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I ABSTRACT

The second part of this study is concerned with the prediction of the response and

various instabilities found in part I to govern the elastic-plastic flexure of circular cylin-

drical shells. Sanders' shell kinematics and the principle of virtual work were used to

formulate the problem. A Rayleigh-Ritz procedure was used to discretize the problem.

The resultant nonlinear equations were solved iteratively using Newton's method. The

three types of behavior involving bifurcation into short wavelength ripples, localization

following the attainment of a natural limit load and interaction of the two were studied.

In each case the predicted response was found to be in very good agreement with the

* experimental result.

INTRODUCTION

This part of the study is concerned with the prediction of the response and instabilities in
long shells under pure bending. Of particular interest are shells with lower diameter-to-

thickness ratios (Dlt < 100 for common structural metals) whose behavior is strongly

influenced by the plastic characteristics of the material. The experiments presented

in part I, in which aluminum 6061-T6 shells were used, demonstrated that the major

deformation characteristic of the response of such shells is the ovalization induced by

I bending to their cross section. The reduction in rigidity caused by ovalization, combined

with the reduction in the modulus of the material as it goes further into the plastic range,

lead to a limit moment in the response (natural limit load instability). Thus, the first

requirement from an analysis of the problem is the capability of predicting accurately

the uniform ovalization induced by bending.

In the case of thinner shells, short wavelength rippling followed by catastrophic

collapse precede the natural limit load. The collapse is local in nature and is character-

ized by a number of "diamond" shapes as shown in Fig. la for D/t = 44 (such buckling

modes are common to thin elastic shells). The wavelength of the ripples is only a small

fraction of the diameter of the shell. The onset of the rippling can be established byI
I
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I the customary linearized bifurcation criterion (see, for example Bushnell (1981)1 and Ju

and Kyriakides (1990)' ). Study of the post-buckling behavior of a rippled shell and of

I the mechanism of collapse will require an analysis which allows the development, growth

and possible localization of such ripples.

As the shell D/t is reduced, the ripples occur at progressively higher curvatures,

which get progressively closer to the curvatures corresponding to the natural limit loads.

The collapse mode is now characterized by one sharp local kink, as shown in Fig. lb.

For even thicker shells, a limit load instability is recorded first. In the neighborhood of

the limit load, the shell ovalization ceases to be uniform. The deformation localizes in a

I region a "few" diameters long at a dropping moment. The shell collapses catastrophically

by developing a kink, as shown in Fig. 1c, in the trough of localization.

The same behavior was observed for thicker shells. However, such shells retain

significant post-limit load strength and collapse becomes progressively less abrupt (see

Fig. 1d).

Prediction of localization associated with the natural limit load requires analyz-

ing a shell which is a number of diameters long. Thus, the problem has at least two

characteristic axial wavelengths which can differ by one to two orders of magnitude.

Clearly this can be expected to complicate numerical discretization schemes. This task

is further complicated by the experimental observation that, for shells with intermediate

D/ values, the two modes of instability interact and, as a result, the analysis must have

the flexibility of addressing this interaction.

A special purpose shell analysis, capable of addressing the characteristics of the

problem outlined, has been developed. The primary objectives of the study were to

evaluate the prebuckling response of the shells, identify the dominant instabilities, the

initial postbuckling behavior of the shell and, ultimately, thc major factors which influ-

ence the onset of these instabilities. These goals can be achieved, by and large, within

the limitations of Sanders' (1963)' nonlinear shell equations, which were adopted in

( )I refers to items from part I
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Ithe formulation. The validity of the formulation will be verified by direct comparison to

the experimental results. The results will be used, in combination with the experimental

observations, to illuminate the phenomena described in part I.

IPROBLEM FORMULATION

a. Kinematics

From above the major requirements for the formulation are as follows:

1. It should be capable of modeling the ovalization of the cross section.

2. It should be capable of simulating the growth of short wavelength axial ripples on

the compressed side of the shell.

3. It should allow the deformation of the shell to localize over sections a few diameters

long, as observed in the experiments.

In view of the axial length of the localized deformation recorded in the experiments,

I Sanders' nonlinear shell kinematics will be used (mid-surface strains are assumed to be

small; rotations of normals to the mid-surface are assumed to be small but finite).

We consider a shell of radius R, wall thickness t and half length L. Points on the

shell mid-surface are identified by (0, s) (see Fig. 2a). The plane s = 0 is assumed to be

a plane of symmetry. Because the problems of interest have distinctly different length

scales, shells in categories (a) and (c) in part I will be treated separately at first.

I For algebraic convenience and easier interpretation of the crults, it is desirable

that the displacement components be measured from a circuh r toroidal reference shell

I (see Fig. 2b). To achieve this, we deform the shell in steps and use a deformation

composition scheme similar to the one used by Fabiai, (1981)' to establish the final

I strains in the shell. The initial (undeformed) circulaor cylinder can be described through

the metric tensor az (fundamental tensor) anid the curvature tensor b.o as follows

I ((a, ) = 1,2):

= ].(1)I a°l= 0 1 0 R

I3



The circular torus has metric and curvature tensors given by:

[aI] = t 0 0 ' 01 (2)

where r and 0 are defined in Fig. 2b. The membrane and bending strains in the torus,

E, and k, are related to (1) and (2) as follows:

al ="a°,3 + 2k,31 b' bo0 + ko. (3)

The circular toroidal shell is now allowed to deform further by developing additional

displacements {u, v, w} in the s, 0 and radial directions respectively. The deformed shell

is defined by
2 1~a 2 = al,3 + 2E,*,O, b~o = bla+Ki 4I~0 aa-~m~ .0~ U 1 + K./ (4)

where E*a and K, a are the additional deformations imposed to the circular torus. Their

general form is as follows (see Appendix in Sanders (1963)1):

-U 1 + RcosO u ' -VsinO + wKcos0] + 102 + 10,

E;e = I [v,6 +w] + 02 + 102,

2( + (lcs 0 1Rco0 ]IE °
6 
= ( 0os) u, 6 (±Kco0 +V~s~uKsinO] + 2

1
Ks's = I [co01s -602Ksin 0],I K~~~5  - 1~ + KRcos0 2  

i ]
62,eK;6 = 0R 0 (5)

I.* =6  1 019(1 +KR coO) + 0 2 ,s±+ 1K sin 0± + (5
2(1 +[KRcosl) 1 R

1 + KRcosO+
1

0 2 = i-)q V
01 1 1' 0( + KR os 0) +-, +uK sin 0]

1 + (1K+ RcosO)

6I=2(1+ KRcos0) 1v,,-u,6  R +uKinlOJ.

If the shell deformation is uniform along s (i.e. uniform ovalization as shown in Fig. 2c)

then u = 0 and ( ),o = 0 in (5); otherwise (5) can be used to describe general deforma-

I 4



I tions (e.g. Fig. 2d). The total deformation is given byEo i (a 2 ao  (b)

I a P3 ) and K 0 = (b,, - b). (6)

The strains eg at any point in the shell are given by

ecI = (E. + zK, 0)/(A.A0)1 A2 , A1 t 1, A2 C 1 + _. (7)

R
If the shell has initial geometric imperfections then (1) must be altered appropriately,

say to - and b, (see Appendix A), and eq. (6) becomesE.0 to a,, (a20 d 2

2 aro], K = [ba -b001 (8)

b. Constitutive Equations

The inelastic material behavior was modeled through the J 2 flow theory of plasticity with

isotropic hardening. Under the customary assumption of plane stress, the incremental

constitutive equations reduce to

= E[(1 + v)% - v&-o] + qszs-y61,- 6,

3J2[EI -] J2>0 (9)q T T2 !Et El >

0, J2  0

where s = o" - tr(it)I, J2 = -. s, E is the material Young's modulus, v the Poisson

ratio and Et is the tangent modulus. In the numerical simulations that follow the

uniaxial stress-strain response was fitted with the Ramberg-Osgood fit (eq. (3)'; data

given in Table 1') from which

1 1 3 n V 2 (10)

Bifurcation buckling calculations were carried out using the J2 deformation theory

of plasticity which historically has been shown to lead to predictions which are in better

agreement with experiments (see Hutchinson (1974)'). The incremental form of the

appropriate equations is as follows:

+ 1

I311E 1] (11)Q 3 4[1 _, I
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I where E, is the secant modulus given by

1 1 3 1 (3J2)

and (12)!1 E, 1
a " = + -f(V - )

The membrane and bending stress resultants (intensities) are obtained by integrating

the stresses through the wall thickness as follows:

S=t/2 AI 2 and M = t/2 A 1 A 2  -
f t/2 (aa) l 2  z nt/2 (A'A)l zdz (13)

c. Principle of Virtual Work

Equilibrium is satisfied through the principle of virtual work (PVW) which can be stated

as follows

I LN.,6E.0 + M.06K.0}dA =6W (14)

where A is the surface area of the shell and 6W the virtual work of the external forces.

SOLUTION PROCEDURE AND RESULTS

The shell was loaded incrementally by prescribing either the overall curvature K in eq.

(2), or the rotation 4 at s = L. As a result, 6W in eq. (14) is zero. The integrations

were performed by Gaussian quadrature. The structure was discretized by adopting

suitable expansions for the displacements {u,v,w}. The expansions adopted for each

application are given below.

a. Uniform Ovalization

In this case, ( ),, = 0 and u = 0 in eq. (5). The following displacement expansions were

used (see Gellin (1980)' and Shaw and Kyriakides (1985)'):

I N., N.,
v= R b sinnO, w= R Ea, sinnO. (1.5)

n=2 n=O
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I Typically, N, = N, = 6 was found to yield sufficiently accurate results. Seven Gaussian

integration points through the thickness and 12 in the 0 E [0, 7r] direction were used.

I Substituting (15) into (14), the PVW can be restated as follows:

I {2Rj [Np~~ + Mcq0Ka.,jjd9} bqj = 0 (6
i = 1,2,....N, + N.

I where
q = a0, al,..•.• aN,., b2, b3,..., bN. I

T .

I For each prescribed value of K, qj are arbitrary. As a result, eq. (16) yields (N, + N,,)

nonlinear algebraic equations which are solved numerically using the Newton-Raphson

method.

The kinematic relations used in the formulation of the problem allow only for

moderate rotations of the normals to the mid-surface. In order to test the adequacy

of these kinematics, moment-curvature and ovalization-curvature responses calculated

for a number of shells were compared with the corresponding results from the solution

procedure of Shaw and Kyriakides (1985)', which is based on large rotation kinematics.

For the aluminum shells used in the experiments, the two sets of results were in very close

agreement (e.g., for shell No. 9 in Table 1' with D/t = 25.3, the two limit curvatures

differed by 1.5% and the limit moment by .002%). In all cases, the ovalization induced

by bending is relatively small due to the influence of inelastic material effects. The

rotations are, in general, quite moderate and their influence is relatively small; as a

result, the predictions from Sanders' shell equations dependable.

A bigger difference between the results from the two formulations was observed

in linearly elastic shells. Such shells undergo significant ovalization prior to reaching

their limit moment. The rotations of the normals are proportionately larger and the

results from the present formulation somewhat less accurate. For example, in the case

of a shell with D/t = 200, the limit moment and corresponding curvature predicted

by the current formulation were 1.2% and 5% lower than the more accurate results,

respectively. In view of the favorable comparison observed in the elastic-plastic cases,

and of the simplicity afforded by using this type of kinematics in the analysis, it was

I 7



concluded that Sanders' kinematics were quite suitable for analyzing the problems of

interest to this study.

b. Bifurcation Analysis

I The possibility of bifurcation buckling from the uniformly ovalized state to one which

Ihas periodic waves on the compressed side of the shell was checked through the following

procedure. Following Hill (1958)' and Hutchinson (1974)', it is assumed that, at the

jequilibrium state in question, there exist two possible incremental solutions u' and u2

(u = (u, v, w)T). We denote their difference by {} which we identify as the buckling

I mode given by Rc
ti = Rcosps 1, CosnO,

n=0Nj,I = RcospsZDnsinnO, (17)
Nfi

ft = Rsinps E En cosnO
n=O

where i are measured from the same circular, toroidal reference shell used in the rest

of the formulation. Clearly, { must satisfy the PVW and, as a result

{Rj j[N.c,,jE.,j + M, z,jKO,i + N°,E83,ij + N0oEoo,,j]dsdO qiqj = 0 (18)
ilj 1, 2.... (& , + N , + N. + 2)

where A = , i=[Co, C,... CN,, D,.... DN, Eo, E.EN. T

and N O are the membrane stresses from the prebuckling solution presented in the pre-

vious section. In abbreviated form, eq. (18) can be expressed as

I £H4J =0 . (19)

If the solution tested is unique, then H is positive definite. At the point of bifurca-

tion, det H = 0. Typically, the det H is evaluated at every loading increment of the

prebuckling solution procedure using Hill's concept of comparison solid (yields lower

8



bound estimates of the bifurcation loads). In evaluating H, the J2 deformation theory

of plasticity was used to calculate the instantaneous moduli of the material. A trial

value of p = i.r/ A (A given in eq. (8)' ) was used. Once a change in sign was identified,

p and the curvature Kc were varied until the critical values AD and 1C6 were found to a

sufficient accuracy.

Bifurcation buckling analyses and results have been presented by a number of

previous investigators. Wherever possible, published results were compared with pre-

dictions from the present formulation. For example, Stephens et al. (1975)' used the

STAGS program to analyze elastic shells of finite length under pure bending. The crit-

ical moment of the longer shell they analyzed was found to be in good agreement with

the present predictions. Fabian carried out a detailed analysis of long elastic shells. His

calculations for a shell with Dit = 120 were repeated. The critical moment, curvature

and wavelength were found to be in very good agreement with the predictions from the

present analysis (difference less than 3%).

Plastic bifurcation calculations have been conducted by Bushnell (1980)' using his

BOSOR-5 axisymmetric shell analysis. An example from this work involving an elastic-

perfectly plastic shell with D/t = 55.3 was analyzed with the present formulation by

approximating the material with a Ramberg-Osgood fit with n = 200. The critical mo-

ment and curvature were found to be in excellent agreement with Bushnell's predictions,

but the critical wavelengths differed due to the approximation made in the stress-strain

response. Gellin (1976), developed an approximate plastic bifurcation analysis using the

DMV shell equations for cylindrical shells and the prebuckling stress state from his long

tube analysis (1980)'. The results presented in Table 2 of his paper wcre recalculated

with the present formulation. Good agreement was found for the thicker (D/t = 60)

of the shells analyzed (critical curvature 1.7% higher than Gellins). In the case of the

shell with Dit = 200 the critical curvature predicted by the present formulation was

approximately 4% lower than his prediction.

Figures 3 and 4 show comparisons of the predicted and measured moment-curvature

and ovalization-curvature responses for shells with D/It = 50 and 44, respectively. These

9



shells developed axial ripples prior to the natural limit load instability. The measured

and predicted bifurcation points and values are identified on the respective responses

((M = predicted bifurcation; (1) = riples first detected in exeriment). The predictions of

the responses as well as of the bifurcation points are seen to be in very good agreement

with the experimental results.

Very good agreement between experiments and predictions was obtained for all the

shells tested which exhibited bifurcation buckling as demonstrated * 1 Fig. 231. An area

of disagreement between experiment and analysis is shown in Fig. 5, where the critical

half wavelengths yielded by the analysis (AD) are compared to the experimental values

I(Aexp) for shells with 20 < D/t < 55. Th. -dicted wavelengths are uniformly longer

than those measured in the experiments. Simi 1 . bifurcation calculations, based on the

I J 2 flow theory of plasticity, yielded unrealistically high values of critical curvatures and

even longer values of critical A (consistent with results in other plastic buckling problems

S- see Batdorf, 1949). In view of this, the corner theory of plasticity (see Christoffersen

and Hutchinson (1979)) can be expected to also yield wavelengths which are longer

I than AD. This discrepancy is confirn-?d by similar measurements made by Reddy in

his experimental study of the problem of 19791. He compared his measurements with

j predictions for axially loaded cylinders (eq. (8)1) and found a similar difference between

experiment and analysis. Figure 6 shows a comparison of AD, obtained from the current

Ibending analysis, to the critical wavelength of axially loa-ed cylinders of various D/t's

(the average material properties of the aluminum shells tested, givcn in part I, were

used). It is interesting to observe that the critical wavelengths of the two problems do

not differ significantly. The value corresponding to axisymmetric buckling of axially

jloaded elastic cylinders, AE is also included. Even this value compares quite well with

the other values for the whole range of D/t of interest here.

jWe, thus, conclude that Reddy's results are very similar to ours and that a dis-

crepancy between experiment and analysis regarding the critical wavelengths, A,, does

I exist. The reason for this discrepancy is not known at this time. However, in spite of

this difference, the more important quantity of critical curvature, Kb, yielded by this

I10
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I analysis, was consistently found to be in very good agreement with the experimental

results.

c. Postbuckling Behavior and Effect of Imperfections

The post buckling behavior of the shell can be analyzed by allowing for deformations

which vary along the length of the shell. A first step in such an effort is to consider a

shell with initial geometric imperfections which are related to the critical buckling mode

obtained from the bifurcation analysis presented above. We thus consider a circular

cylindrical shell with axisymmetric imperfections defined as follows:

-aoiR cos 7- (20)

where AD is the critical wavelength of the ripples calculated from the bifurcation analysis.

(A similar study was conducted by Fabian (1981)' but in eq. (20) instead of AD, he

used A, (eq. (8)') obtained from axially-loaded elastic shells.) If it is assumed that the

axial ripples grow uniformly along the shell length, then it is sufficient to analyze a shell

with L = AD. In this case, the complete strain-displacement equations given in eq. (5)

are used with the following expansions for the displacements:

I. .A.
u = Ry:Ec,3  sinipscosjO,

i=1 j=0
N,, I dJ,

v = Rj~b sinnO+ Ry:ydcosipssinjO, (21)
n=2 i=1 j=1
N. 1w, dw

w = R acosnO+R EcicosipscosjO.
n=O i=1 j=O

where p = 7r/AD. Typical values for the number of terms found to be sufficient were

No = N= Ju = 6 and Iu = 4.

The first case analyzed was a linearly elastic shell with the following characteristics:

D = 1.250, D/t = 200, v = 0.32. The critical moment and curvature values predicted

for the perfect case are as follows:

Kb/PI = 1.74, KL/KI = 1.95,
MbIM" = 0.924, ML/M" = 0.935
AE/Vf- = 1.693,

11
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I where M" = ERt2 /(1 - v2) and AE is the half wavelength of the axial ripple bifurcation

mode. In the imperfect cases, AD was replaced by AE in eqs. (20, 21). The moment-

I curvature and ovalization-curvature responses for imperfection amplitudes of a0, = 0,

10- and 3 x 10- are shown in Fig. 7 (ovalization in valley of imperfection). As

observed by previous investigators (Axelrad (1980)', Fabian (1977)' and Gellin (1980)')

bifurcation buckling precedes the limit load instability. The post-buckling response

has a distinctly negative slope. This leads to the expectation that longer shells will

experience localized deformation following bifurcation buckling. The presence of axial

imperfections leads to a limit load instability which occurs at reduced values of moment

and curvature, as shown in the figure.

A similar study of the effect of axisymmetric imperfections on elastic-plastic shells

was conducted on an aluminum shell with D/t = 44 (see table 1I ) which is representative

of the thinner group of shells studied experimentally. The results are shown in Fig. 8.

- The main influence of the imperfections on the calculated responses is seen to occur once

the shell enters the plastic range of the material. Due to the imperfections the shell

becomes more compliant and the limit load instability occurs at a smaller curvature

than that of the perfect shell. The value of KL is seen to get progressively reduced as

the imperfection amplitude is increased. Figure 9 shows a graphical reproduction of

a calculated equilibrium state of this shell which exhibits uniformly distributed axial

ripples (generated on an image processing system consisting of a Grinnell 270 display

system coupled with a microVAX II-MOVIE.BYU data processing system).

d. Second Bifurcation

= In the experimental part of the study it was observed that the thinner shells tested

(D/t > 44) developed ripples at an increasing load. Soon after the appearance of

I the ripples the shell collapsed by developing one sharp local buckle characterized by a

number of circumferential waves as evidenced by the diamond nature of the collapse

mode shown in Fig. la. This sequence of events is reminiscent of the behavior observed

*- in the related problem of plastic buckling of axial loaded cylindrical shells (see Lee

* 12
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I(1962)', Gellin (1976), Tvergaard (1983)' and Yun and Kyriakides (1990)'). Motivated

by the experimental observations and the works on this related problem we developed an

analysis for bifurcation from the uniformly rippled state to one involving the following

buckling mode:

ti' = REEAijcos(i- )pscosjO,
i=1 j=O

10 JO

i = RJ:,Bjcos(i - )pssinjO, (22)
i=1 j=l
i4 J

fi = RZECijsin(i-1)pscosjO
i=1 j=O

where p = r/AD (i.e., it is assumed that the axial wavelength of this buckling mode is

twice that of the first one - see Koiter (1963) and Gellin (1976)).

Using the same arguments as before the bifurcation check is again

4 = 0

Iwhere
\D 0

and

q = [Alo,... AlzJ B 1 B 12 ,... O j,, Clo, Cl,... Clfdi, ]T

Bifurcation points calculated with this procedure are identified with a bold (T) in
-- Figs 7 and 8. In the case of the elastic shell the second bifurcation is found to occur

either soon after the limit load or just prior to it. In the elastic-plastic case shown in Fig.

8, the second bifurcation occurs at a curvature which is significantly larger than that

corresponding to the limit load. These critical values are significantly higher than the

curvature at which the shell collapsed and as a result it is concluded that an alternative

mechanism must be responsible for the catastrophic collapse of the shell.

e. Localization of Axial Waves

From the results presented so far, it has been demonstrated that at some curvature the

shell can develop uniform axial ripples. As a result, the overall stiffness of the shell is

!13



reduced and a limit load develops (earlier than the natural limit load). It has been shown

(see Tvergaard and Needleman (1980, 1982), Tvergaard (1983)) that structures which

exhibit such behavior tend to develop localized buckling patterns soon after the limit

load. This behavior was indeed observed in the experiments conducted. The possibility

of this occuring will be checked by considering a section of a shell containing a number

of axial ripples (L = 5AD). A small initial imperfection, tf(s), is included which provides

a small bias to the amplitude of one of the ripples. The imperfection is given by

7i = -R ai + ai cos cos ( . (24)

The displacement expansions adopted are similar to those in eq. (21) with p = 7r/5AD

and Iu = 6, Ju = 8 (45 integration points were used in the axial direction).

The ripples were found to localize. The effect of localization on the response is

shown in Fig. 10, where results from the uniform ovalization analysis, the uniform ripple

analysis and the localized ripple analysis are compared. As observed earlier, axial ripples

have a "softening" effect on the response and lead to a reduction in tKL. In addition the

moment in the post-limit load response drops at a much faster rate (limit load indicated

by (A)). (The limit load of the shell which exhibits localization occurs at a curvature

which is somewhat lower than that in the uniformly rippled shell. This is due to the

slightly larger overall amplitude of the imperfection used in the region of s = 0 as a result

of the additional effect of a1 .) The second bifurcation is now seen to occur much earlier

which may enable us to consider it as the cause of the catastrophic collapse observed in

the experiments.

Predictions obtained from this analysis for aoi = 10 - and ai = 10' are com-

pared to the experimental results in Fig. 11. The agreement between experiment and

predictions is very good. The limit load is seen to occur very close to the curvature at

which the shell collapsed (actual value of predicted limit load depends on the assumed

amplitude of imperfections). The second bifurcation follows soon after the predicted

limit load. In this analysis, the bifurcation check was applied to the central half wave

which exhibits accelerated growth of ovalization. The ovalization predicted to occur in

I the crest of the localized region is also in good agreement with the ovalization measured

-- 14



I in the experiment.

The progressive development of localized deformations in this shell is more clearly

I illustrated in Fig. 12, which shows the ovalization predicted along the length of the shell

analyzed at different values of curvature. The axial ripples are seen to grow uniformly

I up to the limit load, beyond which the central part of the shell ovalizes faster. Figure 13

shows a graphical reproduction of a deformed configuration of the shell analyzed, which

illustrates the nonuniform growth of the amplitude of the axial ripples. The central

ripple is seen to grow significantly more than the others (localization). It is of interest

to compare and observe the similarity of this picture with the experimental results shown

in Fig. 9'.

The effect of imperfection amplitude, a0i, on the response of the structure is re-

examined using the analysis which allows for localization of the axial ripples. Results

for a0 i = 0.5, 1.0 and 3.0 x 10- are shown in Fig. 14 with ai kept constant. As a0i is

increased, the value of the limit moment remains relatively unaffected but it occurs at

progressively smaller values of curvature. The values of KL are similar to those shown

in Fig. 8 for the uniformly rippled shell . The post-limit load moment is seen to drop

more precipitously than in the corresponding results in Fig. 8. In all cases shown in Fig.

14, the second bifurcation occurs soon after the limit load, which is a distinct difference

between the localized and uniform ripple results. The formulation used in this study

assumes that rotations of the normals are moderate. Thus, significant excursions into

the post-limit load regime will require higher order shell kinematics and, at a later stage,

finite deformation constitutive models.

Figure 15 shows a set of predictions obtained with this analysis for a shell with

D/t = 60.5. The experimental results are included for comparison purposes. The imper-

fection amplitudes used are again aoi = 10- 3 and ai = 10'. The major characteristics

of the predicted results are the same as those of the previous shell analyzed. However,

in this case, the second bifurcation is seen to occur very soon after the limit load. If

we accept that this is responsible for the collapse of the structure, the closeness of the

two instabilities explains the fact that in the experiments on this shell, the axial ripples

I



I were never seen to develop. The shell buckled suddenly and catastrophically.

The results presented above demonstrate the complexity of the deformation of the

shell in the post-buckling regime. The sequence of critical events which occur during

the loading history can be summarized as follows:

1. Initially, the shell exhibits uniform ovalization, which grows nonlinearly with cur-

m vature.

2. At a curvature Keb, the shell bifurcates at an increasing moment. The buckling

mode consists of axially periodic ripples on the compressed side of the shell.

3. The amplitude of the ripples at first grows uniformly along the length. The net

effect is a reduction in the rigidity of the shell, which results in the development

of a load maximum.

4. This limit load occurs at a curvature which is significantly smaller than that cor-

responding to the natural limit load instability inherent to the problem.

1 5. Following the limit load, the ripples localize and the moment drops more precipi-

tously.

6. A second bifurcation was detected to occur in the ripple with the most severe

deformation. This buckling mode is characterized by a number of circumferential

waves.

I 7. The second bifurcation and the relatively compliant nature of the prebuckling

response prior to it, are responsible for the localized catastrophic collapse observed

in the experiments.

8. In practice, ever present small geometric imperfections, which correspond to the

two buckling modes of the problem, will be amplified in the neighborhood of the

m bifurcation points calculated, with equally catastrophic results as those described

above.

I
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f. Natural Limit Load and Localization

The behavior of thicker shells has been shown, in the experimental part of the study,

to be governed by the natural limit load instability inherent to the problem. This class

of shells were found to ovalize quite uniformly up to approximately the limit moment

beyond which the ovalization localized in a region a few shell diameters long. As the

localization develops, the curvature of the shell starts to vary along the length. Thus

the formulation of the problem presented in eqs. (1)-(5) was generalized to include the

case of K= K (s). In addition, the length of the shell analyzed was increased (typical

value used LID = 9.6) to accommodate the length of the localized region observed in

* the experiments.

An approximate solution to the problem was obtained by adopting the following

* expansion for the curvature

'K O*1)
(s) = + E K - 9k] (25)

k=1

where '1(L) = V is the rotation of the shell at s = L which was prescribed incrementally.

Kk are unknown coefficients evaluated in the numerical solution and gk are constants

given as follows
gk = e- (k 2d (26)

((25) with (26) imply that 4(0) = 0 V t(L)).

In the results shown below, the shell was assumed to be free of initial imperfections.

When eq. (25) is adopted in eqs (1) to (5) the displacement components u are measured

from a shell with circular cross section and whose axis is deformed to K = K(s). The

displacements were approximated with the expansions given in eqs (21) with p =

N,, = N,, = Ju = 6 and 1u = 8. For the longer shells analyzed K = 10 and fi =

1 were used. Forty-eight integration points in s E [0, L] were found to lead to a

sufficiently accurate solution. Inspite of the specialized nature of the formulation and

solution procedure used these changes increased significantly the numerical demands of

the probem which was solved on a Cray-XMP computer.
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The moment-curvature and ovalization-curvature responses predicted through this

solution procedure for an aluminum shell with D/t = 19.5, are shown in Fig. 16 together

with the corresponding experimental results. The solution is seen to coincide with that

from the uniform (ovalization) analysis up to the limit load. Indeed the limit loads from

I the two solutions are indistinguishable.

After the limit load, the predictions from the two analyses differ significantly. The

current analysis yields a moment which drops precipitously with increasing curvature.

Correspondingly, after the limit load the values of ovalization predicted at the two

extremes of the length of the shell analyzed (see inset in Fig. 16) grow in a distinctly

different manner. At s = 0, the ovalization grows at a significantly accelerated rate

where as at s = L, it stops growing and even experiences a small decay.

A clearer view of the way and extent to which the ovalization localizes can be

seen in Fig. 17 which shows a plot of the calculated ovalization along the length of

the shell at different values of end rotation 4'. The ovalization remains uniform along

the length up to the limit load (n). Further increase in 4" leads to localized growth

of ovalization in the central region of the shell, whereas the ovalization away from the

central section remains initially unchanged and decreases for higher values of 4D. The

maximum ovalization is seen to grow to double the value in the uniform part of the

shell with a relatively small increase in 4D. The results in this figure correspond to the

experimental results shown in Fig. 231 (excluding the extreme ends of the shell which in

the experiment were constrained to remain circular due to the solid inserts used to apply

the load). Indeed, the qualitative and quantitative similarity between the predicted and

measured results is exceptionally good.

Figure 18 shows a graphical reproduction of the central part of a calculated de-

formed configuration in the post-limit load regime of the shell analysed above (the length

analyzed was 19.2D; the length shown is 11.4D). The nature of localization is quite clear

and it compares quite well with the corresponding experimental results shown in Fig. Id.

It is important to note that, in the experiments, the localization will, in general, be trig-

gered and occur in the region with the biggest imperfections (or at the ends, if the shell

18
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I is improperly constrained). As a result, in any given experiment, the position of the

localized region is more or less randomly located. The formulation used is such that

I localization is ensured to occur at mid-span (plane of symmetry). This, in general, does

not affect the essence of the predicted results. It does, however, make a one-to-one

I quantitative comparison between the measured and predicted response after the limit

load rather difficult, for the reasons explained in part I. The case presented in Fig. 23'

I is an exception, as the shell localized very close to mid-span.

Another problem whose behavior is governed by a natural limit load instability

is that of inflation of a long tube which bulges in the neighborhood of the limit load.

Kyriakides and Chang (1990) demonstrated that the post-limit load behavior of such

a tube, and other structures belonging to the same family, is significantly influenced

by the length of the structure. The main reason for this sensitivity is that, with the

onset of localization, part of the structure continues to deform even though the load is

dropping. At the same time, the part of the structure away from the region of localized

deformation experiences unloading. Thus, the overall behavior is influenced by the ratio

of the lengths of structure undergoing increasing and decreasing deformations.

The effect of the length of the shell on the calculated response of the present

problem will be examined through an example involving an aluminum shell with D/t =

25.3. We first consider the response for a case with 2L/D = 25.6. In order to illustrate

the effect of localization on the behavior of the structure the local moment-curvature and

moment-ovalization responses calculated at s = 0 and s = L (identified as points I and

I II respectively) are compared in Fig. 19. The responses at the two points remain the

same until the limit moment is reached. Beyond the limit moment, the deformation in

the mid-span area of the shell grows at a rate which is faster than that of the uniformly

deforming shell. At the same time, the end of the shell starts to unload as shown in the

figure. The unloading quickly becomes essentially elastic, indicated by the steep slope

of the response at s = 0 in both figures. The overall Al - 4) and AD - 4" responses of

this shell are shown in Fig. 20. The post-limit load moment is seen to drop at a much

faster rate than the uniformly ovalized shell.
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Similar calculations were performed for two additional shells with lengths of 2L/D =

19.2 and 12.8. The results are also included in Fig. 20. The moment-curvature and

ova ization-curvature responses of the three shells are seen to be independent of the

length up to the limit moment. Beyond the limit moment the deformations of all three

shells localize as evidenced by the different ovalizations recorded at the mid-spans and

at the ends of the shells. Figure 21 shows detailed plots of the ovalization along the

length for the shells with 2L/D = 25.6 and 12.8 for various values of I" > 'P. The two

sets of results shown were selected to have approximately the same values of maximum

ovalizations (i.e. they correspond to different values of V'). The length of the shell ex-

periencing localization, in the deformation regime shown, is approximately 9 diameters

for both cases. In fact, the overall geometries of the localized regions of the three shells

are very similar indeed. We thus conclude that the detailed deformation and the length

of the localized region are governed primarily by local equilibrium and not by the overall

length of the shell.

However from Fig. 20a it can be seen that the overall post limit load Al - V

response of the shell is significantly affected by the length of the shell. As the length

of the shell increases the moment drops at a much faster rate with V. This has a

corresponding effect on the deformation in the localized region as shown in Fig. 20b.

This difference can be explained as follows. It has been shown that the length of the shell

undergoing localization is approximately the same for the three cases. Thus, the length

of shell which remains uniform in the case with 2L/D = 25.6 is longer than that with

2L/D = 12.8. As the moment drops the uniform section(s) undergoes unloading even

though the net end rotation increased. Thus, the increase of deformation in the localized

region depends on the increase in the end rotation and on the amount of rotation caused

by the unloading of the uniform section. For the longer shell, the the second component

is larger and, as a result, a smaller end rotation is required to deform the localized

section.
In order to illustrate this point further, a series of additional shells with lengths of

2L/D = 51, 102, 205 and 410 were analyzed in the following approximate fashion. The

20
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shell with length of 25.6 diameters is clearly long enough for the response of its ends to

be assumed to be unaffected by the localized deformation which takes place at mid-span.

Thus, the response of the end of this shell was assumed to be also representative of the

response away from the localized region of longer shells. This simplification was used to

calculate the M - 4" response of the long shells given above. The results are shown in

Fig. 22. As L increases, the post-limit load response drops more precipitously. For very

long shells, the M - 1* response turns backwards. Clearly, in such cases, even under

curvature control conditions, the shell will fail catastrophically upon reaching the limit

load by folding into two sections.

g. Behavior of Shells with Intermediate D/t Values

In the experimental part of this study it was shown that aluminum 6061-T6 shells

with 28 < D/t < 40 exhibited rather complex behavior which involved short wave

ripples as well as localized deformation which extended over a length of a few shell

diameters. The ratio of the characteristic lengths of the two events was approximately 20.

Thus numerical modeling of the problem became more cumbersome. The formulation

presented in eqs (1)-(5) was used to approximately analyze a shell with half length

of LID = 9.6 and Dit = 35.7. The shell was assumed to have an initial geometric

imperfection as follows:

fv = -R ai cos T- e  
(=')+djicos-c (27)

For the case analyzed f = 3.2D was used. The shell was discretized through the following

series expansions for the displacements

I. . irs VrS )' COS (*

u = RZL cisin L-cosj0+ R- L-- ciZ sin 5AD - 5 -)cosj0
i=1 j=0 i=1 j=O
N, I J ir

v = RZblsinnO+RZZ djcos -L-sinjO
n=2 i=1 j=1

1. 4I irs -0 r-) si j
+ +REE -i -e sin J0
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I

w = Rj:anacosnO+ Rjj-e jcos---cosjO
n=O i=--1 j=0

1. J. i rs

+REE ijCos-e' Cos jo (28)
i=1 j5O

The curvature K(s) was again represented through expressions (25) and (26). The fol-

lowing number of terms were used in the series expansions above Nu = Iu = Ju = 6,

iu = Ju = 8 and K = 5. Ninety integration points in s E [0, L] were used and dis-

Itributed unevenly along the length. The problem was again solved by prescribing the

end rotation V. The amplitudes of the initial imperfections used were a1 = .5X 10- 3

and ai = .5x 10-. The nature of the imperfections as well as the displacement functions

adopted allow the growth, localization and possibly the interaction of short wavelength

I ripples and long wavelength instabilities. A set of results are shown in Fig. 23. The

results from the uniformly deformed shell are included for comparison purposes. The

I presence of the small imperfections has relatively small effect on the predicted response

up to the first bifurcation point (indicated by "T"). In the neighborhood of the bifurca-

1 tion point the amplitude of the short wavelength ripples start to grow. The bias provided

in the imperfection is amplified and the growth of the ripples localizes. This is demon-

I strated in Fig. 24 in which the ovalization along the shell length is plotted for various

values of end rotation -t. A moment maximum develops and the shell response starts

I to decay precipitously. Prior to the limit moment a second localization phenomenon

which involves a few diameters of the shell on either side of the rippled section is seen

to occur in Fig. 24. This is similar in nature to what was observed experimentally in

Fig. 17'. As in the case of the thinner shells analyzed earlier a second bifurcation point

was identified in the largest of the short wavelength ripples soon after the limit moment

as shown in Fig. 23. This is again similar qualitatively at least to the experimental

results. The limit load predicted is seen to occur at a much smaller curvature than that

I predicted for the uniformly ovalized shell. Quite clearly the rotation 4i corresponding

to this limit load should be considered as the maximum allowable value for such shells.

IThe results presented indicate that short wave ripples are again the triggering
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mechanism for the sequence of events that follow their onset.
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I

NOMENCLATURE

a,,o metric tensor components

a,, aN, di imperfection ampitudes

bc, curvature tensor components

Eq, Ko membrane and bending strains on shell middle surface

M,,,3, No moment and stress resultants

R shell radius

{s, z, O} coordinates

{u, v, w} displacements

it bifurcation mode

I i(s, 0) initial imperfection

) " angle of rotation at s = L

I(P value of 4D* at limit moment
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I APPENDIX A

m The metric and curvature tensors of a circular cylindrical shell of radius R with an initial

geometric imperfection given by tv = tf(s, 9) are as follows:
m 1 + i-2, Rw,S J),,9

26i t7,2 (A.1)

I-I3 b =R (A.2)
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