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ABSTRACT

The sliding mode control is known as a robust control that is able to work under

the uncertainties of modeling error and the environmental disturbances. The objective of

this research is to design the simple control (sliding control) algorithms for a single-link

flexible arm and to study the robustness due to varying payload. A general form of

physical plant in state space is formulated. To achieve a continuous control, a time-

varying boundary layer was introduced into the control system neighboring the sliding

surface. The computer simulation program was coded in MATLAB. A low-cost IBM-AT

micro-computer was utilized to implement the sliding control on the flexible arm system.
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I. INTRODUCTION

A. MOTIVATION

The control of flexible arms has been an active research area and a challenge to

researchers. The motion control of flexible arms concerns the tip position and the control

algorithm should be able to deal with the large motion and the small motion due to vibrations.

It is difficult to have a precise arm model and an error exists between the model and the plant,

that is modeling error. The modeling error for flexible arm may contain changing payload, high-

frequency unmodeled dynamics, deviation on load position in the end-effector, and

environmental disturbances.

As the operation of control system is concerned, the computation of the control law plays

an important role. While the time-delaying may worsen the control system, the control structure

has to be as simple as possible to reduce the computation time. Since the models of flexible arms

are complicated, simplified models will be utilized and controllers will be designed accordingly.

Therefore, the challenge that we encounter in this research is to design simple control

algorithms such that the modeling errors due to changing payload are compensated and the on-

line operation will also be achieved on the single-link flexible arm. An IBM-AT is chosen for

the low-cost implementation in this research.

B. LITERATURE REVIEW

The single-link flexible arm model of using Equivalent Rigid Link System (ERLS) was

first derived by Chang [Ref. 1]. The ERLS described the motion in large motion and small
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motion. A Sequential Integration Method [Ref. 2] was also derived to facilitate an effective

integration routine. Petroka [Ref. 3] experimentally validated the ERLS dynamic model of

single-link flexible arm which was built and driven by an electrohydraulic actuator. Gannon

[Ref. 4] upgraded the model by using the natural-mode shape function. Park [Ref. 3] designed

and simulated a closed-loop non-robust controller for the arm. Kirkland [Ref. 5] redefined and

implemented the controller on an IBM-AT computer. A strain gage and a potentiometer were

used to determine the tip position of the arm.

As the robust control algorithm is concerned, the Sliding Mode Control (SMC) [Ref. 6-9]

has been known as a robust control that is insensitive to modeling error and disturbances. Figure

1 illustrates a synthesis view of the sliding mode control. The external disturbances and

parameters variation will first be filtered by the S dynamics to produce S and the generated S

will be fed into error dynamics to perform further filtering. Thus, the S dynamics play very

important roles to provide robustness to the control system. Once the S dynamics reject all the

unwanted signals, the error dynamics will present the system behavior. Because of the

undesirable high speed switched control on the sliding mode, a boundary layer thickness was

introduced to the control system and a smoothed control was designed. Fan [Ref. 10] simulated

and implemented the sliding mode control on the single link flexible arm. The robustness of the

control was proved despite of a simplified model. Straight sliding control [Ref. 11] and versatile

sliding control [Ref. 12] utilizing the idea of filtering provide more tuning capability on the S

dynamics such that the unwanted signals will be filtered. In this research, these sliding control

algorithms will be applied to the single link flexible arm to study the control system dynamics.

2



C. OBJECTIVE

The objective of this research is to utilize simple control structures (sliding mode

controls) to perform the motion control of a single-link flexible arm. The robustness due to

varying payload will be studied. The control design will be performed in a state-space form

using matrix-norm techniques. An IBM-AT will be chosen for the implementation.

s- 1yn ts iError Dynamicsl

Fig=r 1 A synthesis view of sliding mode control
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H. PLANT AND ITS MATHEMATICAL MODELS

A. PHYSICAL PLANT

An experimental arm is shown in Fig. 2, which is driven by an electrohydraulic actuator.

The motion of the arm is limited to a vertical plane. The flexible arm can bend freely in the

vertical plane, but it is stiff in torsion and horizontal bending. The arm consists of two parallel

steel flat bars welded at the base and directly clamped to the hydraulic actuator. Torsional

stiffness is obtained by connecting the two steel bars, with thin steel strips, to seven transverse

steel bridges. Table 1 shows geometric and mass properties of the flexible arm.

Table 1

Arm Length 0.9985 m

Arm Mass 4.8565 kg

Transverse Rigidity 81.3 N m2

Arm Cross-Sectional Area 6.178x10 4 m2

Density 7861.05 kg/m3

A potentiometer is used to measure the actuator (large motion) signal. A two-arm bridge

strain gage attached to the center of the arm is used to calculate the tip deflection (small motion)

of the arm. Data acquisition was performed using a high speed Data Translation interface board

4



DT 2821-F-8DI, which was installed in a micro-computer (standard IBM-PC AT). The support

software (AT-LAB) allowed direct manipulation of the data acquisition board through the use

of provided subroutines which are compatible with FORTRAN.

Figure 2 A Single-Link Flexible Manipulator System

B. MATHEMATICAL MODEL OF THE PLANT

In this section, a mathematical model of the plant is given, which includes an ERLS

(Equivalent Rigid Link System) dynamic model of the arm and actuator dynamics.

1. AN ERLS DYNAMIC MODEL OF FLEXIBLE ARM

The ERLS is defined as a hypothetical system which produces the large motion

and whose kinematics are equivalent to a rigid-link system. An ERLS of a planar manipulator

5



with single link is shown schematically with the dash line in Figure 3, where geometric center

line of link was drawn. The solid lines stand for the deformed state of the arm. The ERLS of

a flexible arm describes the large motion of the arm, and then the small motion arising from the

structure flexibility can be superimposed on the ERLS [Ref. 11

The ERLS dynamic model of the arm was developed by means of Lagrange's

formulation, the Finite Element Method, and the ERLS kinematics. To apply the Lagrangian

dynamics to the flexible arm, the generalized coordinate (Figure 3) is chosen to describe the

large motion by joint variable 0. The Finite Element Method is utilized to discretize the

displacement such that the small motion is represented in terms of nodal displacement u, where u

is the tip deflection. In this study, the natural mode shape functions of a beam are used to

represent the flexural motion of the flexible arm, and the arm is modeled as a continuous Euler-

Bernoulli cantilever beam, neglecting shear deformation and rotary effects. [Ref. 4]

Y

(0)

V(O)

Figure 3 Generalized Coordinate
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2. EQUATIONS OF MOTION OF FLEXIBLE ARM

Lagrange's equations for the flexible manipulator are

d (-7.) _-- + -E =GF i=1,2. (2.1)

t a4i aqi aqi

where KE and PE are kinetic and potential energies. q 's are the generalized coordinates and

are defined by

[q, q2] [6 u] (2.2)

GF's are generalized forces. For the system without applied forces at the end effector, the

generalized force vector is given as

GF = [GF1 GF2]T = [T 01T (2.3)

where T is an applied torque at the joint. [ ]T represents the transpose of the matrix.

The total kinetic energy has three parts, i.e., the kinetics energy of the arm (KE1),

the rotor of the actuator (KE), and the payload (KE). The mathematical expressions of these

energies are

KE- f T i i dm (2.4)
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KE, - Trace , t r, dm (2.5)
2 fmor r

and

KEp Trace f t i'P T dm (2.6)

where i is the velocity of a differential mass, the subscripts I, r, and p are for the link, the

rotor, and the payload, and dm is the differential mass. Note that applying the Trace operator

on the kinetic improves the computational efficiency for the rigid-body modeling since time-

invariant terms can be separated from time-variant terms through the operator.

The potential energy comes from strain energy and gravitational energy. The

mathematical expressions are given as

PE. - f .EJ (-i) dx (2.7)

and

Pfrrg -f, r g dn (2.8)

where EJ, is the bending rigidity in the xy plane, g is a gravitational acceleration vector.

According to the inertial coordinates in Figure 3, the gravitational acceleration is defined as

8



g = [0 0 -9.8 01T (M/sec 2) (2.9)

KE and PE are expressed in terms of the generalized coordinates q,. The absolute positions and

velocities in Equation (2.4)-(2.8) are formulated by the kinematics of the ERLS. [Ref. 1]

Two sets of equation of motion for a single-link flexible manipulator are obtained

from the derivation of above, which are nonlinear, coupled, second-order, ordinary differential

equations represented as follows,

meeO + mei = fe (2.10)

mqe6 + mI3 + gn 6 + k,1 U-A (2.11)

where u represents the nodal displacement. m., and m,, are effective masses for the large

motion and small motion, m . and m, 8 are coupled masses between large and small motion, g.

is gyroscope for small motion, k, is stiffness for small motion, and fo and f, are

load for large and small motion. The effective and coupled masses, the gyroscopic matrix, and

load are nonlinear in 0 or 0 . In order to separate the applied torque from other terms in f

, let fs = he + T. [Ref. 3] In this study, a motion control is designed to control the tip position

of the arm. With a small deflection assumption, the tip position can be approximated and

represented by a total angle (p , where (p = 0 * u/L. The control design therefore requires

9



a mathematical model for the total angle. Equations (2.10) and (2.11) can thus be rewritten into

an explicit form for the applied torque as follows,

meo6 + meji he + T (2.12)

mIeO + M, , + g,1u + k,1U = f1  (2.13)

Since

L

Equations (2.12) and (2.13) can further be rearranged in terms of the total angle as

moorp + (meq - moo[L)D = he + T (2.14)

mne + (m,. - me/L)B + g, + =U A (2.15)

From Equations (2.14) and (2.15), an uncoupled equation for the total angle (P is obtained by

eliminating the small deflection v as follows,

N r + Fe = T (2.16)

where

10



N = mae - D m,.8

F, = D (f, -gn 6 - k. u) - he (2.17)

D = Men - meOWL
m fin- MreJWL

3. ELECTROHYDRAULIC ACTUATION

The flexible arm is driven by an electrohydraulic actuator of which the dynamics

is an integral part of the total system model. The dynamics of the electrohydraulic actuator

include servovalve dynamics and hydraulic motor dynamics. A simplified description of

servovalve dynamics was provided by MOOG, the manufacturer of the servovalve. A single

equation which presents the dynamics is given as

Q = K I (2.18)

where Q is the flow delivered from the servovalve, K is a valve sizing constant which

contributes to hydraulic system damping. I is an input current, and P,, is the valve pressure

drop, i.e., P, - PL, where P, is the supply pressure and P. is the load pressure drop.

Motor dynamics consists of a form of continuity equation and the torque output

equation [Ref. 13]. They are written as follows

Q=D.O+C P z + (2.19)
41,

11



and

T =Yl PL D. (2.20)

where D. is the motor displacement, C,,,PL is the leakage flow in the motor, (V / 4 p,)PL is

the compressibility flow, and Y1, is the torque efficiency. A detail account for the selection of

hydraulic component for the system was included in [Ref. 3].

C. STATE SPACE REPRESENTATION

Considering the plant dynamic model, Equations (2.16) through (2.20), these equations

can further be rearranged as

N + F, = rD.PL (2.21)

and

DO + CtPL + ('!I)PL = K/v-P (2.22)

Differentiating Equation (2.21)

N; + 1q) + P, -- rDmPtL (2.23)

Equation (2.21) and (2.22) can be rewritten as

12



PL KIFP-D.O-CPL) (2.24)

L 4+ F,) (2.25)

Substituting Equations (2.25) into Equation (2.24), and then substituting Equation (2.24) into

Equation (2.23) give

= boI + fo (2.26)

where

4 .D.rK + F,

0 I V N (N J

Note that Equation (2.26) is a time-varying, nonlinear third-order ordinary differential equation

represented in scalar form.

In this study, the state space representation of Equation (2.26) will be used for

the control action and the representation is given as follows

13



.= Bu +f (2.27)

where

X (p ]T

B =0 0 bj]T

U=1

f= f 0 ]T

The representation of Equation (2.27) will be used for the development in the control techniques.
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III. CONTROLLER DESIGN (SLIDING MODE CONTROL)

A. INTRODUCTION

For many control system design problems, the designers do not have a detailed state-

space model of the plant to be controlled, either because it is too complex, or because its

dynamics are not completely understood. No nominal model should be considered complete

without an assessment of its errors. These errors are refereed to as modeling uncertainties of the

system. Therefore, a robust control design was attempted such that the control system will be

insensitive to the modeling uncertainties.

Based on our knowledge of physical mechanisms which cause differences between model

and plant and our ability of representing these mechanisms, the representations of uncertainties

may vary in terms of the structure they have. In practice, it is possible to represent these error

in a highly structured parameterized form. These are usually the low frequency components. For

a manipulator system, these parametric uncertainty or structured uncertainty may come from the

imprecision on the manipulator mass properties, unknown loads, uncertainty on the load position

in the end-effector, and inaccuracy on the torque constants of the actuators. However, there are

always remaining higher frequency errors in the systems, which can not be covered in the

parameter uncertainties. Also, these high frequency unmodeled dynamics is referred to as

unstructured uncertainties. These unstructured uncertainties are usually caused by unmodeled

structural modes, neglected time-delays in the actuators, or finite sampling rate.

The greatest challenge of designing a robust controller is not only to minimize

15



performance sensitivity to uncertainties due to system parameters but also not to excite the high

frequency unmodeled dynamics. The Sliding Mode Control has been known as a robust control

that is able to work under the confined uncertainties of dynamic modeling error and

environmental disturbances. The concepts of the SMC derived from the Variable Structure

Control have been extensively studied in the Soviet Union for more than two decades. The SMC

utilizes a high-speed switching control law to drive the plant's state trajectory toward a specified

surface (the sliding surface) and to maintain the plant's state trajectory on this surface.

The SMC using output models involves two filters, i.e., S dynamics and error dynamics.

The S dynamics was designed to filter the uncertainties and the error dynamics was designed to

obtain system error e. Figure 1 illustrated the sliding algorithm from the filter point of view, and

also the control system block diagram is shown in Figure 4. Since a high-speed switched control

about the sliding surface is not favorable to mechanical systems, a boundary layer thickness was

introduced into the SMC such that a smoothed control is achieved.

In this chapter, three sliding mode controls will be presented, which includes the sliding

control with a first-order sliding condition, the straight sliding control, and the versatile sliding

control. Before presenting the control algorithms, the uncertainties and the sliding surfaces will

first be described.
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Figure 4 Block Diagram of Sliding Mode Comtrol

B. SYSTEM EQUATIONS AND CONFINED UNCERTAINTIES

From Chapter H, the dynamic equation of a flexible single-link arm was written as

X=Bu +f (3.1)

where

X = IxI x2 x3]T

U = [ u]

f [fA f2 Af] T

B=[B B2 B3 JT

17



Note that B and f are, in general, nonlinear functions of output variables and time. Equation

(3.1) can be seen as a canonical form of physical models for nonlinear time-varying dynamical

systems.

To control system, a nominal mathematical model of the system can be obtained as,

t =Bu +J (3.2)

and j are the nominal values of B and f, which can be estimated from the theoretical

evaluations or experiments. Due to parameter uncertainty, the discrepancies between the model

and the physical plant are specified by AB and Af, where

AB =B- B (3.3)
Af =f- I

The sliding control assumes that uncertainties and disturbances are bounded. The

uncertainties associated with the model are confined as

IABI P P (3.4)
If'I < y

where I*1 denotes a norm of - which is a vector or a matrix. Note that in this study the norm

of A , for instance, is defined as

JlA _ [eig(A TA)L. (3.5)
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where [eig(.)]., stands for the maximum eigenvalue (i.e., the spectral radius) of .. This matrix

norm is called the spectral norm and the corresponding vector norm is called Euclidean vector

norm. The confining parameter p and y can be found as

I 2 i (3.6)

where the components of e. (or -) are the maximum (or minimum) values of the

corresponding components of .. It is noted that p and y are non-negative numbers. It also

implies that the system parameters and their nominal values are related as

2 (3.7)
f. + fmi

2

The greatest value of confinement of AB is defined as

(AB). = B. - B (3.8)
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C. SLIDING SURFACES

In this single-link flexible arm study, sliding surface will only have one because of one

control-input. The sliding surface is defined to be S = 0 where S is a sliding variable. The

sliding variable directly relates the system error as

S = R e (3.9)

where

S S,

e=[el e2 e3 ]T

R=[r, r2 r3 ]7

e is the tracking error, i.e., e = X - Xd, where Xd is a desired output vector, and is defined

as

Xd= [ xld X2d xd]T

R is to locate the poles of the error dynamics on the sliding surface. S can be interpreted as an

input to the error dynamics, and the error is a filtered version of S.

An integral control can be introduced into sliding surface to eliminate steady-state error

as follows,
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S = RT € + GT fedt (3.10)

where

G g, 92 g3 ]T

Note that once the poles for each sliding surface were assigned, the R and G are both constant

vectors.

D. SLIDING CONTROL WITH A FIRST-ORDER SLIDING CONDITION

The relationship between control input u and S dynamics can then be obtained by

differentiating Equation (3.10)

R RT i + GTe (3.11)

Since

X=Bu +f

Equation (3 11) can be rewritten as

S = RT(Bu + f- Xd)+ GTe (3.12)

The role of the control input u is to control the S dynamics such that the sliding surfaces can
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be reached within a finite time. Once the sliding surface is reached, zero steady-state tracking

can thus be achieved on the sliding surfaces provided the error dynamics is stable.

The Lyapunov stability criterion is used to derive a sliding condition which specifies the

S dynamics. A Lyapunov function V is picked such that V = 1 STS. By applying the Lyapunov
2

stability criteria, 0, , 0 , a sliding condition is written as

$r S x 0 (3.13)

The sliding condition assures the attractiveness of the S dynamics toward the sliding surfaces.

To be able to adjust the sliding speed g, Equation (3.13) is rewritten as

ST ,€ ,I _1 ISI (3.14)

where -n is a non-negative real number. It is worth to note that Equation (3.14) is a first-order

sliding condition.

The sliding condition specifies a desired dynamics of S on which S slides toward the

sliding surfaces and the steady-state error can be eliminated. To obtain the desired S dynamics,

the control input can be designed using predictor-corrector scheme as

u = (RTBh)-( - k sgn(S)) (3.15)

where g, i.e., nominal control input, can be obtained by letting S = 0, which will give
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= Rr(X, -J - G re (3.16)

Also,

I 1 s>0

sga(S)= [sgn(s) 1 = s<

Note that (RTA) is a scalar. Also, note that (RT)-la is a predictor and (RTh)-k sgn(S) is a

corrector. The gain k is a non-negative real number and is determined by using matrix-norm

techniques. By substituting Equation (3.12) into Equation (3.14), an inequality will be given as

ST [RT(Bu+f-id)+GTe] < -1lSll (3.17)

The control input (Equation (3.15)) can then be substituted into Equation (3.17), which will give

S '1(RTB)(RTfi)-'(fi-k sgn(S))+R Tr(f-, +)+GTe]' -q IS 11 (3.18)

Also, Equation (3.16) will give

RTXd = a + RTI + GTe

Substituting into Equation (3.18) and rearranging give

Sr {RT(f-J) +[(RTB)(R TB)-'-I]ja-(R TB)(R T )- )k sgn(S)}<-T ISII (3.19)

The uncertainties described in Equation (3.3) are applied to Equation (3.19) and the sliding
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condition is given as

ST (RT&f+(RTA&B)(RTh)y14 [I+(RTAEB)(RTBY1]k sgn(S)}_-i Tjsi (3.20)

In order to quantify gain k, the matrix-norm technique is applied to Equation (3.20) and

S T{RTAf+(R TAB)(R TB)-lI,_[I+(R TAB)(R TB)-lI Sgn(S)} 3.1
:r IS I jIRII(AfI +JIAB II(R Th)-'i1)-k(1 - IRABI I(R %A-'sgn~(S) ~}(.1

Note that

-kS T(R TAB)(R Th)lsgn(S) f. kJSJI RAB I (R Th)'sn(S)

-k~gnS _. -kISI

and

IRTABI = IRT(AB),uI

Therefore,

ISI41Rl(IAl+IA&BII(RTA)lIfI)-k1I -JRBI(R Th)-1ggfl(S)I s -T jSI (3.22)

Because of the uncertainty confinements (Equations (3.4) and (3.6)), Equation (3.22) becomes
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ISII IRI(y +P I(Rr )-'ii)-k(1-IR&BII (RTA)-Bsgn(S)l)} - ISJJ (3.23)

Finally, the gain k is found as

k; IRII(y+ I(RT i)-A1 1)+ri (3.24)
1 -IRA BII II(R B)-'sgn(S)1

As stated before, the gain k is a non-negative number. Thus, a sufficient condition is given

1 > JIRABII(Rrh)-'sgn(S)I (3.25)

The Lyapunov stability is guaranteed as long as the gain k is chosen according to Equation

(3.24). For control design purposes, the minimum value of k is selected since the least control

effort is desired. Because of the discontinuity of the sgn functions, the control is called switched

control and causes chattering, which is unfavorable to the mechanical devices. Equation (3.15)

can be substituted into Equation (3.12) to obtain the S dynamics as follows

S+k(R TB)(R Tr)-Isgn(S) =R T(fJ)_(R TAB)(R Th)-'fi (3.26)

It is observed that the right-hand-side of Equation (3.26) consists of uncertainties, error, and

desired trajectory dynamics, which are the excitations to the S dynamics and are to be filtered

out by the first-order S dynamics.

To smooth the control law, a boundary layer with thickness 4 is introduced where the
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thickness is a real positive number. Outside the boundary, Is, I>4, the control law u is designed

to satisfy the sliding condition, Equation (3.14), which guarantees boundary layer attractiveness.

Inside the boundary, Is, <0,, the control law will impose a smoothing process to the S

dynamics. The general law is written as

u = (RB)-( 4- k sat(- )) (3.27)

where

f= RT(.d j - GTe

The sat function is defined as

sat( )sgn( s t J 
Is, l >t

-040s Is, 1<
(0

The S dynamics of Equation (3.26) is smoothed within the boundary layer, i.e.,

_(RrB)(R Th)-lS=R T(f.)-(R TAB)(R Tr)-lfi (3.28)

Equation (3.28) represents a first-order low-pass filter. The boundary layer thickness4)

determines the response speed of the S dynamics and the values of 0 can be either constant or
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time-varying.

To obtain a time-varying thickness, a maximum bandwidth I,. is assigned to the S

dynamics within the boundary layer (Equation (3.28)). The analytic properties of matrix-norm

are to be used to quantify the bandwidth. The spectral radius of the bandwidth is defined as

I = k(R TB)(RT A)-1

Thus, the boundary layer thickness * is designed such that . Also,

k Rf)RA-t k kR rB)(R rB)-'l (3.29)

40 40

Therefore,

I k I(R B)(kT6)-I (3.30)

Since

I(RB)(Rr f)- u <s I +UIRABII(Rrh6)-'l (3.31)

and by the confinements of uncertainty (Equation (3.3)), the spectral radius is then found as

I (1 + IRABII II(R T )-' I)
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Hence, the maximum bandwidth can be assigned as

kI 1+tX A I(R B)1

Therefore, the thickness 4) is

= k (IIIRA+ BII(RTr)-1) (3.32)

In the Equation (3.32), the maximum bandwidth X.. determines the boundary layer thicknessO

which controls the tracking accuracy and response speed. By selecting a proper value of X,

Equation (3.32) can assure that bandwidth will never exceed XL..

In summary, the sliding control with first-order sliding condition is designed to have both

S dynamics and error dynamics low-pass filters where an integral error can be added on error

dynamics to eliminate the steady-state error. The S dynamics is a first-order low-pass filter, in

which the uncertainties are filtered. A detailed synthesis view of S dynamics of sliding control

with a first-order sliding condition is shown in Figure 5. The continuous control of Equation

(3.26) can be used to replace the switching control and eliminates the chattering. A detailed

block diagram of sliding control system is illustrated in Figure 6.
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E. STRAIGHT SLIDING CONTROL WITH FIRST-ORDER PLUS INTEGRAL

SLIDING CONDITION

The straight sliding control begins with the same sliding surface which was defined in

Equation (3.9). By differentiating Equation (3.9), the relationship between control input and S

dynamics can be found

=R T (Bu + f -X) (3.33)

The Lyapunov stability criterion will be used to derive straight sliding condition and

specify the desired S dynamics such that the sliding condition can be reached in a finite time.

A Lyapunov function is defined as

V= S Ts+.fTdt] W.2 [Sdt] (3.34)2, 2110S J i.o-

By applying the Lyapunov stability criterion, v; g 0, the sliding condition is obtained

ST(9+r(a2ftSdt) 1 0 (3.35)

Equation (3.35) indicates that a first-order plus integral sliding condition representing a stability

criterion for an equivalent mass-spring-damper system in which fo S dt is a equivalent

displacement. The L)2ftS dt provides an additional restoring effort and the dynamic behavior
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can thus be tuned by the equivalent spring constant fi). Furthermore, Equation (3.35) can be

written as

sT(s+(,2f oS dt)<-q ISII (3.36)

where r is a positive real number. The sliding condition, Equation (3.36), describes a desired

S dynamics on which S slides toward the sliding surface.

In order to obtain the desired S dynamics, the control input can be obtained as

u = (Rrh)-'(a - ksgn(S)) (3.37)

where j2 is obtained by letting s+c,,2fSdt=o,

* = RTBa = RT(,-]-)2fSdt (3.38)

The gain k is determined by substituting Equation (3.33) into Equation (3.36), which gives

sJRr(Bu -k,) + ,f$&)5-n IS1 (3.39)

Equation (3.39) can be further simplified by using Equation (3.37) and Equation (3.38),

SrT{R TAf+(RrTAB)(RrTB)-2-[I+(RrAB)(RrT)-1]k sgn(S)}< -rj 18l (3.40)
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It is noted that Equation (3.40) has exactly the same form as Equation (3.20) has. Thus, the

same matrix-norm techniques used in Equations (3.20-25) will be utilized to quantify the gain

k, which gives

k> IRI(y+PI(R T )-1 I) (3.41)
1 -IRARBIJ(R TB)-1sgn(S)I

The S dynamics can be formed in terms of uncertainties by substituting Equations (3.37-

38) into Equation (3.33), which gives

S+k(RTB)(R T6)-sgn(S) +(Rr)(RTB )-1 (fsdt (3.42)

-[(RTB)(R TA)-'-]RTr d +RTf - ( RrB )(a rB )-lR(3

The right-hand-side of Equation (3.42) represents the excitations to the S dynamics, which

consist of the desired trajectory dynamics, uncertainties, and disturbances. In other words, the

S dynamics can be treated as a filtered version of excitations and filter out most unwanted

uncertainties and disturbances. The sgn function causes chattering which wifl produce

undesirable noise and mechanical wear. A continuous control is then developed to eliminated

chattering.

A boundary layer with thickness is introduced to smooth out S dynamics. The control

algorithm is defined as

u = (RTB)-'( - k sat(s))

where
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d= RT(Xd,-j)-,w2ftS &t

sgn([s) IsI>0

-S Is, I<0

Thus, a smoothed first-order low-pass S dynamics can be obtained as

k !(R TB)(RT)1'S+(RTB)(RT)1W.2fS& (43

=[(R TB)(R TB)- IRTXd+Rf-(RTB)(RZ -'R

The S integral introduces an integral control to the S dynamics and guarantees a zero steady-

state values of S which will drive the steady-state error dynamics to zero.

From Equation (3.43), the maximum bandwidth I.. is assigned to S dynamics within

the boundary layer. The analytic properties of matrix-norm are to be used to quantify the

bandwidth. The bandwidth (x) is defined as

;= (RTB)(RTh)I~j 2

also,

(RTB)(RTh)-l, 2  I <(RTB)(RTY)-II.2 (3.44)

Therefore,
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;L2 . Rr)R j)1, (3.45)

Since,

i(RTB)(Rr §)-tl <- l +IRABil(Rrh)-'I  (3.46)

The bandwidth is then found as

).2 (~~a~lR ) ~. (3.47)

Hence, the maximum bandwidth is

)L 2 = (l+IRABIl(Rrh)-'l)o. 2  (3.48)

Since the maximum bandwidth has been chosen such that the bandwidth of the S dynamics will

never exceeds 1.X. and the unmodeled dynamics can be filtered. From the damping of Equation

(3.43) and also B = AB + B

40

Also,

k[(RTAB)(RT6)-1 + 11 k !(RTAB)(RTh)-1 (3.49)

400

Therefore, a lower bound of damping is
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2 I)L = -(RT AB)(RrA)-l (3.50)
40

Note that (RTAB) and (RTA) are both scalar. Thus,

, = (k2L)(R rAB)(R). ) -  (3.51)

X, is replaced by ;, z=, which gives

C ( k J(RAB)(RTr)_ (3.52)

Hence, a more conservative lower bound of damping is obtained as

C;L k ( _ (R,&)(R rf3)_I
(21..O)

Therefore, the thickness * is,

= ( k (RsB)(RT,6) ,  (3.53)

,is given by Equation (3.48), where the spring constant 02 is the only control parameter

for the bandwidth. Once I.. is determined, another tuning parameter CL can be properly

adjusted. It is shown in Equation (3.53) that CL also governs the activeness of S dynamics where

the activeness refers to the magnitude level of S response. The greater CL is, the thinner the
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boundary layer thickness 0 is, and the less active of S dynamics is. Also, the less active S

dynamics has less influence over to the error dynamics. However, the thinner boundary layer

may require higher sampling ratio to eliminate the chattering.

In summary, the straight sliding control is designed to have two lower-pass filters in

which S dynamics is designed as a first-order low-pass filter with an integral of S . Figure 7

shows a detailed synthesis view of straight sliding control system. The integral of S provides an

ability to make the steady-state value of S to zero, and the steady-state error will be driven to

zero. The straight sliding control provides two independent tuning parameters to adjust the S

dynamics. The tuning parameter of spring constant ((J2) provides a restriction to the bandwidth

of S dynamics which the unstructured uncertainties (unmodeled dynamics) will be rejected. In

addition, the CL gives a fine tune on the thickness of boundary layer. Figure 8 show a detailed

block diagram of straight sliding control system.

F. VERSATILE SLIDING CONTROL WITH SECOND-ORDER SLIDING

CONDITION

The idea of versatile sliding control is to use a low-pass S dynamics filter to filter out

unwanted high-frequency noises that include unmodeled dynamics and uncertainties, and then

followed by a high-pass (or band-pass) rror dynamics filter.

In order to make error dynamics a high-pass filter, an additional zero is placed into the

error dynamics. Thus, the error dynamics is modified to be
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S+zS=RTe+G fedt (3.54)

z is a scalar where a zero is assigned for sliding surface. The relationship between input control

and S dynamics can be found by differentiating Equation (3.54), which gives

§+zS=Rr(Bu+f-X +GTe (3.55)

Now, Equation (3.55) is a second-order form of sliding condition, which specifies S dynamics

in order to reach sliding surface. Thus a Lyapunov function to suit the second-order sliding

condition is

V = 1 Ts+lST. 2S (3.56)
2 2

By differentiating Equation (3.56) and imposing sliding speed parameter, the Lyapunov stability

criteria becomes

Sr(§+W 2S). _11 Il (3.57)

where sliding speed, r, is a positive real number.

According to the second-order sliding condition, the switched control law will be

u = (RTB)-'(9 - k sgn(S)) (3.58)

where the nominal 4 can be obtained by letting + 2S = 0
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fi=R r(.k,-s-G e zS-o $ (3.59)

and the gain k can be found based on the same knowledge as before. Substituting Equation

(3.55) into Equation (3.57) and further simplifying by Equation (3.58) and Equation (3.59) give,

s T{1Af+(RTAB)(RT )Is...{+(R TAB)(RTh)-]k sgn(S)}:-iI i11 (3.60)

Applying the matrix-norm technique, the gain k can be found as

IRII(y+ PI(RT )-1 fiI)+i (3.61)
1 - IRAB II I(R Th)-sgn ( Ii

Because of chattering, the switched control law is modified to be a continuous control law as,

u = (R T)-1(a - k sat( (3.62)

Outside the boundary layer, the control law is governed by Equation (3.58). While inside the

boundary layer, Equation (3.62) governs the control law. Thus, the definition of sat function is

defined as

sat( ) = sat()] f ?,)
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The continuous S dynamics can then be obtained by substituting Equation (3.59) and Equation

(3.62) into Equation (3.55)

S§[-(RTB)(R Tr)-'+(-(RTB)(RTh)-')z}+(RTB)(RTB) - l S (3.63)

=RTf-(RTB)(RTB)-lRTf +[(SrB)(RTA)--I]RrX 4 I+[I-(SrB)(RTA)-]GTe

To find time-varying boundary layer thickness, the maximum bandwidth is first to be evaluated

as in the section D (straight sliding control),

=. -- (I+DRAB||(RTh)-lI)(. 2  (3.64)

The damping of S dynamics is

!(R TB) (R h)1 + VI- (R B) (R Th- 1)z
(3.65)

- k((RrA,)(Rr)-+I) - (RTAB)(RT)-z

Also,

!((RTAB)(RrT)-1+i) - (R AB)(R T§)-Iz

(3.66)
!(R T,&B)(arA) "1 - (RTrAB)(RTA)-z

Therefore, a lower bound of damping is obtained
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2CII. = k(RTAB)(RTr)- - (RTAB)(RTA)-lz (3.67)
40

and

C, =((R T AB)(R TB)-' -Z) (3.68)

1 is replaced by I,' which gives

C1  ((R T AB)(RrB)-'1k -z) (3.69)

Thus, a more conservative lower bound of damping is obtained as

CL = (RrAB)(RrB)-l k Z)

Therefore, a time-varying boundary layer thickness is,

= k(R rhB)(RrB)-l (3.70)
2CLX.mu +(R TA B)(R rB)-Iz

The relationship of tuning parameters (CLx, , z) are evaluated in Equation (3.70). The

bandwidth for the S dynamics is given by Equation (3.64), in which the spring constant (J.7 is

the only control parameter for the bandwidth. Equation (3.70) provides two other control

parameters ( , z) which give more capability of tuning and shaping the S dynamics.
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In summary, the versatile sliding control provides a second-order low-pass filter (S

dynamics) and a high-pass (or band-pass) filter (error dynamics). Figure 9 illustrates a detailed

synthesis view of versatile sliding control system. The S dynamics as low-pass filter is designed

to reject the high-frequency uncertainties (unmodeled dynamics, error dynamics and

disturbances). Low-frequency uncertainties are then filtered by high-pass (or band-pass) filter.

A detailed block diagram of versatile sliding control system is shown in Figure 10.
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IV. RESULTS

To perform simulation and implementation, the structured uncertainties were first to be

determined. The nominal values of the system parameters and their bounds were estimated. A

non-robust controller was designed to estimate the nominal values and the bounds [Ref. 14]. The

time history of these two parameters for two different payload (0 kg and 0.85 kg) illustrated in

Figure 11 (a)-11 (g). Thus, the value for each parameter can be determined and A, p, j, and y

can be found in the Table 2.

Table 2

Payload h .

0.00 kg 295.00 [0 0 11005.00]T 677177.18 [0.9022 10.7036 -57732.00]T

0.85 kg 218.95 [0 0 5 9 3 2 .2 0]T 35684.40 [0.8557 5.6229 -3 5 09 7 .0 0 ]T

For conservative reasons, set of parameters for the 0.00 kg case was selected and used

in the simulation and implementation throughout the whole research. The computer simulation

of the control system was performed on a 16 Mhz 80386 IBM compatible personal computer

with MATLAB programs. The MATLAB simulation programs and the FORTRAN

implementation programs are listed in the appendix A and B.

The SMC control algorithms used for simulation and implementation on the single-link

flexible arm are the sliding control with first-order sliding condition, The straight sliding control,
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and the versatile sliding control. The following sections will evaluate the performances of these

three sliding controllers. To show the robustness to the uncertainties due to varying payload and

to perform the tuning procedure such that the unmodeled high-frequency will be rejected are the

main goal of this research. The control system performance will be evaluated according to the

tracking accuracy, the response speedl, and the overshoot.

A. RESULTS ON SLIDING CONTROL WITH FIRST-ORDER SLIDING CONDITION

PLUS INTEGRAL ERROR

The system was simulated with a time interval of 0.001 (sec). The controlling parametern

for sliding speed was selected to be 10. An unit-step response of continuous sliding control

system of simulation and experiment was first investigated. Figures 12(a)-12(d) show the system

responses (i.e., controlled tip position (qp), control input, S response, and boundary layer

thickness (,)) of simulation without payload where )., = 10 (rad/sec). The poles of error

dynamics were at p=[-10 -10 -10]. The tip position response shows large overshoot. Time-

varying boundary layer thickness (4) was computed to achieve the continuous sliding control.

It was observed that Is, I < * and the S dynamics was governed by a first-order dynamics where

the controlling parameter X determines the response speed. The large overshoot will be

minimized by fine tuning the S dynamics such that the system response speed was primarily

determined by placing the poles of error dynamics. The tightness of the boundary layer can also

improve system response speed.

A higher bandwidth was selected, i.e., L, = 500 (rad/sec) to reduce the boundary
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layer thickness and to reduce the overshoot. Figures 13(a)-13(d) present the performance with

no steady-state error and the overshoot was improved. It should be noted that the greater

bandwidth will allow high-frequency unmodeled dynamics to excite S dynamics. It was observed

that with a greater ;,., the response speed is faster. However, the level of control input is

increased. With the tighter boundary layer, the level of overshoot was improved. Because

boundary layer thickness becomes thinner and the sampling rate was not high enough, the

occurrence of chattering is not surprising and the current (i.e., control input) saturation occurs.

By selecting the higher sampling rate to eliminate chattering and saturation, i.e., At = 0.0005

(sec), Figures 14(a)-14(d) show the further improvement of control performance in the

simulation without payload. Figures 14(e)-14(h) show the experimental results. Figures 15(a)-

15(d) show the responses in simulation and Figures 15(e)-15(h) show those in experiment with

payload (0.85 kg) when X,. = 500 (rad/sec) and simulation time interval At = 0.0005 (sec).

The next test was to examine the tracking performance. The desired trajectory was

defined as

t forO O t<1
1 for 1 s t< 2 (4.1)=3-t for 2 ,: t < 2.4

0.6 for t > 2.4

Figures 16(a)-16(h) show the tracking performance of the system in simulation and experiment

without payload and Figures 17(a)-17(h) show the tracking performance with payload (0.85 kg).

A greater bandwidth (1,. = 1700 rad/sec) was selected to tight the boundary layer.

With the trajectory control, the overshoot can be further minimized. The improvement
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on reducing the overshoots is very important for robot applications. The overshoot in the

experimental results reflected the simulation prediction. The time history of the boundary layer

thickness in the simulation differs from that in the experiment. This difference can be neglected

since the change of the boundary layer thickness compared to its magnitude was quite small. The

controller is robust to varying payload because the system responses were not affected by

changing the payload.

In summary, the maximum bandwidth is the only parameter to reject the unmodeled high-

frequency dynamics and at the same time to control tracking accuracy in this control algorithm.

Therefore, a trade-off exists between the robustness to the unmodeled dynamics and the tracking

accuracy. With an integral control in error dynamics, the steady-state error was eliminated. The

controller is indeed robust to the uncertainties due to varying payload.

B. RESULTS ON STRAIGHT SLIDING CONTROL

Step response will first be studied to examine the performance of the straight sliding

control. An equivalent spring constant and a damping ratio were selected as w,, = 10 (rad/sec)

and C. = 1 simulated at At = 0.0002 (sec), while the poles of error dynamics were selected

as p=[-10 -10]. Figures 18(a)-18(d) show results of a step response, the control input, and the

S and 4) of the simulation without payload. The control presents not only overshoot but also

long settling time. Thus, damping ratio (CL) will be used to fine tune S dynamics such that the

overshoot will be minimized and the settling time will be improved. The equivalent spring

constant (w, 2) will be lowered to reject high-frequency excitation of the S dynamics.
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The effects due to the damping ratio CL will be examined. The damping ratio CL = 10

was selected to reduce the boundary layer thickness while w. = 10 (rad/sec). Figures 19(a)-

19(d) show the performance of step response, the control input, and the S and 0 of the

simulation without payload. Figures 19(e)-19(h) show the step response of experiment at CL =

10 and w,, = 10 (rad/sec). The overshoot was minimized and the response speed was faster than

before.

The next test is to lower the (j.2, i.e., lowering the bandwidth of the S dynamics to

reject the high-frequency excitations. w. = 1 (rad/sec) and CL = 10 were selected. Figures

20(a)-20(d) present the control performance (without payload) where the step response has

steady-state error. To reject the unwanted high-frequency excitations, the control system has to

pay the price. However, the damping ratio CL can be increased to remedy the sluggish of the

response. Figures 21(a)-21(h) show the control performance of (,, = 1 (rad/sec) and CL = 100

for both simulation and experiment without payload. Figures 22(a)-22(h) present the control

performance of .,, = 1 (rad/sec) and CL = 100 for both simulation and experiment with

payload (0.85 kg). It is noted that the control performance showed no difference in changing the

payload.

The last investigation was to examine robustness to varying payload of the tracking

performance. The desired trajectory was designed as in Equation (4.1). Figures 23(a)-23(d) show

the tracking performance for the simulation at G,- 1 (rad/sec) and CL = 100 without payload.
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Figures 23(e)-23(h) show the tracking performance for the experiment at (, = 1 (rad/sec) and CL

= 100 without payload. Figures 24(a)-24(h) illustrate the tracking performance for the

simulation and experiment at c, = 1 (rad/sec) and CL = 100 with payload (0.85 kg). Thee,,

= 1 (rad/sec) was selected not to excite the unmodeled high-frequency dynamics.

Note that the control performance was not affected by the payload. The greater the

damping ratio CL, the better the tracking performance and the greater the control effort is

needed. Although the smoothed control law was used to compute the current required to the

actuator, a little chattering occurred in the experimental results while the arm was trying to stand

still.

In summary, the straight sliding control utilizes the first-order plus integral sliding

condition to provide tracking accuracy, disturbance rejection, and stability. The S dynamics

plays a key role to obtain a desired system response since the error dynamics is affected by the

output of S dynamics. The two control parameters CL and W.,2 are adjusted to accomplish the

control task without conflicting. The damping ratio CL was selected to tight the S dynamics

performances, while the ( 2 in the sliding condition to keep the excitation from entering into

the S dynamics. Therefore, the trade-off between tracking accuracy and robustness to

uncertainties (due to unmodeled high-frequency dynamics) has no longer exist. Also, the

robustness to the varying payload was proved by the simulation and the experiment.
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C. RESULTS ON VERSATILE SLIDING CONTROL

The step response of versatile sliding control was to test the control performances. To

keep the bandwidth of S dynamics low, the ca2 was selected to be 1. The zero (z) not only

provides the filtering level of error dynamics but also affects the boundary layer thickness. Thus,

the z should be chosen carefully such that the S dynamics can be fine tuned. For a given value

of CL, the smaller z, the larger boundary layer thickness. Also, greater boundary layer

thickness gives more active S dynamics. Given z = 1 and CL = 10, Figures 25(a)-25(d) show

the step responses, the control input, and the S and 40 of simulation, while the poles of error

dynamics were p=[-10 -10 -10]. Figures 25(e)-25(h) show the experiment results. The overshoot

exhibited in the control motion. With the same C., Figures 26(a)-26(d) present the responses

of a greater value z = 10 without payload. The overshoot was reduced by reducing the

boundary layer thickness. However, the steady-state error occurred. Figures 26(e)-26(h) present

the results for the experiment without payload at z = 10 and CL = 10. Figures 27(a)-27(h)

present the simulation and the experiment with payload (0.85 kg) at z = 10 and CL = 10.

The next test was to examine tracking performance. The trajectory was designed as in

Equation (4.1). Given z = 10, CL = 10, and (j.2 = 1 (rad/sec), Figures 28(a)-28(h) show the

performances of simulation and experiment.

The overall tendency of the control system in the experiment has the same results as

expected in the simulation. The smaller the boundary layer, the smaller the steady-state error,
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and the greater control input is needed. The little chattering occurred in the straight sliding

control was seen in the performance of versatile sliding control. It is noted that the robust to the

varying payload is achieved by increasing the payload while the motion control will not be

changed.

In summary, the versatile sliding control provides three parameters to accomplish the

control motion. The damping ratio CL and z were chosen to tight the boundary layer thickness

and also the (2 was set low to reject the excitations entering the error dynamics. The z not

only gives the tuning on the boundary layer thickness but also make the error dynamics a band-

pass (or high-pass) filter. Actually, the versatile sliding control provides more tuning parameters

which make the trade-off between tracking accuracy and rcbustness to uncertainties (unmodeled

high-frequency dynamics) no longer exist. Also, the versatile sliding controller is proved to be

robust to the uncertainties due to varying payload.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of doing this research was motivated by the need of using a flexible

manipulator in the modem robotic application and of designing a simple robust control (sliding

mode control) algorithm enabling a single-link flexible manipulator to perform accurate tracking

under the environmental disturbances and uncertainties aue to varying payload.

Because of the simple control structure of sliding mode control, the robust control system

was implemented on a low-cost IBM-AT micro-computer for the flexible arm system. Unlike

the high-speed switched sliding control, the predictor-corrector continuous control law was

achieved by introducing a time-varying boundary layer. Three different forms of Lyapunov

stability criterion (or sliding condition) were utilized not only to guarantee the stability of the

control system but to provide different tuning capability.

In the sliding control with first-order sliding condition, the only control parameter 1.

not only provides the tightness of the boundary layer but also gives bandwidth of the S

dynamics. The tighter the boundary layer, the faster the response speed and the smaller the

steady-state error. However, the trade-off between tracking accuracy and the robustness to the

unmodeled high-frequency dynamics exists. The integral error control will drive the steady-state

error to zero.

The straight sliding control with first-order plus integral sliding condition provides control

tuning parameters (w. and CL) such that the rejection of uncertainties and tracking accuracy can
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be achieved at the same time. The integral of S provides an ability to have the steady-state

values of S zero for constant input to the S dynamics, and the steady-state error of the system

will be driven to zero. The equivalent spring constant (0e) provides an rejection to the

unmodeled high-frequency dynamics. The lower bound of damping ratio (CL) provides a fine

tune on the thickness of boundary layer. The thinner the boundary layer thickness, the faster the

response speed and the smaller the steady-state error. However, from the experiment, even with

continuous control, the small chattering occurred while the arm wanted to stand still. This

phenomenon has not been clear.

The versatile sliding control algorithm provides a second-order sliding condition. The

bandwidth of S dynamics was selected to be low so that the high-frequency unmodeled

uncertainties will be rejected and the error dynamics will not be excited. The lower bound of

damping and z in the S dynamics can then be fine tuning to tight the boundary layer so that the

tracking accuracy can then be achieved. Therefore, the trade-off between the tracking accuracy

and the robustness to the uncertainties has no longer existed. However, the same chattering in

control input as in the straight sliding control occurred when the control was implemented.

In summary, despite the use of simplified model, the simple structure sliding control is

indeed robustness to uncertainties due to varying payload. Also, by providing more tuning

capability, the trade-off between tracking accuracy and the robust to the high-frequency

dynamics was released.
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B. RECOMMENDATIONS

The further works are recommended as follows:

(1) To develop a systematic procedure to tune controlling parameters.

(2) To clarify the small chattering occurred in the implementation while using straight

and versatile sliding control.

(3) To develop the multiple-link control system using ERLS.
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APPENDIX A

MATLAB SIMULATION PROGRAM

DEFINATIONS OF THE PARAMETERS :
• lambda = the max. bandwidth h = time interval
• w = tunning parmeter to tunne the max. bandwidth
• zeta = tunning parameter to provide more tunning capability
• FT = final time ml = payload
• R,G = pole-placement of poles speed = sliding speed
• Bhat = B hat(uncrtainties) DB = DELTA B
• fhat = fhat(uncertainties) Df = DELTA f
• L = length of the arm rho = density of arm
* A = cross asection area of arm E = modulusof elasticity
* I = Area moment of inertia of flexible arm
• Dv = deformation matrix differentiation w.r.t. deflection
• g = gravitational acceleration vector
• K = servovalve sizing constant
• Dm = actuactor displacement
• Vt = total compress volumeincluding actuactor lines and chambers
• Ps = hydraulic supply pressure
• Ctm = total leaking coefficient
* eff = torque efficiency
• betae = effective bulk modulus
* Ip = moment of inertia of payload
• Ir = moment of inertia of
• betal = mode shape coefficient
• beta2 = mode shapew coefficient
* Cl = computed mode shape coefficient
• C2 = computed mode shape coefficient
• nlm = to evaluate the coeffieient and be used in fa
* nlnlm = to evaluate the coeffieient and be used in maa
* lxn 1 m = to evaluate the coefficient and be used in mab or mba
* swwsm = to evaluate the coefficient and be used in maa
• klei = to evaluate the coefficient and be used in kb
• maa = coefficient of large motion acceleration in large motion dynamics
• mab = coefficient of small motion acceleration in large motion dynamics
* mba = coefficient of large motion acceleration in small motion dynamics
• mbb = coefficient of smalle motion acceleration in small motion dynamics
• kb = coefficient of stiffness in small motion dynamics
• fa = right-hand-side of large motion dynamics
• fb = right-hand-side of small motion dynamics
• theta = large motion angle and thetaold represents previous one in
* computation, thetanew represents the new one.
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* thetad = velocity of large motion with the same expression as theta
* thetadd = acceleration of large motion with tha same expression as theta
* v = small motion and void represents previous one in the computation
* and the vnew represents the new one.
* vd velocity of small motion and has the same expression as in v.
* vdd = acceleration of small motion and has the same expression as in v
* p = load hydraulic pressure drop
* Ps hydraulic supply pressure
* current = the current input the electrohydraulic actuactor
* psi = total angle is the sum of large motion (theta) and small motion (v)
* psiv = velocity of total angle

* psia = acceleration of total angle
* psir = desired total angle
* psivr = the first time derivative of psir
* psiar = the second time derivative of psir
* psijk = the third time derivative of psir
* Function expalnation
* constl = to perform the computation of constant in the program
* timinvarm = to perform the computation of time invariant terms
* ic = to perform the computation of initial condition
* tracking = to give the desired trajectory
* sequenm = to perform the sequential integration method
* tippva = to perform the transformation of total expression
* ismco = to compute the current using sliding control with first-order
* sliding condition
* ismcst = to compute the current using the straight sliding control
* ismcva = to compute the current using the versatile sliding control
* hydralm = to perform the dynamics of electrohydraulic actuactor
* plotter = to perform the plot

% sliding control with first-order sliding condition algorithm
clear,clg
tra=input('Enter desired trajectory 1 or 2 ')
lambda=input('please enter lambda ')

h =0.001;FT= 10;t=O:h:FT;
ml =O;speed = 10;R=[300;30; lJ;G=[1000;0;0];

Bhat= [0;0; 1. le4];DB=295;fhat=[O;O;-5.7732e4];Df=6.7117e4;
Ahat=[O 1 0;0 0 1;0 0 0];DA=0;

[L,rho,A,E,I,Dv,g,K,Dm,Vt,Ps,Ctm,eff,betae,Ip,Ir,betal,beta2,C 1 ,C2,B 1 ,B2] .....
=constl(ml);

88



% computation for the time invariant terms
[nlm,nlnlm,lxnlm,swwsm,klei,mab,mba,mbb] =timinvarm(rho,A,E,I,betal ,beta2
,C1 ,C2,Bl ,B2,Dv,lp,L,ml);

% Initial Conditions
[thetaold,thetadold,thetaddold,vold,vdold,vddold,torqueactold,pl,current(1)....
,psi(1) ,psiv(l),psia(1)] =ic(Dm,eff,Ctm,Ps,K,L);

% desired trajectory
[psir,psivr,psiar,psiJk] = tracking(t, tra);

for n =l:Qength(t)- 1)

n % sequential integration method
jthetanew,thetadnew ,thetaddnew ,vnew ,vdnew ,vddnew] = sequenm(thetaold ,thetadold..
,thetaddold,vold,vdold,vddold,mab,mba,mbb,swwsm,nlnlm,lxnlm,n lm,klei,Ip....
,Ir,Dv , ml, g,h, L, A,rho, torqueactold);

[psi(n + 1) ,psiv(n + 1) ,psia(n + 1)1 = tippva(thetanew ,thetadnew,thetaddnew ,vnew ...
,vdnew,vddnew,L);

% sliding mode control with first-order sliding condition
[current(n + 1), s(n + 1), intgerror~phi(n + 1)] = ismco(Ahat,Bhat,fhat,DA,DB,Df,R,G...
,h,lambda,psi(n + I),psiv(n + 1),psia(n + l),psir(n + l),psivr(n + I),psiar(n + 1) ....
,psijk(n +1), speed, intgerror);

% electriohydraulic actu actor
[pinew, torqueactnew = hydralm(h,current(n +1), thetadnew,pl,K,Dm ,Vt, Ps, Ctm....
,eff,betae);
p1 = plnew;

thetaold =thetanew ;thetadold =thetadnew;thetaddold =thetaddnew;
void = vnew; vdold = vdnew;vddold = vddnew;
torqueactold = torqueactnew;
end

%6 plotter -- >
[ps,pphi ,pc-urrent,ppsi] = plotter(s, phi, current~psi)

% Straight Sliding Mode Control Algorithm
clear,clg
tra=input('Enter desired trajectory I or 2 '
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w =input('plcase enter w '
zeta= input('please enter zeta '

h=0.0002;FT= 1 .2;t=0:h:FT;ml=O;
R=[(300;30; 1];G [1000;0;0]; speed = 10;

% Uncertainties
Bhat=(O;0;1. 1e4];DB=295;
fhat =[0;0; -5.7732e4];Df =6.71 144;
Ahat=[0 1 0;0 0 1;0 0 0];DA=O;

% Define constants
[L, rho, A,E,1, Dv,g,K,Dm,Vt,Ps, Ctm,effbetae,I1p,Ir,betal 1,beta2, C 1,C2,Bl 1,B2]...
=constl(ml);

% computation for some time invariant terms
[n lm,nlnlm,lxnlm,swwsm,klei,mab,niba,mbb] =timinvarm(rho,A,E,I,betal ,beta2

% Initial conditions
[thetaold,thetadold,thetaddold,vold,vdold,vddold torqueactold,pl .........
,current(1),psi(1),psiv(1),psia(1)] =ic(Dm,eff ,Ctm,Ps,K,L);

% desired trajectory
[psir,psivr,psiar,psijk] = tracking(t,tra);

% Define initial values used in straight and intgral error sliding control
[intgerr intgs,s(l) ,phi(l)] = smciv(R,G,psi(1) ,psiv(1) ,psia(1) ,psirpsivr...
,psiar, h, w,zeta);

for n = 1: (ength(t)- 1)
n
[thetanew,thetadnew,thetaddnew,vnew,vdnew,vddnew] = sequenm(thetaold ........
,thetadold,thetaddold,vold,vdold,vddold~mab,mba,mbb~swwsmnln lm,Ixn lm,nl ..m .
,klei,Ip,Ir,Dv ,ml,g,h,L,A,rhotorqueactold);

[psi(n +1) ,psiv(n + 1) ,psia(n +1)] =tippva(thetanew~thetadnew,thetaddnew ..
,vnew,vdnew,vddnew,L);

% straight sliding mode control
(current(n + 1), s(n +1) ,intgs, intgerr,phi(n +1)] =ismcst(Ahat,Bhat, fhat,DA,DB ...
,Df,R,G,h,w,psi(n + l),psiv(n + l),psia(n + l),psir(n + l),psivr(n + l),psiar(n + 1) ...
,psijk(n+ 1), speed, intgs, intgerr zeta);
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% electrohydraulic actuactor
[plnew,torqueactnew] = hydralm(h,current(n +1) ,thetadnew,pl,K,Dm, Vt,Ps,Ctm ...
,eff,betae);
p1 =plnew;

thetaold =thetanew;thetadold =thetadnew ;thetaddold =thetaddnew;
void =vnew;vdold =vdnew;vddold =vddnew;
torqueactold = torqueactnew;
end

% plotter -- >
[ps,pphi,pcurrent,ppsi] =plotter(s,phi,current,psi)

% Versatile Sliding Mode Control Algorithm
clear,clg
tra=input('Enter desired trajectory 1 or 2 '
w=input('please enter w
zo=input('please enter z '
zeta =input('please enter zeta '

h=:0.0002;'= 1 .2t=O:h:FT;ml=O;
speed = 1;R=[300;30; 1];G =[1000;O;O];

% Uncertainties
Bhat=[O;O; 1. 1e4];DB=295;
fhat=[O;O;-5.7732e4];Df=6.71 17e4;
Ahat=[O 10O;0 0 1;0 0 O];DA=0;
s =0; intgerr =0;

% Define constants
[L, rho, A, E,Dv, g, K,Dm,Vt, Ps, Ctm, eff,betae, Ip,Ir, beta l,beta2, C 1, C2,B 1,B2]...
=constl (ml);

% computation for some time invariant terms
[nlm,nlnlm,lxnlm,swwsm,klei,mab,mba,mbb] =timinvarm(rho,A,E,I,betal ,beta2
,C1 ,C2,B1 ,B2,Dv,Ip,L,ml);

% Initial conditions
[thetaold, thetadold , thetaddold, void, vdold, vddold, torqueactold, pl, current(l 1)..
,psi(1),psiv(1),psia(1)] =ic(Dm,eff,Ctm,Ps,K,L);

% Desired trajectory
[psir,psivr,psiar,psijk] =tracing(t,tra);
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for n = 1:Q(ength(t)- 1)
n % sequential integration method
[thetanew,thetadnew,thetaddnew ,vnew ,vdnew ,vddnew] = sequenm(thetaold ......
,thetadold,thetaddold,vold,vdold,vddold,mab,mba, mbb,swwsm,nlnl m,lxnlm .....
, n 1 m, klIei,Ip, Ir,Dv, ml,g, h,L, A, rho, torqueactold);

[psi(n +1) ,psiv(n +1) ,psia(n +1)] = tippva(thetanew,thetadnew,thetaddnew...
,vnew,vdnew,vddnew,L);

% Versatile sliding mode control
[current(n+ +),sdot(n),sjintgefr,phi(n)] =ismcva(Ahat,Bhat,fhat,DA,DB,Df,R,G..
,psi(n + 1) ,psiv(n + 1),psia(n + 1),psir(n + 1),psivr(n + 1),psiar(n + 1) ,psijk(n + 1) ...
, speed , s, intgerr,h, , zo, zeta);

% electrohydraulic actuator
[plnew, torqueactnew] = hydralm(h, current(n + 1), thetadnew, pl, K, Dm, Vt, Ps ....
,Ctm,eff~betae);
p1 =plnew;

thetaold = thetanew; thetadold = thetadnew; thetaddold = thetaddnew;
vold = vnew;vdold =vdnew;vddold = vddnew;
torqueactold = torqueactnew;
end

% plotter -- >
[psdot,pphi,pcurrent ,ppsi] =plotter(sdot,phi ,current,psi)

function [L,rho,A,E,I,D.',g,K,Dm,Vt,Ps,Ctm,eff,betae,Ip,Ir,beta1 ,beta2,C 1...
,C2,BL,B2] = constl(ml)

rho = 7861.05;A = 6.17795e-04;
L = 0.9985;g =[0;0;-9.8066];

E = 2.Oell;I =4.065e-10;

Dv= [0 0 0;0 0 0;1 0 0]; % first derivative of D w.r.t. v
Iyy = (1.3653333e-3)*m1;
Lxx = ((m1I0.4233)^2)*(7.5e-O6)*ml;
Ip =[ml 0 0;0 Lxx 0;0 0 Iyy]; % Ip = moment of inertia of payload
mr =9.00011451;Ir = [mr 0 0;0 0.02746713 0;0 0 0.02746713];
K =2.402963e-09; % unit = m^4/(sec-mA-sqrt(N)))
Dm =6.227le-05; % unit = mA3/rad)
Vt = 3.05127e-04; % unit =(mA3 )
Ps = .37888eO7; % unit = N/mA2)
Ctm = 3.7064772e-13; % unit = m*5/N-sec)
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betae =6.90e08; % unit=(N/mA2)
eff = 0.9;
betalL = 1.875104069;beta2L =4.694091133;
betal =betalL/L;beta2 = beta2L/L;
Cll sin(betaIL) + sinh(betalL);
C12 =cos(betalL) + cosh(betalL);
Cl = C11/C12;
C21 = sin(beta2L) + sinh(beta2L);
C22 = cos(beta2L) + cosh(beta2L);
C2 C21/C22;
D 4*Cl*bea - 4*C2*e1a;
BI 2*beta2/D;B2 = -2*betal/D;

function [alfa,delta,gama0,gamal ,gania2 ,gania3 ,gania4,gama5] =const2(h)

alfa = 0.25;delta =0.5;

ganiaO = l/(alfa*hA2);
gamnal = deltal(alfa*h);
gama2 = lf(alfa*h);
gama3 = (l/(2*alfa))-l;
gama4 = (delta/alfa)- 1;
gama5 = (h/2)*((deltaalfa)-2);

function [alfa,delta,gama0,gamal ,gama2 ,gama3 ,gama4 ,gama5 ,gama6,gama7 = const3(h)

alfa = O.25;delta = 0.5;

gaina0 = 1I(alfa*hA"2);
gamnal = deltal(alfa*h);
gaxna2 =l/(alfa*h);
gania3 = (1/(2*alfa))-1;
gama4 = (deltalalfa)-l1;
gama5 = (h/2)*((delta/alfa)-2);
gama6 = h*(l-delta);
gama7 = delta*h;

function [nlm,nlnlm,xnlm,swwsm,klei,mmab,mmba,mmbb] =timinvarm(rho,A,E,I ...
,betal ,beta2,C1 ,C2,B1 ,B2,Dv,Ip,L,ml)

swwsm = simps('swws' ,0,0,0,O,0,0)*rho*A;
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nlm = simps('nl F,beta I,beta2, C 1,C2,B 1,B2) *rho*A;
kici = simps('kll1',betal,beta2,C1 ,C2,B1 ,B2)*E*I;
ninim simps('nlnl' ,betal,beta2,Cl,C2,B1 ,B2)*rho*A;
Ixnlm =simps('lxnl ',betal ,beta2,C1 ,C2,Bl ,B2)*rho*A;
[D,Dd,w,wd,wdd,Ad, Add] = usualm(-pi/3,0,7,L);
mmba = mba(D,w,wd,Dv,Ip,lxnlm);
mnibb = mbb(w,Dv,Ip,nlnlm,ml);
mmab = mab(D,w,wd,Dv,Ip,lxnlm,ml,L);

function [thetal ,thetadl ,thetadd 1,v 1 ,vd 1 ,vddl ,torqueactl ,pl, currentl ,psil1
,psivl,psial] =ic(Dm,eff,Ctm,Ps,K,L)

thetalI = 0;thetadl1 = 0;thetadd1 = 0;
vi1 = -0. 031 11; %vl1 = -0. 061 11; %vl1 = -0. 146064149; % v 1=023155;
vdl =0;vddl =0;

torqueactl = 44.5549095 ;pl =torqueactl /(Dm*eff);
Q=Ctm*p1=Q/(K*sqrt(Ps-pl));Imax= 10;
ifrac=O.5*(Imax-10);currentl =I0+ifrac;

% Trajectory design function

function [psid ,psivd ,psiad ,psijerk] =tracking(t,n)

if (n==1)
psid =ones(t) ;psivd =zeros(t) ;psiad =zeros(t) ;psijerk =zeros(t);

elseif(n = = 2)
psijerk=0;psiad =0;
for n=1:length(t)

if (t(n) < 1)
psid(n) =t(n);psivd(n) = 1;

elseif (1 < =t(n) & t(n) <2)
psid(n) =1;psivd(n) =0;

end
if (2 < = t(n) & t(n) <2.4)

psid(n) =3-t(n) ;psivd(n) = 1;
elseif (t(n)> =2.4)

psid(n) =0. 6;psivd(n) =0;
end

end
end
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% Sequential integration method is used to do numerical iteration.

function [thetanew ,thetadnew,thetaddnew,vnew ,vdnew ,vddnew] = sequen(theta...
,thetad,thetadd,v,vd,vdd,mab,mba,mbb,swwsm,n llm,lxnlm,nlm,klei,Ip,Ir,Dv ...
,ml ,g,h ,L,A ,rho,torque)

[alfa, delta, gamaO, gama l,gama2, gania3, gama4, gama5] = const2(h);

% following steps are solving for small-motion(vnew, vdnew, & vddnew)
% (1) original coefficients computation ( large and small-motion ) at time t
fjD,Dd,w,wd,wdd,Ad, Add] = usualm(theta,v,vd,L);
Kb = kb(thetad,klei,nlnlm);
Fb = fb(thetad,w,wd,D,Dd,nlm,Dv,Ip,g,ml);
Maa =maa(v, wd,Ad,D,Ip,Ir, swwsm,nl1nl1m,A, rho);
Fa =fa(v,vd,thetad,wd,wdd,Ad,Add,D,Dd,Ip,Ir,nlm,nlnlm,g,ml,torque);

% (2) modify small-motion coefficients ( at time t ) to avoid secular terms
Mbs =mbb - mba*(lIMaa)*mab;
Fbs =Fb - mba*(l/Maa)*Fa;
omega = (1/(2*pi))*sqrt(Kb/Mbs);
C = O.2*(sqrt(KbIMbs));

% (3) fast (small) motion solver -- > vnew, vdnew, and vddnew
Kbi = Kb + gamaO*(Mbs) + gamal*C;
Fbi=Fbs +Mbs*(gamao*v +gama2*vd +gama3*vdd) +C*(gamal *v +gama4*vd +gama5 *vdd);
vnew =(inv(Kbi))*Fbi;

vdnew =vd + (1 -delta) *h *vdd + gamal1 *(vnew..v)-((delIalafa) *vd)-gama3 *delta*h *vdd;
vddnew = gamaO*(vnew-v) - ganma2*vd - gaxna3*vdd;

% using predictor and corrector scheme to find large-motion
% (1) using predictor and new etas' to evaluate large-motion coefficient.
thetap = theta + thetad*h + (Q.5-alf%)*(h*h)*(thetadd);
thetadp = thetad + (1 -delta) *h *the Ad;
[D,Dd,w,wd,wdd,Ad,Add] = vsualm(thetap,vnew,vdnew,L);
Maa =maa(vnew,wd,Ad,D,lk,Ir,swwsm,nlnlm,A,rho);

Fa =fa(vnew,vdnew,thetadp,wd,wdd, Ad,Add, D, Dd,Ip, Ir, nlIm, nInlIm,g, ml, torque);

% (2) solve for thetaddnew
Fae = Fa - mab*vddnew;
thetaddnew = Fae/(Maa);

% (3) find correctors using thetaddnew
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thetac = alfa*(h*h)*thetaddnew;
thetadc = delta*h*thetaddnew;

% (4) solve for thetanew and thetadnew
thetadnew =thetadp + thetadc;
thetanew =thetap + thetac;

function [x,xr,xrd = tippva(theta,thetad,thetadd ,v,vd,vdd ,psid ,psivd,psiad...
,psij ,L)

psi = theta + (v/L);
psiv = thetad + (vd/L);
psia = thetadd + (vdd/L);
x = [psi;psiv;psia];
xr ---[psid;psivd;psiad];
xrd = [psivd;psiad;psij];

function [current, s,intgerror,phi] =ismco(Ahat,Bhat, fhat,DA ,DB,Df,R, G,h,lambda.
,psi,psiv,psia,psir,psivr,psiar,psijk, speed, intgerror);

x = [psi;psiv;psia] ;xr = [psir;psivr;psiar] ;xrd = [psivr;psiar;psijk];
error = x - xr;
intgerror = intgerror + error*h;
RtB =inv(R'*Bhat);RtBn =nornl(RtB,2);
s =R' *effor+ G' *itgeffor;
RtBsgn = RtB*sign(s); RtBsn = norm(RtBsgn ,2);

% norminal value
That = R'*(xrd-fhat-Ahat*x)-G'*error;
Ihatn= norm(Ihat,2);

box I =RtB*That;
boxln=norm(boxl ,2);

Rn =norm(R,2);
k =((Rn)*(Df+ DB*boxl1n) +speed)/(l1 (DB*RtBsn));
phi= (k/larnbda)*(l +DB*RtBn);

std = s/phi;
if( abs(s) > =phi)

if( std =0)
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sat=l1;
else

sat=l
end

elseif( abs(s) <phi)
sat = std;

end
current = (RtB) *(Ihat-k*st);
if( current > = 10)

current= 10;
end
if( current < = 10)

current =- 10;
end

function [current, s , intgs,intgerr,phi] =ismcst(Ahat,Bhat, fhat,DA ,DB,Df,R, G
9,h, w,psi,psiv,psia,psir,psivr,psiar,psijk, speed, intgs, intgerr zeta);

x =[psi;psiv;psia] ;xr =[psir;psivr;psiar] ;xrd =[psivr;psiar;psijk];
error =x-xr; s = R'*error;
intgs=intgs+s*h;
RtB = inv(R' *Bhat); RtBn = norm(RtB,2);
RtBsgn = RtB*sign(s); RtBsn = norm (RtBsgn ,2);

% norminal value
Ihat = R' *(xrd-fhat-Ahat*x)-(w^2) *intgs;
Ihatn =norm(Ihat,2);

boxI. =RtB*Ihat;
box I n = norm (box 1, 2);

Rn =norm(R,2);
k =((Rn) *(Df +DB *boxlIn) + speed)/ (I1-(DB *R tJsn));

% tuning parameters
lambda = (sqrt(l + DB*RtBn)) *w;
phi = (k/(2 *zeta*lambda)) *(DB*RtBn);

std =s/phi;
if( abs(s) > =phi)

if( std> =0)
sat=l1;
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else
sat=l

end
elseif( abs(s) <phi)

sat =std;
end
% (3) current
current = RtB*UIhat-k*sat);
if( current > = 10)

current = 10;
end
if( current < =-10)

current10
end

function [current, sdot, s,intgerr,phi] =ismcva(Ahat,Bhat,fhat,DA,DB,Df,R,G
, psi,psiv,psia, psir,psivr,psiar,psij k, speed, s, intgerr ,h, w, zo, zeta);

x = [psi; psiv;psia]; xr = [psir;psivr; psiar]; xrd = [psivr;psiar;psij k];
error x-xr;

intgerr =intgerr + error*h;
sdot =R' *effor +G' *itgerr-zm*s;
s=s+sdot*h;
RtB=inv(R'*Bhat);RtBn=norm(RtB,2);
RtBsgn =RtB*sign(sdot) ;RtBsn =norrn(RtBsgn,2);

% norrninal value
That = R' *(xrd41.at-Ahat*x)-(wA2) *s-.G'*error + zo*sdot;
Ihatn =norm(Ihat,2);

box I =RtB*That;
boxln=norm(boxl ,2);

Rn =norm(R,2);
k= ((Rn)*(Df + DB*box in) + speed)/(I 1 (DB*RtBsn));

% tuning parameters
lambda= (sqrt(1 +DB*RtBn))*w;
phi = (k*(DB*RtBn))/((2*zeta*lambda) + (DB*RtB*zo));

% sat(sdot) FUNCTION
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std = sdot/phi;
if( abs(sdot) > =phi)

if( std> =0)
sat= 1;

else
sat=-l;

end
elseif( abs(sdot) <phi)

sat=std;
end
% CURRENT
current =RtB*(lhat-k*sat);
if( current > = 10)

current = 10;
end
if( current < =-10)

current=-10;
end

function [Plnew,torque] =hydralm(h,current,thetad,P1,K,Dm,Vt,Ps,Ctm,eff,betae)

% A fourth-order Runge-Kutta method is used to obtain the numerical solution
% In this case, the only variable will be P1

Pv 'Ps - (Pl+x)';
PId = '(4*betae/Vt) * (K*current*(sqrt(eval(Pv))) - Dm*thetad - Ctm*(Pl+x) )';

% To evaluate kl, let x = 0
x = 0;
if (eval(Pv)) < 0

Pv = '0';
end
kI = h*eval(Pld);
% To evaluate k2, let x = kl/2
x = kl/2;
if (eval(Pv)) < 0

Pv = '0';
end
k2 = h*eval(Pld);
% To evaluate k3, let x = k2/2
x = k2/2;
if (eval(Pv)) < 0

Pv = '0';
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end
U3 = h*eval(Pld);
% To evaluate k4, let x = k3
x =k3;
if (eval(Pv)) < 0

NI = '0';
end
k4 = h*eval(Pld);
Plnew = PI + (1/6)*(kl + 2*k2 + 2*k3 + k4);
if Pinew > Ps

Pinew = Ps;
end
if Pinew < -Ps

Plnew = -Ps;
end
torque = eff*IPlnew*Dm;

function [ps,pphi,pcurrent,ppsi] =plotter(s,phi,current,psi,t)
subplot(22 1) ,plot(t,s) ,xlabel('Time(sec)') ,ylabel('S')
subplot(22 1) ,plot(t,phi) ,xlabel('Time(sec) ') ,ylabel('Phi')
subplot(22 1) ,plot(t,current) ,xlabel('Time(sec)') ,ylabel('Current (mA)')
subplot(22 1) ,plot(t,psi) ,xlabel('Time(sec) ') ,ylabel('Psi (Rad)')

function [D,Dd,w,wd,wdd,Ad,Add] =usualm(tha,v,vd,L)

D=[1 0 0;0 1 0;vO0 1];Dd=[O0O;0O0O;vdO0O0;
w=[1 0 0;L*cos(tha) cos(tha) -sin(tha);L*sin(tha) sin(tha) cos(tha)];
wd=[0 0 0;-L*sin(tha) -smn(tha) -cos(tha);L*cos(tha) cos(tha) -sin(tha)];
wdd=[O 0 O;-L*cos(tha) -cos(tha) sin(tha);-L*sin(tha) -sin(tha) -cos(tha)];
Ad=[0 0 0;0 -sin(tha) -cos(tha);O cos(tha) -sin(tha)];
Add= [O 0 0;0 -cos(tha) sin(tha);O -sin(tha) -cos(tha)];

function ans = fa(v,vd,thetad,wd, wdd, Ad, Add,D,Dd, IpIr, n 1m,n 1n Im, g, ml,torque)

% evaluation of right hand side of the large-motion equation

% (1) -2 *thetad *etad' (integration [N(x)' *W, 'SW, *N(x)] dm} *eta
% where (integration [N(x)' *W, '*W, *N(x)]dm} = nwwn 1 nwwn12 ;nwwn 12 nwwn2]

x = -2*thetad*vd*nlnlm*v;
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% (2.1) {integration[s'] dm)*W,'*g

% where {integration[s'] dm} = s <-- 1st moment of inertia of link

s = [4.856519 -2.428258693 0];

yl = s*wd'*g;

% (2.2) eta'*{integration[N'] dm}*W,'*g
% where {integration[N'] dm} = n

n = [0 0 nim];

y2 = v*n*wd'*g;

% (2.3) {integration[Sp']dm}*D'*W,'*g
% where {integration[Sp'] dm} = Sp <-- 1st moment of inertia of payload

Sp = [ml 0 0];

y3 = Sp*D'*wd'*g;

y = yl+y2+y3;

% (3) evaluation "trace" terms of right hand side of large-motion equation

% trace [2*wd*D*Ip*Dd'*wd']*thetad

zl = -2*thetad*wd*D*Ip*Dd'*wd';

z = trace(zll);

ans = x+y+z+torque;

function ans = fb(thetad,w,wd,D,Dd,nlm,Dv,Ip,g,ml)

% evaluante the right hand side of the small-motion equation
%

% (1) {Integration [N'] dm}*W'*g

n = [0 0 nim];

u = n*w'*g;
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% (2)
% [ (integration [Sp'] dmj*Dv'*w'*g (integration [Sp'] dm)*Dphi'*w'*g]
% where (integration [Sp'] dm} = Sp

Sp = [ml 0 0];

x = Sp*Dv*w'*g;

% (3)
% evaluate all the "trace" terms of right hand side of small-motion equation

% (3.1) trace [wdd*D*Ip*Dv'*w'*(thetad^2))+2*wd*Dd*Ip*Dv'*w']

yll = wd*Dv*Ip*D'*wd'*(thetad"2);
y22 = 2*wd*Dv*Ip*Dd'*w'*(thetad);
y = trace(y I I +y22);

ans = u+x+y; % sum of the right hand side of small-motion equation

function ans - maa(v,wd,Ad,D,Ip,Ir,swwsm,nlnlm,A,rho)

% coefficient computation of "thetadd" of large-motion equation %

% (1) (integration [s'*wd'*wd*s] dm} = swwsm
x = swwsm;

% (2) eta'*{integration [N'*wd'*wd*N] dm)*eta
y = v'*nlnlm*v; % 2nd-order value should be small

% The following is used to evaluate all the "trace" terms in the coefl 1
% (2.1) Trace [ W,*D*Ip*D'*W,' ]
ul = trace(wd*D*Ip*D'*wd');

% (2.2) Trace [ A,*Ir*A,]
u2 = trace(Ad*Ir*Ad');
z = ul+u2;

ans = x+y+z;

function ans = mab(D,w,wd,Dv,Ip,lxnlm,ml,L)

% coefficient computation of "etadd" of large-motion equation
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% (1) {integration [s'*wd'*w*N]j dm) [swwnl swwn2]
x = lxnlm i;

% (2) [trace (W,*D*Ip*(Dv)'*W') trace (W,UID*p*(Dphi)'*W')]
y = trace(wd*D*Ip*Dv'*w');

ans =x+y;

function ans = mba(D,w,wd,Dv,Ip,lxnl m)
4

% coefficient computation of "etadd" of large-motion equation

% (1) (integration [s'*wd'*w*N] dm) = [swwnl swwn2]
x = lxnlm;

% (2) [trace (W,*D*Ip*(Dv)'*W') trace (W,*D*Ip*(Dphi)'*W')]
y = trace(wd*D*Ip*Dv'*w');

ans = x+y;

function ans = mbb(w,Dv,Ip,nlnlm,ml)

% coefficient computation of "etadd" of small-motion equation

% (1) (integration [N'~w*w*IN] dm1 = [nwwnl nwwnl2;nwwnl2 nwwn2]

x = ninim;

% (2) [ Tr(W*Dv*Ip*Dv'*W') 0;0 Tr(W*(Dphi)*Ip*(Dphi)'*W')]
y = trace(w*Dv*Ip*Dv'*w');

ans = x+y;

function ans = kb(thetad,klei,nlnlm)

% coefficient computation of "eta" of small-motion equation

% (1) ((E*I)/2)*{integartion [sigma+sigma'] dx} = x
x = klei;

% (2) (integration [N'*wd'*wd*N] dm}*eta*(thetad'2)
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% where {integration [N'*wd'N-wd*N] dm} = [nwwnl nwwni2;nwwnl2 nwwn2]
y = -(thetad^2)*ninim;

ans=x+y;

function ans = ni(x,betai ,beta2,Ci ,C2,Bi ,B2)

% natural-mode shape functions Ni(x) evaluation

xii = Ci *(cos(betai *x) +cosh(betai *x)) + (sin(betal *x) +sinh(betai *x));
xi2 = C2*(cos(beta2*x) +cosh(beta2*x)) + (sin(beta2*x) +sinh(beta2 *x));
ans = Bi*xil + B2*xi2;

function ans = nini(x,betai,beta2,Ci,C2,Bi,B2)

xii Ci *(cos(betal *x) +cosh(betai*x)) + (sin(betal *x)+sinh(betai*x));
xi2 = C2*(cos(beta2*x) +cosh(beta2*x)) + (sin(beta2*x) +sinh(beta2*x));
NI = Bi*xii + B2*xi2;
% 'nwwni' is to evaluate NiA2 and to be used in "coefii.m"
% An evaluation of [ NiA2 Ni*N2 ; Ni*N2 N2^2 ] which comes from multiplic-
% ation of [ N(x)'*W,'*W,*N(x)
ans = Nl.^2;

function ans = ixni(x,betai ,beta2,Ci ,C2,BI ,B2)

xii = Ci *(cos(betai ~x) +cosh(betai *x)) + (sin(betai *x) +sinh(betai *x));

xi2 = C2*(cos(beta2*x)+cosh(beta2*x)) + (sin(beta2*Ix)+sinh(beta2*x));

NI = BI*xil + B2*xi2;

ans =O.9985*Ni + x.*Nl;

function y = swws(x,betai,beta2,CI,C2,BI,B2)

% To be used in "coef11. m" and evaluate integral [S'*W,'*W, *Sjdx
% After multiplication [I SI*W,I*W,*S ] = (L+x)'^2
% where W represents 2-D homogeneous transform matrix

% W, represents first derivative w.r.t. theta
% S represents the local position along the link [1 x 0]'
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% L length of the link = 0.9985 m

y = (0.9985+x).^2;

function ans = kll1(x,betal,beta2,Cl,C2,Bl,B2)

xi ldd =(betal *betal )*(Cl1*(-cos(betal *x) +cosh(betal *x)) +(-sin(betal *x) .....
+sinh(betal *x)));
xi2dd=(beta2 *beta2) *(C2 *(..cos(bea*x) +cosh(beta2*x)) + (sin(beta2*x) .....
+sinh(beta2*x)));
% Note: Nldd = second derivative of N1(x) w.r.t. x

% N2dd = second derivative of N2(x) w.r.t. x
Nldd = Bl*xildd + B2*xi2dd;
ans =Nldd.A2;
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APPENDIX B

FORTRAN IMPLEENTATION PROGRAMS

C First-Order Sliding Condition + An Integral Error Control
$INCLUDE: 'ATLDEFS. FOR'
$INCLUDE: 'ATLERRS. FOR'

PARAMETER (NUM = 1750)
INTEGER*2 ADGAINS( 16), ADCHAN( 16), ICONFIG( 16) ,BASEADR, CDEVID,

+ CDEVF,LG, SCAN,DAVAL1, ,DAVAL2, Y, STATUS
INTEGER*2 FH,FM,FS,FSS
REAL BHAT,FHAT,L,PI,K, R(3), G,IHAT, INTGERR, LAMBDA
REAL PSID(NUM) ,PSI VD(NUM) ,PSIJERK(NUM) ,S(NUM) ,CURRENT(NUM)

REAL PSI(0:NUM),PHI(NUM)
COMMON/CONFIG/ICONFIG
EQUIVALENCE
(ICONFIG(KCBASEADR),BASEADR) ,(ICONFIG(KCDE VID) ,CDEVID)

+ ,(ICONFIG(KCDE VFLAGS) ,CDE VFLG),(ICONFIG(KCSCAN) ,SCAN),(ICONFIG(KCC
+ HANNELS) ,CHAN)

C
DATA R,G/300.0,30.0, 1.0,3000.0/,SPEED,L/10.O,0.9985/
DATA SMALFLL,INTGERRI2*.0/,RATE,FREQ/2000.0,200.0/
DATA PSIJERK/NUM*0. 0/ ,PSI VOD ,D2OLD ,VOLD/3 *Q*Q/

C UNCERTAINIES
DATA BHAT,DB/1. 1E4,295.0/ ,FHAT,DF/-5.7732E4,6.71 14E4/

C
PRINT *,Pes Enter Lambda for S dynamics, and Payload'
READ *,LAMBDA,PAYLOAD
PRINT *,'Please Enter Desired Trajectory "I",or "2"
READ *,IANS

C DESIRED TRAJECTORY
IF(IANS .EQ. 1) THEN

DO 100 M =1,NUM
TIME = REAL(M)/FREQ

IF (TME .LE. 1.0) THEN
PSID(M) =TIME

PSIVD(M) = 1.0
ELSE IF((TME .Gr. 1.0) .AND. (TME .LE. 2.0)) THEN

PSID(M) = 1.0
PSIVD(M) =0.0

END IF
IF((TIME .GT. 2.0) .AND. (TIME .LE. 2.4)) THEN

PSID(M) =3.0-TIME

PSIVD(M) =-1.0
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ELSE IF(TME .GE. 2.4) THEN
PSID(M) =0.6
PSI VD(M) =0.0

END IF
100 CONTINUE

ELSE IF(IANS .EQ. 2) THEN
DO 500 M =l,NUM
PSID(M) = 1. 0
PSIVD(M) =0.0
PSIJERK(M) =0.0

500 CONTINUE
END IF

C
M=0
PI=4*ATAN(1 .0)
PAR=PI/1054.0
R1B= 1.0/(R(3)*BHAT)
R1NOM=SQRT(R(1)**2 +R(2)**2 +R(3)**2)
OPEN(UNIT= 15,FILE ='C: \AThAB\TMP\CTRL 1. M', STATUS ='NEW')

C INITIALIZE DATA ACQUSITION BOARD
STATUS = ALINITO
STATUS = ALSB( 1)
STATUS = ALSF(RATE)
STATUS = ALRSETO
STATUS = ALGC(ICONFIG)
STATUS =ALDV(0,Y)

C
WRITE(*,*)' Are you ready (Ctrl-C)?
WRITE(*,*)' When you are ready to go, press "1" and "return"
READ~ *,ANS
IF(IANS I EQ. 1) GOTO 7

C BEGIN SIGNAL PROCESSING
7 CALL GETI1M(IH,IM,IS,ISS)
5 STATUS =ALAV(1, 1 ,DAVAL1)

STATUS = ALAV(2, 1, DAVAL2)
D I = REAL(DAVAL 1-2048)
D2 =REAL(DAVAL2-2048)

C FILTERED VERSION OF SMALL MOTION SIGNAL COMING OUT FROM STRAIN
INDICATOR

SMALFIL=0.94 175*SMALFIL+0.029 129*(D2OLD +D2)
C CALIBRATED EQUATION BETWEEN DISPLACEMENT(cm) ANT) SMALFIL

SMALL= -0. 3*(SMALFIL + 15)
SMANG =SMALL/(100.0*L)

C LARGE MOTION CALIBRATED EQUATION
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THETA =PAR*(D1-30.0)
C TOTAL ANGLE

PS1(M) = THETA + SMANG
C CONTROLLER DESIGN

IF(M .EQ. 0) GOTO 1
POSERR =PSI(M)-PSID(M)
INTGERR=POSERR/FREQ + INTGERR

C FILTERED VERSION OF TOTAL VELOCITY, PSIV(M)
VNEW =(PSI(M)-PSI(M- 1)) *FREQ
PSIV=0.980198*PSIVOD+o.00990099*(VOLD+VNEW)
VELERR =PSIV-PSIVD(M)
S(M)=R(1)*POSERR+R(2)*VELERR+G*INTGERR

C NORMINAL VALUE
IHAT =R(1)*(-VELERR) +R(3)*(PSIJERK(M)-FHAT)-G*POSERR

C TO FIND K
K=(R1NOM*(DF+DB*(R1B*IHAT))+SPEED)/(1.0-(DB*RlB))
P111(M) =(KILAMBDA)*(1 .O+DB*R1B)
STD =S(M)IPHI(M)

IF(ABS(S(M)) .LT. P111(M)) SAT=-STD
IF(ABS(S(M)) .GE. P111(M)) THEN

IF(STD .GE. 0.0) SAT= 1.0
LF(STD .LT. 0.0) SAT=-1.0

ENDIF
CURRENT(M)=RlB*((IliAT - K*SAT)/1000.0)
IF (CURRENT(M) .GE. 10.OE-03) CURRENT(M) = 1.OE-03
IF (CTJRRENT(M) .LE. -10.0E-03) CURRBNT(M) =-10.OE-03
VOLT= CURRENT(M)*500.O

C DIGITAL TO ANALOG (D/A) CALIBRATED EQUATION
Y =NINT(((VOLT +9.9868)/4. 8766)* 1000.0)
STATUS =ALDV(0,Y)
D20LD =D2
VOLD =VNEW
PSIVOD =PSIV

C
1 M=M+1

IF (M.LE. NUM) GOTO 5
WRITE(*, *)'Gam~e Over!'
CALL GETTM(FH,FM,FS,FSS)

C RESET D/A BOARD
Y=2048
STATUS =ALDV(0,Y)
STATUS =ALTERMO

WR1TE(15, *)'Lambda =',LAMBDA,'R AND G =',R,G,'Payload =',PAYLOAD
DO 200 M=0,NUM-1
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200 WRITE(15,25)CURRENT(M+ 1),PSI(M),PSID(M+ 1),S(M+ 1),PHI(M+ 1)
25 FORMAT(5F 10.4)

CLOSE( 15)
END

C Straight Sliding Mode Control

$INCLUDE: 'AThDEFS. FOR'
$INCLIJDE: 'ATLERRS .FOR'

PARAMETER (N7UM = 1000)
INTEGER*2 ADGAINS( 16) ,ADCHAN( 16) ,ICONFIG( 16) ,BASEADR, CDEVID,

+ CDEVF,LG, SCAN,DAVAL1, ,DAVAL2, Y, STATUS
INTEGER*2 FH,FM,FS,FSS

C
REAL BHAT,FHAT,L,PI,K,R(3),IHAT
REAL PSID(NUM),PSIVD(NUM),PSUERK(NUM),S(NUM),CURRENT(NUM)
REAL PSI(0:NUJM),PSIV(0:NUM),INTGS
COMMON/CONFIG/ICONFIG
EQUIVALENCE
(ICONFIG(KCBASEADR),BASEADR) ,(ICONFIG(KCDE VID) ,CDEVID)

+ ,qCONFIG(KCDEVFLAGS),CDEVFLG),(ICONFIG(KCSCAN),SCAN),(ICONFIG(KCC
+ HANNELS) ,CHAN)

C
DATA R1300.0,30.0, 1.0/,SPEED,L/10.0,0.9985/
DATA SMALL, SMALFIL/2 *0. 0/ ,RATE, FREQ/2000.0, 200. 0/
DATA PSUERKINUM*0. 0/ ,PSI V(0) ,D2OLD ,VOLD ,INTGS/4*0. 0/

C UNCERTAINIES
DATA BHAT,DB/1. 1E4,295.0/,FHAT,DF/-5.7732E4,6.71 14E4/

C
PRINT *,'Pleas Enter Phi AND W (Real Number Please)!'
READ *,Pffl,W
PRINT *,Pes Enter Desired Trajectory "1" or "2"
READ *,IANS

C DESIRED TRAJECTORY
IF(IANS .EQ. 1) THEN

DO 100 M =1,NUM
TIME = REAL(M)/FREQ

IF (TIME .LE. 1.0) THEN
PSID(M) = TIME
PSIVD(M) = 1.0

ELSE IF((TME .GE. 1.0) .AND. (TIME .LE. 2.0)) THEN
PSID(M) = 1.0
PSIVD(M) =0.0

END IF
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1F((TIME .GT. 2.0) .AND. (TME .LE. 2.4)) THEN
PSID(M) =3.0-TIME

PSIVD(M)= -1.0
ELSE IF(TIME .GE. 2.4) THEN

PSID(M) =0.6
PSIVD(M) =0.0

END IF
100 CONTINUE

ELSE IF(IANS .EQ. 2) THEN
DO 500 M =1,NUM
PSID(M) =1.0
PSIVD(M) =0.0
PSIJERK(M=0.0

500 CONTINUE
END IF

C
M=O
PT =4*ATAN(1 .0)
PAR =PI/ 1054.0
R1B= 1.0/(R(3)*BHAT)
RINOM =SQRT(R(1)**2 +R(2)**2 +R(3)**2)
OPEN(UNIT = 15,FELE =C: \ATLAB\TMP\CTRL2. M', STATUS'N1 EW')

C INITIALIZE DATA ACQUSITION BOARD
STATUS =ALINITO

STATUS =ALSB(1)
STATUS = ALSF (RATE)
STATUS =ALRSETQ
STATUS = ALGC(ICONFIG)
STATUS =ALDV(0,Y)

C
WRITE(*, *)' Are you ready (Ctrl-C)?
WRITE(*,*)' When you are ready to go, press "1" and "return"
READ *JANS 1
LF(IANS 1 .EQ. 1) GOTO 7

C BEGIN SIGNAL PROCESSING
7 CALL GETTM(IH,IM,IS,ISS)
5 STATUS =ALAV(1,1IDAVALI)

STATUS = ALAV (2, 1 ,DAVAL2)
Dl-REAL(DAVALI-2048)
D2 =REAL(DAVAL2-2048)

C FILTERED VERSION OF SMALL MOTION SIGNAL COMING OUT FROM STRAIN
INDICATOR

SMALFIL=0.94 175*SMALFIL+0.029 129*(D2OLD +D2)
C CALIBRATED EQUATION BETWEEN DISPLACEMENT(cm) AND SMALFIL
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SMALL=- 1.0*(SMALFIL+ 15.0)
SMANG =SMALL/(100.0*L)

C LARGE MOTION CALIBRATED EQUATION
THETA =PAR*(D1-30.0)

C TOTAL ANGLE
PSI(M) =THETA +SMANG

C CONTROLLER DESIGN
IF(M .EQ. 0) GOTO 1
POSERR =PSI(M)-PSID(M)

C FILTERED VERSION OF TOTAL VELOCITY, PSIV(M)
VNEW =(PSI(M)-PSI(M-1))*FREQ
PSIV(M) =0. 975309*PSIV(M- 1) + 0.0 1234568 *(VOLD+ VNEW)
VELERR =PSI V(M)-PSIVD (M)
S(M) =R(1)*POSERR+R(2)*VELERR
INTGS =INTGS +(S(M)/FREQ)

C NORMINAL VALUE
IHAT =R( 1)*(-VELERR) +R(3)*(PSUERK(M)-FvL. / -((WV-*2) *IN.4GS)

C TO FIND K
K =(R1NOM*(DF +DB*(R1B*I,&lA ' +SPEED)/(1 .0-(DB*RIB))
LAMBDA =(SQRT(1 +DB*R IB))*W
P111(M) =(K/(2*ZETA*LAMbDA))-*(D3* R1.B)
STD =S(M)/PHI(M)
IF(ABS(S(M)) .LT. P111(M)) SAT=STD
IF(ABS(S(M)) .GE. P111(M)) THEN

IF(STD .GE. 0.0) SAT= 1.0
IF(STD .LT. 0.0) SAT=-1.0

ENDIF
CURRENT(M)=RlB*((IHAT - K*SAT)/1000.0)
IF (CURRENT(M) .GE. 10.OE-03) CURRENT(M)=10.OE-03
IF (CURRENT(M) .LE. -10.OE-03) CURRENT(M)=-10.OE-03
VOLT= CURRENT(M)*500.0

C DIGITAL TO ANALOG (D/A) CALIBRATED EQUATION
Y =NINT(((VOLT+9.9868)14.8766)* 1000.0)
STATUS =ALDV(0,Y)
D2OLD=D2
VOLD =VNEW

C
1 M=M+1

IF (M.LE. NUM) GOTO 5
VVRITE(*, *)'Game Over!'
CALL GEITIM(FH,FM,FS,FSS)

C RESET D/A BOARD AND TERMINATION
V7=2048

STATUS = ALDV(0, Y)
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STATUS =ALTERMO

W;RiITE( 15, *)' %R=-',
WR1TE(15, *)'%PHI =',PHI,' W=',W
DO 200 M=0,NUM-1

200 WRITE(15,25)CURRENT(M+ 1),PSI(M),PSID(M+ 1),PSIV(M),S(M+ 1)
25 FORMAT(IX,5F12.4)

CLOSE( 15)
END

C Versatile Sliding Mode Control
$INCLUDE: 'ATLDEFS .FOR'
$INCLUDE: 'ATLERRS. FOR'

PARAMETER (NUM =1000)4
INTEGER*2 ADGAINS( 16), ADCHAN( 16) ,ICONFIG( 16) ,BASEADR, CDEVID,

+ CDEVF ,LG , SCAN,DAVAL1 ,DAVAL2 , Y, STATUS
INTEGER*2 FH,FM,FS,FSS

C
REAL BHAT,FHAT,L,PI,K,R(3),G,IHAT
REAL PSID(NUM),PSIVD(NUM),PSUERK(NUM) ,SDOT(NUM) ,CURRENT(NUM)
REAL PSI(0: NUM) ,PSIV(0: NUM) ,INTGS ,INTGERR
COMMON/CONFIG/ICONFIG
EQUIVALENCE
(ICONFIG(KCBASEADR) ,BASEADR) ,(ICONFIG(KCDEVID) ,CDEVID)

+ ,(ICONFIG(KCDEVFLAGS),CDEVFLG),(ICONFIG(KCSCAN),SCAN),(ICONFIG(KCC

+HANNELS),CHAN)
C

DATA R,G/300.0,30.0,1.0,1000.0/SPEED,L/10.0,0.9985/
DATA SMALL, SMALFIL,INTGERRI3 *0.0/,RATE,FREQ/2000.0,200. 0/
DATA PSUERKINUM*0.0/ ,PSIV(0) ,S ,D2OLD,VOLD,INTGS/5 *0.0/
DATA SDOTO,SDOTN/2*0.0/

C UNCERTARN1ES
DATA BHAT,DB/1. 1E4,295.0/,FHAT,DF/-5.7732E4,6.71 14E4/

C
PRINT *, 'Please Enter Phi, Wn, AND Z (Real Number Please)!'
READ *,PHI,W,Z
P~?RNTf *,'Plese Enter Desired Trajectory "1" or "2"
READ *,LANS

C DESIRED TRAJECTORY
IF(IANS .EQ. 1) THEN

DO 100 M =1,NUM
TIME =REAL(M)/FREQ

IF (TME .LE. 1.0) THEN
PSID(M) =TIME
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PSIVD(M) = 1.0
ELSE IF((TIME .GE. 1. 0) .AND. (TIME .LE. 2. 0)) THEN

PSID(M) = 1.0
PSIVD(M) =0.0

END IF
IF((TME .GT. 2.0) .AND. (TME .LE. 2.4)) THEN

PSID(M) =3.0-TIME
PSI VD(M) =-1.0

ELSE IF(TIME .GE. 2.4) THEN
PSID(M) =0.6
PSIVD(M) =0.0

* END IF
100 CONTINUE

ELSE
DO 300 M =1,NUM
TIME = REAL(M)/FREQ
PSID(M) = 1.0
PSIVD(M) =0.0

C PSIAD(M)=0.0
PSUERK(M) =0.0

300 CONTINUE
ENDIF

C
M=0
P1 =4*ATAN(l .0)
PAR=PI/1054.0
R1B= l.0/(R(3)*BHAT)
RlNOM=SQRT(R(1)**2+R(2)**2 +R(3)**2)
OPEN(UNIT= 15,FILE ='C: \ATLAB\TMP\CTRL3. M', STATUS ='NEW')

C INITIALIZE DATA ACQUSITION BOARD
STATUS =ALINITO

STATUS =ALSB(1)
STATUS = ALSF(RATE)
STATUS = ALRSETO
STATUS = ALGC(ICONFIG)
STATUS = ALDV(0, Y)

C
WRITE(*,*)' Are you ready (Ctrl-C) ?
WRITE(*,*)' When you are ready to go, press "I" and "return"
READ *,IANS1
IF(IANS 1 .EQ. 1) GOTO 7

C BEGIN SIGNAL PROCESSING
7 CALL GET=M(IH,IM,IS,ISS)
5 STATUS =ALAV(1, 1,DAVALI)
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STATUS =ALAV(2, 1 ,DAVAL2)
Dl =REAL(DAVALI-2048)
D2=REA(])-.AL2AJ2048)

C FILTERED VERSION OF SMALL MOTION SIGNAL COMING OUT FROM STRAIN
INDICATOR

SMALFIL=0.94175*SMALFIIL+o.029129*(D2OLD+D2)
C CALIBRATED EQUATION BETWEEN DISPLACEMENT(cm) AND SMALFIL

SMALL= -1.0*(SMALFIIL+ 15.0)
SMANG =SMALL/(100.0*L)

C LARGE MOTION CALIBRATED EQUATION
THETA =PAR*(D 1-30.0)

C TOTAL ANGLE
PSI(M) =THETA + SMANG

C CONTROLLER DESIGN (VERSATILE)
IF(M .EQ. 0) GOTO 1
POSERR =PSI(M)-PSID(M)
INTGERR=INTGERR + POSERR/FREQ

C FILTERED VERSION OF TOTAL VELOCITY, PSIV(M)
VNEW=(PSI(M)-PSI(M- 1)) *FRBQ
PSIV(M=0.975309*PSIV(M-1)+0.01234568*(VOLD+VNEW)
VELERR =PSIV(M)-PSIVD(M)
SDOTN=R(1)*POSERR+R(2)*VELERR+ GLTGERR-Z*S
SDOT(M)=0.94175*SDOT(M-)+0.029129*(SDOTO+SDOTN)
S =5+SDOT(M)/FREQ

C NORMINAL VALUE
I1{AT=R(1)*(-VELERR) +R(3)*(PSIJERK(M)-FHATi)-G*POSERR+Z*SDOT(M)

C TO FIND K
K =(R 1NOM*(DF +DB*(RlB*IHAT)) +SPEED)I(1 .0-(DB*RlB))
LAMBDA =(SQRT(1 +DB*R1B))*W
PI(M= (K*(DB*R1B))/((2*ZETA*LAMBDA) +(DB*RlB*Z))

C
STD= SDOT(M)IPHI(M)
IF(ABS(SDOT(M)) .LT. P111(M)) SAT=STD
LF(ABS(SDOT(M)) .GE. PHI(M)) THEN

IF(STD .GE. 0.0) SAT= 1.0
IF(STD .LT. 0.0) SAT=-1.0

ENDIF
CURRENT(M)=R1B*((IHAT - K*SAT)/1000.0)
IF (CURRENT(M) .GE. 10.OE-03) CURRENT(M) =l0.OE-03
IF (CURRENT(M) .LE- -10.OE-03) CURRENT(M)=-10.OE-03
VOLT =CURRENT(M)*500.0

C DIGITAL TO ANALOG (D/A) CALIBRATED EQUATION
Y =NINT(((VOLT+9.9868)/4 .8766)* 1000.0)
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STATUS =ALDV(O,Y)
D20LD =D2
VOLD =VNEW

SDOTO=SDOTN
C

1 M=M+1
IF (M.LE. NUM) GOTO 5
WRITE(*, *) 'Game Over !'
CALL GEITIM(FH,FM,FS,FSS)

C RESET D/A BOARD AND TERMINATION
Y=2048
STATUS =ALDV(O,Y)
STATUS =ALTERMO

W;RITE( 15, *)' %G ='

WRITE(15, *)'%PHI= ',PHI,' W= ',W,' Z= ',Z
DO 200 M=0,NUJM-1

200 WRITE(15,25)CURRENT(M+ 1),PSI(M),PSID(M+ 1),PSIV(M),SDOT(M+ 1)
25 FORMAT(1X,5F12.4)

CLOSE(15)
END

115



LIST OF REFERENCES

1. Chang, L.W., Dynamic Analysis of Robotic Manipulators with Flexible Links, Ph.D.
Dissertation, School of Mechanical Engineering, Purdue University, W. Lafayette, IN.
1984.

2. Chang, L.W., and Hamilton J.F., " A Sequential Integration Method," Journal of
Dynamics Systems, Measurement, and Control, vol. 110, pp. 383-388, December 1988.

3. Petroka, R.P., Computer Simulation and Experimental Validation of a Dynamic Model
(Equivalent Rigid Link System) on a Single Link Flexible Manipulator, Master's Thesis,
Naval Postgraduate School, Monterey, California, October 1982.

4. Chang, L.W., and Gannon K.P., "A Dynamic Model on a Single-Link Flexible
Manipulator," Journal of Vibration and Acoustics, vol. 112, pp. 138-143, January 1990.

5. Kirkland, M., Implementation of Dynamic Control of a Single-Link Arm Using a General
Micro-Computer, Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1988.

6. DeCarlo, R.A., et. al., " Variable Structure Control of Nonlinear Multivariable Systems:
A Tutorial," Proceedings of the IEEE, vol.76 No.3, March 1988.

7. White, B.A., "Reduced-Order Switching Functions in Variable-Structure Control
Systems," lEE PROC., vol. 130, Pt. D, no.2, March 1983.

8. Utkin, V.I., "Survey Paper- Variable Structure Systems with Sliding Mode," IEEE
Trans. Automatic Control, vol, AC-22, no.2, pp.212-222, 1977.

9. Slotine, J.J., and Sastry, S.S., "Tracking Control of Non-Linear Systems Using Sliding
Surfaces, with Application to Robot Manipulators," Int. Journal of Control, vol. 38, no.
2, pp.465-492, 1983.

10. Fan, T.C., A Robust Control of a Vertical-Plane Motion for a Electrohydraulically-
Actuated Signal-Flexible-Link Arm, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1989.

11. Chang, L.W., "A Straight Sliding Control with a First-Order Plus Integral Sliding
Condition," submitted to IEEE Trans. on Automatic Control, 1990.

12. Chang, L.W., "A Versatile Sliding Control with a Second-Order Sliding Condition,"

submitted to ASME Journal of Dynamics Systems, Measurement and Control, 1990.

13. Merrit, H.E., Hydraulic Control Systems, John Wiley & Sons, Inc., 1967.

14. Park, K.S., Control System Simulation for a Single-Link Flexible Arm, Master's Thesis,
Naval Postgraduate School, Monterey, California, September 1987.

116


