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Simple,Effective Computation of Principal Eigenvectors and their Eigenvalues
and Application to High-Resolution Estimation of Frequencies

D.W. Tufts and C.D. Melissinos

Department of Electrical Engineering
University of Rhode Island

Kingston, RI 02881

1 Abstract

We present the results of an investigation of the Prony-Lanczos (P-L)

method 114,38] and the power method [39] for simple computation of

approximations to a few eigenvectors and eigenvalues of a Hermitian matrix.

We are motivated by realization of high-resolution signal processing in an

integrated circuit. The computational speeds of the above methods are

analyzed. They are completely dependent on the speed of a matrix-vector

product operation. If only a few eigenvalues or eigenvectors are needed, the

3 suggested methods can substitute for the slower methods of the LINPACK or

EISPACK subroutine libraries. The accuracies of the suggested methods are

evaluated using matrices formed from simulated data consisting of two

3 sinusoids plus gaussian noise. Comparisons are made with the corresponding

eigenvalues and eigenvectors obtained using LINPACK. Also the accuracies of

I frequency estimates obtained from the eigenvectors are compared. Ac*.ea1 For

M4 C TAB.
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3 I. Introduction

We are motivated by the use of eigenvectcr decompositions cf data

matrices or estimated covariance matrices for detection of signals in noise

and for estimation of signal parameters. This has evolved from early work of

Liggett [1] and Cwsley [2], to adaptive-array-detection improvements ef

3 Tufts and Kirsteins £3,331 and high-resolution parameter estimators of

Cantoni and Godara [41, Bienvenu and Kopp [5], Owsley [6], Schmidt [21] and

3 Tufts and Kumaresan [7,32].

Principal component analysis, using principal eigenvalues and

eigenvectors of a matrix, was initiated by Karl Pearson (1901) [8], and

3 Frisch (1929) [91 in the problem of fitting a line, a plane or in general a

subspace to a scatter of points in a higher dimensional space. Eckart and

3 Young [341 presented the use of singular value decomposition for finding

low-rank approximations to rectangular matrices. C.R. Rao examined the

I applications of principal component analysis [10]. Eigenvector analysis is

also used in image processing to provide efficient :Lpresentations of

pictures [11]. Recently, principal component analysis -as been coupled with

3 the Wigner mixed time-frequency signal representation to perform a variety

of signal processing operations [28,30,31].

I Linear Prediction techniques for estimption of signal parameterswhich

are modern variants of Prony's method, -an be improved using eigenvector

decomposition [7]. Prony's method is a simple procedure for determining the

3 values of parameters of a linear combination of exponential functions. Now

*rtuny's method' is usually taken to mean the least squares extension of the

3 method as presented by Hildebrand [13]. The errors in signal parameters

which are estimated 'y Prony's method can be very large [14]. If the data

is composed of undamped sinusoids, the forward and backward prediction

*
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equations and a prediction order larger than the number of signal components

can be ased simultaneously as idvocated by Nutall [22], Ulrych and Clayton

[231, and Lang and McClellan [241. Tufts and Kumaresan have shown how one

can improve such methods of parameter estimation by going through a

preprocessing step before application of Prony's method [7,15,16,171.

The measured data matrix or the matrix of estimated covariances is replaced

by a matrix of rank M, which is the best least squares approximation to the

given matrix. If there is no prior information about the value of M, it is 3
estimated from the data using singular value decompositon (SVD).

The eigenvalue problem [371 is one area where extensive research has 3
been done and well established algorithms are available in highly optimized

mathematical libraries such as LINPACK and EISPACK [40] .The computational U
complexity of these algorithms is of order O(N 3 ) where N is the size of the 3
matrix. They solve for the complete set of eigenvalues and eigenvectors

of the matrix even if the problem requires only a small subset of them to be

computed. For the above applications,only a few principal eigenvectors and

eigenvalues are needed. Hence,we would like to use a method which uses this I
specializaticn to reduce the computations. 3

Tufts and Kumaresan [29,32,33] have suggested procedures for

improving Prony's method without computation of eigenvectors. These appear 3
to perform about the same as the more complicated approaches which use

eigenvalue and eigenvector decomposition. The approach in [29] is based on

the results of Hocking and Leslie for efficient selection of a best subset 3
[25]. The approach of [32] and [33] is based on the simple computations

which result from using the longest possible prediction interval. 3

I
1 I



tere we investigate two different approaches to achieving SV--like

Mprovezent to Pronv's method without the computational cost of actually

computing the SVD or computing all eigenvectors and eigenvalues. The idea

is to calculate the few,necessary eigenvalues and eigenvectors using the

power method 139] and a method of Lanczos [14]. Our derivation of Lanczos'

method stresses the connection with Prony's method The methods are

analyzed and their amounts of computation are calculated. Simulations are

performed and results are compared to the singular value decomposition

method in LINTACK.

II. The Prony-Lanczos Method

Let us assume that we start with a given squareHermitian matrix A for

which we want to compute the principal eigenvectors and eigenvalues. For

examples, this could be either the true underlying, population covariance

matrix or the estimated covariance matrix [36] from spatial or temporal

data. Let us also define the eigenvectors and eigenvalues associated with

the matrix A (dimension A=n).

Aui = %iui  , i =  1,2,...,.n (I)

where u*"j = 0 , i j

i "uj = 1 , i = j , that is ui are orthonormal vectors. (2)

The asterisk is used to denote a complex conjugate transpose.

'he characteristic polynomial associated with the matrix A is given by

det(A - XI) = 0 (3)

Fxpanding the determinant we have the polynomial equation

Xn Pn-l kn-1 * Po= (4)

and the roots of this polynomial will give us the eigenvalues k i of the

matrix. We briefly summarize the procedure for obtaining the eigenvalues Xi
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based on the Lanczos *power sums' as presented in [14]. We shall show that 3
the eigenvalues can then be obtained from the power sums by Prony's method

[13]. 3
Let us select a starting vector bo. We assume that the starting vector

b. has a non-zero projection on the eigenvectors of the matrix A

corresponding to the eigenvalues that we want to compute. 3
We then analyze the vector bo in the reference system of the vectors

{uj), which are the set of orthonormal eigenvectors of the matrix A: 3
wo =  1 ' + 2 Y2 "n Pn (5)

where m

IC= Rib (6)

Hence, using equation (1).successive vectors formed by premultiplications

of bo by powers of the matrix A can be represented as follows : 3
= Abo =

n1 
+ T2 X2 12 +  + Tn Xn an

2 = A-2o - Abi = CIX2 X 1 
+ C2 X22 22 + " " n 2 

Un (7)

I
S Ak bo = Abk =  ,X k + k +  " + Tn Xk

Let us form the set of basic scalars:

cl+k = i Ilk bIk* bi (8)3

Then we shall have:

ck = I.112 Xlk + l 21 2 %2k + • + ITnl2 Xnk =o Ak b. (9)

which were called by Lanczos the 'weighted power sums' [14] .

The problem of obtaining %i's from the ci's is the "problem of weighted I
moments' [14]. That is the problem of Prony [12] and the old and modern

versions of Prony's method can be used to estimate the ki's.

The prediction-error-filter equations of Prony's method can be written 3
as follows: m

4



cg ° + C + + - c =0
n-1u-1 n

C + c 2 g 1 +. . c 0
clg o  Cngn-1 cn+ 1

(10a)

cng° + Cn+11 + + C 2n-lgn_1 + C
2 n 0

or in matrix form,

C " I = 0 (10b)

A non-zero solution is possible if the determinant of C is zero.

From the theory of Prony's method [133

g(k1  = % n + kn- + . . . + g, ki + go = 0 II)

hence the polynomial coefficient vector g is also orthogonal to the vector

(1 X i ki
2  .Xik)T where %i's are the eigenvalues of the matrix A.

Lanczos noticed that Prony's method can be simplified if we substitute

the sequence [1 X i ki
2 . . . kin)} for a row of the matrix C to form a matrix

C'. If we replace the matrix C by C' in (10b), the non-zero vector I is

still a solution, because of (11). Hence the determinant of C' must be zero.

1 n

det C' =
co  c1  c2 2 cn

= p'(X.) = 0 (12)1

c n 1 c n. . . . . . . c Z -n..............C2n-i

Hence, the X•'s can be obtained directly by finding the zeros of the

polynomial p'(z). That is, Lanczos showed that it is not necessary to first
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solve equations (10) for the prediction-error-filter coefficients. 3
Thus, in the absence of noise, we know that entering the weighted power

sums ck of (8) in equation (12) and finding the roots of the resulting I
polynomial will provide us with accurate estimates of the true eigenvalues 3
X i of the covariance matrix A. Note also, that equation (12) can be

reduced to a 2nd order equation involving only co, cl, c2 , c3 and still 3
provide us with accurate solutions for our problem of estimating one or two

sinusoids. I
Now, if our data is composed of one or two complex sinusoids, then the

(LxL) covariance matrix elements will be also one sinusoid or a sum of two

sinusoids, hence the rank of the matrix will be one or two,respectively. 3
The eigen-decomposition of the matrix will show that it has only one or two

non-zero eigenvalues and hence it can be characterized by a linear

combination of one or two eigenvectors, corresponding to the principal non-

zero eigenvalues. In Appendix A it is shown that these eigenvectors can be

expressed as a linear combination of complex sinusoids which have 3
frequencies equal to these of the sinusoids composing the data.

Now,suppose that we have accurately determined a few eigenvalues,say

two,X1  and X2 ,from the (nxn) matr 4x A. We wish to determine the

corresponding eigenveutors. Two concepts are used : (a) premultiplication of I
a vector by the matrix ( A-Xil ) removes the ith eigenvector component of 3
that vector and (b) if a vector , to a good approximation,consists only of M

eigenvector components ,then removing (M-l) of these components leaves 3
one,isolated eigenvector component.

Let us consider the special case of a rank two matrix I

A = klUtl I + X2112 u2  (13)

6



F:om equations (5) and (13) we have:

Abo = '7 U1 + t2X2u2  (14)

Thenour preliminary,unnormalized estimates of the two principal

eigenvectors are :

11' = (A-X2 1)Abo 
= (A-X2 1)(TlXI!l+T2X 2u 2 ) =

= Tl1 2Ul + 2 X2 2u2 - TlY22l - T2 2 22u =

= 'Cxl( l- '2)ul (15)

And similarly for the second eigenvector estimate we have

2 = )2x2(u2-x) 2  (16)

Normalizing the eigenvectors u.' (i=1,2) we can write (15) and (16) as

' = ej'i uI ; 81= angle of tlkl()l-X2 ) (17)

2 2 = ej'2 u2  ; 02= angle of T2X 2 (X2 -X I ) (18)

in general ,given the required eigenvalues from the earlier Prony

calculation,we estimate an unnormalized k th eigenvector from the formula

uk ' = T ( A-kiI ) Abo (19)

i#k
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where the number of factors in :he product depends cn the nuriber of

significant eigenvector components in Abo. U
Finally, a few comments should be made on the selection of the starting

vector bo Our sole assumption until now has been that b. has a non-zero

projection on some eigenvector of A that we want to compute. A good b 0

vector would have to be biased in favor oi principal eigenvectors. Te

have found that the Fourier vector provides a very good selection for b0 .

This vector will have its fundamental frequency computed from the maximum

peak of the DFT data spectrum. Very frequently in signal processing 3
applications the data is preprocessed through a DFT step for a coarse 3
analysis. This is a valuable 'onus for our method to use the available

information for further processing. 3

III. The Power Method i
Suppose A is a Hermitian (nxn) matrix. The SYD theorem [37] states3

that A can be written as:

I
A = U * S * UT  (20) U

where U is a unitary matrix and S is a matrix consisting of real only 5
diagonal elements [37].

The power method computes the dominating singular vectors one at a time 3
and is based on solving the equation:

=
su Au (21)i

I
! l l I
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for the singular vector u and the singular value s. The power method uses

I an iterative scheme to solve (21). We instead suggest a two-step solution

using an appropriate starting vector b

-- 1 
=  A bo / 11A boIl (22)

The singular value is chosen to be:

sl = 11A boil (23)

In order to obtain the next singular vector, the estimated singular plane

I (Ul~lT) is removed from A using the following deflation procedure [371:

A' = A - sl L1l T (24)

and the procedure is repeated with matrix A to yield s2,E2.

The selection of b is very important and the Fourier vector provides a

very good estimate. This preprocessing step can be implemented in VLSI very

efficiently using summation-by-parts [281 or the Fast Hartley Transform

3 [42,431 methods. A necessary thing required to implement the power method

is a circuit capable of computing matrix vector products of the form Au.

But the rounding errors associated with it are always worrisome limiting the

usefulness of the power method. For this reason we propose to use the

permuted difference coefficients (PDC) algorithm [26,271 coupled with the

known Fourier vector to perform the above operation with high accuracy and

no round-off errors. A VLSI implementation for the PDC algorithm can be

3easily realized using a random access memory (RAM) toghether with a read-

* 9
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only-memory (RONI) where the original Fourier coefficients and the subsequent

reordered coefficients addresses are stored. I

I
IV. Operation count 3

In this section we calculate the total operations needed for the

singular value decomposition (LINPACK), the Prony-Lanczos method and the I
Power method.

(1). The matrix eigenvalue problem has been solved in both LINPACK and

EISPACK mathematical libraries. The LINPACK SVD routine is presented here. 3
The solution can be divided in three steps: reduction to bidiagonal

form,initialization of the right and left unitary matrices U and V and the 3
iterative reduction to diagonal form.

The reduction to bidiagonal form has the following floating point

multiplication count (for a square NxN matrix): 3

2[ N3 - N3 /31 5

Approximately the same number of additions are required. I
In the second step the amount nf work involved when only the right-hand

side matrix V is computed, is:

2N3 /3

floating point multiplies and approximately the same number of additions. 3
In the last step rotations are used to reduce the bidiagonal matrix to

diagonal form. Thus the amount of work depends on the total number of 3

10
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rotations needed. If this number is r, then we have the following

multiplication counts:

[
4Nr]

The number r is quite difficult to estimate. There exists an upper bound for

r,

r S sN2
I2I

where s is the maximum number of iterations required to reduce a

isuperdiagonal element as to be considered zero by the convergence criterion.

Hence the total operation count for the LINPACK SVD solution is:

j 2N3+4Nr . 2N3 (s+l) flops

Iwhere by the term 'flop' we denote a floating point multiply-add operation.

(2). The Prony-Lanczos method is entirely dependent on the speed of a

matrix-vector product operation . For a rank two square matrix of size N we

I shall have:

The matrix-vector multiplications to determine the vectors bi involve

I N floating point multiplications and (N-i) floating point additions per row

for a total of :

I N2 flops

I ( 2N2 flops for the two vectors b1 b 2 ). The scalar weights ci i=0,1,2,3

1 11
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require vector--vector inner products for a count of N multiplications and 3
(N-1) additions per weight . Therefore the total is:

I
4N flops I

The computation of the eigenvalues from the (second order) determinant

condition involves 12 flops and one square root calculation. Finally,the

eigenvector computation requires N flops for each vector for a total of 2N 3
flops.

Hence the total operation count for the Prony-Lanczos procedure 3
requires: g

(2N2 +6N+12) flops + 1 square root

The above computations do not include the work required to select the 3
starting vector b using a DFT analysis. In this case,assuming a data

sequence zero padded to M pointswe shall have:

U
M1og 2M flops

plus (M-) additions for the determination of the maximum spectral peak.

(3). The power method computes the dominating eigenvalues and I
eigenvectors one pair at a time . The second pair will be computed following 3
a deflation of A. In general, the number of iteration steps depend on the

convergence criterion severity . We instead claim that two-steps are 3
generally enoug o provide sufficient accuracy. The Fourier vector is again

selected as the starting vector bo. I

I12



T-he first eigenvalue/eigenvector pair requires 2N2 +2N flops. The

deflation step requires N2 flops and N2 floating point additions.

Hence (for a rank two matrix) the power method requires a total of

5N2 +4N flops

I plus N2 floating point addtions.

V. Simulation results

Let us assume that we have a data sequence which is composed of

uniformly spaced samples of two closely spaced complex sinusoids in white

Inoise. We shall follow the methods described earlier in section II & III to

3 calculate the principal eigenvalues and eigenvectors.

The data sequence is given by the equation

I
x(n) = exp(j2nfln + 01) + exp(j21f 2 n + 02) + w(n) (25)

3 with fl = 0.52Hz, f2 = 0.5Hz and for n=1, 2,...,2 5

Here, 25 data samples are used and the phase difference is AO = n/2

computed at the middle of the data set, effectively reducing the signal-to-

noise ratio in that region, thereby representing the worst case that can be

encountered. The frequency separation is less than the reciprocal of the

observation time. The data is zero padded to m=128 points and then the

1 maximum peak of the DFT is computed to yield the frequency of the Fourier

1 vector. This vector will be used as a starting eigenvector for the P-L and

Power methods later.

m We construct the forward plus backward augmented covariance matrix A of

Sm13
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I
and the Power method are employed to solve for the eigenvalues and

eigenvectors (eigenpairs) of the matrix. The P-L method and the Power

method compute only the two principal eigenpairs. The mean values and

standard deviations of the eigenvalue estimates are given in Table I for an 3
ensemble of 500 experiments. The performance of the P-L and Power methods is

almost identical to the SVD (LINPACK) method for the first eigenvalue 3
estimates. At high SNR the second eigenvalue mean and standard deviation

estimate obtained from the P-L method is biased with respect to the

noiseless SVD results. However ,at low SNR the eigenvalue statistics ,re 3
closer to the noiseless S)VD results than the other two methods.

Table II presents the statistics of the distances of the P-L and Power 3
methods eigenvectors from those of the SVD method. The distance is the

inverse cosine of the angle between the subspaces spanned by the estimated

eigenvectors [41]. The results show that for the first eigenvector the P-L 3
estimate of the mean is less biased (about one order of magnitude) than the

Power method, whereas for the second eigenvector estimates they perform the 3
same. This shows that these vectors span virtually the same subspace as the

vectors computed from the SVD method. The eigenvector estimates were also I
compared to the signal eigenvectors and the distances were computed as

above. The results show that at high SNR the eigenvector spanned subspaces

have a greater distance from the signal subspace than the SVD subspace. At 3
low SNR the distance is reduced and the second eigenvector statistics are

closer to the signal eigenvector than the SND cigenvector. I
Table III shows the CPU time required to compute the

eigenvalues/eigenvectors pairs for these methods. The P-L method is faster

than the SVD by the order of the size of the covariance matrix, which here 3

141



is 21. This roughly agrees with the theoretical operat:on count we presented

in section IV. It is almost twice as fast as the Power method. Tnclusicn cf

the FFT computation in these two methods will offset some of their speed

advantage over the SVD . Nevertheless ,the P-L method is again about one

order of magnitude faster than the SVD method and the Power method a little

more than half that (6 times faster).

The frequencies fi are then obtained from the eigenvectors of the

estimated covariance matrix by the T-K method [7]. For both estimates of

the mean and standard deviation ,as presented in Table IV,all three methods

perform similarly down to 15 db. At Odb the P-L method yields slightly

better statistics than the other two methods.

VI. Conclusion

Two methods,the Prony-Lanczos method and the Power method are proposed

for simple computation of approximations to a few eigenvectors and

eigenvalues of a Hermitian matrix. The computational speeds of these methods

were analyzed. The accuracies of the proposed methods were evaluated using

covariance matrices from data consisting of two sinusoids in a gaussian

noise environment. Comparisons were made with the corresponding eigenvectors

and eigenvalues obtained using the LINPACK mathematical library. The

suggested methods can substitute for the slower method of LINPACK if a few

eigenvalues or eigenvectors are needed.

13
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Appendix A:

In this appendix we derive the eigenvalues and eigenvectors of the i
covariance matrix R for the case of one and two sinusoids.

One Complex Sinusoid Case:

The data sequence is modelled by: 3

y(n) = a1 e 1 n , 

I
The covariance values of y(n) are:

r (~j -1
r (ij) = N y (n-i)y(n-j) i,j=1,2,...,L A)yy N-L. ..

n=L+l 3

I
Writing the covariance matrix R explicitly in terms of the signal, we have:

lall 2  lal 2 e - e 1Jia l 2 e - jW I ( L- 1 ) '

Jail2e j 1  1a112  Jal 2 -JW1 (L-2) (A.2) I

I
a 12 (L- ) fa 2

We can diagonalize R by an orthogonal matrix U resulting in the following 3

l0 3 iI
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equation:

I

* k2

U RU 2 (A.3)

0

n

The eigenvalues of R which occur along the diagonal elementsnof the above

equationsatisfy the following equation:

X. tr(R) = L 1al l 2  (A.4)

I1

I But the covariance matrix R is of rank=l, since it has only one linearly

independent row (or column). The rest are obtained by multiplying by a

I _+± l

constant number 
(e ).

I
Then the eigenvector corresponding to the eigenvalue X1 = L lal1

2  -'s:

jWl 2jwl j(L-l)I T

u 1  (1 e e e 1

I i17a
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since it annihilates every row of the matrix (R-k 1 1). The constant c, can

be determined from the fact that the matrix U is orthonormal, hence:

I
UU

which yields: 3

I
1I

I

Hence finally:

I"

VU 1  - (I eJW e 2e ) (A.5) 3

and this is a Fourier vector with fundamental frequency wi" 3
Two Complex Sinusoids Case:

The data sequences is modelled by:

I
U
I

18
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I J~~in '2

y (n ) = a e + a 2  n n = 1,2 ..... .. (A .6)

I
3 The covariance estimates are given by the expression:

I
N

-- = e (A.7)

( m n=L+l

I aea JW2 (m-) *

+ la212e + aIa 2 v 1 + a2a1 2 ,k,m= 1,2...,L

where:

1 jw1 (n-m)-jw 2 (n-k)

n=L+l

Se jw2 (n-m)-jw 1 (n-k)v2 - ---2 e

I n=L+l

Rewriting the matrix R, we have:

R = M1  NI2  
(A.8)

3 (Lx2) (2xL)

where:

19
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M, [1a,1 2  + xe2 ja 2 12 e2 + x 3 e

2 j

1 [ eJl e2 Jw1  e(L-31T

e2 [1 ew 2  eZj 2  ej(L-1)w 2 T

and

I
a 1 a 2  j(W 2 -W1 ) N 3J 2-W1)n

- N-L e e

n=L+l 3

I
If u is an eigenvector of R corresponding to eigenvalue ki ,  then:

XMI21 = (A.9) I
Premultiplying by M 2 , we have: 3

M2MIM22 1 = XI M2 u1 (A.10)

Thus kI is also the eigenvalue of M2 M1 and the corresponding eigenvector is:

i1 = M2 I (A.11)

Premultiplying (A.1O) again by M1  I
MIM 2M1V.1 = X1MlV1  (A.12) 3

and comparing (A.10) with (A.12)

R1 = MI1v (A.13) 3
Thus we can find the eigenvalues and eigenvectors of R by working with the

matrix M2M1 which is of order 2. Hence: I

2
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M21  LIalI xg g1 - Lx1

I (A.14),
jal g Lx Lja 2 1

where

L-1 j(w - w )n L-1

n=O n=O

The eigenvalues X, and X2are found to be:

k= 1/2CLlal 12 + Lja 2 12 + 2Re~xgl + ((LaI 2 + Lja 2I12+ (A.16)

2Refxgl)2-4(L2 - Jgl2(Ia1I2 ja2 12-IxI2

X= 1/2(Lial1
2 +- Lja 2 12 + 2Refxgj~ - ((Llail2 + Lja2 12 + 2RefxgJ2 ) -

4(L2 - jgj
2 )(ja 1~2 a2 1

2 
- Ixt2 n )1 /2

where

fa a ICos -N-_2)Aw -sin NLAwi sin w

Refxg) = Re 1 2 2 2 A 2 (A.17)
2(N-L) sin 2

Note that a column of the adjoint of (M2M1-x11) gives the cigenvector v, of

M2M1.
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Adj (M 2M 1- k I) (L -a 1 i g) I 1 x*

-1jalI2 g-Lx (L Ia2 l + x g)-

Therefore the eigenvector v, is :vl 1 vl [ v11  2 1 TI

or vi [(LfalI12 + xg)-X1  -ia ISLx]T (A.19)

Now the eigenvector ul of R corresponding to %,is:

l M Ivi

and hence,

Il=vi1 (tal 2 el + xe2) + v2l(fa2 12 e2 + x* el). (A.20)

a linear combination of the Fourier vectors iiand e2 ,

Similarly, the eigenvector u-Z of R corresponding to X2is:

22=vii' (la112 el + ,12) + v2i'(laZ 2 .2 +x*el) (A.21)3

where vl Evll' v2jr]T

and3

Vili (L~a,2 1
2 + x'g*)-X 2  (A .22)

V 2 1 , j21 g - Lx I
The rest of the eigenvalues of R are zero and the corresponding eigenvectors3

are not unique.
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I
I

S \' SVD P-L pM!

mean= 22.0357 22.0126 22.0174

ist.dev= 0 0 0

22.0636 22.0423 22.0353

30 0.2652 0.2655 0.2642

22.0341 22.3182 22.2957

15
1.4927 1.4936 1.4892

28.8561 28.5285 28.5425

8.6489 8.7576 8.7477

I Eigenvalue estimate k1

U
3 1.7107 0.5741 1.7131

0 0 0

1.7162 0.7504 1.7199
30

0.0497 0.3777 0.0498

1.8634 1.0327 1.8677
15

0.2856 0.5357 0.2884

10.5379 1.6797 7.3859
0I 2.7981 1.2625 2.6301

Eigenvalue estimate

I TABLE I

I
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I

S'\R SIMP-L SVDP51

mean 0 0.4770 -4

st.dev 0 0 1
0.6980 -5 0.5819 -4

3 A
0.1938 -4 0.7575 -4

0.2775 -4 0.1991 -3

15 0.5746 -4 0.1606 -3

0.5305 -2 0.5932 -2 3
0.1019 -1 0.1035 -1

First Eigenvector Distances i

0.3917 -4 0.6169 -4 3
0 0

0.1744 -3 0.3283 -3

30
0.1162 -3 0.2850 -3 I
0.4618 -2 0.2055 -2

15 0.3682 -2 0.1110 -2 i

0.8243 -1 0.7146 -1

0.2614 -1 0.2938 -1 1

Second Eigenvector Distances

TABLE II i
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I
I
I

I S R ND FFT P-L PM

0.30472 +5 0.14050 +4 0.15835 +4 0.27610 i4

30 0.24391 +5 0.14119 +4 0.15859 +4 0.27793 +4

15 0.24538 +5 0.14065 +4 0.15877 +4 0.27506 +4

0 0.25819 +5 0.14029 +4 0.15874 +4 0.27568 +4

I
Computational Cost3 ( measured in time units ts,where 1 ts= 26.04166 jsec

T A B L E III

2
I
I
I
I
I
I
I
I



II

SNR SVD P-L PM

mean= 0.5000 0.5000 0.5000

st.dev= 0 0 0

0.4999 0.4999 0.4999
30

0.0013 0.0013 0.0013

0.4961 0.4952 0.4962
15

0.0157 0.0137 0.0154

0.4331 0.4620 0.4551

0.1334 0.0898 0.1082

Frequency Estimate fl

0.5200 0.5200 0.5200 1
0 0 0

30 0.5201 0.5201 0.5201 3
0.0013 0.0013 0.0013

0.5251 0.5249 0.5251
15

0.0190 0.0141 0.0190 3
0.5717 0.5613 0.5642

0
0.1184 0.0893 0.0980

Frequency Estimate f2  3
TABLE I
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