~
T
R:DﬁDT aYalad! llll:leATlf\N PAGE Form Approved
OPM No. 0704-0188
Pubkc reporting burden A D— A 242 7 8 O wding the Uma for reviewing INEITuCtions, ssarching exmsting data sOWCes gathenng and mantaining the data
needed. and revewng ny othef aspect of ths colb) of inc ion, including suggestions for reducing this burden. to Washingion
Headquaners Service. ! l A f | Rk ay, Sute 1204, Arlington, VA 22202-4302. and to the Oftice of Information and Reguiatory Aftairs, Office of
i IRBTI ————
1. AGENCY USE ik ' ' 3. REPORT TYPE AND DATES COVERED

Final: 28 Jun 1991 to 01 Jun 1993

1
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Alsys,, AlsyCOMP_057, Version 1.83,
DECstation 3100 under ULTR!X Version 4.,0 (Host & Target), 91062511.11193

6. AUTHOR(S)

IABG-AVF

Ottobrunn, Federal Republic of Germany

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IABG-AVF, Industrieanlagen-Betriebsgeselschaft REPORT NUMBER
IABG-VSR 097

Dept. SZT/ Einsteinstrasse 20

D-8012 Ottobrunn

FEDERAL REPUBLIC OF GERMANY
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

11 SUPPLEMENTARY NOTES

Mo sotboes e 6ora aliy gé vodes bedoed e pLv Adec Claa g

Nowee by nlgqy
123 DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)
Alsys,. AlsyCOMP_057, Version 1 83, Ottobrunn, Germany, DECstation 3100 under ULTRIX Version 4.0 (Host & Target),

ACVC 1.11.
TG
Qyoosmf] 91-15333
G § AR
T4 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

16. PRICE CODE

17 SEGURIY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

9]. 1 1 O 8 () 6 2 Prescribed by ANS! Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-06-25.

Corpiler Name and Version: AlsyCOMP_057 Version 1.83
Host Computer System: DECstation 3100 under ULTRIX Version 4.0

Target Computer System: same as Host

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91062511.11193 is awarded to Alsys. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

Jedd Te AP

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W~8012 Ottobrunn
Germany

d & Software Engineering Division
Institute for fense Analyses

Alexandria VA 722311 ‘~fccessicn For .
i e e
i NTT S manr 3}/
DYIC T ~
Urivs ! i f‘
T i, NS)
Ada Joint Program Office — T
Dr. John Solomond, Director) =
Department of Defense P
Washington DC 20301 y”pjﬂiri’ﬁﬁlau} :
A N =
: s
Dist Lo il
\P
oy A/ : }

AVF Control Number:
28 June 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 91062511.11193
Alsys
AlsyCOMP 057 Version 1.83
DECstation 3100 under ULTRIX Version 4.0
Host and Target

== based on TEMPLATE Version 91-05-08 ==

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn
Germany

IABG-VSR 087

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-06-25.

Compiler Name and Version: AlsyCOMP_ 057 Version 1.83
Host Computer System: DECstation 3100 under ULTRIX Version 4.0

Target Computer System: same as Host

See Section 3.1 for any additional information about the testing
environment .

As a result of this validation effort, Validation Certificate
#910625I11.11193 is awarded to Alsys. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

Jodd T LD

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

ger & Software Engineering Division
y fense Analyses
Alexandria VAY 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCZE

The Zollowing declaraticon of conformance was supplied by the customer.

Declarzation ¢of Confoczance

A .
Ada Validatiomr Facility: [ABG mbH Abt. ITE

1.11

ACVC Version:

Ada Ioplementation:

Ada Compiler Name and Version: AlsyCOMP 057 Version 1.83

DECstation 3100 Qnder ULTRIX Version 4.0

Eost Computer System:

Target Camputer SYS:QB:DECstatlon 3100 under ULTRIX Version 4.0

Declaration:

[T/we] the undersigned, declare that ([I/we] have no
knowledge of deliberate deviacions from the Adx Language
Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implemenration

listed abova.
/)') i
f 25.06.91

Cusydther /Sidnatuze Date
Or, /beorg Winterstein

g

43]

+3

Y]
by

~rw e

3

"

14}
s}

[

[8]

W

W Ly ()

S TS I b I 2]

[S 3 o]
LV 30 I)

tn

@]

[SVIE 0 2

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES

ACVC TEST CLASSES
DEFINITICN OF TERMS
IMPLEMENTATION DEPENDENCIES
NITHDRAWN TESTS
INAPTLICABLE TESTS

TEST MODIFICATIONS
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION

MACRC PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENCIX F OF THE Ada STANDARD

b
|

bbb pod
WHrPI

[NSIN NI N
1
R

w W W
|
[N

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Vvalidaticen Procedures ([Pro90] aga.nst the Ada Standard [Ada83] using the
ent Ada Compiler Validation Capability (ACVC). This Validation Summary
rt (VSR) gives an account of the testing of this Ada implementation.
any technical terms used in this report, the reader is referred to

6o 2 detailed descripticn of the ACVC may be found in the current
User’s Guide [UG89].

Z.. USE CF THIS VALIDATION SUMMARY REPORT

Censistent with the national laws of the originating country, the Ada
Cerzification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the ™Freedom of
Infcrmation Act™ (5 U.S.C. #552). The results of this validation apply

the computers, operating systems, and ccmpiler versions identified

report.,

LY
O

ations represented on the signature page of this repcrt do not
r warrant that all statements set forth in this report are
and complete, or that the subject implementation has no
mities to the Ada Standard cother than those presented. Copies of
re available to the public from the AVF which perfcrmed this
from:

[S BT
e}
9

r
O N

7/ 81

~ ~
. o]
- -
a r

e
ez
cc
onm

\1]

-

th (t D 0

oINS I]

O
e}

(L]
LA
1]

i
a
r

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

ding this report or the validaticon test results should be
AVF which perf ormed this validaticn or tc:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

BRlexandria VA 22311-1772

Z
H]

RODUC

-3
4

ON

i

erence Manual for the Ada Programming Language,
I/MIL-STD-1815A, February 1983 and ISC 8652-1987.

er Validation Procedures, Version 2.1, Ada Jcint
fice, Pugusc 1990.

yoa
Vo)
©
v8)

3£%] AZa Zompiler Validation Capability User’s Guide, 21 June

C:r:;iar:e cf Ada implementations is tested by means of the ACVC. The ACVC
o) tion of test programs structured into six test classes:

nd L. The first letter of a test name identifies the class

gs Class A, C, D, and E tests are executable. <Class B

s are expected tc produce errors at compile time and link

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK_FILE are used for this purpose. The package REPORT
a

lsc provides a set of identity functions used to defeat some compiler
cimizations allowed by the Ada Standard that would circumvent a test
e::ive. The package SPPRT13 is used by many tests for Chapter 12 ¢f the
Ada Standard. The procedure CHECK _FILE is used to check the contents of
text f£iles written by sore cof the Class C tests for Chapter 14 of the Ada
S-wandard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
Z tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations cf
~ne Ada Standard are detected. Some of the class B tests contain legal Ada
ccde which must not be flagged illegal by the compiler. This behavior i
alsc verified.

s L tests check that an Ada implementation correctly detects violation
ne Ada Standard invelving multiple, separately compiled units. Errors
expected at link time, and execution is attempted.

+

In scme tests of the ACVC, certain macro strings have to be replaced by
irplementaticn-specific values -- for example, the largest integer. A list
cf <ne values used for this implementation is provided in Appendix A. In
additicn o these aqb*,lpated test modifications, additional changes may be
rezulred =c remcve unforeseen conflicts between the tests and
implementation-dependent characteristics. The modificaticns required for
*his implementatiocn are described in section 2.3.

[
t
w

INTRODUCTICN

or each Ada implementation, a customized test suite is produced by the
VF. This customization consists of making the modifications described

n the preceding paragraph, removing withdrawn tests (see section 2.1) and,
cssibly scme inapplicable tests (see Section 2.2 and [UG89]).

3 obewom

T

(X

n order to pass an ACVC an Ada implementation must process each test of
~he customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

xda Comgpiler The scftware and any needed hardware that have tc be added
te a given host and target computer system to allow
transformation of Ada programs into executable form and

execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,

validation consisting of the test suite, the support programs, the ACVC
Capabilicy user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its

Implementation target computer system.

Ada Jeoint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Jffice (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Crganization

(AVC)

Ccrmpliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functicnal unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all cr part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form,

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Sofrware that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The follewing tests have been withdrawn by the AVO. The rationale for
withdrawing each test 1s available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C B28006C C34006D C355081 C35508J C35508M
C35508N C35702a €35702B B41308B €43004A C45114a
C45346A C45612a C45612B Cc45612C C45651A c46022A
B49008A B49008B R74006A C74308a B83022B B83022H
B83025B B83025D cg83026A BB83026B C83041A BB5001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A cc1223a BC1l226A . CC1226B BC3009B
BD1B02B BD1BO6A AD1BOSA BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A Ch4022A CD4022D CD4024B CD4024cC CD4024D
CD4031a CD40s51D CDS511iAa CD7004C ED7005D CD7005E
AD7006a CD7006E AD7201A AD72C1E CD7204B AD7206A
BD80C2A " BDB8004C CD9005A CD9005B CDA201E CE21071I
CE2117A CEZ2117B CE2119B CE2205B CEZ2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812Aa CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test 1is inapplicable if it contains test objectives which are irrelevant
for a given Ada impliementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commenly referenced in the format Al-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

9]
1
y—

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) (*) C35705L..Y (l4 tests)
C38706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

(*) C24113W..Y (3 tests) contain lines of length arcater than 255
characters whizh are not supported oy this implementation.

The following 20 tests check for the predefined type LONG_INTEGER: for
this implementation, there is no such type:

C35404cC C45231C €45304C C45411C c45412C

c45502C C45503C 45504C C45504F C45611C

C45613C C45614C €45631C C45632C B52004D

CSSBO7A B55B09C B86001W C86006C CC7101F

C35713B, C45423B, BB6001T, and C86006H check for the predefined type
SHORT_FLOAT; for this implementation, there is no such type.

C35713D and 3860012 check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; <for this
implementation, there 1is no such type.

C41401A checks that CONSTRAINT_ERRCR is raised upon the evaluation of
various attribute prefixes; this implementation derives the attribute
values from the subtype of the prefix at compilation time, and thus does
not evaluate the prefix or raise the exception. (See Section 2.3.)

C4553IM..P and C45532M..P (8 tests) check fixed-point operations for
types that regquire a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINL CVERFLOWS is FALSE for floating point types and the results of
various floating-pcint operations lie outside the range of the base
*ype; for this implementation, MACHINE O’ERFLOWS is TRUE.

B860ClY uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is nc such cype.

C96005B uses values of type DURATION’s base type that are outside the
range of type CLCURATION; for this implementation, the ranges are the
same.

b]

IS

C09C <checks whether a length clause can specify a non-default size
a

cD
z floating-pcint type; this implementation does not support such

[

ilzes.

IMPLEMENTATION DEPENDENCIES

CDZAB4A, CDZ2AB4E, CD2AB4I..J (2 tests), and CD2AB840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

CD2B1SB checks that STORAGE_ERROR is raised when the storage size
specified for a collection is too small to hold a single value of the
designated <type; this implementation allocates more space than was
specified by the length clause, as allowed by AI-00S58.

BDBOO1A, BDB0C3A, BDB8CO4A..B (2 tests), and ADBOl1A use machine code
irsertions; this implementation provides no package MACHINE_CODE.

The tests listed in the following table check that USE_ERROR is raised
if <the given file operations are not supported for the given
combination of mode and access method; this implementation supports
chese operations.

Test File Operation Mode File Access Method
CE21CZD CREATE IN_FILE SEQUENTIAL_IO
CE21C2E CREAT OUT_FILE SEQUENTIAL_IO
CE21Q02F CREAT INOUT_FILE DIRECT_IO
CE21022 CREATE IN_FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL_IO
CE21220 RESET IN_FILE SEQUENTIAL_TIO
CE2102P OPEN OUT_FILE SEQUENTIAL_IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE210ZR OPEN INOUT_FILE DIRECT_IO
CE2102sS RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = = -—=-==-=- TEXT_IC
CE3102Z CREATE CUT_FILE TEXT_IO
CE31027 OPEN IN_FILE TEXT_IO
CE3102K OPEN OQUT_FILE TEXT_IO

CE2107C..D (2 <tests), CE2107H, and CE2107L apply function NAME to
temporary Sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file:
USE_ERROR 1s raised because temporary files have nc name.

CE2108B, <CE2108D, and CE3112B use the names of temporary sequential,
direct, and text files that were created in other tests in order to
check that the temporary files are not accessible after the completion
of these tests; for this implementation, temporary files have no name.

CE2203A checks <that WRITE raises USE_ERROR if the capacity of an
external sequential £file 1is exceeded; this implementation cannot
restrict f£ile capacity.

8]

IMPLEMENTATION DEPENDENCIES

EEZ2401D uses instantiations of DIRECT_IC with unconstrained array and
record types; this implementation raises USE_ERROR on the attempt to
create a file of such types.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded:; this implementation cannot restrict
file capacity.

CE311l1B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was written
to the other, which is assumed to be immediately available; this
implementation buffers output. (See section 2.3.)

CE3202A expects that function NAME can be applied to the standard
input and output files; in this implementation these files have no
names, and USE_ERROR is raised. (See section 2.3.)

CE3304A checks that SET_LINE_LENGTH and SET_PAGE_LENGTH raise
USE_ERRCR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT _ERROR when the value of the
page number exceeds COUNT’'LAST; for this implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

TEST MCODIFICATIONS
Modifications (see section 1.3) were required for 23 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B2400SA B29001A B38003A B3800%A B38009SB
BY91C0C1H BC2001D BC2001E BC3204B BC3205B BC3205D

C34007P and C34007S were graded passed by Evaluation Modification as
directed by the AVO. These tests include a check that the evaluation of
the selector "all" raises CONSTRAINT ERROR when the value of the object is
null. This implementation determines the result of the equality tests at
iines 207 and 223, respectively, based on the subtype of the object: thus,
the selector is not evaluated and no exception is raised, as allowed by LRM
11.6(7). The tests were graded passed given that their only output from
Report.Failed was the message "NO EXCEPTION FOR NULL.ALL - 2",

C41401A was graded inapplicable by Evaluation Modification as directed by
the AVC. This test checks that the evaluation of attribute prefixes that
dencte variables of an access type raises CONSTRAINT_ERROR when the value
cf the variable is null and the attribute is appropriate for an array or
~ask type. This implementation derives the array attribute values from the
subtype; thus, the prefix is not evaluated and no exception is raised, as
a.iowed by LRM 11.6(7), for the checks at lines 77, 87, 97, 108, 121, 131,
14, 152, 163, & 175.

IMPLEMENTATION DEPENDENCIES

C64103A was graded passed by evaluation modification as directed by the
AVO. This implementation optimizes the code at compile time on lines 91
and 119, thus avoiding the operation which would raise CONSTRAINT_ERROR.
The following REPORT.FAILED mesages were produced by this test

EXCEPTION NOT RAISED BEFORE CALL -P2 (&)
EXCEPTION NOT RAISED BEFORE CALL -P3 (A)

The AVQO ruled that this is acceptable behavior.

BC3204C..D and BC3205C..D (4 tests) were graded passed by Evaluation
Modification as directed by the AVCO. These tests are expected to produce
compilation errors, but this implementation compiles the units without
error; all errors are detected at link time. This behavior is allowed by
AI-00256, as the units are illegal only with respect to units that they do
not depend on.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification
as directed by the AVO. The tests assume that output from one internal
£ile is unbuffered and may be immediately read by another file that
shares the same external file. This implementation raises END_ERROR on
the attempts to read at lines 87 and 101, respectively.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file, which
in this implementation has no name; USE_ERROR is raised but not handled, so
the test is aborted. The AVO ruled that this behavior is acceptable
pending any resolution of the issue by the ARG.

CHAPTER 3

PROCESSING INFORMATION

2.1 TESTING ENVIRCNMENT

The Acda implementation tested in this validation effort is described
adeguately by the information given in the initial pages of this report.

For a peint of contact in Germany for technical and sales information abcut
~his Ada implementation system, See:

Alsys GmbH & Co. KG
Am Ruppurrer SchloB 7
W-7500 Karlsruhe 51
Germany

Tel. +49 721 883025

ry

W
v oo
[0 I3}

a point of contact outside Germany fcr technical and sales information
ut this Ada implementation system, see:

Alsys Inc.

67 South Bedford Str.
Burlington MA
01803~5152

Uusa

Tel. +617 270 0030

¢f this Ada implementation was conducted at the customer’s site by
cion team from the AVF.

SUMMARY OF TEST RESULTS

[
[N

Implementation passes a given ACVC version if it processes each test
ne cuystomized test suite in accordance with the Ada Programming

uage Standard, whether the test is applicable cr inapplicable;

the Ada Implementation fails the ACVC [Prod0].

ol

3

o3l
T4
o]

rn oL
1]

[S
ot
e]
O W

oy

Lo ¢
¥,
b
[
(L]

essed tests (inapplicable and applicable), a result was
d

conforms to the Ada Programming Language Standard.
£ items below gives the number cf ACVC tests in various

-
ies. All tests were processed, except those that were withdrawn
cf test errors (item b; see section 2.1), those that require a

3-1

PROCESSING INFORMATION

ating-pcint precision that exceeds the implementation’s maximum

crecision (item e; see secticn 2.2), and those that depend on the suppcrt
cf a f£ile system -- if none is supported (item d). All tests passed,
2xcept those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3788

b) Total Number of Withdrawn Tests 94

c) Processed Inapplicable Tests 87

d) Non-Processed I/0 Tests 0

e) Non-Processed Floating-Point

Precision Tests 201
£) Total Number cf Inapplicable Tests 288 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

.2 TEST EXECUTION

)
[$

Magnetic Data Cartridge containing the customized test suite (see section
.3) was taken on-site by the wvalidation team for processing. The contents
£ the tape were loaded to a Sun 3/60 computer, from there they were copied
he hcst computer using the "remote copy"-facility of Unix.

or O v

th

ot
]
wn (t

s

er the zest files were loaded onto the host computer, the full set of
s was processed by the Ada implementation. .

Testing was performed using command scripts provided by the customer and

reviewed by the validation team. See Appendix B for a complete listing of

“he processing options for this implementation. It also indicates the

default options.

Tests were compiled using the command
ada.c ‘file name’

&n2 lLinked using the command

ada.link =~¢ ’'file name’ ’'main unit’.

The option -o was used to assign a dedicated file name to the generated
executable image.

Tragter B tests, the executable not applicable tests, and the executable
tests cf class E were compiled using the full listing opticon -1. For
several tests, completer listings were added and concatenated using the
cpzicn -1 'file name’. The completer is described in Appendix B,

i)
QO
33
il
t

ilaticn system options, chapter 4.2 of the User Manual cn page 39.

: A

Test cutput, compiier and linker listings, and Jjob logs were captured on a
Mazgnetic Data Cartridge and archived at the AVE. The listings examined on-
zi1%e by the wvalidation team were also archived.

APPENDIX A
MACRO PARAMETERS

Trhis appendix contains the macro parameters used for customizing the ACVC.
T meaning and purpcse of these parameters are explained in {UG89]. The
ameter values are presented in two tables. The first table lists the
wz_.ues that are defined in terms of the maximum input-line length, which is
e value for SMAX IN_LEN--also listed here. These values are expressed
nere as Ada string aggregates, where "V" represents the maximum input-line

Macrc Parameter Macro Value
SMAX IN_LEN 255 -- value of V
SBI _ID (1..V=1 => "Ar, V => "17)
SBIG_ID2 (1..v=1 => 'a’, Vv => '2")
$BIG_ID3 (1..v/2 => ‘A’') & "3" &

(1..v-1-v/2 => "A")

SBIG_ID4 (1..V/2 => 'A'") & "4’ &
(1..V=-1-v/2 => "A")

$BIG_INT_LIT (1..V=3 => 707) & "264"

$BIG_REAL_LIT (1..V=5 => "0’) & "630.0"
$BIG_STRINGI rMrog (1..V/2 => 'A’) & 1
5BIG_STRING rnrog (1..V-1-V/2 => 'AT) & '17 & "7
SBLANKS (1..V-20 => ")

$MAX_LEN INT_ BASED LITERAL
"2:" & (1..V-5 => '0) & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => '07) & "F.E:"

SMAX_STRING_LITERAL T & (1..V-2 => 'A’') & "

MACRO PARAMETERS

Tz following table lists all of the other macro parameters and their
rzIpective values.

Macrc Parameter Macro Value

o = = = - - — - ——————

SACC_SIZE
SALIGNMENT
SCOUNT_LAST
SDEFAULT_MEM_SIZ
SDEFAULT_STOR_UNIT
SDEFAULT_SYS_NAME
SDELTA_DOC
SENTRY_ADDRESS
SENTRY_ADDRESS1

SENTRY_ADDRESS?2

SFLCAT_NAME
SFORM_STRING

SFGRM_STRING2

SGREATER_THAN DURATION

2_147_483_647

2147483648

8

MIPS_ULTRIX

2#1.0%E-31

SYSTEM.INTERRUPT_VECTOR (SYSTEM.SIGUSRI)
SYSTEM.INTERRUPT_VECTOR (SYSTEM.SIGUSR2)

SYSTEM.INTERRUPT_VECTOR (SYSTEM.SIGALRM)

NO_SUCH_FIXED_TYPE

NC_SUCH_FLOAT_TYPE

"CANNOT_RESTRICT_FILE_CAPACITY"

¢.o

SGREATER_THAN_DURATION_BASE_LAST

200_000.0

SGREATER_THAN_FLOAT_BASE LAST

16#1.0#E+32

SGREATER_THAN_FLCAT_SAFE LARGE

16#0.84E+32

SGREATER_THAN_ SHORT_FLOAT_SAFE_LARGE
C.

SHIGH_PRIORITY

0

15

$ILLEGAL_EXTERNAL_FILE NAME1
/nodir/filel

SILLEGAL_EXTERNAL FILE NAME2
/wrongdir/file2

SINAPPROPRIATE_LINE LENGTH
-1

SINAPPROPRIATE_PAGE_LENGTH

-1
SINCLUCE_PRAGMAl PRAGMA INCLUDE ("A28006D1.ADA"™)
SINCLUDE_PRAGMAZ PRAGMA INCLUDE ("B28006D1.ADA")
SINTEGER_FIRST -2147483648 .

SINTEGER LAST 2147483648

SINTEGER_LAST_PLUS_1 2147483648
SINTERFACE_LANGUAGE C
SLESS_THAN DURATION =-0.0

SLESS_THAN DURATION BASE_FIRST

-200_000.0
SLINE_TERMINATOR ASCII.LF
SLOW_PRIOQRITY 0

SMACHINE_CODE_STATEMENT

NULL;
SMACHINE_CODE_TYPE NC_SUCH_TYPE
$MANTISSA_DOC 31
SMAX_DIGITS 15
SMAX _INT 2147483647
$SMAX_INT_PLUS_1 2_147_483_648
SMIN_INT -2147483¢648
SNAME SHORT_SHORT_INTEGER
SNAME LIST MIPS_ULTRIX

SNAME SPECIFICATION] /benl/dl83/acvcll/chape/X212CaA

SNAME SPECIFICATIONZ /benl/dl83/acvcll/chape/X2120B

SNAME_SPECIFICATION3
SNEG_BASED_INT
SNEW_MEM_SIZE
SNEW_SYS_NAME
SPAGE_TERMINATCR
SRECCRD_DEFINITION
SRECCRD_NAME
STASK_SIZE
STASK_STORAGE_SIZE
STICK
SVARIABLE_ADDRESS
SVARIABLE_ADDRESSI

SVARIABLE_ADDRESS2

MACRO
/benl/dl83/acvcll/chape/X3119A
l6#FFFFFFFE#

2147483648

MIPS ULTRIX

‘o

NEW INTEGER
NO_SUCH_MACHINE_CODE_TYPE

32

10240

1.6/256.¢C
GET_VARIABLE_ADDRESS
GET_VARIABLE ADDRESS1

GET_VARIABLE_ADDRESSZ

PARAMETERS

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

Yia

Ly

e cempilier and linker options of this Ada implementation, as described in

1s Appendix, are provided by the customer. Unless specifically noted
ctherwise, references in this appendix are to compiler documentation and
nCT %o this report.

Compiling Chapter 4

4 Compiling

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as the main program. If all units needed by the main program and the main
program itself have been compiled successfully, they can be linked. The resulting code
can then be executed.

§4.1 and Chapter 5 describe in detail bow to call the Compiler, the Completer, which
is called to generate code for instances of generic units, and the Linker.

Chapter 6 explains the information which is given if the execution of a program is
abandoned due to an unhandled exception.

The information the Compiler produces and outputs in the Compiler listing is explained
in §4.4.

Finally, the log of 2 sample session is given in Chapter 7.

4.1 Compiling Ada Units

The command ada.c invokes the Compiler, and optionally Completer and Linker of
the Alsys Ada System.

ada.c Command Description

NAME
ada.c - Alsys Ada System compile command
SYNOPSIS
ada.c ‘option ... ifile ...; '-1d ldopt,
DESCRIPTION
Compilation, Completion and Linking are performed in that order. The Completer
is called if the -C or the -z option is specified. The Linker is called if the -z option

is specified. By default, only the compiler runs and compiles the source(s) in the
given fles.

Alsys Ada System - User Manual 35

Chapter ¢ Compiling

The source file may contain a sequence of compilation units (cf. LRM(§10.1)). All
compilation units in the source file are compiled individually. When a compila-
tion unit is compiled successfully, the program library is updated and the Compiler
continues with the compilation of the next unit on the source file. If the compi-
lation unit contained errors, they are reported (see §4.4). In this case, no update
operation is performed on the program library and all subsequent compilation
units in the compilation are only analyzed without generating code.

The command delivers a non-zero status code on termination (cf. exzit(2)) if one
of the compilation units contained errors.

fde specifies the file(s) to be compiled. The maximum length of lines in file is 255.
The maximum number of source lines in file is 65534.

Note: If you specify a file name pattern, which is replaced by one or more file
names by the shell, the order of the compilation is alphabetical, which is not
always successful. Thus file name patterns should be used together with the
option -a. With this option the sources can be processed in any order.

The generation of listing output is controlled by options -1 and -L. The default
listing filename for a compilation is the basename, ci. basename(1), of the source
file with suffix .1; when the source file already has a suffix, it is replaced by the
sufix .1. When an automatic recompilation is performed through option -R the
basename is taken from the original source file name stored in the library.

-A Controls whether automatic inline expansion is performed. A sub-
program S is automatically inlined at a place P where S is called, if
the following conditions hold: S meets the requirements for explicit
inlining via PRAGMA inline (cf. §15.1.1); subprogram specification
and subprogram body of S are in the same compilation unit; and
the estimated code size of S when expanded inline is not greater (or
only slightly greater) than the call it replaces. (The estimation of
size is based on heuristics and is not exac:: however, it is designed
to give a close approximation.) If you specify -4, automatic inline
expansion is suppressed.

By default, automatic inline expansion is performed.

-a Specifies that the Compiler only performs syntactical analysis and
the analysis of the dependencies on other units. The units in file are
entered into the library if they are syntactically correct. The actual
compilation is done later.

Note: An already existing unit with the same name as the new one is
replaced and all dependent units become obsolete, unless the source
file of both are identical. In this case the library is not updated
because the dependencies are already known.

36

Alsys Ada System - User Manua!

Compiiing

Chapter 4

-C unitiist

-L directory

-L /ﬁc

-1¢ ldopt

By default, the normal, full compilation is done.

Requests the completion of the units in unitlist, which is a white
space separated list of unit names. unitlist must be a single shell
argument and must therefore be quoted when it has more than one
item. Example with two units:

ada.c¢ -C "our_unit my_unit”
The Completer generates code for all instantiations of generic units
in the execution closure of the specified unit(s). It also generates
code for packages without bodies (if necessary).
If a listing is requested the default filename used is complete.l.
The listing file contains the listing information for all units given in
unstiist.

Controls whether a copy of the source file is kept in the library. The
copy in the program library is used for later access by the Debugger
or tools like the Recompiler. The name of the copy is generated by
the Compiler and need normally not he known by the user. The
Recompiler and the Debugger know this name. You can use the
ada.list -1command to see the file name of the copy. If a specified
file contains several compilation units a copy containing only the
source text of one compilation unit is stored in the library for each
compilation unit. Thus the Recompiler can recompile a single unit.

if -c is specified, the Compiler only stores the name of the source
file in the program library. In this case the Recompiler and the
Debugger are able to use the original file if it still exists.

When linking, the generation of debug information is suppressed.

Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

Generates listing fles with default filenames (see above) in the cur-
rent directory (use option -L for redirecting to another directory).

Generates listing fles with default Slenames (see above) in directory
directory.

Concatenates all listings onto file file.
This option can be used to supply options for the call of /d(1) when

linking a program by the -z option. -1d followed by the options to
be passed to /d{1) must be the last items of the command.

Alsys Ada System - User Manual 37

Chapter 4

Compiling

-m unit

-Gl

-0 fue

Specifies the name of a main program, which must be a parameter-
less procedure. This option will cause the comple.ion of any generic
instantiations in the program; if a listing is requested, the listing
options have the same meaning as for the coraplete option; if the
completer has already been called by the -C option, the lizting ou.-
put is appended to that completer listing file. If all compilations
are successful, the linker is invoked to build an executable program;
if a listing is requested, the default filename for the linker listing is
link.1.

Restricts optimizations to level {. Level O indicates no optimiza-
tions, level 1 indicates partial optimizations, level 2 indicates full
optimization. Default is full optimization.

Partial optimizations allows those optimizations that do not move
code globally. These are: Constant propagation, copy propagation,
algebraic simplifications, runtime check elimination, dead code elimi-
nation, peephole and pipeline optimizations. This optimization level
allows easier debugging while maintaining a reasonable code quality.
Full optimization enforces the following optimizations in addition to
those done with -01: Global common subexpression elimination and
keeping local variables in registers.

When linking is requested by -z this option can be used to specify
the name of the generated executable program. By default, the
name of the unit given with the -z option is used: this value is
taken literally, i.e. upper and lower case letters are distinguished.

Indicates that a recompilation of a previously analyzed source is
to be performed. This option should only be used in commands
produced by the ada.zake command.

Suppresses the generation of an executable object file when linking
is requested. See the -r option of the ada.link command (§3) for
details.

Controls whether all run-time checks are suppressed. If you specify
-S this is equivalent o the use of PRAGMA suppress for all kinds of

checks.

By defaulit, no run-time checks are suppressed, except in cases where
PRAGMA suppress_all appears in the source.

Controis whether machine code is appended to the listing Gle. -s
has no effect if no listing is requested or -a (analyze only) is specified.

By default, no machine code is appended to the listing fle.

Alsvs Ada System - User Manual

Compiling Chapter 4

-t Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable image. With -t the code of all subprograms of
all packages in the execution closure of the main procedure is linked
into the executable image.

Note: The code of the runtime system and of the predefined units
is always linked selectively.

-v Controls whether the ada.c command writes additional information
onto standard error.
By default, no additional information is written.

-y library Specifies the program library the ada.c command works on. It needs
write access to the library.
The default library is adalib.

End of Command Description

4.2 Completing Generic Instances

Since the Compiler does not generate code for instances of generic bodies, the Com-
pleter must be used to complete such units before 2 program using the instances can
be executed. The Completer must also be used to complete packages in the program
which do not require a body. This is done implicitly when the Linker is cailed.

It is also possible to call the Completer explicitly with the -C option of the ada.c
command.

Alsys Ada System - User Manual 39

st

Chapter 4 Compiling

4.3 Automatic Compilation

The Alsys Ada System offers three different kinds of automatic compilation. It sup-
ports

e automatic recompilation of obsolete units
 automatic compilation of mcAdifiet sources
e automatic compilation of new sources with unknown dependencies

In the following the term recompilation stands for the recompilation of an obsolete
unit using the identical source which was used the last time. (This kind of recom-
pilation could alternatively be implemented by using some appropriate intermediate
representation of the obsolete unit.) This definition is stronger than that of the LRM
{10.3). If a new version of the source of a unit is compiled we call it compilation, not
a recompilation. V

The set of units to be checked for recompilation or new compilation is described by
specifying one or more units and the kind of a closure which is to be built on them.
In many cases you will simply specify your main program.

The automatic compilation of modified sources is the default effect of the ada.nake
command. It determines the set of modified sources and generates and executes a
command file for calling the Compiler in an appropriate order. Optionally, obsolete
units can be recompiled subsequently.

If only the recompilation of obsolete units is desired, this can be specified by the -Rr
option of the ada.zake command. [t determines the set of obsolete units and generates
and executes a command file for calling the Compiler in an appropriate order.

The recompilation is performed using the copy of the obsolete units which is (by
default) stored in the library. (If the user does not want to hold a copy of the sources,
the ada.zake command can use the original source.)

The automatic compilation of new sources is supported by the ada.c command to-
gether with the -a option. This command is able to accept a set of sources in any
order. It makes a syntactical analysis of the sources and determines the dependencies.
The units "compiied” with this command are entered into the litrary, but only their
narmes, their dependencies on other units and the name of the source fles are stored
in the library. Units which are entered this way can be automatically compiled using
the ada.zake command.

The basis of both the ada.zake command is the information in the library about the
dependencies of the concerned units. Thus ada.zake cannot handle the compilation
of units which have not yet been entered in the library.

40 Alsys Ada System - User Manual

Linking Chapter 5

[

5 Linking

An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main program.

The ULTRIX system linker is used by the Alsys Ada Linker.

To link a program, call the ada.link command. The Linker can also be called directly
from the ada.c command and from the ada.make command.

ada.link Command Description

NAME

ada. ‘uk - invoke the Alsys Ada System linker
SYNOPSIS

ada.link ‘option ...} unit ;-1d ldopt;
DESCRIPTION

The ad;.link command invokes the Alsys Ada Linker.

The Linker builds an executabie file. The default file name of the executable file
is the unit name of the main program given with the unit parameter. This value
is taken literally, i.e. upper and lower case letters are distinguished.

unit specifies the library unit which is the main program. This must be a para-
meteriess library procedure.

-4 This option is passed to the implicitly invoked Completer. See the
same option with the ada.c command.

- Suppresses invokation of the Completer of the Alsys Ada System
before the linking is performed. Only specify -c if you are sure
that there are no instantiations or impiicit package bodies to be
compiled, e.g. if you repeat the ada.link command with different
linker options.

Alsvs Acda Svstem - User Manual 51

Chapter 5

Linking

-L directory

-L file

-1d ldopt

-a!

-o file

By default debug information for the Alsys Ada Debugger is gen-
erated and included in the executable file. When the -D option is
present, debug information is not included in the executable fle. If
the program is to run under the control of the Debugger it must be
linked without the -D option.

Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

If -1 is specified the Linker of the Alsys Ada System creates a listing
file containing a table of symbols which are used for linking the Ada
units. This table is helpful when debugging an Ada program with
the ULTRIX debugger. The default name of the listing file is 1ink.1.
By default, the Linker does not create a listing file.

This option is also passed to the implicitly invoked Completer,
which by default generates a listing file cozplete.l if -1 is given.

The listing files are created in directory directory instead of in the
current directory (default).

The listing files are concatenated onto fle file.

This option can be used to supply options for the call of {d{1). -1a
followed by the options to be passed to /d(1) must be the last items
of the command. :

This option is passed to the implicitly invoked Completer. See the
same option with the ada.c command.

Specifies the name of the executable file.
The default file name of the executable fle is the unit name of the
main program.

Suppresses the generation of an executable object file. In this case
the generated object file contains the code of all compilation units
written in Ada and of those object modules of the predefined lan-
guage environment and of the Ada run time system which are used
by the main program; references into the Stcadard C library remain
unresolved. The generated object module is suitable for further /d(1)
processing. The name of its entry point is zain.

This option is passed %o the implicitly invoked Compieter. See the
same option with the ada.c command.

(9]

L&

Aisys Ada System - User Manual

Linking Chapter §

-3 This option is passed to the implicitly invoked Completer. See the
same option with the ada.c command. If a listing is requested and
-3 is specified, the Linker of the Alsys Ada System generates a listing
with the machine code of the program starter in the file 1ink.1l. The
program starter is a routine which contains the calls of the necessary
elaboration routines and a call for the Ada subprogram which is the
main program.
By default, no machine code is generated.

-t Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable file. With -t the code of all subprograms of all
packages in the execution closure of the main procedure is linked
into the executable file.

Note: The code of the runtime system and of the predefined units
is always linked selectively, even if -t is specified.

-v Controls whether the ada. link command writes additional informa-
tion onto standard error, and is also passed to the implicitly invoked
Completer.

By defaul:, no additional information is written.

-y library Specifies the program library the command works on. The ada.liak
command needs write access to the library unless -¢ is specified. If
~c is specified the ada.link command needs only read access. The
default library is adalib.

End of Command Description

The ada.link command implicitly calls the ULTRIX System Linker using the com-
mand

/bin/ld {-N] -o resultfile /usr/lib/caplrs/ce/cre0.o \
0by rtslid ld_options -lc

unless the -r option is specified. When -r is specified, the Linker is called with the
command

/bin/ld [-N] -o resultfile -x obj rtsitb ld_options

Here, 067 denotes the file containing the object module which is produced by the Ada
Linker and rtsiid the archive .ibrary containing the Ada runtime system. (This may

Alsys Ada Svstem - User Manuai 53

Chapter 3 Linking

be 1ibrtsdbg.a resp. librts.a if the Alsys Ada Linker is called with option -D. In
this case the -N option is missing.)

If you invoke /d(1) by yourself to link the executable object rather than having the Ada
Linker doing it automatically, then you must explicitly specify 2 startup module (see
below) and any libraries you want linked into the Ada program. Furthermore, the 1d
option -N should be specified to allow the resulting object file to be debugged by the
Alsys Ada Debugger. (Note that debugging is only possible if the option -D was not
passed to the Ada Linker.)

The startup module must satisfy the following requirements:

e A global variable called environ is defined containing a pointer to the current
environment (cf. enuviron(7).)

« The Ada main program is called using the entry point main.

e argc and argv are passed as arguments to main.

Note that instructions following the call of main will never be executed.
By default, the Standard C startup routine /usr/lid/czplrs/cc/crt0.0 is used.

54 Aisys Ada System - User Manual

']

APPENDIX C

APPENDIX F COF THE Ada STANDARZC

vy allowed Implementation dependencies correspond to implementaticn-

Zependent pragmas, to certain machine-dependent conventions as mentioned in
Cracter 13 cf the Ada Standard, and to certain allowed restr-ictions on
recresentaticsn clauses. The implementation-dependent characteristics of
~n.s Ada implementation, as described in this Appendix, are provided by the
cuetcmer. Unless specifically noted otherwise, references in this Appendix
are =¢ ccmpiler documentation and not to this repcrt. Implementation-
spec:fic portions of the package STANDARD, which are not a part c¢f Appendix
T, are ccntained in the fcocllowing Predefined Language Enviroment (chapter
1> page ZtS £f of the compiler user manual).

)

Predefined Language Environment

Chapter 13

13 Predefined Language Environment

The predefined language environment comprises the package standard, the languags-
defined library units and the implementation-defined library units.

13.1 The Package STANDARD

The specification of the package standard is outlined here; it contains all predefined

identifiers of the implementation.

PACKAGE standard IS

TYPE boolean IS (false, true);

-- The predefined relatioral operators for this type are as follows:

-- FUNCTION "=n left, right
-- FUNCTION /=" (left, righs
-- FUNCTION "<" (left, righs
-- FUNCTION "<=" (left, right
== FUNCTION ">r (lef=, righs
-- FUNCTION m>=n (left, right

-- The predefined logical operators and the predefined logical

: boolean) RETURN boolean;
: boolean) RETURN boclean;
. boolean) RETURN boclean;
: boolean) TURY boolean:
: boolean) RETURN boolean;
: boolean) RETURN boolean;

-- negation operator are as follows:

-- FUNCTION "AND" (left, right
-- FUNCTION "CR" (left, right
-~ FUNCTION "XOR" (left, right

-- FUNCTICN "NOT" (righs

: boolean) RETURN boolean:
: boolean) RETURN boolean;
. boolean) RETURN boolean:

boolean) RETURN boolean;

-- The universal type universal_integer is predefined.

TYPEZ integer IS RANGZ - 2_14T7_483.848 .. 2_147_4183_.647;

-- The predefined operators for

FUNCTION M=o

1 (lefs
== FUNCUTON n/an (lefts, righ

this type are as follows:

integer) RETURN boolean;
integer) RETURN boolean;

Alsys Ada Svstem - User Manual

Chapter 13 Predefined Language Environment

-- FUNCTION <" (left, right : integer) RETURN boolean;
-- FUNCTION "<=" (left, right : integer) RETURN boolean;
-- FUNCTIQN ">" (left, right : integer) RETURN boolean;
-- FUNCTION ">=" (left, right : integer) RETURN boolean;

-- FUNCTION "+" (right : integer) RETURN integer:
-- FUNCTION "-" (right : integer) RETURN integer:
-- FUNCTION "ABS" (right : integer) RETURN integer:;

-- FUNCTION "m»" (left, right : integer) RETURN integer:
-- FUNCTION "-" (left, right : integer) RETURN integer;
-- FUNCTION "=" (left, right : integer) RETURN irnteger:
-- FUNCTION "/" (left, right : integer) RETURN integer;
-- FUNCTION "REM" (left, right : integer) RETURN integer;
-- FUNCTION "MOD" (left, right : integer) RETURN integer:

-- FUNCTION "=xx" (left : integer; right : integer) RETURN integer;

-- An izplezentation may provide additional predefined integer types.
-- It is recozmended that the names of such additional types end

-- with INTEGER as in SHORT_INTEGER or LONG_INTEZGER. The

-~ specification of each operator for the type universal_integer, or
-- for any additional predefined integer type, is obtained by

-- replacing INTEGER by the name of the type in the specification

-- of the corresponding operator of the type INTEGER, except for the
-- right operand of the exponentiating operator.

TYPE short._integer IS RANGEZ - 32.768 .. 32.767;

TYPE shori_short.integer IS RANGE - 128 .. 127;

-~ The universal type universal_real is predefined.

TYPE float IS DIGITS 6 RANGE
- 1640 FFTTr_Frat

FOR float'size USE 32;

-- The predefined operators for this type are as follows:

-- TUNCTIIN "=" (lef<s, right : float) RETURN boolean:
-= FUNCTICON "/=" (left, right : float) RETURN boolean:
-- FUNCTION "<n (left, right : float) RETURN boolean:
== FUNCTICN m<=" (left, right : flocat) RETURN boolean:
== FUNCTICN m>» (left, right : float) RETURN boolean:
== TUNCTION ">=" (left, right : float) RETURN boclean;
-= FUNCTION "+" (right : f£loat) RETURN float:

266 Alsys Ada System - User Manual

Predefined Language Environment Chapter 13

-- FUNCTION "-n (right : float) RETURN float;
-- FUNCTION "ABS" (right : float) RETURN float;

-- FUNCTION n"+" (left, right : float) RETURN float;
-- FUNCTICON "-" (left, right : float) RETURN float;
-- FUNCTION mx" (left, right : float) RETURN float;
-- FUNCTION "/" (left, right : float) RETURN float;

-~ FUNCTION "==" . (left : float: right : integer) RETURN float;

-- An izplementation may provide additional predefined floating

-- point types. It is recommended that the names of such additional
-- types end with FLOAT as in SHORT_FLOAT or LONG_FLOAT.

-- The specification of each operator for the type universal_real,
-- or for any additional predefined floating point type, is obtained
-- by replacing FLOAT by the name of the type in the specification of
-- the corresponding operator of the type FLOAT.

TYPE long-float IS DIGITS 15 RANGE
- 16#0.FFFF_FFFF_FTTF.FB8#E256 ..
16#0 FFFF_FFFF_FFFF_F8#E256;
FOR leng.float‘'size USE 64;

-- In addition, the follcowing operators are predefined for universal
-- types:

== FUNCTION "=" (left : UNIVERSAL_INTEGER: right : UNIVERSAL_REAL)
RETURN UNIVERSAL_REAL;

-= FUNCTION "=" (left : UNIVERSAL_REAL: right : UNIVERSAL_INTEGER)
RETURN UNIVERSAL_REAL;
== FUNCTION "/" (left : UNIVERSAL_REAL: right : UNIVERSAL_INTEGER)

RETURN UNIVERSAL-REAL;

-- The type universal_Zfixed is predefined.
-- The conly operators declared for this type are

~= FUNCTION "=n (left : ANY_FIXED_POINT.TYPE;

right : ANY_FIXED_POINT_TYPE) RETURN UNIVERSAL_FIXED;
-= FUNCTION "/" (Zefs : ANY_FIXED_POINT_TYPE;

right : ANY_FIXED_POINT_TYPE) RETURN UNIVERSAL.FIXED;

-- The following characters forxz the standard ASCII character set.
-- Character literals corresponding to control charac”ars are not
-- identifiers.

TYPE characzer IS
{nul, soh, stx. e:x, eot. enq, ack, bel,

Alsys Aca System - User Manual 267

Chapter 13 Predefined Language Environment

bs, ht, 1f, vt, ff, cr, so, si,
dle, del, dec2, de3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs. rs, us,
A R Ik AP S
HGINEERD R P A
‘o', 1, 27, '3, ‘4, 'S, '6', 'T°,
8T, '9t, i, oy, IR R S A
¢, AT, ‘'BT, ‘'C’, ‘D, CE*, CF", °G’,
‘g, I, *J', 'K°, ‘L, 'M°, °'N°, '0°.
‘P, 'Q'. 'R", 'S°, TT, CUt, VL W,
S S A S S AT
e, tat, b, e’ 'd', ‘'e’, ‘£, ‘'g',
- S S R . 1, ‘'m'., ‘an', ‘o',
P, 'q’, ‘'r’, ’'s°, tt,owt, v, twe,
x'. 'y, ozt (v, B - L3 O
FOR character USE ~-- 128 ascii CHARACTER SET WITHOUT HOLES
(0,1, 2, 3, 4, 5, ..., 125, 126, 127);

-- The predefined operators for the type CHARACTER are the same as

-- for any enuzeration type.

PACKAGE ascii IS
-- Control characters:
nul : CONSTANT character := nul; soh : CONSTANT character := soh:
stx : CONSTANT character := stx; etx : CONSTANT character := etx;
eot : CONSTANT character := eot; enq : CONSTANT character := eng:
ack : CONSTANT characser := ack; bel : CONSTANT character := bel;
bs CONSTANT character := bs; ht : CONSTANT character := ht;
1z CONSTANT character := 1%, vt : CONSTANT character := vt
s CONSTANT charac=er := ££; ¢r : CONSTANT character := c¢r:
so CONSTANT character := so: si CONSTANT character := si;
dle CONSTANT character := dle; dcil : CONSTANT character := del;
de2 CONSTANT character := dc2; dc3 : CONSTANT character := dc3;
dca CONSTANT character := dc4: nak : CONSTANT character := nak;
syn : CONSTANT character := syn; etb : CONSTANT character := etb;
can : CINSTANT character := can; en : CONSTANT character := en;:
sub CONSTANT character := sub; esc CONSTANT character := esc;
Is COHSTANT character := fs; gs CONSTANT character := gs:
rs CCNSTANT character := rs; us CONSTANT character := us;
del CCNSTANT character := del;
-- Other characters:
exclax CINSTANT character := !’
quotation CONSTANT character := '"°;
sharp CONSTANT character := '#°;

Alsys Ada System - User Manual

Predefined Language Environment

Chapter 13

dollar : CONSTANT character
percent . CONSTANT character
azpersand CONSTANT character :
colon : CONSTANT character
semicolon : CONSTANT character :
query : CONSTANT character :
at_sign : CONSTANT character
l_bracket : CONSTANT character
back_slash : CONSTANT character
r_bracket CONSTANT character
circumflex CONST.... . character :
underline CONSTANT character :
grave CONSTANT character
l_brace CONSTANT character :
bar : CONSTANT character :
r_brace : CONSTANT character
tilcde CONSTANT character
lc.a : CONSTANT character := 'a
lc_z : CONSTANT character := 'z

END ascii;
-- Predefined subtypes:

SUBTYPE natural
SUBTYPE

IS integer RANG
positive IS integer RANG

-- 7.edefined string type:

TYFE string IS ARRAY(positive RANGE

PRAGMA byte_pack(string):

-- The predefined operators for this type are as follows:

-- FUNCTION "=" (left, right : string)
-- FUNCTION "/=" (left, right : string)
-- FUNCTION "<" (left, right : string)
== TUNCTION "<=" (left, right : string)
-- TUNCTION ">m (left, right : string)
-- FUNCTION ">=" (left, right : string)
-- FUNCTION "&" (left : string: right
-- FUNCTION "&" (left : character; right
-= FUNCTI3N n"&" (left : string: right

a *'$’:
= %
= '&';
!
= 'Q’;
S G
= 0\
= ']
= '{'
= 'I"
s

EO

£ 1

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

string)
: string)

. integer’'last;
.. integer’last;

<>) OF character:;

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

RETURN string:
RETURN string.

. character) RETURN string:

Aisys Ada System - User Manuai

269

Chapter 13 Predefined Language Environment

-- FUNCTION "&" (left : character; right : character) RETURN string:

TYPE duration IS DELTA 2#1.0#E-14 RANGE
- 131_C72.0 .. 131.071.999_938.964_843_75;

-- The predefined operators for the type DURATION are the same
-- as for any fixed point type.

-- the predefined exceptions:

constraint_error : EXCEPTION:

numeric_errer : EXCEPTION:
program_error : EXCEPTION:
storage_error : EXCEPTION;
tasking_error : EXCEPTION:

END standard;

13.2 Language-Defined Library Units
The following language-defined library units are included in the master library:

The package systen

The package calendar

The generic procedure unchecked_deallocaticn
The generic function unchecked_conversion
The package io_exceptions

The generic package sequential_io

The generic package direct_io

The package text_io

The package low_level_io

13.3 Implementation-Defined Library Units

The master library also contains the implementation-defined library units

The package collection_zanager
The package tizing

The package comzand_arguzents
The package text_io_extension

270 Alsys Ada System - User Manual

Appendix F Chapter 15

15 Appendix F

This chapter, together with the Chapters 16 and 17, is the Apvendix F required in the
LRM, in which all implementation-dependent characteristics of an Ada implementation
are described.

15.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

15.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined ty the language;
their effect is (at least partly) implementation-dependent and stated here.

CONTROLLED

has no effect.

ELABORATE

18 fully implemented. The Alsys Ada System assumes a PRAGMA elaborata, i.e.
stores a unit in the library as if PRAGMA elaborate for a unit u was given, if the
compiled unit contains an instantiation of u (or of a generic program unit in u)
and if it is clear that u must have been elaborated before the compiled unit. In
tlis case an appropriate information message is given. By this means it is avoided
that an elaboration order is chosen which would lead t0 2 PROGRAM_ERROR
when eiadorating the instantiation.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms. tasks, generic
units or body stubs. If the subprogram is called recursively only the outer cail of
this subprogram will be expanded.

Aisys Ada System - User Manual hindrs

Chapter 15 Appendix F

INTERFACE
is supported for ASSEMBLER and C. PRAGMA interface (assexmbler, ...)
provides an interface with the internal calling conventions of the Alsys Ada System.
See §15.1.3 for further description.

PRAGMA interface (C, ...) is provided to support the C procedure calling stan-
dard. §15.1.4 describes how to use this pragma. The subprogram must not be
a function returning an unconstrained array type, nor must it have QUT or IN
OUT parameters that are not passed by reference. If either of these restrictions is
violated, the program is erroneous.

PRAGMA interface should always be used in connection with the PRAGMA exter-
nal_nane (see §15.1.2), otherwise the Compiler will generate an internal name
that leads to an unsolved reference during linking. These generated names are
prefixed with an underline; therefore the user should not use names beginning
with an underline.

LIST
is fully implemented. Note that a listing is only generated when one of the listing
options is specified with the ada.c (or ada.make or ada.link) command.

 MEMORY_SIZE

has no effect.

OPTIMIZE
has no effect; but see also the -0 option with the ada.c command, §4.1.

PACK
see §16.1,

PAGE
is fuily implemented. Note that form feed characters in the source do not cause
a new page in the listing. They are - as well the other format effectors (horizontai
tabulation, vertical tabulation, carriage return, and line feed) - replaced by a ~
character in the listing.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of

278 Alsys Ada System - User Manual

Appendix F Chapter i5

the subtype priority, and second, the effect on scheduling (Chapter 14) of not
giving this pragma for a task or main program. The range of subtype priority is
0 .. 15, as declared in the predefined library package system (see §15.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by
not giving PRAGMA priority for it is the same as if PRAGMA priority (O) had
been given (i.e. the task has the lowest priority).

SHARED
is fully supported.

STORAGE_UNIT
has no effect.

SUPPRESS
has no effect, but see §15.1.2 for the implementation-defined PRAGMA suppress_
all.

SYSTEM_ NAME
has no effect.

15.1.2 Implementation-Defined Pragmas

BYTE_PACK
see §16.1.

C_CALLABLE (<ada_-name>)
this pragma causes the Alsys Ada System to make the subprogram <ada_name>
obey the C calling conventions (see PRAGMA interface (C. ...) and §15.1.4),
so that the subprogram can pe called from a C routine.
See §15.1.5 for further description.

EXTERNAL_NAME (<string>, <ada_name>)
<ada_name> specifies the name of a subprogram or of an object declared in a

Alsys Ada System - User Manual 279

Chapter 15 Appendix F

library package, <string> must be a string literal. [t defines the external name of
the specified item.

This pragma is used in connection with PRAGMA interface (see §15.1.1) and
PRAGMA c_callable (see §15.1.3). If <ada_name> is the name of a subprogram,
the Compiler uses the symbol <string> in the call instruction for the subprogram.
Furthermore, in connection with the PRAGMA c_callable, the pragma enables the
subprogram to be called from a routine written in C using the symbol <string>.
The subprogram declaration of <ada_name> must precede this pragma. If several
subprograms with the same name satisfy this requirement the pragma refers to
that subprogram which is declared last.

If <ada_name> is the name of an object, this pragma enables the object to be
accessed from outside the Ada program using the symbol <string>, for example
from a subprogram written in another language.

Upper and lower cases are distinguished within <string>, i.e. <string> must be
given exactly as it is to be used by external routines. The user should not define
external names beginning with an underline because Compiler generated names
are prefixed with an underline.

RESIDENT (<ada_name>)
this pragma causes the value of the object <ada_name> to be held in memory
(rather than in a register) and prevents assignments of a value to the object
<ada_.name> from being eliminated by the optimizer (see §4.1) of the Alsys Ada
Compiler.

PRAGMA resident may be needed to prevent crucial assignments from being elim-
inated by the optimizer in rare cases in which an object is accessed via its address
using the attribute "address. [n all straightforward cases of this sort, i.e. when-
ever the attribute is used in a way designed to be easily understood by human
readers, the Compiler will recognize accesses to the object via 'address as such
and will not allow the optimizer to eliminate crucial assignments of values to the
object. The following example shows one of the rare cases mentioned above, in
which PRAGMA resident is necessary.

In this exampie, exazine_value_at is a non-local procedure with an IN parameter
of type systexz.address, which reads the value at the address passed as actual
parameter.

¥ITH systez, exazine_value_at;
PRCCZIURE exazple IS
TYPE fcb_type IS ...;

fcb : {cb_type:
fcb_.address: system.address;

280 Alsys Ada System - User Manual

Appendix F Chapter 15

FUNCTION file_control_block_address RETURN system.address IS

BEGIN
IF ... THEN
RETURN fcb'address:
ELSE
END IF:
END file_control_block_address;

BEGIN

fcb_address := file_control_block_address; -- may be fcb'address
feb 1= L

exaxzine_value_at (fcb_address); -- may read fcb

£cb = ...

END exazple:

If this procedure is compiled by the Alsys Ada Compiler without suppression of
dead code elimination, i.e. without the -00 option, the first assignment to fcb
will be eliminated, because the Compiler will not recognize that the value of fcb
may be read before the next assignment to fcb. Therefore

PRAGMA resident (fcb):

should be inserted after the declaration of fcb.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §186.5).

SUPPRESS_ALL
causes all the runtime checks described in the LRM(§11.7) to be suppressed; this
pragma is only allowed at the start of a compilation before the first compilation
unit; it applies to the whole compilation.

Alsys Ada System - User Manual 281

Chapter 15 Appendix F

15.1.3 Pragma Interface (Assembler, ...)

This section describes the internal calling conventions of the Alsys Ada System, which
are the same as those used for subprograms for which PRAGMA interface (assembler.
...) is given. Thus the actual meaning of this pragma is simply that the body needs
and must not be provided in Ada; it is provided in object form using the -1d option
with the ada.link (or ada.c or ada.make) command.

In many cases it is more convenient to follow the C procedure calling stan-
dard. Therefore the Alsys Ada System provides PRAGMA interface (c,
...), which supports the standard return of the function result and the stan-
dard register saving. This pragma is described in the next section.

The internal calling conventions are explained in four steps:

Parameter passing mechanism
Ordering of parameters

Type mapping

Saving registers

Parameter passing mechanism:

The Alsys Ada System uses three different parameter passing mechanisms, depending
on the type of 2 parameter:

o by value and/or result: The value of the parameter itself is passed.

e by reference: The address of the parameter is passed (like an IN parameter of type
systen.address, which would be passed by value).

o by descriptor: A descriptor for the parameter is allocated on the caller’s side and
is itself passed by reference.

The parameters of a subprogram are passed in registers where possible. The remaining
parameters, if any, are passed in an area called a parameter dlock. This area is aligned
on a word boundary and contains parameter values (for parameter of scalar types),
parameter addresses or descriptor addresses (for parameter of composite types) and
alignment gaps.

For a function subprogram an extra register ($r4 or $£0) is assigned to contain the
function result upon return. Thus the return value of a function is treated like an
anonymous parameter of mode OUT. No special treatment is required for a function
result except for return values of an unconsirained array type (see below).

A subprogram is called using the JAL insiruction. The address of the parameter block
is passed in 3r3, if necessary. The static link of a subprogram is passed in $r2, if
necessary.

2
(]
(3]

Alsys Ada System - User Manual

Appendix F Chapter 15

In general, the ordering of the parameter values within the parameter block does not
agree with the order specified in the Ada subprogram specification. When determining
the position of a parameter within the parameter block, the calling mechanism and
the size and alignment requirements of the parameter type are considered. The size
and alignment requirements and the passing mechanism are as follows:

Scalar parameters and parameters of access types are passed by value, i.e. the values
of the actual parameters of modes IN or IN OUT are copied into the parameter register
or into the parameter block before the call. Then, after the subprogram has returned,
values of the actual parameters of modes IN OUT and OUT are copied out of the pa-
rameter register or the parameter block into the associated actual parameters. The
parameters are aligned within the parameter block according their size: A parameter
with a size of 8, 16 or 32 bits has an alignment of 1, 2 or 4 (which means that the object
is aligned to a byte, halfword or word boundary within the parameter block). If the
size of the parameter is not a multiple of 8 bits (which may be achieved by attaching
a size specification to the parameter’s type in case of an integer, enumeration or fixed
point type) it will be byte alignec. Parameters of access types are always aligned to a
word boundary.

Parameters of composite types are passed by reference or by descriptor. The descrip-
tors are allocated by the caller and are themselves passed by reference. A descriptor
contains the address of the actual parameter object and further information depen-
dent on the specific parameter type. The following composite parameter types are
distinguished:

e A parameter of a constrained array type is passed by reference for all parameter
modes.

o For a parameter of an unconstrained array type, the descriptor consists of the
address of the actual array parameter followed by the bounds for each index range
in the array (i.e. FIRST(L), LAST(1), FIRST(2), LAST(2), ...). The space allo-
cated for the bound elements in the descriptor depends on the type of the index
constraint. This descriptor is itself passed by reference.

o For functions whose return value is an unconstrained array type, a reference to
a descriptor for the array is passed in the parameter block as for parameters of
mode OUT. The fields for its address and all array index bounds are filled up by
the function before it returns. [n contrast to the procedure for an OUT parameter,
the function ailocates the array in its own stack space. The function then returns
without releasing its stack space. After the function has returned, the calling
routine copies the array into its own memory space and then deallocates the stack
memory of the function.

o A constrained record parameter is passed by reference for all parameter modes.

. For an unconstrained record parameter of mode IN, the parameter is passed by
reference using the address pointing to the record. If the parameter has mode
OUT or I¥ OUT, the value of the CONSTRAINED attribute appiied to the actual
parameter is passed as an additional boolean IN parameter (which, when not
passed in a register, occupies one byte in the parameter block and is aligned to
a byte boundary). The boolean IN parameter and the address ave treated like

Aisys Ada System - User Manuai 283

Chapter 15 Appendix F

two consecutive parameters in a subprogram specification, i.e. the positions of the
two parameters within the parameter block are determined independently of each
other.

For all kinds of composite parameter types, the pointer pointing to the actual para-
meter object is represented by a 32 bit address, which is always aligned to a word
boundary.

Ordering of parameters:
The ordering of the parameters is determined as follows:

The parameters are processed in the order they are defined in the Ada subprogram
specification. For a function, the return value is treated as an anonymous parameter of
mode OUT at the start of the parameter list. The registers $r4..$r22 and $£0..8131
are available for parameter passing. A parameter block is only used when there are
more parameters than registers of the appropriate class. Registers are used from low
numbers to high numbers, the parameter block starts at offset zero and grows to higher
offsets. Each parameter is handled as follows:

e A float parameter is allocated the next free even numbered foating point register
(the corresponding odd numbered floating point register is not used for parameter-
passing). If there is no free floating point register, one word is allocated in the
parameter block (see below).

e A long_float parameter is allocated the next free floating point register pair.
If there is no free floating point register pair, a double word is allocated in the
parameter block (see below).

« All other parameters (or their (descriptori addresses, respectively) are aliocated the
next Tee general purpose register from $r4..$r22. If not enough general purpose
registers are available for parameter passing, space is allocated in the parameter
block depending on the representation of the parameter tvpe (see below).

e« Ifa parameter cannot be passed in a register, space is allocated in the parameter
biock as follows:

Because of the size and alignment requirements of a parameter it is not always
possible 1o place parameters in such a way that two consecutive parameters are
densely located in the parameter block. In such a situation a gap. i.e. a piece
of memory space which is not associated with a parameter, exists between two
adjacent parameters. Consequently, the size of the parameter block can be larger
than the sum of the sizes of ail the parameters.

[n order to minimize the size of the gaps in a parameter block, an attexpt is made
t0 §il eack gap with a parameter that occurs later in the parameter list. [f during
the ailocation of space within the parameter biock a parameter is encounterec

284 Alsvs Aca System - User Manual

Appendix F Chapter 15

whose size and alignment fit the characteristics of an available gap, chen this gap
is allocated for the parameter instead of appending it at the end of the parameter
biock. As each parameter will be aligned to a byte, halfword or word boundary
the size of any gap may be one, two or three bytes. Every gap of size three bytes
can be treated as two gaps, one of size one byte with an alignmer: of 1 and one
of size two bytes with an alignment of 2. So if a parameter of size two is to be
allocated, a two byte gap, if available, is filled up. A parameter of size one will
fill a one byte gap. If none exists but a two byte gap is available, this is used as
two one byte gaps. By this first fit algorithm all parameters are processed in the
order they occur in the Ada program.

A called subprogram accesses each parameter for reading or writing using the para-
meter register or using the parameter block address incremented by an offset from the
siart of the parameter biock suitable for the parameter. So the value of a parameter of
a scalar type or an access type is read (or written) directly from (into) the parameter
register or parameter block. For a parameter of a composite type passed by reference
the actual parameter value is accessed indirectly via the parameter address passed in
a pararmeter register or in the parameter block. For a parameter of a composite type
passed by descriptor the actual parameter value is accessed via the descriptor whose
address is passed in a parameter register or in the parameter block. The descriptor
contains a pointer to the actual object. When standard entry code sequences are used
within the assembler subprogram (see below), the parameter block address is accessible
at address -12($r30).

Type mapping:

To access individual components of array or record types, knowledge about the type
mapping for array and record types is required. An array is stored as a sequential con-
catenation of all its components. Normally, pad bits are used to fill each component
to a byte, halfword, word or a multiple thereof, depending on the size and alignment
requiremments of the components’ subtype. This padding may be influenced using one
of the PRAGMAs pack or byte_pack {cf. §16.1). The offset of an individual array
component is then obtained by multiplying the padded size of one array component by
the number of commponents stored in the array before it. This number may be deter-
mined from the number of elemen:s for each dimension using the fact that the array
elements are stored row by row. (For unconstrained arrays the number of elements for
each dimension can be found in the descriptor, which is passed by reference.)

A record object is implemented as a concatenation of its components. Initially, loca-
tions are reservec for those components that have a component clause applied to them.
Then locations for all other components are reserved. Any gaps large enough to hoid
components without component clauses are filled, so in general the record components
are rearranged. Components in record variants are overlaid. The ordering mechanism
of the components within a record is in principle the same as that for ordering the
parameters in the parameter block.

Aisys Ada System - User Manual 285

Chapter 15 Appendix F

A record may hold implementation-dependent components (cf. §16.4). For a record
component whose size depends on discriminants, a generated component holds the
offset of the record component within the record object. If a record type includes
variant parts there may be a generated component (cf. §16.4) holding the size of the
record object. This size component is allocated as the first component within the record
object if this location is not reserved by a component clause. Since the mapping of
record types is rather complex, record component clauses should be introduced for each
record component if an object of that type is to be passed to a non Ada subprogram
in order to ensure correct access to the components.

Saving registers:

The last aspect of the calling conventions discussed here is that of saving registers. The
calling subprogram assumes that the values of the registers $r1..$r22, $r24..3r25
will be destroyed by the called subprogram, and therefore saves them of its own accord.
The stack pointer $r29 will have the same value after the call as before except for
functions returning unconstrained arrays. The stack limit register ($r23) will have the
same value after the call as before unless the stack of the main task was extended. If
the calied subprogram wants to modify further registers it has to ensure that the old
values are restored upon return from the subprogram. Note that these register saving
conventions differ Fom the C calling standard.

Finally we give the appropriate code sequences for the subprogram entry and for the
return, which both obey the rules stated above.

A subprogram for which PRAGMA interface (assexzbler, ...) is specified is - in
effect - called with the subprogram calling sequence

zove $4.... | assign IN parazeters, if any
zove $20,...

;al <subprograz address>

nep

zove R | read OUT parameters, if any

286 Alsys Ada System - User Manual

Appendix F Chapter 15

Thus the appropriate entry code sequence is

addiu $sp.¥sp.-12

sw $0.0($sp)
sw $£p.4(3sp)
sw $31,8(3sp)

addiu $15,8$sp,-<frame.size-4>
addiu $fp.$sp.4

slt $1,$23.815
bne $1,80.L1
nop -
jal _EXTSTCK | Storage check
move $24,815

L1:
move $sp,$15

| The field at address -4($fp) is reserved
| for use by the Ada runtime system

The return code sequence is then

nove $sp.$5p

1w $31,4(3sp)
1w £p.0(3sp)
jr $31

addiu $sp.3sp.8

15.1.4 Pragma Interface (C, ...)

The Alsys Ada System supports PRAGMA interface (C, ...).

With the help of this pragma and by obeying some rules (described below) subprograms
can be called which follow the C procedure calling standard. As the user must know
something about the internal calling conventions of the Alsys Ada System we recom-
mend reading §15.1.3 before reading this section and before using PRAGMA interface
(c, ...

For each Ada subprogram for which

(3]
w
et |

Alsys Ada System - User Manual

Chapter 15 Appendix F

PRAGMA interface (C, <ada_narze>);

is specified, a routine implementing the body of the subprogram <ada_name> must be
provided, written in any language that obeys the C calling conventions - ¢f. ULTRIX
Documentation Set, Programmer’s Manual, in particular:

- Saving registers
- Calling mechanism
- C stack frame format.

ULTRIX system calls or subroutines are allowed too.

The {ollowing parameter and result types are supported:

C Type Ada Type

int standard.integer

" float standard.float
double standard.long-float
pointer system.address

The calling mechanism for all parameter types is call by value. The type address
may serve to implement all kinds of call by references: The user may build all kinds
of objects and pass their addresses to the C subprogram or ULTRIX system routine.

The name of the routine which implements the subprogram <ada_name> should be
specified using PRAGMA external_naze (see §15.1.2), otherwise the Compiler will gen-
erate an internal name that leads to an unsolved reference during linking. These
generated names are prefixed with an underline; therefore the user should not define
names beginning with an underline.

The following example shows the intended usage of PRAGMA interface (C) tocalla
ULTRIX system routine. The given procedure serves to open a file with a fixed name.
It is called in the body of the main program.

WITH systen:
PROCEDURE unix.call IS
read_zode : CINSTANT integer := 8#0#;

file_naze : CONSTANT string := "/benl/test/f1" & ascii.nul;

288 Alsys Ada System - User Manual

Appendix F Chapter 15

PRAGMA resident (file_name);
ret_code : integer:;
use_error : EXCEPTION;

FUNCTION unix_open (path : system.address;

oflag : integer) RETURN integer:;
PRAGMA interface (C, unix_open);
PRAGMA external_name ("open", unix_open);

BEGIN
ret_code := unix_oper (file_name'address, read_mode);
IF ret_code = -1 THEXN
RAISE use_error;
END IF;
END unix_call;

15.1.5 Pragma C_callable(...)

Like PRAGMA interface (C, ...), PRAGMA c_callable enforces the use of C calling
conventions (cf. §15.1.4). The body of a subprogram for which

PRAGMA c_callable (<ada_mame>);

is specified must still be provided in Ada. The subprogram can be called from Ada
without any restriction; the purpose of this pragma is to enable a C routine (called
from the Ada program) to call back an Ada subprogram.

The name of the subprogram which is to be called by C should be specified using the
PRAGMA externmal_name (see §15.1.2), and this external name is to be used in the C
routine to call back the Ada subprogram. If no external name is specified, the Compiler
will generate an internal name that leads to an unsolved reference during linking.

The PRAGMA c_callable is allowed at the place of a declarative item of a library
package body or library package specification and must apply to a subprogram declared
by an earlier declarative item of the same declarative part or package specification. The
pragma is aiso allowed for a library unit; in this case the pragma must appear after
the subprogram declaration, and before any subsequent compilation unit.

A c_callable subprogram must not be a function returning an unconstrained array
type, nor must it have CUT or IN OUT parameters that are not passed by reference.

Alsys Ada System - User Manual 289

Chapter 15 Appendix F

Furthermore, it must not propagate any exception to its caller because the excepticn
cannot be handled correctly if the caller is a C routine. For this reason, a c_callable
Ada subprogram does not make a storage check upon subprogram entry {cf. §15.1.3).

If either of these restrictions is violated, the program is erroneous.

15.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this section.

15.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in the LRM. We
note here only the implementation-dependent aspects.

ADDRESS
If this attribute is applied to an object for which storage is allocated, it yields the
address of the first storage unjt that is occupied by tre object.
If it is applied to a subprogram or to a task, it yields the address of the entry
point of the subprogram or task body.
If it is applied to a task entry for which an address clause is given, it ylelds the
addre-s given in the address clause.
For any other entity this attribute is not supported and will return the value
system.address_zero.

IMAGE
The image of a character other than a graphic character (cf. LRM(§3.5.5(11)))
is the string obtained by replacing each italic character in the indication of the
character literal (given in the LRM(Annex C(13))) by the corresponding upper-
case character. For example, character 'image(nul) = "NUL".

MACHINE.OVERFLOWS
Yieids =rue for each real type or subtype.

290 Alsys Ada System - User Manual

Appendix F Chapter 15

MACHINE_ROUNDS
Yields true for each real type or subtype.

STORAGE_SIZE
The value delivered by this attribute applied to an access type is as foilows:
If a length specification (STORAGE_SIZE, see §16.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE_SIZE given
for the access type, the attribute delivers the number of storage units currently
allocated for the collection. Note that dynamic collections are extended if needed.
If the collection manager (cf. §13.3.1) is used for a dynamic collection the attribute
delivers the number of storage units currently allocated for the collection. Note
that in this case the number of storage units currently allocated may be decreased
by relcase operations.

The value delivered by this attribute applied to a task type or task object is as
follows:

If a length specification (STORAGE_SIZE, see §16.2) has been given for the task
type, the attribute delivers that specified value; otherwise, the default value is
returned.

15.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

Alsys Ada System - User Manuali 291

Chapter 15 Appendix F

15.3 Specification of the Package SYSTEM

The package system as required in the LRM(§13.7) is reprinted here with all imple-
Jentation-dependent characteristics and extensions flled in.

PACKAGE system IS
TYPE address IS PRIVATE; -
address_zero : CONSTANT address;
FUNCTION m+" (left : address; right : integer) RETURN address;
FUNCTION "+" (left : integer: right : address) RETURN address:
FUNCTION "-" (left : address; right : integer) RETURN address;

FUNCTION "-" (left : address; right : address) RETURN integer;

FUNCTICON symbolic.address (symbol : string) RETURN address;
SUBTYPE external_address IS STRING:

-- Extermnal addresses use hexadecimal notation with characsters
-- '0'..'9", 'a’..'f' and 'A'..'F’. For instance:
.
t

TESPFEEN
rotlre

-- "80000000"
-- "8" represents the same address as "00000008"

FUNCTION convert_address (addr : extermal_address) RETURN address;
-- convert_address raises CONSTRAINT_ERROR if the extermal
-- address addr is the empty string, contains characters other
== than '0'..'9", ‘*a'..'f’, 'A'..'F’ or if the resulting address
-- value cannot be represented with 32 bics.

FUNCTION conver<_address (addr : address) RETURN external._address;
-~ The resulting external address consists of exactly 8
-- characters '0'..’'9', "A'..'F’

TYPE name IS (mips_ultrix);
system_naze : CONSTANT name := mips._ultrix:

292 Alsys Ada System - User Manual

4-—--—l—"l

Appendix F Chapter 15
storage_unit CONSTANT := 8;
mezory.size CONSTANT := 2 == 31;
zin_int : CONSTANT := - 2 == 31;
max.int : CONSTANT := 2 =*x 31 - 1;
max_digits : CONSTANT := 15;
zax_xzantissa : CONSTANT := 31;
fine_delta : CONSTANT := 2.0 ==* (-31);
tick CONSTANT := 1.0 / 256.0;
SUBTYPE pricrity IS integer RANGE O .. 15;
TYPE interrupt_number IS RANGE 1t .. 31;
interrupt_vector : ARRAY (interrupt_number) OF address;
-- The mapping of signal numbers to interrupt addresses is
-- deiined by this array.
sighup : CONSTANT := {;
sigint CONSTANT := 2;
sigquit CONSTANT := 3;
sigill : CONSTANT := 4;
sigtrap : CONSTANT := §;
sigiot CONSTANT := 6:
sigabrt : CONSTANT := sigiot;
sigext CONSTARNT := 7;
sigfpe : CONSTANT := 8:
sigkill : CONSTANT := 9;
sigbus CCNSTANT := 10;
sigsegv CONSTANT := 11;
sigsys CONSTANT := 12;
sigpipe : CONSTANT := 13;
sigalr= : CONSTANT := 14;
sigterz CONSTANT := 15;
sigurg CINSTANT := 16;
sigstop CONSTANT := 17;
sigssty CONSTANT := 18;
sigcont CONSTANT := 19;
sigehld CONSTANT := 20;
-g:.;n CONSTANT := 21;
sigTtou CONSTANT := 22;
siglo CONSTANT := 23;
sigxepu CONSTANT = 24;
sigxfsz COUSTANT := 25;
sigvtalzsz: CONSTANT := 26;
sigpres CCUSTANT = 27
sigwinch : CONSTANT := 28;
Alsys Aca System - User Manual 293

Chapter 15

Appendix F

siglost : CONSTANT := 26;
sigusrl CONSTANT := 30;
sigusr2 CONSTANT := 31;
non_ada_error : EXCEPTION;

-- illegal instruction encountered
error during address translation
illegal address

TYPE exception._id IS NEW address;
no_exception_id : CONSTANT exception_id

-- Coding of the predefined exceptions:

:= NULL;

non_ada_error is raised, if some event occurs which does not
correspond to any situation covered by Ada, e.g.:

FUNCTION constraint_error-id RETURN exception_id:
FUNCTION nuwmeric.error_id RETURN exception.id;
FUNCTION program_error_id RETURN exception.id;
FUNCTION storage_error.i RETURN exception.id;
FUNCTICON tasking_.error_id RETURN exception.id:
FUNCTION non_ada_error_id RETURN exception_id;
FUNCTION status_error.id RETURN exception_id;:
FUNCTION mnode_error_id RETURN exception_id;
FUNCTION name.error.id RETURN exception.id;
FUNCTION use_error_id RETURN exception_id;
FUNCTION device_error_id RETURN exception_id;
FUNCTION end_error.id RETURN exception.id;
FUNCTICON data_error.id RETURN exception._id;
FUNCTICN layout.error.id RETURN exception_id;
FUNCTION time.error_id RETURN exception.id;

no.error._code

CONSTANT := 0;

TYPE exception_information
S RECCRD
excp_id

exception_id:

-- Identification of the exception. The codings of
-~ the predefined exceptions are given above.

code_addr
-- Code address

address;
where the exception occured. Depending

294

Alsvs Ada System - User Manual

Appendix F Chapter 15

-- on the kind of the exception it may be the address of
== the instruction which caused the exception, or it
-- may be the address of the instruction which would
-- have been executed if the exception had not occured.
error_code : integer:
END RECORD:

PROCEDURE get_exception_information
(excp_info : QUT exception_information);
-- The subprogram get_exception._information must only be called
-- frem within an exception handler BEFORE ANY OTHER EXCEPTION
~- IS RAISED. It then returns the information record about the
-- actually handled exception.
-~ Otherwise, its result is undefined.

PROCEDURE raise_exception.id
(excp_id : exception.id):

PROCEDURE raise_exception_info
(excp.info : exception_information);

-- The subprogram raise_exception_id raises the exception
-- given as parameter. It corresponds to the RAISE statement.

== The subprcg:aﬁ raise_exception.info raises the exception

-- described by the information record supplied as parazmeter.

-- In addition to the subprogram raise_exception_id it allows to
-- explicitly define all components of the exception information
-- record.

-- I7 IS INTENDED THAT BOTH SUBPROGRAMS ARE USED ONLY WHEN
-- INTERFACING WITH THE OPERATING SYSTEM.

TYPE exit_code IS NEW integer;

error : CONSTANT exit_code := 1;
success : CINSTANT exit_code := 0;
errno : integer:

FOR ermmo USE AT symbolic_address ("errno");

== Allows access to the errno set by the last system call, C, or
-- assembler routine call that was zade on behalf of the calling
-- task.

PROCEDURE set_exit_code (val : exit_code);
-- Specifies the exit code which is returned to the

Alsys Ada System - User Manual 295

Chapter 15 Appendix F

-- operating system if the Ada program terminates normally.
-~ The default exit code is ’'success’'. If the program is
-- abandoned because of an exception, the exit code is
~= ‘'error’'.
PRIVATE

-~ private declarations

END system;

15.4 Restrictions on Representation Clauses

See Chapter 16 of this manual.

15.5 Conventions for Implementation-Generated Names

There are implementation generaied components but these have no names. (cf. §16.4
of this manual).

15.6 Expressions in Address Clauses

See §16.5 of this manual.

15.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kinds of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion is unpredictable, if

target_<ype 'SIZZ > source_type SIZE

2936 Alsys Ada System - User Manual

Appendix F Chapter 15

15.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in the LRM(Chapter 14) are repcrted in Chapter 17 of this manual.

15.9 Requirements for a Main Program

A main program rmust be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

15.10 Unchecked Storage Deallocation

The generic procedure unchecked_deallocation is provided; the effect of calling an
instance of this procedure is as described in the LRM(§13.10.1).

The implementation also provides an implementation-defined package collection_
zanager, which has advantages over unchecked deallocation in some applications (cf.
§13.3.1).

Unchecked deallocation and operations of the collection_zanager can be combined
as follows: '

e collection_manager.reset can be applied to a collection on which unchecked
deallocation has aiso been used. The effect is that storage of all objects of the
collection is reclaimed.

e« After the first unchecked_deallocation (release) on a collection, all following
calls of release (unchecked_deallocation) until the next reset have no effect,
i.e. storage is not reclaimed.

o aftera reset a collection can be managed by zark and release (resp. unchecked_
deallocation) with the normal effect even if it was managed by unchecked_
deallocation {resp. zark and release) before the reset.

15.11 Machine Code Insertions

A package zachine_coce is not provided and machine code insertions are not sup-
ported.

Aisys Ada System - User Manual 297

Chapter 153 Appendix F

15.12 Numeric Error

The predefined exception numeric_error is never raised implicitly by any predefined
operation; instead the predefined exception constraint_error is raised.

298 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

16 Appendix F: Representation Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK

As stipulated in the LRM(§13.1), this pragma may be ziven for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized. For
components whose type is an array or record type PRAGMA pack has no effect on
the mapping of the component type. For all other component types the Compiler
will choose a representation for the component type that needs minimal storage
space {packing down to the bit level). Thus the components of a packed data
structure will in genera] not start at storage unit boundaries.

BYTZ_PACK

This is an implementation-defined pragma which takes the same argument as
the predefined language PRAGMA pack and is allowed at the same positions. For
components whose type is an array or record type PRAGMA byte_pack has no
effect on the mapping of the component type. For all other component types the
Compiler will try to choose a more compact representation for the component type.
But in contrast to PRAGMA pack all components of a packed data structure will
start at storage unit boundaries and the size of the components will be a multiple
of systez.storage._unit. Thus, PRAGMA byte_pack does not effect packing down
to the bit levei (for this see PRAGMA pack).

Alsys Ada Svstem - User Manual 299

Chapter 16 Appendix F: Representation Clauses

16.2 Length Clauses

A
P T

for all integer, fixed point and enumeration types the value must be <= 32;

for £1~at typcs the value must be = 32 (this is the amount of storage which is
associated with these types anyway).

for long_float types the value must be = 64 (this is the amount of storage which
is associated with these types anyway);

for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).

If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGE_SIZE

Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K (+ 2K) bytes if no
length clause is given (cf. Chapter 14). If the task is to be allotted either more or
less space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause. Whether
a length clause is given or not, an additional 2K bytes are allotted for runtime
activities and the total space allotted is not extended dynamically at runtime.

SMALL

there is no implementation-dependent restriction. Any specification for SMALL
that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

16.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest integer type which is supported: this is the type integer defined in package
standard.

Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

e If the record type includes variant parts and the difference between the maximum
and the minimum sizes of the variant is greater than 32 bytes, and, in addition,
if it has either more than one discriminant or else the only discriminant may
hold more than 256 different values, the generated component holds the size of
the record object. (If the second condition is not fulfilled, the number of bits
allocated for any object of the record type will be the value delivered by the size
attribute applied to the record type.)

o Ifthe record type includes array or record components whose sizes depend on dis-
criminants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. LRM(§13.4(8))) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared oy an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler
listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address. Address clauses for single entries are described in §16.5.1.

Alsys Ada System - User Manuai 301

Chapter 16 Appendix F: Representation Clauses

16.5.1 Interrupts

Under ULTRIX it is not possible to handle hardware interrupts directly within the Ada
program; all hardware interrupts are handled by the operating system. In ULTRIX,
asynchronous events are dealt with by signals (cf. sigvec(2)). In the remainder of this
section the terms signal and tnterrupt should be regarded as synonyms.

An address clause for an entry associates the entry with a signal. When a signal
occurs, a signal catching handler, provided by the Ada runtime system, initiates the
entry call.

By this mechanism, an interrupt acts as an entry call to that task; such an entry is
called an interrupt entry. '

The interrupt is mapped to an ordinary entry czll. The entry may also be called by an
Ada entry call statemeat. However, it is assumed that when an interrupt occurs there
is no entry call waiting in the entry queue. Otherwise, the program is erroneous and
behaves in the following way:

e Ifan entry call stemming from an interrupt is already queued, this previous entry
call is lost.

e« The entry call stemming from the interrupt is inserted into the front of the entry
queue, so that it is handled before any entry call stemming from an Ada entry
call statement.

16.5.1.1 Association between Entry and Interrupt

The association between an entry and an interrupt is achieved via an interrupt number
(type system.interrupt.number), the range of interrupt numbers being 1 .. 31 (this
means that 31 single entries can act as interrupt entries). The meaning of the interrupt
(signal) numbers is as defined in sigvec(2). A single parameterless entry of a task can be
associated with an interrupt by an address clause (the Compiler does not check these
conventions). Since an address value must be given in the address clause, the interrupt
aumber has to be converted into type system.address. The array system.interrupt-
vec=tor is provided for this purpose; it is indexed by an interrupt number to get the
corresponding address.

The following example associates the entry ir with signal SIGINT.

302 Alsys Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

TASK handler IS
ENTRY ir;

FOR ir USE AT system.interrupt_vector (system.sigint):
END:

The task body contains ordinary accept statements for the entries.

16.5.1.2 Important Implementation Information

There are some important facts which the user of interrupt entries should know about
the implementation. First of all, there are some signals which the user should not
use within address clauses for entries. These signals are sigfpe, sigsegv, sigbus,
sigill, sigtrap and sigalrx; they are used by the Ada Runtime System to implement
exception handling and delay statements (sigalrm). Programs containing address
clauses for entries with these interrupt numbers are erroneous.

Moreover, the Debug Runtime System establishes a signal catching handler for the
signal sigusr!; hence, during debugging of any program containing an address clause
for an entry with this interrupt number, the break-in and connect commands (described
in §8.7.2 and §8.5.1 respectively) cannot be used as described.

In the absence of address clauses for entries, the Ada Runtime System establishes signal
catching handlers only for the signals mentioned above, so all other signals wil] lead
1o program abortion as specified in the ULTRIX documentation.

A signal catching handler for a specific signal is established when a task which has an
interrupt entry for this signal is activated. The signal catching handler is deactivated
and the previous handler is restored when the task has been completed. Several tasks
with interrupt entries for the same signal may exist in parallel; in this case the signal
catching handler is established when the first of these tasks is activated, and deactivated
when the last of these tasks has been completed.

16.6 Change of Representation

The implementation places no additional restrictions on changes of representaticu.

Alsys Ada System - User Manual 303

Chapter 16

Appendix F: Representation Clauses

Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

17 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of the LRM and provide
notes for the use of the features described in each section.

17.1 External Files and File Objects

An external file is identified by a string that denotes a ULTRIX file name. It may
consist of up to 1023 characters.

The form string specified for external files is described in §17.2.1.1.

17.2 Sequential and Direct Files

Sequential and direct files are ordinary files which are interpreted to be formatted with
. records of Sxed or variable length. Each element of the file is stored in one record.

In case of a fixed record length each file element has the same size, which may be
specified by a form parameter (see §17.2.1.1); if none is specified, it is determined to
be (eiement_type’ SIZE = system.storage_unit — 1)/system.storage _unit.

In contrast, if a variable record length is chosen, the size of each file element may
be different. Each file element is written with its actual length. When reading a file
eiement its size is determined as follows:

e If an object of the element_type has a size component (see §16.4) the element
size is determined by first reading the corresponding size component from the file.

o If element_type is constrained, the size is the minimal number of bytes needed
to hoid a constrained object of that type.

e In all other cases, the size of the current file element is determined by the size of
the variable given for reading.

17.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in the LR'1.

Alsys Ada Sys:tem - User Manual 305

Chapter 17 Appendix F: Input-Output

17.2.1.1 The NAME and FORM Parameters

The nazme parameter must be a ULTRIX file name. The function naze will return a
path name string which is the complete file name of the file opened or created. Each
component of the file name (separated by ”/”) is truncated to 255 characters. Upper
and lower case letters within the dle name string are distinguished.

The syntax of the fora parameter string is defined by:

forzm_parameter ::= [form_specification { , form_specification }]

forn_specification ::= keyword [=> value]

keywerd identifier

value identifier | numeric_literal

For identifier and numeric_literal see LRM(Appendix E). Only an integer literal
is allowed as numeric_literal (see LRM(§2.4)). In an identifier or numeric_
literal, upper and lower case leiters are not distinguished.

In the following, the form specifications which are allowed for ail fles are described.

MOCE => numeric_literal

This value specifies the access permission of an external file; it only has an effect in
a create operation and is ignored in an open. Access tights can be specified for the
owner of the file, the members of a group, and for all other users. nuzeric_literal
has to be a three digit octal number.

The access permission is then interpreted as follows:

8#30C# read access by owner
8#200%# write access by owner
8#1QC% execute access by owner
8#04C# read access by group
. write/execute access by group, analogously
8#004# read access by all others
write/execute access by others, analogously

306 Alsys Ada System - User Manuai

Appendix F: Input-Output Chapter 17

Each combination of the values specified above is possible. The default value is
8666+

The definitive access permission is then determined by the ULTRIX System. It will be
the specified value for MODE, except that no access right prohibited by the process’s
file mode creation mask (which may be set by the ULTRIX umask command, cf. sA(1)
and umask(2)) is granted. In otker words, the value of each "digit” in the process’s
file mode creation mask is subtracted from the corresponding "digit” of the specified
mode. For example, 2 file mode creation mask of 8#022# removes group and others
write permission (i.e. the default mode 8#666# would become mode 8#644+#).

The following form specification is allowed for sequential, direct and text files:

SYNCHRC => OFF | ON | ON_WAIT

It allows reader/writer synchronization of parallel file accesses by different processes,
such that only one process may write to a file (and no other process may read from
or write to the same file in parallel) or multiple processes may read a file in parallel.
This synchronization is achieved through the system call fentl(2).

By default parzllel accesses are ot synchronized (SYNCERO => OFF).

If the form specification SYNCERC => ON is given, USE_ERROR is raised when the
access is not possible (because other processes arz accessing the file when write access is
requested, or because another process is writing the file when read access is requested).
If the form specification SYNCHRG => ON_WAIT is given, the process is blocked when the
access is not possible for one of the above reasons. When the access becomes possible,
the process is unblocked. USE_ERROR is not raised with SYNCHRO => ON_WAIT.

The following form specification is allowed for sequential and direct files:

RECORD_SIZE => numeric_literal

This value specifies the size of one element on the file (record size) in bytes. This form
specification is only allowed for files with fixed record format. If the value is specified
for an existing Sle it must agree with the value of the external file.

By default, (elemenc_type’SIZE — systemn.storage_unit — 1)/systemn.storage_unat will be chosen
as record size. if the evaluation of this expression does not raise an exception. In this
case, the attempt to create or open a file will raise USE_ERROR.

If a fixed record format is used, all objects written to a file which are shorter than the
record size are filled up. The content of this extended record area is undefined. An
attercpt to write an element which is larger than the specified record size will result
in the exception use_error being raised. This can only happen if the record size is
specified explicitly.

Alsys Ada System - User Manual 307

Chapter 17 Appendix F: Input-Output

17.2.1.2 Sequential Files

A sequential fle is represented by an ordinary file that is interpreted to be formatted
with either fixed-lecgth or veriable-length records (this may be specified by the form
parameter).

If a fixed record format is used, all objects written to a file which are shorter than
the maximum record size are filled up. The content of this extended record area is
undefined.

RECORD_FORMAT => VARIABLEZ | FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

The default is variable record size. This means that each file element is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

APPEND => FALSE | TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output fle, then the file pointer will be set to the end of the fle after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

TRUNCATZ => FALSE | TRUE

If the form specification TRUNCATE => TRUE is given for an existing file in an open for
an output le, then the file length is truncated to O, i.e. the previous contents of the
fle are deleted. Otherwise the file is rewritten, i.e. if the amount of data written is
less than the file size, data previously written will remain at the end of the file. This
form specification is only allowed for an output file; it only has an effect in an open
operation and is ignored in a create. By default the value TRUE is chosen.

308 Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

The default form string for a sequential file is :

"RECCRD_FORMAT => VARIABLE, APPEND => FALSE, " &
"TRUNCATE => TRUE, MODE => 8#666#%# " &
"SYNCHRGO => QFF"

17.2.1.3 Direct Files

The implementation dependent type count defined in the package specification of
direct_io has an upper bound of :

COUNT'LAST = 2_147_483_€47 (= INTEGER'LAST)

A direct file is represented by an ordinary file that is interpreted to be formatted
with records of fixed length. If not explicitly specified, the record size is equal to
(element_type' SIZE ~ systemn.storage_unit — 1)/ system.storage _unit,

The default form string for a direct file is :

"RECORD_SIZE => ..., MODE => 8#666#, SYNCHRO => QFF"

17.3 Text Input-Output

Tex: flles are sequential character files.

Each line of a text file consists of a sequence of characters terminated by a line termi-
nator, i.e. an ASCII.LF character.

A page terminator is represented by an ASCILFF character and is always preceded by
a iine terminator.

A fle terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not explicitly one as the last character of the file.

Output to a file and to a terminal differ in the following way: If the output refers to
a terminal it is unbuffered, which means that each write request in an Ada program

Alsys Ada System - User Manual 309

Chapter 17 Appendix F: Input-Output

will appear on the terminal immediately. Output to other files is buffered, i.e several
characters are saved up and written as a block.

Terminal input is always processed in units of lines.

17.3.1 File Management

Besides the mode specification (cf. §17.2.1.1) the following form specification is allowed:

APPEND => FALSE | TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

The default formn string for a text file is :

"APPEND => FALSE, MODE => 8#666#, SYNCHRO => QFF"

17.3.2 Default Input and Output Files

The standard input (resp. output) fle is associated with the standard ULTRIX files
stdin resp. stdout.

Writing to the ULTRIX standard error file stderr may be done by using the package
text_io_extension (cf. §13.3.4).

310 Alsys Ada System - User Manual

Appendix F: Input-Output Chapter 17

17.3.3 Implementation-Defined Types

The impiementation-dependent types count and field defined in the package specifi-
cation of text_io have the following upper bounds :

COUNT'LAST = 2_147_483.647 (= INTEGER'LAST)

FIELD'LAST = 512

17.4 Exceptions in Input-Output

For each of name_error, use_error, device_error and data_error we list the condi-
tions under which that exception can be raised. The conditions under which the other

exceptions declared in the package io_exceptions can be raised are as described in
LRM(§14.4).

NAME_ERROR

e in an open operation, if the specified file does not exist;

o if the name parameter in a call of the create or open procedure is not a legal
ULTRIX file name string; i.e, if a component of the path prefix is not a directory.

USE_ERROR

« whenever an error occurred during an operation of the underlying ULTRIX system.
This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a capacity limit is exceeded
or for similar reasons;

o if the function naze is applied to a temporary file or to the standard input or
output ile;
o if an attempt is made to write or read to/from a file with Sxed record format a

record which is larger than the record size determined when the file was opened
(cf. §17.2.1.1); in general it is only guaranteed that a file which is created by an
Ada program may be reopened and read successfully by another program if the
file types and the form strings are the same;

o in a create or open operation for a fle with fixed record format (direct file or
sequential file with form parameter RECORD_FORMAT => FIXED) if no record size is
specified and the evaiuation of the size of the element type will raise an exception.

Alsys Ada System - User Manual 311

Chapter 17 Appendix F: Input-Output

(For example, if direct.io or sequential-io is instantiated with an unconstrained
array type.)

if a given forz parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§17.2-3 is not fulfilled;

in 2 create or open operation with form specification SYNCHRO => ON when the
requested access is currently not possible; see §17.2.1.1 for the exact conditions.

DEVICE_ERROR

is never raised. Instead of this exception the exception use_error is raised when-
ever an error occurred during an operation of the underlying ULTRIX system.

DATA_ERROR

the conditions under which data_error is raised by text_io are laid down in the
LRM.

In general, the exception data_error is not usually raised by the procedure read
of sequential_io and direct_io if the element read is not a legal value of the
element type because there is no information about the file type or form strings
specified when the file was created.

An illegal value may appear if the package sequential_ioc or direct_io was
instantiated with a different element_type or if a different form parameter string
was specified when creating the file. It may also appear if reading a fle element
is done with a constrained object and the constraint of the file element does not
agree with the constraint of the object.

If the element on the file is not a legal value of the eiement type the effect of
reading is undefined. An access to the object that holds the element afier reading
may cause a constrained._error, storage_error or non_ada_erIor.

17.5 Low Level input-Output

We give nere the specification of the package low_level_ io:

-~

LAGE low_level_.io IS

TYPZ device_type IS (null_device);

NULL;

31

Alsys Ada System - User Manual

Appendix F: Input-Output

Chapter 17

END RECORD;

PROCEDURE send_control (device
data

PROCEDURE receive_control (device
data

EXD low.level_io:

: device.type:
: IN OUT data_type):

; device_type;
: IN OUT data_type):

Note that the enumeration type device_type has only one enumeration value, null_
device; thus the procedures send_control and receive_control can be called, but
send_control will have no effect on any physical device and the value of the actual
parameter data after a call of receive_control will have no physical significance.

Alsys Ada System - User Manual

Chapter 17 Appendix F: Input-Output

314 Alsys Ada System - User Manual

