

term is equivalent to a term in the set based upon the term equivalence rules listed above.

(Additionally, an empty set is contained in any set.)

We can be even less restrictive in determining equivalence by combining the arity

arguments and stuff type terms of the Stuff Set into one set and comparing this set for

equivalence. Alternative 3 is that the Stuff Sets are equivalent if the stuff components of the

Stuff Sets are equivalent (based on the term equivalence rules above) and the set of arity

37

arguments and stuff type terms of one Stuff Set is contained in the set of arity arguments and

stuff type terms of the other Stuff Set. Taking this one step further by combining the terms of

all of the Stuff Set components into one set, alternative 4 is that the Stuff Sets are equivalent if

the terms in the combined set of one Stuff Set are contained in the set of combined terms of the

other Stuff Set.

C. Stuff Attribute Set Equivalence

The rationale presented above also applies to Stuff Attribute Set equivalence.

Again, the most evident equivalence rule, alternative 1, is to require all components within the set

to be equivalent (based on the term equivalence rules above) in order to have Stuff Attribute Set

equivalence. Our hypothesis, that confusion between components and differing levels of

description detail in quiddity acquisition can be compensated for by altering the equivalence rules,

applies here as well. Alternative 2 is that the Stuff Attribute Set is equivalent if the stuff

attributes are equivalent (based on the term equivalence rules defined earlier) and the stuff

attribute types are equivalent. Stuff attribute type components are equivalent if the stuff attribute

type terms of one data element are contained in the stuff attribute type terms of the other data

element. Further, by combining the terms of all of the Stuff Attribute Set components into one

set, alternative 3 is that the Stuff Attribute Sets are equivalent if the terms in the combined set

of one Stuff Attribute Set are contained in the set of combined terms of the other Stuff Attribute

Set.

2. Quiddity Comparison Procedures

In the preceding section, we defined several sets of quiddity equivalence rules. Various

comparison procedures can be defined by applying these rules in different combinations. For

clarity in discussion, these rules are depicted in Figure 11 in an abbreviated notation and are

divided into sets of numbered rules.

38

EQfVLK RMCS:

set A - Term Iauiyalea

(- in equivalent to,)

Term1 a Term 2 if rule 1, 2, or 3 is true.

1. Syntactic:
Term 1 a Term 2 if they match syntactically.

2. Synonym:
Term a Term2 if rule 1 is true OR if

Tim1 ad2Term2 are synonyms.

3. Network:
Term ETerm if rule 1instruegORif

ruie 2 is Grus OR if
Term and Term irewithin the same
claisificatioi network.

set B - Stuff Set Equivale e

Stuff Set, a Stuff Set 2 if rule 1, 2, 3, or 4 is true.

1. Plain and Simple:
Stuff Set, * Stuff Set 2 if

stuff1 a stuff2
sufarity 1 : arity2stfftype1 * tuff-tyPe2

2. Partial is-contained-in:

(a -/- b - "a is contained in b or b is contained in a*)

Stuff Set1 a Stuff Set 2 if

stuff1 n stuff2 and
arty .- arity2 n

stuff tyPe1 '/' stuff-tyPe2

3. Part/Full is-contained-ins
stuff set 1 - Stuff S'2 if

stff stuff2 and
(rt stft(arity + st arty+ tff -type)2

4. Full is-contained-in:
Stuff Set1 a stuff-set 2 if

(stuff + arity + stuff type)1 -/- (stuff + arity + stuff type)2

Set C - Stuff Attribute Set

Stuff Attribute Set z Stuff Attribute Set
if rule , or 3, is true. 2

1. Plain and Simple:

stuff attribute1 a stuff attribute and

stuff fattribute type1 * stuff-attribute t2e

2. Partial is-containod-in

* stuff attribute s stuff attribute2 and

stuff attribUte type1 i/- stuff att ribute2 tye

3. Full is-contained-in

(stuff atribute + stuff attribute type)1 I

(stuff attribute +-stuff attiibut* tP) 2

Figure I1I Quiddity Equivalence Rules

39

a. Term Equiva/ence Rule Set

We defined three basic term equivalence rules in the previous section. These

basic rules are applied in three distinct combinations. Rule Al (Set A, Rule 1) states that two

terms are equivalent if they are syntactically identical, or in other words, they are a syntactic

match. Rule A2 states that two terms are equivalent if they are synonyms or if they are a

syntactic match. Rule A3 states that two terms are equivalent if they are related, as in a

classification network, if they are synonyms, or if they are a syntactic match. Figure 12 illustrates

the organization of terms into a classification network.

The classification network below depicts relationships
between terms. For example, a professor is a person, a
manager is a person, and a student is a person.

(a) person (b) name

(is a) (is a)

professor manager student ti surname

Figure 12 Classification Network

b. Stuff Set Equivane Rue Set

We defined four Stuff Set equivalence rules as shown in Set B of Figure 11. We

chose to maintain a strict equivalence rule in most combinations for the stuff component due to

its significance in the quiddity definition (from Hi). Set B component equivalency rules are based

on the rules in Set A, e.g., components are equivalent if their terms are equivalent. Rule Bi states

that Stuff Sets are equivalent if each of their components are equivalent. Rule B2 states that two

Stuff Sets are equivalent if their stuff components are equivalent, the arity arguments of one are

contained in the arity arguments of the other, and the stuff type terms of one are contained in the

40

stuff type terms of the other. 26 Rule B3 states that two Stuff Sets are equivalent if their stuff

components are equivalent and the combined set of arity and stuff type terms of one are contained

in the combined set of arity and stuff type terms of the other. Rule B4 states that two Stuff Sets

are equivalent if the combined set of stuff, arity, and stuff type terms of one are contained in the

combined set of stuff, arity, and stuff type terms of the other. The stricture of these rules can be

reduced slightly by varying the term equivalence rules.

C. Stuff Attribute Equivalence Set

We defined three Stuff Attribute Set equivalence rules as shown in Set C of

Figure 11. We chose to maintain a strict equivalence rule in most combinations for the stuff

attribute component due to its significance in the quiddity definition (from Hi). Set C component

equivalency rules are also based on the rules in Set A. Rule C1 states that Stuff Attribute Sets

are equivalent if each of their components are equivalent. Rule C2 states that two Stuff Attribute

Sets are equivalent if their stuff attribute components are equivalent and if the stuff attribute type

terms of one are contained in the stuff attribute type terms of the other. Rule C3 states that two

Stuff Attribute Sets are equivalent if the combined set of stuff attribute and stuff attribute type

terms of one are contained in the combined set of stuff attribute and stuff type terms of the other.

Again, the stricture of these rules can be reduced slightly by varying the term equivalence rules.

d. Procedures

The three sets of rules can be combined into twelve distinct procedures. This

is best shown in a matrix format. (See TABLE III) For each procedure, there must be one term

equivalence rule, one Stuff Set equivalence rule, and one Stuff Attribute Set equivalence rule.

In the matrix, both Rule B2 and Rule B3 (Stuff Set) are combined with Rule C3 (Stuff Attribute

26It should be noted that terms is contained in a set of terms if term1 is equivalent to a term
in the set based upon the term equivalence rules. Additionally, an empty set is contained in any
set.

41

Set) in the separate procedures because Rules B2 and B3 more closely match in equivalence

concepts with Rule C2 than they do with Rule C3. The idea is maintain equivalence consistency

between the Stuff Set and the Stuff Attribute Set. For example, it is not consistent to apply the

most strict rule of equivalence to the Stuff Set (e.g., Rule B1) while at the same time applying the

loosest equivalence rule to the Stuff Attribute Set (e.g., Rule C3) in determining quiddity

equivalence.

TABLE I EQUIVALENCE PROCEDURES

Component Equivalence Term Equivalence Rules

Set B_[Set C Al A2 A3

Bl Cl A1,B1,C1 A2,B1,C1 A3,B1,Cl

B2 C2 A1,Bl,C1 A2,B2,C2 A3,B2,C2

B3 C2 Al,B3,C2 A2,B3,C2 A3,B3,C2

B4 C3 Al,B4,C3 A2,B4,C3 A3,B4,C3

These twelve procedures were applied to, and tested using a prototype

application developed in Prolog2 7. A given procedure is specified simply by specifying the

appropriate rules within each set. These procedures are examined in greater detail in Chapter

IV.

" The prototype program listing, along with the data listing, can be found in Appendix B.

42

IV. PRIMARY EXPERIMENT

A. DESIGN OF EXPERIMENT

1. Subjects

The same six Naval Postgraduate students who participated in the preliminary

experiment also participated in the primary experiment. These students were selected in order

to take advantage of their experience in quiddity formulation. The intent of this selection was to

eliminate any "noise" in the experiment (due to not understanding the concept) which could

interfere with the analysis of the concept itself.

2. Goal

The goal of this experiment was to gather data concerning the formulation of quiddity

for data elements using the refined concept described in Chapter III, Section B.2. These quiddities

would then be compared using the procedures developed in Chapter M, Section C, to determine

if the concepts were equivalently applied by the subjects and if the quiddities could be useful in

support of automatic detection of unique name violations.

3. Experiment Packet

Two databases (overlapping in their real world domains), the Naval Postgraduate

School Automated Catalog (NAC) and the Course Requirements and Forecasting Tool (CRAFT),

designed by Naval Postgraduate students as class projects for a database management course,

were used as the basis for this experiment. Fifteen data elements from each database were

selected for quiddity formulation. Care was taken to ensure that unique name violations did exist

among the chosen data elements from each database. Each experiment packet contained the

following- all information included in the preliminary experiment packet to include students'

original responses with the addition of "suggested quiddity answers," a new information sheet, an

43

updated work sheet with answers to examples provided in the preliminary experiment, a basic

instruction sheet, a blank answer sheet, a vocabulary list (words were separated into quiddity

component areas), a list of data dictionary entries pertaining to the selected data elements, and

sample reports displaying the data captured by the selected data elements. An example of this

packet is contained in Appendix C.

4. Procedure

The procedure for this experiment was similar to the preliminary experiment in most

respects. Prior to beginning the experiment, a general overview of the thesis objectives was again

presented to the students. Each student was given an experiment packet, and were associated

with each of the two databases. Group integrity remained constant from the preliminary

experiment when assigning students to a database. Next, the students were asked to read the

new information sheet which included the purpose, a review of details concerning quiddity concept

and definitions, and a new approach to be used in addition to the original concept. Then, the

students were provided with instruction on the new approach as well as a review of the original

concept. Additionally, an updated work sheet with answers to the sample quiddity problems used

during preliminary experiment instruction was provided and discussed with the students. The

students were allowed to ask questions in order to clarify the concept. Responses to the

preliminary experiment were discussed and further instruction was provided on the concept of

arity.

Conduct of the experiment was closely matched to that of the preliminary

experiment2" with the following exceptions. Each student was asked to formulate quiddities for

fifteen data elements (as opposed to twelve data elements in the preliminary experiment) and to

provide comments on the usefulness of the refined approach in quiddity formulation. Students

were also asked to comment on any areas of the concept which remained difficult or confusing.

2 See Chapter iMl, Section B.1.b.(4)

44

Unlike the preliminary experiment, the students were restricted to using only the vocabulary

provided in the vocabulary list. If the vocabulary list did not contain a word which the students

felt was crucial to forming the correct quiddity, they were instructed to provide comments to that

effect but to complete all quiddities to the best of their ability using only the vocabulary in the list.

The vocabulary was restricted in order to increase control over the experiment, thus more

effectively testing the concept.

B. EXPERIMENT RESULTS

The goal of this experiment was to investigate several aspects of quiddity acquisition and

formulation, with emphasis on the problems noted in the preliminary experiment, and to test the

hypothesis noted in Chapter III, Section C. Specific areas of interest are highlighted by the

following questions. Did the refined concept improve the distinction between the stuff and stuff

attribute components, i.e., were their values still subject to inversion? Was the idea of arity

understood and correctly applied? Did the equivalence procedures compensate for any of the

problems noted in the preliminary experiment?

1. Quiddity Formulation

The experiment results2 9 were divided into two groups. The quiddities pertaining

to The Naval Postgraduate School Automated Catalog (NAC) Database were placed in Group 1

and the quiddities pertaining to the Course Requirements and Forecasting Tool (CRAFT) Database

were placed in Group 2. There are a total of 45 quiddities in each Group, three for each of the

fifteen data elements. The correct quiddity30 of each data element was compared with the

quiddities developed by the students. TABLE IV shows summary statistics of the correctness of

the quiddities in each Group.

29All experiment results are contained in Appendix C.

3UA master list of "correct" quiddities was developed prior to the experiment.

45

TABLE IV QUIDDITY CORRECTNESS -- PRIMARY EXPERIMENT

(TOTAL POSSIBLE HATCHES = 45) Group 1 Group 2

Correct Quiddity Matches 13/45 (29%) 15/45 (33%)

Correct Stuff Matches 39/45 (87%) 35/45 (78%)

Correct Stuff Attribute Matches 25/45 (56%) 27/45 (60%)

Stuff Attribute Matching
Correct Stuff 0/45 (0%) 1/45 (2%)

Stuff Matching Correct
Stuff Attribute 0/45 (0%) 4/45 (9%)

The results suggest that the students have a much better understanding of the

concept. There was a significant increase in the number of correctly defined quiddities in both

Groups, more than double the percentage correctly defined in the first experiment. 3'

Comparisons by quiddity component (stuff and stuff attribute) also improved greatly. Based upon

comments from the students, this overall improvement can be attributed to several factors. First,

all students indicated that the refined concept simplified and added clarity to the quiddity

acquisition process. Two students stated that they used only the refined concept in determining

the quiddity definitions, Le., they did not use the original concept to verify their definitions.

Second, all students reported that the restrictive vocabulary reduced the uncertainty in defining

the quiddities. Third, all students related that their familiarity with the concept eased the task

of defining the quiddities in this experiment.

The quiddity comparisons within each Group improved overall. There were still very

few exact matches between the three quiddities for each data element in either Group. For the

3"In order to be counted as an exact match, the experiment quiddities for the data elements
must be identical, term for term, to the "correct" quiddity.

46

most part, the reason the quiddities were not exact matches was due to diferf,-ces . ,hin stuff

type and stuff attribute type. This reflects uncertainty in the level of detail required in defining

quiddity and supports our fourth hypothesis (see Chapter III, Section C Some students

demonstrated a tendency to be consistently more specific than others. The number of exact

matches within the stuff and stuff attribute components increased significantly from the first

experiment. These improvements can also be attributed to the same factors discussed in

connection with quiddity correctness. TABLE V shows summary statistics of the sameness of the

quiddities developed within each Group.

TABLE V QUIDDITY SAMENESS WITHIN GROUPS -- PRIMARY EXPERIMENT

(TOTAL POSSIBLE MATCHES - 15) Group 1 Group 2

Exact Quiddity Matches 3/15 (20%) 0/15 (0%)

Exact Stuff Matches 11/15 (73%) 10/15 (67%)

Exact Stuff Attribute Matches 6/15 (40%) 6/15 (40%)

Arity continues to cause a great deal of confusion. Students remain at a loss when it

comes to determining the arity of a stuff term. In both Groups, arity was correctly identified by

only one student. It should be noted that the data pertaining to arity can be misleading. There

are only three data elements in the experiment (one in the NAC database and two in the CRAFT

database) which have an arity greater than 0 and require defining. Most students indicated that

they left the arity component blank because they were not certain if the stuff component had arity

greater than 0. This resulted in an arity "correctness" of 73% for Group 1 and 80% for Group 2

because 27 of the 30 data elements in the experiment have arity of 0!

32A match here means that all three subjects in the same group used the exact same term(s).

47

2. Procedures For Quiddity Comparison

The data in the experiment was compared for equivalence using the twelve procedures

described in Chapter I, Section B. TABLE VI (taken from Chapter I, Section C) provides an

overview of the rule combination for each procedure. The set designation is now indicated by the

position of the rule number. For example, a procedure number now consists of just three

numbers, i.e., 243. The number in the first position (2) indicates rule number 2 from Set A. The

number in the second position (4) indicates rule number 4 from Set B. The last number (3)

indicates rule number 3 in Set C.

TABLE VI EQUIVALENCE PROCEDURES

Component Equivalence Term Equivalence Rules

Set B Set C Al A2 A3

BI CI 111 211 311

B2 C2 122 222 322

B3 C2 132 232 332

B4 C3 143 243 343

The experiment data consists of six sets of quiddities, three from the NAC Database

and three from the CRAFT Database. Our experiment assumes that we are planning to integrate

the two databases. Our goal is to detect possible naming problems (synonyms and homonyms) by

comparing the quiddities for each database using the above procedures. There are a total of nine

unique pair-wise combinations of quiddities (each of the three sets of CRAFT quiddities compared

with each of the three sets of NAC quiddities). For each combination, there are 225 comparisons

of data elements (15 x 15). The quiddities within each database were also compared with each

other in order to provide data pertaining to the "sameness" of the quiddities. Finally, the master

quiddity list for each database were compared.

There were 192 database comparisons performed ((9 x 12) + (6 x 12) + 12) with a

grand total of 42,525 comparisons (when counting each data element comparison). The prototype

48

implementation produces a listing for each database comparison. The report lists pairs of data

elements which may have naming violations. These pairs of data elements are categorized as

possible homonyms or synonyms. Sample output listings are in Appendix C. These comparisons

(225 for each procedure plus 12 for the master quiddity comparison) were subdivided by procedure

and type (e.g., between databases, within database, and master) and analyzed to determine the

number of Type I and Type Hl errors. The raw data is compiled in TABLES located in Appendix

C. An analysis of this data is presented in the next section.

C. ANALYSIS OF COMPARISON PROCEDURES

The objective of this section is to determine the combination of equivalence rules which will

minimize Type I and Type H errors (with priority on Type IT errors). There are a total of five

synonyms and three homonyms in this experiment.

1. Synonyms

The number of Type H errors decreased or remained constant as the term equivalence

rules became lax." The broader definition of equivalence increased the chances of correctly

identifying all naming violations. As the component equivalence rules were broadened, the

I,'pe I errors decreased, but not at a very significant rate. (However, notice that there are only

5 true synonym problems.) Conversely, as the term equivalence rules became lax and the

component equivalence rules broadened, Type I errors increased. Clearly, it is more important

to prevent Type H errors, than it is to avoid increasing Type I errors. However, the results do

indicate that the "middle of the road" procedures are best, i.e., those procedures using component

33A procedure is more "lax" than another procedure if the following rule is true.
Given Procedure (iijl,k,), Procedure2 (i2j 2 ,k2), and "more lax" - "< <":

Proc1 < < Proc2 if
i< i2 and

Jl 5 i 2 and
k i :s k2 (where at least one is a strict inequality)

49

set rules 22 or 32. The "best" procedure is the one with the lowest error rate (both Type I and

II errors). By providing weights to each type of error, we can choose the procedure with the

lowest error rate.34 Even though the experiment quiddities were, on the average, only 31%

correct, the trends in numbers of Type I and II errors very closely paralleled those of the master

list. This seems to indicate that there may not be just "one" correct quiddity for a data element.

Additionally, there is no difference between component equivalence rules 22 and 32. This seems

to indicate that either arity is irrelevant or that the results are skewed. (The fact that 27 of the

30 data elements have no arity could skew these results.) (See Figures 13, 14, 15, and 16)

2. Homonyms

Since this thesis focused primarily on the synonym problem, homonyms will only be

addressed briefly. Homonyms appear to be a much simpler problem to detect than do synonyms

because it is necessary to compare quiddities only when two data element names are syntactically

identical. However, the same methods apply once the identical names are detected.

The number of Type I1 errors increased as the term equivalence rules became lax.

The broader definition of equivalence increased the chances of failing to identify all .uming

violations. As the component equivalence rules were broadened, the Type I errors increased

significantly. Type I errors were nonexistent throughout. To identify a Type I error, the

procedure would have to incorrectly determine that equivalent quiddities are not equivalent while

at the same time detecting identical data element names. This circumstance appears to be a rare

occurrence. All our experimental results point to the conclusion that the best procedure for

detecting homonyms is the one which is the most strict, i.e., not lax. (See Figures 17 and 18)

34Given the total number of Type I errors, N., and the total number of Type II errors, Nil,
and weights, W. and Wil, respectively, then the error rate for the procedure is:

error-rate(N,, Nil)
fW 1. N + Wil * Nil (W. will normally be less than W)

50

Synonyms -- Type 11 Errors
By Term Equivalence Rule

Syonms--yp I ros(atr

4.5-

LJ

0

Equivlence Procedures

Syntax = Syntax or Synonym EM Snx, or Son Network

Figue 14 Synonyms -- T ype 11 Errors (aster)

ByTem quvaene61l

Synonyms -- Type I Errors
By Term Equivalence Rule

41.4

40 ______

35-
31.3

I 30 7.

0
L25

-

0.

0 0.0 0A7 I. . .
1 1 22 32 43

Equivalence Procedures

Syntax Syntax or Synonym M Snx, Syn or-; Netwok

Figure 15 Synonyms -- Type I Errors (Experiment)

Synonyms -- Type I Errors (master)
By Term Equivalence Rule

40-

35-

30-

L- 25-
0

0-

0

2 2 2

Equivalence Procedures

Syntax Syntax or Synonym EM Snx, Syn or Network

Figure 18 Synonyms - Type I Errors (Master)

52

Homonyms -- Type 11 Errors
By Term Equivalence Rule

3.5 -

35-

0
L 2.5- -

LJ

Zo 1.7 1.7 <
1.5

0.6A 06 0.5 0.6 0.7 0.7

11 22 32 43
Equivalence Procedures

Syntax Syntax or Synonym M Snx, Syn or Netork]

Figure 17 Homonymns --Type H Errors (Experiment)

Homonyms -- Type 11 Errors (master)
By Term Equivalence Rule

'.5-

3.5-

3
3-

0
L2.5-

w2 2
-

0.5

0000 001 00O0
11 22 32 43

Equivalence Procedures

Syntax Syntax or Synonym EM Snx. Syn or Ntw®rk

Figure 18 Homonyms -- Type U Errors (Master)

53

V. CONCLUSION

A. CONTRIBUTIONS AND LIMITATIONS

This thesis has examined and enhanced a method for automatically detecting possible

naming problems of data elements prior to database integration. We explored several aspects of

quiddity, namely, quiddity concept definition, quiddity acquisition, and quiddity manipulation and

inferencing procedures. Specifically, we administered the first real, experimental application of

the concept of quiddities. With a careful analysis and extensive examples, the concept was refined

and adapted to the database environment. Our research also constitutes the first important study

on quiddity acquisition. We investigated how the issues of vocabulary, synonyms, classification

properties, and degrees of specificity affect quiddity acquisition. Finally, we developed,

implemented, and tested a number of alternative inference procedures, along with equivalence

rules, for use in automatically detecting possible naming problems.

Our research indicates that the concept of quiddity can be applied in the database context

to provide a basis for automatically detecting unique name violations. Experiment results show

that two individuals seldom consistently develop syntactically identical quiddities for the same data

elements. However, we found that by varying the rules for equivalence, these differences in

defining quiddities could be compensated for, ultimately resulting in equivalent quiddities (as they

were initially supposed to be). The use of a specific vocabulary, coupled with the use of synonyms

significantly countered this problem of inconsistency. Conversely, the use of classification

properties tended to exacerbate this problem. However, the size and number of databases limits

the scope of our conclusions. Additionally, our experiments were not fully controlled. This fact

54

aided our efforts in gathering as much data as possible, but limits our ability to advance any firm,

fully supported conclusions. Our research does provide an indication of the direction in which full,

formal testing should follow.

We also presented several inference procedures for evaluating quiddity equivalence. Initial

results indicate that the best procedure for detecting synonyms is one that lies (approximately half

way) between those procedures with the most strict and the most lax equivalence rules. On the

other hand, indications are that homonyms are best found utilizing a procedure with very strict

equivalence rules.

The concept of quiddity is a complex issue. Correct and consistent application of this

concept depends upon a clear and unambiguous understanding of each of the components

comprising quiddity. Clearly identifying each component with more descriptive names would

facilitate comprehension of the concept. For example, the word "quiddity" succinctly and

appropriately describes the semantic information being captured. However, the words "stuff" and

"stuff attribute" are vague, unclear descriptions of the quiddity components. Therefore, we

propose the following name changes in future applications of this concept.

1. Stuff. Stuff describes what the data element is about. All other quiddity components
revolve around this description as it is the heart of the quiddity definition. A more
appropriate and descriptive title is "gravamen." From Roget's II, The New Thesaurus,
gravamen is "he most central and material part."

2. Stuff Attribute. Stuff attribute is a measure of the stuff component. Based on the
name suggested for the stuff component, a fitting and more specific title is
Pgravamen measure."

3. Stuff Type. Stuff type further describes stuff. Following the recommendations above,
a more suitable title would be "gravamen type" or "gravamen qualifier."

4. Stuff Attribute Type. Stuff attribute type further describes stuff attribute. Similarly,
a pertinent title is "gravamen measure type" or "gravamen measure qualifier."

55

B. ISSUES FOR FURTHER RESEARCH

There are several issues for consideration in further research. Formal testing of the

processes in quiddity acquisition is needed as the model has yet to be validated. The quiddity

inferencing procedures should be further developed and tested on a more extensive database.

Additionally, the prototype can be refined and improved to increase efficiency. More in depth

analysis of the linguistic aspects is feasible. Could it lead to a theory? Development of an

interactive system to support quiddity declarations would aid in quiddity acquisition. For example,

the system would check validity of the quiddity definitions and provide alternatives (e.g., if

dimension = currency, then the stuff attribute - cost, price, value ...). Finally, can the concept

of quiddity be helpful in identifying different representation conflicts, in addition to naming

conflicts? In summary, the coneept of quiddity, in addition to demonstrating usefulness in

detecting naming problems in database integration, may also be useful in detecting or resolving

other conflict areas in database integration.

56

APPENDIX A -- PRELIMINARY EXPERIMENT

This Appendix contains samples of the contents of the packet given to the students during

the preliminary experiment. Additionally, a TABLE with each students' experiment results

(quiddity definitions) along with the master quiddities for this experiment is included. Items

specified above are found on the following pages:

Information Sheet ... 58

W ork Sheet .. 62

Instruction Sheet (with blank answer sheets) 65

Vocabulary .. 68

Data Dictionary ... 69

Sample Database Reports 71

Experiment Quiddity Definitions 75

Master Quiddity Definitions 81

57

EXPERIMENT #I

A. PURPOSE

The title of my proposed thesis is "The Problem of Unique Names
Violations in Database Integration." The general area of research
will be experimenting with a proposed method for automatically
detecting possible naming problems of data elements prior to
database integration. The purpose of this experiment is to gather
data to assist me in analyzing this proposed method.

B. BACKGROUND

A database can be defined as "a store of integrated data
capable of being directly addressed for multiple uses;" The
data in a database are stored in units called data elements. Each
data element has a unique name associated with it. For example,
the data element which contains an individual's social security
number could be called "SSN." Data elements also have assigned
data types (i.e., integer, character, etc.) and field lengths.

As databases continue to grow and develop, the number of uses
for the databases also increase. To support this growth, a need to
integrate/combine databases has appeared. One aspect which must be
dealt with before integration can occur is the problem of naming
conflicts in like data elements. Specifically, the problem deals
with two or more data elements having different names in each
database but containing information about the same thing. For
example, one database might call the data element which contains a
social security number, "SSN," while another calls it "SSNO."
Before these two databases can be merged, the naming conflict must
be resolved.

How do we find these conflicts? Clearly, we need more semantic
information: information about what the data element represents.
There are two basic methods currently used in identifying these
conflicts. The first method is a syntactic check: they check the
data element names syntactically or match data types (i.e. integer,
character, etc.) or field lengths. The second method involves a
screen of the data dictionary. The data dictionary has more
descriptive information about the data elements but is written in
natural language, which is not useful for machine inference. The
proposed method contained in my thesis involves further defining

1Elias M Awad, Management Information Systems:
Concepts, Structure, and Applications (Menlo Park,
California: The Benjamin Cummings Publishing Company, Inc.,
1988), p. 593.

58

each data element by providing dimensional information and
information about the nature or essence (quiddity) of the data
contained in the data element. By comparing the dimensional
information and quiddity of data elements in databases to be
integrated, we hope to easily identify any naming conflicts which
exist. The primary emphasis for the experiment concerns developing
the "quiddity" of data elements.

C. QUIDDITY

"Quiddity" is the name given to the description of what
information is captured by the data element. For example, you
might have a data element named "cost." You can probably surmise
that the data element contains the cost of something, but what is
that something? If we knew the quiddity of this data element, we
would know what the something is.

1. Components of Quiddity

In order to use a computer program to compare the quiddity
of data elements, we need to have a standard way of recording it
without writing it in natural language form. For example, let's
suppose that the data element "cost" captures information about the
"retail cost of an IBM personal computer."
We must dissect this definition into parts, almost like diagramming
a sentence. When you diagram a sentence, you list the subject,
adjectives, adverbs, and verb etc. When you determine quiddity,
you must list the "stuff, stuff types, stuff attributes, stuff
attribute types, and arity."

a. Stuff

"Stuff" answers the question "What is the data element
about?," or put another way, it is the subject of the description.
Stuff is usually indicated by a noun, describing individual things
or collections of individual things, i.e., cars, trucks, ships,
etc. In the above example, the stuff of the data element "cost" is
"personal computer."

b. Stuff Type

"Stuff type" answers the question "What sort of or kind
of stuff is it? Stuff types are usually indicated with an
adjective but can also be indicated by a noun. Stuff types
further describe stuff. For example, with both stuff and stuff
type we can distinguish between a "truck tire" and a "tire truck."
In the first case, what is the data element about? It is about a
tire. What sort of tire? A truck tire. Thus the stuff is tire
and the stuff type is truck. However, in the second case, the data
element is about a truck. What sort of truck? A tire truck. Thus

59

the stuff is truck and the stuff type is tire. In our example

above, the stuff type of "personal computer" (stuff) is "IBM."

c. Stuff Attributes

"Stuff attributes" answer the question "What is it
about "the stuff" that you are interested in? Stuff attributes are
usually indicated with nouns. What is it about a "personal
computer" that we are interested in? The cost. So "cost" is the
"stuff attribute" of "personal computer" (stuff).

d. Stuff Attribute Types

"Stuff attribute types" answer the question "What sort
of stuff attribute is it?" Stuff attribute types usually qualify
measurements and are typically indicated with nouns. From above,
the stuff attribute was "cost." What sort of "cost" are we
interested in? Retail cost. Thus "retail" is the stuff attribute
type of the stuff attribute "cost."

e. Arity

When a term has "arity," it can be defined by one or
more arguments. "Arity" is a term more commonly used in
mathematics in conjunction with functions. For example, the
function of "addition" has an arity of "2" because you must have
two arguments in order to perform the function, in other words, to
add. Division also has an arity of 2 whereas the square root
function has an arity of 1 (you only need one argument to find the
square root). With quiddity, we use arguments, when necessary, to
further define "stuff." For example, some stuff expressions may
have no arguments, i.e., truck, ship, computer, etc., and would
have an arity of "0." We do not need any further definitions to
know what a ship or a computer is. However, suppose "path" is the
stuff expression. In this case, we would need to know the two end
points of the path in order to define the exact path. Thus, "path"
has an arity of "2" since it has two arguments (the two end
points). In our example with the data element "cost," the stuff
expression has an arity of "0."

2. Notation

Now that we have defined all the components of quiddity, we
must have a way of recording the information. In general, quiddity
notation will take the following form:

Stuff Attribute Type(Stuff Attribute(Stuff TypefStuff(Argument 1, Argument 2, ... Argument N))))

60

There may be instances where there is more than one term for each
category. When this happens, the terms should be listed
alphabetically.

a. Example 1

Suppose you have a data element which captures
information about the cost of a big red balloon. What is the data
element about? A balloon (stuff). Does balloon need any arguments
to define it? No, so "balloon" has an arity of "0" (no arity
arguments). What sort of balloon (stuff) is it? It is big and
red. We have two stuff types. What is it about the balloon that
we are interested in? The cost (stuff attribute). What sort of
cost is it? We don't know from the information given so we don't
have a stuff attribute type. The quiddity for this example is:

cost(big(red(balloon)))
A A A A

I I I LSTUFF
STUFF ATTRIBUTE - STUFF TYPES

b. Example 2

Let's look again at the data element "cost" which
captures information about the "retail cost of an IBM personal
computer." What is the data element about? A personal computer
(stuff). Do we need any arguments to define personal computer?
No. Thus there are no arity arguments (arity 0). What sort of
personal computer (stuff) is it? It is an IBM (stuff type). What
is it about the personal computer that we are interested in? The
cost (stuff attribute). What sort of cost is it? Retail (stuff
attribute type) cost. The quiddity is:

retail(cost(IBM(personal computer)))
A A A AI Ils =

STUFF -~STUFF

ATTRIBUTE I _ STUFF TYPE
TYPE

L__ STUFF ATTRIBUTE

61

WORK SHEET'

1. How do we capture the "meaning" of what a data element represents?

a. A proposed method for capturing this "meaning" uses a type of formal
"language" with various rules for forming the definition of the "meaning." This
definition or description is called "quiddity."

"From the Oxford English Dictionary, quiddity is 'The real nature or essence
of a thing; that which makes a thing what it is.I of course, ... [the
proposed] language for expressing quiddities is only a model, or
approximation, of genuine quiddity, if it exists."

Example 1:

* DATABASE 1 0 DATABASE 2

- variable: purchasecost - variable: cost-of_purchase

- Description: - Description:
"Purchase cost of a truck" "Cost of purchase of a

truck"

b. Let's begin defining the basic component of quiddity.

Example la:

0 DATABASE 1 0 DATABASE 2

- Variable: purchasecost - Variable: cost ofypurchase

- Description: - Description:

"Purchase cost of a truck" "Cost of purchase of a
truck"

- Dimension: currency - Dimension: currency

- Stuff: truck - Stuff: truck

'All examples and quotes in this work sheet have been borrowed from
the following reference: Bhargava, Hemant K., Steven o. Kimbrough, and
Ramayya Krishnan, Unique Names Violations: A Problem For Model
Integration or You Say Tomato, I Say Tomahto (University of Pennsylvania,
Department of Decision sciences and Carnegie Mellon University, SUPA,
working Paper, 1990), pp. 5-8.

62

2. Now, let's change the variables slightly.

a. Notice that the description changed but not the "dimension" or
"stuff."

Example 2:

9 DATABASE 1 e DATABASE 2

- Variable: purchasecost - variable: production-cost

- Description: - Description:
"Cost of purchasing a truck" "Cost of producing a truck"

- Dimension: currency - Dimension: currency

- Stuff: truck - Stuff: truck

b. what is the quiddity?

sample line of reasoning used in Example 2a to describe "quiddity."

"Both variables are about the same stuff: trucks. They differ
in what it is they represent about trucks. what is it about
trucks they describe? Purchasing in one case and production in
the other. what is it about purchasing and production that
they represent? cost, in both cases. And what about cost?
Nothing else." This line of reasoning suggests the quiddity
descriptions in Example 2a.

Example 2a:

* DATABASE 1
- Variable: purchase_cost

- Description:

"Cost of purchasing a truck"

- Dimension: currency

- Quiddity: cost(purchase(truck))

STUFF ATTRIBUTES -t---- STUFF

- Quiddity Paraphrase:
"the cost of purchase of a truck"

* DATABASE 2
- variable: production-cost

- Description:
"Cost of producing a truck"

- Dimension: currency cost(production(truck))

STUFF ATTRIBUTES STUFF

- Quiddity Paraphrase:
"the cost of production of a truck"

63

3. Below is a list of several data elements in a "Home Inventory" database.
see if you can define the quiddity for each data element.

DATA DICTIONARY EXCERPT:
FIELD NAME TYPE DESCRIPTION

ITEM 1{character)40 Identifies a specific piece of
property, i.e., sofa, dining room
chair, TV, etc.

QUANTITY 1{integer)3 Identifies the total number of like
items or pieces of property owned,
i.e., "2" if two sofas are owned.

VALUE l{integer}8 Identifies the current replacement
cost of a specific piece of
property.

DATE l{date}8 The month, day, and year the
property was purchased or acquired.

PRICE 1{integer}8 Identifies the amount paid for a
specific piece of property.

WEIGHT 1{integer}5 The total number of pounds a
specific piece of property weighs.

FREEWEIGHT 1{logical}l Whether weight of a specific piece
of property applies toward the
professional weight allowance or
not, i.e., "Y" if yes or "N' if no.

DATA QUIDDITY

ELEMENTS STU
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGU0ENTS) TYPE ATTRIBUTE TYPE

ITEM

QUANTITY

VALUE__

PRICE

__IWEIGHT I_ _ I_ _

FREEWEIGHT

64

EXPERIMENT #1

Instructions:

1. Determine the quiddity for each data element listed. Record the components
of the quiddity in the appropriate columns of the row listing the data element.
Please write legibly.

2. Please keep track of the order in which you determine the quiddity components
for each data element by placing a number in the upper left corner of the
appropriate "box" in the table. For example, if the first term you define for
the first data element is its stuff, the second term is its stuff type, and the
third term is its stuff attribute, the table would look like this:

STUFF
DATA STUFF STUFF ATTRIBUTE

ELEMENT STUFF ARITY TYPE ATTRIBUTE TYPE

3 2 4

Computer PC IBM COST RETAIL

3. Each quiddity may or may not have a term for each component. (HINT: You
will always have at least a "stuff" component and a "stuff attribute" component.)
Some quiddities may have more than one term for a component. If there is more
than one term, write both terms in the "box" and place its ordering number to the
left of each term.

4. I am interested in the "method- you use in determining the quiddity,
particularly in the "thought process" you go through in working through this
experiment. Any comments or suggestions you have (even in bullet form) is
appreciated.

COMMENTS:

65

VIRUS DATABASE

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

ALIAS

BOOTSECTOR

COMM4AND__COM

DISINFECTANT

EXEFILES

§ACHEIRETYPE

OPERATINGSYSTEM

REFERENCE

SIZE

VENDOR

VIRUS

BM

66

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

COMPATIBLE

DESCRIPT

MAKE
MODEL

KNE

OFFICE

PUBLISER

REMARKS

SITE

SSERIAL

VENDER

67

VOCABULARY

addition literature

alias location

brand machine

building manufacturer

bytes model

commercial name

compatibility network

compatible number

component office

computer operating system

damage piece

destroy Publisher

disinfectant receipt

disk reference

disk boot sector sector

executable files serial

file site

general size

hardware software

IBM source

identification supplier

indicator system

information vender

internal vendor

LAN virus

68

VIRUS DATABASE DATA DICTIONARY

FIELD NAME TYPE DESCRIPTION

ALIAS 1(character}201 commonly used alias

BOOT-SECTOR l{character}l 2 whether or not the virus corrupts the disk boot
sector

COMMANDCOM 1{characterll 2 whether or not the virus infects the system

DISINFECTANT l{character)103 Name of a commercially available virus
disinfection routine which is known to
successfully remove this virus

EXEFILES licharacter}1 2 Whether or not the virus infects EXE files

MACHINE-TYPE 1{character}103 Name of a commercial computer type

OPERATINGSYSTEM l{character}103 Name of the operating system used

REFERENCE 1{character)801 Significant literature reference for virus

SIZE 1{integer}54 size of virus in number of bytes

VENDOR 1{character}803 commercial source of disinfectant product

VIRUS 1{character}205 Name of each virus which infects a computer

IBM l{character}l 2 whether or not the computer system is IBM oi.
IBM compatible

1Nulls allowed

2"y" or "n" only, no nulls

3No nulls

4small integer, 0-32767

5Unique key, no nulls

69

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE

DATA DICTIONARY

FIELD NAME TYPE DESCRIPTION

COMPATIBLE l{character}l Identifies a piece of software as being
compatible with IBM or Apple

DESCRIPT l{character}30 Identification type of a piece of hardware,
i.e., keyboard, monito7, etc.

HLAN 1{logical}l Identifies a piece of hardware as local area

network compatible (True) or not (False)

MAKE l{character}30 Identifies the brand of a piece of hardware

MODEL l{character)15 Identifies the model number/type of a piece of
hardware, i.e., "VGA" for a monitor or "286"
for Zenith PC, etc.

NAME l{character)30 Identifies the name of a piece of software

OFFICE l{character}4 Identification number of an office that is
inside a building

PUBLISHER l{character)30 Identifies the name of a software publisher

REMARKS l{character)80 General remarks about a piece of hardware

SITE l{logical}l Identifies a piece of software as having a site
license (True) or not (False)

SSERIAL 1{character}25 Identifies the serial number of a piece of
software

VENDER l{character}30 Identifies the name of a hardware vender

70

Virus Database Listing
Updated 04 April 1990

Virus Name Disinfector Infection Area Features Damage Cause
P H F O E C I M E Bytes B O P D F L

XA1 cleanup n n n n r y n n y 1539 n y y n y y

1392 cleanup n n n n y y y y n 1392 n y y n n y

1210 cleanup n n n n n y n y n 1210 n y y n n y

1720 cleanup n n n y y y n y n 1720 n y y n y y
Saturday 14th cleanup n n n y y y n y n 685 n y y n y y
Korea m-disk n y y n n n n n n y y n n n n

Vcomm cleanup n n n n y n n n n 1074 n y y n n y

ItaVir cleanup n n n n y n n n n 3880 y y y n n y
Solano cleanup n n n n n y n y n 2000 n y y n n y
V2000 cleanup n n n y y y y y n 2000 n y y n n y
1554 scan n n n n y y y y n 1554 n y y n n y

512 scan n n n n n y y y n 0 n y y n n y
EDV m-disk y y y n n n n y n y y n n n n

Joker cleanup n n n n n y y y n n y y n n n

Icelandic-3 cleanup n n n n y n n y n 853 n y y n n n
Virus-101 cleanup n n y y y y y y y 2560 n n y n n n
1260 cleanup n n n n n y n n y 1260 n n y n n n
Perfume cleanup n n n n n y n n n 765 n n y n n n
Taiwan cleanup n n n n n y n n n 708 n n y n n n
Chaos m-disk n y y n n n n y n y y n y y n

Virus-90 cleanup n n n n n y n y n 857 n n y n n n

Oropax cleanup n n n n n y n y n 2773 n y y n n n

4096 cleanup n n n y y y y y n 4096 n y y y n y
Devil's Dance cleanup n n n n n y n y n 941 n y y y n y
Amstrad cleanup n n n n n y n n n 847 n n y n n n

Payday cleanup n n n y y y n y n 1808 n n y n n n
Datacrime II-B cleanup n n n n y y y n y 1917 n n y n y r
Sylvia cleanup n n n n n y n n n 1332 n n y n n n
Do-nothing cleanup n n n n n y n y n 608 n n y n n n

Sunday cleanup n n n y y y n y n 1636 n y y n n n

Lisbon cleanup n n n n n y n n n 648 n n y n n r
Typo cleanup n n n n n y n y n 867 n y y n r r

Key -
INFECTION AREAS

P - disk partition table
H - fixed disk boot sector F - floppy disk boot sector
0 - .OVR files E - .EXE files
C - .COM files I - COMMAND.COM

FEATURES
M - remains memory resident E - self encrypting
Bytes - virus size

DAMAGE CAUSED
B - corrupts disk boot sector 0 - degrades system operation
P - corrupts .COM, .EXE, .OVR files D - corrupts data files
F - formats part or all of disk L - corrupts file linkage

Page 171

'age No. 1
5/13/90

Report of Software by Name and Version

) Serial Procurement Date Lan Hardware
/ersion Publisher License Number Number Received Compatible Compatible

t Name AMI PRO
2.00 SAMNA 766SD7SS 89R023433 08/20/89 No IBM

i Name C COMPILER
5.00 MICRO SOFT 4590-34 879239342 89RQ341 03/05/89 No IBM

a Name OBASE III
1.10 ASHTON TATE 23940044-4 99SAD 90R0123K 02/05/90 No Im

9 Name OBASE IV
1.00 ASHTON TATE 9823-332-112 1001-02 89R01234 01/03/90 Yes IBM

a Name DESKTOP PUBLISHER
1.00 DIGITAL RESEARCH 9837548 185494 90R00330 04/01/90 No IBM

r Name GEM ORAN
2.00 DIGITAL RESEARCH 77-343 987244-211 90R0234 01/02/90 No IBM

9 Name HARVARD GRAPHICS
2.00 ALUS 398-24 87R0334 03/05/87 No IBM
Name LOTUS 123
2.00 LOTUS DEVELOPMENT CORP 7358-67-8863 4568-23 87RO123E 03/10/87 No IBM
Name PFS: PROFESSIONAL WRITE
3.00 PFS 83896 230096 89RQ1238 07102/89 No IBM
Name PRESENTATION
1.20 ALDUS 877-23 89RO433R 04/19/89 No IBM
Name RENEX TMS
?")RENEX 221922840 98-12339 87R08732 04/02/87 No IBM
h.)RIGHT WRITER
1.20 PFS 345-A349 88R034KD 02/13/88 No IBM
Name TIME-LINE
4.00 SYMANTIC 13003-234-2333 2340-123-11111 90RQ12E2 01/02/90 Yes IBM
Name WINDOWS
2.00 MICROSOFT 2134321809 77648766 90R0023 07/10/89 No IBM

72

Page No. 1
06/13/90

Report of Software that is LAN Compatible

Software

Name Publisher Version

** Hardware Type IBM
DBASE IV ASHTON TATE 1.00
TIME-LINE SYMANTIC 4.00

73

Page No. 1
06/13/90

Report of Hardware Procurement by Procurement Number

Tag Serial Procurement Date
umber Number Make Model Description Internal Date Received

ss Procurement Number 87ROE1203

st Vendor ZENITH

00100 932WFO381TS2 ZENITH 286 KEYBOARD No 03/12/87 03/12/87

st Procurement Number 89R03432

st Vendor COMPUADD
38 1051867 VENTEL 2400B MODEM No 05/06/89 05/06/89

ts Procurement Number 89RQ345K

st Vendor HEWLET PACKARD

35 2841A1979 HEWLET PACKARD AT COMP CPU No 05/09/89 05/09/89

*t Procurement Number 89RQ980

st Vendor HEWLET PACKARD

36 61577553 HEMLET PACKARD VGA MONITOR No 04/18/89 04/18/89

St Procurement Number 89R0E1234

*s Vendor APPLE
4 F851EEXN5825 MACINTOSH IE CPU No 02/12/89 02/12/89

s2 Procurement Number OR0E234

ss Vendor APPLE
2 669944 MACINTOSH IIE KEYBOARD No 02/15/89 02/15/89

s2 Procurement Number 0ROE3401

st Vendor ZENITH

2 933NE0306TO0 ZENITH 286 MONITOR No 01/12/90 01/12/90

)
74

VIRUS DATABASE

Subject A

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

ALIAS virus computer name alias

disk-boot-
BOOTSECTOR sector indicator damage

COMMANDCOM system {indicatorl damage

disenfectant
DISINFECTANT software commercial name

executable
EXEFILES files I indicator damage

MACHINETYPE computer commercial name

DPERATING_SYSTEM system operating name

REFERENCE literature virus reference

SIZE virus computer size bytes

commercial

VENDOR vendor disinfectant name

VIRUS virus computer name

compatibility
IBM system computer indicator IBM

75

VIRUS DATABASE

Subject B

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

ARGUMENTS TYPE ATTRIBUTE TYPE

ALIAS virus information alias

disk boot_
BOOTSECTOR virus information damage sector

COMMAND COM virus information damage system

DISINFECTANT virus information disinfectant destroy

executable
EXEFILES virus information damage files

MACHINE-TYPE computer information brand

operating_
OPERATINGSYSTEM computer information system

REFERENCE virus information reference

SIZE virus information size

VENDOR virus information disinfectant Source

VIRUS virus information name

IBM computer information operating_ compatible
system IBM

76

VIRUS DATABASE
Subject C

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

ALIAS virus computer name alias

disk
BOOTSECTOR category damage indicator bootsector

COMMANDCOM category damage indicator command com

DISINFECTANT disinfectant virus name

executable
EXE_FILES category damage indicator file

MACHINETYPE computer name brand

I I
OPERATINGSYSTEM operating_ name

system

REFERENCE reference information identification

SIZE virus computer size bytes

VENDOR vendor disinfectant name

VIRUS virus indicator

IBM
IBM category computer

77

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE
Subject 1

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENT TYPE ATTRIBUTE TYPE
S)

COMPATIBLE software piece couwDatible IBM
(Apple)

DESCRIPT hardware component identifi-
I cation

HLAN hardware component compatible lan

MAKE hardware component brand

MODEL hardware component model

NAME software piece name

OFFICE number building office

PUBLISHER name publisher software

REMARKS hardware component remarks general

company
SITE software location piece license site

SSERIAL software piece number serial

VENDER name component company vendor hardware

78

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE
Subject 2

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

ARGUMENTS TYPE ATTRIBUTE TYPE

COMPATIBLE software piece compatibility vendor

DESCRIPT hardware component identification

lan
KLAN compati- hardware indicator

bility

vendor
MAKE hwadware component brand

MODEL hardware component model number

NAME software name

identification
OFFIC_ office building number

PUBLISHER name vendor software

REMARKS hardware information general

site
SITE license software indicator

serial
SSERIAL software piece number

VENDER name company vendor hardware

79

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE

subject 3

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMEN TYPE ATTRIBUTE TYPE
TS)

COMPATIBLE category compatibility indicator

DESCRIPT hardware piece infomation general

lan
HLAN category compatibility indicator

MAKE hardware piece brand

number
MODEL hardware piece identifica- model

tion

NAME software name

OFFICE office building number

PUBLISHER publisher software name

REMARKS hardware piece information general

site
SJT E category license indicator

SSERIAL software piece number serial

VENDER vender hardware name

80

VIRUS DATABASE
MASTER

DTA QUIDDITY

'ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

ALIAS software virus name alias

virus
BOOT-SECTOR damage disk boot sector indicator

virus

COMMANDCOM damage system indicator

DISINFECTANT virus disinfectant name

virus

E aEeFILES damage executable-files indicator

MACHINETYPE hardware name brand

operating_
DPERATINGSYSTEM software system name

literature
REFERENCE reference virus name

SIZE virus size

software
VENDOR vendor disinfectant name

VIRUS software virus name

IBM compati- brand hardware indicator
bility

81

HARDWARE AND SOFTWARE TRACKING SYSTEM DATABASE
MASTER

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF AT-TRIBUTE

ARGUMENTS. TYPE ATTRIBUTE TYPE

COMPATIBLE compatibility brand software indicator

DESCRIPT hardware component name

KLAN compatibility LAN indicator

MAKE hardware name brand

MODEL hardware component model number

NAME software name

OFFICE office internal number

PUHLISEER publisher software name

REMARKS hardware information general

site
SITE license software indicator

SSERIAL software aerial number

VENDER vender hardware name

B * The words mdel, *serial, nd *r were provided separately in the vocabulary list of experiment #i.
lamed on the coments received after experiment #1, the words should have been provided an a -word group as shown in
the table above. This cobination better describes the stuff attribute.

82

APPENDIX B -- PROTOTYPE IMPLEMENTATION

This Appendix contains a copy of the Prolog program listing (the prototype, a list of the data

used by the prototype (i.e., experiment and master data). Additionally, a sample report/list

produced by the program is included. Items specified above are found on the following pages:

Prolog Program Listing 84

Sam ple Output List .. 90

Experim ent Data .. 91

M aster Data ... 94

83

Page: 1 tomato.pro

/* To run the system, here's what happens:
1. Across DB Test:

Perform step 2 for every pair of subjects
(Sl,S2) where Si wrote quiddities for DBl
and S2 wrote quiddities for DB2.

2. For a given pair of subjects (Sl,S2):
perform the quiddity test with each pair
of data elements (El,E2) where El is in
DBl and E2 is in DB2.

/* Problems with current implementation (3-5-91):

/* Results:
1. Identical element pairs. (Names and quiddities equal.)
2. Synonym pairs.
3. Homonym pairs.
4. No action pairs. (Quiddities and names unequal.)

/* Example:
acrossDBtest(ProcNo, [(naf, [a,b,c]), (craft, [d,e,f])]). *

go :
write ('Procedure No? '),read (ProcNo),

nl,
write('First Database Name? '),read(DBl),
nl,
write('First Subject Name? '),read(Subjectl),
nl,
write ('Second Database Name? '),read(DB2),

write('Second Subject Name? '),read(Subject2),
acrossDBtest2 (ProcNo, (DBl, Sub jectl), (DB2, Sub ject2)).

acrossDBtest2 (ProcNo, (DBl,Subjectl), (DB2,Subject2))
quiddity(DBl,Subjectl,Elementll, ,,,,

quiddity(DB2,Subject2,Element2l,, ,,_

quiddity_eq (ProcNo, [DBl, Sub jectl, Elementl,
[DB2,Subject2,Element2l] ,Result),

fail.

acrossDBtest2 (ProcNo, (DBl,Subjectl), (DB2,Subject2))
printreport (ProcNo, (DBl,Subjectl), (DB2,Subject2)),

retractall(tomato(_,_,_,_1).

/* For assertion of results of quiddity test. *

determine (ProcNo, (DBl, Subl,El], [DB2, 5ub2,E2] ,Answer,Assertion)
(El = E2,

Answer = yes,
asserta (tomato (ProcNo, [DBl,Subl,El], (DB2,Sub2,E2] ,match));

El = E2,
Answer = no,
asserta (tomato (ProcNo, (DBl,Subl,El], [DB2,Sub2,E2] ,homonym));

Page: 2 tomato.pro

not (El = E2),
Answer = yes,
asserta(tomato(ProcNo, [DBl,Subl,El], [DB2,Sub2,E2],synonym));

not (El = E2),
Answer = no,
asserta (tomato (ProcNo, [DBI,Subl,El], [DB2,Sub2,E2],relax))).

/*

RULES FOR EQUALITY:

*/

/* QUIDDITY EQUIVALENCE: equivalence of quiddities of two data elements. */

/* quiddityeq (Elementl, Element2,Answer).
Answer will be yes, or no.

quiddityeq(ProcNo,El,E2,Answer) -

(stuffset_eq(ProcNo,E1,E2,yes),
stuff attributeseteq(ProcNo,E1,E2,yes),Answer = yes;

Answer = no),
determine (ProcNo, El,E2,Answer,Assertion),!.

/* STUFF-SET EQUIVALENCE: equivalence of stuff-sets. */
/* stuff_seteq(ProcNo,El,E2,Answer). */
/* stuff-set (A) =- stuff-set (B)

if stuff-seteq(ProcNo,A,B,yes) . */

/* Set 2/Rule 1 -- The stuff-sets are equal if the stuff terms
are equal, the arity terms are equal, and the
stufftype terms are equal.
*/

stuffset eq((TE,l,SAE),A, B, yes)
ProcNo = (TE, 1,SAE),

stuff (A, SA),stuff (B, SB),
arity(A,ArA),arity(B,ArB),
stuff type (A, StA), stufftype (B, StB),

termeq (ProcNo, SA, SB, yes),
termeq(ProcNo,ArA,ArB,yes),
term_eq(ProcNo,StA,StB,yes).

/* Set 2/Rule 2 -- The stuff-sets are equal if the stuff terms
are equal, and the arity terms of one is
contained in the arity term of the other,
and if the stuff type term of one is contained
in the stuff type term of the other.
*/

stuffset eq((TE,2,SAE),A, B, yes)
ProcNo = (TE, 2, SAE),
stuff (A, SA), stuff (B, SB),

arity (A,ArA), arity (B,ArB),
stuff type (A, StA), stufftype (B, StB),

termeq (ProcNo, SA, SB,yes),
contained in check(ProcNo,ArA,ArB,yes),
contained in check (ProcNo, StA, StB, yes).

/* Set 2/Rule 3 - The stuff-sets are equal if the stuff terms

85

Page: 3 tomato.pro

are equal, and the arity + stufftype terms of one are
contained in the arity +stufftype term of the other.*/

stuff_set_eq((TE,3,SAE),A, B, yes)
ProcNo = (TE,3,SAE),
stuff (A, SA), stuff (B, SB),

arity(A,ArA),arity(B,ArB),
stuff type (A, StA), stufftype (B, StB),

term_eq(ProcNo,SA,SB, yes),
append (ArA, StA, TotalA),
append (ArB, StB, TotalB),

contained in check (ProcNo, TotalA, TotalB, yes).

/* Set 2/Rule 4 -- The stuff-sets are equal if
the stuff + arity + stufftype terms of one are

contained in the stuff + arity +stufftype term of the other.*/

stuffset eq((TE,4,SAE),A, B, yes)
ProcNo = (TE, 4, SAE),
stuff (A, SA), stuff (B, SB),

arity(A,ArA),arity(B,ArB),
stuff type (A, StA), stufftype (B, StB),

append (ArA, [SA],SubTotalA),
append (ArB, [SB], SubTotalB),

append (SubTotalA, StA, TotalA),
append (SubTotalB, StB, TotalB),

contained in check(ProcNo,TotalA,TotalB,yes).

/* STUFF-attribute-SET EQUIVALENCE: equivalence of stuff-attribute-sets. */
/* stuff attribute set eq(ProcNo, El,E2,Answer). */
/* stuff-attribute-set(A) =- stuff attribute-set(B)

if stuffattributeset eq(ProcNo,A,B,yes) . */

/* Set 3/Rule 1 -- The stuff attribute-sets are equal if the stuff-attribute terms
are equal, and the
stuffattributetype terms are equal.
*/

stuff attributeseteq((TE,SE,l),A, B, yes)
ProcNo = (TE, SE,1),

stuff attribute (A, SaA), stuffattribute (B, SaB),
stuff_attributetype(A,SatA), stuffattributetype (B,SatB),

term eq (ProcNo, SaA, SaB, yes),
termeq (ProcNo, SatA, SatB, yes).

/* Set 3/Rule 2 -- The stuff attribute-sets are equal if
the stuff attribute terms are equal,

and if the stuff attribute type term of one is contained
in the stuffattribute type term of the other.
*/

stuffattributeset eq((TE,SE,2),A, B, yes)
ProcNo = (TE, SE,2),
stuff attribute (A, SaA),stuff attribute (B, SaB),

stuffattributetype (A, SatA),stuff_attribute type (B, SatB),

term eq (ProcNo, SaA, SaB, yes),
contained in check(ProcNo,SatA,SatB,yes).

86

Page: 4 tomato.pro

/* Set 3/Rule 3 -- The stuff attribute-sets are equal if
the stuffattribute + stuffattributetype terms of one are

contained in the stuffattribute +stuffattributetype term of the other.
*/

stuff attribute set eq((TE,SE,3),A, B, yes)
ProcNo = (TE,SE,3),
stuff attribute (A, SaA), stuff attribute (B, SaB),

stuffattributetype (A, SatA), stuffattribute type (B, SatB),

append([SaA],SatA,TotalA),
append([SaB],SatB,TotalB),

contained in check(ProcNo,TotalA,TotalB,yes).

/* TERM EQUIVALENCE: Term Equivalence Rules:

format: termeq(Which-Rule, Terml, Term2).
succeeds when Terml and Term 2 are equivalent

under WhichRule. */

/* To take care of the case when Terml and Term2 are lists. */
/* In such cases, see if all elements of Terml are
"contained in" Term2, and vice versa.
The predicate termlistLtoReq takes care of the above. */

term eq(ProcNo, [HITl], [H21T2],yes) •-
term listLtoR eq(ProcNo, [HliTI], [H21T2],yes),

termlistLtoReq (ProcNo, [H21T2], [HlITl],yes).

termlist LtoReq(ProcNo, (],List2,yes).
term_listLtoR eq(ProcNo, [Firstl IRestl],List2,yes)

contained in(ProcNo, [Firstl],List2),
term eq (ProcNo, Rescl, List2, yes).

/* Set l/Rule 1 -- Terms are equal if they match syntactically */

term_eq((l,_,_), A, B,yes)
A = B.

/* Set l/Rule 2 Terms are equal if Rule 1 is true
or if A and B are synonyms */

term eq((2,X,Y), A, B,yes)
term_eq((l,X,Y), A, B,yes);

synonym(A, B).

/* Set l/Rule 3 -- Terms are equal if Rule 1 or
Rule 2 are true, or if A and B are related,
i.e., they are contained in the same inheritance hierarchy. */

term eq((3,X,Y), A, B,yes)
term_eq((l,X,Y), A, B,yes);

termeq((2,X,Y), A, B,yes) ;
is_a(A,B);

is a(B,A).

/* If none of these work, then (A,B) are not equivalent. */
termeq(_,A,B,no(A,B))

!, fail.

87

Page: 5 tomato.pro

/* UTILITIES */

1* contained in check(Setl,Set2,SuperSet).
succeeds when Seti is contained in Set2,
SuperSet indicates which one is the larger. *

contained -in check(ProcNo,Setl,Set2,yes)
containedf-in(ProcNo,Setl,Set2).

contained in check (ProcNo, Seti, Set2, yes):-
contained~in (ProcNo, Set2, Seti).

/* contained in(Setl,Set2).
succeeds when Seti is contained in Set2. *

1* empty list is contained in AnySet. *
contained in (ProcNo, [],AnySet).

1* A set containing only 1 member is contained in Set2
if Member is a member of Set2. */
contained in(ProcNo, [Member], [FirstIRest])

term -eq(ProcNo,Member,First,yes);
not (Rest = (1),
contained in (ProcNo, [Member] ,R'--st).

/* A set containing a First member and the Rest of the set,
is contained in Set2 if Set2 contains the First member
as well as the Rest of the set. */
contained in(ProcNo, [First IRest],Set2)

not (Rest =[)

contained in(ProcNo, [First],Set2),
contained:fin(ProcNo,Rest,Set2).

printr:eport (ProcNo, (DBl, Subi), (DB2, Sub2))
write('Please enter the name of the output file: '),

read(FileName),
tell (FileName),

write (' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') ,nl,
printlist(('Results for procedure: ',ProcNo,' applied to ',

[DBl,Subl],' and ',[DB2,Sub2],'.']),
ni,
write('List of matches:')
setofO((El,E2) ,tomato(ProcNo, [DB1,Subl,El], [DB2,Sub2,E2] ,match) ,MatchList),
printlist (MatchList),
nl,nl,
write('List of homnonyms:')
setofO ((El,E2) ,tomato(ProcNo, (DBl,Subl,El], [DB2,Sub2,E2] ,homonym) ,HomList),
printlist (HcinList),
nl,nl,
write('List of synonyms:)
setofO((El,E2),tomtato(ProcNo, [DBl,Subl,Elj, [DB2,Sub2,E2] ,synonym) ,SynList),
printlist (SynList),

write('List of garbage:')
setofO((El,E2) ,tomato(ProcNo, [DBl,Subl,El], [DB2,Sub2,E2] ,relax) ,Garbage),
printlist (Garbage),

told.

printlist([]).

printlist([HIT])

Page: 6 tomato.pro

nl,
write (H),
printlist (T).

setofO(X,Y,Z) :-setof(X,Y,Z),!.

setofO(_, _,]) !

/* Assume that synonyms are declared using the predicate synonyms/2.
For example, synonyms(cost,price). *

synonym (A, B):
synonyms (A, B).

synonym (A, B):
synonyms (B, A).

1* synonym(A,B) :
synonyms (A, C),
synonym (C, B).

synonym (A, B):
synonyms (C, A),
synonym (C, B) .

/* Multi-level classification hierarchies *
/* Assume that if A is a B, there is a predicate isA(A,B) *

is-a(A,B) :
isA(A,B).

is-a(A,B)
isA(A,C),
is-a(C,B).

/* Retrieval of quiddity terms. ~

stuff (DB, Sub ject,ElementJ ,Stuff)
quiddity(DB,Subject,Element,Stuff,____

arity([DB,Subject,Element] ,Arity) -
quiddity(DB,Subject,Element, _Arity,_,_,_

stuff type (DB, Sub ject,Element] , StuffType) :.
quiddity(DB,Subject,Element,_, _,StuffType,_, _)

stuff-attribute ([DB, Sub ject,Element] ,StuffAttribute)
quiddity(DB,Subject,Element,_, _,_,StuffAttribute, _).

stuff attribute-type (DB, Subject, Element] ,StuffAttributeType):-
quiddity(DB,Subject,Element,_, _,_, _,StuffAttributeType).

Page: 1 calvin:Renae-program:mg:mgbt222

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Results for procedure: 222

Applied to NAC Subject A and Craft Subject 2

(*First data element listed is from NAC and second is from CRAFT)

List of matches:

NONE

List of homonyms:

firstname, firstname
lastname,lastname
section,section

List of synonyms:

crs,crs name
crs,crs number
dpt,dept
empharea,emph
empharea,emph name
length, coreqtr
preq_crs,crsname
preqcrs,crsnumber
preq_crspre_req_num
preq_dpt,dept
preq_dpt,pre_req_dept
req_crs,crsname
req_crs,crsnumber
section,coreqtr

90

Primary Experiment Data, Synonym List (Vocabulary),
and Classification Network

quiddity(nac,nr,crs,course,fl,Lnps,designator,lD).
quiddity(nac,nr,curr 7ofcr,nianager,fcurriculun],[nitary officerl,surnaxnel).
quiddity(nac,nr,curic nam,curriculum,[Udnps],title,[l).
quiddity(nac,nr,degree tit,degree,[],[npsl,title[]).
quiddity(nac,nr,dpt,department,[I,[Inps] ,identifler, [).
quiddity(nac,nr,firstname,person, [1,]name, [given]).
quiddity(nac,nr,lastname,personA],[npsl,surname,[]).
quiddity(nac,nr,sectiontimeyeriod,I,coursel,designator,ID.
quiddity(nac,nr,hours,course, [, [],credit, [I).
quiddity(nac,nr,prof phone,professor,[I, [nps],telephone -number,office).
quiddity(nac,nr,emph,_area,curricuflum,4[I, [emphasis-areal,credits, [required]).
quiddity(nac,nr,length,curriculum, [1, [],term, required])-
quiddity(nac,nr,preqcrs,course,[I,[Iprerequisite,requiredl,designator,[I).
quiddity(nac,nr,preqdpt,department,[],[prerequisite,required],identifler, [1).
quiddity(nac,nr,reacrs,emphasisarea,I,Icourse,requiredl,designator,[fl.
qui-ddity(nac,rg,crs,course,[],[npsl,identifier,[I).
quiddity(nac,rg,curr _ofcr,person, [],military oficerl,name,[surname]).
qufiddity(nac,rg,curric-rnam,curriculu, [curriculum, [,nameU).
quiddity (nac,rg,degree tit,degree, [],[nps] ,title, [).
quiddity(nac,rg,dpt,department,I,[nps],nane,[]).
quiddity(nac,rg,firstname,persorn, [,[,name, [given]).
quiddity(nac,rg,Jastname,person,Ii[],Iname,Isurname]).
quiddity(nac,rg,section,timeperiod,[],[course],identifier,[]).
quiddity(nac,rg,hours,course, [],[],credits[]).
quiddity(nac,rg,profjphone,professor,[],Itelephone-number,[ofice]).
quiddity(nac,rg,empharea,emphasisarea,[curriculum],curricluml,name,[]).
quiddity(nac,rg,length,timnej~eriod,[I I curriculum] ,terrni,])
quiddity(nac,rg,preqcrs,course,[II, [prerequisite] ,designator, [])
quiddity(nac,rg,preqfipt,department, [I, [course] ,designator, []).
quiddity(nac,rg,reqcrs,course, II, [emphasis area] ,designator, [required]).
quiddity(nac,mg,crs,course,[l,[npsl,designator,[]).
quiddity(nac,mg,curr _ofcr,rnanager, [currictul, [military officer],surname,I]).
quiddity(nacjng,curricnm,curricum[,[nps],title,[]).
quiddity(nac,mg,degree _tit,degree, (,[],title[D.
quiddity(nac,igdpt,department,[I,[nps],identifier,f I).
quiddity(nac,mg,firstname,person,[],[nps],namejl]).
quiddity(nac,mg,Iastnwme,person,[],[npsl,surname,[]D.
quiddity(nac,mgsectiontimejeriod,[I,class,identifier,I I).
quiddity(nac,mg,hours,course, [I,],credits4Dl.
quiddity(nac,mg,profyphone,professor, U, [npsl,telephone number, f).
quiddity(nac,mg,empharea,emphasis-area,[, [,tile[]).
quiddity(nac,mg,Iength,timeperiod,[],[curriculuml,designator,[]).
quiddity(nac,mg,preqcrs,course,[],[prerequisite,nps,designiator,[]).
quiddity(nac,mg,preqdpt,department,[,[prerequisite,nps],identifier,[]).
quiddity(nac,mg,reqcrs,course,[,[required,nps],designatr,[]).

91

quiddity(craftjc,ssn,student,[Id(I,identifierdfsocial securityl).
qtuiddity(craftjc,lastnnme,student,U[j,surname,[I1).
quiddity(craftjc,firstnanie,student,I , [],name, given]).
quiddity(craftjc,section,sectionl,[],nps,designtor,[I).
quiddity(craftjc,dept,department,[],nps],identifier, [I).
quiddity(craftjc,crs -number,course,[I,[nps,ideltifier,[]).
quiddity(craftjc,crs -name,course,[],[npsl,nameJD])
quiddity(craftjc,emph~emphasis area, [1,1npsl,identifier,[t I.
quiddity(craftjc,emph_name,emphasis area,[],[nps],name,[I).
quiddity(craftjc,prereqdept,department,[iprerequisite,l,ideltifier,[).
quiddity(craftjc,pre-reqnumcourse,[,[prerequisite,l,ideltifier,[]).
quiddity(craftjc,qtrname,quarter,[I,[I,naqme,[D.
quiddity(craftjc,qtr,quarter,i,[,identifier[]).
quiddity(craftjc,yr,year, , [],identifier, f].
quiddity(craftjc,coreqtr,quarter,[student,[current,identifer,[]).
quiddity(craftjs,ssn,studentljl,identifier,sociaL.securityD).
quiddity(craftjs,lastname,person, [,[,surnamej 1.
quiddity(craftjs,firstnaie,person,[dI,name,[givenD.-
quiddity(craftjs,section~section,[curriculum,ideltifier,[])
quiddity(craftjs,dept,department,[~fnps,designator,[).
quiddity(craftjs,crs -number,course,[I,[npsl,designator,[l).
quiddity(craftjs,crsnmre,course,[],[npsl,name,[]).
quiddity(craftjs,emph,emphasis-area,[,[nps],identifier,[D).
quiddity(craftjs,emph name,empbiaslsareal,[npsl,name,[I).
quiddity(craftjs,prereqdept,department,],[prerequisite,nps,desiglator,[D).
quiddity(craftjs,pre _reqjium,course,[ldprerequisite,npsl,designator,[I).
quiddity(craftjs,qtr_nanie,quarter,[I,name,I]).
quiddity(craftjs,qtr,quarter,],I,identifier,[I).
quiddity(craftjsr,timejeriod~fcourse,[,year, given)).
quiddity(craftjs,coreqtr,quarter,[timel,[current,indicator,f I).
quiddity(rmft,bt,asn,studentfl,[rrilitaryofficer],identifier,[social-securityD).
quiddity(craft,bt,lastname,student,[],[niilitaryo.ficer,surname,[I).
quiddity(craft,bt,firstname,student, [I, militw7_aryoficerl,name, [ID.
quiddity(craft,bt,section,section, [studentacurriculum~jl,identifier[]).
quiddity(craft,bt,dept,departmentf,nps,identifier,[D).
quiddity(craft,bt,crs-number,course,[, [],identifier,I).
quiddity(craft,bt,crs-name,course,IJ,I,name,[J).
quiddity(craft,bt,emph,emphasisarea,[],[curriculuml,designator,[D.
quiddity(craft,bt,emph _name,emphasis area III,[curriculumi ,name, []).
quiddity(craft,bt,prere~dept,department,[],[prerequisite,designator,U]).
quiddity(craft,bt,pre reqnum,course, [1,[prerequisite] ,identifier, [ID.
quiddity(craft,bt,qtr _name,timneyeriod,iI,[quarterl,name,[l).
quiddity(craft,bt,qtr,timeyeriod,[I, [,quarter,[]).
quiddity(craft,bt,yr,tine_.period,t,year,tI).
quiddity(craft,bt,coreqtr,quarter,[curriculum,timne],[1,identifierj)

92

synonym(course,class).
synonym(designator,identifter).
synonym(designator,name).
synonym(designator,title).
synonym(quarter,term).
synonym(quarter,tineperiod).

isA(professor,person).
i&A(nmnager,person).
isA(student,person).
i&A(niilitary oflicer,person).
i&A(prerequisite,required).
is.A(NPS,university).
iaA(current,tixme).
isA(quarter,term).
isA(.year,term).
isA(title,name).
isA(surname,naxne).
isA(curriculuxn,department).
isA(course,curriculum).
isA(emphasis-area,curriculum).
isA(class,course).
i&A(section,class).

99

Page: 1 masterDATA.DOS

quiddity (nac, rb, crs, course, [1,[nps] ,identifier, []).
quiddity (nac, rb, curr Iofcr,manager, [],[curriculum,military_officer] ,name, LI).
quiddity(nac,rb,currc_nan, curriculum, [], [nps] ,title, [1).
quiddity(nac,rb,degree tit,degree, I, [nps] ,title, []).
quiddity (nac, rb,dpt,department, LI.[nps] ,designator, []).
quiddity(nac,rb,firstname,person, LI1 Inps],name, (given]).
quiddity(nac,rb,lastnane,person, LI.[nps],surnane, [1).
quiddity (nac, rb, section,timeyperiod, [], [course] ,identifier, LI).
quiddity (nac, rb, hours, course, [], LI,credits, []).
quiddity (nac,rb,profyphone,professor, I, [nps] ,telephone -number, [office]).
quiddity (nac,rb,emph area,emphasis -area, [1.[curriculum] title, [1).
quiddity (nac, rb, length, completion, [curriculum], [],term, [required]).
quiddity(nac,rb,preqcrs,course, I, [nps,prerequisite] ,identifier, []).
quiddity (nac,rb,preqdpt,department, [],[prerequisite] ,identifier, []).
quiddity (nac,rb,rea~crs,course, [], [emphasis area, required] ,identifier, []).
quiddity (craft, rb, ssn, student, [], [], identif ier, (social-security]).
quiddity (craft, rb, lastnane, student, LI.[],surname, []).
quiddity (craft,rb, firstnane, student, [], [],naxne, [given]).
quiddity (craft,rb, section, section, [1,[class],identifier, []).
quiddity (craft, rb, dept. department, [], [nps] ,identifier, []).
quiddity (craft,rb,crs -number, course, [], [nps] ,identifier, []).
quiddity(craft,rb,crs _name,course, [], [nps],title, []).
quiddity (craft,rb, emph,emphasis area, [], [nps] ,identifier, []).
quiddity (craft,rb,emph _name,emp hasis area, [], [nps] ,title, []).
quiddity (craft, rb,pre -reqdept,department, [], [prerequisite,nps] ,identifier, LI).
quiddity(craft,rb,pre reqnum,course, I, [prerequisite,nps] ,identifier, []).
quiddity(craft,rb,qtr nane,quarter, [], [],name, []).
quiddity (craft, rb, qtr, quarter, [], [],identifier, []).
quiddity (craft, rb, yr. completion, [course, student], [],year, []).
quiddity (craft, rb, coreqtr, student, [time], [],quarter, []).

synonyms (course, class).
synonyms (designator, identifier).
synonyms (designator, name).
synonyms (designator,title).
synonyms (quarter,term).
synonyms (quarter, timeperiod).
synonyms (title, name).
synonyms (title,, identifier).
synonyms (name, identifier).
synonyms (quarter, section).
synonyms (ten, timeyperiod).

isA (professor,person).
isA (manager, person).
isA (student, person).
isA(military__officer,person).
isA (prerequisite, required).
isA(nps,university).
isA(current~time).
isA(quarter,term).
i sA (year, term) .
isA(title,name).
isA(surnaxne,name).
isA(curriculum, department).
isA(course,curriculum).
isA(emphasis -area,curriculum).
isA(class, course).
isA (section, class).

94

APPENDIX C -- PRIMARY EXPERIMENT

This Appendix contains samples of the contents of the packet given to the students during

the primary experiment. Additionally, the actual experiment data results along with the master

quiddities is provided. Finally, detailed tabular experiment data (from prototype) is included along

with several bar graphs for further clarification. Items specified above are located on the following

pages:

Information Sheet ... 96

W ork Sheet .. 98

Instruction Sheet (with blank answer sheets) 101

Vocabulary ... 104

Data Dictionary .. 105

Sample Database Reports 107

Experiment Quiddity Definitions 111

Master Quiddity Definitions 117

Raw Data and Graphs 119

95

EXPERIMENT #2

A. PURPOSE

The purpose of this experiment is to gather data to assist me in
analyzing the concept of "quiddity". The first experiment gave everyone a
broad view of the quiddity concept and practice in applying the concept to a
database. The second experiment is the more important of the two and will be
more formally structured. I am still interested in any and all comments you
may have regarding quiddity.

B. REVIEW OF THE QUIDDITY CONCEPT

"Quiddity" is the name given to the description of what information is
captured by the data element. We are attempting to capture the "meaning" of
what the data element represents.

1. Components of Quiddity

a. Quiddity is made up of five components, stuff, stuff type,
stuff attribute, stuff attribute type, and arity. To find values for these
components, we must answer the following questions.

* STUFF- What is it about?

STUFF TYPE- What sort of stuff is it?

* STUFF ATTRIBUTE- What is it about the stuff you are
interested in?

STUFF ATTRIBUTE TYPE- What sort of stuff attribute is it?

ARITY- What is the stuff a function of?

b. Some important "rules of thumb" to follow are:

" Most important fields are STUFF and STUFF ATTRIBUTE.
You must have both of these to have a meaningful
quiddity, just like you must have a subject and
a verb to have a complete sentence. There is one
and only one value for these components in each
quiddity expressioni

" Capture "meaning" of what the data element represents.

" when determining quiddity, look at the definition of the
data elements, rather than the names of the data
elements themselves.

" some data element names are deceptive/un-informative

2. New Approach

As stated earlier, the two most important components of quiddity are
stuff and stuff attribute. If we can find these, we will have captured the
data element meaning. Most people seem to have difficulty distinguishing

96

between the two components. I have developed some new questions to ask
yourself when defining these components. I hope these questions together with
the above method will clarify the concept.

a. The idea is to find the stuff attribute first. Once this is

done, the stuff component follows naturally. Try these steps:

* Look at a collection of actual data contained in the field

" classify the data by grouping the collection under a
general heading or name which answers the question "What
is it?" or "What are these?" What do you actually see in
the field? We want to categorize the actual words,
codes, numbers, etc., that we see in the field. The data
is a MEASURE of something. The MEASURE is the stuff
attribute and the SOMETHING is the stuff! we are not
concerned with what the data are representative of in the
physical or concrete sense, we are looking for an
abstract noun. stuff attribute is not a dimension!!

b. some examples are:

The data in the field looks like this "$23.34". This is the
COST (stuff attribute) of SOMETHING (stuff).

The data in the field looks like this "sofa", "chair", "TV",
"table", etc. You might be tempted to say that the "category"
of this data is "furniture" but you would be wrong! we want
to capture a measure of the data, not what the data represents
in the physical sense. What measure is this, or what are
they? They are NAMES! Names of what? Property! So, the
stuff attribute is "name" and the stuff is "property". The
questions above are also answeredl

(Note: You will still have the data dictionary to look at too!)

97

WORK SHEET"
(Updated for Experiment #2)

1. How do we capture the "meaning" of what a data element represents?

a. A proposed method for capturing this "meaning" uses a type of formal
"language" with various rules for forming the definition of the "meaning."
This definition or description is called "quiddity."

"From the oxford English Dictionary, quiddity is 'The real nature or
essence of a thing; that which makes a thing what it is., Of course,
[the proposed] language for expressing quiddities is only a model, or
approximation, of genuine quiddity, if it exists."

Example 1 :

* DATABASE 1 e DATABASE 2

- variable: purchase-cost - Variable: cost-of_purchase

- Description: - Description:

"Purchase cost of a truck" "cost of purchase of a truck"

b. Let's begin defining the basic component of quiddity.

Example la:

* DATABASE 1 e DATABASE 2

- Variable: purchase-cost - variable: costof_purchase

- Description: - Description:

"Purchase cost of a truck" "Cost of purchase of a
truck"

- Dimension: currency
- Dimension: currency

- Stuff: truck
- Stuff: truck

IAll examples and quotes in this work sheet have been borrowed from the
following reference: Bhargava, Hemant K., Steven 0. Kimbrough, and Ramayya
Krishnan, Unique Names Violations: A Problem for Model Integration or You Say
Tomato, I Say Tomahto (University of Pennsylvania, Department of Decision
Sciences, working Paper, 1990, forthcoming, ORSA Journal on Computing, spring
1991), pp. 5-8.

98

2. Now, let's change the variables slightly.

a. Notice that the description changed but not the "dimension" or
"stuff."

Example 2:

* DATABASE 1 • DATABASE 2

- Variable: purchase-cost - Variable: production-cost

- Description: - Description:

"Cost of purchasing a truck" "Cost of producing a truck"

- Dimension: currency - Dimension: currency

- Stuff: truck - stuff: truck

b. What is the quiddity?

Sample line of reasoning used in Example 2a to describe "quiddity."

Both variables are about the same stuff: trucks. They differ in
what it is they represent about trucks. what is it about trucks
they describe? cost, in both cases. what kind or sort of cost are
we interested in? Purchasing in one case and production in the
other. This line of reasoning suggests the quiddity descriptions in
Example 2a.

Example 2a:

9 DATABASE 1

- Variable: purchasecost

- Description: "Cost of purchasing a truck"

- Dimension: currency

- Quiddity: cost(purchase(truck))

STUFF ATTRIBUTE t ~- STUFF
STUFF ATTRIBUTE TYPE

- Quiddity Paraphrase: "the purchase cost of a truck"

0 DATABASE 2

- Variable: productioncost

- Description: "Cost of producing a truck"

- Dimension: currency

- Quiddity: cost(production(truck))

STUFF ATTRIBUTE t- STUFF

STUFF ATTRIBUTE TYPE

- Quiddity Paraphrase: "the production cost of a truck"

99

3. Below is a list of several data elements in a "Home Inventory" database.
see if you can define the quiddity for each data element.

DATA DICTIONARY EXCERPT:

FIELD NAME TYPE DESCRIPTION

ITEM l{character}40 Identifies a specific piece of
property, i.e., sofa, dining room
chair, TV, etc.

QUANTITY 1(integer}3 Identifies the total number of like
items or pieces of property owned,
i.e., "2" if two sofas are owned.

VALUE 1{integer}8 Identifies the current replacement cost
of a specific piece of property.

DATE l{date}8 The month, day, and year the property
was purchased or acquired.

PRICE 1{integer}8 Identifies the amount paid for a
specific piece of property.

WEIGHT 1{integer}5 The total number of pounds a specific
piece of property weighs.

FREEWEIGHT l{logical}l whether weight of a specific piece of
property applies toward the
professionalweight allowance or not,
i.e., "Y" if yes or "N" if no.

D~ATA OUIDDITY

E3NUNTS STUFF
STUF? ARITY SThU" UTUPW ATTRIUTE?

ARGUETS TYPE ATTRIBUTE TYPE

ITEMitemhousehold

QUANTITY item Jf household quantity _______

. II NI I I N i IN I Ii k e I I I II I

VALUE property time private cost replacement

DATE item household date purchase

PRICE item household cost purchase

WEIGHT item household weight

FREE-WEIGHT category professional indicator
property

100

EXPERIMENT #2

Instructions:

1. Determine the quiddity for each data element listed. Record the
components of the quiddity in the appropriate columns of the row listing the
data element. Please write legibly.

2. Please keep track of the order in which you determine the quiddity
components for each data element by placing a number in the upper left corner
of the appropriate "box" in the table. For exampie, if the first term you
define for the first data element is its stuff, the second term is its stuff
type, and the third term is its stuff attiibute, the table would look like
this:

1~IET I STUF ARTY TPE T~RZUTE STUFF
DATA 8TUPP STUPF ATXUU?

I IIII ll l

2 3 1 4
PRICE item household cost retail

3. when defining quiddities, you must have exactly ONE -stuff- component term
and exactly ONE "stuff attribute" component term. However, the components
ARITY, STUFF TYPE, and STUFF ATTRIBUTE TYPE may be left blank or have one or
more terms for each quiddity, depending on the definition you are writing.
If there is more than one term, list them together in the appropriate "box"
and place each term's ordering number to its left in the box.

4. I am interested in the "method" you use in determining the quiddity,
particularly in the "thought process" you go through in working through this
experiment. Please jot down the method you found most helpful in determining
the quiddities. Any comments or suggestions you have (even in bullet form) is
appreciated.

COMMENTS:

101

MAC DATABASE

DATA QUIDDITY

EEMENS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

ARGUMENTS TYPE ATTRIDUT TYPE

_ _CR_ __Si _

_ _ _ __ _ _ I _

__ __ __ I.
__E__E__-II_

_ __ I _ I _
FIRST102

CRAFT DATABASE

DATA QUIDDITY

ELEMENTS STF
STUFF ARXTI STUFF STUFF fATTRIBUTE

ARGU1MT TYPE MTRBT YE

LASTMANE

FIRSTNAHE

SECTION

DEPT

CRS NUMBER

CRS-NAME

ENPH

E24PH-NAME

PREREQDEP

PREREQNUN

* QTRNAME

YR

COREQaTR

103

VOCABULARY

STUFF: STUFF TYPES: STUFF ATTRIBUTES:

completion class credits
course course designator
curriculum current identifier
degree curriculum name
department emphasis area quarter
emphasis area military officer surname
manager NPS telephone-number
person prerequisite term
professor required title
quarter university year
section
student
time_period

ARITY ARGUMENTS: STUFF ATTRIBUTE TYPES:

course given
curriculum office
student required
time social-security

104

NAC DATABASE DATA DICTIONARY

FIELD NAME TYPEDESCRIPTION

CRS 1{DIGIT}4 Four digit number assigned to a
particular course of instruction at
the Naval Postgraduate school.

CURR OFCR STRING Military officer assigned to manage
a particular curriculum.

CURRICNAM STRING Title of curriculum course of study.

DEGREETIT STRING Title of Degree which can be awarded
by the Naval Postgraduate School.

DPT 1{character}2 Two letter code that represents a
particular department of the Naval
Postgraduate school.

EMPHAREA STRING Name of an emphasis area of study
that students may elect courses from
as a sub-specialty area within a
particular curriculum.

FIRSTNAME STRING Person's given name

HOURS l{DIGIT}1 Credit assigned to each course of
instruction that meets graduation
and degree requirements of so many
credit hours.

LASTNAME STRING Surname of any person at Naval
Postgraduate School.

LENGTH 1{DIGIT}2 Length of time (in months) required
to complete course of study in a
particular curriculum.

PREQ_CRS 1{DIGIT)4 course number that when combined
with Prerequisite Department,
identifies a course that meets the
requirements of another course.

PREQ_DPT 1{STRING}2 2 letter code for a prerequisite
department.

PROFPHONE + 1{DIGIT}3 + Telephone number of a particular
+ 1{DIGIT)3 + professor's office.

1{DIGIT)4

REQ_CRS 1{DIGIT)4 Four digit number representing
courses that are required for a
particular emphasis area.

SECTION l{DIGIT)} Time period in which a given course
is taught.

105

CRAFT DATABASE DATA DICTIONARY

FIELD NAME TYPE DESCRIPTION

SSN 000..999 + -' Identifies students uniquely with
00..99 + '- their social security numbers.
0000..9999

LASTNAME l{CHARACTER}15 Identifies the last name of an individual.

FIRSTNAME l{CHARACTER)15 Identifies the first name of an
individual.

SECT l{CHARACTER)4 Identifies the section within a curriculum
that a student is assigned to.

DEPT 1{CHARACTER)2 The unique two letter code which
identifies an Academic Department at the
Naval Postgraduate School.

CRSNUMBER 1{DIGIT)4 Four digit number assigned to a particular
course of instruction at the Naval
Postgraduate school.

CRSN.A.ME 1{CHARACTER}25 Name assigned to a particular course of
study at the Naval Postgraduate School.

EMPH 1{CHARACTER)3 Three letter code identifying an emphasis
area course of study at the Naval
Postgraduate School.

EMPHNAME 1{CHARACTER)25 Name assigned to a particular emphasis
area course of study at the Naval
Postgraduate school.

QTRNAME 1{CHARACTER}6 Name given to each academic quarter of the
school year, i.e., Fall, Winter, spring,
and Summer.

QTR 1{DIGIT)2 Two digit code identifying a particular
academic quarter of the school year, i.e.,
01=Fall, 02=Winter, 03=Spring, and
04=Suinmer.

YR l{DIGIT}2 Two digit code identifying a particular
year a student completed a course, i.e.,
90=1990, 91=1991, etc.

PRE_REQDEPT 1{CHARACTER}2 Two letter code identifying a Prerequisite
Department within the Naval Postgraduate
School.

PREREQNUM 1{DIGIT}4 Four digit number assigned to a particular
prerequisite course of instruction at the
Naval Postgraduate School.

COREQTR 1{DIGIT}2 Two digit code which indicates which
quarter of the curriculum a student is
currently in, i.e., 01, 02, 03, 04, 05,
and 06.

106

Output Reports The predefined functions of the NAC are provided via use of
established queries and designed reports which can be accessed from the dBase
IV Control Center. These reports and their associated functions are listed in
the following table:

Predefined Function

AVAL_367 Available Courses for Curriculum 367 which
are offered in the Summer Quarter

PREREQ List of Prerequisite Courses for a
specified Course or group of courses

THESIS Thesis support and Special Interests for a
specified Professor

DEG INFO Information related to a specified Degree
Program

CRS TAUT List of Courses Taught by a specified
Professor

EMPH CSE Requirements for Specified Emphasis Area

Examples of these reports have been attached.

107

SAMPLE NAC DATABASE REPORTS

AVAL 367
Curriculum 367 Courses Available for Summer Quarter

Coursa Section Professor Description

CS3010 1 Stevens Computing Devices and Systems
1S3170 1 Haga Economic Evaluation of IS
1S4185 1 Bui Decision Support Systems

CRS TAUT
Courses Taught by: Bui, Tung

Office: 1320 Phone: (408) 646-3260

Quarter/s

offered

Course Description W Sp Su F

IS4200 system Analysis and Design N Y N Y

IS4185 Decision Support Systems Y N Y N

DEG INFO

Degrees offered by curriculum: 367

Degree Title: MS in Information System Management

Curriculum: Computer Systems Management

APC: 335 P-Code: 0095P Length: 18 Months

Convenes: Winter-N, SpringY, Summer-N, Fall-Y

108

SAMPLE MAC DATABASE REPORTS

EPE CSE
Emphasis Requirements for: IRM

Required Option Elective
Courses Course Courses

IS3220 IS4184 CS4601
IS3220 IS4184 IS3000

PREREQ
Course Prerequisites

Prereq Option
Course Course Course Remarks

MN4154 MN2155 MN3161
IS3503 IS3502 Can be concurrent

THESIS

specialized Data for: Baga, William

Office: 1218 Phone: (408) 646-3094

sabbaticals: NONE

Special Duties: Adjunct Professor of Management Information
Systems, Naval Postgraduate School.

Special Interest: Studying the research methods used to gauge the
success of information systemi. He is
interested in the by-products of systems
implementations on small groups. Bib other
research include the relationship of
organizational structure and culture to
information system success.

Published works: Academy of management review, Accounting
Reviews, American Journal of Economics and
Sociology, American Sociological review,
Astronautics and aeronautics, Behavioral
science, Computer& and Security, Data Processing
and Communication Security, Journal of
Contemporary Sociology, Journal of the System
Safety society and Organizational Behavior and
Human Performance.

109

SAMPLE CRAFT DATABASE REPORTS

Page No. 1 STUDENT
05/19/90

SSN LASTNAME FIRSTNAME SECTION EMPH COREQTR

223747355 APPLE PAUL PLO1 DSS 01

270646400 GREEN SALLY PLO1 NET 01

555229999 JONES BILL PLO1 DSS 02

222774444 MARS BRYON PL03 TAG 06

111884422 FRANTZ JOAN PL03 IRM 04

Page No 1 EMPHASIS

DEPT CRS_NUMBER PRE_REQDEPT PREREQNUM CRSNAME

CS 2972 CS 2970 ADA FROM THE BEGINNING

CS 3010 CS 2970 ADA FROM THE BEGINNING

CS 3030 CS 3010 SOFTWARE DEVELOPMENT

IS 2000
IS 2100
IS 3000 CS 3010
IS 3000 IS 3170

110

NAC DATABASE
Subject A

DATA QUIDDITY

ELEMENTS STUF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

CRS course NPS designator

military_
CURROFCR manager curriculum officer surname

CURRICNAM rcuiulum NPS title

DEGREE-TIT degree title

DPT department NPS identifier

FIRSTNAME_ person NPS name

LASTNAME person NPS surname

SECTION tim eperiod class identifier

HOURS course credits

telephone_
PROF-PHONE professor NPS number

EMPHAREA IemphasisareaI I title J

LENGTH time period curriculum designator

prerequisite
PREQCRS course NPS designator

prerequisite
PREQDPT department NPS identifier

required
REQCRS course NPS designator

111

NAC DATABASE
Subject B

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF" STUFF ATTRIBUTE

(ARGUM4ENTS) TYPE ATTRIBUTE TYPE

CRS course NPS designator

CURR OFCR military_ srnm

~CROFR manager curriculum officer surname

CURRICuNAM curriculum NPS title

DEGREE-TIT degree NPS title

DPT department NPS identifier

FIRSTAMEi person T name given

LAST3AME person NPS surname

SECTION time_period course designator

HOURS course credits

telephone_ office
PROF-PHONE professor NPS number

EMPHAREA icuilum jemphasisareJ credits required

LENGTH curriculum term required

prerequisite
PREQ_CRS course required designator

prerequisite
PREQDPT department required identifier

requiredREQ CRS emphasis area course designator

112

NAC DATABASE
Subject C

DATA QUIDDITY

ELEMENTS STU"F
STU" ARITY STUFF ST"iF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

CRS course NPS identifier

military_

CURROFCR person officer name surname

CURRICNAi curriculum curriculum J name

DEGREE_TIT degree NPS title

DPT department NPS name I

FIRSTNAME person name given

LASTNANE person name surname

SECTION timeperiod course identifier

HOURS course I credits

PROFIPHONE professor telephone office
number

EMPH AREA emphasisarea curriculum curriculum name

LENGTH time_period curriculum term

PREQCRS i course prerequisite designator

PREQDPT department course designator

REQCRS course emphasis area designator required

113

CRAFT DATABASE
Subject 1

DATA QUIDDITY

ELEME14TSSTF
STUFF ARITY STUFF STUFF ATTRIBUTE

ARGIMENTS TYPE ATRIBaUTEmy

social
SSN student identifier security

LASTAME u student surname

FIRSTNAME student name given

SECTION section NPS designator

DEPT department NPS identifier

CRSUMBER course NPS identifier

CRS NAME course NPS name

EMPH ! emphasis_area NPS identifier

eMPH NAME emphasis-area NPS name

prerequisite
PREREQDEPT department NPS identifier

prerequisite
PRE REQ RUM course NPS identifier

__QTRNAME quarter name

QTR quarter identifier

R _year identifier

COREQTR quarter student current identifier

114

CRAFT DATABASE
subject 2

DATA QUI DDITY

ELE. NTS STU.
STUFF. ARIT STUFF STUFF ATTRIBUTE

ARIOGMS TYPE ATTRIBUTE TYPE

SSN student military_ identifier social
officer security

military_LASTNAME student officer surname

military_
FIRSTNAME student officer name

student
SECTION section curriculum identifier

DEPT department NPS identifier

CRSNBER _course identifier

CRS[NAME course name

EMPH a emphasis_area curriculum designator

EMPHNAME lemphasisJare curriculum name

PlREQ DEPT I department prerequisite designator

PRE REQNUM course prerequisite identifier

QTRNAME time period quarter name

QTR Ztimeperiod quarter

YR Itimeperiod year

curriculum
COREQTR quarter time identifier

115

CRAFT DATABASE
Sub"ect 3

DAIA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(ARGUMENTS) TYPE ATTRIBUTE TYPE

social

SSN student identifier security

LASTNAME person surname T
FIRSTNAME Iperson name given

SECTION section curriculum identifier

DEPT __department NPS designator

CRS_NUMBER i course NSdsgaoI~~I~~ieINPS Jdesignator

CRSNAME i course NPS name

EMPH iemphasisarea NPS identifier

EMPHNAME lemphasis_are r NPS name

prerequisite
PREREQDEPT department NPS designator

prerequisite

PRE1REQ...NUM course NPS designator

IRua_NAME quarter name

QTR quarter L identifier

i time_period course year given

COREQTRquarter time current indicator

116

NAC DATABASE

MASTER

DATA QUIDDITY

ELEMENTS STUFF
STUFF ARITY STUFF STUFF ATTRIBUTE

(AIRGUMENTS) TIYPE ATTRI E T PE

CRS course NPS identifier

mag ilitaryofficerCURROFCR manager curriculum name

CURRICNAM curriculum] NPS title

DEGREE-TIT degree NPS title

DPT department NPS designator

FIRSTNAME person NPS name given

LASTNAME rperson NPS surname

SECTION timeperiod course identifier

HOURS course J credits

telephone_

PROF-PHONE professor NPS number office

EMPHAREAm emphasis_area J curriculum I title

LENGTH completion curriculum J term required

NPSPREQ._CRS course prerequisite identifier

PREQDPT department prerequisite identifier

required
REQCRS course emphasis area identifier

117

CRAFT DATABASE

MASTER

DATA QUIDDITY

ELEMEN~TS STUFF
STU"F AITY STUFF STUFF ATTRIBUTE

(ARGZXMEWTS) TYPE ATTRIBUTE TYPE

social
SSN student identifier security

IASTNAHE student surname

FIRSTNAME student T name given

SECTION section class identifier

DEPT Idepartment NPS identifier

CRSNUMBER course NPS identifier I

CRSNAME __course NPS title

EMPH iemphasisare NPS identifierI

IMPH_ 4E f emphasis_are NPS title _

NPS
PREREQDEPT department prerequisite identifier

NPS
PREREQNUN course prerequisite identifier

QI IAME quarterI name

QTR quarter I identifier

course
TR completion student year

COREQTR student time quarter

118

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE (Master)

Synonyms -- Master Synonyms -- Master
Test # Found Type I Type II Test # Found Type I Type II
111 1 0 4 111 1 0 4
122 5 2 2 211 3 1 3
132 5 2 2 311 13 11 3
143 5 2 2

122 5 2 2
211 3 1 3 222 11 7 1
222 11 7 1 322 31 27 1
232 11 7 1
243 11 7 1 132 5 2 2

232 11 7 1
311 13 11 3 332 31 27 1
322 31 27 1
332 31 27 1 143 5 2 2
343 44 39 0 243 11 7 1

343 44 39 0

Homonyms -- Master Homonyms -- Master
Test # Found Type I Type II Test # Found Type I Type II
111 3 0 0 111 3 0 0
122 3 0 0 211 3 0 0
132 3 0 0 311 3 0 0
143 3 0 0

122 3 0 0
211 3 0 0 222 3 0 0
222 3 0 0 322 1 0 2
232 3 0 0
243 3 0 0 132 3 0 0

232 3 0 0
311 3 0 0 332 1 0 2
322 1 0 2
332 1 0 2 143 3 0 0
343 0 0 3 243 3 0 0

343 0 0 3

119

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE
(Average Totals of the 9 Comparisons for Each Procedure)

Synonyms -- Experiment Synonyms - Experiment
Test # Found Type I Type II Test # Found Type I Type II

111 1.0 0.0 4.0 111 1.0 0.0 4.0
211 2.9 0.7 2.8 122 2.3 1.0 3.7
311 10.4 8.2 2.8 132 2.3 1.0 3.7

143 2.7 1.3 3.7
122 2.3 1.0 3.7
222 11.1 7.4 1.3 211 2.9 0.7 2.8
322 35.4 31.3 0.9 222 11.1 7.4 1.3

232 10.8 7.1 1.3
132 2.3 1.0 3.7 243 13.0 9.3 1.3
232 10.8 7.1 1.3
332 31.9 27.8 0.9 311 10.4 8.2 2.8

322 35.4 31.3 0.9
143 2.7 1.3 3.7 332 31.9 27.8 0.9
243 13.0 9.3 1.3 343 46.1 41.4 0.3
343 46.1 41.4 0.3

Homonyms -- Experiment Homonyns - Experiment
Test # Found Type I Type II Test # Found Type I Type II

111 2.8 0.0 0.2 111 2.8 0.0 0.2
211 2.8 0.0 0.2 122 2.4 0.0 0.6
311 2.6 0.0 0.4 132 2.4 0.0 0.6

143 2.3 0.0 0.7
122 2.4 0.0 0.6
222 2.4 0.0 0.6 211 2.8 0.0 0.2
322 1.3 0.0 1.7 222 2.4 0.0 0.6

232 2.4 0.0 0.6
132 2.4 0.0 0.6 243 2.3 0.0 0.7
232 2.4 0.0 0.6
332 1.3 0.0 1.7 311 2.6 0.0 0.4

322 1.3 0.0 1.7
143 2.3 0.0 0.7 332 1.3 0.0 1.7
243 2.3 0.0 0.7 343 0.7 0.0 2.3
343 0.7 0.0 2.3

120

Synonyms -- Equivalence Rule Comparison

10-

0 8.2

0 0

0i 2 1 2.82.

41.

11 1 311
EqiaecoPoeue

5-

3025
0

20-

o 10- I

t22 222 322

Equivalence Procedures

Synonyms Found M# Type I Errors M # Type I Errors

Figure 20 Synonyms -- Procedure Comparison (Component Rules 22)

121

Synonyms -- Equivalence Rule Comparison
31.

o25-

0 20-
E

o15-

10.

- 5.
2.

132 232 332

Equivalence Procedures

Synonymns Found M# Type I Errors EM # Type I Errors

Figure 21 Synonyms -- Procedure Comparison (Component Rules 32)

Synonyms -- Equivalence Rule Comparison

'5-

m40-

o~35-

25-

-20-0
i

0

143 243 343

Equivalence Procedures

0 Synonyms3 Found #Type I Errors go # Type I Errors

Figure 22 Synonyms -- Procedure Comparison (Component Rules 43)

122

Homonyms -- Equivalence Rule Comparison
3-

2..2.

~13

2.5-

a- 2

Iii211 311

Equivalence Procedures

Hornonymns Found M# Type I Errors

Figure 23 Homonyms -- Procedure Comparison (Component Rules 11)

Homonyms -- Equivalence Rule Comparison

3-

0
1.

E
0

0

122 222 322

Equivalence Procedures

Homonymns Found M Type I Errors

Figure 24 Homonyms -. Procedure Comparison (Component Rules 22)

123

Homnonymns -- Equivalence Rule Comparison

5

0. -

0.5

0-

Equivalence Procedw~es

Homonyms Found M# Type I Errors

Figure 25 Homonyms -- Procedure Comparison (Component Rules 32)

Homnonyms -- Equivalence Rule Comparison

3-

2.5-

0

0.

0.5

0-
143 243 343

Equivalence Procedures

Homnonyrns Found M# Type I Errors

Figure 26 Homonyms - Procedure Comparison (Component Rules 43)

124

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE

Synonyms Synonyms
Test-lll Test-211

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 2 0 3 Al 5 1 1
A2 1 0 4 A2 1 0 4
A3 2 0 3 A3 5 1 1
B1 1 0 4 Bl 3 1 3
B2 1 0 4 B2 1 0 4
B3 1 0 4 B3 3 1 3
Cl 0 0 5 Cl 3 1 3
C2 1 0 4 C2 3 1 3
C3 0 0 5 C3 2 0 3

Sum 9 0 36 Sum 26 6 25
Average 1.0 0.0 4.0 Average 2.9 0.7 2.8

Synonyms Synonyms
Test-122 Test-222

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 5 3 3 Al 18 13 0
A2 2 1 4 A2 14 9 0
A3 4 2 3 A3 18 13 0
BI 2 1 4 Bl 7 5 3
B2 1 0 4 B2 8 4 1
B3 2 1 4 B3 7 5 3
Cl 1 0 4 Cl 8 5 2
C2 2 1 4 C2 8 5 2
C3 2 0 3 C3 12 8 1

Sum 21 9 33 Sum 100 67 12
Average 2.3 1.0 3.7 Average 11.1 7.4 1.3

125

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE

Synonyms Synonyms
Test-132 Test-232

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type JI
Al 5 3 3 Al 18 13 0
A2 2 1 4 A2 13 8 0
A3 4 2 3 A3 18 13 0
B1 2 1 4 B1 7 5 3
B2 1 0 4 B2 7 3 1
B3 2 1 4 B3 7 5 3
Cl 1 0 4 Cl 8 5 2
C2 2 1 4 C2 8 5 2
C3 2 0 3 C3 11 7 1

Sum 21 9 33 Sum 97 64 12
Average 2.3 1.0 3.7 Average 10.8 7.1 1.3

Synonyms Synonyms
Test-143 Test-243

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 5 3 3 Al 18 13 0
A2 2 1 4 A2 17 12 0
A3 4 2 3 A3 18 13 0
Bi 2 1 4 BI 7 5 3
B2 1 0 4 B2 12 8 1
B3 2 1 4 B3 7 5 3
Cl 2 1 4 Cl 10 7 2
C2 2 1 4 C2 8 5 2
C3 4 2 3 C3 20 16 1

Sum 24 12 33 Sum 117 84 12
Average 2.7 1.3 3.7 Average 13.0 9.3 1.3

126

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE

Synonyms Synonyms
Test-311 Test-332

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 17 13 1 Al 49 44 0
A2 3 2 4 A2 30 25 0
A3 20 16 1 A3 53 48 0
B1 16 14 3 B1 30 26 1
B2 3 2 4 B2 22 18 1
B3 13 11 3 B3 29 25 1
Cl 8 6 3 C1 22 19 2
C2 10 8 3 C2 20 17 2
C3 4 2 3 C3 32 28 1

Sum 94 74 25 Sum 287 250 8
Average 10.4 8.2 2.8 Average 31.9 27.8 0.9

Synonyms Synonyms
Test-322 Test-343

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 49 44 0 Al 57 52 0
A2 36 31 0 A2 51 46 0
A3 53 48 0 A3 53 48 0
B1 30 26 1 B1 32 28 1
B2 27 23 1 B2 38 34 1
B3 29 25 1 B3 36 32 1
Cl 29 26 2 Cl 46 41 0
C2 28 25 2 C2 44 39 0
C3 38 34 1 C3 58 53 0

Sum 319 282 8 Sum 415 373 3
Average 35.4 31.3 0.9 Average 46.1 41.4 0.3

127

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE

Homonyms Homonyms
Test-111 Test-21 1

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 3 0 0 Al 3 0 0
A2 3 0 0 A2 3 0 0
A3 3 0 0 A3 3 0 0
BI 3 0 0 B 3 0 0
B2 3 0 0 B2 3 0 0
B3 2 0 1 B3 2 0 1
C1 2 0 1 C1 2 0 1
C2 3 0 0 C2 3 0 0
C3 3 0 0 C3 3 0 0

Sum 25 0 2 Sum 25 0 2
Average 2.8 0.0 0.2 Average 2.8 0.0 0.2

Homonyms Homonyms
Test-122 Test-222

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 1 0 2 Al 1 0 2
A2 3 0 0 A2 3 0 0
A3 3 0 0 A3 3 0 0
BI 3 0 0 B1 3 0 0
B2 3 0 0 B2 3 0 0
B3 1 0 2 B3 1 0 2
Cl 2 0 1 Cl 2 0 1
C2 3 0 0 C2 3 0 0
C3 3 0 0 C3 3 0 0

Sum 22 0 5 Sum 22 0 5
Average 2.4 0.0 0.6 Average 2.4 0.0 0.6

128

NAC / CRAFT DATABASE COMPARISONS BY PRC CEDURE

Homonyms Homonyms
Test-132 Test-232

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 1 0 2 Al 1 0 2
A2 3 0 0 A2 3 0 0
A3 3 0 0 A3 3 0 0
B1 3 0 0 B1 3 0 0
B2 3 0 0 B2 3 0 0
B3 1 0 2 B3 1 0 2
Cl 2 0 1 Cl 2 0 1
C2 3 0 0 C2 3 0 0
C3 3 0 0 C3 3 0 0

Sum 22 0 5 Sum 22 0 5
Average 2.4 0.0 0.6 Average 2.4 0.0 0.6

Homonyms Homonyms
Test-143 Test-243

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 1 0 2 Al 1 0 2
A2 3 0 0 A2 3 0 0
A3 3 0 0 A3 3 0 0
B1 3 0 0 B1 3 0 0
B2 3 0 0 B2 3 0 0
B3 1 0 2 B3 1 0 2
Cl 1 0 2 Cl 1 0 2
C2 3 0 0 C2 3 0 0
C3 3 0 0 C3 3 0 0

Sum 21 0 6 Sum 21 0 6
Average 2.3 0.0 0.7 Average 2.3 0.0 0.7

129

NAC / CRAFT DATABASE COMPARISONS BY PROCEDURE

Homonyms Homonyms
Test-311 Test-332

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 3 0 0 Al 0 2
A2 3 0 0 A2 3 0 0
A3 3 0 0 A3 1 0 2
B1 2 0 1 BI 1 0 2
B2 3 0 0 B2 2 0 1
B3 2 0 1 B3 1 0 2
Cl 2 0 1 Cl 1 0 2
C2 2 0 1 C2 1 0 2
C3 3 0 0 C3 1 0 2

Sum 23 0 4 Sum 12 0 15
Average 2.6 0.0 0.4 Average 1.3 0.0 1.7

Homonyms Homonyms
Test-322 Test-343

DB-Pair # Found Type I Type II DB-Pair # Found Type I Type II
Al 1 0 2 Al 0 0 3
A2 3 0 0 A2 1 0 2
A3 1 0 2 A3 1 0 2
BI 1 0 2 B1 1 0 2
B2 2 0 1 B2 1 0 2
B3 1 0 2 B3 0 0 3
Cl 1 0 2 Cl 0 0 3
C2 1 0 2 C2 1 0 2
C3 1 0 2 C3 1 0 2

Sum 12 0 15 Sum 6 0 21
Average 1.3 0.0 1.7 Average 0.7 0.0 2.3

130

WITHIN DATABASE COMPARISONS

Within Database Comparison -- NAC Within Database Comparison -- NAC

No. of No. of No. of No. of No. of No. of
Test Homonyms Synonyms Matches Test Homonyms Synonyms Matches
111 35 0 10 111 35 0 10
211 30 0 15 122 26 4 19
311 30 15 15 132 26 4 19

143 22 4 23
122 26 4 19
222 16 8 29 211 30 0 15
322 10 69 35 222 16 8 29

232 18 8 27
132 26 4 19 243 12 10 33
232 18 8 27
332 12 60 32 311 30 15 15

322 10 69 35
143 22 4 23 332 12 60 32
243 12 10 33 343 6 110 39
343 6 110 39

Within Database Comparison -- CRAFT Within Database Comparison -- CRAFT

No. of No. of No. of No. of No. of No. of
Test Homonyms Synonyms Matches Test Homonyms Synonyms Matches
111 38 0 7 111 38 0 7
211 33 6 12 122 27 5 18
311 31 28 14 132 27 5 18

143 25 8 20
122 27 5 18
222 16 43 29 211 33 6 12
322 12 111 33 222 16 43 29

232 17 41 28
132 27 5 18 243 17 46 28
232 17 41 28
332 13 99 32 311 31 28 14

322 12 111 33
143 25 8 20 332 13 99 32
243 17 46 28 343 8 128 37
343 8 128 37

131

Within Database Comparison
NAC

40-

35

5-

0-

C 25-0 2
E

0 -1

'5

0

Equivalence Procedures

#Homonyms Found =# Synonyms Found EM # Matches

Figure 27 NAC Quiddity Sameness -- Term Equivalence Rule 1

Within Database Comparison
NAC

40-

35- 33
A- 30

0 SO- 2
27

0

132

Within Database Comparison
NAC

S100-

.

0 75-9
4 E

06

0

00

.31322 332 343

Equivalence Procedures

Homonyms Found = Synonyms Found EM # Matches

Figure 29 NAC Quiddity Sameness -- Term Equivalence Rule 3

Within Database Comparison
CRAFT

aa

35133

Within Database Comparison
CRAFT

5045

0

0 3

EqiEec Poeue

102

044

Equivalence Procedures

Homonyms Found M Synonyms Found 60 # Matches

Figure 31 CRAFT Quiddity Sameness - Term Equivalence Rule 3

15134

LIST OF REFERENCES

Barnett, Lincoln, The Treasure of Our Tongue, 1st ed., pp. 29, Alfred A. Knopf, Inc., 1964.

Batini C., Lenzerini, M., and Moscarini, M., "Views Integration," in Ceri, S., Methodology and
Tools for Database Design, North Holland, 1983.

Batini, C., Lenzerini, M., and Navathe, S., "A Comparative Analysis of Methodologies for Database
Schema Integration," ACM Computing Survey, Volume 18, Number 4, pp. 323-364, December
1986.

Bhargava, Hemant K, Kimbrough, Steven 0., and Krishnan, Ramayya, "Unique Names Violations:
A Problem for Model Integration or You Say Tomato, I Say Tomahto," University of Pennsylvania,
Department of Decision Sciences, Working Paper, 1990, forthcoming, ORSA Journal on
Computing, Spring 1991.

Bouzeghoub, M., Gardarin G., and Metais, E., "Database Design Tools: An Expert System

Approach," Proceedings of Very Large Databases, pp. 82-94, 1985.

Cardenas, A. F., Data Base Management Systems, 2nd e., Allyn and Bacon, Inc., 1985.

Casonova, M., and Vidal M., "Towards a Sound View Integration Methodology," Proceedings of the
2nd ACM SIGACT/SIGMOD Conference on the Principles of Database Systems, pp. 36-47, 1983.

Choobineh, J., Mannino M. V., Nunamaker F. F., and Konsynski, B. R., "An Expert Database
Design System Based on Analysis of Forms," IEEE Transactions on Software Engineering, Volume
14, Number 2, February 1988.

Computer and Information Sciences Department, University of Florida, Technical Report TR-84-1,
A Methodology for Global Schema Design, by M. V. Mannino and W. Effelsberg, September 1984.

Date, C. J., An Introduction to Database Systems, 5th ed., v. 1, pp. 1-102, Addison-Wesley
Publishing Company, Inc., 1990.

Dayal, U., and Hwang, H., "View Definition and Generalization for Database Integration in a
Multidatabase System," IEEE Transactions on Software Engineering, Volume SE-10, Number 6,
pp. 628-645, November 1984.

Deen, S., Amin, R., and Taylor, M., "Data Integration in Distributed Databases," IEEE
Transactions on Software Engineering, Volume SE-13, Number 7, pp. 860-864, July 1987.

DeMichiel, L. G., "Performing Operations over Mismatched Domains," Proceedings of the Fifth
International Conference on Data Engineering, pp. 36-45, February 1989.

135

Dogac, A., Yuruten B., and Spaccapietra, S., "A Generalized Expert System for Database Design,"
IEEE Transactions on Software Engineering, Volume 15, Number 4, pp. 479-491, April 1989.

Elmasri, R., and Navathe, S., "Object Integration in Logical Database Design," Proceedings of the
First International Conference on Data Engineering, pp. 423-433, April 1984.

Elmasri, R., and Navathe, S. B., "Object Integration in Database Design," Proceedings IEEE
COMPDEC Conference, March 1984.

Elmasri, R., and Wiederhold, G., "Data Model Integration Using the Structural Model," Proceedings
of the 1979 ACM-SIGMOD Conference on Management of Data, pp. 191-202, May 1979.

Hayne, Stephen, and Sudha, Ram, "Multi-User View Integration System (MUVIS): An Expert
System for View Integration," Proceedings of the Sixth International Conference on Data
Engineering, pp. 402-409, February 1990.

Honeywell Systems Development Division, Minneapolis, MN, Tech. Rep. CSC-86-9:8212, Schema
Integration Algorithms for Federated Databases and Logical Databaset ,,: .gn, by R. Elmasri, J.
Larson, and S. B. Navathe, April 1986.

Kamel, Magdi N., and Hsiao, David K, "Interoperability and Integration Issues in Heterogeneous
Database Environments," Naval Postgraduate School, Computer and Administrative Sciences
Departments, Working Paper, 1990, forthcoming, Information Systems Research, 1991.

Larson, James A., Navathe, Shamkant B., and Elmasri, Ramiz, "A Theory of Attribute Equivalence
in Databases with Application to Schema Integration," IEEE Transactions on Software
Engineering, Volume 15, Number 4, pp. 449-463, April 1989.

Motro, A., and Bunenan, P., "Constructing Superviews," Proceedings of 1981 ACM-SIGMOD
Conference on Management of Data, pp. 56-64, April 1981.

Navathe, S., Sashidhar, T., and Elmasri, , "Relationship Merging in Schema Integration,"
Proceedings of the Tenth International Conference on Very Large Databases, August 1984.

Navathe, S. B., Sashidhar, T., and Elmasri, R., "Relationship Matching in Schema Integration,"
Proceedings of the Tenth International Conference of Very Large Databases, 1984.

Navathe, S. B., Elmasri, R., and Larsen, J., "Integrating User Views in Database Design," IEEE

Computer, pp. 50-62, January 1986.

Osborn, Patricia, How Grammar Works, pp. 9-67, John Wiley and Sons, Inc., 1989.

Sheth, A., Larson, J., Cornellio, A., and Navathe, S., "A Tool for Integrating Conceptual Schemas
and User Views," Proceedings of the Fourth International Conference on Data Engineering,
February 1987.

Wang, Y. K, and Madnick, S. E., "The Inter-Database Instance Identification Problem in
Integrating Autonomous Systems," Proceedings of the Fifth International Conference on Data
Engineering, pp. 46-55, February 1989.

136

Yao, S. B., Waddle, V., and Housel, B., Wiew Modeling and Integration Using the Functional Data
Model," IEEE Transactions on Softwarr Engineering, SE-8, Number 6, pp. 544-553, 1986.

Zviran, Moshe, and Kamel, Magdi N., "A Methodology for Integrating Heterogeneous Databases
in a Hospital Environment," Naval Postgraduate School, Department of Administrative Sciences,
Working Paper, No. 89-10, 1989.

137

BIBLIOGRAPHY

Chase, Stuart, Power of Words, Harcourt, Brace, and World, Inc., 1954.

Chomsky, Noam, Aspects of the Theory of Syntax, The M.I.T. Press, 1965.

Cooper, William S., Set Theory c"' Syntactic Description, Mouton and Co., 1964.

Hayakawa, S. I., Language in Thought and Action, 2nd e., Harcourt, Brace, and World, Inc., 1964.

Manser, Martin, The Guinness Book of Words, Guinness Publishing Ltd., 1988.

Pei, Mario, The Story of the English Language, Revised Edition, J. B. Lippincott Company, 1967.

138

