
AD-A242 793

NASA Contractor Report 189047 0 F(r
ICASE Report No. 91-79 " NOV2 3199,

ICASE
OPTIMAL PROCESSOR ASSIGNMENT FOR
PIPELINE COMPUTATIONS

David M. Nicol
Rahul Simha
Alok N. Choudhury
Bhagirath Narahari

Contract No. NAS1-18605
October 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASA 91-15743
National Aeronautics and
Space Administration
Langley eserch Center
Hampton, Virginia 23665-5225

Approved for public rolease;
Distribution Un~lmited 1 jW j 5I 069

OPTIMAL PROCESSOR ASSIGNMENT
FOR PIPELINE COMPUTATIONS

David M. Nicol* and Rahul Simha

College of William and Mary
Williamsburg, VA 23185 Aco, so r

H TIS GRA&IAlok N. Choudhury CIC TA&B I

SUlrearo~urn ed 0]Syracuse University U.u eo U

Syracuse, NY 13244

Bhagirath Narahari I" _ I
George Washington University Availability Codes

/aJi andlor

Washington, DC 20052 i~ist Special

ABSTRACT

The availability of large scale multitasked parallel architectures introduces the following
processor assignment problem for pipelined computations. Given a set of tasks and their
precedence constraints, along with their experimentally determined individual response times
for different processor sizes, find an assignment of processors to tasks. Two objectives interest

us: minimal response given a throughput requirement, and maximal throughput given a

response time requirement. These assignment problems differ considerably from the classical
mapping problem in which several tasks share a processor; instead, we assume that a large
number of processors are to be assigned to a relatively small number of tasks. In this paper

we develop efficient assignment algorithms for different classes of task structures. For a p
processor system and a series-parallel precedence graph with n constituent tasks, we provide
an O(np2) algorithm that finds the optimal assignment for the response time optimization

problem; we find the assignment optimizing the constrained throughput in O(np2logp) time.

Special cases of linear, independent, and tree graphs are also considered. In addition, we
also examine more efficient algorithms when certain restrictions are placed on the problem
parameters. Our techniques are applied to a task system in computer vision.

"Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering, NASA Langley Research Center, Hampton, VA 23665-5225.

Resarc
ws sppote bytheNaionl

Aroautcs

ndSpae
Amiistatin

nde NAA
ontac

1 Introduction

In recent years much research has been devoted to the problem of mapping large computations onto

a system of parallel processors. Various aspects of the general problem have been studied, including

different parallel architectures, task structures, communication issues and load balancing [11, 16].

Typically, experimentally observed performance (e.g., speedup or response time) is tabulated as a

function of the number of processors employed. \Ve are particularly interested in tabulations of

response time, which we will refer to as response-time functions. Our work is also motivated by the

growing availability of multitasked parallel architectures, such as PASM [37], the NCube systeni

[18], and Intel's iPSC system [7], in which it is possible to map tasks to processors and allow parallel

execution of multiple tasks in different logical partitions.
In this paper, we consider the problem of optimizing performance of a task structure on a

parallel architecture, given a large supply of processors, and the experimentally determined response
time functions for its constituent tasks. The task structure describes the sequencing of various
computational activities (tasks) that are to be applied to each of many data sets; the data sets

themselves are pipelined through the task structure. We refer to this class of computations as
pipeline computations. This problem arises in data parallel applications such as the computer
vision example we consider in this paper, when individual tasks, e.g. a fast Fourier transform,

are highly parallelizable. Unlike prior treatments of the mapping problem we are interested in
the case where there are many more processors than tasks. Rather than ask which tasks must
share a processor, we ask how many processors each task should be allocated. We are interested
in both the response time of the task structure on one data set, and in the throughput (data sets

processed per unit time). We consider the dual problems of minimizing response time subject to a
throughput constraint, and maximizing throughput subject to a response time constraint. These

problems are complimentary, in the sense that allocation to increase throughput may have the side
effect of increasing response time, and vice versa.

Under the assumption that the constituent task response time functions completely characterize
performance, we show that p processors can be optimally allocated to an n-node scrics-parallcl task

structure in O(np2) time. We study separately the special cases of linear, and tree structures and

show a O(np2) procedure; we also consider response time function characteristics such as convexity
which are exploited to achieve even mole efficient algorithms. Our methods are applied to the task
of motion estimation in a computer vision system; we present several experimental results for both
the response time as well as the throughput problem.

The problem of mapping workload to processors has attracted a great deal of attention in
the literature, leading to a number of probleml formulations. One often views the computation in
terms of a graph, where nodes represent computations and edges represent communication; for an

example, see [2]. In this case, mapping means assigning each node (task) to a processor. One view

of the mapping problem is that the computation graph represents a distributed program, with "1
serial thread of control. Tasks have different affinities for different heterogeneous processors; the
problem is to assign tasks to processors so that the total sum of execution times (of all tasks)

and communication costs is mmuinimized. Fundamental contributions to this problem are made in

L

1

[4, 39, 41]. However, the objective function for this problem does not capture any parallelism among
the tasks. Another mapping problem formulation views the architecture as a graph whose -nodes
are processors and whose edges identify processors able to communicate directly. The dilatton
of a computation graph edge (v,v) is the minimum distance (in the processor graph) between
the processors to which u and v are respectively assigned. The dilation of the graph itself is the
maximum dilation among all computation graph edges. Dilation is a measure of how well the
mapping preserves locality between nodes in the mapped computation graph. Results concerning
the minimization of dilation can be found in [8, 19, 32, 36], and their references. Yet another
formulation directly models execution time of a data parallel computation as a function of the
chosen mapping, and attempts to find a mapping that minimizes the execution time. Workload
may again be represented as a graph, with edges representing data communication. Nodes are
mapped to processors in such a way that each processor's workload is approximately the same, for
example, see [1, 5, 24, 33, 35]. Formulations using simulated annealing or neural networks attempt
to minimize an "energy" function that heuristically quantifies the cost of the partition [6, 17].
Other interesting formulations consider mapping highly structuied comiputations onto pipelined
multiprocessors [25], and mapping systolic algorithms onto hypercubes [22]. The problem we study
is distinctly different than these, in that it seeks the assignment of multiple processors to a task,
rather than multiple tasks to a processor.

Recently, some studies consider the scheduling of tasks on multitasked parallel architectures
where each task can be assigned a set of processors. The objective in such work, for example
in [3, 13, 27], is to find a schedule that minimizes completion time. A fundamental difference,
between the processor assignment problem studied in this paper and the above scheduling problems,
is that scheduling formulations allow tasks to be queued or sequenced. In contrast, the nature
of pipeline computations recommends assigning at least one processor to each task: executable
image's which would be swapped into main memory for each data set under scheduling, would
remain in main memory under our assignment formulation. The problem of assigning processors
to a set of independent tasks where each task is a chain of modules is considered in [10]. This
differs from our problem, as neither response-time functions nor task precedence is treated. In
other formulations, each task requires a specific number of processors; in this case, the problem of
scheduling tasks on a partitionable hypercube or mesh connected architectures has been studied
[(5, 14, 23, 29]. Pipeline computations are studied in [25, 38]. In [38], heuristics are given for
scheduling planar acyclic task structures and in [25], a methodology is presented for analyzing

pipeline computations using Petri nets together with techniques for partitioning computations. We
have not discovered treatments that address optimal processor assigunment, to pipeline computations,
although our solution approach (dynamic programming) is related to those in [41 and [41].

This paper is organized as follows. Section §2 introduces notation, and formalizes the response-
time problem and the throughput problem. Section §3 develops some preliminary results about
response time functions that will be used throughout the paper. Section §4 closely examines two
response-time probleIs associated with linear arrays of tasks, and Section §5 aplfhies these results to
tasks structured as trees or more general series-parallel graphs. Section §6 shows how the problem

2

Number of processors

tasks 1 2 3 4 5 6 7 8
t_ 29 16 :1 9 7 6 14.5 4

t2 40 21 14 11 8.5 8 7 5
t3 10 5.5 3.4 3 2.5 2 1.5 2
t4 20 12 10 9 8 7 6 5
t- 15 10 8 5 4 '3.5 3 2.5

Table 1: Example of Response time functions

of maximizing throughput subject to a response-time constraint can be solved using solutions to
the response-time problem. Sez.tion §7 discusses application of our techniques to ac.tal problems,
and Section §8 summarizes this work.

2 Problem Definition

A pipeline computation is a quadruple 7 = < K, T, F, G > where

" K = {1, ...,p} is a set of identical processors.

* T = {ti, ..., I,,+1} is a set of tasks labeled such that t1 i3 always the first task and t,+, the last
task executed on each data set. We will assume that the last tawk tn+1 is a '-dummy" task
that recuires no processing-it ib used for convenience of notati±i, in the graph G, described
below.

" F = {f i,..., f.+,} is a collection of response-time functions f, : 1 - III+ for each task. For
notational convenience we assume that f1(0) = co for all i = I,..., n. We also assume that

fn+(x) = 0 for all x, so that no processors need ever be assigned to the dummy task. It
is often convenient to think of the discrete function f, as a table, a format we shall use in
this paper. Later, we will also use 17 to denote the response time functions for a whole task
structure.

* C = (T, E) is a directed acyclic graph (DAG) describing the precedence relation for the tasks

in T. Thus, (ti, ti) E E if ti immediately precedes tj.

An example of response time table for n = 5 and p = 8 is shown in Table 1. Each row of the
entire table is a response time function for a particular task. I the coumbe of the paper we will bc
constructing examples to demonstrate the ube of our algorithib for %diiuus giaph structure; these
examples will use the response time functions in this table.

Our definition of a pipeline computation extends earlier definitions [25, 38] to include the em-

pirically determined response-time functions. Observe that f,(L) imay include the communication
costs inherent in executing t, on k prccessor-, as well as the communication costs t, kay suffer

3

communicating with predecessor and/or successor tasks in T. This paper assumcs that all-perfor-
mance dependencies on communication are captured in the response time functions. Our problem
foridulation does not therefore attempt to deal with any issues related to "matching" the task
structure topology to the architecture topology. It implicitly assumes that performance is indepen-
dent of which processors are assigned to a task. These assumptions are rcasonable when the (ost
of communication is largely independent of the distance between communicating processors (as is
the case vith the Intel iPSC/2 [7]), and the communication bandwidth is sufliciently high for us to
ignore effects due to contention between pairs of communicating tasks. Thcy are also reasonable
for compute-bound applications, for which load-balancing of the type we study is a major concern.
The computer vision application we later consider is compute-bound.

Let A : T --+ Z denote a feasible assignment of processors to tasks such that E=l AQ,) _< p and
A(t,) > 1 for all t, where 1 < i < n. Observe that we do not rquire all p processors to be assigaed,
as it is possible that increasing the number of processors used actually hamIX.s pei.'rmance. In
addition, observe that each task must be assigned at lea.t one processor; this condtion clcarly
differentiates between an assignment and a schedule.

For a pipeline computation P and assignment (maping) A, define the following:

e S(P, A) = naxl<i<,, f,(A(t,)), the largest response time, under A, aaong all tasks.

0 A(P, A) -S(2,A)- 1 . Ve will later argue that tlis quantity is the maximal throughput
under assignment A, i.e., the maximum rate at which successive data sets can be processed
by the task system.

* L = {111 is a path in G starting from t, ending in t,,+,}. L is thus the set c5 all complete

paths through G. We will write each I E L as a set {4l, ... ,ik,, il = 1,i, = n+ , 1 < k < n+1,
with 1 consisting of the edges (Li,, ti2), ..., (tikI, 1k).

e .1(2, A) = maxfL EE f,(A(t,)), the "length" of the longest path through G. R(P, A) is
thus the total time required to execute one data set, i.e., the response time.

With these definitions we formulate two l)roblems.

Response time problem:

Given a pipeline colputation P anI throughpltL iequirement A, find ai, assignment
A* such that A(P, A') _ A, and R(P, A') :5 R(P, A) for every feasible assignment
A which satisfies A(P, A) > A.

We are also interested in detcrnining how the optimal response time R(7, A) behaves as a
function of p, the maximum number of available processors. In other vords, we are interested
in obtaining the response time functioa for th(entire computation P; the values of/1(2, A1) for
diffccnt values of p. We will call this P's optimal response timc function, or sometimes simply the
response time function (the optimality being understood).

4

Throughput problem:

Given a pipeline computation P- and response time requirement p, find an assignment
A* such that R(P, A*) p, and A(P, A) >_ A(P, A) for every feasible assignment
A which satisfies 11(7', A) < p.

The response time problem arises when we ha.xe a steady stream of input data arriving at a fixed
rate and the system must complete processing each data set as soon as possible. The throughput
problem arises when there is flexibility in the amount of time it takes to process one data set
but the throughput must be maximized to handle high input data rates. Both conditions appear
in real-time applications. Our approach will be to focus first on the response-time problem, for
different task structures; in Section §6 we then show how solutions to the response time problem
can be used to solve the throughput problem.

3 Preliminaries

.Much of this paper is devoted to the issue of dccomposing a large task-structure into a bet of smaller
task structures and constructing a response time function for the laige strictuie fiora lespune time
functions for the smaller structures. This is accomplished by first separately .tudying algorithns
for handling simple task structures such as tasks in series and tasks in paiallel. Then more complex
task structures such as trees and series-parallel gr.aphs are treated by decomposing the optimization
procedure to handle series and parallel components of the overall task structure.

Given x (x < p) processors and a task struLture consisting only of two tasks t, t2 , with response
time functions fl, f2, we wish to determine y such that assigning y processors to t and x - y to
f2 satisfies the throughput requirement and minimizes the overall response time. If we tabulate
this mninimal response time for each value of x, then we obtain a response time function for the
aggregate of t1 and!12. Note that this function captures optimalit and is thus an optimal response
time function. In general, givep a set of task structures {P l ',} where forj = 1.., m, P., =<

K, T,, F, G, >, we extend the notion of response ti me function for a single task to a response time
function for an entire pipeline computation; let F : Z - 1R be the response time function for 7',,

i.e.; F,(x) is the optimal response time achieved for "P using x processors. Suppose also that we have

an rn-node graph C that describes a precedence relation on {', ... , "P,}. Ve may view each P, as
an arbitrary task, even though P, may itself have a conplex subtask structure. We wish to construct

the optimal response time function for the structure (given a

throughput constraint \. We accomplish this by solving a nunber of response-time problems; for
cvery x E [1,p] processors, we determine the minimal response time h(x) achievable by allocating no
nore than x processors Among the task structures P'. in such a way that the throughput requirement

is satisfied. h(x) becomes the optimal response time function for Q, which now can be treated as
a task itself with a known response-time function.

We are interested in properties of optimal response time functions that are conserved through
such ai aggregation procedure. Two questions are particularly important: (i) what is the nuinimuni

15

number of processors needed for Q to meet the throughput constraint, and (ii) what is the maximum

number of processors that Q should be allocated? The akis%%er to the first question is straightfornard
whereas the answer to the second requires additional analysis.

First consider the throughput constraint question. Let uA(TP.) denote the minimum number of

processors T', must be allocated in order to meet throughput constraint A. For a single task t,,

Ux(t,) denotes the minimum that must be assigned to task 1,, i.e, uA(t,) = mink,7{k f,(k) < A-}.

Observe that any distribution of tasks to Q must assign at least u.x(TP3) processors to P. if Q is to

meet the throughput requirement. As this is true for each P,, it is clear that

j=1

This is true regardless of the structure of Q. It is also true that if every P, is allocated u.\(P 3)

processors, then Q's throughput is at least \. One need only perform an easy induction on the
number of nodes in the precedeiice graph to establish that Q's throughput is the inverse of the
imaximnal response-time among all tasks in Q. This shows that the inequality in equation (1) can be
reversed, thereby implying equality. Thus, the rule for computing minimal processor requirements
for Q is simple, and general: add the minimal requirements of Q's constituent tasks.

To answer the second question, especially UILIen Q is complex, we need to manipulate the
functions so that -,rtain conditions are satisfied. For a response time function f(x), define the

reduced response time function f(x) as:

(x) = mni {f(Y))

Note that f is monotonically decreasing (non-increasing). whereas f need not be, and can be
defined both for single tas.L a.s ,%cll as for %hole computations b using the appropriate response
time function. In scvc-.al applicaions, i'icreasing conmmunicatioi, .osts when a large number of

processos is used can force mesponse times to incrcamc with increasing x. InI general, we would
like to ticat response time functions that behave arbitrarily (exhibit several local minima) with
increasing x. The adjustnaent abo-e %%ill prevent assigning "too many" processors. A processoi

assignment x is called reducible if 3y < x : f(y) < f(x). It is otherwise irrcduciblc. For obvious

reasons, we seek irreducible assignments. In the example in Table 1 the response time for task t3,
i.e., fj(x), can be reduced while all other functions cannot. After the adjustment, we have the

reduced response time function with 13(3) = 1.5 which assigns only 7 processors to task t3.
We next deri~e uoine properties of reduced response time functions that %%(%,6ill later use in our

algorithms. Consider first a simple case of two elemental tasks tj and t2 and their aggregate, 6.
Suppose fi(x) and fz(x) are the response time functions for t and t2 and I[(x,,.z2) is a real-valued

fuiction increasing in both arguments. Define

f,(x) = Min {]t(f;(Y),f ((x- Y))}. (2)
O<m<x

Here f, is the optimal response time function of the aggregate task s, written as some function of

the response time functions of tj and t 2 . In this paper, JI is usually a sum (for series tasks) or a

maximum (for parallel tasks). Define

L(x)= min {JIcj),JC(-y))}. (3)O<y<x

We next show that:

Lemma 3.1 For all x = 1,...,p, 5 (x) = D4

Proof: We first show that fL(x) is monotone decreasing in x, and therefore f(x) is already

irreducible. Since fi and f2 are monotone decreasing and fi is increasing, for any y

f(fi(Y), fh(X - Yj)) _ 1I(I(,), 12(X + 1 - ,j)).

Therefore,

min {1(.1(Y), f2(X - V))} M mi {J(11(Y), 12(x + 1 - Y)))

that is, f(x) is decreasing.

Next, for any x > y > 0, 1 (y) < fi (y) and 12(x - y) < f 2 (x - y). Thus

11((Y). 12(X - ,Y)) < J1(h (Y), f2(X - V))

and hence

1(x)= mill {H(CJ(v), 2(X -))) < min {(fi(y)/ f2(x - y))}= f,(x).5 O<Y5x -- O<yfx

As this is true for all x = 1,..., p, it follows that

min { rin {f(v)} for all x.

But, the left-hand-side of the above is simply f (x) (by definition); the right-hand-side is

1,(x) (also by definition), showing that f(x) _< !,(z) for all x = 1,...,p.

Finally, we show f(x)> f!(x). For the sake of contradiction suppose 3xo : h(xo) > f(xo).

Then
min min {Jt(fj(wv), f2(y - w))} > mi (Z)

O<Y<,xo O<w<y O<Z5xo

and thus,

Vy < Xo : min {If(f 1 (w),f 2(y-,v))} > mo< {f(!,(Z):(XO - z))). (4)

7

Next let the minimum of the right side of inequality (4) be achieved at z = zo with value

JIC I(zo),h(xo- zo)) = (fi(a),f2 (b))

with A(zo) = f1 (a) and 2(xo- zo) f2 (b) for some a < zo, b < xo- zo and a + b < xo. Note
that a and b are obtained through the reduction of f, and f2. We may also rewrite inequality

(4)as

Vy<5 0: min {I(fi(W),f 2(Y -w))} > Jf(f(ZO),f2(Xo-Zo)). (5)

But, with y = a + b < xo above, we get

rain {n(fl(w),f2(y-w))} < I(fi(a),f 2(b)) = I(I(zo),h(xo-zo))O<W,<y

which contradicts (5) and therefore, f1(x) = f£(x)

Thus, we have shown that no information is lost in reduction, since the desired optimal response

time function of the aggregate fL is obtained using the reduced response time functions of the
constituent tasks. This is an important point: we will build up response-time functions for complex
tasks using increasing functions I!. and minimization equations of the form shown in equation (2).
We have just shown that if we start with reduced response time functions, then we will construct
reduced response time functions, and the assignments associated with them will be irreducible.

The lemma can be generalized through an easy induction argument for multiple, complex tasks.

Lemma 3.2 Let s, ,sk be k complex tasks with optimal response time funciions gl...- .,gk and
I(xI,.... Xk) be an incrcasing function in each argument. If s is the task that represents the

aggregate of tasks sz,..., ck with reduced optimal response time function h(x) and defining

A(x)= min {11(51ejI), - -- (
Ji ... ,ykl E IXl
Yi + -.+ yj =X

then h(x) =J~)

Remark 3.1 If the irreducible minimums of the functions §1... , .: occur at X1 Xk, then the
irreducible minimusn of L, zo, satisfies x0 _ E.1= xi.

The last remark ;'p-ilies that when constructing It we miay restrict our attention to only those

assignment vectors (i.. ,) for which y, - x,. This will result in improved execution

time for our optimization algorithms when I x, < O(p). Next. we begin our presentation of the
algorithms by first treating the two simpler task structures, linear series tasks and lineair parallel
tasks.

4 Linear Task Structures

Linear task structures are interesting both because many pipelines are simple linear chains [25] and

because chains appear as tasks in more complex task structures. We examine two different ways of
assessing the cost of a, linear chain. The first is when the chaia is a linear pipeline, and the response
time function is the sum of the response times of each of the 'stages' [25]. This is called a series

task structure. The second is when the constituent tasks execute in parallel in different aspects
of the same data set, a parallel task structure. For both problems we show how to construct the
optimal response time finction for the aggregate task. and. for every q = 1,. p, how to recover

time optimal assignment of q processors from information computed as the response time function
was constructed.

In the treatments of both lroblems we consider sl, sm to be the set of m constituent tasks.

and g,.. ,gm to be their respective response-time functions. Let .s be the aggregate task whose
optimal response time function h(x),O < x < p, we are interested in computing. Note that each
constituent task s5 may already be an aggregation of the elemental tasks t,. Our immediate goal is

to construct the overall reduced response time function for processors in the rarge and also.
to recover the optimal assignment when required.

4.1 Series Tasks

First we descLibe an algorithm that constructs the optimal response time function h(x) for linear
task structures wlme each function g,(x) is convex (see [30], pp. 45-4.-1) ill x, i.e., when tie

efficiency of parallelism is decreasing (see pp. 217 in [16j for an cxample). We later treat the
general case.

Let the assignment be recorded in I($sx) = (XI,...-x.k) where x. denotes the nuin: !r of pro-
cessors assigned to task l; lso let hr. denote the response time function created by our algorithm.

As a, first step, we must ensure that every task .s, is allocated enough processors u.%(s,) to meet
the throughput constraint. For each i = 1,...,m, let z, = u.%(s,) be this initial assignment. Of

course, the algorithm terminates at this point if F,' x, > p. because no feasible assignment exists.
Note that this first step does not require the presumed convexity of each g,. Let I = x,

we set h(x) = o for all x < t to reflect an inability to meet the throughput requirement, set
hG(t) = = ,(x,). and let x = t. Next, for each s,: compute d(i, x,) = g,(x, + 1) - gj(x'), the

change in response time achieved by allocating one inore processor to .%. Build a mnax priority heap
[201 where the priority of s, is Id(i, x,)I. Finally: enter a loop where, on each iteration,

" The task (say cj) with highest priority is allocated another processor.

" Let a denote the number of processors previously asvigned to -,. Compute hG(x) = hG(x -

1) + d(j a), and set I(s.z) = (xl,...:j r xk).

" Increment x.

" Compute sj's new priority, and adjust the priority heap accordingly.

We iterate until all available processors have been assigned, or the top element of the heap is non-
negative, i.e., d(j, x2) is non-negative. If the top element becomes non-negative when x = y, then
we assign hG(z) = hG(y - 1) and I(s,z) -(s,!- 1) for all z = 7 ,.,p.

Each iteration of the loop allocates the next processor to the task which stands to benefit most
from the allocation. When the individual task response functions are convex, then the greedy
response time function ho it produces is optimal, and is irreducible.

Prop. 4.1 Suppose that gi(k) is convex over x E (1,J, for all i = 1 n. Then for all X E [1,p],
hG(z) = h(x), the optimal responsc time function. Furthermore, hG(x) is irreducible.

Proof: Clearly, each task s, must receive at least uA(.s,) tasks in order for the throughput
condition to be satisfied. Recalling that t = u.x(sj, it is clear that hG(:) = h(x) = 00

for all x E [I. t- 1]. Now consider: = t. For all j = 1.... ,p-t the remainder of the algorithm
should assign 'the next- j processors in such a way to obtain the maximal possible decrease
in response time given j additional processors. The proposed algorithm does exactly that.
D = {d(ix +j)JI < i < n: 1 < j < p-x} is the set of all possible changes for the remainder of
the assignment. For every j = 1,..: p - t. the maximal decrease is obtained by choosing the
j largest (in magnitude) elements of D. Since each g, is convex, Id(i, x, + jj)I < Id(i. xi +j2)I
for j, > j2 (see f:30]. pp. 4.53-,154) and so the j elements with largest magnitude in D are
selected as given in the algorithn.

The irreducibility of hG follows from its construction.

Tle complexity of this algorithmn is low. The throughput condition is checked in in steps.
The initial priority heap is constructed in O(mlogin) time; the highest priority heap element is
found in 0(l) time and each heap adjustment requires only O(logn,) time using standard heap
algorithms. Thus the overall complexity is O(mlogm) + O(plognz) = O(plogn). This is an
example of how the structure of the response time function (convexity) can be used to obtain
higher algorithmic efficiency than might otherwise be achievable, as we will see below for general
response time functions.

A different alproach, based on dynamic programming., is needed when the task response time
functions are not convex. In fact, we anticipate 'hat this condition will be the norm when con-
sidering chains whose tasks are themselves aggregates of other tasks. Since convexity, need not be
preserved in aggregation, we must turn to aslightly more complicated algorithm. The new approach
has a higher complexity ---O(ip)== but it permits completely general response time functions. We
will show that certain algorithnic efficiencies are possible when bounds on the least minimums are
know,, aheae of time.

For any j = I,.. ., in. we can view the subchain si.... .sj as a (larger) task itself. We will call
this task S, an1d compute its optimal response time function: for x = 1,...,p let G.%(jx) be the

minimal resmuse time of s subject to throughput constraint A, achievable when no more than

10

x processors are allocated to it. The function GA(j, -) is thus S3 's optimal response time function;

in computing this function we will simultaneously check the throughput constraint-hence the

subscript A. Using the principle of optimality[12], we may write a recursive definition for GA(j, x)

as follows.

00 i f UA (Si) + UA (Si- I) > X:

Ga(j, x) = W if j = I and u <(sl)x (6)
nmil { 1(i) + Ga(j - 1, X - i)} otherwise.

These equations define response time .o be oo whenever insufficiently many processors are allocated

to s, or S,_ 1 to meet the throughput constraint; we define u,(So) = 0 as a boundary condition.

Observe that T(x) = G;\(m, x). Note that -the II function (Lemma 3.2) is the 'sum' operator here,

in the third part of the equation.

The dynamic programming equation is more intuitively explained by reading it 'top down'.

Suppose we had somehow computed the response time table for the first j - 1 tasks (the 'large'

task S,-), i.e., GA(j, x). Then, given x processors to distribute between tasks sJ and S3-1, we try

every combipzvtion subject to the throughput constraints: i processors for s. and x - i processors for

S1-1. Since the equation is written as a recursion, the computation will actually build response time

tables for larger tasks 'bottom up', starting with task sl in the second part of the equation. Note

that similar explanations may be given for the dynamic programming equations that appear later

in the paper. The optimal assignment of q (1 < q < p) processors to tasks is found by setting the

appropriate value of I as we solve for the value GA(j, X). Suppose that i solves GA(j, a) = j 3- 1(i) +

GA(j - 1,a x- i). Then we set I(Sj,x) = (xl,...,xj-,i), where I(Sj-,x - i) = (: 1 ,..., xj-1).

An important consequence of Lemma 3.2 is that each function GA(j, -) (and hence each assign-

inent I(S3, x)) is irreducible. This follows directly from the fact that equation (6) has the form

specified by equation (3). The more complex bounds on the minimum's index variable in equa-

tion (6) serve simply to keep the index i away from regions where either Mh(.) or GA(j - 1,) are

known to take value oo.
If we have already solved for the minimal response time function GA(j - 1, .), we may use

equation (6) to determine GA(j, "). The cost of determiing one individual GA(j, X) value is seen to

be O(x) = O(p); the cost of determining the whole function G,\(j, .) is thus 0(p2), and the cost of

determininlg all such functions (and hence the desired response time function GA(m, .)) is 0(mp2).

The application of the above dynamic programming procedure, in equation (6), is illustrated

in Figure 1 (which shows the computation of GA\(j,.)) for a task structure with three tasks. The

response time functions, ,(x), for the three tasks li, t 2 and t 3 are taken from Table 1 and the

throughput constraint A = 1/40. Since we use tasks from Table 1, we revert to using t, for the

constituent tasks. The first colunn of the table identifies the aggregated task S,, for 1 < < 3;

here S, = ti, 52 = (tl, t 2) and .53 = (ti, t 2 , t3). A row j corresponds to the response time function

GA(j, x), for aggregated task S3 ; entry [k,1] in the table (row k, column 1) gives the value, and

the corresponding assignment, for GA(k, I). The last row shows the assignment produced by the

11

O-'O--CD
tj t2 t3

Si x
3 4 5 6 7 8

51 11 9 7 6 4.5 4
(4) (3) (4) (5) (6) (7) (8)
52 50 37 30 25 22 19.5
(S 1,4 2) (1,2) (2,2) (2,3) (3,3) (3,4) (3,5)
53 79 60 47 40 35 30.5
(S 2, 3) (1,1,1) (1,2,1) (2,2,1) (2,3,1) (3,3,1) (3,3,2)

Figure 1: Application of Algorithm for series tasks: G,\(j, x) for 1 < j < 3, 1 < x < 8

algorithm; this assigns 3 processors to tasks tl and t2 and 2 processors to t.3 with minimum response
time of 30.5 and an achieved throughput of 1/14. Note that in our example above, and in all other
examples to follow, ue have omitted the dummy task that is the last task executed on the data set,
since it plays no role in the computation.

The dynamic programming equations can sometimes be solved more efficiently, when each g, has
an irreducible minimum at z,, and each z, is small relative to p. Suppose z, < L for all i = 1,..., m.
We next show how the optimality equations can be solved in 0(77 2L2) time. This is advantageous
when L < G(rIV7).

As we solve for each G,\(j, k), Remark 3.1 also tells us that we need not consider assigning any
more than z3 _< L processors to s.. This means we can rewrite the optimality equations as

00 if UA(s5) + U,\(S 1 1) > x
GA (j, X) 5 1J(X) if i = I and u,\(sl) < x

rain { j(i) + GA(J - 1, x - i)} otherwise.
ax{ux (s)), x - f- j 1 i xi

(7)

The complex lower bound on i prohibits indexing values of i such that S,-1 cannot meet the through-

put constraint, and values indexing beyond So's known minimum. Thus, the cost of computing
GA(j, X) is only O(L). Since we need only compute G,\(j, k) for x < z,, the cost of computing
G'(j,) is O(jL2), so that the cost of solving the overall problem is 0(_L= jL 2) - O(m2L 2).

4.2 Parallel Tasks

In this subproblem, we have a scqucnce S of tasks sl,... , m with irreducible response-time func-
tions ... , ,,, for which we need to determine the irreducible optimal esponse-time function ih(x)

12

for the maximum where

14(x) = mi max{yl(x1), 2(x2),. .. ,m(Xm)}.
Xj ... pXrn

X1" Xrn

In this case, the function H (in Lemma 3.2) is the maximum operator. The basic idea behind the
algorithm is that after processors are allocated to meet the throughput requirement, we can only
dri re the maximum response time down by allocating a processor to the task whose response time
under the present allocation is maximal. This process is repeated until the maximum number of
needed processors is allocated. This idea is now made more precise.

Suppose that the irreducible minimum of each ji occurs at zi, and let zh = = z,. Fimst,

observe that the response time function value at all processor counts smaller than t = E u\(s,)

is co. Thus, for i = 1,..., m, we begin by assigning uA\(s,) processors to task s,. This is also reflected

in the initialization of the data- structure recording assignments, as I(S, t) = (uA\(sl),..., I
Set h(x) = co for x = 1,...,t - 1, and h(t) = max,<,<m{,(uA(st))}. Next build a m-.x-priority

heap on the tasks, where j,(u(s,)) is the priority for task s,. Let x = t + 1, and enter a loop where
the following is performed for at most zh - t iterations.

* Give an additional processor to the task whose priority is greatest. Let y. be that maximal
priority.

* If that task (say s,) was previously assigned x, processors, and if x, = z,, then terminate the
algorithm.

* If that task (say s,) was previously assigned x, < z, processors, reset its new priority to

ji(xi + 1). Set I(S, x) = (x1,. . . ,xi + 11...,xm), where I(S, x - 1) = (xi,.. .,xi,..., Xm).

e Adjust the max-priority heap to reflect the task's new priority, and set h(x) to the maximum
value in the heap.

* Increment x.

If the loop terminates with x = y, then set h(z) = h(y - 1) and I(S, z) = I(S, y - 1) for all
Z = Y,... ,p.

The termination condition follows from the observation that if s, has the maximum response
time but already has z, processors assigned, no further assignment of processors to s, can ieduce
its response time. Since the objective function is the maximum response time among tasks, that
objective function cannot be further reduced. It is clear then that the procedure we describe
constructs an irreducible function. The algorithm's correctness is established with the following
lemma.

Lemma 4.1 For every x = t,...,p, h(x) = hz(x) = Yx.

13

Proof. For every i - 1,..., m, let S, - {,(x) I x = , zi} be the set of feasible response
times for s, following its initial assignment, and let S = U'=I S,. Since the objective function
value for ail assignment is the maximum response time under that absignmlent and since we
stop assigning processors once the -)bjective function can no longer be minimized, S contains
every value of Yx generated by our algorithm. Furthermore, the sequence yt, t+,..., de-
scribes the elements of S in descending order. Now if an assignment is to achieve cost yx,
the response time of every task must be no greater than y,. We argue that our algorithm
finds an assignment achieving cost y.,, using the minimum number of processors. For every y,
let T(y,) be the task from whose response-time function y, is taken. Or algorithm allocates
an additional processor to T(yl), then another to T(y2), and so on. For every x = t,..., Z,
and j = 1,. .. , m let 1(x) be the number of elements ya with a < x for which T(ya) = s3.

i%(x) is thus the number of additional processors our algorithm has allocated to s. by the

(x - O' h pass through the loop, and is also the minimum number of additional processors

(after uA(s3)) that s.3 must be assigned if its response is to be no greater than Yx. As this is
true for every task for every yx, it follows that the assignment generated by our algorithm
achieves each cost yx with the minimum number of processors. The lemma's conclusion is a
restatement of this fact. I

Since the algorithm's loop is executed at most zfh - t times, the overall cost of the algorithm is
O(m log m + zh log 7n). The optimal assignment is found in I(S,p). An example of the application
of ths algorithm is shown in the next section; in Figure 2 the row for B1 shows the response time
function (and the corresponding assignment) of a. parallel task composed of tasks tl and t2.

While the problems studied in this paper are distinctly different from those addressed in the
literature, a clober look reveals that the above algorithm (for paiallel tasks) is a generalization
of the algorithm independently conceived in [27]. While they address the problem of finding a
nonpremptive schedule for a set of n independent tasks, i.c., parallel tasks, their algorithm in fact
finds an assignment which satisfies the feasibility conditions of our poblem. Our algoithm is a
generalization in the sctse that the do not "consti tuct" a icd uced icpouse time table for the entiie
parallel task that provides the response time as a function of the number of 1)IocLsols. This is
essential for ,ui bolution technique which views complex task sti uctures as compobition of simpler
task structures.

5 Complex Tasks

The algorithms we have developed to analyze series and parallel task structures can be used to
analyze task-structures whose giaphs form trees, or series-parallel graphs. We nowk show how the
response time function for a tree task with n nodeb and arbitramy branching is computed in O(1p 2)

time) and how a series-parallel task with arbitrary blanching is analyzed in O(np2) time. Note that
the complex tasks we consider usually determine a whole pipeline computation and thus, wke will

14

henceforth use n (as in Section 2) to denote the number of nodes in the task graph. Series-parallel
graphs arise frequently in applications where data in a set is split, processed separately, and then
rejoined. The basic idea behind our algorithms is that these complex structures can be viewed as
a composition of series and parallel tasks, thus facilitating the use of the algorithms designed thus
far.

5.1 Tree Tasks

Suppose the precedence graph for P forms a tree with n nodes. Either out-trees (edges directed to
child nodes) or in-trees (edges directed to parent node) are permissible. Without loss of generality
(because path lengths are unaffected by arc direction) our discussion will concern out-trees.

For notational convenience we assume that every non-leaf node has exactly b children; our
approach extends immediately to the general case. For every task sj, let c,. .. ,c3,b be sj's
children. s, is the root of a subtree which can be viewed as a subtask T, with its own response
time function. Dynamic programming again expresses the optimal response time function for each
Tj. The optimal response time function for T1 is the overall problem solution.

Let GA\(j,x) be the optimal response time achievable by T., when subject to throughput con-
straint \. Let I be the set of interior tree tasks, and L be the set of leaf tasks. The principle of
optimality states that

00 if sj E C and u,\(sj) > x

G.\(j, x) Mi x l b <{j(xo) + max {G,\(cj,i, xi)}} otherwise.

XO +'"+Xb 1k

The formidable recursive expression simply takes the minimum cost over all possible partitionings of
k processors among 83 and the b subtrees rooted in its children. Fortunately, the results developed
in Section §4 may be employed to solve this equation efficiently. The subtasks c ,j through c3,b form
a single parallel task, B. The algorithm developed in the previous section constructs B's irreducible
response time function in 0(plogb) time. Next we can view T, as a series task, composed of s,
and B. Given B's response time function, T's irreducible response time function is computed in
0(1)2) additional time using the algorithm described in Section §4.1. Thus, the cost of computing
the serial composition dominateb. The complexity of computing response time functions for all T.

where s3 E ' is O(ZsIEzp 2). Note however that b]I27 = n, which implies that the total cost of

processing interior tasks is 0(npl2 /b). Since the cost of processing all leaf tasks is O(n), the total
cost in the general case is O(np2 /b).

The procedure is illustrated by the example in Figure 2, a tree with 5 constituent tasks; here
A = 1/40. The tasks ti, t2 form a parallel task, denoted B1 ; B1 and t3 form a series task, denoted
T3. Similarly, the aggregate task T3 and t,l form a parallel task B2; B 2 and t5 form a series
task T5 whose response time gives us the response time of the entire task. Note that the tasks
11,...,ts are taken from Tabie 1. Each row of the table shows the response time assigment for
the coirepoidinig aggiegated task. The mininumn respojibe time achieved by the assignment is 41

15

t5

t3

tlt2

task x
aggregates 5 6 7 8
B 1 16 14 11 11

(tl,t2) (2,3) (3,3) (3,4) (4,4)
T3 31 26 21.5 19.5
(t3 ,B 1) (2,2,1) (2,3,1) (2,3,2) (2,3,3)
B12 39 31 26 21.5
(t,J, T3) (1,2,1,1) (2,2,1,1) (2,3,1,1) (2,3,2,1)

T5 65 54 46 41
1(ts, B2) (,,,,) 1,, 1,) (2,2,1,1,1) (2,3,1,1,1)

Figure 2: Application of Algorithm for Tree Structures

(by assigning 2 processors to t1, 3 to t2 and one processor to each of the other three tasks) and the

achieved throughput is 1/20.
Better complexities are achievable when the irreducibbk minima z, for each s, satisfy z, < L

where L < p. The computation of B's response time function is fast-C (bLogb) time. For s. +B,

let ZT, be the sum of the z, values for all nodes in the subtree rooted in s*. Since we need not

consider any assignment that gives more than z, processors to S, the response time function for

s1 + B is computed in Q(z~,L) time. This cost dominates that of computing B's response time

function, provided that b log b < L, which we will assume here for simplicity.
The total cost of analyzing the tree is maximized when each XTj is as large as possible. This

occurs when the tree is actually just a linear chain, in which case XT,, = L, YT,,-, = 2L, XT, 2 =

3L, and so on. As we have seen, the total cost is then O(n2 L2). The best topology is a full tree;

for example, consider a full binary tree. A subtree T consisting of exactly 3 tasks has XTj < 3L,

and an analysis cost of O(3L2). n/2 such subtrees are analyzed. Then, u/4 subtrees are analyzed

where xs < L + 3L + 3L = 7L. Each of these requires O(7L2) time to analyze. Continuing in this

16

fashion we determine a complexity bound of

log n

(T (2i '+1 - 1)L2) = O(L 2 n log n).
i=1

5.2 Series-Parallel Tasks

Finally, we consider series-parallel task graphs. We show that the rcspvnse time fu, cdion for such

a gra..h (with n nodes) can be computed i, O(np2) time. A numbei of different but equivalent

definitions of series-parallel graphs exist. The one we will use is takzn from [42], which studies

verlex series-parallel DAGs. However, based on their results on the equivalence of edge series-

parallel DAGs and vertex series-parallel DAGs, we use the term series-parallel to mean both cases

and use their definition of vertex series-parallel DAGs. A series-parallel DAG (SP) is defined

recursively as follows.

I. (i) The DAG having a single vertex and no edges is SP.

2. (ii) If G1 = (V, Ej) and G2 = (V2, E2) are two SP DAGs, so are the DAGs constructed by

each of the following two operations:

(a) Parallel composition: G , = (V1 U V2, E, U E 2).

(b) Series composition: G, = (1 U V2, E1 E. U (1 x S2)), where T is the set of sinks of
G, and S2 is the set of sources of G2.

A node t, in G = (1/, E) is a sink if there are no outgoing edges from t,, i.e., there is no edge

(t,,t.) in E . A node t, is a source if there are no incoming edges to the node, i.e., there is no edge

(t3 ,t,) in E. It is shown in [42] that any SP DAG can be parsed as a binary decomposition tree

(BDT). Figure 3 illustrates a series-parallel gra~ir, and the BDT that represents the graph. The

internal nodes are labeled S, or P, to denote the series or paiallel composition. There is a one-to-one
correspondence between BDT leaves and DAG nodes. Each intenal BDT node a repiei t. ,s either

a series (labeled S) or parallel (labeled P) composition of two SP subgraphs represc-at.i by the

subtiees rooted in a. For example, suppa, a's subtrees are ,"irply leaf nodes. The corresp(,nding
nodes in the DAG are SP graphs, composed by tlLe-op.;. .. :ified in a's label, a can be thought
to be representing that composition. Now if a's 1.P. parent is sorie node q and q has another

child a', then we know that a' represents a: SP subgraph of the original DAG, and q represents

the series or parallel composition of the subgraph ...presented by a and by a'. A BDT thus shows
the selection and ordering of cc.apositions necesary to establish that the origir~al DAkJ is SP with

respect to the definition above.
There is an obvious correspondence between SP compositions and the m.ithods we h.ve devel-

oped to ccmpute response time fu3.ctions for sciz. and parallel task structures. If we think of an

SP DAG's nodes as representi:.g tasks, a beies composition corresponds to the aggregation of tw,
tasks into a series task structure: two tasks aie replaced by one, and the sciial edge bet%een them

17

2) t
Q

(a) A series-pra1e1, graph

S2

S1 P2

AP1 t4 t5

tj t2

(b) Binary decomposition tree

Figure 3: A Series-Parallel Graph andl corresponding BDT

Task agregates Number of procesors
_ _5 6 7 8

Pi, 16 14 II- Ii
paralleh(t1 , t2) (23) (3,3) (3,4) (1,4)

S1 31 26 I 21.5 19.4
serial:(p,, t3) (2,2,1) (2,3,1) (2,3,2) (2,3,3)

P2 10 101 9 8
parallel:(t.i, t5) (3,2) (3,3) (4,3) (5,3)

G = S 2 70 59 51 46
serial: (sl,p2) j(,1,1,1,1) j(1,2,1,1,1) (2,2,1,1,1) (2,3,1,1,1)

Table 2: Computation of Response times for series-par:, Jel struxctures

disappears. Similarly, a parallel composition corresponds to the aggregation of a set of tasks into a
parallel task structure. It is thus qui. straightforward to construct -the response time function for
a series-parallel graph, once the associated BDT is known. Starting with the individual tasks' re-
sponse time func.Lions, we compose response-time functions in the order specified by the BDT. The
response time fuictions created during intermediate steps represent aggregate subtdsks in much
the same way as task T'3 represented an entire subtree in Section §5.1. Likewise, the optimal as-
signment is recovered by backtracking through intermediate optimal assignments in the same way
as was described for trees.

An application of our procedure, for the series-parallel graph in Figure 3, :s zhown in Table 2 for
throughput constraint A = 1/40. Lch row slhws the response time func':., and corresponding
assignment, for the agregate task formed by a series or parallel compositiolL. .c-r (xample, the
row labeled S corresponds to the aggregate task formed by the series compositikn cf P, (which is
a parallel composition of t1 and t2) and t,. The minimum response time in the aLove assignmIent

is 46 (assigning 2 processors to tj, 3 to t2 and oiie processor each to t3 , t4 and ts) and the a.hieve.
throuihput is 1/20.

On.- the BDT is known, the cost of deteriiining the optimal assignmeit is O(np2), as every

respon. :-t, me function composition has'cost O(p2), there are at most u such compositions per-

formed. As we have seen before, the cost is reduced to O(L 0log,) when the irreducible minima
z, for each s, satisfies z, < L. It is s,.,vlk !:, [42] that a BDT can be constructed time proportlonai

to the number of .dges which is 0(n2) time. Since we assume n < p, the 0(np2) analysis cost
dominates the procedure.

6 The Throughput Problem

la computations where the input data rates must be maximized to handle real time constraints, the
ubjective of the system is to achieve a high throtighput. Typically, there is a limit on the amowut

19

of time the system can take to process a single data set, i.e., the response time. Under these
conditions the objective of an assignment becomes maximization of the throughput subject to a
specified rt sponse time requirement. We have referred to this problem as the throughput problem.
In this section we show how solutions to the response-time problem can be used to solve the
throughput problem. If one can solve the response-time problem for a given pipeline computation

in O(C(n,p)) time, then one can solve its throughput problem in O(nplog(pn) + log(np)C(n,p))
time.

Our approach depends on the fact Lt'at minimal response times behave monotonically with
respect to the throughput constraint.

Lemma 6.1 For any pipeline computation 'P =< K,T, F,,G >, let p(A) be the minimal possible

response timc of7, given throughput constraint). Thcn p(A) is a monotone non-decreasing function
of A.

Proof: Recall that u.\(t,) is tl.e minimum number of processors required for task t, to meet

throughput constraint A. r,, every ,, u,\(t,) is clearly a monotone non-decreasing function of
A. Call an assignment A ,\-f asilne if, for all i = 1,.. ., n it assigns at least u,\(t,) processors

to Ii. Finally, let A,\ be the set of all A-feasible assignments. Whenever ,I < \2, we must
have A, 2 g A,, because of the monotonicity of each u.\(t,). Since p(A) is the minimum cost
among all assignments in A,\, we have p(A2) _< p(,\). U

This result can be viewed as a generalization of Bokhari's graph-bascd argument for monotonicity
of the minimal sum" cost, given a "bottleneck" cost [5].

Suppose for a given pipeline computation we are ablk to solve for p(A), given any A. The set of

all possible throughput values is {1/f,(k) I i = 1,..., n; k- =,. .,p}; O(pnalog(pn)) time is needed
to sort them. Now suppose a response time constraint P, is -iven. For any given throughput A we
may complute p(A), and determine whether p(A) _<,3. p(A) is monotone in A, which permits us to

perform a binary search over the sorted space of throughputs and identify the greatest one, say A*,
for which p(A*) _< p. The assignment associated with p(A*) is the one maximizing throughput using

p processors, subject to response time constraint A. If the cost of solving one response-time problem
is O(C(n,p)), then the cost of solving the throughput problem is O(pnlog(pn) + C(n,p)log(pn)).

Lemma 6.2 Let 7 be a pipeline computation, and suppose that the complexity of solving the
response-time problem for 7 is O(C(n, p)). Then the complexity of solving the throughput problem

for 2 is O(pmtlog(pn) + C(n, 7) iog(pn)).

Wihen solving the response time problem, we typically compute an entire response time function,
whrch essentia:ly gives the "answer" (minimal response time) for-i. whole range of processors. When
we solve the throughput problem in the mnanner just described, we compute a single answer, for a
single processor count. If we desire a range of throughputs for a range of processors, we need to
repeat the procedure above once for every processor count.

20

0-0-IoO00-0-,-0-0-0o-0
ti t2 t3 4 t5 t6 t7 ts t9

Figure 4: Computation Flow for Motion Estimation

The complexity of the algorithms for the throughput problem are seen to be higher, by a
logarithmic factor, than those for the response time problcm. For example, the complexity for serial

task structures is seen to be O(np2 log np2) = O(np2 logp) which has increased by a logarithmic
factor. Future endeavors include the pursuance of more efficient algorithms for the throughput
problem.

7 An Application

In this section we illustrate our methods by considering an application equiring pipelined execution
- a motion estimation system in computer vision. 'Motion estimation is an important problem in
computer vision in which the goal is to characterize the motion of moving objects in a scene. ;From
a computational point of view, continually generated images from a camera must be processed by
a number of tasks. In order to process the images (data sets), throughput and response time
constraints are imposed on the tasks and therefore, the appropriate model of computation is a
pipeline computation. The application itself is described in detail in [11, 2S] It should be noted
that there are many approaches to solving the motion estimation pioblem. We are only interested
in an example, and therefore, the following algorithm is not presented as the only or the best way to
perform motion estimation. A comprehensive digest of papers on the topic of motion understanding
can be found in [31]. The following subsection briefly describes the underlying computations.

7.1 A Motion Estimation System

Figure 4 shows the task structure of our motion estimation system [11 - a linear task structure.

The data sets input to the task system are a continuous stream of stereo image pairs of a scene
containing the moving vehicles. The required output is a list of 3-dimensional points (or fcaturcs)
that describe the motion at each time step.

The system consists of nine major tasks:

1. Task t1. The first task performs 2-D convolution on the input image pair. The convolution
window size is an image-size independent input parameter.

2. Task t2. The second task extracts the zero crossings of the convolved image using a thresh-

olding algorithm. Zero crossings represent edge features in the image.

3. Task t3. The third task fits patterns to the edge features by using a template matching

algorithm. There are 24 possible patterns that can be fit to an edge [21].

21

4. Task t4. The fourth task performs a stereo match algorithm to match features from the left
and ight images of the same time frame [28]. To find a match for a feature in the left image
from the right image, weighted sum of the correlation coefficient and the dilectiolndl difference
weight between the feature in the left image and for all the features in the search space of
the right image are calculated. The feature in the right image that has the maximum total
weight is considered as the matched feature. Details are provided in [28, 11].

5. Tasks t5, t and t7 . These are similar to t1, t2 and t3 respectively except that the algorithms
are applied to stereo images separated in time by wider margins, depending on the desired
accuracy for estimation.

6. Task 1s. This task performs a time match algorithm between matched features of the left
image obtained from t,1 and. features of the left image obtained from t7 . The time match
process is similar to the stereo match process except for the fact that first stereo match
guides the tim, natch process and the search space for the time match algorithm is much
larger.

7. Task tg. Finally, the ninth task performs a second stereo match between the left and right
images of the stereo images from later time frames. The output of t9 is a set of 3-D feature
points that describe the motion of an object be-tween the two time frames.

All nine taks are iepeated for image inputs obtained continuously. In order to represent real-time
motion estimation at video fiame rates the entire process must be completed in 0.0333 seconds.
The Image Underbtanding Benchmark [13] has a similar structure of computation flow several
taskb Ali,,bi, VC J)cIAih.d AUl a sequence iii order ,o recognize an object in the scene and find the
model that best describes the object.

7.2 Shared and Distributed Multiprocessors

All nine tasks were implemented on a distributed memory machine, the Intel iPSC/2 [7] and
a shared memory machine, the Encore Multimax [15]. The Intel iPSC/2 is a circuit-switched
hypercube multiproceszor. W\e used a. 32 node iPSC/2 machine. Each node consists of an Intel
80386 processor and a floating point co-processor together with -1 Mbytes of RAM and and 6.1
Kbyte cache. The Encore Multimax 520 is a bus based system installed with eight dual processor
cards. Each dual incorporates two NS32332 processors each with its of own 256 Kbyte cache of fast
static RAM. It has 128 Mbytes of shared memory.

7.3 Imllemfentation Results for Individual Tasks

We implemented the task systci descibed abo~e ubing outdoor images [11]. Several methods for

implementing each algorithm (e.g., block partitioning, dynamic partitioning [11]) were used, for
each task, %e have selected the best pei forniance niumbers fiori these altei natives. The completion
times for each algorithm were tabulated and are shown in TCables 3 and 41. Note that for each

22

multiprocessor size, the completion times include all the overheads, computation time and com-
munication time. Therefore, when selecting a partition of processors for a task, the corresponding

response time will include all the overheads, computation time and communication times (including
transferring data from one task to the next). The times in the table are only shown for selected

multiprocessor sizes, although individual tasks can be executed on an a;bitrary number of-proces-
sors. Since the sizes of the machines available to us were limited, for the purposes of illustration,

we extrapolated the conmpletion times for larger machines as shown in the tables. Extrapolation
was done using the immediate speedup available from the largest multilrucessor. For example, we
computed the speedup (percentage improu emient in response times) going from 16 to 32 processors

for Intel iPSC/2 and then reduced this number by five percent (the degradation in speedup in the
range 8 to 32); the resulting number was taken as the speedup going from 32 to 64 processors. The

portion of each response time table with times for 6-1, 128 and 256 processors was estimated in this
manner. It should be noted that the absolute values of completion times have no impact of the
execution of the assignment algorithms proposed. If individual completion times are different, the
allocation may be different. The response time functions in both tables are found to be decreasing
and convex.

A basic premise of our assignment algoithmns is that we can measure response time functions
of elemental tasks, then accurately compute the response time functions of aggregate tasks. The
premise was validated on this applicatiou-the :ncamired response time function for the entire
system was found to deviate froim the prdlit.cd respone tinte functioi by no more than 5A at any
procesbor count. This accuracy is largely due to the fact that, the application is compute-bound: the
computation-to-comnmuicatioit ratio is 100 to 1. Any errors introduced by our simplistic approach
to communication costs are bound to be low. The accuracy is also due in part to the fact that all
possible mappitgs of the pipeline %%ee constructed to avoid shalmed communication channels one
can always embed a chain in a hypercube. Thus, no effects due to channel contention exist in
the measurements. It remains to see how well our approach predicts response time functions on
less comipute-intensive applications. Nevertheless, applications of the type we consider here are
practical, and important.

7.4 D-xperimental Results

7.4.1 The Response Time Problem

The algoithlin for seiial tasks nith convex response time functions (in Section 1) was run using
Tables 3 and .1 for , li aige of desiied throughput constraints. As an example of the output generated
by the algorithm, Table 5 ho\ws tie l)ocessor assignment for individual tasks for various sizes of
the Intel iPSC/2. The last row of the table also shows the minimum rebponse time for tle given

throughout colstraint. (, - 0.03 task/.ecoid). We obser,;e that some throughput conditions
cannot be met by all sizes of multiprocessors. For example, it throughput of 0.12-5 tasks/second

cannot be achieved for a. 32 or 64 processor machine but it can be achieved for a 128 or 2.56
proce.ssor machine for which the miniinum response time was observed to be 22.1- and 12.9$
seconds 1ebpectivcly. Furthermnorc, the achieved throughput for a 128 proce.sor machine was 0.157

23

Table 3: Completion times for individual tasks on the Intel iPSC/2 of various sizes (* indicates

extrapolated values)

I Response Times for Individual Tasks (Sec.)
No. of Task I Task 2 Task 3 1Task 4 Task 5 Task 6 Task 7 Task 8 Task 9
Proc. I

1 109.0 6.15 0.32 24.67 109.0 6.15 0.32 129.02 18.20

2 54.76 3.07 0.16 12.52 5.1.76 3.07 0.16 67.70 9.15
4 27.51 1.58 0.081 6.32 27.51 1.58 0.081 34.22 4.58
8 13.88 0.81 0.042 3.22 13.88 0.81 0.042 17.50 2.39

16 7.07 0.40 0.022 1.76 7.07 0.40 0.042 10.30 1.52
32 3.78 0.20 0.012 1.01 3.73 0.20 0.012 6.36 1.01

64* 2.12 0.11 0.007 0.61 2.12 0.11 0.007 4.13 0.71
128* 1.25 0.06 0.00,1 0.38 1.2.5 0.06 0.004 2.81 0.52
256* 0.77 0.041 0.002 0.26 0.77 0.77 0.04 0.002 0.40

Table 1: Completion times for individual tasks on the Encore Multimix of various sizes (* indicates

extrapolated values)

Response Times for Individual Tasks (Sec.)
No. of Task I 1 Task 2Task3 Taskf "ask5 1 Task6 1 Task7 Tasks Task9

1 352.20 16.54 0.85 51.70 352.20 16.54 0.85 212.00 2-5.50
2 176.0S 8.33 0.69 28.00 176.08 8.33 0.69 103.77 13.10
4 83.38 41.26 0.60 15.10 83.38 4.26 0.60 51.70 7.10
8 45.42 2.14 0.32 8.70 ,5..12 2.14 0.32 25.98 4.2.5
16 26.99 1.23 0.20 5.00 26.99 1.23 0.20 1.5.23 2.76

32* 16.84 0.74 0.13 3.01 16.84 0.74 0.13 9.37 1.8
6.1* 11.03 0.47 0.09 1.91 11.03 0.47 0.09 6.06 1.34

128* 7.59 0.31 0.06 1.27 7.59 0.31 0.06 1.11 1.01
256* 5.48 0.22 0.05 0.89 5.48 0.22 0.05 2.93 0.80

2.1

Table 5: An example processor allocation for minimizing response time for several sizes of iPSC/2

(MIT = Minimum Response Time, Specified Throughput = 0.05 tasks/sec., No. of processors
allocated to individual tasks are shown)

Multiprocessor Size (No. of Procs.)
32 64 128 256

Task Proc. Time Proc. Time Proc. Time Proc. Time
No. Asgn. (Sec.) Asgn. (Sec.) Asgn. (Sec.) Asgn. (Sec.)

1 8 13.88 16 7.07 32 3.78 64 2.12
2 1 6.15 2 3.07 8 0.81 16 0.40
3 1 0.32 1 0.32 1 0.32 2 0.16
4 2 12.52 6 4.77 8 3.22 16 1.76
5 8 13.88 16 7.07 32 3.78 64 2.12
6 1 6.15 2 3.07 6 1.19 12 0.60
7 1 0.32 1 0.32 1 0.32 2 0.16
8 8 17.50 16 10.30 32 6.36 64 4.13
9 2 9.15 4 1.58 8 2.39 16 1.52

MItT _ ,79.87 40.57 22.18 12.98

tasks/seconds and for a 256 processor machine the achieved throughput was 0.242 tasks/seconds.

Figure 5 shows the optimal response time function for the cntire pipeline computation together
with the achieved throughput using the hypercube data. As we might expect, the response time
function is decreasing and the achieved throughput is increasing. Figure 6 shows response times for
specified throughput of A = 0.05 tasks/second for different hypercube sizes. Along with the response
time function from Figure 5, two curves are shown to provide a comparison with non-optimal, yet
sih.ple, heuristics for processor assignment. The first heuristic, called the equal allocation heuristic,
allocates an equal number of processors to each task, thus ignoring the response time functions of the
individual tasks (this takes 0(n) time). The second heuristic, called the ratio heuristic, attempts
to take these functions into account through the use of ratios: initially each task is assigned a
procesbuor2 the remaining proceborb are distributed in proportion to the quantities f,(1), 1 < i < n
for each of the n tasks (requiring 0(n) time). Our optimal algorithm (0(n logp)) always achieves a
lower response time than the two bimple O(n) heuristics. Comparing the achieved throughputs in
Figure 7, it can be observed that the ratio heuristic achi ,s higher throughput than the optimal
algorithm because it does not tradeoff throughput for achieving the minimum response time, i.e.,
the heuristic is not gu,,ranteed to satisfy the lesponse-time constraint. The equal allocation strategy

performs rather poorly as one might expect.
The tradeoff uf iesponse time versus throughput constraint (using optimal response time func-

tions) is studied in Figures 8 and 9 for a 128- and 256-processor hypercube. Figure 8 shows the
response time and Figure 9 shows the corresponding achieved throughput as a function of the
specified throughput. As we can observe, the response time curve follows the throughput curve

25

- response time
- achlevied throughput

80 0.3

60
0.2 k

• 40

-0.1
20

0 " I • 0.0

0 100 200 300
no. of processors

Figure 5: Response Time Problem: Response Time and Achieved Throughput

Comparison of response times for
specified throughput=0.05, for

140 - - different allocation algorithms

120.

100
-a----opt. algo.

--- ratio heur.

60 equal alloc.

40

20

0-
0 100 200 300

number of processors

Figure 6: Response Time Problem: Comparison with heuristics

26

Comparison of achieved throughputs for
specified throughput=0.05, for

0.3 - different allocation algorithms

o. -- m- opt. algo
0.2 4--- ratio heur.

,- a equal alloc.

0.1

0.0
0 100 200 300

no. of processors

Figure 7: Response Time Problem: Achieved throughputs for heuristics

Comparison of response times for
128 and 256 processor hypercubes

0 --- - P=128
-.--- P=256

20

10 • .

0.0 0.1 0.2 0.3 0.4

specified throughput

Figure 8: Response Time Problem: Response time with increasing throughput constraint

27

Comparison of achieved throughputs
for 128 and 256 processor hypercubes0.4

~0.3-

M " P=128

0. -.--- P=256

0.1 * . * I ' [
0.0 .0.1 0.2 0.3 0.4

specified throughput

Figure 9: Response Time Problem: Achieved throughput with increasing throughput constraint

response time and ach. throughput for
specified throughput--O.0125

200 for Encore 0.10

-response time

0.08 - ach. throughput

•0.06' 100-"

0.04

0.02

0 ' _ * • 0.00
0 100 200 300

no. of processors

Figure 10: Response Time Problem: Results for Encore

28

- throughput
- --- achieved response time

0.4- - .100

0.3
80

bG -60
S0.2-

E 40

o20

0.0- . , , 0
0 100 200 300

no. of processors

Figure 11: Throughput Problem: Throughputs and achieved response times

in shape; this clearly indicates that the algoiithm trades off response time to achieve the specified
throughput. This is exemplified at high throughput constraints where the minimum response time
increases significantly in order to achieve the specified throughput. For low values of specified
throughput, the change in minimum response time is insignificant because the throughput can be
achieved easily with the given number of processors. For a larger system the knee of the curves
shifts to the right as expected due to the additional resources (as shown for a 256-processor system).
Finally, Figure 10 plots the response time as a function of the number of processors for the Encore
data. The graph is seen to closely resemble Figure 5. To avoid repetition, we do not show further
results for the Encore.

7.4.2 The Throughput Problem

F gure 11 illustrates the maxinum thmoughput obtained and the coriespolnding achieved lesponse
time for our task system when the specified response time p = 100 seconds. The results generated
by the two heuristics described earlier are presented in Figure 12. The optimal algorithm generates
higher throughputs than achieved by the two heuristics. Figure 13 shows the achieved response
times when using the heuristics. The ratio heuristic achieves a lower response time than that by
the optimal algorithm because it does not necessarily satisfy the throughput constraint.

The tradeoff between response time and throughput is shown once again, this timc in the con-
text of the throughput problem, in Figures 14 and 15 for 128 and 256 piocesor hypercubes as a
function of the specified lesponse time. The solid line shows the miaximunm possible thoughput
when there is no response time constraint. Therefoie, for any specified rcsI)unmbe time, the differ-
ence betuecn the maximum throughput and unconstrained maximum throughput repieseits the
amount of throughput tradeoff to achieve the specified response time. Furtherinme, we can obbcr~e
that as the specified ieponbe time increases, the difference between the unconstrained maximum

29

Comparison of max. throughput of
different allocation algorithms for

0.4 - specified response time=100

0.3-

-0-- opt.algo.
0 0.2 - -- ratio heur.

U- equal alloc.

0.0
0 100 200 300

no. of processors

Figure 12: Throughput Problem: Throughiputs obtained by heuristics

comparison of achieved response times
of different allocation algorithms for

100 specified response time= 100

80-

60 -s---- opt. algo.

40 - equal alloc.

0

0 100 200 30
no. of processors

Figure 13: Throughput Problem: Achieved response times for heuristics

30

Comparison of throughputs for
128 and 256 processor hypercubes

0.4']
0.4

* -; max unconstrained throughput

0.3 ------ P=128
t. P=256

0.2 m ax. unconstrained throughput / "'2

0.1
10 20 30

specified sponse time

Figure 14: Throughput Problem: Maximum throughput with increasing response time constraint

throughput and throughput reduces because of the weakening of the response time constraint. Be-
yond a certain point, the response time constraint is so weakened that the miaximum unconstrained
throughput is achieved as shown by the plateau in the throughput curve. This phenomenon is also
observed in functional pipelines in processor designs where inserting delays in the pipeline stages
results in higher throughout at the cost of response time [26, 34, 401.

8 Summary

In this paper we have formulated the problem of optimizing the performance of a pipeline computa-
tion, represented by a task structure, on a parallel architecture, given a large supply of processors,
and the experimentally determined response time functions for its constituent tasks. Unlike prior
treatments of the mapping problem we considered the case where there are many more processors
than tasks and where tasks are not queued or scheduled. We considered the dual problems of min-
imizing response time subject to a throughput constraint, and maximizing throughput subject to
a response time constraint. As we observed in our sample application, these problems are compli-
mentary, in the sense that allocation to increase throughput may have the side effect of increasing
response time, and vice versa.

The problem posed in this paper was shown to be solvable in polynomial time for a useful class
of task structures. Specifically we presented O(np2) algorithms (where n is the number of tasks
and p is the number of piocessors), for the response tile problem, for the cases where the task
structures are linear, tree-structured and series-parallel graphs. The algorithms designed for tile
response time problem can be used to solve the throughput problem with an additional logarithmic
factor in complexity. To place the work in a realistic setting we considered an application, stereo
image matching on two parallel architectuies, and evaluated the performance of our assigmment

31

Comparison of achieved response times
for 128 and 256 processor ihypercubes

30-

2-o--- P=1 28
--- P=256

10~
1 0 20 30 40

specified response timne

Fi-ture 15: Throughput Problem: Achieved response times with increasing responbe time coustraint

algorithms. Future endeavors imiclucle the provision of algorithims for general task structures and

investigation of faster and paralielized assignment algorithims.

References
[1] M J Berger and S 11 Bldkari. A partitioning strategy for nonuniformi problems on multiprocessors.

IE EE Traits. on Comtputers, C-36(5):570-580, May 1987.

[2] F Berman and L. Snyder. On mnapping p~arallel algorithmus into parallel architectures. Journal of
Parallicl and Distributed Computing, 4:439-458, 10S7.

[3] J Blazewicz, IM Drabowski, and 3. Wclgarz. Scheduling mutI Gprocessor tasks to mninimize schedule
length. IEEE Traits. on Comtputers, C-35(5):389-393, M1ay 1986.

[4I] S 11 Bokhiari A shortest trcc algorithm for optimal assiginmtents across space and time in a distributed
processor system. IEEE Trants, on Soft. Eng., SE-7(6):5S3-5S9, Nov. 1981.

[5] S 11 Bokhari Partitioning problems in parallel, pipelined, and distributedl computing. IEEE Trants.
on Computers, 37(1) :48-57, January 1988.

[G3] S B~ollinger and S Midkiff. lLzuristic Technique for Processor and Link Asbignment in Multiconiputers.
IEEE Trants. on Computers, 10(3):325-336, March 1991.

[7] L Bomans and D. Roose. Benchmnarking the iPSC/2 llyl)Crcube Multi processor. Concurruncy. Prac-
lice and Experience, 1(l):3-1S, Sept. 1989.

[8) MLY Chan and F Y.L. Chin. On embedding rectangular grids in lypercubes. IEEE Trants. on Coin-
))nters, 37(10):1285-1288, October 1988.

[9] IM Chen, and K.G. Shin, Processor Allocation in an N-Cube Mfultiprocessor Using Gray Codes. IEEE
Traits. on Comnputers, C-36(12):1396-14107, December 1987.

[10]11I-A Choi and B Narahiari, Algorithms for Mlapping and Partitioning Chain Structured Parallel
Computations. Tlp appe)ar in 1991 -Iterntational Conference on Parallel Processing.

32

([U) A. N. Choudhiary and 3. II. Patel. Parallel Architectures and Parallel Algorithmns for Integrated Vision
Systems. Kluwer Academtic Publishers, Boston, MA, 1990. Video images obtained from the Army
Research Office.

(12] E. Denardo. Dynamic Programmning: Models and Applications. Prentice-Ifall, Englewood Cliffs, NJ,
1982.

[13] J. Dui and Y-T. Leung. Cojuplexity of Scheduling Parallel Task Systems. SIAM J. Discrete Mfath.
2(4):473-487, November 1989.

[14] S. Dutt and J.P. Ilayes Subcube Allocation in Ilypercube Computers. IEEE Trans. on Coniputers,
40(3):341-352, March 1991.

(15] Encore Computer Corp. Promotional Literature. Marlborough, M1A. 1986.

[16] G. Fox, ALv Johnson, G. Lyzenga. S. Otto, J. Salmon and D. W~alker. Solving Problems on Concurrent
Processors (Vol. 1 and H)% Prentice Hall, Englewoodl Cliffs, NJ, 1990.

(17] G. Fox, A. Kolawa, and Rt. Williams. The implementation of a dynamic load balancer. Technical
Report C3P-287a, Caltech, February 1987.

[1S] 3. P. J1ay'-s, T. N. Mudge, Q. F. Stout, and S. Colley. Architecture of a hypercube supercomputer.
Proc. nf the 1986 International Conference on Parallel Processing.

(19] G.-T. Ilo and S.L. Johnsson. On the embeddiiig-of arbitrary mneshes in bookean cubes with expansionl
two dilation two. In Proceedings- of the 1987 Int'l Conference on Parallel Processing, pages 188-191,
August 1987.

[20] E. Horowitz and S. Sahni. Fundamntals of Computer Algorithmns, Chapter 2, Computer Science Press,
IMaryland, 1985.

[21] A. Iluertas and G. Mlediono. Detection of intensity changes wvith subpixel accuracy using Laplacian-
Gaussian masks. IEEE Trans. PA MI, PAMI-8 pp. 651-664, Sep. 86.

[22] 0.11. Ibarra and S.Ml. Sohn. On mapping systolic algorithms onto the hypercube. IEEE Trans on
Parallel and Distributed Systems, 1(1):4S-63, January 1990.

[23] Mv. Jeng and 11.3. Siegel. A distributed management schemne for lpartitionable p~arallel computers IEEE
Trans. Parallel and Distributed Systems, 1(1):120-126, January 1990.

(24] Rt. Kincaid, D.M. Nicol, D. Shier, and D. Richards. A multistage linear array assignment p~roblem.
Operations Research, 38(6) :993-1005, November-December 1990.

(25] C.-T. King, IV.-If. Chou, and lfM. Ni. Pipelined (lata-lparallel algorithmns. IEEE Trans. onl Parallel
and Distributed Systemns, 1 (4):470-499, October 1990.

[26] P. Al. Kogge. The Architeture of Pipelined Comnputers. McGraw Hill, New York, 1981.

[27] It. Krishinamurti and Y.E. Mla. The p~rocessor p~artitioninig problem in spe: ial-purpose lpartilionable
systems. Proc. 1988 International Conference on Parallel Processing, Vol. 1, pp. 434-443.

(28] Al. K. Leung and T. S. Iluang. Point matching in a time sequence of stereo image pairs. Technical
Rleport, CSL, University of Illinois, Urbana-Chiampaign, 1987.

[29] L. Li and K.11. Chieng. Job scheduling iii lartitioiiable mesh connected systems. Proc. 1989 Initerna-
tional Conference on Parallel Processing.

(30] A..Marshall and I.01kin, Incqualitics. Theory of A'!ajorimation and Its App~lications, Academic Press,
1979.

33

[311 AV N. Martin and J. K. A-garwal (editors). Motion Understanding, Robot-and Human Vision. Kluwer
Academnic Publishers, Boston, MA 1988.

[32] RI G. Mclhem anc! G.-Y Ilwan;. Embedding rectangular grids into square grids with dilation two.
IEE E Trans. on Computv crs, 39(12):1446-1455, December 1990.

[33] D M Nicol and D R. O'Ilallaron. Improved alg-orithims for mapping paiallel and pipelined computa-
tions. IEEE Trants. on Computers, 40(3):205-306, March 1991.

[34] J. If. Patel and E. S. Davidson. Introving the Throughput of a Pipeline by Insertion of Delays.
Proceedings of the Third Anntual Computer Architecture Symtposiumi, pp. 159-163, 1976.

[35] P Sada~appan and F Ercal. Nearest-neighbor mapping of finite element graphis onto processor mieshies.
1EEE Traits. on Computers, 36(12):1408-1424, December 1987.

[36] D S Scott and R. Brandenburg. Minimal meshi embeddings in binary hypercubes. IEEE Trans. on
Computers, 37(10):,1284-1285, Qctober 1988.

[371 11, J. Siegel, L. J. Siegel, P.C. Kemmerer, P.T. Mueller,Jr., II.E. Smalley, and S.D. Smith. PASM
A partitionable SIMD/MIMr.' system for image processing and p~attern- recognition. IEEE Trants. oil
Comnputers, C-30(12), December 1981.

[38] C V Stewart and C R. Dyer. Scheduling Algorithims for PIPE (Pipelined Image-Processing Engine).
Journal of Parallel and Distributed Comtputing, 5:131-153, 1988.

[39] 11 Stone. Multipr3cessor scheduling with the aid of netwo.rk flow algorithmns. IEEE Traits. oil Soft.
Eng., SE-3(1):S5-93, January 1977.

[40] 11. S Stone. high-Performnance Comiputer Architecture (2nd ed.). Addisoa-A esley, 1990.

[41] D Towsley Allocating programis containing braniches and loops within a miultiple processor system.
IEEE Trants. on Soft. Eng., SE-12(10):101S-1024, October 1986.

[42] 3. Valdes, R E Taijan, and E.L. L. -er. The Recognition of series paralel di, rapbs. SIAM1 J. Comnput.,
11(2):298-313, May 1982.

[43] C WVeemis, A Hanson, E. iL~cmiaii, and A. Rosenfeld. An integrated ..ia& uaderstdntding benchmark
for p~arallel computers. Journal of Parallel and Distributed Computing. January, 1991.

34

Form Approved
REPORT DOCUMENTATION PAGE oMS No. 0704.0188

Public reporting burden for this tollectrln of intormation , estimated to average i hoiurper res por e.nciulng the time for evveinn str-tions. 'earf.',- .tt o 331 rur~es.
gatherng Jnd intaining the data needed, and comoleting and reve-nmg the ollection of intormaton Send commentt regarding tort burden ettmdtC , r in

0
lthr, .. oet of tt

collecton of infiormnation, including suggestions tor reduing this ourcen to d.hintonr readouarter Services. orectorate for nturraton Operatons j.0 Reorts. I 5 ,teffertso
oav$ lighway. 5ute 1 0C4. Atlgton. A 102-4302. and to the Otfite.) t Management ird Budget. Paperwork Reduction Prclet j0704.0 188). Atash.rngton, 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1991 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

OPTIMAL PROCESSOR ASSIGNMENT FOR PIPELINE COMPUTATIONS NAS1-18605

6. AUTHOR(S) 505-90-52-01

David M. Nicol, Rahul Simha, Alok N. Choudhury,
and Bhagirath Narasami

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBERInstitute for Computer Applications .in Science ICASE Report No. 91-79

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Langley Research Center NASA CR-189047
Hampton, VA 23665-5225 ICASE Report No. 91-79

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to IEEE Trans. on Par-
Filial Report allel & Distributed Systems

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words) The availability of large scale multitasked parallel archi-
tectures introduces the following processor assignment problem for pipelined computa-
tions. Given a set of tasks and their precedence constraints, along with their ex-
perimentally determined individual response teims for different processor sizes, find
an assignment of processor to tasks. Two objectives interest us: minimal response
given a throughput requirement, and maximal throughput given a response teim require-
ment. These assignment problems differ considerably from the classical mapping prob-
lem in which several tasks share a processor; instead, we assume that a large number
of processors are to be assigned to a relatively small number of tasks. In this pa-
per we develop efficient assignment algorithms for different classes of task struc-
tures. For a p processor system and a series-parallel precedence graph with n con-
stituent tasks, we previde an O(np2) algorithm.that finds the optimal assignment for
the response time optimization problem; we find the assignment optimizing the con-
strained throughput in O(np2log p) time. Special cases of linear, independent, and
tree graphs are also considered. In addition, we also examine more efficient algor-
ithms when certain restrictions are placed on the problem parameters. Our techniques
are anplied to a task system in computer vision,

14. SUBJECT TERMS 1S. NUMBER OF PAGES
mapping; pipelining; assignment; parallel processing 36

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified' 'Unclassified

NSN 7540.01-280-5500 Standard Form 298 (Rev 2.89)
Prtbes,¢-dd by .Af$1 Std 1)9.t1

NASA.Lngley 1921

-- - - -

SUPPLEMENTARY

INFORMATION

ERRATA 1-# 67

NASA Contractor Report 189047

OPTIMAL PROCESSOR ASSIGNMENT FOR

PIPELINE COMPUTATIONS

David M. Nicol, Rahul Simha, Alok N. Choudhury,
and Bhagirath Narahari

October 1991

NASA Contractor Report 189047 has an incorrect report number. The correct report

number is NASA Contractor Report 189550. Please mark your copies on t e cover and

Report Documentation Page to reflect this change.

Issued January 1992

