DiZisteo g SiATEMENT A

AD-A242 793 o
LR OTIC

NASA Contractor Report 189047 o, ©1 pere
ICASE Report No. 91-79 Q‘%m“

y HOVZ 61991 4

q 0, # k
G
OPTIMAL PROCESSOR ASSIGNMENT FOR
PIPELINE COMPUTATIONS

David M. Nicol
Rahul Simha

Alok N. Choudhury
Bhagirath Narahari

Contract No. NAS1-18605
October 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASA 91-15743
Soon Ao AR

Langley Reseqrch Center
Hampton, Virginia 23665-5225

Approved for public releasse;

Distribution Unlmited

¥ 1115 959

OPTIMAL PROCESSOR ASSIGNMENT
FOR PIPELINE COMPUTATIONS

David M. Nicol* and Rahul Simha
College of William and Mary

Williamsburg, VA 23185 _ Acosasion For

t NTIS GRAI N ,

Alok N. Choudhury j DTIC TAB §

) . Unanaornaeed 0 :

Syracuse University Justirieation :
Syracuse, NY 13244 H :

! By l

Bhagirath Narahari Digtrivution/ |

George Washington University oot
) Avail and/or
Washington, DC 20052 iDist Special

DA

ABSTRACT

Avallability Codesn

The availability of large scale multitasked parallel architectures introduces the following
processor assignment problem for pipelined computations. Given a set of tasks and their
precedence constraints, along with their experimentally determined individual response times
for different processor sizes, find an assignment of processors to tasks. Two objectives interest
us: minimal response given a throughput requirement, and maximal throughput given a
response time requirement. These assignment problems differ considerably from the classical
mapping problem in which several tasks share a processor; instead, we assume that a large
number of processors are to be assigned to a relatively small number of tasks. In this paper
we develop efficient assignment algorithms for different classes of task structures. For a p
processor system and a series-parallel precedence graph with n constituent tasks, we provide
an O(np?) algorithm that finds the optimal assignment for the response time optimization
problem; we find the assignment optimizing the constrained throughput in O(np®logp) time.
Special cases of linear, independent, and tree graphs are also considered. In addition, we
also examine more efficient algorithms when certain restrictions are placed on the problem
parameters. Our techniques are applied to a task system in computer vision.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering, NASA Langley Research Center, Hampton, VA 23665-5225.

1 Introduction

In recent years much research has been devoted to the problem of mapping large computations onto
a system of parallel processors. Various aspects of the general problem have been studied, including
different parallel architectures, task structures, communication issues and load balancing [11, 16].
Typically, experimentally observed performance (e.g., speedup or response time) is tabulated as a
function of the number of processors employed. We are particularly interested in tabulations of
response time, which we will refer to as response-time functions. Our work is also motivated by the
growing availability of multitasked parallel architectures, such as PASM [37], the NCube system
[18], and Intel’s iPSC system [7], in which it is possible to map tasks to processors and allow parallel
execution of multiple tasks in different logical partitions.

In this paper, we consider the problem of optimizing performance of a task structure on a
parallel architecture, given a large supply of processors, and the experimentally determined response
time functions for its constituent tasks. The task structure describes the sequencing of various
computational activities (tasks) that are to be applied to each of many data sets; the data sets
themselves are pipelined through the task structure. We refer to this class of computations as
pipeline computations. This problem arises in data parallel applications such as the computer
vision example we consider in this paper, when individual tasks, e.g. a fast Fourier transform,
are highly parallelizable. Unlike piior treatments of the mapping problem we are interested in
the case where there are many more processors than tasks. Rather than ask which tasks must
share a processor, we ask how many processors each task should be allocated. YWe are interested
in both the response time of the task structure on one data set, and in the throughput (data sets
processed per unit time). We consider the dual problems of minimizing response time subject to a
throughput constraint, and maximizing throughput subject to a response iime constraint. These
problems are complimentary, in the sense that allocation to increase throughput may have the side
effect of increasing response time, and vice versa.

Under the assumption that the constituent task response time functions completely characterize
performance, we show that p processors can be optimally allocated to an n-node scrics-parallel task
structure in O(np?) time. We study separately the special cases of lincar, and tree structures and

show a O(np?) procedure; we also consider response time function characteristics such as convexity
which are exploited to achieve even moie efficient algorithms. Our methods are applied to the task
of motion estimation in a computer vision system; we prescnt several experimental results for both
the response time as well as the throughput problem.

The problem of mapping workload to processors has attracted a great deal of attention in
the literature, leading to a number of problem formulations. One often views the computation in
termns of a graph, where nodes represent computations and edges represent communication; for an
example, see [2]. In this case, mapping means assigning each node (task) to a processor. One view
of the mapping problem is that the computation graph represents a distributed program, with 1
serial thread of control. Tasks have different affinities for different heterogencous processors; the
problem is Lo assign tasks to processors so that the total sum of execution times (of all tasks)
and communication costs is minimized. Fundamental contributions to this problem are made in

[4, 39, 41]. Iowever, the objective function for this problem does not capture any parallelism among
the tasks. Another mapping problem formulation views the architecture as a graph whose nodes
are processors and whose edges identify processors able to communicate directly. The dilation
of a computation graph edge (uv,v) is the minimum distance (in the processor graph) between
the processors to which u and v are respectively assigned. The dilation of the graph itself is the
maximum dilation among ail computation graph edges. Dilation is a measure of how well the
mapping preserves locality between nodes in the mapped computation graph. Results concerning
the minimization of dilation can be found in [8, 19, 32, 36], and their references. Yet another
formulation directly models execution time of a data parallel computation as a function of the
chosen mapping, and attempts to find a mapping that minimizes the execution time. Workload
may again be represented as a graph, with edges representing data communication. Nodes are
mapped to processors in such a way that each processor’s workload is approximately the same, for
example, see [1, 5, 24, 33, 35]. Formulations using simulated annealing or neural networks attempt
to minimize an “energy” function that heuristically quantifies the cost of the partition [6, 17].
Other interesting formulations consider mapping highly structuied computations onto pipelined
multiprocessors [25], and mapping systolic algorithms onto liypercubes {22]. The problem we study
is distinctly different than these, in that it sceks the assignment of multiple processors to a task,
rather than multiple tasks to a processor.

Recently, some studies consider the scheduling of tasks on multitasked parallel architectures
where each task can be assigned a set of processors. The objective in such work, for example
in [3, 13, 27], is to find a schedule that minimizes completion time. A fundamental difference,
between the processor assignment problem studied in this paper and the above scheduling problems,
is that scheduling formulations allow tasks to be queued or sequenced. In contrast, the nature
of pipeline computations recommends assigning at least one processor to cach task: executable
images which would be swapped into main memory for each data set under scheduling, would
remain in main memory under our assignment formulation. The problem of assigning processors
to a set of independent tasks where each task is a chain of modules is considered in [10]. This
differs from our problem, as ncither response-time functions nor task precedence is treated. In
other formulations, each task requires a specific number of processors; in this case, the problem of
scheduling tasks on a partitionable hypercube or mesh connected architectures has been studied
(9, 14, 23, 29]. Pipeline computations are studied in [25, 38]. In [38], heuristics are given for
scheduling planar acyclic task structures and in [25], a methodology is presented for analyzing
pipeline computations using Petri nets together with techniques for partitioning computations. We
have not discovered treatments that address optimal processor assignment to pipeline computations,
although our solution approach (dynamic programming) is related to those in [d] and [41].

This paper is organized as follows. Section §2 introduces notation, and formalizes the response-
time problem and the throughput problem. Section §3 develops some preliminary results about
response time functions that will be used throughout the paper. Secction §4 closely examines two
response-time problems associated with linear arrays of tasks, and Section §5 applies these results to
tasks structured as trees or more general serics-parallel graphs. Section §6 shows how the problem

Number of processors
tasks| 1 2 3 4 5 6 7 8
b | 29)16 |1 |9 | T |6 |[45]4
o (40121 |14 |11 |85(|8 |7 |5
t3 |10]55(134|3 |25|2 |15]2
t4 20112 110 ;9 |8 |7 |6 |5
ts |15)10 |8 |5 |4 ;35;3 |25

Table 1: Example of Response time functions

of maximizing throughput subiect to a response-time constraint can be solved using solutions to
the response-time problem. Section §7 discusses application of our techniques to actaal problems,
and Section §8 summarizes this work.

2 Problem Definition
A pipeline computation is a quadruple P =< K, T, F, G > where
o I ={1,...,p} is a set of identical processors.

o T = {t1,...,tn41} is a set of tasks labeled such that ¢; i3 always the first task and £, the last
task executed on each data set. We will assume that the last task ¢,49 is a “dummy” task
that requires no processing—it 1> used for conveunience of notativu in the graph G, described
below.

o F'={f1,., fas1} is a collection of response-time functions f, : K — IR* for each task. For
notational convenience we assume that f;(0) = oo for all i = 1,...,n. We also assume that
fa+1(z) = 0 for all z, so that no processors need ever be assigned to the dummy task. It
is often convenient to think of the discrete function f, as a table, a format we shall use in

this paper. Later, we will also use I" to denote the responsc time functions for a whole task
structure.

o G =(T,L)is a directed acyclic graph (DAG) describing the precedence relation for the tasks
in T. Thus, (t;,;) € E if ¢; immediately precedes ¢;.

An example of response time table for n = 5 and p = 8 is shown in Table 1. Each row of the
entire table is a response time function for a particular task. In the coutse of the paper we will be
constructing examples to demonstrate the use of our algorithuns for vatious graph structures; these
examples will use the response time functions in this table.

Our definition of a pipeline computation extends carlier definitions {25, 38] to include the em-
pirically determined response-time functions. Observe that f,(L) may include the communication
costs inherent in executing ¢, on k precessors, as well as the communication costs £, .ay suffer

communicating with predecessor and/or successor tasks in I'. This paper assumes that all.perfor-
mance dependencies on communication are captured in the response time functions. Our problem
forinulation does not therefore attempt to deal with any issues related to “matching” the task
structure topology to the arcliitecture topology. It implicitly assumes that performance is indepen-
dent of which processors aie assigned to a task. These assumptions are reasonable when the cost
of communication is largely independent of the distauce between cominunicating processors (as is
the case with the Intel iPSC/2 [7]), and the communication baudwidth is sufficiently high for us to
iguore effects due to contention between pairs of communicating tasks. They are also reasonable
for compute-bound applications, for which load-balancing of the type we study is a major concern.
The computer vision application we later consider is compute-bound.

Let A: T — Z denote a feasible assignment of processors to tasks such that 3o, A(t,) < pand
A(t,) > 1{or all ¢, where 1 £ i £ n. Observe that we do not rcquire all p processors to be assigaed,
as it is possible that increasing the number of processors used actually hampe.s performance. In
addition, observe that each task must be assigned at least one processor; this cond;tion clcarly
differentiates between an assignment and a schedule.

For a pipeline computation P and assignment (mapping) A, define the following:

o 5(P, A) = maxici<a fi(A(L,)), the largest response time, under A, ainong all tasks.

o A(P,A) = S(P,A)"1. We will later argue that this quantity is the maximal throughput
under assignment A, i.c., the maximum rate at which successive data sets can be precessed
by the task system.

o L = {l|lis a path in G starting from ¢; ending in £,41}. L is thus the set ¢ all -complete
paths through G. We will write each ! € L asa set {iy,...,it}, 41 = Lir = n+1,1 < k < n+1,
with [consisting of the edges (ti,,1i,), .-, (tiy_y» k-

o R(P,A) = maxier 3 e1 fi(A(t:)), the “length” of the longest path through G. R(P, A) is
thus the total time required to execute one data set, i.c., the response time.

With these definitions we formulate two problems.

Response time problem:

Given a pipeline computation 7 and throughpni requirement A, find a1 assignment
A* such that A(P,A) > A, and R(P, A*) < R(P, A) for every fzasible assignment
A which satisfies A(P, 4) > A.

We are also interested in determining how the optimal response time R(P, A7) behaves as a
function of p, the maximum number of available processors. In other words, we are interested
in obtaining the response time function for the entire computation P: the values of R(P, A*) for
diffeient values of p. We will call this 7's optimal response time function, or sometimes simply the
response lime function (the optimality being understood).

4

R~ W -

Throughput problem:

Given a pipeline computation 7 and response time requirement p, find an assignment
A" suck that R(P, A) < p, and A(P, A™) 2 A(P, A) for every feasible assignment
A which satisfies R(P, A) < p.

The response time problem arises when we have a steady stream of input data arriving at 2 fixed
rate and the system must complete processing each data set as soon as possible. The throughput
problem arises when there is flexibility in the amount of time it takes to process one data set
but the {hroughput must be maximized to liandle high input data rates. Both conditions appear
in real-time applications. Our approach will be to focus first on the response-time problem, for
different task structures; in Section §6 we then show how solutions to tle response time problem
can be used to solve the throughput problem.

3 Preliminaries

Much of this paper is devoted to the issue of decomposing a large task structure into a set of smalier
task structures and constructing a response time function for the large structuie fiom 1espunse time
functions for the smaller structures. This is accomplished by first separately studying algorithums
for handling simple task structures such as tasks in scries and tasks in patallel. Then more complex
task structures such as trees and series-parallel graphs are treated by decompuosing the optimization
procedure to handle series and parallel components of the overall task structure.

Given x (z £ p) processors and a task structure consisting only of two tasks 2, 1>, with response
time functions f, f, we wish to determine y such that assigning y processors to £; and z — y to
15 satisfies the throughput requirement and minimizes the overall response time. If we tabulate
this minimal response time for cach value of x, then we obtain a response time function for the
aggregate of {; and {;. Note that this function captures optimality and is thus an oplimal response
time function. In general, giver a set of task structures {Py,..., P}, whereforj=1,...,m, P, =<
K,T,, F,,G, >, we extend the notion of response time function for a single task to a response time
function for an entire pipeline computation; let F; : Z — JR be the response time function for P,
i.e., F(x) is the optimal response time achieved for P, using 2 processvrs. Suppose also that we have
an m-node graph G that describes a precedence relation on {Py,...,Pn}. We may view cach P; as
an arvitrary task, even though P, may itself have a complex subtash structure. We wish to construct

throughput constraint A. We accomplish this by solving a number of response-time problems: for
every 2 € 1, p] processors, we determine the minimal response time h(x) achievable by allocating no
w.ore than x processors among the task structures P, in such a way that the throughput requirement
is satisfied. A(z) becomes the optimal response time function for @, which now can be treated as
a task itself with a known response-time function.

We arc interested in properties of optimal response time functions that are conserved through
such an aggregation procedure. Two questions are particularly imporiant: (i) what is the minimum

number of processors needed for Q to meet the throughput constraint, and-(ii) what is the maximum
number of processors that Q should be allocated? The auswer to the first question is straightforward
whereas the answer to the second requires additional analysis.

First consider the throughput constraint question. Let u(7;) denote the sninimum number of
processors P, must be allocated in order to meet throughput constraint A. For a single task ¢,,

ua(L:) denotes the minimum that must be assigned to task &, i.e, ua(t,) = mingz {k: £i(k) < A71}.
Observe that any distribution of tasks to Q must assign at least u\(P,) processors to P, if Q is to
meet the throughput requirement. As this is true for each P, it is clear that

un(@) > iu,\('l"j)- (1)
i=1

This is true regardless of the structure of Q. It is also true that if every P, is allocated uy(P,)
processors, then Qs throughput is at least A. One need only perform an easy induction on the
number of nodes in the precedence graph to establish that Qs throughput is the inverse of the
maximal response-time among all tasks in @. This shows that the inequality in equation (1) can be
reversed, thereby implying cquality. Thus, the rule for computing minimal processor requirements
for Q is simple, and general: add the minimal requirements of Q’s constituent tasks.

To answer the second question, especially when Q is complex, we need to manipulate the
functions so that certain conditions are satisfied. For a response time function f(z), define the
reduced response time function f(z) as:

J(z) = gmin_{£()}

Note that f is monotonically decreasing (non-increasing), whereas f need not be, and can be
defined both for single tashs as well as for whole computations by using the appropriate response
time function. In seve;al applicadons, increasing communication .osts when a large number of
processors is used can force 1esponse times to increase with increasing &. In general, we would
like to ticat response time functions that behave arbitrarily (exhibit scveral local minima) with
increasing . The adjustinent above will prevent assigning “too many™ processors. A processo
assignment z is called reducible if 3y < z : f(y) < f(x). It is otherwise irrcducible. For obvious
reasons, we seek irreducible assignments. In the example in Table 1 the response time for task ¢3,
i.c., f3(z), can be reduced while all other functions cannot. After the adjustment, we have the
reducad response time function with f3(S) = 1.5 which assigns only 7 processors to task 3.

We neat derive sume propertics of reduced response time functions that we will later use in our
algorithins. Consider first a simple case of two clemental tasks ¢; and £, and their aggregate, s.
Suppose fi(z) and f2(z) arc the response time functions for ¢; and £, and /[(z,,.c2) is a real-valued
function increasing in both arguments. Define

Js(z) = ol<"yi'5‘: {H(H1(v), Jo((z ~)} - (2)

6

Here f; is the optimal response time function of the aggregate task s, written as some function of
the response time functions of ¢; and ¢,. In this paper, II is usually a sum (for series tasks) or a
maximum (for parallel tasks). Define

© £ (2)= min {HI(fi(v): Folz - 9))}- (3)
y_::
We next show that:
Lemma 3.1 Forallz =1,...,p, fs(z) = f (=)

Proof: We first show that f (z) is monotone decreasing in z, and therefore f (z) is already

irreducible. Since f; and f5 are monotone decreasing and II is increasing, for any y

H(fi(y), folz =) 2 H(fi(y), Pl + 1~ 9)).

Therefore,
Jmin {H(Fw). Fole - v} 2 min (I(AGw), Foz +1-)}

that is, f (z) is decreasing.

Next, for any = > ¥ > 0, fi(¥) £ fi(v) and fo(z ~ 9} < fo(z — ¥). Thus

H(J1(9): Fal= = 1)) £ H(fi(9), Jalz ~)

and hence
£(=)= min_{1(F(o), Falw = 9D} < gmin {(1C(0)s oo =)} = f(o)-
As thisis true for all z = 1,.. ., p, it follows that

o JNin {£,(0} < o 0D {fs(z3} forallz.

But, the left-hand-side of the above is simply f (z) (by definition); the right-hand-side is
fs(z) (also by definition), showing that f(x) < fo(z) forallz =1,...,p.

Finally, we show _j; (z) 2 f,(:c). For the sake of contradiction suppose 3xg : f,(xo) > __I; (z0)-
Then
ot min {H(fi(w) Sy —w))} > | min {T(11(2), Jo(zo - 2))}

and thus,
Vy<Lzp: olnin {H(h(w), Loy =w))} > min {I(J1(2). Fa(zo — 2))} - (4

7

Next let the minimum of the right side of inequality (4) be achieved at z = zo with value

H(fi(zo), fo(wo — 20)) = H(fi(a), f2(b))

with fi(z0) = fi(a) and fo(zo — 20) = f2(b) for some ¢ < zp,b £ zo — 20 and a+b < zo. Note
that a and b are obtained through the reduction of f; and f,. We may also rewrite inequality
(4) as

Vy<zos min (H(A(w), Ay =)} > H(fi(z0), fa(zo = 20))- %)
But, with y = a + b < 7 above, we get

oin {H(fi(w), foly = w))} < H(fi(a), /2(t)) = I (f1(20), Fa(zo — =0))

which contradicts (5) and therefore, fi(z) = £, (=) |

Thus, we have shown that no information is lost in reduction, since the desired optimal response
time function of the aggregate f, is obtained using the reduced response time functions of the
constituent tasks. This is an important point: we will build up response-time functions for complex
tasks using increasing functions II. and minimization equations of the form shown in equation (2).
\We have just shown that if we start with reduced response time functions, then we will construct
reduced response time functions, and the assignments associated with them will be irreducible.
The lemma can be generalized through an easy induction argament for multiple, complex tasks.

Lemma 3.2 Let sy,..., sk be k complex tasks with optimal response lime funciions gy, . ..,g: and
H(zxy,...,x1) be an incrcasing junclion in cach argument. If s is the lask thal represents the
aggregale of tasks sy, ..., sp. with reduccd optimal response time function h(z) and defining

I(z) = min {H(@(),-- - 5x(e))} -

Yerroo Ui E[l
TR I ST Ar

then h{x) = h(z).

Remark 3.1 If the irreducible minimums of the funclions gy, ..., g occur al xy,. .., z, then the

2 H

irreducible minimum of h, zg, salisfies xo9 < E{-‘;, x;.

The last remark i-iplies that when constructing b we may restrict our attention to only those
assignment vectors (91, - .., 9) for which Zf;, n < ZL, z,. This will result in improved execution
time for our optimization algorithms when Z,&___, z, € O(p). Next, we begin our preseniation of the

algorithms by first treating the two simpler task structures, linear séries tasks and linear parallel
tasks.

4 Linear Task Structures

Linear task structures are interesting both because many pipelines are simple lincar chains [25] and
because chains appear as tasks in more complex task structures. \We examine two different ways of
assessing the cost of a linear chain. The first is when the chain is a linear pipeline, and the response
time function is the sum of the response times of cach of the ‘stages’ [25]. This is called a series
task structure. The second is when the constituent tashs exccute in parallel un different aspects
of the same data set, a parallel task structure. For both problems we show how to construct the
optimal response time function for the aggregate task, and, for every q = 1,...,p, how to recover
the cptimal assigninent of q processors from information computed as the response time function

was constructed.
In the treatments of both problems we consider sy4,..., s, to be the set of m constituent tasks,

and gy,---,0:m to be their respective response-time functions. Let s be the aggregate task whose
optimal response time function 2(z),0 < z < p, we are interested in computing. Note that each
constituent task s, may already be an aggregation of the clemental tasks ,. Our immediate goal is
to construct the overall reduced response time function for processors in the rarge [1.p} and also,
to recover the optimal assignment when required.

4.1 Series Tasks

First we describe an algorithm that constructs the optimal response time function h(x) for lincar
task structures when cach function g,(z) is convex (see {30], pp. #45-154) in z, i.e., when the
cfficiency of parallelism is decreasing (see pp. 217 in [16] for an example). e later treat the
general case.

Let the assignment be recorded in I(s,x) = (x3,...,%x) where x, denotes the num! r of pro-
cessors assigned to tash s,; also let h¢; denote the response time function created by our algorithm.
As a first step, we must ensure that every task s, is allocated enough processors uy(s,) to meet
the throughput constraint. For cach i = 1,...,m, let =, = uy(s,) be this initial assignment. Of
course, the algorithm terminates at this point if)12, , > p, because no feasible assignment exists.
Note that this first step does not require the presumed convexity of each g,. Let & = Y72, x,;
we set hg(z) = oo for all z < t to reflect an inability to meet the throughput requirement, set
he(t) = T2, a:(x.), and let z = &. Next, for cach s, compute d(i,z,) = gz, + 1) - gi(z;). the
change in responsc time achieved by allocating one more processor to s, Build a max priority heap
[20] where the priority of s, is [d(i,x,)]. Finally, enter a loop where, on each iteration,

o The task (say s;) with highest priority is allocated another processor.

+ Let a denote the number of processors previously assigned to s,. Cempute hg(z) = hg(x -
1)+ d(7.a}, and set I(s,x) = (2y,....2; + L.....2).

¢ Increment x.

s Compute s;’s new priority, and adjust the priority heap accordingly.

9

\We iterate until all available processors have been assigned, or the top clement of the heap is non-
negative, i.e., d(j, r,) is non-negative. If the top clement becomes non-negative when z = y, then
we assign hg(z) = gy~ 1) and I(s,z) = I(s,y—1) forall z=y,...,p.

Each iteration of the loop allocates the next processor to the task which stands to benefit most
from the allocation. When the individual task response functions are convex, then the greedy
response time function iig it produces is optimal, and is irreducible.

Prop. 4.1 Suppose that g(k) is conver over z € [1,p)], foralli=1...., n. Then for all z € {1,p],

hg(z) = h(z), the optimal response time function. Furthermore, hg(z) is irreducible.

Proof: Clearly, each task s, must reccive at least uy(s,) tasks in order for the throughput
condition to be satisfied. Recalling that & = Y02, ua(s,), it is clear that hg(z) = h(z) =
forallz € [1.1—1]. Now consider x = &. Forall j = 1,...,p—t the remainder of the algorithm
should assign “the next™ j processors in such a way to obtain the maximal possible decrease
in response time given j additional processors. The proposed algorithin does exactly that.
D = {d(i,z;+37)]1 £i < n,1 < j < p—z}istheset of all possible changes for the remainder of
the assignment. For every j = 1,....p - t, the maximal decrease is obtained by choosing the
7 largest (in magnitude) clements of D). Since each g, is convex, [d(i, z, + j;)] < |d(i. z: + 72)]
for 71 > ja (sce [30]. pp. 453-454) and so the j clements with largest magnitude in D are
selected as given in the algorithm.

The irreducibility of g follows from its construction.

The complexsity of this algorithm is low. The throughput condition is checked in m steps.
The initial priority heap is constructed in O(mlogm) time; the highest priority heap clement is
found in O(1) time and cach heap adjustment requires only O(logm) time using standard heap
algorithms. Thus the overall complexity is O(mlogm) + O(plogm) = O(plogm). This is an
example of how the structure of the response time function (convexity} can be used to obtain
higher algorithmic efficiency than might otherwise be achievable, as we will sce below for general
response time functions.

A different approach, based on dynamic programming, is needed when the task response time
functions are not convex. In fact, we anticipate shat this condition will be the norm when con-
sidering chains whose tasks are themsclves aggregates of other tasks. Since convexity need not be
preserved in aggregation, we must turn to a slightly more complicated algorithm. The new approach
has a higher complexity —O(mp*)-- but it permits completely general response time functions. We
will show that certain algorithmic efficiencies are possible when bounds on the least minimums are
known ahead of time.

For any j = 1,...,m, we cau virw the subchain s5.....3, as a (larger) task itsell. We will call
this task 5;, and compute its optimal response time function: for £ = 1,...,p let Gy(j.x) be the
minimal response time of 5, subject to throughput constraint A, achievable when no more than

10

& processors are allocated to it. The function Gx(j,*) is thus §,’s optimal response time function;
in computing this function we will simultaneously check the throughput constraint—hence the
subscript A. Using the principle of optimality[12], we may write a recursive definition for G(J, 2)
as follows.

0 if up(s;) + ua(Sj-1) > @
Gr(j,z) = g1(z) ifj=1and ur(sy) < (6)
min {5;()) + Ga(j — 1,& — i)} otherwise.
ur(s;) <1 Lz =ua(Sj-1)

These equations define response tinie to be oc whenever insufliciently many processors are allocated
to s, or S,~1 to meet the throughput constraint; we define ux(So) = 0 as a boundary condition.
Observe that h(z) = Ga(m,z). Note that the I function (Lemma 3.2) is the ‘sum’ operator here,
in the third part of the equation.

The dynamic programming equation is more intuitively explained by reading it ‘top down’.
Suppose we had somehow computed the response time table for the first j — 1 tasks (the ‘large’
task $,-1), i.e., GA(4,). Then, given 2 processors to distribute between tasks s, and §;-1, we try
every combination subject to the throughput constraints: ¢ processors for s, and z — ¢ processors for
$,-1. Since the equation is written as a recursion, the computation will actually build response time
tables for larger tasks ‘bottom up’, starting with task s; in the second part of the equation. Note
that similar explanations may be given for the dynamic programming equations that appear later
in the paper. The optimal assignment of ¢ (1 £ ¢ < p) processors to tasks is found by setting the
appropriate value of I as we solve for the value Gx(j,2). Suppose that ¢ solves Gx(j,2) = g,-1(¢) +
Ga(j = 1,2 = 1). Then we set I(Sj,2) = (z1,...,2j-1,1), where I(Sj-1,2 — ©) = (21,...,Tj-1)-

An important consequence of Lemma 3.2 is that each function G,(j,) (and hence each assign-
ment I(S,,z)) is irreducible. This follows directly from the fact that equation (6) has the form
specified by equation (3). The more complex bounds on the minimum’s index variable in equa-
tion (6) serve simply to keep the index ¢ away from regions where either g,(-) or GA(j — 1,) are
known to take value co.

If we have already solved for the minimal response time function Gx(j — 1,:), we may use
equation (6) to determine G(J,). The cost of determining one individual G5(j,) value is seen to
be O(z) = O(p); the cost of determining the whole function Gx(j,) is thus O(p?), and the cost of
determining all such functions (and lience the desired response time function Gx(m,-)) is O(mp?).

The application of the above dynamic programming procedure, in equation (6), is illustrated
in Figure 1 (which shows the computation of G»(j,-)) for a task structure with three tasks. The
response time functions, ¢,(z), for the three tasks), and ¢3 are taken from Table 1 and the
throughput constraint A = 1/40. Since we use tasks from Table 1, we revert to using ¢, for the
constituent tasks. The first column of the table jdentifies the aggregated task S), for 1 < j < 3;
here S; = 8y, 52 = (t1,12) and S3 = (¢1,12,%3). A row j corresponds to the response time function
Ga(j,x), for aggregated task S,; entry [k,!] in the table (row k&, column !) gives the value, and
the corresponding assignment, for G(k,!). The last row shows tle assignment produced by the

11

11 12 [2)

S; 2

3 4) 6 7 8
S1 11 9 7 6 4.5 4
) | (3) (4) (5) (6) (M) (8)
S 50 37 30 25 22 19.5
(Sl)t2) (1,2) (2’2) (2a3) (3a3) (3a4) (3a5)
S3 79 60 47 40 35 30.5
(SQ,t3) (1)1>1) (132:1) (2,2’1) (2)311) (3’3a1) (3:3a2)

Figure 1: Application of Algorithm for series tasks: Gy(7,2)for 1 <j7<3,1<2<8

algorithm; this assigns 3 processors to tasks t; and ¢ and 2 processors to t3 with minimum response
time of 30.5 and an achieved throughput of 1/14. Note that in our example above, and in all other
examples to follow, we have omitted the dummy task that is the last task executed on the data set,
since it plays no role in the computation.

The dynamic programming equations can sometimes be solved more efficiently, when each g, has
an irreducible minimum at z,, and each z, is small relative to p. Suppose z, < L foralli = 1,...,m.

We next show how the optimality equations can be solved in O(m?L?) time. This is advantageous
when L < G(p/+/m).

As we solve for each G(j, k), Remark 3.1 also tells us that we need not consider assigning any
more than 2z, < L processors to s,. This means we can rewrite the optimality equations as

o if un(s;) + un(S;-1) > @
G (i 2) = 71(z) ifj=1land uy(s1) L2
A(52) min {7;()) + Ga(F — 1,2 = 1)} otherwise.
max{ux(sj),z ~ i:“ 2} i€ x5

(7)

The complex Jower bound on ¢ prohibits indexing values of ¢ such that S,—; caunot meet the through-
put constraint, and values indexing beyond S,’s known minimum. Thus, the cost of computing

G(j,x) is only O(L). Since we need only compute G(j, k) for & < 2f=1 2,, the cost of computing
GA(4,*) is O(jL?), so that the cost of solving the overall problem is O(I™, jL2) = O(m?L?).

4.2 Parallel ’I‘aslﬂ(s

In this subproblem, we have a sequence S of tasks s1,...,5, with irreducible response-time func-

tions g1, . . ., Gm for which we need to determine the irreducible optimal response-time function h(z)

12

for the mazimum where

h(z) = x,,?.l.i}lzm max{g1(z1), G2(%2)s -+ ., Im(zm)}.
Zy+rtzm=2z
In this case, the function H (in Lemma 3.2) is the maximum operator. The basic idea behind the
algorithm is that after processors are ellocated to meet the throughput requirement, we can only
drive the maximum response time down by allocating a processor to the task whose response time
under the present allocation is maximal. This process is repeated until the maximum number of
needed processors is allocated. This idea is now made more precise.

Suppose that the irreducible minimum of each §; occurs at 2;, and let z;, = 3 1%, z,. Flist,
observe that the response time function value at all processor counts smaller than ¢ = 31z, ux(s,)
is 0. Thus, for¢ = 1,..., m, we begin by assigning u,(s,) processors to task s,. This is also reflected
in the initialization of the data structure recording assignments, as I(.S,t) = (ur(s1),. .., ur(sm)).
Set h(z) = oo for z = 1,...,t — 1, and h(t) = maxy<,<m{7:(ur(si))}. Next build a m-x-priority
heap on the tasks, where g,(ux(s,)) is the priority for task s,. Let @ = t+ 1, and enter a loop where
the following is performed for at most z, — t iterations.

¢ Give an additional processor to the task whose priority is greatest. Let y, be that maximal
priority.

o If that task (say s,) was previously assigned z, processors, and if @, = z,, then terminate the
algorithm.

o If that task (say s,) was previously assigned z, < 2, processors, reset its new priority to
Gi(e: +1). Set I(S,2) = (21,...,2i + 1,...,8m), where I(S,2— 1) = (21,.. ., Tiy- -, Tm)-

o Adjust the max-priority heap to reflect the task’s new priority, and set h(z) to the maximum
value in the heap.

o Increment 2.

If the loop terminates with z = y, then set h(2) = h(y — 1) and I(5,z) = I(S,y — 1) for all
Z=Yyeo D

Tlie termination condition follows from the observation that if s, has the maximum response
time but already has 2, processors assigned, no further assignment of processors to s, can teduce
its response time. Since the objective function is the maximum response time among tasks, that
objective function cannot be further reduced. It is clear then that the procedure we describe

constructs an irreducible function. The algorithm’s correctness is established with the following
lemma.

Lemma 4.1 For every a =t,...,p, h(z) = h(z) = ys.

13

Proof: Foreveryi=1,...,m,let S, = {G.(2) | z = ur(s:),..., 2} be the set of feasible response
times for s, following its initial assignment, and let S = UJ%; 5;. Since the objective function
value for an. assignment is the maximumn respouse time under that assignment aund since we
stop assiguing processors once the »bjective function can no louger be minimized, S contains
every value of y, generated by our algorithm. Furthermore, the sequence ¥, ye41,..., de-
scribes the elements of S in descending order. Now if an assignment is to achieve cost yg,
the response time of every task must be no greater than y,. We argue that our algorithm
finds an assignment achieving cost y,, using the minimum number of processors. Tor every y,
let T'(y,) be the task from whose response-time function y, is taken. Our algorithm allocates
an additional processor to T'(y;), then another to T(y;), and so on. For every x =1,...,2;
and j = 1,...,m let P;(z) be the number of elements y, with ¢ < & for which T'(y,) = s,.
P,(x) is thus the number of additional processors our algorithm has allocated to s, by the

(z - t)“‘ pass through the loop, and is also the minimum number of additional processors
(after ua(s,)) that s, must be assigned if its response is to be no greater than y,. As this is
true for every task for every yg, it follows that the assignment gencrated by our algorithm
aclieves each cost y, with the minimum number of processors. The lemma’s conclusion is a
restatement of this fact. |

Since the algorithm’s loop is exccuted at most 3, — ¢ times, the overall cost of the algorithm is
O(mlogm + z; log m). The optimal assignment is found in I(S,p). An example of tlie application
of this algorithni is shown in the next section; in Figure 2 the row for B) sliows the response time
function (and tle corresponding assignment) of a parallel task composed of tasks #; and ..

While the problenis studied in this paper are distinctly different from those addressed in the
literature, a closer look reveals that the above algorithm (for paiallel tasks) is a generalization
of the algorithm independently conceived in [27]. While they address tlie problem of finding a
nonpremptive schiedule for a set of n independent tasks, i.c., parallel tasks, their algoritlim in fact
finds an assignment which satisfies the feasibility conditions of our problem. Our algoiithm is a
generalization in the sense that they do not “constiuct™ a 1cduced 1esponse tinie table for the entize
parallel task that provides the respouse time as a function of the nunber of processors. This is

essential for our solution technique which views complex task stiuctures as composition of simpler
task structures.

5 Complex Tasks

The algorithms we lLave developed to analyze series and parallel task structures can be used to
analyze task-structures whose graplis form trees, or series-parallel graphs. We now sliow how the
response time function for a tree task with 2 nodes and arbitrary brancling is computed in O(np?)
time, and Liow a series-parallel task with arbitrary brancling is analyzed in O(np?) time. Note that
the complex tashs we consider usually determine a whole pipeline computation and thus, we will

14

O

henceforth use 7 (as in Section 2) to denote the number of nodes in the task graph. Series-parallel
graphs arise frequently in applications where data in a set is split, processed separately, and then
rejoined. The basic idea behind our algorithms is that these complex structures can be viewed as
a composition of series and parallel tasks, thus facilitating the use of the algorithms designed thus
far.

5.1 Tree Tasks

Suppose the precedence graph for P forms a tree with n nodes. Either out-trees (edges directed to
child nodes) or in-trees (edges directed to parent node) are permissible. Without loss of generality
(because path lengths are unaffected by arc direction) our discussion will concern out-trees.

For notational convenience we assume that every non-leaf node has exactly b children; our
approach extends immediately to the general case. FYor every task s;, let ¢;1,...,¢;5 be s;’s
children. s, is the root of a subtree which can be viewed as a subtask T, with its own response
time function. Dynamic programming again expresses the optimal responsa time function for cach
T;. The optimal response time function for 13 is the overall problem solution.

Let Ga(J,2) be the optimal response time achievable by T, when subject to throughput con-

straint A. Let Z be the set of interior tree tasks, and £ be the set of leaf tasks. The principle of
optimality states that

o) if s; € L and upr(s;) > 2
Gi(j,%) = min {fi(zo) + max {Gx(cji,x:)}} otherwise.
TOyueeyTh 1<i1<bH

zo 4 r-Fap =k

The formidable recursive expression simply takes the minimum cost over all possible partitionings of
k processors among s, and the b subtrees rooted in its children. Fortunately, the results developed
in Section §4 may be employed to solve this equation efficiently. The subtasks ¢, through ¢, form
a single parallel task, B. The algorithin developed in the previous section constructs B’s irreducible
response time function in O(plogb) time. Next we can view T, as a series task, composed of s,
and B. Given B’s response time function, T}’s irreducible response time function is computed in
O(p?) additional time using the algorithn described in Section §1.1. Thus, the cost of computing
the serial composition dominates. The complexity of computing response time functions for all T}
where s; € T is O(X ez p?). Note however that b]Z| = n, which implies that the total cost of

processing interior tasks is O(np?/b). Since the cost of processing all leaf tasks is O(n), the total
cost in the general case is O(np?/b).

The procedure is illustrated by the example in Figure 2, a tree with 5 constituent tasks; here
A = 1/40. The tasks 1,12 form a parallel task, denoted By; By and t3 form a series task, denoted
T3. Similarly, the aggregate task T3 and ¢4 form a parallel task Dy; B; and {5 form a series
task Ts whose response time gives us the respouse time of thie entire task. Note that the tasks
b1;...,1s are taken from Table I. Each row of the table shows the response time assignment for
the corresponding aggtegated task. The minimum respouse time aclieved by the assignment is 41

15

ts

h . b2

task x
aggregates 5 6 7 8
By 16 14 11 11
(t1,t2) (2,3) (3:3) 34 (4,4)
T3 31 26 21.5 19.5
(13, B1) (2,2,1) (2,3,1) (2,3,2) (2,3,3)
Iy 39 31 26 21.5
(14, T5) (1,2,,1) | 2250 |(2311) | (23.2,0)
Ts 65 54 46 41
(ts,B2) | (1,1,1,1,1) | (1,2,1,1,1) | (2,2,1,1,1) | (2,3,1,1,1)

Figure 2: Application of Algorithm for Tree Structures

(by assigning 2 processors to t1, 3 to t; and one processor to each of the other three tasks) and the
achieved throughput is 1 /20.

Better complexities are achievable when the irreducibl. minima 2, for each s, satisfy z, < L
where L < p. The computation of B’s response time function is fast—C (0L logb) time. For s, + B,
let z7, be the sum of the z, values for all nodes in the subtree rooted in s,. Since we need not
consider any assignment that gives more than 2z, processors to s,, the response time function for
s; + B is computed in O(zr,L) time. This cost dominates that of computing B’s response time
function, provided that blogb < L, which we will assume here for simplicity.

The total cost of analyzing the tree is maximized when each X7; is as large as possible. This

occurs when the tree is actually just a linear chain, in which case X1, = L, X7,,_, = 2L, X7,_, =

3L, and so on. As we have seen, the total cost is then O(n2L?). The best topology is a full tree;
for example, consider a full binary tree. A subtree T} consisting of exactly 3 tasks has z1; < 3L,

and an analysis cost of O(3L2). n/2 such subtrees are analyzed. Then, n/4 subtrees are anaiyzed
where 25 < L + 3L + 3L = 7L. Each of these requires O(7L?) time to analyze. Continuing in this

16

fashion we determine a complexity bound of

logn)
o>, ;—‘i(zﬂ-1 ~ 1)I?%) = O(L*nlogn).

i=1

5.2 Series-Parallel Tasks

Finally, we consider series-parallel task graphs. We show that the respunse time fuacion for such
a graph (with » nodes) can be computed i . O(np?) time. A number of different but equivalent
deiinitions of series-parallel graphs exist. The one we will use is taken from [42], which studies
verlex series-parallel DAGs. llowever, based on their results on the equivalence of edge series-
parallel DAGs and vertex series-parallel DAGs, we use the term series-parallel to mean both cases
and use their definition of vertex series-parallel DAGs. A series-parallel DAG (SP) is defined
recursively as follows.

L. (i) The DAG having a single vertex and no edges is SP.

2. (ii) If G1 = (W1, E1) and Gy = (Vh, E,) are two SP DAGs, so are the DAGs constructed by
each of the following two operations:

(2) Parallel composition: G, = (V1 U Vo, E; U By).

b) Series composition: Gs = (V4 U Vo, By L Ea U {17 X S2)), where T is the set of sinks of
\
G1 and S, is the set of sources of Go.

A node t, in G = (V, E) is a sink if there are no outgoing, edges from ¢,, i.e., there is no edge
(t:,t,) in E. A node t, is a source if there are no incoming edges to the node, i.e., there is no edge
(t,,t) in E. It is shown in [42] that any SP DAG can be parsed as a binary decomposition tree
(BDT). Figure 3 illustrates a series-parallel graph, and the BDT that represents the graph. The
internal nodes are labeled 5, or P, to denote the series or paiallel composition. There is a one-to-one
correspondence between BDT leaves and DAG nodes. Each inteinal BDT node a repie: . s either
a series (labeled S) or parallel (labeled P) composition of two SP subgraphs represcutea by the
subtiees rooted in a. Tor example, suppa. a’s subtrees are simply lcaf nodes. The correspending
nodes in the DAG are SP graphs, composed by the-opici . pecified ina’s label. a can be thought
to be representing that composition. Now if ¢’s BD'. sarert is sorie node ¢ and ¢ has another
child @', then we know that «’ represents an SP subgraph of the original DAG, and ¢ represents
the serics or parallel composition of the subgraplh.. ..presented by ¢ and by a’. A BDT thus shows
the selection and ordering of cc..positions necessary to establish that the original DAu is SP with
respect to the definition above.

There is an obvious correspondence between SP compositions and the riethods we have devel-
oped to compute response time fu,.ctions for setie. and parallal task structures. If we think of an
SP DAG’s nodes as representiz.g tashs, a setics composition corresponds to the aggregation of twn
tasks into a serics task structurc: two tasks aie replaced by one, and the seiial edge between them

17

(a) A series-parallel grajsh
S2
51 P,
/ \ /\ \\
—Fl t3 t.; t5

i 123

(b) Binary decomposition iree

Figure 3: A Series-Parallel Graph and corresponding BDT

18

Task azgregates Number of proce.sors
5 6 7 8
P 16 14 11 11
parallel:(23,%2) | (2.3) (3,3) (3,4) {4,4)
51 31 26 21.5 194
serial:(py,t3) | (2,2,1) (2,3,1) (2,3,2) (2,3,3)
Py 10 10- 9 8
parallel:(t4,15) | (3,2) (3,3) (4,3) (5,3)
G=09 70 59 51 46
serial: (s1,p2) | (1,1,1,1,1) | (1,2,1,1,1) | (2,2,1,1,1) | (2,3,1,1,1) |

Table 2: Computation of Response times for series-par:..jel struciures

disappears. Similarly, a parallcl composition corresponds to the aggregation of a set of tasks into a
parallel task structure. It is thus qui. : straightforward to construct the response time function for
a series-parallel graph, once the associated BDT is known. Starting with the individual tasks’ re-
sponse time functions, we compose response-time functions in the order specified by the BDT. The
response time functions created during intermediate steps represent aggregate subtasks in much
the same way as task T, represented an entire subtree in Section §5.1. Likewise, the optimal as-
signment is recovered by backtracking through intermediate optimal assignments in the same way
as was described for trees.

An application of our procedure, for the serjes-parallel graph in Figure 3, :s zhown in Table 2 for
throughput constraint A = 1/40. E.ch row shows the response time func‘.c:x, and corresponding
assignment, for the aggregate task formed by a series or parallel composition. ¥For «xample, the
row Jabeled S5 corresponds to the aggregate task formed by the series compositicn of 2 {which is
a parallel composition of ¢; and ¢;) and ¢,. The minimum response time in the alove assigneit
is 46 (assigning 2 processors to 13, 3 to {2 and one processor each to {3,¢5 and ¢5) and the achieve.!
throwghput is 1/20.

Oa.. the BDT is known, the cost of determining the optimal assignmert is O(np?), as every
resporni. -time function composition has cost O(p*); there are at most # such compositions pet-
formed. As we kave seen before, the cost is reduced to O(L?nlogn) when the irreducible minima
z, for each s, satisfies z, < L. It is stown in [42] that a BDT can be constructed time proport;onai
to the number of .dges which is O(n?) time. Since we assume n < p, the O(np?) analysis cost
dominates the procedure.

6 The Throughput Problem

In computations where the input data rates must be maximized to handle rzal time constraints, the
vbjective of the system is to achieve a high throughput. Typically, there is a limit on the amount

19

of time the system can take to process a single data set, i.e., the response time. Under these
conditions the objective of an assignment becomes maximization of the throughput subject to a
specified rcsponse time requirement. We have referred to this problem as the throughput problem.
In this section we show how solutions to the response-time problem can be used to solve the
throughput problem. If one can solve the response-time problem for a given pipeline computation
in O(C(n,p)) time, then one can solve its throughput problem in O(nplog(pn) + log(np)C(n,p))
time.

Our approach depends on the fact tiat minimal response times behave monotonically with
respect to the throughput constraint.

Lemma 6.1 For any pipeline computalion P =< K,T,F,G >, let p()) be the minimal possible

response time of P, given throughput constraint >. Then p(\) is @ monotone non-decreasing function
of \. '

Proof: Recall that uy(2,) is tle minimum number of processors required for task ¢, to meet
throughput constraint A. Tur every 7, ua(2,) is clearly a monotone non-decreasing function of
A. Call an assignment A A-f asiwe if, for all = 1,...,n it assigns at least uy(¢,) processors
to t;. Finally, let Ay be the set of all A-feasible assigninents. Whenever Ay < A, we must
have Ay, C Ay,, because of the monotonicity of each uy(2,). Since p()) is the minimum cost
among, all assignments in Ay, we have p(A2) < p(M).]

This result can be viewed as a generalization of Bokhari’s grapli-based argument for monotonicity
of the minimal “sum” cost, given a “bottleneck” cost [5].

Suppose for a given pipeline computation we are abls. Lo solve for p(A), given any). The set of
all possible throughput values is {1/ £;(k) | i =1,...,n;k = 1,...,p}; O(pnlog(pn)) time is needed
to sort them. Now suppose a response time constraint 5, is given. For any given throughput A we
may compute p(A), and determine whether p(A) < . p()) is monotone in A, which permits us to
perform a binary search over the sorted space of throughputs and identify the greatest one, say A®,
for which p(A*) < p. The assignment associated with p(A*) is the one maximizing throughput using
P processors, subject to responsc time constraint j. If the cost of solving one response-time problem
is O(C'(n,p)), then the cost of solving the throughput problem is O(pnlog(pn) + C(n, p)log(pn)).

Lemma 6.2 Let P be a pipeline computation, and suppose that the complezity of solving the
response-time problem for P is O(C(n,p)). Then the complezily of solving the throughput problem
Jor P is O(pnlog(pn) + C(n,»)log(pn)).

When solving the response time problem, we typically compute an entire response time function,
wliich essentia:ly gives the “answer” (minimal response time) for-a whole range of processors. When
we solve the throughput problem in the manner just described, we compute a single answer, for a
single processor count. If we desire a range of throughputs for a range of processors, we need to
repeat the procedurs above once for every processor count.

20

O—0~Q~0~0~0~0-0-Q

t4 15 19

Figure 4: Computation Flow for Motion Estimation

The complexity of the algorithms for the throughput problem are seen to be higher, by a
logarithmic factor, than those for the response time problem. For example, the complexity for serial
task structures is seen to be O(ap?lognp?) = O(np®logp) which has increased by a logarithmic
factor. Future endeavors include the pursuance of more eflicient algorithms for the throughput
problem.

7 An Application

In this section we illustrate our methiods by considering an application 1equiring pipelined execution
- a motion estimation system in computer vision. Motion estimation is an important problem in
computer vision in which the goal is to characterize the motion of moving objects in a scene. [From
a computational point of view, continually generated images from a camera must be processed by
a number of tasks. In order to process the images (data sets), throughput and response time
constraints are imposed on the tasks and therefore, the appropriate model of computation is a
pipeline computation. The application itself is described in detail in [11, 28] It should be noted
that there are many approaches to solving the motion estimation pioblem. We are only interested
in an example, and therefore, the following algoritlim is not presented as the only or the best way to
perform motion estimation. A compreliensive digest of papers on the tupic of motion understanding
can be found in [31]. The following subsection briefly describes the underlying computations.

7.1 A Motion Estimation System

Figure 4 shows the task structure of our motion estimation system [11] - a linear task structure.
The data sets input to the task system are a continuous stream of stereo image pairs of a scene
containing the moving vehicles. The required output is a list of 3-dimensional points (or features)
that describe the motion at each time step.

The system consists of nine major tasks:

1. Task t;. The first task performs 2-D convolution on the input image pair. The convolution
window size is an image-size independent input parameter.

2. Task t;. The second task extracts the zero crossings of the convolved image using a thresh-
olding algorithm. Zero crossings represent edge features in the image.

3. Task #3. The third task fits patterns to the edge features by using a template matching
algorithm. There are 24 possible patterns that can be fit to an edge [21].

21

4. Task t;. The fourth task performs a stereo match algorithm to match features from the left
and 1ight images of the same time frame [2§]. To find a match for a feature in the left image
from the right image, weighted sum of the currelation coefficicnt and the directional difference
weight between the feature in the left image and for all the features in the search space of
the right image are calculated. The feature in the right image that has the maximum total
weight is considered as the matched feature. Details are provided in [28, 11].

5. Tasks t5,1s and {7. These are similar to 15,1, and {3 respectively except that the algorithms
are applied to stereo images separated in time by wider margins, depending on the desired
accuracy for estimation.

6. Task tg. This task performs a time match algorithm between matched features of the left
image obtained from t; and featurcs of the left image obtained from ;. The time match
process is similar to the sterco match process except for the fact that first sterco match
guides the time match process and the scarch space for the time match algorithm is much
larger.

-~

. Task tg. Finally, the ninth task performs a second sterco match between the left and right
images of the stereo images from later time frames. The output of 4y is a set of 3-D feature
points that describe the motion of an object between the two time frames.

All nine tasks are 1epeated for image inputs obtained continuously. In order to represent real-time
motion estimation at video frame rates the entire process must be completed in 0.0333 seconds.
The Image Understanding Benchimark [13] has a similar structure of computation flow several
tasks wuuse v pelivituad it @ seyuence in order Lo recognize an object in the scene and find the
model that best describes the object.

7.2 Shared and Distributed Multiprocessors

All nine tasks were implemented on a distributed memory machine, the Intel iPSC/2 [7] and
a shared memory machine, the Encore Multimax [15). The Intel iPSC/2 is a circuit-switched
hypercube multiprocessor. We used a 32 node iPSC/2 machine. Each node consists of an Intel
80386 processor and a floating point co-processor together with 4 Mbytes of RAM and and 64
Kbyte cache. The Encore Multimax 520 is a bus based system installed with eight dual processor
cards. Each dual incorporates two N5323532 processors cach with its of own 256 Kbyte cache of fast
static RAM. It has 128 Mbytes of shared memory.

7.3 Implementation Results for Individual Tasks

We impleniented the task system desciibed above using outdoor images [11]. Several methods for
implementing cach algorithm (e.g., block partitioning, dynamic partitioning [11]) were used, for
cach task, we have sclected the best performance numbers fiom these alteinatives. The completion
times for cach algorithim were tabulated and are shown in Tables 3 and . Note that for cach

22

multiprocessor size, the completion times include all the overheads, computation time and com-
munication time. Therefore, when selecting a partition of processors for a task, the corresponding
response time will include all the overheads, computation time and communication times (including
transferring data from one task to the next). The times in the table are only shown for selected
multiprocessor sizes, altiiough individual tasks can be executed on an arbitrary number of proces-
sors. Since the sizes of thie machines available to us were limited, for the purposes of illustration,
we extrapolated the completion times for larger machines as shown in the tables. Extrapolation
was done using the immediate speedup available from the largest muitiprocessor. For example, we
computed the speedup (percentage improvement in response times) going from 16 to 32 processors
for Intel iPSC/2 and then reduced this number by five percent (the degradation in speedup in the
range § to 32); the resulting number was taken as the specdup going from 32 to 64 processors. The
portion of each response time table with times for 64, 128 and 256 processors was estimated in this
manner. It should be noted that the absolute values of completion times have no impact of the
execution of the assignment algorithms proposed. If individual completion times are different, the
allocation may be different. The response time functions in both tables are found to be decreasing
and convex.

A basic premise of our assignment algotithms is that we can measure response time functions
of clemental tasks, then accurately compute the response time functions of aggregate tasks. The
premise was validated on this application—the mcasured response time function for the entire
system was found to deviate from the predicted response time function by no more than 3% at any
processor count. This accuracy is largely due to the fact that the application is compute-bound; the
computation-to-conmunication ratio is 100 to 1. Any crrors introduced by our simplistic approach
to communication costs are hound to be low, The accuracy is also due in part to the fact that all
possible mappings of the pipeline weie construcled to avoid shated communication channels one
can always embed a chain in a hypercube. Thus, no effects due to channel contention exist in
the measurements. It remains to sce how well our approach predicts response time functions on
less compute-intensive applications. Nevertheless, applications of the type we consider here are
practical, and important.

7.4 Experimental Results
7.4.1 The Response Time Problem

The algorithm for setial tasks with convex response time functions (in Section) was run using
Tables 3 and « for a1ange of desited throughput constraints. As an cxample of the output generated
by the algoritlhun, Table 5 shows the processor assignment for individual tasks for various sizes of
the Intel iPSC/2. The last row of the table also shows the minimum response time for the given
throughout constraint (A = 0.05 tashs/sccond). We observe that some throughput conditions
cannot be met by all sizes of multiprocessors. or example, a throughput of 0.123 tasks/second
cannot be achieved for a 32 or 64 processor machine but it can be achieved for a 128 or 256
processor achine for which the minimum response time was observed to be 22.18 and 12.93
seconds 1espectively. Furthermore, the achieved throughput for a 128 processor machine was 0.157

23

Table 3: Completion times for individual tasks on the Intel iPSC/2 of various sizes (* indicates

extrapolated values)

Response Times for Individual Tasks (Sec.)

No. of || Task 1 | Task 2 | Task 3 | Task 4 | Task 5 | Task 6 | Task 7 | Task 8§ | Task 9
Proc.

1 109.0 6.15 0.32] 24.67{ 109.0 6.15 0.32] 129.02| 18.20

2 54.76 3.07 0.16| 1252 | 54.76 3.07 0.16| 67.70 9.15

4 27.51 1.58 | 0.081 6.32| 2751 1.58] 0.081}| 34.22 4.58

$ 13.88 081} 0.042 3.22| 13.88 0.81] 0.042 17.50 2.39

16 7.07 040} 0.022 1.76 7.07 0401 0.042] 10.30 1.52

32 3.78 0.20 | 0.012 1.01 3.78 0.20 | 0.012 6.36 1.01

G4* 2.12 0.11] 0.007 0.61 2.12 0.11| 0.007 4.13 0.71

128* 1.25 0.66 | 0.004 0.38 1.25 0.06] 0.004 2.81 0.52

256* 0.77 0.04 | 0.002 0.26 0.77 0.77 0.04 | 0.002 0.40

Table 1: Completion times for individual tasks on the Encore Multimax of various sizes (* indicates

extrapolated values)

Response Times for Individual Tasks (Secc.)
No.of | Task 1 | Task 2| Task 3 | Task 4 | Task 5 | Task 6 | Task 7] Task S | Task 9
1 Proc.

1 35220 | 16.54 0.85] 51.70] 35220} 16.54 055 212.00| 25.50

2 176.08 S.33 069 28.00] 176.08 .33 0.69 | 103.77] 13.10

E 58.38 4.26 060 15.10} $S8.38 4.26 060} 51.70 7.10

5 45.42 2.14 0.32 S.70 | 45.42 2.14 0.32] 25.98 4.25
16 26.99 1.23 0.20 500 26.99 1.23 020 15.23 2.76
32* 16.94 0.74 0.13 3.01| 16.54 0.74 0.13 9.37 1.88
G1* 11.03 0.47 0.09 1911 11.03 0.47 0.09 6.06 1.34
128* 7.59 0.31 0.06 1.27 7.59 0.31 0.06 4.11 1.01
256* 5.48 0.22 0.05 0.89 548 0.22 0.05 2.93 0.80

24

Table 5: An example processor allocation for minimizing response time for several sizes of iPSC/2
(MRT = Minimum Response Time, Specified Throughput = 0.05 tasks/sec., No. of processors
allocated to individual tasks are shown)

Multiprocessor Size (No. of Procs.)
32 64 128 - 256
Task || Proc. | Time | Proc. | Time | Proc. | Time | Proc. | Time
No. || Asgn. | (Sec.) | Asgn. | (Sec.) | Asgn. | (Sec.) | Asgn. | (Sec.)
1 81 13.88 16| 7.07 321 3.78 64§ 2.12
2 1 6.15 2 3.07 8 0.81 16 0.40
3 11 032 1 0.32 1] 0.32 21 0.16
4 21 12.52 6 4.77 8 3.22 16 1.76
5 81 13.88 16| 7.07 321 3.78 64 | 2.12
6 11 6.15 2 3.07 6| 1.19 121 0.60
7 11 0.32 11 032 1{ 032 21 0.16
8 81 17.50 16 | 10.30 32| 6.36 64 | 4.13
9 21 9.15 4| 4.58 81 2.39 16| 1.52
MRT 79.87 40.57 22.18 12.98

tasks/seconds and for a 256 processor machine the achieved throughput was 0.242 tasks/seconds.

Figure 5 shows the optimal response time function for the entire pipeline computation together
with the achieved throughput using the hypercube data. As we might expect, the response time
function is decreasing and the achieved throughput is increasing. Figure 6 shows response times for
specified throughput of A = 0.05 tasks/second for different hypercube sizes. Along with the response
time function from Figure 5, two curves are shown to provide a comparison with non-optimal, yet
sir.uple, heuristics for processor assignment. The first heuristic, called the equal allocation heuristic,
allocates an equal number of processors to each task, thus ignoring the response time functions of the
individual tasks (this takes O(n) timme). Tl second lieuristic, called the ratio heuristic, attempts
lo take these functions into account through the use of ratios: initially each task is assigned a
processor, the remaining processors are distributed in proportion to the quantities f,(1),1<i < n
for each of the n tasks (requiring O(n) time). Our optimal algorithm (O(nlogp)) always achieves a
lower response time than the two simple O(n) heuristics. Comparing the achieved throughputs in
Figure 7, it can be observed that the ratio heuristic achi s higher throughput than the optimal
algorithun because it does not tradeoll throughput for achieving the minimum response time, i.e.,
the lieuristic is not guarantieed to satisfly the 1esponse-time constraint. The equal allocation strategy
perferms rather poorly as one might expect.

The tradeoff of 1esponse time versus throughput coustraint (using optimal response time func-
tions) is studied in Figures 8 and 9 for a 128- and 256-processor hypercube. TFigure 8 shows the
respouse time and Tigure 9 shows the corresponding achieved throughput as a function of the
specified throughput. As we can observe, the response time curve follows the throughput curve

25

——f—— response time

——o— achievied throughput
80 | J.3

60

response time
-
o
1
achieved throughput

0 : '
0 100
no. of processors

T v 0.0
200 300

Y

Figure 5: Response Time Problem: Response Time and Achieved Throughput

Comparison of response times for
specified throughput=0.05, for

140 1 different allocation algorithms

120

100 -
§ 1 ~——a—— opt. algo.
2 8o j —o— ratio heur.
% 60 ——a— gqual alloc.

© 40 4
20 - =~
0 T T T v 1
0 100 200 300
number of processors

Figure 6: Response Time Problem: Comparison with heuristics

26

Comparison of achieved throughputs for
specified throughput=0.05, for

different allocation algorithms -—————-‘

~g— opt. algo
8 0.2 ——e— ratio heur.
% ~——@— equal alloc.
2 04
8 ol

0 100 200 300
no. of processors

0.3+

Figure 7: Response Time Problem: Achieved throughputs for heuristics

Comparison of response times for
128 and 256 processor hypercubes

- : . —— P=128

-t P=256

30

10 hd t— Ad , v " v
0.0 0.1 0.2 0.3 0.4

specified throughput

Figure 8: Response Time Problem: Response time with increasing throughput constraint

Comparison of achieved throughputs

for 128 and 256 processor hypercubes
04
] 1

E 03-
'g, —— P=128
g —— P=256
5 0.2+ :
8 =11 7,0,0 ;] .

0.1 - T M T Y T A\ 1

0.0 .0.1 0.2 0.3 0.4
specified throughput

Figure 9: Response Time Problem: Achieved throughput with increasing throughput constraint

response time and ach, throughput for

specified throughput=0.0125
200 ~— for Encore 0.10
~—— response timo
L oog —— ¢ ach. throughput
© 3
5 006 g
8 100 - r g
e
E. -004 o
: R
E 002 &
0 +—— . v . v 0.00
0 100 200 300

no. of processors

Figure 10: Response Time Problem: Results for Encore

28

~—t—— throughput
~——eo—- achieved response time

0.4 100

- 80
Q
g 037 5
g | 5

& - 60
£ oo2- &
; 40 B
: g
4

0.1 | 20

)
0.0 - T T 2 4 2§ v 0
0 100 200 300

no. of processors

Figure 11: Throughput Problem: Throughputs and achieved response times

in shape; this clearly indicates that the algorithm trades off response time to achieve the specified
throughput. This is exemplified at high throughput constraints where the minimum respouse time
increases significantly in order to achieve the specified throughput. For low values of specified
throughput, the change in minimum response time is insignificant because the throughput can be
achieved easily with the given number of processors. For a larger system the knee of the curves
shifts to the right as expected due to the additional resources (as shown for a 256-processor system).
Finally, Figure 10 plots the response time as a function of the number of processors for the Encore
data. The graph is seen to closcly resemble Figure 5. To avoid repetition, we do not show further
results for the Encore.

7.4.2 The Throughput Problem

I' gure 11 illustrates the maximum thioughput obtained and the cortesponding aclieved 1espouse
time for our task system when the specified response time p = 100 seconds. The results gencrated
by the two heuristics described carlier are presented in Figure 12. Tlie optimal algorithum generates
higler throughputs than achieved by the two heuristics. Figure 13 shows the aclieved response
times wheu using the heuristics. The ratio heuristic achieves a lower response time than that by
the optimal algorithm because it does not necessarily satisfy the throughput constraint.

The tradeoff between response time and throughput is shown once again, this time in the con-
text of the throughput problem, in Figures 14 and 15 for 128 and 256 processor hypercubes as a
function of the specified 1esponse time. The solid liue sliows the maximum possible thioughput
wlhen there is no response time constraint. Therefore, for any specified response time, the differ-
ence between the maximum throughput and unconstrained maximum throughput repiescuts the
amount of througliput tradeoff to achieve the specified response timme. Furthermore, we can obscrve
that as the specified 1espouse time increases, the difference between the unconstrained maximum

29

Comparison of max. throughput of
different allocation algorithms for

—8— optalgo.
——e&—— ratio heur.
—a— equal alloc.

0.4 B specified response time=100
1
0.3 1
5
Q.
£
(=]
& 0.2
.g .
0.1-4
<
0.0 v ' v T
0 100 200
no. of processors

1
300

Figure 12: Throughput Problem: Throughputs obtained by heuristics

comparison of achieved response times
of different allocation algorithms for

—— opt. algo.
——¢~—ratio heur.
—®&— equal alloc.

300

100 - specified response time=100
80
5
g 60
-g 40
O o
=
8 20+
o LA ‘ — ‘ g ‘
0 100 200
no. of processors

Figure 13: Throughput Problem: Achieved response times for heuristics

30

-

Comparison of throughputs for

128 and 256 processor hypercubes
0.4
o max unconstrained throughput

0.3 —0— P=128
E ——— P=256
ﬁ -
=]
E 0.2 - max, unconstrained throughpu

L = -
0.1 v T v
10 20 30
specified response time

Figure 14: Throughput Problem: Maximum throughput with increasing response time constraint

throughput and throughput reduces because of the weakening of the response time constraint. Be-
yond a certain point, the response time constraint is so weakened that the maximum unconstrained
throughput is achieved as shown by the plateau in the throughput curve. This phenomenon is also
observed in functional pipelines in processor designs where inserting delays in the pipeline stages
results in higher throughout at the cost of response time [26, 34, 40].

8 Summary

In this paper we have formulated the problem of optimizing the performance of a pipeline computa-
tion, represented by a task structure, on a parallel architecture, given a large supply of processors,
and the experimentally determined response time functions for its constituent tasks. Unlike prior
treatments of the mapping problem we considered the case where there are many more processors
than tasks and where tasks are not queued or scheduled. We considered the dual problems of min-
imizing response time subject to a throughput constraint, and maximizing throughput subject to
a response time constraint. As we observed in our sample application, these problems are compli-
mentary, in the sense that allocation to increase throughput may have the side effect of increasing
response time, and vice versa.

The problem posed in this paper was shown to be solvable in polynomial time for a useful class
of task structures. Specifically we presented O(np?) algorithms (where 2 is the number of tasks
and p is the number of processors), for the response time problem, for the cases where the task
structures are linear, tree-structured and series-parallel graphs. The algorithms designed for the
response time problem can be used to solve the throughput problem with an additional logarithmic
factor in complexity. To place the work in a realistic setting we considered an application, stereo
image matching on two parallel architectuies, and evaluated the performance of our assignment

31

Comparison of achizved response times
for 128 and 256 processor ypercubes

30 LR L]

E
§ 20 4 ~2— P=128
5‘ thd —— P=256
3
(3]
=
E
10 v T M E L] ’ 1
i0 20 30 40
sf)cciﬁed response time

Figure 15: Throughput Problem: Achieved response times with increasing response time constraint

algorithms. Future endeavors include the provision of algorithms for general task structures and
investigation of faster and paralielized assignment algorithms.

References
{1] MJ Berger and S II Bokhari. A partitioning strategy for nonuniform problemns on multiprocessors.
IEEE Trans. on Gomputers, C-36(5):570-580, May 1987.

[2] F Berman and L Snyder. On mapping parallel algorithms into parallel architectures. Journal of
Parallel and Distributed Compuling, 4:439-458, 1987.

(3] J Blazewicz, M Drabowski, and J. Welgarz. Scheduling multiprocessor tasks to minimize schedule
length. JEEE Trans. on Compulers, C-35(5):389-393, May 1986.

[1] S I DBokhari A shortest tree algorithm for optimal assigtiments across space and time in a distributed
processor system. JEEE Trans. on Seft. Eng., SE-7(6):553-589, Nov. 1981.

[5] S I Bokhari Partitioning problems in parallel, pipelined, and distributed computing. IEEE Trans.
on Compulers, 37(1):48-57, January 1988.

[6] S Bollinger and S Midkiff. Hcuristic Techinique for Processor and Link Assignment in Multicomputers.
IEEE Trans. on Computers, 40(3):325-336, March 1991.

[7) L Bomans and D. Roose. Benchmarking the iPSC/2 Hypercube Multiprocessor. Concurrency. Prac-
lice and Experience, 1(1):3-18, Sept. 1989.

{8] M.Y Chan and F Y.L. Chin. On embedding rectangular grids in hypercubes. JIEEE Trans. on Com-
pulers, 37(10):1285-1288, October 1988.

[9] M Chen, and K.G. Shin, Processor Allocation in an N-Cube Multiprocessor Using Gray Codes. [EEE
Trans. on Compulers, C-36(12):1396-1407, December 1987.

{10] II-A Choi and B Narahari, Algorithms for Mapping and Partitioning Chain Structured Parallel
Computations. T'p appear in 1991 Inlernational Conference on Parallel Processing.

32

[11] A. N. Choudhary and J. II. Patel. Parallel Architectures and Parallel Algorithms for Integrated Vision
Systems. Kluwer Academic Publishers, Boston, MA, 1990. Video images obtained from the Army
Research Office.

(12] E. Denardo. Dynamic Programmang: Models and Applicalions. Prentice-1lail, Englewood Cliffs, NJ,
1982.

(13] J. Du and Y-T. Leung. Complexity of Scheduling Parallel Task Systems. SIAAM J. Discrete Math.
2(4):473-487, November 1989.

(14] S. Dutt and J.P. Hayes Subcube Allocation in Hypercube Computers. IEEE Trans. on Compuiers,
40(3):341-352, March 1991.

[15] Encore Computer Corp. Promotional Literature. Marlborough, MA. 1986.

[16] G. Fox, M. Johnson, G. Lyzenga. S. Otto, J. Salmon and D. Walker. Solving Problems on Concurrent
Processors (Vol. I and II). Prentice Hall, Englewood Cliffs, NJ, 1990.

(17] G. Fox, A. Kolawa, and R. Williams. The implementation of a dynamic load balancer. Technical
Report C3P-287a, Caltech, February 1987.

[18] J. P. Iay-s, T. N. Mudge, Q. F. Stout, and S. Colley. Architecture of a hypercube supercomputer.
Proc. »f the 1986 Inlernational Conference on Parallel Processing.

[19] C.-T. llo and S.L. Johnsson. On the embeddiug.of arbitrary meshes in boolean cubes with expansion
two dilation two. In Proceedings of the 1987 Int’l Conference on Parallel Processing, pages 188-191,
August 1987,

[20] E. llorowitz and S. Sahni. Fundamentals of Computer Algorithms, Chapter 2, Computer Science Press,
Maryland, 1985.

[21] A. Huertas and G. Mediono. Detection of intensity changes with subpixel accuracy using Laplacian-
Gaussian masks. IEEE Trans. PAMI, PAMI-§ pp. 651-664, Sep. 86.

[22] O.IL Ibarra and S.M. Sohn. On mapping systolic algorithms onto the hypercube. TEEE Trans on
Parallel and Distributed Systems, 1(1):48-63, January 1990.

[23] M. Jeng and 11.J. Siegel. A distributed management scheme for partitionable parallel computers JEEE
Trans. Parcallel and Distributed Systems, 1(1):120-126, January 1990.

[24] R. Kincaid, D.M. Nicol, D. Shier, and D. Richards. A multistage linear array assignment problem.
Operations Research, 35(6):993-1005, November-December 1990.

[25] C.-T. King, W.-II. Chou, and L.M. Ni. Pipelined data-parallel algorithms. JEEE Trans. on Parallel
and Distribuled Systems, 1(4):470-499, October 1990.

(26) P. M. Kogge. The Archilecture of Pipelined Compulers. McGraw 1lill, New York, 1981.

(27) R. Knshnamurti and Y.E. Ma. The processor partitioning problem in spezial-purpose partitionable
systems. Proc. 1938 Inlernational Conference on Parallel Processing, Vol. 1, pp. 434-443.

(28] M. K. Leung and T. S. Huang. Point matching in a time scquence of stereo image pairs. Technical
Report, CSL, University of Illinois, Urbana-Champaign, 1987.

[29] L. L1 and K.II. Cheng. Job scheduling in partitionable mesh connected systems. Proc. | 989 Interna-
tional Conference on Parallel Processing.

[30] A.W.Marshall and 1.Olkin, Incqualities. Theory of Majorization and Ils Applications, Academic Press,
1979.

33

[31] W N. Martin and J. K. Aggarwal (editors). Motion Understanding, Robot and Human Vision. Kluwer
Academic Publishers, Boston, MA. 1988.

[32] R G. Melhem and G.-Y Ilwang. Embedding rectangular grids into square grids with dilation two.
IEEE Trans. on Computers, 39(12):1446-1455, December 1990.

{33] DM Nicol and D R. O’Ilallaron. Improved aigorithms for mapping paiallel and pipelined computa-
tions. IEEE Trans. on Computers, 40(3):295-306, March 1991.

[34) J. II. Patel and E. S. Davidson. Imroving the Throughput of a Pipeline by Insertion of Delays.
Proceedings of the Third Annual Computer Archilecture Symposium, pp. 159-163, 1976.

(35] P Sadayappan and I Ercal. Nearest-neighbor mapping of finite element graphs onto processor meshes.
IEEE Trans. en Computers, 36(12):1408-1424, December 1987.

[36) DS Scott and R. Brandenburg. Minimal mesh embeddings in binary hypercubes. IEEE Trans. on
Compulers, 37(10):1284-1285, October 1988.

{37] 1L. J. Siegel, L. J. Siegel, F.C. Kemmerer, P.T. Mueller,Jr., IL.E. Smalley, and S.D. Smith. PASM :
A partitionable SIMD/MIMI> system for image processing and pattern-recognition. IEEE Traus. on
Computers, C-30(12), December 1981.

[38] CV Stewart and C R. Dyer. Scheduling Algorithms for PIPE (Pipelined Image-Processing Engine).
Journal of Parallel and Distributed Computing, 5:131-153, 1988.

[39] 1I Stone. Multiprocessor scheduling with the aid of netweork flow algorithms. IEEE Trans. on Soft.
Eng., SE-3(1):85-93, January 1977.

[40] 11. S Stone. High-Performance Compuler Archileclure (2nd ed.). Addison-Wesley, 1990.

[11] D Towsley Allocating programs routaining branches and loops within a multiple processor system.
IEEE Trans. on Soft. Eng., SE-12(10):1018-1024, October 1986.

[42] J. Valdes, R E Tarjan, and E.L. L. ~ler. The Recognition of series paral el digraphs. STAM J. Compu.,
11(2):298-313, May 1982.

[43] C Weems, A lanson, E. Riscman, and A. Rosenfeld. An integrated t.aag: understanding benchmark
for parallel compulters. Journal of Parallel and Distributed Computing. January, 1991,

EPORT DOCUMENTATION PAGE ooy

R D U AT o N OMB No. 0704-0188

Public eeporting burcen tor this collecticn of informMation « estmated 10 dverage | hgur Der I23POrse, incivding the tMe Lor FevIewINg INSITuUCLioNs, ;CANNG 225t £G I Wures,
gathering and matataiming the data needed. and compieting and reviewsng the (oitection of int ¢ yend « regarding thus burden estimate ur sny Jther soewt of this

coliection of tntormaugn, inqiuding suggestions tor redudang this Durcen (o Washington Headauarters services, Lirectotate tor .nturmation Joerations ynd Reports, 'e'S sefferson
Oavis High Suite 1204, Arhingtan, VA ¢2202-4302, and to the Otfice ot Management ard Budget, Paperwcrk Reduction Project (0703-0188), Aashington, JC 20503

1. AGENCY USE ONLY (Leave blank) |[2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1991 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

OPTIMAL PROCESSOR ASSIGNMENT FOR PIPELINE COMPUTATIONS NAS1-~-18605

505-90-52-01

6. AUTHOR(S)

David M. Nicol, Rahul Simha, Alok N. Choudhury,
and Bhagirath Narasami

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Institute for Computer Applications.in Science ICASE R No. 91-79
and Engineering eport No. -

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. szc%:sceaéhégé%_omﬁggs
: A
National Aeronautics and Space Administration
Langley Research Center NASA CR-189047
Hampton, VA 23665-5225 ICASE Report No. 91-79

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to IEEE Trans. on Par-
Final Report allel & Distributed Systems
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200words) The availability of large scale multitasked parallel archi-
tectures introduces the following processor assignment problem for pipelined computa-
tions. Given a set of tasks and their precedence constraints, along with their ex-
perimentally determined individual response teims for different processor sizes, find]
an assignment of processor to tasks. Two objectives interest us: minimal response
given a throughput requirement, and maximal throughput given a response teim require-
ment. These assignment problems differ considerably from the classical mapping prob-—
lem in which several tasks share a processor; instead, we assume that a large number
of processors are to be assigned to a relatively small number of tasks. In this pa-
per we develop efficient assignment algorithms for different classes of task struc-

tures. For a p processor system and a series-parallel precedence graph with n con-

stituent tasks, we previde an 0(np2) algorithm.that finds the optimal assignment for
the response time optimization problem; we find the assignment optimizing the con-

strained throughput in O(np2log p) time. Special cases of linear, independent, and

tree graphs are also considered. In addition, we also examine more efficient algor-
ithms when certain restrictions are placed on the problem parameters. Our techniques

are applied to a task svstem in computer vision,

14. SUBJECT TERMS 15. NUMBER OF PAGES
mapping; pipelining; assignment; parallel processing 36

16. PRICE CODE
A03
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified’ Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
;5)%“1%3'6 by A% Stg £)9.18

NASA-Langley, 1991

-

—— o e e o e

-

- qul
{
|
1l
{
i
h
1
i
|

B
]
|
]
i
{
{
|
|

|
{
§
|
¥

wars J049 Y795

NASA Contractor Report 189047

OPTIMAL PROCESSOR ASSIGNMENT FOR
PIPELINE COMPUTATIONS

David M. Nicol, Rahul Simha, Alok N. Choudhury,
and Bhagirath Narahari

October 1991
NASA Contractor Report 189047 has an incorrect report number. The correct report

number is NASA Contractor Report 189550. Please mark your copies on 1" e cover and
Report Documentation Page to reflect this change.

Issued January 1992

