
RIDtDT Ilf' 'i IKRACll lA '^ N PAGE I o. 07Wv08°-'°'° AD -A 242 780 *.-.--,--.-..==.-*,--,.
ne e d ed . "I, e vn " D -,,4 2 7 8 n y o h w" a 0 cl o f M el co U le to n o f i o m a t o n , in c l i0 itV s vg o e e '" fo r re d u c N ti s u rnl to W as o

- -ill II ! I!1 l 111 IIj Ii Sue 1204, Aititgon, VA 22202-4302. ar to th,. Office oO of
Managemet VW Budg

1 AGENCY USE 53. REPORT TYPE AND DATES COVERED
Final: 28 Jun 1991 to 01 Jun 1993

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Alsys,, AlsyCOMP_057, Version 1.83,
DECstation 3100 under ULTRIX Version 4,0 (Host & Target), 91062511.11193

6 AUTHOR(S)

IABG-AVF
Ottobrunn, Fedeial Republic of Germany

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IABG-AVF, lndustrieanlagen-Betriebsgeselschaft REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 097
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9 SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11 SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

Alsys,. AlsyCOMP_057, Version 1 83, Ottobrunn, Germany, DECstation 3100 under ULTRIX Version 4.0 (Host & Target),
ACVC 1.11.

, C
0 V 1991, 91-15333

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE
Capability, Val. Testing, Ada Val Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORTI I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev 2-89)

91 1108 062 Prescribed by ANSI Std. 239-1

4k

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-06-25.

Compiler Name and Version: AlsyCOMP_057 Version 1.83

Host Computer System: DECstation 3100 under ULTRIX Version 4.0

Target Computer System: same as Host

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91062511.11193 is awarded to Alsys. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Dire or, C t, & Software Engineering Division
Institute for ense Analyses Aos~r o
Alexandria VA%2311 cesnFo

Ada Jnint Program Office
Dr. John Solomond, Director
Department of DefenseI.----
Washington DC 20301

i.t
/, ,l

AVF Control Number: IABG-VSR 097
28 June 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 91062511.11193
Alsys

A1syCOMP_057 Version 1.83
DECstation 3100 under ULTRIX Version 4.0

Host and Target

== based on TEMPLATE Version 91-05-08 ==

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn

Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-06-25.

Compiler Name and Version: AlsyCOMP_057 Version 1.83

Host Computer System: DECstation 3100 under ULTRIX Version 4.0

Target Computer System: same as Host

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91062511.11193 is awarded to Alsys. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Dire or, r & Software Engineering Divisiot,
Instite fense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of D-ense
Washington DC 20301

DECLARA=-.o OF CONTOR14ANCZ

.he following declaration of Co~fo~ance was 3uppl4.ed by =e c~tomr.

Declaration of Conoance

Customer: Alsys GmbH & Co . KG

AdaValdatomFac,-Iy:IABG moH Abt. ITE

Ada Zlementation:

Ada Co~ilez Name and Version: AlsyCOMP_057 Version 1.83

Host Cocuter Sy3te: OECstation 3100 under ULTRIX Version 4.0

"TagetCozpuer yst=:DECstation 3100 under ULTRIX Version 4.0

Decla~at..on:

cz/vel the. uinesigned, dec.lare tlhat tl/vel have no
kn~owledge of de.liberate dev::az.ions fr= the Ada Lanquzage
Standard ANSr/ L-STD-1dI5A 150 8652-1987 in thje ilemnration

25.06.91

cuvier Ii~na.=eDate

TABLE OF CONTENTS

2iAPTER !. INTRODUCTION

S.i USE OF THIS VALIDATION SUMMARY REPORT -

REFERENCES
ACVC TEST CLASSES .-.1.4 DEF ... I N OF TERMS -2. DF:NITO O.EMS............................. 1-3

MATER 2 ILE.MZNTATbON DEPENDENCIES

WITHDRAWN TESTS 2-1
INAZLICABLE TESTS..................

2.3 TEST MODIFICATIONS 2-4

>-APTER 3 PROCESSING INFORMATION

. TESTING ENVIRONMENT 3-1
SUMMARY OF TEST RESULTS 3-1

3.3 TEST EXECUTION 3-2

AF;EN:X A MACRO PARAMETERS

X COMPILATION SYSTEM OPTIONS

k<7E..' X C APPEN:IX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Repcrn (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
:Frc9C]. A detailed description of the ACVC may be found in the current
A7V User's Guide (UG89].

_.1 USE CF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
in the United States, this is provided in accordance with the "Freedom of
infcrmation Act" (5 U.S.C. #552) . The results of this validation apply
:nly tc the computers, operating systems, and compiler versions identified
In itis report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
ncnccnfcrmities to the Ada Standard other than those presented. Copies of
tnis report are available to the public from the AVF which performed this
validaticn or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

:nesnicns regarding this report or the validation test results should be
a~recoed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
institute for Defense Analyses
18C! North Beauregard Street
Alexandria VA 22311-1772

INTRODUCTION

EFERENCES

"Ada83: Reference Manual for the Ada Proqramminq Lanquage,

ANS:"M:L-STD-1815A, February 1983 and ISO 8652-1987.

Ada T.Dniler Validation Procedures, Version 2.1, Ada Joint
Program C Pice, ?ugusc 1990.

"--38 Aha Doiler Validation Capability User's Guide, 21. June 19e9.

ALI, 77T.T CLASSES

7cmliance of Ada implementations is tested by means of the ACVC. The ACVC
corntains a col ection of test programs structured into six test classes:
., D, C, D, E, and L. The first letter of a test name identifies the class

it belongs. Class A, C, D, and E tests are executable. Class B
anc class L tests are expected to produce errors at compile time and link
time, respectively.

Tne executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT!3,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
o-jective. The package SPPRT!3 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by sone of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECKFILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

ass B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resuti.no compilation listing is examined to verify that all violations of
t.e Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
nf e Ada Standard involving multiple, separately compiled units. Errors

are expected at link time, and execution is attempted.

some tests of the ACVC, certain macro strings have to be replaced by
L7clementation-specific values -- for example, the largest integer. A list
cf the values used for this implementation is provided in Appendix A. In
acdition to these anticipated test modifications, additional changes may be
reqired to remove unforeseen conflicts between the tests and
inplementation-dependent characteristics. The modifications required for
this impementation are described in section 2.3.

1-3

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
A'V. This customization consists of making the modifications described
in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
pcssibly some inapplicable tests (see Section 2.2 and [UG89])

in order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVC)

Ccmpliance of The ability of the implementation to pass an ACVC version.
an Ada
implementation

Computer A functional unit, consisting of one or more computers and
Sys em associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-4

9

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to

the Ada programning language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D C83026A B83026B C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BDIB02B BD1B06A ADIB08A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A4iA CD2A41E CD2A87A CD2Bl5C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE31!6A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
tne reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) (*) C35705L. .Y (14 tests)

C35706L..Y (14 tests) C35707L. .Y (14 tests)

C35708L..Y (14 tests) C35802L .Z (15 tests)
C45241L..Y (14 tests) C45321L. .Y (14 tests)
C45421L..Y (14 tests) C45521L .Z (15 tests)
C45524L..Z (15 tests) C45621L .Z (15 test3)
C4564iL..Y (14 tests) C46012L..Z (15 tests)

(*) C24113W..Y (3 tests) contain lines of length rTrdter than 255
characters whith are not supported by this implementation.

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C 45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55BO9C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT: for this implementation, there is no such type.

C35713D and 386001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for tnis
implementation, there is no such type.

C41401A checks that CONSTRAINT ERROR is raised upon the evaluation of
various attribute prefixes; this implementation derives the attribute
values from the subtype of the prefix at compilation time, and thus does
not evaluate the prefix or raise the exception. (See Section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX_.MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE CVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE OERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such ;ype.

096005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

D1009C checks whether a length clause can specify a non-default size
f:r a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

CD2BI5B checks that STORAGEERROR is raised when the storage size
specified for a collection is too small to hold a single value of the

designated type; this implementation allocates more space than was
specified by the length clause, as allowed by AI-00558.

ED001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE21C2D CREATE IN_FILE SEQUENTIAL_10
CE2102E CREATE OUT_FILE SEQUENTIAL_10

CE2102F CREATE INOUTFILE DIRECTIO
CE2102 CREATE IN FILE DIRECT_10
CE2102J CREATE OUT FILE DIRECT_10
CE2102N OPEN INFILE SEQUENTIALIO
CE21020 RESET INFILE SEQUENTIAL_10
CE2102P OPEN OUTFILE SEQUENTIAL_10
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECTIO
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET INFILE DIRECTIO
CE2l02V OPEN OUT FILE DIRECT_10
CE2102W RESET OUT FILE DIRECTIO
CE3102E CREATE IN FILE TEXTI10
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT 10
CE3102: CREATE OUTFILE TEXTIO
CE3!02J OPEN IN FILE TEXTIO
CE3102K OPEN OUTFILE TEXT-IO

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USEERROR is raised because temporary files have nc name.

CE21OSB, CE2!08D, and CE312B use the names of temporary sequential,
direct, and text files that were created in other tests in order to
check that the temporary files are not accessible after the completion
of those tests; for this implementation, temporary files have no name.

CE2203A checks that WRITE raises USEERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

EE2401D uses instantiations of DIRECT_10 with unconstrained array and
record types; this implementation raises USEERROR on the attempt to
create a file of such types.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file 's exceeded; this implementation cannot restrict
file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was written
to the other, which is assumed to be inmmediately available; this
implementation buffers output. (See section 2.3.)

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USEERROR is raised. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGELENGTH raise
USEERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUTERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
irnplementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B24009A B29001A B38003A B38009A B38009B
B91001H BC2001D BC2001E BC3204B BC3205B BC3205D

C34007P and 034007S were graded passed by Evaluation Modification as
directed by the AVO. These tests include a check that the evaluation of
the selector "all" raises CONSTRAINT ERROR when the value of the object is
null. This implementation deter-mines the result of the equality tests at
lines 207 and 223, respectively, based on the subtype of the object; thus,
the selector is not evaluated and no exception is raised, as allowed by LRM
1.6(7). The tests were graded passed given that their only output from
Report.Failed was the message "NO EXCEPTION FOR NULL.ALL - 2".

C41401A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that the evaluation of attribute prefixes that
denote variables of an access type raises CONSTRAINT ERROR when the value
of the variable is null and the attribute is appropriate for an array or
task type. This implementation derives the array attribute values from the
subtype; thus, the prefix is not evaluated and no exception is raised, as
allowed by LRM 11.6(7), for the checks at lines 77, 87, 97, 108, 121, 131,
'4., 152, 165, & 175.

2-4

IMPLEMENTATION DEPENDENCIES

C64103A was graded passed by evaluation modification as directed by the
AVO. This implementation optimizes the code at compile time on lines 91
and 119, thus avoiding the operation which would raise CONSTRAINTERROR.
The following REPORT.FAILED mesages were produced by this test

EXCEPTION NOT RAISED BEFORE CALL -P2 (A)
EXCEPTION NOT RAISED BEFORE CALL -P3 (A)

The AVO ruled that this is acceptable behavior.

BC3204C..D and BC3205C..D (4 tests) were graded passed by Evaluation
Modification as directed by the AVO. These tests are expected to produce
compilation errors, but this implementation compiles the units without
error; all errors are detected at link time. This behavior is allowed by
AI-00256, as the units are illegal only with respect to units that they do
not depend on.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification
as directed by the AVO. The tests assume that output from one internal
file is unbuffered and may be immediately read by another file that
shares the same external file. This implementation raises ENDERROR on
the attempts to read at lines 87 and 101, respectively.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file, which
4n this implementation has no name; USE ERROR is raised but not handled, so
the test is aborted. The AVO ruled that this behavior is acceptable
pending any resolution of the issue by the ARG.

2-5

CHAPTER 3

PROCESSING INFORMATION

. TEST:NG ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

7or a ocint of contact in Germany for technical and sales information about
this Ada implementation system, see:

Alsys GmbH & Co. KG
Am Ruppurrer SchloZ 7
W-7500 Karlsruhe 51
Germany

Tel. +49 721 883025

-or a point of contact outside Germany for technical and sales information
about this Ada implementation system, see:

Alsys Inc.
67 South Bedford Str.
Burlington MA
01803-5152
USA
Tel. +617 270 0030

Testlnq of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

:.2 SUMMARY OF TEST RESULTS

A.n Ada Implementation passes a given ACVC version if it processes each test
:f the customized test suite in accordance with the Ada Programming
an-uage Standard, whether the test is applicable or inapplicable;
tnerwise, the Ada implementation fails the ACVC [Pro90].

-r all processed tests (inapplicable and applicable), a result was
:ztained that conforms tc the Ada Programming Language Standard.

7ne list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
zecause of test errors (item b; see section 2.1), those that require a

3-1

PROCESSING INFORMATION

flzating-pcint precision that exceeds the implementation's maximum
prezision (item e; see section 2.2), and those that depend on the support
cf a file system -- if none is supported (item d) . All tests passed,
exceot those that are listed in sections 2.1 and 2.2 (counted in items b
an- f, below).

a) Total Number of Applicable Tests 3788
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 87
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of inapplicable Tests 288 (c-d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a-b+f)

3.3 TEST EXECUTION

A Magnetic Data Cartridge containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The contents
cf the tape were loaded to a Sun 3/60 computer, from there they were copied
the host computer using the "remote copy"-facility of Unix.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

Tesos were compiled using the command

ada.c 'file name'

linked using the commnand

ada.link -o 'file name' 'main unit'.

-he option -o was used to assign a dedicated file name to the generated
executable image.

.hapter B tests, the executable not applicable tests, and the executable
tests of class E were compiled using the full listing option -1. For
several tests, completer listings were added and concatenated using the

-L 'file name'. The completer is described in Appendix B,

737nilation system options, chapter 4.2 of the User Manual on page 39.

Test output, compiler and linker listings, and job logs were captured on a
Maognetic "ata Cartridge and archived at the AVF. The listings examined on-
:e by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

T-ris appendix contains the macro parameters used for customizing the ACVC.
- meaning and purpose of these parameters are explained in [UG891 . The
_arameter values are presented in two tables. The first table lists the
vaues that are defined in terms of the maximum input-line length, which is
h:e value for $MAX IN LEN--also listed here. These values are expressed

n-e:e as Ada string aggregates, where "V"' represents the maximum input-line
e:-:gt h.

Macro Parameter Macro Value

$MAXINLEN 255 -- Value of V

SBIG IDI (1. .V-1 -> 'A', V => 'i')

SB7G D2 (1 .V-i => 'A', V => '2')

SBIGID3 (I..V/2 => 'A') & '3' &
(I..V-l-V/2 => 'A')

SBIG ID4 (I..V/2 => 'A') & '4' &
(i..V-l-V/2 => 'A')

$BIG INT LIT (I..V-3 => '0') & "258"

SBIG REAL LIT (1..V-5 => '0') & "690.0"

$BIG STRINGI '"' & (I..V/2 => 'A') & '"'

.BIGSTRING2 '"' & (I..V-1-V/2 => 'A') & 'I' &

$BLANKS (I. .V-20 => ' ')

SMAX LEN INTBASEDLITEC:AL

"2:" & (I.V-5 => '0') & "11:"

SMAX LEN REALBASED LITERAL
"16:" & (I..V-7 => '0') & "F.E:"

$YAX STRING- LTERAL '"' & (I..V-2 => 'A') & '"'

A-!

MACRO PARAMETERS

Tn cfllowing table lists all of the other macro parameters and their

rwzpecti.ve values.

Macro Parameter Macro Value

SACC SIZE 32

$ALIGNMENT 4

SCOUNTLAST 2_147_483_647

SDEFAULT MEM SIZE 2147483648

$ZCEFAULT_STORUNIT 8

$DEFAULTSYSNAME MIPSULTRIX

$DELTADCC 2#1.0#E-31

SENTRYADDRESS SYSTEM.INTERRUPTVECTOR(SYSTEM.SIGUSR1)

SENTRY ADDRESSI SYSTEM. :NTERRUPTVECTOR(SYSTEM.SIGUSR2)

SENTRY ADDRESS2 SYSTEM.INTERRUPT VECTOR(SYSTEM.SIGALRM)

SF:ELDLAST 512

SF:LETERMINATOR

SFIXEDNAME NOSUCHFIXEDTYPE

SFLOAT NAME NOSUCHFLOATTYPE

SFORMSTRING 11

SFORMSTRING2 ''CANNOTRESTRICT FILE CAPACITY''

SGREATERTHANDURATION

0.

SGPREATERTHANDURATIONBASELAST
200_000.0

SOREATERTHAN FLOAT BASE_-LAST

160:.00#+32

SGREATER THAN FLOAT SAFELARGE

16#0. 8#E+32

SOREATERTHANSHORTFLOATSAFE LARGE

0.0

SHIGH PRIORITY 15

A-2

MACRO PARAMETERS

S:LLEGALEXTERNALFILENAME1

/nodir/filel

SILLEGAL EXTERNALFILENAME-2

/wrongdir/file2

S:NAPPRCPRIATELINELENGTH

-1

S NAPPROPRIATE PAGE LENGTH
-1

SINCLUDj-E PRAGMAl PRAGMA INCLUDE ("A28006D1.ADA")

SINCLUDE PRAGMA2 PRAGMA I NCLUDE ("B28006DI.AD)A")

SI-NTEGER FIRST -2147483648

S:NTEGER LAST 2147483648

SINTEGERLASTPLUS_1 2147483648

S:NTERFACE LANGUAGE C

SLESS THAN DURATION -0.0

SLESSTHANDURATIONBASEFIRST

-200 000.0

SLINE_TERMINATOR ASCII.LF

SLOW PRIORITY0

SMACHINE CODE STATEMENT

NUJLL;

SMACHINE CODE TYPE NO SUCH TYPE

$YJUNTISSADOC 31

SMAX DIGITS 15

SM.AX_ INT 21147483647

SMAX INT PLUS- 2_147 483 648

SMIN INT -2147483648

SNAIME SHORTSHORTINTEGER

SN'AME L-:IST MIPSULTRIX

SNAMESPECIFICATION' /berl/dl83/acvcll/chape 1X2l20A

SNAME SPECIFICATION2 /benl /d'83/acvcll1/chape /X2 :20B

A-3

MACRO PAPAMEITERS

SNAKE SPECIFICATION3 /ben1/d'.3/acvc1/chiape/X3.19A

SNEGBASEDINT 16*FFFFFFFE*

SNEWMEMSIZE 2147483648

SNEW SYS NAME MIPS ULTRIX

$PAGE TERMTNATCR II

SRZCO-RDDEFINITION NEW INT-EGER

c FE=ZP2 NAME NOSUCH MACH:NE CCDE TYPE

ZTASKSIZE 32

$TASK STORAGE_SIZE 10240

STICK 1-0/256.0

SVARIABLE ADDRESS GETVARIABLEADDRESS

$VARIABLE ADDRESS: GET VARIABLEADDRESS.

SVARlABLE AzDREsS2 GETVARIABLE ADDRESS2'

A-4

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

T-he compiler and linker options of this Ada implementation, as described in
:t-,s Appendix, are provided by the customer. Unless specifically noted
ctherwise, references in this appendix are to compiler documentation and
nct to this report.

B-:

Compiling Chapter 4

4 Compiling

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as the main program. If all units needed by the main program and the main
program itself have been compiled successfully, they can be linked. The resulting code
can then be executed.

§4.1 and Chapter 5 describe in detail how to call the Compiler, the Completer, which
is called to generate code for instances of generic units, and the Linker.
Chapter 6 explains the information which is given if the execution of a program is
abanconed due to an unhandled exception.
The information the Compiler produces and outputs in the Compiler listing is explained
in §4.4.
Finally, the log of a sample session is given in Chapter 7.

4.1 Compiling Ada Units

The command ada. c invokes the Compiler, and optionally Completer and Linker of
the Alsys Ada System.

ada. c Command Description

NAIMM

ada.c - Alsys Ada System compile command

SYNOPSIS

ada.c 'option ... 'file ... '-Id Idopt

DESCRIPTION

Compilation, Completion and Linking are performed in that order. The Completer
is called if the -C or the -= option is specified. The Linker is called if the -m option
is specified. By default, only the compiler runs and compiles the source(s) in the
given)Ues.

Alsys Ada System - User Manual 35

Chapter 4 Compiling

The source file may contain a sequence of compilation units (cf. LRM(§10.1)). All
compilation units in the source file are compiled individually. When a compila-
tion unit is compiled successfully, the program library is updated and the Compiler
continues with the compilation of the next unit on the source file. If the compi-
lation unit contained errors, they are report-d (see 54.4). In this case, no update
operation is performed on the program library and all subsequent compilation
units in the compilation are only analyzed without generating code.

The command delivers a non-zero status code on termination (cf. ezit(2) if one
of the compilation units contained errors.

file specifies the file(s) to be compiled. The maximum length of lines in file is 255.
The maximum number of source lines in fe is 65534.
Note: If you specify a file name pattern, which is replaced by one or more file
names by the shell, the order of the compilation is alphabetical, which is not
always successful. Thus file name patterns should be used together with the
option -a. With this option the sources can be processed in any order.

The generation of listing output is controlled by options -1 and -L. The default
listing filename for a compilation is the basename, cf. basenarne(1), of the source
file with suff.x . 11; when the source file already has a sun'ix, it is replaced by the
suffix .I. When an automatic recompilation is performed through option -R the
basename is taken from the original source file name stored in the library.

-A Controls whether automatic inline expansion is performed. A sub-
program S is automatically inlined at a place P where S is called, if
the following conditions hold: S meets the requirements for explicit
inlining via ?RAG MA inline (cf. 515.1.1); subprogram specification
and subprogram body of S are in the same compilation unit; and
the estimated code size of S when expanded inline is not greater (or
only slightly greater) than the call it replaces. (The estimation of
size is based on heuristics and is not exact: however, it is designed
to give a close approximation.) If you specify -A, automatic inline
expansion is suppressed.

By default, automatic inline expansion is performed.

-a Specifies that the Compiler only performs syntactical analysis and
the analysis of the dependencies on other units. The units in file are
entered into the library if they are syntactically correct. The actual
compiiation is done later.

Note: An already existing unit with the same name as the new one is
replaced and all dependent units become obsolete, unless the source
file of both are identical. In this case the library is not updated
because the dependencies are already known.

36 Aisys Ada System - User Manual

Compiling Chapter 4

By default, the normal, full compilation is done.

-C unitlist Requests the completion of the units in unitlist, which is a white
space separated list of unit names. unithst must be a single shell
argument and must therefore be quoted when it has more than one
item. Example with two units:

ada.c -C "our-unit my-unit'"
The Completer generates code for all instantiations of generic units
in the execution closure of the specified unit(s). It also generates
code for packages without bodies (if necessary).
If a listing is requested the default filename used is comple:e.l.
The listing file contains the listing irformation for all units given in
unitlist.

-c Controls whether a copy of the source file is kept in the library. The
copy in the program library is used for laver access by the Debugger
or tools like the Recompiler. The name of the copy is generated by
the Compiler and need normally not be known by the user. The
Recompiler and the Debugger know this name. You can use the
ada. list -1 command to see the file name of the copy. If a specified
file contains several compilation units a copy containing only the
source text of one compilation unit is stored in the library for each
compilation unit. Thus the Recompiler can recompile a single unit.

if -c is specified, the Compiler only stores the name of the source
file in the program library. In this case the Recompiler and the
Debugger are able to use the original file if it still exists.

-D When linking, the generation of debug information is suppressed.

Controls whether inline expansion is performed as requested by
PRAGIMA inline. If you specify -i these pragmas are ignored.

By default, inline expansion is performed.

=l Generates listing files with default flenames (see above) in the cur-
rent directory (use option -L for redirecting to another directory).

-L directory Generates listing files with default filena--es (see above) in directory
directory.

- fVe Concatenates all listings onto fie file.

-. Idopt This option can be used to supply options for the call of Id(1) wlen
linking a program by the -= option. -'-d followed by the options to

be passed to Id(1) must be the last items of the command.

Aisys Ada System - User Manuai 37

Chapter 4 Compiling

- unit Specifies the name of a main program, which must be a parza~eter-
less procedure. This option will cause the compleion of any generic
instantiations in the program; if a listing is requested, the listing
options have the same meaning as for the complete option; if the
completer has already been called by the -C option, the liz:ing ou,-
put is appended to that completer listing file. If all compilations
are successful, the linker is invoked to build an executable program;
if a listing is requested, the default filename for the linker listing is
1link. 1.

-01 Restricts optimizations to level 1. Level 0 indi:ates no optimiza-
tions, level I indicates partial optimizations, level 2 indicates full
optimization. Default is full optimization.
Partial optimizations allows those optimizations that do not move
code globally. These are: Constant propagation, copy propagation,
algebraic simplifications, runtime check elimination, dead code elimi-
nation, peephole and pipeline optimizations. This optimization level
allows easier debugging while maintaining a reasonable code quality.
Full optimization enforces the following optimizations in addition to
those done with -01: Global common subexpression elimination and
keeping local variables in registers.

-o fie When linking is requested by -m this option can be used to specify
the name of the generated executable program. By default, the
name of the unit given with the -= option is used; this value is
taken literally, i.e. upper and lower case letters are distinguished.

-. IRindicates that a recompilation of a previously analyzed source is
to be performed. This option should only be used in comands
produced by the ada.make command.

-r Suppresses the generation of an executable object file when linking
is requested. See the -r option of the ada. link command (§5) for
details.

-S Controls whether all run-time checks are suppressed. If you specify
-s this is equivalent to the use of PRAGMA suppress for all kinds of
checks.

By default, no run-time checks are suppressed, except in cases where
PRAGMA suppress-all appears in the source.

-s Controis whether machine code is appended to the listing file. -s
has no effect if no listing is requested or -a (analyze only) is specified.

By default, no machine code is appended to the listing file.

38 Aisys Ada System - User Manual

Compiling Chapter 4

-t Suppresses selective linking. Selective linking means that only the

code of those subprograms which can actually be called is included
in the executable image. With -t the code of all subprograms of
all packages in the execution closure of the main procedure is linked
into the executable image.

Note: The code of the runtime system and of the predefined units
is always linked selectively.

-v Controls whether the aia. c command writes additional information
onto standard error.
By default, no additional information is written.

-y hbrary Specifies the program library the ada. c command works on. It needs

write access to the library.

The default library is adalib.

End of Command Description

4.2 Completing Generic Instances

Since the Compiler does not generate code for instances of generic bodies, the Com-
pleter must be used to complete such units before a program using the instances can
be executed. The Completer must also be used to complete packages in the program
which do not require a body. This is done implicitly when the Linker is called.

It is also possible to call the Completer explicitly with the -C option of the ada.c

command.

Alsys Ada System - User Manual 39

Chapter 4 Compiling

4.3 Automatic Compilation

The Alsys Ada System ofers three different kinds of automatic compilation. It sup-
ports

• automatic recompilation of obsolete units

" automatic compilation of mcdifie, sources
* automatic compilation of new sources with unknown dependencies

In the following the term recompilation stands for the recompilation of an obsolete
unit using the identical source which was used the last time. (This kind of recom-
pilation could alternatively be implemented by using some appropriate intermediate
representation of the obsolete unit.) This definition is stronger than that of the LRM
(10.3). If a new version of the source of a unit is compiled we call it cornpilation, not
a recompilation.

The set of units to be checked for recompilation or new compilation is described by
specifying one or more units and the kind of a closure which is to be built on them.
In many cases you will simply specify your main program.

The automatic compilation of modified sources ',is the default effect of the ada.make
comrma.nd. It determines the set of modified sources and generates and executes a
command file for calling the Compiler in an appropriate order. Optionally, obsolete
units can be recompiled subsequently.

.f only the recompilation of obsolete units is desired, this can be specified by the -Rr
option of the ada. =ake command. It determines the set of obsolete units and generates
and executes a command file for calling the Compiler in an appropriate order.

The recompilation is performed using the copy of the obsolete units which is (by
default) stored in the library. (If the user does not want to hold a copy of the sources,
the ada.=ake command can use the original source.)

The automatic compilation of new sources is supported by the ada. c command to-
gether with the -a option. This command is able to accept a set of sources in any
order. It makes a syntactical analysis of the sources and determines the dependencies.
The units "compiled" with this command are entered into the library, but only their
names, their dependencies on other units and the name of the source files are stored
in the library. Units which are entered this way can be automatically compiled using
the ada.-ake command.

The basis of both the ada. ake cormmrand is the information in the library about the
dependencies of the concerned units. Thus ada.=ake cannot handle the compilation
of units which have not yet been entered in the library.

40 Alsys Ada System - User Manual

Linking Chapter 5

5 Linking

An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main program.

The ULTRL system linker is used by the Alsys Ada Linker.

To link a program, call the ada. link command. The Linker can also be called directly
from the ada. c command and fromi the ada.make command.

ada.link Command Description

NAME

ada. "k - invoke the Alsys Ada System linker

SYNOPSIS

ada.link ^option ... , unit '-ld ldopt,

DESCRIPTION

The ada. Iink command invokes the Alsys Ada Linker.

The Linker builds an executable file. The default file name of the executable file
is the unit name of the main program given with the unit parameter. This value
is taken literally, i.e. upper and lower case letters are distinguished.

unit specifies the library unit which is the main program. This must be a para-
meteriess library procedure.

-A This option is passed to the implicitly invoked Completer. See the
same option with the ada. c command.

Suppresses invokation of the Completer of the Aisys Ada System
before the linking is performed. Only specify -c if you are sure
that there are no instantiations or impiicit package bodies to be
compiled, e.g. if you repeat the ada. link command with different
linker options.

Aivs Ada Syste-n - User Manual 51

Chapter 5 Linking

-D By default debug information for the Alsys Ada Debugger is gen-
erated and included in the executable file. When the -D option is
present, debug information is not included in the executable file. If
the program is to run under the control of the Debugger it must be
linked without the -D option.

-I Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

-! If -1 is specified the Linker of the Afsys Ada System creates a listing
file containing a table of symbols which are used for linking the Ada
units. This table is helpful when debugging an Ada program with
the ULTRDC debugger. The default name of the listing file is link. 1.
By default, the Linker does not create a listing file.
This option is also passed to the implicitly invoked Completer,
which by default generates a listing file complete. 1 if -1 is given.

-L directory The listing files are created in directory directory instead of in the
current directory (default).

-L fiJe The listing files are concatenated onto file file.

-Id Idopt This option can be used to supply options for the call of Id(l). -id
followed by the options to be passed to Id(1) must be the last items
of the command.

-01 This option is passed to the implicitly invoked Completer. See the
same option with the ada. c command.

-o file Specifies the name of the executable file.
The default file name of the executable file is the unit name of the
main program.

- r Suppresses the generation of an executable object file. In this case
the generated object file contains the code of all compilation units
written in Ada and of those object modules of the predefined lan-
guage environment and of the Ada run time system which are used
by the main program; references into the St,.idard C library remain
unresolved. The generated object module is suitable for further Id(I)
processing. The name of its entry point is main.

-S This option is passed to the implicitly invoked Compieter. See the
same option with the ada. c command.

52 Aisys Ada System - User Manual

Linking Chapter 5

-s This option is passed to the implicitly invoked Completer. See the
same option with the ada. c command. If a listing is requested and
-s is specified, the Linker of the Alsys Ada System generates a listing
with the machine code of the program starter in the file link. 1. The

program starter is a routine which contains the calls of the necessary
elaboration routines and a call for the Ada subprogram which is the
main program.
By default, no machine code is generated.

- Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable file. With -t the code of all subprograms of all
packages in the execution closure of the main procedure is linked
into the executable file.

Note: The code of the runtime system and of the predefined units
is always linked selectively, even if -t is specified.

-v Controls whether the ada. link command writes additional informa-
tion onto standard error, and is also passed to the implicitly invoked
Completer.
By default, no additional information is written.

-y library Specifies the program library the command works on. The ada. link
command needs write access to the library unless -c is specified. If
-c is specified the ada. itnk command needs only read access. The
default library is adalib.

End of Command Description

The ada. link command implicitly calls the ULTRZK System Linker using the com-
mand

/birn/.d E-N' -o resultjile /usr/lib/cnplrs/cc/cr-O.o \
obj rtshb Idoptions -ic

unless the -r option is specified. When -r is specified, the Linker is called with the

command

/bin/id -1] -o resuitfile -r ob] rtslib ldoptiorzs

Here, obj denotes the file containing the object module which is produced by the Ada

Linker and rtshb the archive :ibrary containing the Ada r-Lntime system. (This may

Alsys Ada System - User Manuai 53

Chapter 5 Linking

be libr-.sdbg. a resp. libr-ts a if the Aisys Ada Linker is called with option -D. In
this case the -N option is missing.)

If you invoke Id(1) by yourself to link the executable object rather than having the Ada
Linker doing it automatically, then you must explicitly specify a startup module (see
below) and any libraries you want linked into the Ada program. Furthermore, the .d
option -N should be specified to allow the resulting object file to be debugged by the
Alsys Ada Debugger. (Note that debugging is only possible if the option -D was not
passed to the Ada Linker.)

The startup module must satisfy the following requirements:

* A global variable called environ is defined containing a pointer to the current
environmzzent (cf. envtiron(7).)

" The Ada main program is called using the entry point main.
" argc and argv are passed as arguments to main.

Note that instructions following the call of main will never be executed.
By default, the Standard C startup routine /usr/lib/c=plrs/cc/cr- O.o is used.

54 Aisvs Ada System - User Manual

APPENDIX C

APPENDIX F OF THE Ada STANDAR2

Tne only allowed implementation dependencies correspond to implementation-
e:eenaent pragmas, to certain machine-dependent conventions as mentioned in
n zter -3 cf the Ada Standard, and to certain allowed restrictions on

representation clauses. The implementation-dependent characteristics of
n7Ls Ada implementation, as described in this Appendix, are provided by the

o:rn:3er. Unless specifically noted otherwise, references in this Appendix
are tc ccmpiier documentation and not to this report. Implementation-
fpecific portions of the package STANDARD, which are not a part of Appendix

are cntained in the following Predefined Language Enviroment (chapter
aze 5f of the compiler user manual)

P redefined Language Environment Chapter 13

13 Predefined Language Environment

The predefined language environment comnprises the package standard, the languag-
defined library units and the imp lementation-defined library units.

13.1 The Package STANDARD

The specification of the package standard is outlined here; it contains all predefined
identifiers of the implementation.

PACKAGE standard IS

TYPE boolean IS (false, true);

-The predefined relatiozal operators for this type are as follows:

-FUNCTION " (left, right boolean) RETURN boolean:
7- UNCT:-ON "1" (left, right :boolean) RETURN boolean;

-- FUNCTION (I (e f t, ri4gh t boolean) RLETU7RN boolean;
-- FJNC7TION "<" (left, right :boolean) RETUJRN boolean;
-FUNCTION "" (left, right boolean) RETURN boolean;
-- FNCTION >" (left, right boolean) RETURN boolean;

.- he predefined logical operators and the prede!ined logical
-negation operator are as follows:

-FUNCT:ON "AND" (left, right boolean) RETURN boolean;
-FUNCTION "OR" (left, right boolean' RLETURN boolean.

-- IUC7:'N "XOR" (lef t, right boolean) RETUJRN boolean:

-- FNCTION "NOT" (right :boolea-n) RETURN boolean:

-The anive.-sal tyrpe universaL-4nteger is predefined.

TYPE integer IS RANGE - 2-147-483-608 .. 2-4748-647;

-The Dredefined onerators for this type are as follows:

--FNC7ION "=" (eft, righit int.-eger) RETURN! boolean:
-- FNC.ON"u (left, right integer) RETUjRN boolean:

Alsvs Ada Systern - ULlser Maruai 265

Chapter 13 Predefined Language Environment

-- FUNCTION "<" (left, right integer) RETURN boolean;
-- FUNCTION "=" (left, right integer) RETURN boolean;
-- FUNCTION ">" (left, right integer) RETURN boolean;
-- FUNCTION >" (left. right : integer) RETURN boolean;

-- FUNCTION " " (right : integer) RETURN integer;
-- FUNCTION "-" (right : integer) RETURN integer:
-- FUNCTION "ABS" (right : integer) RETURN integer;

-- FUNCTION " " (left, right : integer) RETURN integer:
-- FUNCTION "-" (left, right integer) RETURN integer;
-- FUNCTION "a" (left. right : integer) RETURN integer:
-- FUNCTION "/" (left., right : integer) RETURN integer;
-- FUNCTION "REM" (left, right integer) RETURN integer;
-- FUNCTION "MOD" (left. right : integer) RETURN integer;

-- FUNCTION "**" (left integer; right : integer) RETURN integer;

-- An implementation may provide additional predefined integer types.
-- It is recommended that the names of such additional types end
-- with INTEGER as in SHORTINTEGER or LONGINTEGER. The
-- specification of each operator for the type universal-integer. or
-- for any additional predefined integer type, is obtained by

-- replacing INTEGER by the name of the type in the specification
-- of the corresponding operator of the type INTEGER. except for the
-- right operand of the exponentiating operator.

TYPE short-integer IS RANGE - 32-768 .. 32-767;

TYPE short-short-integer IS RANGE - 128 .. 127;

-- The universal type universal.real is predefined.

TYPE float :S DIGITS 6 RANGE
- 16#O.FF-'FF#E32 .. 16#O.FFFF_FF#E32;

FOR float'size USE 32;

-- The predefined operators for this type are as follows:

-- FUNCT:ZN "=" (left. right float) RETURN boolean:
-- FUNCTN "/=" (left, right float) RETURN boolean;
-- FUNCT:ON "<" (left. right : float) RETURN boolean:

-- FUNC 7 =" (left, right float) RETURN boolean;
-- FUNTION " " (left. right float) RETURN boolean;

- -CC N ">=" (left, right float) RETURN boolean:

-- FUCTIN "" (right : float) RETURN float;

266 Alsys Ada System - User Manual

Predeined Language Environment Chapter 13

-- FUNCTION "-" (right : float) RETURN float;

FUNCTION "ABS" (right : float) RETURN float:

-- FUNCTION "-" (left. right : float) RETURN float;
-- FUNCTION "-" (left, right float) RETURN float;

FUNCTION "*" (left, right : float) RETURN float;
-- FUNCTION "/" (left, right : float) RETURN float;

-- FUNCTION " " (left : float: right : integer) RETURN float;

-- An implementation may provide additional predefined floating
-- point types. It is recommended that the names of such additional
-- types end with FLOAT as in SHORT-FLOAT or LONG-FLOAT.
-- The specification of each operator for the type universal-real,
-- or for any additional predefined floating point type, is obtained
-- by replacing FLOAT by the name of the type in the specification of
-- the corresponding operator of the type FLOAT.

TYPE long-float IS DIGITS 15 RANGE
- 165#O.FFFFFFFF_FFFF_F8#E256

16#O.FFFFFFFF_FFFF_F8#E256;
FOR long-float'siZe USE 64;

-- In addition. the following operators are predefined for universal
-- types:

-- FUNCT:ON "-" (left : UNIVERSALINTEGER: right UNIVERSALSEAL)
RE7JN UNIVERSALREAL;

-- FUNCTI:N " (left UNIVLSALEAL; right UNIVESALINTEGER)

RETJRN UNIVERSAL_.2EAL;
-- FUI;CT:ON "/" (left UNIVERSALREAL; right UNIVERSALINTEGER)

RETURN UNIVERSALREAL;

-- The type urniversal-fixed is predefined.
-- .The only opera:ors declared for this type are

-- FUNCT:N "-" (left ANY_FIXEDPOINTTYPE;
righ: ANYFIXEDPOINTTYPE) RETURN UNIVERSALFIXED:

-- FUNCT::N "I" (left ANYFIXEDPOINTTYPE;
right ANYFIXEDPOINTTYPE) RETJRN UNIVERSALFIXED:

-- The following characters form the standard ASC'I character set.
-- Character liberals corresponding to control charac-azs are not
-- identifiers.

-YPE charac:er :S
(nul., soh, stx. etx, eot. enq, ack. bel.

Aisys Ada System - User Manual 267

Chapter 13 Predefined Language Environment

bs, ht. If. Vt. ft. cr. so, si.
dle. dcl. dc2, dc3. dc4. nak. syn. etb,
can, em. sub, esc, fs. gs. rs. us,

V A' *B'* 'C'.D, F'.
'1 'J * 'K', ILI 'M '0 'Y . '2 '3 ' '* '5 _7'

'8* *9* 'b~ ';* . *d .e '>' .g.
h', '. '. *' ' '5' 'n'. 'o'.

H. 'I' '. K' '. Mu . ' 'Ow'IV. a . Z. , cP. d . C , iI *

*XI{ '. } * ' * del);

FOR character USE -- 128 ascii CHARACTER SET WITHOUT HOLES
(0. 1. 2. 3. 4. 5....... 125, 126. 127);

-- The predefined operators for the type CHARACTER are the same as
-- for any enumeration type.

PACKAGE ascii IS
-- Control characters:
nul : CONSTANT charazter := nul; soh : CONSTANT character soh;
stx : CONSTANT character := stx; etx : CONSTANT character : etx;
eot : CONSTANT character := eot:; enq : CONSTANT character : enq:
ack : CONSTANT character := ack; bel: CONSTANT character : bel;
bs : CONSTANT character : bs; ht : CONSTANT character : ht;
if CONSTANT character : If; V : CONSTANT character : vt;
if : CONSTANT character := ff; cr : CONSTANT character : cr;
so : CONSTANT character : so; si : CONSTANT character :si;
dle : CONSTANT character : dle; dcl : CONSTANT character : dcl;
dc2 • CONSTANT character = dc2; dc3 : CONSTANT character : dc3;
dc4 CONSTANT character := dc4; nak : CONSTANT character : nak;
syn: CONSTANT character syn; etb : CONSTANT character : etb;
can CONSTANT character can; em : CONSTANT character := em;
sub : CONSTANT character := sub; esc CONSTANT character : esc;
fs CONSTANT character := fs; gs : CONSTANT character : gs;
rs CONSANT character := rs; us : CONSTANT character := us;
del CONSTANT character : del;

-- Other characters:

exc'a' • CONSTANT character
quotation CONSTANT character "
sharp ' CONSTANT character " ';

268 Alsys Ada System - User Manual

Predefi-ned Language Environment Chapter 13

dollar CONSTANT character : $';
percent : CONSTANT character :
ampersand CONSTANT character : 'k;
colon : CONSTANT character '.;
semicolon : CONSTANT character : ;;
query CONSTANT character
at-sign : CONSTANT character U'';

lbracket CONSTANT character := '[;
back-slash CONSTANT character :
r.bracket CONSTANT character := ;
circumflex CONST2. character :=
underline CONSTANT character
grave : CONSTANT character
lbrace : CONSTANT character :=
bar : CONSTANT character :=
rbrace CONSTANT character : ;
tilde : CONSTANT character :

lc-a : CONSTANT character 'a';

Ic_z : CONSTANT character := 'z';

END ascii;

-- Predefined subtypes:

SUBTYPE natural IS integer RANGE 0 .. integer'last;
SUBTYPE positive IS integer RANGE I .. integer'last;

-- ? edefined string type:

TYP,-E string IS ARRAY(positive RANGE <>) OF character:

PRAGMA byte-pack(string):

-- The predefined operators for this type are as follows:

-- FUC:ON "7=" (left, right string) RETURN boolean;
-- FUNCc77ON "1=" (left, right : string) RETURN boolean;
-- C TZ " (left, right : string) RETURN boolean;
-- FUNCT:ON "<=" (left, right : string) RETURN boolean:
-- 7UNCTION ">" (left, right : string) RETURN boolean:
-- FUNCT:ON ">= (left. right • string) RETURN boolean"

-- FJNCT:ON "&" (left string; right " string) RE-URN string;
-- FUNCTION "&" (left : character: right : string) RETTN string;
-- rJNCT:ON " " (left : string: right : character) RETURN string;

Aisys Ada System- User Manuai 269

Chapter 13 Predefined Language Environment

-- FUNCTION "&" (left: character: right : character) RETURN string;

TYPE duration IS DELTA 2t1.0#E-14 RANGE
- 131-C72.0 .. 131-071.999-38-964-843-75;

-- The predefined operators for the type DURATION are the same

-- as for any fixed point type.

-- the predefined exceptions:

constrainterror EXCEPTION:
numeric-error : EXCEPTION;
program-error EXCEPTION;
storage-error EXCEPTION;
tasking-error EXCEPTION;

END standard;

13.2 Language-Defined Library Units

The following language-defined library units are included in the master library:

The package system
The package calendar
The generic procedure unchecked-deallocation
The generic function u3nchecked-conversion
The package io-exceptions
The generic package sequential-io
The generic package directio
The package text._io
The package low-level_.o

13.3 Implementation-Defined Library Units

he master ibrary also contains the implementation-defined library units

The package collection_anager
The package timing
The package com-and_a.rguments
The package text _io extension

270 Alsys Ada System - User Manual

Appendix F Chapter 15

15 Appendix F

This chapter, together with the Chapters 16 and 17, is the Appendix V required in the
LRM, in which all implementation-dependent characteristics of an Ada implementation
are described.

15.1 Implementation-Dependent Prag-nas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

15.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here.

CONTROLLED
has no effect.

ELABORATE
is fully implemented. The Alsys Ada System assumes a PRAGMA elaborate, i.e.
stores a unit in the library as if PRAGMA elaborate for a unit u was given, if the
compiled unit contains an instantiation of u (or of a generic program unit in u)
and if it is clear that u must have been elaborated before the compiled unit. In
this case an appropriate information message is given. By this means it is avoided
that an elaboration order is chosen which would lead to a PROGRAM--SRROR
when eiabora:ing the instantiation.

2;LD;E
nline ex-. ansion of subprograms is supported with the following restrictions:

the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursivety only the outer cail of
:his subprogram will be expanded.

Aisys Ada System - User Manual 277

Chapter 15 Appendix F

C'qTE RFAC E
is supported for ASSEMBLER and C. PRAGMA interface (assembler, ...)
provides an interface with the internal calling conventions of the Alsys Ada System.
See §15.1.3 for further description.

PRAGMA interface (C. ...) is provided to support the C procedure calling stan-
dard. §15.1.4 describes how to use this pragma. The subprogram must not be
a function returning an unconstrained array type, nor must it have OUT or IN
OUT parameters that are not passed by reference. If either of these restrictions is
violated, the program is erroneous.

PRAGMA interface should always be used in connection with the PRAG A exter-
nalname (see 515.1.2), otherwise the Compiier will generate an internal name
that leads to an unsolved reference during linking. These generated names are
prefixed with an underline; therefore the user should not use names beginning
with an underline.

LIST
is fully implemented. Note that a listing is only generated when one of the listing
options is specified with the ada. c (or ada.make or ada. link) command.

MEMORYSIZE
has no effect.

0 PT DIZE
has no effect; but see also the -0 option with the ada.c command, §4.1.

PACK
see S16.1.

PAGE
is fully implemented. Note that form feed characters in the source do not cause
a new page in the listing. They are - as well the other format effectors (horizontal
tabulation, vertical tabulation, carriage return, and line feed) - replaced by a -

character in the listing.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of

278 Alsys Ada System - User Manual

Appendix F Chapter 15

the subtype priority, and second, the effect on scheduling (Chapter 14) of not
giving this pragma for a task or main program. The range of subtype priority is
0 .. 15, as declared in the predefined library package system (see §15.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by
not giving PRAGMA priority for it is the same as if PRAGMA priority (0) had
been given (i.e. the task has the lowest priority).

SHARED
is fully supported.

STORAGEUNIT
has no effect.

SUPPRESS
has no effect, but see §15.1.2 for the implementation-defined PRAGMA suppress-
all.

SYSTEMNAME
has no effect.

15.1.2 Implementation-Defined Pragmas

BYTE-PACK
see §16.1.

CCALLABLE (<ada name>)
this pragma causes the Alsys Ada System to make the subprogram <adaname>
obey the C calling conventions (see PRAGMA interface (C ...) and §15.1.4),
so that the subprogram can be called from a C routine.
See]15.1.5 for further description.

EXTERNAL_NAME (<string>, <ada..name>)
<ada._nane> specifies the name of a subprogram or of an object declared in a

Aisys Ada System - User Manual 279

Chapter 15 Appendix F

library package, <string> must be a string literal. It defines the external name of
the specified item.
This pragma is used in connection with PRAGMA interlace (see §15.1.1) and
PRAGMA ccallable (see §15.1.5). If <adaname> is the name of a subprogram,
the Compiler uses the symbol <string> in the call instruction for the subprogram.
Furthermore, in connection with the PRAGMA ccallable, the pragma enables the
subprogram to be called from a routine written in C using the symbol <string>.
The subprogram declaration of <ada_.name> must precede this pragma. If several
subprograms with the same name satisfy this requirement the pragma refers to
that subprogram which is declared last.
If <ada.uname> is the name of an object, this pragma enables the object to be
accessed from outside the Ada program using the symbol <string>, for example
from a subprogram written in another language.
Upper and lower cases are distinguished within <string>, i.e. <string> must be
given exactly as it is to be used by external routines. The user should not define
external names beginning with an underline because Compiler generated names
are prefixed with an underline.

RESIDENT (<ada..name>)
this pragma causes the value of the object <adaname> to be held in memory
(rather than in a register) and prevents assignments of a value to the object
<ada_name> from being eliminated by the optimizer (see §4.1) of the Alsys Ada
Compiler.

PAGMA resident may be needed to prevent crucial assignments from being elim-
inated by the optimaizer in rare cases in which an object is accessed via its address
using the attribute 'address. In all straightforward cases of this sort, i.e. when-
ever the attribute is used in a way designed to be easily understood by human
readers, the Compiler will recognize accesses to the object via 'add-.ress as such
and will not allow the optimizer to eliminate crucial assignments of values to the
object. The following example shows one of the rare cases mentioned above, in
which PRAGMA resident is necessary.

In this exampie, exa=ine-value-at is a non-local procedure with an IN parameter
of type syster.add-"ess, which reads the value at the address passed as actual
parameter.

WITH syste=. exa..ne_value_at;

PROCDU?.E exa=z:pe :S

TYPE !cb_',pe _7S ...
fcb : fcb_.ype;

fcb-add -ess: system.address;

280 Alsys Ada System - User Manual

Appendix F Chapter 15

FUNCTION file-control-block-address RE7URN system.address IS

BEGIN
1F ... THEN

PZ1URN fcb'address;
ELSE

END IF:
END fle-con:rol-block-address;

BEGIN

fcb-address := file-controlblock-address; -- may be fcb'address
fcb := ... ;

examine -value-at (f cb.address); -- may read fcb
feb

END exa=ple;

If this procedure is compiled by the Alsys Ada Compiler without suppression of
dead code elimination, i.e. without the -00 option, the frst assignment to fcb
will be eliminated, because the Compiler will not recognize that the value of fcb
may be read before the next assignment to fcb. Therefore

PRAGMA resident (feb);

should be inserted after the declaration of feb.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §16.5).

SUPPRESS-ALL
causes all the runtime checks described in the LRM(§I1.7) to be suppressed; this
pragmia is only allowed at the start of a compilation before the rst compilation
unit; it applies to the whole compilation.

Alsys Ada System - User Manual 281

Chapter 15 Appendix F

15.1.3 Pragma Interface (Assembler, ...)

This section describes the internal calling conventions of the Alsys Ada System, which
are the same as those used for subprograms for which PRAGMA interlface (assembler.
...) is given. Thus the actual meaning of this pragma is simply that the body needs
and must not be provided in Ada; it is provided in object form using the -ld option
with the ada. link (or ada. c or ada.make) command.

In many cases it is more convenient to follow the C procedure calling stan-
dard. Therefore the Asys Ada System provides PRAGIMA interface (c,
...), which supports the standard return of the function result and the stan-
dard register saving. This pragma is described in the next section.

The internal calling conventions are explained in four steps:

- Parameter passing mechanism
- Ordering of parameters
- Type mapping
- Saving registers

Parameter passing mechanism:

The Alsys Ada System uses three different parameter passing mechanisms, depending
on the type of a parameter:

* by value and/or result: The value of the parameter itself is passed.

* by reference: The address of the parameter is passed (like an IN parameter of type
system. address, which would be passed by value).

by descriptor A descriptor for the parameter is allocated on the caller's side and
is itself passed by reference.

The parameters of a subprogram are passed in registers where possible. The remaining
parameters, if any, are passed in an area called a parameter block. This area is aligned
on a word boundary and contains parameter values (for parameter of scalar types),
parameter addresses or descriptor addresses (for parameter of composite types) and
alignment gaps.
For a function subprogram an extra register ($r4 or Sf0) is assigned to contain the
function result upon return. Thus the return value of a function is treated like an
anonymous parameter of mode 0UT. No special treatment is required for a function
result except for return values of an unconstrained array type (see below).

A subprogram is called using the TAL instruction. The address of the parameter block
is passed in $r3, if necessary. The static link of a subprogram is passed in $r2, if
necessar-y.

282 Alsys Ada System -User Manual

Appendix F Chapter 15

In general, the ordering of the parameter values within the parameter block does not
agree with the order specified in the Ada subprogram specification. When determining
the position of a parameter within the parameter block, the calling mechanism and
the size and alignment requirements of the parameter type are considered. The size
and alignment requirements and the passing mechanism are as follows:

Scalar parameters and parameters of access types are passed by value, i.e. the values
of the actual parameters of modes IN or IN OUT are copied into the parameter register
or into the parameter block before the call. Then, after the subprogram has returned,
values of the actual parameters of modes IN OUT and OUT are copied out of the pa-
rameter register or the parameter block into the associated actual parameters. The
pa.ra.meters are aligned within the parameter block according their size: A parameter
with a size of 8, 16 or 32 bits has an alignment of 1, 2 or 4 (which means that the object
is aligned to a byte, halfword or word boundary within the parameter block). If the
size of the parameter is not a multiple of 8 bits (which may be achieved by attaching
a size specification to the parameter's type in case of an integer, enumeration or fixed
point type) it will be byte aligned. Parameters of access types are always aligned to a
word boundary.

Parameters of composite types are passed by reference or by descriptor. The descrip-
tors are allocated by the caller and are themselves passed by reference. A descriptor
contains the address of the actual parameter object and further information depen-
dent on the specific parameter type. The following composite parameter types are
distinguished:

A parameter of a constrained array type is passed by reference for all parameter

modes.

" For a parameter of an unconstrained array type, the descriptor consists of the
address of the actual array parameter followed by the bounds for each index range

in the array (i.e. FIRST(I), LAST(1), FIRST(2), LAST(2), ...). The space allo-
cated for the bound elements in the descriptor depends on the type of the index
constraint. This descriptor is itself passed by reference.

* For functions whose return value is an unconstrained array type, a reference to
a descriptor for the array is passed in the parameter block as for parameters of
mode OUT. The fields for its address and all array index bounds are filled up by
the function before it returns. Li contrast to the procedure for an OUT parameter,

the function allocates the array in its own stack space. The function then returns
without releasing its stack space. After the function has returned, the calling

routine copies the array into its own memory space and then deallocates the stack
memory of the function.

" A constrained record parameter is passed by reference for all parameter modes.

* For an uncon.trained record parameter of mode :N, the parameter is passed by
reference using the address pointing to the record. If the parameter has mode

OUT or :N OUT, the value of the C3OS7RAINED attribute appiied to the actual
parameter is passed as an additional boolean IN parameter (which, when not
passed in a register, occupies one byte in the parameter block and is aligned to
a byte boundary). The boolean IN parameter and the address ae treated like

Aisys Ada System - User Manuai 283

Chapter 15 Appendix F

two consecutive parameters in a subprogram specification, i.e. the positions of the
two parameters within the parameter block are determined independently of each
other.

For al kinds of composite parameter types, the pointer pointing to the actual para-
meter object is represented by a 32 bit address, which is always aligned to a word
boundary.

Ordering of parameters:

The ordering of the parameters is determined as follows:

The parameters are processed in the order they are defined in the Ada subprogram
specification. For a function, the return value is treated as an anonymous parameter of

mode OUT at the start of the parameter list. The registers $r4. .$r22 and Sf0. .$f 31
are available for parameter passing. A parameter block is only used when there are

more parameters than registers of the appropriate class. Registers are used from low
numbers to high numbers, the parameter block starts at offset zero and grows to higher
offsets. Each parameter is handled as follows:

" A float parameter is allocated the next free even numbered floating point register
(the corresponding odd numbered floating point register is not used for parameter
passing). If there is no free floating point register, one word is allocated in the

parameter block (see below).

" A long-float parameter is allocated the next free floating point register pair.
If there is no free floating point register pair, a double word is allocated in the

parameter block (see below).

" All other parameters (or their idescriptor; addresses, respectively) are allocated the
next free general purpose register from $r4.. $r22. If not enough general purpose
registers are available for parameter passing, space is allocated in the parameter
block depending on the representation of the parameter type (see below).

S If a parameter cannot be passed in a register, space is allocated in the parameter
biock as follows:

Because of the size and alignment requirements of a parameter it is not always
possible to place parameters in such a way that two consecutive parameters are
densely located in the parameter block. In such a situation a gap, i.e. a piece

of memory space which is not associated with a parameter, exists between two
adjacent parameters. Consequently, the size of the parameter block can be larger
:han the sum of the sizes of all the parameters.

In order to minimize the size of the gaps in a parameter block, an attempt is made
to 511 each gap with a parameter that occurs later in the parameter list. If during
the allocation of space within the parameter block a parameter is encountered

284 Aisys Ada ysterm - User ManuaI

Appendix F Chapter 15

whose size and alignment fit the characteristics of an available gap, .hen this gap
is allocated for the parameter instead of appending it at the end of the parameter
biock. As each parameter will be aligned to a byte, halfword or word boundary
the size of any gap may be one, two or three bytes. Every gap of size three bytes
can be treated as two gaps, one of size one byte with an alignmen. of 1 and one
of size two bytes with an alignment of 2. So if a parameter of size two is to be
allocated, a two byte gap, if available, is filled up. A parameter of size one will
fill a one byte gap. If none exists but a two byte gap is available, this is used as
two one byte gaps. By this first fit algorithm all parameters are processed in the
order they occur in the Ada program.

A called subprogram accesses each parameter for reading or writing using the para-
meter register or using the parameter block address incremented by an offset from the
start of the parameter block suitable for the parameter. So the value of a parameter of
a scalar type or an access type is read (or written) directly from (into) the parameter
register or parameter block. For a parameter of a composite type passed by reference
the actual parameter value is accessed indirectly via the parameter address passed in
a parameter register or in the parameter block. For a parameter of a composite type
passed by descriptor the actual parameter value is accessed via the descriptor whose
address is passed in a parameter register or in the parameter block. The descriptor
contains a pointer to the actual object. When standard entry code sequences are used
within the assembler subprogram (see below), the parameter block address is accessible
at address -12($r30).

Type mapping:

lo access individual components of array or record types, knowledge about the type
mappng for array and record types is required. An array is stored as a sequential con-
catenation of all its components. Normally, pad bits are used to fill each component
to a byte, halfword, word or a multiple thereof, depending on the size and alignment
requirements of the components' subtype. This padding may be influenced using one
of :he PRAG.MfAs pack or byte_pack (cf. 916.1). The offset of an individual aray
coiponent is then obtained by multiplying the padded size of one array component by
the number of components stored in the ar-ray before it. This number may be deter-
mined f-om the number of elements for each dimension using the fact that the array
elements are stored row by row. (For unconstrained arrays the number of elements for
each dimension can be found in the descriptor, which is passed by reference.)

A record object is implemented as a concatenation of its components. Initially, loca-
tions are reserved for those components that have a component clause applied to them.
.hen locations for ail other components are reserved. .ny gaps large enough to hold

components without component clauses are filled, so in general the record components
are rearranged. Components in record variants are overlaid. The ordering mechanism
of the components within a record is in principle the same as that for ordering the
parameters in the parameter block.

Alsys Ada System - User Manual 285

Chapter 15 Appendix F

A re.cori -ay hold implementation-dependent components (cf. §16.4). For a record
component whose size depends on discriminants, a generated component holds the
offset of the record component within the record object. If a record type includes
variant parts there may be a generated component (cf. §16.4) holding the size of the
record object. This size component is allocated as the first component within the record
object if this location is not reserved by a component clause. Since the mapping of
record types is rather complex, record component clauses should be introduced for each
record component if an object of that type is to be passed to a non Ada subprogram
in order to ensure correct access to the components.

Sa~tng registers:

The last aspect of the calling conventions discussed here is that of saving registers. The
calling subprogram assumes that the values of the registers $ri.. $r22, $r24. .$r25
will be destroyed by the called subprogram, and therefore saves them of its own accord.
The stack pointer $r29 will have the same value after the call as before except for
functions returning unconstrained arrays. The stack limit register ($r23) will have the
same value after the call as before unless the stack of the main task was extended. If
the called subprogram wants to modify further registers it has to ensure -hat the old
values are restored upon return from the subprogram. Note that these register saving
conventions differ 'rom the C calling standard.

Finally we give the appropriate code sequences for the subprogram entry and for the
return, which both obey the rules stated above.

A subprogram for which PRAGMA interface (assembler .) is specified is - in
effect - called with the subprogram calling sequence

move $4 I assign IN parameters. if any
move $f0

a-. <subprogra.m add-ress>
nop

move $4 1 read OUT para=eers., if any

286 Alsys Ada System - User Manual

Appendix F Chapter 15

Thus the appropriate entry code sequence is

addiu SSz.$sp.-12
sw $O.O($sp)
sw $fp.4($sp)
sw $31.8($sp)
adciu $15. $sp. -<framesize-4>
addiu Sfp.$sp.4
s$t $1.$23.$15
bne $1.$O.LI
nop
jal _EXTSTCK I Storage check

move $24.$15
LI:

move $sp,$15
I The field at address -4($fp) is reserved
I for use by the Ada runtime system

The return code sequence is then

move $sp.$fp
1w $3 1.4 ($sp)
1W $fp.($sp)

jr $31
addiu $sp.$sp.8

15.1.4 Pragma Interface (C, ...)

The Alsys Ada System supports PRAGMA interface (C . .

With the help of this pragma and by obeying some rules (described below) subprogram

can be called which follow the C procedure calling standard. As the user must know
something about the internal calling conventions of the Alsys Ada System we recom-

mend reading 515.1.3 before reading this section and before using PRAGA interface

(C .. 2.

For each Ada subprogram for which

Alsys Ada System - User Manual 287

Chapter 15 Appendix F

PRAGMA interface (C, <ada_-name>);

is specified, a routine implementing the body of the subprogram <adaname> must be
provided, written in any language that obeys the C calling conventions - cf. ULTRIX
Documentation Set, Programmer's Manual, in particular:

- Saving registers
- Calling mechanism
- C stack frame format.

ULTRLX system calls or subroutines are allowed too.

The following parameter and result types are supported:

C Type Ada Type

int standard.integer
float standard.float
double standard. long-float
pointer system. address

The calling mechanism for all parameter types is call by value. The type address
may serve to implement all kinds of call by references: The user may build all kinds
of objects and pass their addresses to the C subprogram or ULTRIX system routine.

The name of the routine which implements the subprogram <ada.name> should be
specified using PR.AGMA external-nae (see §15.1.2), otherwise the Compiler will gen-
erate an internal name that leads to an unsolved reference during linking. These
generated names are prefixed with an underline; therefore the user should not define
names beginning with an underline.

The following example shows the intended usage of PRAGMA inter-face (C) to call a
-LTRDC system routine. The given procedure serves to open a file with a fixed name.

It is called in the body of the main program.

WITH system:

PROCEDUPE unix.caJl IS

read-=ode • CONSTANT integer :8#0#;

filenae :CNSTANT string : "/benl/test/fl" & ascii.nul:

288 Alsys Ada System - User Manual

Appendix F Chapter 15

PRAGMA resident (file_'ame);

ret.code integer;

use-error EXCEPTION;

FUNCTION uinix.open (path : system.address;
oflag : integer) RETURN1 integer;

PRAGMA interface (C. unix.open);
PR.AGMA external._name ("open". unixopen);

BEGIN
retcode := unix-open (file-name'address. read-mode);
IF ret-code - -1 THEN

RAISE use-error;
END IF;

END unix-call;

15.1.5 Pragma C-callable(...)

Like PRAGMA inter.ace (C, ...), PRAGMA c-callable enforces the use of C calling

conventions (cf. §15.1.4). The body of a subprogram for which

P&AGMA c.callable (<ada.name>);

is specified must still be provided in Ada. The subprogram can be called from Ada
without any restriction; the purpose of this pragma is to enable a C routine (called
from the Ada program) to call back an Ada subprogram.

The name of the subprogram which is to be called by C should be specified using the
PRACMA externalname (see §15.1.2), and this external name is to be used in the C
routine to call back the Ada subprogram. If no external name is specified, the Compiler
will generate an internal name that leads to an unsolved reference during linking.

The ?RAGMA c.callable is allowed at the place of a declarative item of a library
package body or library package specification and must apply to a subprogram declared
by an earlier declarative item of the same declarative part or package specification. The
pragma is also allowed for a library unit; in this case the pragma must appear after
the subprogram declaration, and before any subsequent compilation unit.

A c-callabie subprogram must not be a function returning an unconstrained array
type, nor must it have OUT or :N OUT parameters that are not passed by reference.

Alsys Ada System - User Manual 289

Chapter 15 Appendix F

Furthermore, it must not propagate any exception to its caller because the exception
cannot be handled correctly if the caller is a C routine. For this reason, a c.callable
Ada subprogram does not make a storage check upon subprogram entry (cf. §15.1.3).

If either of these restrictions is violated, the program is erroneous.

15.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this section.

15.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in the LRM. We
note here only the implementation-dependent aspects.

ADDRESS
If this attribute is applied to an object for which storage is allocated, it yields the
address of the first storage unit that is occupied by the object.
If it is applied to a subprogram or to a task, it yields the address of the entry
point of the subprogram or task body.
If it is applied to a task entry for which an address clause is given, it yields the
addre'-s given in the address clause.
For any other entity this attribute is not supported and will return the value
system. address._zero.

LDAGE
The image of a character other than a graphic character (cf. LRM(53.5.5(11)))
is the string obtained by replacing each italic character in the indication of the
character literal (given in the LRM(Annex C(13))) by the corresponding upper-
case character. For example, character image (nul) = "NUL".

AC=E -OVERFLOWS
Yields true for each real type or subtype.

290 Alsys Ada System - User Manual

Appendix F Chapter 15

MACHLESROUNDS
Yields true for each real type or subtype.

STORAGE-SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGESIZE, see §16.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORACESIZE given
for the access type, the attribute delivers the number of storage units currently
allocated for the collection. Note that dynamic collections are extended if needed.
If the collection manager (cf. §13.3.1) is used for a dynamic collection the attribute
delivers the number of storage units currently allocated for the collection. Note
that in this case the number of storage units currently allocated may be decreased
by release operations.

The value delivered by this attribute applied to a task type or task object is as
follows:
If a length specification (STORAGESIZE, see §16.2) has been given for the task
type, the attribute delivers that specified value; otherwise, the default value is
returned.

15.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

Aisys Ada System - User Manuai 291

Chapter 15 Appendix F

15.3 Specification of the Package SYSTEM

The package system as required in the LRM(§13.7) is reprinted here with all imple-
.aentatiun-dependent characteristics and extensions aflled in.

PACKAGE system IS

TYPE address IS PRIVATE;

address-zero : CONSTANT address;

FUNCTION "+" (left address: right integer) RETURN address;

FUNCTION " " (left integer; right : address) RETURN address:

FUNCTION "-" (left address; right integer) RETURN address;

FUNCTION "-" (left : address; right : address) RETURN integer;

FUNCTION sy-bolic-address (symbol : string) RETURN address;

SUBTYPE external-address IS STRING;

-- Eternal addresses use hexadeci=al notation with characters
-- '0'..'9.. 'a'..'f' and 'A'..'F'. For instance:

-- "80000000"

-- "8" represents the same address as "00000008"

.UNCTION convert-address (addr : external-address) RETURN address;
-- convert-address raises CONSTRAINTS?.ROR if the external
-- address addr is the empty string, contains characters other
-- hn '0'.. 9 'a. f. 'A'..'F' or if the resulting address
-- value c¢-inot be represented with 32 bits.

:--NCTON conver t-address (addr : address) REETJN external-address;
-- The resulting external address consists of exactly 8
-- characters '0'.. '9' . 'A . .

TYPE na=e :S (=i4s_ultri_)
syste=_name : CONSTANT name : = -ips-ultrix:

292 Alsys Ada System - User Manuai

Appendix F Chapter 15

storage-unit CONSTANT 8;

menory-size CONSTANT 2 ** 31;
mn-int :CONSTANT - 2 -- 31;

max-int : CONSTANT 2 "* 31 - 1;

maxdigits CONSTANT 15;

=ax_ antissa : CONSTANT : 31;

fine-delta CONSTANT 2.0 ** (-31);

tick CONSTANT 1.0 / 256.0;

SUBTYPE priority IS integer RANGE 0 .. 15;

TYPE in.errupt-number IS RANGE I .. 31;

inter'.ut.vector : ARRAY (interruptnumber) OF address;

-- The =apping of signal numbers to inter.-upt addresses is

-- defined by this array.

sighup CONSTANT 1;

sigint : CONSTANT 2;

sigquit CONSTANT 3;

sigill CONSTANT 4;
sigtrap CONSTANT 5;

s;giot : CONSTANT : 6;

sigabr: CONSTANT : sigiot;
s:gem: CONSTANT: 7;

s gfpe CONSTANT 8:

sigkill CONSTANT 9;

sigbus CONSTANT : 10;
sigsegv CONSTANT 11;
sigsys CONSTANT 12;

s:gpipe CONSTANT 13;

sigal- CONSTANT 14;

s4gte - CONSTANT " 15;
sigurg :CONSTANT 16;

s:gstop CONSTANT 17;
sig:st:o CONSTANT : 18;
sgconz: CONSTANT 19;

s:gchd :C ONSTANT 20;

sg-tin : CONSTANT = 1;
s:gtou CONSTAN =22;

s4gio C 1,SA N 23;
s3gcpu CONSTAN 24;

sig:sz CONSTANT 25;
s gvta-: CONSTANT 26

sqgprof CONSTAN

sigwinch CONSTAN 7 28;

A~sys Ada Svsem - User Manual 293

Chapter 15 Appendix F

siglost CONSTANT 2;
sigusrl CONSTANT :30;

sigusr2 :CONSTANT 31;

non-ada..error : EXCEPTION;

-non-ada..error is raised, if some event occurs which does not
-correspond to any situation covered by Ada. e.g.:

-- illegal instruction encountered
-- error during address translation
-- illegal address

TYPE exception-id IS NEW address;

no-exception-id :CONSTANT exception-id := NULL;

-Coding of the predefined exceptions:

FUNCTION constraint-error..id RETURN exception..id;
FUNCTION numericerro...id RE7JRN exception-id:
PtINC-ION' prog.a..err.or.id RLE-1URN exception2.d;
FJNC70N storageerror-4.d RETURMN exception.id;
FUNCTION tasking.error-.id RETUJRN exception-id:

FUNcT,:CN non-ada.errorJid RETURN exception-id;

- -NC:N statuserrorid REUNecpinJd
EUNCUN~derr.i RET.URN exception-.id;
yUNCT:ION aade-error-id RET7URN exception-.id:
-UNCT ON useerrorid RTR xeto..d
FUC~Ndeie.eroJd RETUN exception-.id;

F-LrNC 0 N ue..error..id RET-URN exceptionJ.4;
FUNCTION datacerorid RETUJRN exception2.d;
FUNCIIN layuterrorid RETLURN exception-J4d;

7'UNC7,:CN time-error-.id RET-uRN exception-.id;

no-error-.code CONSTANT : 0:

TYPE exception-infor~ation
IS RECORD

excp-id exception-.id:
-- identification of the excepti4on. T1he codings of
-the predefined exceptions are given above.

code-.addr :address;
-- Code address where the exception occured. Depending

294 Alsys Ada System - User Manuai

Appendix F Chapter 15

-- on the kind of the exception it may be the address of
-- the instruction which caused the exception, or it
-- may be the address of the instruction which would
-- have been executed if the exception had not occured.

error-code integer:
END RECORD;

PROCEDURE getexception-information
(excp-info : OUT exception.information);

-- The subprogram get.exception.information must only be called
-- from within an exception handler BEFORE ANY OTHER EXCEPTION
-- IS RAISED. It then returns the information record about the
-- actually handled exception.
-- Otherwise, its result is undefined.

PROCEDURE raise-exceptionid
(excp.id : exception.id);

PROCEDURE raiseexception.info
(excp.info : exception-information);

-- The subprogram raise-exception-id raises the exception
-- given as parameter. It corresponds to the RAISE statement.

-- The subprogram raise-exception-info raises the exception
-- described by the information record supplied as parameter.
-- In addition to the subprogram raise-exception-id it allows to
-- explicitly define all components of the exception inforation
-- record.

-- IT IS INTENDED THAT BOTH SUBPROGRAMS ARE USED ONLY WHEN
-- INTERFACING WITH THE OPERATING SYSTEM.

TYPE exit-code IS NEW integer:

error CONSTANT exit-code
success CONSTANT exit-code 0;

eri.o : integer;
FOR errno USE AT syhbolic.address ("errno");

-- Allows access to the errno set by the last system call. C. or
-- assembler routine call that was made on behalf of the calling
-- task.

PROCEDURE set-exit-code (val : exit-code);
-- Specifies the exit code which is returned to the

Aisys Ada System - User fanual 295

Chapter 15 Appendix F

-- operating system if the Ada program terminates normally.
-- The default exit code is 'success'. If the program is
-- abandoned because of an exception. the exit code is
-- 'error'.

PRIVATE

-- private declarations

END system;

15.4 Restrictions on Representation Clauses

See Chapter 16 of this manual.

15.5 Conventions for Implementation-Generated Names

There are implementation generated components but these have no names. (cf. §16.4
of this manual).

15.6 Expressions in Address Clauses

See §16.5 of this manual.

15.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kinds of source and
target types with the restriction that the target type must not be an unconstrained
aray type. The result value of the unchecked conversion is unpredictable, if

targettype 'SIZE > sourcetype'SIZE

296 Alsys Ada System - User Manual

Appendix F Chapter 15

15.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defi.ned
in the LRM(Chapter 14) are repcrted in Chapter 17 of this manual.

15.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

15.10 Unchecked Storage Deallocation

The generic procedure uncheckeddeallocation is provided; the effect of calling an
instance of this procedure is as described in the LRM(§13.10.1).

The implementation also provides an implementation-defined package collection-
manager, which has advantages over unchecked deallocation in some applications (cf.
§13.3.1).

Unchecked deallocation and operations of the collection__manager can be combined
as follows:

collection...anager.reset can be applied to a collection on which unchecked
deallocation has also been used. The effect is that storage of all objects of the
collection is reclaimed.

" After the irst unchecked-deallocation (release) on a collection, all following
calls of release (uncheckeddeallocation) until the next reset have no effect,
i.e. storage is not reclaimed.

" after a reset a collection can be managed by =ark and release (resp. unchecked-
deallocation) with the normal effect even if it was managed by unchecked
deallocation (resp. mark and release) before the reset.

15.11 Machine Code Insertions

A package =achine-code is not provided and machine code insertions are not sup-
ported.

Aisys Ada System - User Manual 297

Chapter 15 Appendix F

15.12 Numeric Error

The prede5.ned exception mumeric-.error is never raised implicitly by any predefined
operation; instead the predefinedI exception constraint-error is raised.

298 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

16 Appendix F: Representation Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK
As stipulated in the LR.M(§13.1), this pragma may be given for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized. For
components whose type is an array or record type PRAGMA pack has no effect on

the mapping of the component type. For all other component types the Compiler
will choose a representation for the component type that needs minimal storage
space (packing down to the bit level). Thus the components of a packed data
structure will in general not start at storage unit boundaries.

BYT_PACK

This is an implementation-defined pragma which takes the same argument as
the predefined language PRAGMA pack and is allowed at the same positions. For

components whose type is an array or record type PUR.ACA byvte.pack has no
effect on the mapping of the component type. For all other component types the

Compiler will try to choose a more compact representation for the component type.
But in contrast to PRAGMA pack all components of a packed data structure will
start at storage unit boundaries and the size of the components will be a multiple

of svste=. storageunit. Thus, ?%AGMA byte ..pack does not effect packing down
to the bit level (for this see PRAGMA pack).

Alsys Ada Systen - User Manual 299

Chapter 16 Appendix F: Representation Clauses

16.2 Length Clauses

S IZ E
for all integer, fixed point and enumeration types the value must be <= 32;
for f -at typcs the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
for iong-f.loat types the value must be = 64 (this is the amount of storage which

is associated with these types anyway);
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGESIZE
Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a

length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K (- 2K) bytes if no
length clause is given (cf. Chapter 14). If the task is to be allotted either more or
less space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause. Whether

a length clause is given or not, an additional 2K bytes are allotted for runtime
activities and the total space allotted is not extended dynamically at runtime.

S MALL
there is no implementation-dependent restriction. Any specification for SMALL
that is allowed by the LRIM can be given. In particular those values for SMALL are

aiso supported which are not a power of two.

16.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest :nteger type which is supported; this is the type integer defined in package
s-azidard.

300 Alsys Ada System - User Mlanual

Appendix F: Representation Clauses Chapter 16

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

* If the record type includes variant parts and the difference between the maximum
and the minimum sizes of the variant is greater than 32 bytes, and, in addition,
if it has either more than one discriminant or else the only discriminant may
hold more than 256 different values, the generated component holds the size of
the record object. (If the second condition is not fulfilled, the number of bits
allocated for any object of the record type will be the value delivered by the size
attribute applied to the record type.)

• If the record type includes array or record components whose sizes depend on dis-
crimiants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. LRM(§13.4(8))) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared by an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler
listing.

Ilf an address clause is given for an object, the storage occupied by the object starts at
'he given address. Address clauses for single entries are described in §16.5.1.

Aisys Ada System - User Manuai 301

Chapter 16 Appendix F: Representation Clauses

16.5.1 Interrupts

Under ULTRDC it is not possible to handle hardware interrupts directly within the Ada

program; all hardware interrupts are handled by the operating system. In ULTRDC,
asynchronous events are dealt with by signals (cf. sigvec(2)). In the remainder of this

section the terms signal and interrupt should be regarded as synonyms.

An address clause for an entry associates the entry with a signal. When a signal

occurs, a signal catching handler, provided by the Ada runtime system, initiates the

entry call.

By this mechanism, an interrupt acts as an entry call to that task; such an entry is

called an interrupt entry.

The interrupt is mapped to an ordinary entry call. The entry may also be called by an

Ada entry call statemeat. However, it is assumed that when an interrupt occurs there

is no entry call waiting in the entry queue. Otherwise, the program is erroneous and

behaves in the following way:

* f an entry call stemming from an interrupt is already queued, this previous entry

call is lost.

" The entry call stemming from the interrupt is inserted into the front of the entry

queue, so that it is handled before any entry call stemming from an Ada entry

call statement.

16.5.1.1 Association between Entry and Interrupt

The association between an entry and an interrupt is achieved via an interrupt number

(type system. Interrupt.number), the range of interrupt numbers being 1 .. 31 (this

means that 31 single entries can act as interrupt entries). The meaning of the interrupt

(signal) numbers is as defined in sigvec(2.). A single parameterless entry of a task can be

associated with an interrupt by an address clause (the Compiler does not check these

conventions). Since an address value must be given in the address clause, the interrupt

number has to be converted into type system. address. The array system. interrupt-

vector is provided for this purpose; it is indexed by an interrupt number to get the

corresponding address.

The following example associates the entry ir with signal SIGINT.

302 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

TASK handler IS

ENTRY ir;

FOR ir USE AT system.interrupt-vector (system.sigint):
END:

The task body contains ordinary accept statements for the entries.

16.5.1.2 Important Implementation Information

There are some important facts which the user of interrupt entries should know about
the implementation. First of all, there are some signals which the user should not
use within address clauses for entries. These signals are sig-pe, sigsegv, sigbus,
sigill, sigt6rap and sigalrm; they are used by the Ada Runtime System to implement
exception handling and delay statements (sigalrm). Programs containing address
clauses for entries with these interrapt numbers are erroneous.

Moreover, the Debug Runtime System establishes a signal catching handler for the
signal sigusrl.; hence, during debugging of any program containing an address clause
for an entry with this interrupt number, the break-in and connect commands (described
in §8.7.2 and §8.5.1 respectively) can.not be used as described.

In the absence of address clauses for entries, the Ada Runtime System establishes signal
catching handlers only for the signals mentioned above, so all other signals will lead
to program abortion as specified in the ULTRIX documentation.

A signal catching handler for a specific signal is established when a task which has an
interrupt entry for this signal is activated. The signal catching handler is deactivated
and the previous handler is restored when the task has been completed. Several tasks
with interrupt entries for the same signal may exist in parallel in this case the signal
catching handler is established when the first of these tasks is activated, and deactivated
when the last of these tasks has been completed.

16.6 Change of Representation

The implementation places no additional restrictions on changes of representaticu.

Alsys Ada System - User Manual 303

Chapter 16 Appendix F: Representation Clauses

3104 Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

17 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of the LRM and provide
notes for the use of the featureb described in each section.

17.1 External Files and File Objects

An external file is identified by a string that denotes a UTLTRDC file name. It may
consist of up to 1023 characters.

The form string specified for external files is described in §17.2.1.1.

17.2 Sequential and Direct Files

Sequential and direct files are ordinary files which are interpreted to be formatted with
records of ixed or variable length. Each element of the file is stored in one record.

In case of a ixed record length each file element has the same size, which may be
specified by a form parameter (see 517.2.1.1); if none is specified, it is determined to
be (ciement_:ype'SIZE , system.9tog ce_unt± - 1) / system.storage-unit.
In contrast, if a variable record length is chosen, the size of each file element may
be different. Each file element is written with its actual length. When reading a file
element its size is determined as follows:

If an object of the element-:_ype has a size component (see §16.4) the element
size is determined by first reading the corresponding size component from the file.

S If eleen-_:vrpe is constrained, the size is the minimal number of bytes needed
to hold a constrained object of that type.

* In all other cases, the size of the current file element is determined by the size of
the variable given for reading.

17.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in the LR'J.

Alsys Ada System - User Manual 305

Chapter 17 Appendix F: Input-Output

17.2.1.1 The NA NE and FORM Parameters

The name parameter must be a ULTRIX file name. The function name will return a
path name string which is the complete file name of the file opened or created. Each
component of the file name (separated by "/") is truncated to 255 characters. Upper
and lower case letters within the file name string are distinguished.

The syntax of the form parameter string is defined by:

for'..paraneter ::= [form-specification { , for--specification }]

form-specification ::= keyword E => value 2

keyword :: identifier

value ::= identifier I numeric-literal

For identifier and numeric -iteral see LR.M(Appendix E). Only an integer literal
is allowed as numericjliteral (see LRIM(§2.4)). In an identifier or numeric
literal, upper and lower case leaters are not distinguished.

In the following, the form specifications which are allowed for all files are described.

,ODE => nuzieric-lteral

This value specifies the access permission of an external file; it only has an effect in
a create operation and is ignored in an open. Access -ights can be specified for the
owner of the fle, the members of a group, and for all other users. nueric-literal
has to be a three digit octal number.

The access permission is then interpreted as follows:

8#400# read access by owner
8#200# write access by owner
8#I00# execute access by owner
8#040# read access by group

write/execute access by group, analogously
8#004# read access by all others

write/execute access by others, analogously

306 Alsys Ada System - User Manuai

Appendix F: nput-Output Chapter 17

Each combination of the values specified above is possible. The default value is
8#,666#-.

The definitive access permission is then determined by the ULTRIX System. It will be
the specified value for MODE, except that no access right prohibited by the process's
file mode creation mask (which may be set by the ULTRIX u=ask command, cf. sh(1)
and umask(2)) is granted. In other words, the value of each "digit" in the process's
file mode creation mask is subtrazted from the corresponding "digit" of the specified
mode. For example, a file mode creation mask of 8#022# removes group and others
write permission (i.e. the default mode 8#666# would become mode 80644#).

The following form specification is allowed for sequential, direct and text files:

SYNCHIR => OFF I ON I ON-WAIT

It allows reader/writer synchronization of parallel file accesses by different processes,
such that only one process may write to a file (and no other process may read from
or write to the same file in parallel) or multiple processes may read a file in parallel.
This synchronization is achieved through the system call fcntl(2).
By default parallel accesses are not synchronized (SYNCHRO => OFF).
If the form specification SYNCHRO => O is given, USE-ERROR is raised when the
access is not possible (because other processes are accessing the fie when write access is
requested, or because another process is writing the file when read access is requested).
If the form specification SYNCHRO => ON-WAIT is given, the process is blocked when the
access is not possible for one of the above reasons. When the access becomes possible,
the process is unblocked. USE-ERROR is not raised with SYNCHRO => ON-WAIT.

The followLng form spec.fication is allowed for sequential and direct files:

PRZcD._S:Z: => nu=ericlitera1

This value specifies the size of one element on the file (record size) in bytes. This form
specification is only allowed for files with fixed record format. If the value is specified
for an existing file it must ag-ree with the value of the external file.

By default, (element-:ype'SIZE- system.5torageuntt - 1)/systern.storage-unt will be chosen
as record size, if the evaluation of this expression does not raise an exception. In this
case, the attempt to create or open a file will raise USE-ERROR.

If a fxed record format is used, all objects written to a file which are shorter than the
record size are filed up. The content of this extended record area is undefined. An
attempt to write an element which is larger than the specified record size will result
in the exception use-error being raised. This can only happen if the record size is
specified explicitly.

Alsys Ada System - User Manual 307

Chapter 17 Appendix F: Input-Output

17.2.1.2 Sequential Files

A sequential file is represented by an ordinary file that is interpreted to be formatted
with either fixed-length or variable-length records (this may be specified by the form
parameter).

If a fixed record format is used, all objects written to a file which are shorter than
the maximum record size are filled up. The content of this extended record area is
undefined.

RECORD-FORMAT => VARIABLE I FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

The default is variable record size. This means that each file element is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

APPEND => FALSE I TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

7RUNCATE => FALSE I TRUE

If :he form specification 7RUNCATE => 7RUE is given for an existing file in an open for
an output file, then the file length is truncated to 0, i.e. the previous contents of the
file are deleted. Otherwise the file is rewritten, i.e. if the amount of data written is
less than the file size, data previously written will remain at the end of the file. This
form specification is only allowed for an output file; it only has an effect in an open
operation and is ignored in a create. By default the value TRUE is chosen.

308 Alsys Ada System - User Manual

AppendLx F: Input-Output Chapter 17

The default form string for a sequential file is

"REC:EUFORM AT => VARIABLE, APPEND => FALSE. " &
"7RUNCA7E => TRUE, MODE => 8#666# " k

"SYNCHRO => OFF"

17.2.1.3 Direct Files

The implementation dependent type count defined in the package specification of
direct-_o has an upper bound of:

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

A direct file is represented by an ordinary file that is interpreted to be formatted
with records of ixed length. If not explicitly specified, the record size is equal to
(eene:_...ype'SIZE - system.storage-unit - 1) / system.sor age -unit.

The default form string for a direct file is :

"P EC0RD_S7ZE => ..., MODE => 8#666#, SYNCHRO => OFF"

17.3 Text Input-Output

Text files are sequential character files.

Each tine of a text file consists of a sequence of characters terminated by a line termi-
nator, i.e. an ASCIILLF character.

A page terminator is represented by an ASCI.FF character and is always preceded by
a ine terminator.

A die terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last character of the file.

Output to a file and to a terminal differ in the following way: If the output refers to
a terminal it is unbuffered, which means that each write request in an Ada program

Alsys Ada System - User Manual 309

Chapter 17 Appendix F: Input-Output

will appear on the terminal immediately. Output to other files is buffered, i.e several

characters are saved up and written as a block.

Terminal input is always processed in units of lines.

17.3.1 File Management

Besides the mode specification (cf. §17.2.1.1) the following form specification is allowed:

APPEND => FALSE I TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the

existing file is extended and not rewritten. This form specification is only allowed for

an output file; it only has an effect in an open operation and is ignored in a create. By

default the value FALSE is chosen.

The default form string for a text file is

"APPEND => FALSE. MODE => 8#666#. SYNCERO => OFF"

17.3.2 Default Input and Output Files

The standard input (resp. output) file is associated with the standard ULT R files
stdin resp. stdout.

Writing to the ULTR.LX standard error file stderr may be done by using the package

*ex-._i4o_extension (cf. 513.3.4).

310 Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

17.3.3 Implementation-Defined Types

The implementation-dependent types count and field defined in the package specifi-
cation of textio have the following upper bounds :

COUNT'LAST a 2-147-483-647 (- INTECF-.'LAST)

FIELD'LAST a 512

17.4 Exceptions in Input-Output

For each of name-error, use.error, device-error and data-error we list the condi-
tions under which that exception can be raised. The conditions under which the other

exceptions declared in the package io.exceptions can be raised are as described in

LRM(§14.4).

NAME.ERROR

• in an open operation, if the specified file does not exist;

* if the name parameter in a call of the create or open procedure is not a legal
ULTRIX file name string; i.e, if a component of the path prefix is not a directory.

USE-ERROR

whenever an error occurred during an operation of the underlying ULTREC system.

This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a capacity limit is exceeded
or for similar reasons;

if the function na-me is applied to a temporary file or to the standard input or
output file;

if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size determined when the file was opened
(cf. §17.2.1.1); in general it is only guaranteed that a file which is created by an
Ada program may be reopened and read successfully by another program if the

file types and the form strings are the same;

in a create or open operation for a file with fixed record format (direct file or

sequential file with form parameter RECCRD.FORMAT => FIXFl) if no record size is

specified and the evaluation of the size of the element type will raise an exception.

Alsys Ada System - User Manual 311

Chapter 17 Appendix F: Input-Output

(For example, if direct io or sequential-io is instantiated with an unconstrained
array type.)

if a given for- parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§17.2-3 is not fulfilled;

in a create or open operation with form specification SYNCHRO -> ON when the
requested access is currently not possible; see §17.2.1.1 for the exact conditions.

DEVICEERROR
is never raised. Instead of this exception the exception use.error is raised when-
ever an error occurred during an operation of the underlying ULTRIX system.

DATAEPRROR
the conditions under which data-error is raised by tex't-_io are laid down in the
LRNi.

In general, the exception data-error is not usually raised by the procedure read
of sequenial-io and directio if the element read is not a legal value of the
eiement type because there is no information about the file type or form strings
specified when the file was created.
An illegal value may appear if the package sequential.io or directio was
instantiated with a different elementtype or if a different form.parameter string
was specified when creating the file. It may also appear if reading a file element
is done with a constrained object and the constraint of the file element does not
agree with the constraint of the object.
If -he e!ement on the file is not a legal value of the eiement type the effect of
reading s undefined. An access to the object that holds the element after reading
may cause a constrained.error, storage.error or non.-ada-error.

17.5 Low Level input-Output

We give here thc: si-ec'-cation of the package lowlevel-io:

PAC:KACE low-level.io :S

7'Y ? A. devce_t3"pe :S (null1-device);

7?E da:a_ype IS
.=3RD

NULL;

312 Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

END RECORD;

PROCEDURE send-control (device device-type:
data : IN OUT datatype):

PROCEDURE receive.control (device deviceType;
data IN OUT datatype);

END low-level-Ao:

Note that the enumeration type devicetype has only one enumeration value, null.
device; thus the procedures send-control and receive-control can be called, bur
send.control will have no effect on any physical device and the value of the actual
parameter data after a call of receive -control will have no physical significance.

Alsys Ada System - Use: Manual 313

Chapter 17 Appendix F: Input-Output

314 Alsys Ada System - User Manual

