WL-TR-91-1122 l_:) ". ‘ (

7oy £ T
’.'r

B /s BRI NN R

AD-A242 682 f
LT

THE DESIGN AND IMPLEMENTATION OF THE ARIEL
ACTIVE DATABASE RULE SYSTEM

Eric N. Hanson, Capt
~“illiam R. Baker

Artificial Intelligence Technology Office
Svstems Avionics Division

Nctober 1991

Final Report for period September 1983 - September 1991

srproved for publiec release; distribution is unlimited.

AL TS DIRECTORATE
WEIGHT LARORATORY

ATY OFUROE SYSTEMS CUMMAND

WHICUToPATTERSON ATR FORCE BASE, OHIO 45433-6543

-15967
\\“\J‘N I ‘ll\i (VN

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than iIn connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner comnstrued, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto. '

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign natioms.

This technical report has been reviewed and is approved for publica-
tion. :

&-Lc/ V? /fwév\
ERIC N. HANSON, CAPT, USAF
Research Director

FOR THE COMMANDER

R

\ e

ZDZISLAW LEWANTOWICZ, COL, USAF
Séput Director, Avionics

Wollat L

WILLIAM R. BAKER
Chief, Artificial Intelligence
Technology Office

If your address has changed, 1f you wish to be renoved from our mailing
list, or 1f the addressee is no longer employed by your orgarnization please

nocify Wi/haAA WPAFB, OH
mailing list.

45433-6543 to help us maintaiu a current

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific

document.

UNCLASSIFLED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0702-0188

la REPORT SECURITY CLASSIFICATION
Unclassified

1b RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release; distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

WL-TR-91-1122

4 PERFORMING ORGANIZATION REPCORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
WL

6b. OFFICE SYMBOL
(If applicable)

AAA

7a. NAME Of MONITORING ORGANIZATION
Avionics Directorate (WL/AAA)

Wright Laboratory

6c. ADDRESS (City, State, and ZIP Code)

WPAFE OH 45433-6543

7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson ATB, OH 45433-6543

(W5}

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

See ba.

8b. OFFICE SYMBOL
(If applicable)

See 6b.

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

See bc.,

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. }NO. NO ACCESSION NO
62204F 2003 05 54

11 TITLE (Include Security Classification)

The Design and Implementation of the Ariel Active Database Rule System

12 PERSONAL AUTHOR(S)
Eric N. Hanson, Capt

13a. TYPE OF REPORT 13b. TIME COVERED
Final FROM Sep 88 T1O Sep 91

14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT
10 Octg] 47

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Active database systems, database rule systems, database

triggers -

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

T...s paper describes the design and implementation of the Ariel DBMS and it’s tightly-coupled
forward-chaining rule system. The query language of Ariel is a subset of POSTQUEL, extended
with a new production-rule sublanguage. Ariel supports traditional relational database query
and update operations etficiently, using a System R-like query processing strategy. In addition,
the Ariel rule system is tightly coupled with query and update processing. Ariel rules can have
conditions based on a mix of patterns, events, and transitions. For testing rule conditions, Ariel
makes use of a discrimination network composed of a special data structure for testing single-
relation selection conditions efficiently, and a modified version of the TREAT algorithm, called
A-TREAT, for testing join conditions. The key modification to TREAT (which could also be
used in the Rete algorithm) is the use of virtual a-memory nodes which save storage since they
contain only the predicate associated with the memory node instead of copies of data matching
the predicate. The rule-action executor in Ariel binds the data matching a rule’s condition to
the action of the rule at rule fire time, and executes the rule action using the query processor.

20 DISTRIBUTION . AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
B onc asss sounemited O SAME As peT O omnc users | Unclassified
22a NAME OF RESPONSIB_E INDIVIGUAL 22b TELEPHONE (include Area Code) | 22¢ OFFICE SYMBOL
Bill baker (513)255-1491 WL/AAA

DD Form 1473, JUN 86

Previous editions are obsolete

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS »AGE

1

Designers of database management systems have long wanted to transform databases from passive reposito-
ries for data into active systems that can respond immediately to a change in the state of the data, an event,

or a transition between states [BC79, Esw76]. However, to create a successful active database system, many

L_Acmn

| NYYY

i
e

!

The Design and Implementation of the Ariel 5« |
Active Database Rule System' A\

o

Eric N. Hanson
WL/AAA-1
Wright Laboratory
Wright-Patterson AFB, OH 45433

September 10, 1991

Abstract

This paper describes the design and implementation of the Ariel DBMS and it’s tightly-coupled
forward-chaining rule system. The query language of Ariel is a subset of POSTQUEL, extended
with a new production-rule sublanguage. Ariel supports traditional relational database query
and update operations efficiently, using a System R-like query processing strategy. In addition,
the Ariel rule system is tightly coupled with query and update processing. Ariel rules can have
conditions based on a mix of patterns, events, and transitions. For testing rule conditions, Ariel
makes use of a discrimination network composed of a special data structure for testing single-
relation selection conditions efficiently, and a modified version of the TREAT algorithm, called
A-TREAT, for testing join conditions. The key modification to TREAT (which could also be
used in the Rete algorithm) is the use of virtual a-memory nodes which save storage since they
contain only the predicate associated with the memory node instead of copies of data matching
the predicate. The rule-action executor in Ariel binds the data matching a rule’s condition to
the action of the rule at rule fire time, and executes the rule action using the query processor.

Introduction

problems must be solved, including:

GRaal
| 9240 PTa

Umanano me od £
Justificatton

, By .
Distrivwiie;
| tvailabliity Coses

}u h'r>

. e —

T ———

vai) amefer |
Enegin)

———— e

e design of a suitable language for expressing active rules,

o design of a condition-testing mechanism for rules that is efficient enough to still allow fast transaction

processing,

"This w.rk was supported in part by the Air Force Office of Scientific Research under grant number AFOSR-89-0286.

e integration of rule condition testing and execution with the transaction processing system,
o design of a protocol for allowing rule actions to interact with software external to the DBMS.

The Ariel system is an implementatior of a relational DBMS with a built in rule system which has been
desigvned to address the above issues. The Ariel rule system (ARS) is based on the production system
model [For82]. Our approach has been to adopt as much as possible from previous work on main-memory
production systems such as OPS5 [For81], but make changes where necessary to improve the functionality

and performance of a production system in a database environment. The features of Ariel that distinguish

it fromn other commercial and research active database rule systems are the following:

e Ariel is a complete implementation of a relational DBMS with a rule system that is tightly coupled

with the query processor,

e the design of Ariel places strong emphasis on efficient testing of rule conditions in a database environ-
ment, and a high-performance discrimination network for testing rule conditions in that environment

has been designed and implemented.

Soine other database rule systems have been developed but have not been implemented in a tightly coupled
fashion with the database query processor. These include DIPS [SLR89, RSL89] and RPL [DE88a, DE88b].
Another, HIPAC [DBBE* 88, Cha89, MD89], has been implemented, but only as a main-memory prototype.
The POSTGRES rule system (PRS) [SHP88, SRH90] and the Starburst rule system (SRS) [WCL91, HCL* 90}
have been implemented in a tightly-coupled fashion with their respective database systems. However, neither
the PRS, SRS, DIPS, RPL, nor HiPAC have a rule condition testing network comparable to the one in Ariel.

This paper describes the design and implementation of the Ariel DBMS with particula: - mphasis on the
ARS. Section 2 describes the query and rule languages used in Ariel. Section 3 give. an overview of the
Ariel system architecture. Section 4 discusses the Ariel rule catalog. Section 5 describes the rule ezecution
monitor which controls execution of triggered rules. Section 6 presents the structure of tokens that are
created by database operations, and the discrimination network used in / riel for efficiently testing both
selection and join conditions of rules against those tokens. Section 7 dr.scribes optimization and execution
of ruie actions. Section 8 gives some performance results. Finally, <:ci.ion 10 reviews related research, and

section 11 summarizes and presents conclusions.

2 The Ariel Query and Rule Languages

This section describes the Ariel query and rule languages. The syntax of Ariel rule language (ARL) is covered

in section 2.2 The Semantics of ARL rule e.ecution is discussed in section 2.3.

2.1 Query Lauguage

‘The focus of the Ariel project is on the rule system, so we made the decision to use well-understood database
technology for the other parts of the system wherever possible. We thus decided to use the relational data
model and provide a subset of the POSTQUEL query language of POSTGRES for specifying data definition
commands, Gueries and updates [SRH90]. POSTQUEL commands retrieve, append, delete, and replace,
are supported, along with other commands for creating and destroying relations and indexes, and performing
utility functions such as loading relations, gathering statistics on data in relations, and so forth. The syntax
of POSTQUEL data manipulation commands is shown below. Square brackets indicate optional clauses.
retrieve (target-lisit)

from from-list]
(where qualification]

append [to] target-relation (target-list)
from from-list]
iwhere qualification]

delete tuple-variable
from from-list]
iwhere qualification]

replace [to] tuple-variable (target-list)
[from from-list]
[where qualification]

In POSTQUEL, the target-list is used to specify fields to be retrieved or updated, the from-list is used ‘
to specify tuple variable bindings, and the qualification is used to specify a predicate that the data affected |
by the command must match. In addition, a relation name can be used as a tuple variable name by default,
avoiding the need to use a from clause in most cases.

Some relations which will be used throughout the paper are the following:

emp(name, age, salary, dno, jno)

dept(dno, name, building)
jobljno, title, paygrade, description)

An example command to retrieve the name and job title of everyone in the “Toy” department is:

retrieve (emp.name, job.title)
where emp.dno = dept.dno
and emp.jno = job.jno

and dept.name = “Toy”

An equivalent command using a tuple variable e to range over the emp relation is:

retrieve (e.name, job.title)
from e in emp

where e.dno = dept.dno
and e.jno = job.jno

and dept.name = “Toy”

For a more detailed description of POSTQUEL, readers are referred to [SRH90]. We now turn to a
discussion of ARL.

2.2 Rule Language

ARL is a production-rule language with enhancements for defining rules with conditions based not only on
patterns, but also on events and transitions. The ARL syntax is based on the syntax of the query language.
Hence, the syntax of the pattern in a rule condition is identical to that for the where clause of a query. The

general form of an ARL rule is the following:

define rule rule-name [in ruleset-name]

[priority priority-val]

ion event]

from from-list]

{if condition]

then action

A unique rule-name is required for each rule so the rule can be referred to later by the user. The user can

optionally specify a ruleset name to place the rule in a ruleset (use of rulesets will be discussed later). If no
ruleset name is specified, the rule is placed in the system-defined ruleset default rules. The priority clause

allows specification of a priority to control the order of rule execution. The on clause allows specification of

an event that will trigger the rule. The following types of events can be specified after an on clause:
e append [to] relation-name
e delete [from] relation-name
e replace {to] relation-name | (attribute-list) |
The condition after the if clause has the following form:
qualification | from from-list |

The qualification part of a rule’s if condition has the same form as the qualification of a where clause in
a query. with some exceptions. One exception is that Ariel does not currently support aggregates in rules
hecause testing aggregate rule conditions can be very time-consuming. The benefits of aggregate conditions

were not theught to be worth the cost for the initial Ariel prototype.

The then part of the rule contains the action to be performed when the rule fires. The action can be a
single data manipulation command, or a compound command which is a do ... end block surrounding a list
of commands.

The from clause is for specifying bindings of tuple variables to relations. Relation names can be used as
default tuple variables in both rules and queries.

An if condition specifies a logical predicate, bui no target list. No target list is specified because the rela-
tional projection operation is not allowed in rule conditions. The decision not to allow projection was made
since handling projection would require the system to maintain more state information between updates,
and would require extra effort to maintain duplicate counts. The usefulness of projection in rule conditions
was not felt to be worth the performance disadvantage.

There will be cases where a rule must be awakened when any new tuple value is created in a relation
(due to an append or a replace). Since no target list is allowed in rule conditions, we provide the following

conditional expression to reference a relation:
new (tuple-variable)

New can be thought of as a selection condition which is always “true.”

2.3 Rule Semantics

The Ariel rule system uses a production system model, where the “working memory” is stored in the database
relations and rules are stored separately in the rule catalog. Execution of rules is governed by a recognize-act
cycle similar to that used in OPS5 [For82]. Ariel rules get an opportunity to wake up after every database
transition. Below, we describe in detail Ariel’s treatment of transitions, events, the rule execution cycle, and

rule priorities.

2.3.1 Transitions

A transition in Ariel is defined to be the changes in the database induced by either a single command, or a do

. end block containing a list of simple commands. Blocks may not be nested. The programmer designing
a database transaction thus has control over where transitions occur. If desired, the programmer can put a
do ... end block around all the commands in the transaction so the entire transaction is a single transition.
Fach command in a transaction will be considered a transition by itself unless it is enclosed in a block.
Blocks are provided to allow programmers to safely update the database with multiple commands when data
integrity or consistency might be temporarily violated during the update. Programmers are encouraged to
only put a block around groups of commands which might violate integrity or consistency, since use of blocks

does incur some performance overhead to be discussed later.

2.3.2 Logical vs. Physical Events

In Ariel, triggering of event-based rules is based on logical events rather than physical events. Logical events
are defined as follows. The life of an individual tuple ¢ updated by a single transition always falls in one
of the following four categories, where i, m and d represent insertion, modification (update), and deletion

respectively. Superscripts » and + indicate a sequence of zero or more and one or more individual updates.

update type | description net effectJ

im’ insertion of t followed by zero or more modifica- insert
tions

im*d insertion of t followed by zero or more modifica- nothing
tions and then deletion.

T m t existed at the beginning of the transition and modify

was modified one or more times.

m*d t existed at the beginning of the transition, was delete
modified zero or more times, and then deleted.

The table above shows how the net effect of a sequence of updates to one tuple can be summarized as a
single insert, delete or modify operation, or no operation.

We made the decision to use logical rather than physical events for the following reasons:
1. When multiple event-based rules triggered by the same event are active, execution of one rule may
invalidate (e.g., delete) the data bound to another. If all binding of data to event-based rules occurs at the
time the event occurs, there is no way to avoid execution of rules bound to data that is no longer valid. If
events are treated as logical events as defined in the table above, rules are always bound to valid data when
they execute.
2. Treating events as logical operations provides additional data integrity compared with treating them as

physical operations. For example, consider the rule

define rule NoBobs
on append emp

if emp.name = “Bob”
then delete emp

The effect of this rule is to never let anyone named “Bob” be appended to the emp relation. Consider

the following block of update commands:
do
append emp(name-:“", age==27, sal=55000, dno = 12)

replace emp (name=“Bob”) where emp.name = «*
end

If events are interpreted as physical operations, then this sequence of commands will not trigger rule

NoBobs. However, NoBobs will be triggered if the block is treated as the following single logical event:

-1

append emp(name=“Bob”, age=27, sal=55000, dno = 12)

In general, interpretation of events as logical rather than physical is expected to be more intuitive and easy to
use for rule programmers, since they will only have to be concerned with effects of database operations, not
the ezpression of them. Since many different sequences of commands can have the same effect, considering
oniy the logical effects of updates will simplify design of event-based rules.

The above example also shows that it can be difficult to specify event-based rules to achieve a desired goal
(e.g., ensuring that there is none named “Bob” in the emp relation). Hence, we recommend use of purely
pattern-based rules whenever possible, since they will be triggered whenever any data matches a specific
pattern, regardless of the event that created or modified the data. An alternative to the NoBobs rule that

is purely pattern-based is the following:

define rule NoBobs?2
if emp.name — “Bob”
then delete emp

This rule deletes all emp records with name “Bob” whether they are created by an append or a replace

command.

2.3.3 Rule Priorities

Each Ariel rule has a priority assigned to it which can be a floating-point number in the range -1000 to 1000.
The priority clause is optional, and if it is not present, priority defaults to 0. Priorities are used to help the
system order the execution of rules when multiple rules are eligible to run. Only rules with priority equal to

the maximum of the priorities of all rules on the agenda are eligible to run.

2.3.4 The Rule Execution Cycle

Rules in Ariel are processed using a control strategy called the recognize-act cycle, shown in Figure 1, which
is commonly used in production systems [For81].

The match step finds the set of rules that are eligible to run. The conflict resolution step selects a single
rule for execution from the set of eligible rules. Finally, the act step executes the statements in the rule

action. The cycle repeats until no rules are eligible to run, or the system executes an explicit halt.

2.3.5 Conflict Resolution Phase

The conflict resolution rule for Ariel is a variation of the LEX strategy used in OPS5 [BFKM85]. Ariel picks
a rule to execute during the conflict resolution phase using the following criteria (after each of the steps,
shown below, if there is only one rule still being considered, that rule is scheduled for execution, otherwise

the set of rules still under consideration is passed to the next step):

until (no rules left to run or hall ezecuted)

{

malch
conflict resolution
act

Figure 1: The recognize-act cycle.

Select the rule(s) with the highest priority.

o Select the rule(s) most recently awakened.

Select the rule(s) whose condition is the most selective {the selectivity is estimated by the query

optimizer at the time the rule is compiled).

If more than one rule remains, select one arbitrarily.

2.3.6 Act Phase

Data matching the rule condition is storea in a temporary relation called the P-node. In the act phase,
the statement(s) in the then part of the rule are bound to the P-node for the rule by a process of query
modification [Sto75]. The modified syntax tree for the command is then passed to the query optimizer which
generates an optimal query execution plan. The plan is then interpreted to carry out the command. Details

of the query modification procedure will be discussed in section 7.

2.3.7 Fvent and Transition Cond‘tions

One feature of Ariel that distinguishes it from most other active database rule systems is support for event
and transition conditions that is fully integrated with pure pattern-based rule condition testing. Notation
for specifying event-based rules was discussed previously. ARL provides a special keyword previous for
referring to the previous value of an attribute. The value that a tuple attribute had at the beginning of a

transition can be accessed using the following notation:
previous tuple-variable. attribute

An example of a rule with a transition condition in it is:

define rule raiselimit
if emp.sal > 1.1 * previous emp.sal
then append to salaryError(emp.name, previous emp.sal, emp.sal)

9

The affect of this rule is to place the name and new/old salary pair of every employee that received a
raise of greater than ten percent in a relation salaryError. Other rules could be defined to irigger on appends
to salarvError to take an appropriate action, such as reversing the update, or notifying a person to verify
the correctness of the update.

As an example of how pattern-based conditions and transition conditions can be combined, suppose we
wiched to make the raiseLimit rule specific to just the Toy department. This can be done using a normal
pattern-based condition to select the Toy department, and joining the resulting tuples to the emp tugic
variable in the normal fashion. A rule that does this is the following:

define rule toyRaiseLimit
if emp.sal > 1.1 * previous emp.sal
and emp.dno = dept.dno
and dept.name = “Toy”
then append to toySalaryError(emp.name, previous emp.sal, emp.sal)
Moreover, event, pattern and transition conditions can all be combined. Consider this example of a rule

that uses all three types of conditions to log “demotion” of an employee in the demotions relation:

define rule findDemotions
on replace emp(jno)
if newjob.jno = emp.jno
and oldjob.jno = previous emp.jno
and newjob.paygrade < oldjob.paygrade
from oldjob in job, newjob in job
then append to demotions
(name=emp.name, dno=emp.dno, oldjno—oldjob.jno, newjno=newjob.jno)
Similar to previous examples, other rules could be made to trigger when new tuples arz appended to the

demotions relation to take appropriate action.

2.3.8 Transition Semantics

There are a number of different possible semantics for transition rules. We identified three possible designs
which will be called level 1, 2 and 3 semantics. Level 1 semantics requires that a transition rule wake
up immediately after the command that causes a transition that satisfies the rule condition. There is no
need to accumulate the net effects of multiple commands to determine which transitions have occurred.

Unfortunately, level 1 semantics has drawbacks including:

e [t is not possible to specify a block of operations in a user transaction and ensure that no rules run

inside that block, since rules must have a chance to wake up after every command.

e There can be no more than one commmand in a rule action, because transition rules must be run
immediately after the command that triggered them. Since rules cannot run during execution of a

another rule’s action, this implies a single command in a rule action.

10

o [t is unclear what te do if two or more transition rules match an updated tuple, and the first rule to

execute modifies the tuple. For which new/old pair should the second rule run?

These drawbacks lead us to discard level 1 semantics.

The transition rule semantics actually implemented in Ariel is level 2 as described below. Ariel treats
rransitions as a set of logical events (insertions, updates and deletions). These logical events are derived by
composing the physical events as they occur. Consider the following sequence of changes to the database,
borrowing the notation of [WF90!, where S, is a database state, E, is the net effect of a transition T,, 7} is

a user-issued transition, and T,(R,] is a transition induced by an execution of rule R;:

E1 E2 E3 En
SO > Si » 52 > S3 .. > Sn
T T2[R1] T2[R2] Tn[Rn]

The net effect of the transition from state S; to state S, is the composition of Ej,y through E;. For

example, suppose that the following emp tuple is modified by the commands and rules shown:

emp(name - “Herman”, age -39, sal=20000, dno=5)

User update (E1):

do
replace emp(sal ~ emp.sal + 1000) where emp.name = “Herman”
replace emp{emp - emp.sal + 2000) where emp.name = “Herman”
replace emp(age — 40) where emp.name = “Herman”

end

[tule R1 action (E2):
replace emp(sal == emp.sal + 1000) where emp.name = “Herman”
Rule R2 action (E3}:

replace emp(sal emp.sal - 1000) where emp.name =- “Herman”

The above sequence of commands and triggered rules takes that data base from state Sy to S3 as shown
i Figure 20 The net effect of this transition at states Sy through S3 1s also indicated in Figure 2. Rules get
an opportunity to run at states 5y, Sy, and Sa. A rule with a transition condition on the emp table which
s otriggered for the emplovee “Herman” at state S, would be bound to the token shown attached to S, in
Fignre 2.

To summarize, the net effects of the changes to the database are logically updated after each user-issued

command or do ... end block, and the changes continue to accurnulate until rules terminate. After rules

11

E1 E2 E3
SO > 51 > S2 > S3
T1 7 T2[R1) - T2[R2] N\
event type = modify event type = mé)dify event type = modify

(nothing) old = {"Herman",39,20000,5) old = ("Herman",39,20000,5) old = ("Herman",39,20000,5)
new = ("Herman~,40,23000,5) new = ("Herman",40,24000,5) new = ("Herman",40,23000,5)

Figure 2: Transitions for example command and rules

terminate, the changes are discarded. The old value of each old/new tuple pair accumulated is always the
value that the tuple had at the beginning of the transition. This level 2 semantics allows the net effect
of multiple commands on a tuple to be accumulated, and that net effect to be treated as a single logical
transition. We have shown previously that the ability to combine multiple physical transitions into a single
logical transition can help improve data integrity by reducing the possibility that transition constraints will
be violated but still not trigger transition integrity rules.

A drawback of level 2 semantics is that an anomaly can occur, in which a transition rule wakes up,
modifies the tuple bound to it, and inadvertently re-triggers itself since the net effect of the transition to the

tuple still matches the rule condition. For example, consider the following rule:

define rule extraRaise
ifemp.sal > 1.1 * previous emp.sal

then replace emp(sal = emp.sal + 500)

For values of salary greater than zero, this rule triggers itself infinitely in Ariel.
Intuitively, it would be pleasing if the condition of a transition rule referred to the following change in a

tuple ¢:
e the change in t between the beginning of a transition and the current state,

o or, if the rule has run for ¢ since the beginning of the transition, the change in t between the state the

last time the rule executed and the current state.

This sort of semantics would help avoid problems such as the infinite self-triggering of the extraRaise rule
above.

We contemnplated implementing such a semantics in Ariel, called level 3 semantics, but we felt the
implementation complexity would be prohibitive. It would require a log to be kept showing the value of each

updated tuple at each database state visited during a user transition and execution of rules it triggered. In

12

addition, there would need to be “high water marks” pointing into the log for each tuple for each transition
rule that had run bound to that tuple. Ariel’s level 2 semantics allows triggering based on the net effect of a
transition, and has only moderate implementation complexity, so we felt it was an appropriate choice. The
designers of the Starburst rule system have implemented a form of level 3 semantics, albeit at substantial
implementation complexity and performance overhead [WF90, WCL91]. An interesting topic for further
research would be how to integrate level 3 transition rule semantics in an efficient, discrimination-1etwork-

based rule condition testing system.

2.3.9 FExternal Functions

The ability to call external functions from within a DBMS query language is quite useful, and some form
of external function interface has been implemented in several systems including ADT-INGRES [Sto&6|,
POSTGRES {SRH90] and STARBURST [HCL*90]. In an active rule system, external functions are even
more important than in a traditional database system since they allow vital communication with external
processes to be performed automatically in the actions of triggered rules. Ariel supports an external function
interface which allows the user to write a function in C, register the function with the DBMS using the define
function command, and then call the function using the execute command. When the function is called,
it is dynamically linked to the Ariel system unless it has been linked previously. The format of the define

function command is:

define function return-type function-name
{(argument-list) file-name

The return-type can be one of the built-in types of Ariel, or else void if there is to be no value returned.
Functions can be executed either using the execute command, or from withing an expression evaluation

in another command. The execute command has the following general form:

execute function-name (target-list)
from from-list]
where qualification/

This command cxecutes the function once for each tuple retrieved in the target-list. Return values are
inored i this case.
An example function to send a message to the personnel officer if someone is demoted could be defined

as folfows:

define function void notifyOfDemotion
(empname ¢20) notifyOfDemotion.o

A example rale that makes use of this command is:

define rule notifyOfDemotion
on append to demotions
then execute notifyOfDemotion(demotions.name)

Another example function designed to be used in expressions in a command is:

define function float futureValue
(n=float, y=float, i—float) “futureValue.o”

This function would compute the future value of n dollars in y years at interest rate i. An example use

of this function is:

retrieve (fv = futureValue(1000,1v,.10))

This would simply print out the future value of $1000 after 10 years at 10 percent interest. In general,
the futureValue function could be used in any expression anywhere in tne target list or qualification of a

command.

2.4 Rule Language Summary

ARL is a comprehensive active rule language for a relational DBMS. Important features of ARL include:

¢ support for production-system style programming in a DBMS, with execution semantics similar to
those provided by the OPS5-LEX strategy, plus support for rule priorities and a set-oriented rule

execution style,
o ability to create rules with pattern, event, and transition-based conditions,
e support for one or more data manipulation or external procedure execution commands in a rule action,

e binding of data matching the rule condition to the commands in the rule action at run-time, based on

use of tuple variable names in common between the condition and action.

These features provide a powerful new capability for a relational database system, giving a foundation on

which new active database applications can be built.

3 Architectural Overview

The architecture of Ariel, shown in Figure 3, is similar to that of Systerm R [ABC*76] with additional
components attached for rule processing. Similar to System R and other relational database systems,
Ariel has a front-end consisting of a lexer, parser, semantic analyzer, and query optimizer. The back end of

Ariel consists of a query plan executor, and is built on top of the storage system provided by the EXODUS

14

updated tuples

query language commands

'

rule network

selection
network

join network

rule
activations

creation of
rule network

lexer/parser
syntax
structures trees
rule manager/
rule catalog query
processor

rule execution

rule action

monitor

planner

execution of
rule actions

Figure 3: Diagram of the Ariel system architecture.

database toolkit [CDF*86, RC87]. In addition to the standard front and back end components, Ariel has a

rule catalog for maintaining the definitions of rules, a discrimination network for testing rule conditions, a rule

erecution monitor for managing rule execution, and a rule action planner for binding the data matching a

rule condition with the rule action and producing an execution plan for that action. Each of these rule-system

components will be discussed in detail below.

4 The Rule Catalog

I'ie rule catalog is composed of a collection of Rule objects stored as persistent C++ objects {(we use the

persistence features of the K programming language, a persistent extension of C+ ¢+ provided with EXODUS

15

‘RC87]). Each rule object contains the rule name, ruleset name, status of the rule (active or inactive), and
persistent syntax tree for the rule. The persistent rule syntax tree is obtained by making a persistent copy
of the syntax tree output by the parser at the time the rule is defined. The rule catalog maintains the
definitions of all rules in the system, and is used whenever a rule is accessed, including the time when a rule

is defined, destroyed, activated, deactivated, or triggered.

5 The Rule Execution Monitor

The rule execution monitor maintains the rule agenda, firing rules as required. The rule agenda is imple-
mented as a priority queue, with one entry, called a priority group, for each group of rules with equal priority.
Within a priority group, rules are ordered such that the one whose condition was most recently matched is
first.

The interface to the RuleExecutionMonitor class includes the following methods:

¢ addRule called by the rule network when a new combination of tuples matching a rule condition is
found. If the rule is not already on the agenda, an activation for the rule is created, and placed at the
head of the list for the appropriate priority group (a new priority group will be created if no other rule
with the same priority as the added rule is active). The new combination of tuples matching the rule

condition is appended to the P-node for the rule.

s removeRule called by the rule network when a combination of tuples that used to match the rule no
longer matches. This combination of tuples is removed from the P-node for the rule. If the P-node

becomes empty, then the rule instantiation is removed from the agenda.

o runRules called by the query executor at the end of processing a database transition. This method
transfers control to the rule execution monitor, which dispatches the the most recently triggered rule

from the highest priority group for execution by cailing the rule action planner.

The methods described above are sufficient to allow the rule execution monitor to maintain a current list of

rules eligible to run, and to assume control and run those rules at the appropriate time.

6 The Discrimination Network

An efficient strategy for incrementally testing rule conditions as small changes in the database occur is
critical for fast rule processing. Ariel contains a rule condition testing network called A-TREAT (short for
Ariel TREAT) which is designed to both speed up rule processing in a database environment, and reduce

storage requirements compared with TREAT. The main performance optimization in A-TREAT is the use of

16

a special top-level discrimination network for testing selection conditions of rules [HCKW90]. In addition, we
introduce a technique for reducing the amount of state information stored in the network, whereby a-memory
nodes are replaced in some cases by virtual a-memory rnodes which contain only the predicate associated with
the node, not the tuples matching the predicate. In addition to these performance enhancement techniques,
we have developed some enhancements to the standard TREAT network in order to effectively test both

transition and event-based conditions with a minimum of restrictions on how such conditions can be used.

All of these techniques are discussed in more detail below.

6.1 The Top-level Discrimination Network

Efficient ways to determine which single-relation s=lection predicates match every new and modified tuple
are important in virtually any production rule system. Selection conditions must be tested regardless of how
join conditions are tested. The predicate testing problem in database rule system is defined as follows. We
are given a database containing a set of n relations, Ry ... R,, and m production rules (triggers), r; ... r—.

Rules are of the form

if condition

then action

A rule condition can be an expression containing a conjunction of selection conditions and joins (projection
is not allowed in rule conditions). Considering only the selection conditions of the rules, there is a collection
of k single-relation predicates, £,, 1 < 1 < k. Each predicate restricts one or more attributes of a tuple ¢
from a relation R, where | < j < n. We assume that any predicate containing a disjunction is broken up
into two or more predicates that do not have disjunction, and these predicates are treated separately. The

general form of a predicate purposes of this discussion is a conjunction of the following form:

£, (the tuple t is in relation R)) A Cy AC2 A L.C,

where each (', 1 <7 j < q.is one of the following:

(. const, p; tattribute py const,
o t.attribute const
o function(f.attribute)

fn addition. const, < const,, both const; and const, are drawn from the domain of legal values for t.attribute,
and py and pg are one of {- . <} Equality predicates are a special case of range predicates, but since they
are so common, they are listed separately. For predicate clauses of the form “function(t.attribute),” nothing
is assnmied about the function except that it returns true or false.

Here are some examples of predicates on tuples of the relation emp:

17

emp.salary < 20000 and emp.age > 50
20000 < emp.salary < 30000
emp.name -~ “Emmett”

IsOdd{emp.dno) and emp.age = 30

In the last predicate above, IsOdd is a function that returns true if its argument is an odd number, and false
otherwise.

Given the collection of predicates described above, and a tuple ¢, the predicate testing problem is to
determine exactly those P;’s that match t. One approach to testing predicates is to use a predicate index.
Many approaches to the predicate indexing problem have been developed. Below, we review the approaches
proposed previously, and. We then turn to a discussion of pragmatic considerations regarding predicate
indexing in a DBMS. Finally, we present the approach designed for Ariel, and give some performance

measurements.

6.1.1 Review of Predicate Indexing Methods

The simplest method for testing a collection of predicates against a tuple is to store the predicates in a
list, and sequentially test the tuple against every predicate in the list to find matches, with time complexity
O(n) where there are n predicates. A potentially more efficient method is to partition the predicates by
relation using hashing, storing a list of predicates for each relation. To find the predicates matching a
tuple, a hash function is computed on the relation name of the tuple to locate the list of predicates for
the relation, and then the predicates on the list are tested sequentially against the tuple. If there are m
relations and n predicates, and the predicates are distributed uniformly over the relations, this technique
has time complexity O(n/m) for finding the matches. However, in the worst case, where all predicates lie
on one relation, match complexity is again O(n). This technique is the one normally used in main-memory
implementations of production systems.

Arnather predicate indexing method discussed in [SSH86. SHP88], called physical locking, involves treating
a predicate clause like a query, and running the standard query optimizer {S*79] to produce an access plan for
the query to be indexed. If the resulting access plan requires an index scan, then special persistent markers
(locks) are placed on all tuples read during the scan, and all index intervals inspected during the scan. If
the resulting access plan is a sequential search, then “lock escalation” is performed, and a relation-level lock
18 placed on the relation being scanned. When a tuple is modified or inserted, the system collects locks
that conflict with the update (i.e. all relation level locks, any locks that conflict with any indexes that were
updated, and any other locks previously on the tuple). For each of the locks collected, the system tests the

tuple against the predicate associated with the lock.

18

This algorithm has the advantage that no main-memory is needed to hold a predicate index, so theo-
retically, a very large number of rules can be accommodated. In addition, the algorithm makes use of the
standard indexes and query processor to index predicates. However, a disadvantage to this approach is that
when there are no indexes, or a large number of predicate clauses lie on attributes which do not have an
index, most predicates will have a relation-level lock. This degenerate case requires sequentially testing a new
or modified tuple against all the predicates for a particular relation, resulting in bad worst-case performance
when the number of predicates is large. Also, the set of predicates must be stored in main memory to avoid
costly disk I/O to test a tuple against a predicate when a lock for that predicate is found. This negates some
of the memory-saving advantages of the algorithm. In addition, the need to set locks on index intervals and
on tuples complicates the implementation of storage structures.

The final class of selection predicate indexing techniques, called multi-dimensional indezing, utilizes a
multi-dimensional data structure for indexing region data such as an R-tree [Gut84] or R+-tree [SSH86] to
index predicates. The predicates are treated as regions in a k-dimensional space (where k is the number
of attributes in the relation on which the predicates are defined), and inserted into the index. Each new
or modified tuple is used as a key to search the index to find all predicates that “overlap” the tuple. This
technique works well when most predicates define small closed regions in the space defined by the schema of
the relation from which tuples are drawn. Unfortunately, we expect that the majority of predicates in most
real database rule system applications will define “slices” of this space along only one or two dimensions,
not closed regions. Real relational database applications often involve relations with anywhere from one to
over 100 attributes, with a large fraction of relations having from 5 to 25 attributes. Typical predicates on
these relations {e.g. single-relation selection conditions in WHERE clauses of queries) normally refer to only
one or two attributes, and rarely to three or four [Col89]. Spatial Data structures, particularly R-trees and
R +-trees, index heavily overlapping regions like these predicates poorly, degenerating to what is essentially

a sequential search of all predicates in the index.

6.1.2 Practical Considerations for Predicate Indexing in a DBMS

Numerous database rule systems have been proposed recently, including Ariel [Han89], RPL [DES88aj, the
POSTGRES rules system [SHP88], HiPAC [DBB*88], DIPS [SLR89], and others. We envision that appli-
cations built using systems like these will be primarily data management applications, enhanced with rules
which will provide improved data integrity, monitoring capability, and some fcatures similar to those found
noexpert systems.

Database rule system applications will have to handle large volumes of data (perhaps millions of records).
However, we expect that the number of rules in the majority of database rule system applications will be

smiatl enough that the set of rules and data structures for rule condition testing will be small enough to fit

19

in main memory. We believe that this assumption is reasonable because rules are a form of intentional data
(schema) as opposed to extensional data (contents). Moreover, the largest expert system applications built
to date have on the order of 10,000 rules {BO89], which is few enough that data structures associated with
the rules will fit in a few megabytes of main memory. More typical rule-based system applications have on
the order of 50 to 1000 rules.

It is possible to concoct hypothetical applications where a tremendous number of rules are used, more
than can fit in a main-memory data structure. Normally, rules in such applications have a very regular
structure. This regular structure can be exploited to redesign the application so that only a few rules are
used in conjunction with a much larger data table. The rules then use pattern matching to extract data from
the table. For example, consider an application for stock reordering in a grocery store. The store might have
50,000 items for sale, with a relation ITEMS containing one tuple for each item. One way to implement the
application would be to have one rule for each item to test whether the stock of the item is below a re-order
threshold. An alternative way to implement the application would be to add a field to the ITEMS table
containing the re-order threshold, and a single rule which compares the current stock level to the re-order
stock level. This second implementation is clearly preferable.

It is standard practice in programming expert systems to put as much of the knowledge as possible into
“facts” (e.g. frames or tuples) and as little as possible into rules. This is done because knowledge structures
are more regular and easier to understand than rules. This practice will be even more important in database
rule system applications, where most of the “knowledge” should be stored in the database, with minimal use
of rules.

The above discussion is a partial justification for building a carefully tuned main-memory predicate index

to test selection predicates of rules. We discuss such a predicate index in the next section.

6.1.3 The Ariel Selection Predicate Index

Here, we introduce a predicate indexing method tailored to the problem of testing rule selection conditions
in a database rule systern. The task the algorithm must perform is, given a set of single-relation selection
predicates as described earlier, be able to return a list of all the predicates that match a tuple ¢t from a

relation R. We wanted the algorithm to have the following properties:

I. the ability to support general selection predicates composed of a conjunction of clauses on one or more

attributes of a relation,
2. fast predicate matching performance,

3. the ability to rapidly insert and delete predicates on-line.

20

wnserted or deleted
tuples enter here

hash on relation name

second-level
R1 R2 Ri Rn indexes
separate
list of 1-dimensional
non ndexable Ri. Al Ri.A2 RuAy Ri.Am index for each
predicates aunibute
tor Ri

interval binary
scarch tree to
index intervals
and points

Figure 4: High-level diagram of predicate indexing scheme.

In the algorithm used in Ariel, the system builds an index which has at the top level a hash table,
using relation names as keys, similar to high-performance implementations of production systems mentioned
previously. Each entry in the table contains a pointer to a second-level index for each relation. This index
maintains a list of non-indexable predicates. In addition, the second-level index contains a set of one-
dimensional indexes, one for each attribute of the relation for which one or more indexable predicate clauses
have been defined. All predicates clauses on an attribute which are “indexable” are entered in the index on
that attribute. A diagram of the data structure implementing this strategy is shown in Figure 4.

An appropriate attribute index for use in this arrangement is one that can efficiently support stabbing
queries, where given a point, the index can be searched to find all intervals that overlap the point. In the
design of Ariel, two separate intervel indezes, the interval binary search tree (IBS-tree) and the interval skip
list (1S-list) have been developed for use as these attribute indexes. Both the IS-list and the IBS-tree support
solution of stabbing queries. Given a set of n intervals, performance for both data structures is the same --
Oflog® ny time for insertion and deletion of an interval, and O(logn + L) for solution of a stabbing query,
where [intervals overlap the query point.

Other interval indexes discussed in the literature, including the segment tree [Sam90] and the priority

search tr-e were considered for Ariel, but did not meet the requirements that:

21

|. the index be efficiently updatable on-line,

2. arelatively straightforward implementation of the index be possible which does not require modification

to index different data types, and
3. the index support fast searching to find all intervals that overlap a query point.

The segment tree does not satisfy the first requirement, and the priority search tree does not satisfy the
second requirement. Both the IBS-tree and IS-list satisfy all three.

The iBS-tree and the skip-list are based on the binary search tree and the skip-list [Pug90], respectively.
They involve transforming the index for point data into an interval index by augmenting the standard data
structure with markers to cover each interval. Markers are placed according to an invariant such that upon
searching for the location of the stabbing query point, one and only one marker will be found for each
overlapping interval. An example [BS-tree and IS-list are shown in Figure 5 and Figure 6, respectively.
For a complete discussion of the IBS-tree and IS-list, readers are referred to [HC90, HCKW90] and [Han$1],

respectively.

6.2 Saving Storage Using Virtual a-memories

Here we describe a variation of the Rete and TREAT algorithms for minimizing storage use in database
rule systems. In the standard Rete and TREAT algorithms, there is an a-memory node for every selection
condition on every tuple-variable present in a rule condition. If the selection conditions are highly selective,
this is not a problem since the a-memories will be smali. However, if selection conditions have low selectivity,
then a large fraction of the tuples in the database will qualify, and a-memories will contain a large amount
of data that is redundant since it is already stored in base tables. Storing large amounts of duplicate data
is not acceptable in a database environment since the data tables themselves can be huge (e.g., it is not
unusual for a table to contain several gigabytes of data).

In order to avoid this problem, for memory nodes that would contain a large amount of data, a virtual
memory node can be used which contains a predicate describing the contents of the node rather than the
qualifying data itself. In a sense, this virtual node is a database view. When the virtual node is accessed, the
{possibly modified) predicate stored in the node is processed to derive the value of the node. The predicate
can be modified by substituting constants from a token in place of variables in the predicate to make the
predicate more selective and thus reduce processing time.

The algorithm for processing a single insertion token ¢t in a TREAT network containing a mixture of
stored and virtual a-memory nodes is as follows. A stored a-memory node contains a collection C of the
tuples matching the associated selection predicate. A virtual a-memory node contains a selection predicate

P and the identifier of the relation B on which P is defined. In addition, each transaction T maintains a

9
aEE
(CALY G A
E
|2 R G
(SRR
1> it 2n)
oy 12)
Fopis 18]
G anf 17

Figure 5: Example interval binary search tree for intervals shown.

data structure Processed Memories containing a set of the identifiers of the virtual e-memory nodes in which
token ¢ has been inserted. ProcessedMemories is emptied before processing of each token.

Suppose a single tuple X is to be inserted in R. Before putting X in R, create a token t from X and
propagate ¢ through the selection network. When t filters through the network to an a-memory node A,
the identifier of A is placed in ProcessedMemories and then t is joined to neighboring a-memories. When
joining ¢ to a memory node A’, if A’ is a normal a-memory, everything proceeds as in the standard TREAT
algorithm. If A’ s virtual, then join t through to the base relation R’ identified in A’ using predicate P’ of
A’ as a filter. In addition, if ProcessedMemories contaias A’, then ¢ belongs to to A’. Hence, we must try to
join the copy of ¢ just placed in A to the copy of ¢t in A’. If t joins to itself, a compound token is created and
the process continues. At the end of processing t, empty ProcessedMemories, and then insert tuple X in R.

An analogons procedure is used for processing a deletion (-) token.

Example intervals:

a. [2,17]
b. (17,20]
c. [8,12]
d. [7.7)
e. [-inf,17)
H
e N
a || a, e 1 ae b U
" 8 o |
e B : e 2 i _C 17 1 20 1 L
r -inf — 7 12 -—t -t
e a d c c a b
e a
e

Figure 6: Example interval skip list for intervals shown.

The algorithm just described has the same effect as the normal TREAT strategy because at every step, a
virtual a-memory node implicitly contains ezactly the same set of tokens as a stored a-memory node. This
ensures that if a token joins to itself, it does so exactly the right number of times. A TREAT-based join
condition testing algorithm enhanced with virtual a-memories is being implemented in the Ariel system.

The following rule will be used to illustrate a standard TREAT network, and an A-TREAT network that
accomplishes the same task:

define rule SalesClerkRule
if emp.sal > 30000

and emp.dno = dept.dno
and dept.name = “Sales”
and emp.jno = job.jno
and job.title =“Clerk”
then action

The TREAT network for the rule SalesClerkRule is shown in Figure 7. An A-TREAT network for
the rule is shown in Figure 8. The A-TREAT network is identical to the TREAT network, except that
‘he middle a-memory node (alpha2) is virtual, as indicated by the dashed box around it. If the predicate

sal -30000 is not very selective, then making alpha2 be virtual may be a reasonable choice for SalesClerkRule

since 1t can save a significant amount of storage.

root
reln=dept reln=emp reln=job

| |

name="Sales" 5,1530000 title="Clerk"

|

alphal ------ alphal2 -~ --.-- alpha3
dept.dno emp. jno

=emp.dno =job.jno
P(SalesClerkRule)

(B) A TREAT network.

Figure 7: Rete and TREAT networks for rule SalesClerkRule.

The ability to use virtual memory nodes opens up several possible avenues of investigation. It allows
trading space for time in a Rete or TREAT network. When to use a virtual memory node and when not to
use one is an interesting optimization problem. Also, the base relation scan done when joining a token to a
virtual a-memory can be done with any scan algorithm - index scan or sequential scan. Some optimization
strategy is needed to decide whether or not to use an index if one is available, depending on the type of

index {primarv or secondary, hash or B-tree etc.) and the size of the base relation.

6.3 Testing Transition, Event, and Normal Conditions Together

Quite unlike standard production systems, Ariel allows rules with transition and event-based conditions in
addition to normal conditions. To integrate all these types of conditions into a coherent framework, we

generalized the notions of hoth tokens and a-memory nodes.

root
reln=dept reln=emp reln=job

L

name="Sales" 5.1530000 title="Clerk"

N T

y

alphal ---- alpha2 ~--alpha3
: (virtual) ;
,emp.sal>30000 -
dept.dno emp . Jno
=emp .dno =job.jno
P(SalesClerkRule)

Figure 8: Example A-TREAT network.

6.3.1 Identifying Transitions

tvpe of event which created the token:
e append
o delete

e replace(targel-list)

25

To accommodate transitions, in addition to standard + and — tokens, Ariel uses A+ and A— tokens which
contain a (new,old) pair for a tuple with the value it had before and after being updated. A A+-token
inserts a new transition event into the rule network, and a A—-token removes a transition event from the

rule network. In addition, all tokens have an event-specifier of one of the following forms to indicate the

26

The target-list included with the replace event specifier indicates which fields of the tuple contained in the
token were updated. On-conditions in the top-level discrimination network are the only conditions that ever
examine the event-specifier on a token. Tokens with their event-specifier are also called eveniTokens.

In order to send the correct type of token through the network at the correct time, Ariel builds a data
structure containing a pair of A-sets [I,M] for each relation updated during a transition. Set I contains an
entry for each tuple which was inserted during the current transition. Set M contains an entry for each tuple
that existed in the relation at the beginning of the transition and was modified during the transition. It is
not necessary to maintain a third set for deletions since once a tuple is deleted it cannot be accessed again.

A A-set (I or M) contains a set of entries with the following contents:
eventSpecifier: one of append or replace(target-list), describing the type of event that created the entryv,
isDelta: true or false,

tupleValue: a byte string containing a single tuple if isDelta is false, or a pair of old and new tuple values

concatenated together if isDelta is true,
descriptor: a pointer to a format descriptor describing the locations of fields in tupleValue.

The possible sequences of operations that may occur to a single tuple during a transition are shown below

‘Ras91]:

e Cuse 1: An insertion of a tuple ¢ followed by one or more modifications of ¢ (¢m*). The net effect of
this transition is an insertion. The first insert generates an insertt token, and each modify generates

an wnsert” followed by an insert’ containing the new tuple value.

Fxample:

transition eventTokens

insert t (insertt)

modify t (insert ™, then insert*)
modify t {(insert™, then insert*)

e Cusc 20 A tuple t is inserted, modified one or more times, and then deleted (im*d). The net effect is
nothing. Tokens are generated as in Case 1, except that the final delete operation generates an insert™

token.

Fzample:

transition eventTokens

27

insert t (insert™)
modify t (insert™, then insert*)
delete t (insert™)

e Case 3: Tuple t exists prior to a transition in which it is modified one or more times (m*). The net
effect is a modification. The first modify operations generates a modify~ token and then a modifyA™.
Each subsequent modify operation generates a (modifyA -, followed by a modifyA*.

Example:

{t}: assertion that ¢ exists

transition eventTokens

modify t (modify~, then modifyAt)
modify t (modifyA~, then modifyAt)
modify t (modifyA~, then modifyA*)

o Case §: Tuple ¢ is modified zero or more times and then deleted {m*d). The net effect is a deletion.
Tokens are generated as in Case 3, except that the final delete operations generates a modifyA~,

followed by a delete ™.

Example:

{t}: assertion that t exists

transition eventTokens

modify t (modify~, then modifyAt)
modify t (modifyA~, then modifyA™)
delete t (modifyA~, then delete™).

These four cases completely specify how tokens are to be created during any possible sequence of updates
to a single tuple. The sequence of updates is identified at run time by using the A-sets {I,M], providing the

information necessary to determine what type of token to create for each operation on a tuple.

6.3.2 Identifying Event and Transition Conditions

If a tuple variable appears in the on clause of an Ariel rule condition, then the selection condition defined on
that variable is considered to be an event-based condition. Similarly, if any tuple variable in the condition has
a previous keyword in front of it, then the selection condition associated with that variable is a transition
condition. Both transition and event-based conditions have the property that the data matching them is

relevant only during the transition in which the matching occurred. Afterwards, the binding between the

28

matching data and the condition should be broken. This is accomplished in Ariel using a-memory nodes

that are dynamic, i.e., they only retain their contents during the current transition.

6.3.3 Summary of Token and a-memory Types

[n general, for the Ariel rule condition testing system we have identified four kinds of tokens and seven kinds

of a-memory nodes. The token types are:
token for insertion of a new tuple,
token for deletion of a tuple,
A - token for insertion of a new transition token (new/old pair),
A token for deletion of an old transition token.
The a-memory node types include:
stored-a standard memory node holding a collection of tuples matching the associated selection predicate.
virtual-a virtual memory node holding the predicate but not a collection of matching tuples,

dynaniic-ON-a a dynamic memory node for an ON-condition which has a temporary tuple collection that

is flushed after each database transition,

dynamic-TRANS-a a dynamic memory node for a transition-condition which is also used after each

transition.

simple-« an alpha memory for a simple selection predicate for a rule with only one tuple variable in its
condition. Simple memories are only used when the rule has just one tuple variable in its condition.
Simple memories never contain a persistent collection of the data matching the conditions associated

with thern since matching data is passed directly to the P-nodes.
simple-TRANS-a A simple memory node for a transition condition.
simple-ON-a A simple memory node for an event-based (ON) condition.

A different action needs to be taken when each type of token arrives at each type of memory node. The
actions for each of the possible combinations are shown in the table in Figure 9.

In the table, “m,.,,t" represents projection of just the new part of the new/old pair contained in t. A
“discard #” entry indicates that the memory node should ignore the token since the combination is not

defined

29

’ 7 typeoftokent
| a-memory type P — B Ta+ A-
stored-a insert ¢ delete t insert .t delete 7ot i
virtual-o insert t delete ¢ insert my qt delete 7, .t
dynamic-ON-« insert ¢ delete ¢ insert o, .t delete Tt .
dynamic-TRANS-a | discard ¢ discard ¢ insert ¢ delete ¢
simple-a insert ¢ in P- | delete ¢t from P- | insert #p.t in | delete Trewl
node node P-node from P-node
simple-TRANS-a discard ¢ discard t insert t in P- | delete t from P- |
node node
simple-ON-a insert ¢t in P- | delete t from P- | insert m,.,t in | delete Trewl
node node P-node from P-node

Figure 9: Table showing actions taken by each a-memory type for each token type

The information in this chart allows the standard TREAT algorithm to be generalized to handle normal
conditions as well as event-based and transition conditions, changing only the behavior of individual com-
ponents, not the overall structure or information flow. This strategy is one of the keys to successful use of
TREAT to support condition testing for the Ariel rule language.

This concludes the discussion of how rule conditions are tested in Ariel. We now turn to the problem of

how to execute a rule action once it has been determined that the rule should fire.

7 Optimization and Execution of Rule Actions

At the time an Ariel rule is scheduled for execution, the data matching the rule condition is stored in the
P-node for the rule. Binding between the condition and action of an Ariel rule is indicated by using the
same tuple variable in both. These tuple variables are called shared. To run the action of the rule, a
query execution plan for each command in the action is generated by the query optimizer. Shared tuple
variables implicitly range over the P-node. When a command in the rule action is executed, actual tuples
are bound to the shared tuple variables by including a scan of the P-node in the execution plan for the
command. Optimization and execution of Ariel rule actions is discussed in detail below, and illustrated
using an example.

7.1 Query modification

When an Ariel rule is first defined, its definition, represented as a syntax tree, is placed in the rule caralog. At
the time the rule is activated, the discrimination network for the rule is constructed, and a the binding between

the condition and the action of the rule is made explicit through a process of query modification [Sto75],

30

define rule SalesClerkRule2

if emp.sal > 30000

and emp.jno = job.jno

and job.title =“Clerk”

then do
append to salaryWatch(emp.all)
replace emp (sal = 30000)
where emp.dno = dept.dno
and dept.name = “Sales”
replace emp (sal :: 25000)
where emp.dno = dept.dno
and dept.name ! = “Sales”

end

Figure 10: Example rule to illustrate query modification.

after which the modified definition of the rule is stored in the rule catalog. During query modification,
references to tuple variables shared between the rule condition and the rule action are transformed into
explicit references to the P-node. Specificly, for a tuple variable V found in both the condition and action,
every occurence of an expression of the form V.attribute is replaced by P.V.attribute. In addition, if V is the
target relation of a replace or delete command, then it is replaced by P.V, and the command is modified
to be replace’ or delete’ as appropriate. The commands replace’ and delete’ behave similarly to the
standard replace and delete commands, except that the tuples to be modified or deleted are located by
using tuple identifiers that are part of tuples in the P-node, rather than by performing a scan of the relation
to be updated.

For example, consider the rule shown in Figure 10. After query modification is performed on this rule,
the carmmands in its action look as shown in Figure 11, where P is a tuple variable that ranges over the
P-rode. The tuple variable emp which appears both in the condition and aciion of the rule has been
replaced throughout the action by P.emp in Figure 11. Also, the replace and delete commands have been
rransformed into replace” and delete’, respectively. The tuple variable dept which does not appear in the

condition is unchanged in the action.

7.2 Rule action query plan construction

v execate a command in the rule action, an execution plan for that command must be generated, and this
plan must include an operator to scan the P-node if any tuple variables in the command also appear in the
rule condition. The Ariel query processor provides an operator called PnodeScan which can scan a P-node

and optionally apply a selection predicate toit. When the query optimizer sees the special tuple variable P,

31

then do
append to salary Watch(P.emp.all)
replace’ P.emp (sal = 30000)
where P.emp.dno = dept.dno
and dept.name = “Sales”
replace’ P.emp (sal = 25000)
where P.emp.dno = dept.dno
and dept.name ! = “Sales”

end

Figure t1: Rule action after query modification.

NestedLooploin
left.emp.dno = right.dno

e N\

PnodeScan IndexScan

dept.name="Sales"

Figure 12: Example execution plan for a command in a rule action.

1 always generates a PnodeScan to find tuples to be bound to P. The rest of the query plan is constiucted

as usual by the query optimizer. For example, consider construction of the plan for the following command

from the action of the rule SalesClerkRule2:

replace’ P.ump (sal == 30000)
where P.emp.a.'o -~ dept.dno
and dept.name . “Sales”

The data to be updated by this command are identified by running a query plan which scans P and
dept, and joins tuples from these scans. The tuple identifier of the emp sub-tuples bound to the variable P
1s extracted and used to locate the emp tuples to update. One possible query plan the uses a nested loop
join, a PnodeScan on P, and an index scan on dept, is shown in Figure 12. The query optimizer is free
to choose the best operators for other operations in the plan besides the PnodeScan, e.g., it could have

chosen SortMergeJoin instead of NestedLoopJoin in Figure 12.

32

| ‘rrépla}{ - don’t replan
NN
good to Correct N
replan
bad to | RN
replan \% Correct

Figure 13: Outcomes of the rule action replanning decision

7.3 Time of Rule Plan Construction

The time a rule action plan is constructed can have a substantial impact on performance. Our implementation
uses a strategy called always reoptimize that produces all plans for execution of rule actions at rule fire
time. Other strategies can be developed which attempt to pre-optimize plans for rule actions, store them, and
retrieve them at rule fire time to avoid the cost of run-time optimization. Strategies of the later type which
we considered include never reoptimize, heuristic, and cache and invalidate. The decision whether to
replan is subject to two types of errors as shown in Figure 13. If we assume that the default assumption is
to replan (this is called the null hypothesis in statistical terminology), then not replanning when it is a good
idea is a type I error and replanning when it is a bad idea is a type Il error [FW80].

The different strategies are discussed here:
e Always reoptimize. The advantages of this approach are:

it always runs the optimal pilan for execution of a command in a rule action,
it wastes no storage storing plans that will never be run,

since there are no stored plans, it is not required to build a dependency graph showing which

access methods (relations and indexes) each stored plan depends on, and
it is straightforward to implement (only minor modifications to the optimizer are needed so it can

recognize and use the PnodeScan operator).

Phe only disadvantage is that always reoptimize must pay the cost of running the query optimizer

fir everv command in a rule action each time the rule is fired.

33

e Never reoptimize. This strategy compiles the plan once and never reoptimizes (unless the plan is
made invalid by a change to the database schema or index structures). This strategy has low run-time

overhead but may result in poor plans being run as they become out-of-date.

e Heuristic. This strategy decides whether to reoptimize the plan at run time using a heuristic that
compares the expected cost of running the plan determined when it was first compiled, and the expected
cost of running the plan given the current state of the database. The heuristic strategy may be better
then never reoptimizing since it can adaptively choose whether to re-optimize. However, it suffers from
an anomaly where the optimal plan could change, but the computed costs of the old plan for the old
and new database are identical (e.g., if for a two-way join, one of the operands grew and the other

shrank).

e Cache and invalidate. An alternative to the heuristic strategy is to store an optimized plan when
the rule is first defined, and then have the routines that gather statistics about the data invalidate
plans if the information the plans are based on gets too out of date. If a complex optimization strategy

15 to be implemented, this one seems most promising.

The decision of which of these strategies is best is not a simple one - the outcome can depend on numerous
factors such as the time to compute an optimal query plan, the size of data tables, the type of commands
in rule actions (joins vs. single-relation queries), the availability of indexes, the frequency of updates to the
data, schema, and access methods, the distribution of P-node sizes when rules are triggered etc. If the data,
schema, and indexes never change, then clearly a plan pre-computing strategy such as cache and invalidate
will do better than always recompute. On the other hand, if a caching strategy does not recompute a
plan when it should (say if the invalidation thresholds in cache and invalidate are set too high) then
the caching strategy can run a non-optimal plan with costly results. The difference in plan execution costs
could be in seconds or minutes, while the cost of reoptimization is on the order of 100 milliseconds. When
a pre-planning strategy makes a (type I) error, the results can be devastating. When always recompute
makes an error (which must be of type 11}, the penalty is only the time it takes to reoptimize the query.
This intuition, plus the relative simplicity of always recompute made it the preferred choice for the Ariel
implementation. However, a strategy which can drive both type I and II errors to very low levels is clearly

desirable, so a detailed study of how to build such a strategy is an interesting topic for research.

8 Performance Results

Their are three main elements of Ariel’s rule processing system that need to be examined from a performance

standpoint:

34

1 T T u T a=0
g 4 a=.5
time in a=1
msec
or h
4 r 1
2t .
0 \ . , .
0 200 400 600 800 1000

number of predicates (N)

Figure 14: Average IBS-tree insertion times for a=0, .5 and 1.

1. the top-level discrimination network,
2. the join network, and
3. the rule action planner.

Performance results for the join network and rule action planner are not yet available. However, some
performance measurements for the top-level discrimination network are presented below (see [Cha90] for a
more complete performance study of the top-level network).

To get empirical figures on the performance of IBS-trees, the algorithm was implemented in C++ on a
Sun SPARCstation | computer. The balancing scheme using rotations was not implemented, but as with
ordinary binary search trees, the tree is normally balanced if data is inserted in random order. A series of
IBS trees were created which contained N predicates for N between 0 and 1,000. A fraction a of predicates
were simple points of the form atiribute = constant, and the remaining fraction 1 — a were closed intervals.
The points and interval boundaries were drawn randomly from a uniform distribution of integers between 1
and 10,000. The length of the intervals was drawn randomly from a uniform distribution of integers between
I and 1.000. The average times to insert a predicate for values of a=0, .5 and 1, and increasing values of N
are shown in Figure 14. The average insertion cost was measured as the time to insert N predicates in an
initially empty index, divided by N. Since the test does not reflect any balancing cost, insertion times for
balanced IBS-trees will be higher than shown in Figure 14. The average search time to find all predicates

that match a value is plotted in Figure 15 for a -0, .5 and 1, and increasing values of N.

5 Al T T T
45 1
gt 1a=0
35 | {a=.5
BT a=l
{ime in L
3
msec
25t 1
5 l
A5t 1
1 i
005r 1
() 1 1 E— A
0 200 400 600 800 1000

number of predicates (N)

Figure 15: Average IBS-tree search times for a=0, .5 and 1.

As a basis of comparison for the IBS-tree algorithm, the cost of finding the predicates that match a value
by traversing a linked list of predicates and testing each one against the value is shown in Figure 16. The
cost curve for sequential search is always higher than for the [BS-tree, showing that the IBS-tree has quite
low overhead.

As expected, the insertion and search time curves for the IBS-tree both show logarithmic increase in
search time as the number of intervals ircreases. The difference between the curves for the different values
of a (0, .5 arnd 1) are small, particularly for search time.

When the [BS-tree is integrated into the overall predicate indexing scheme shown in Figure 4, predicate

matching performance will depend on several factors, including:
e the fraction of predicates that are non-indexable,
e the number of attributes per relation,
e the fraction of attributes that have one or more predicate clauses,
e the number of indexable predicate clauses per attribute.

tlowever., we can get an estimate for the time required to find matching predicates using the following

assumptions:

e hash search cost = .1 msec,

36

l T T T T T T T
sequential
8+ 1 search
time
1n msec
.61 1
Ar
2r 1
IBS-tree
() i L A —) A A i

0 5 10 15 20025 30 35 40

number of predicates (N)

Figure 16: Predicate test cost for IBS-tree and sequential search.

fraction of predicates that are indexable = 90%,

e cost to test a predicate against a point in sequential search == .02 msec,

e average number of attributes per relation = 15,

o fraction of attributes per relation with 1 or more predicate clauses = 1/3,

s number of predicates per relation (N) = 200 (assuming that there are 200/5 = 40 predicates per

attribute, the search cost in [BS-tree for one attribute is approximately .13 msec),
® cost to test an entire predicate against a tuple when a partial match is found = .05 msec,
e number of clauses per predicate == 2,
e average selectivity of each predicate clause = .1.

The CPU usage times for operations shown above are reasonably close to the actual times for a Sun SPARC-

station 1. [n this scenario, the cost to search to find the partially matching predicates is the following:

cast hash cost
v number of attributes searched -
[BS-tree search cost

+ non-indexable predicate test cost

37

This yields the following numeric expression for cost:

cost .1+ 15513 ¢ (1 - .9)-.02-200

b 513+ 4 = 11 msec

Since there are 200 predicates per relation, and the selectivity of the predicate clauses is .1, that means that
.1-200 + 20 predicates must be tested after the initial search. The time to test these is .05 20 = 1 msec.
Thus, the total time for predicate testing is 1.1+ 1 — 2.1 msec. This s a fairly realistic number for the cost
of finding all predicates that match a tuple using the algorithm presented in this paper with a moderate to
large number of rules on a machine the speed of a SPARCstation 1. Given that this is a per-tuple CPU cost,
the time is substantial, but should not be pr libitive. Of course, these are CPU-only costs, and any increase

in CPU speed will cause the predicate testing time to scale down accordingly.

9 Implementation

Ariel is implemented using the EXODUS toolkit [CDF*86, RC87] and in particular the E programming
language |[RCS89], an extension of C++ with persistent objects. The current version of Ariel consists of
about 28000 lines of C++/E code. We chose EXODUS and E since they were available at the time the
project was started in 1988, and we wanted to focus our energy primarily on the rule processing subsystem.
We felt the persistence features of E would allow us to create storage structures for relations easily, lettiag
us avold writing our own storage manager. Moreover, we planned to create a fairly complex persistent data
structure for use as the rule discrimination network, and we felt persistent C++ would allow us to do so
without writing voluminous code to read and write the data structure at system start-up and shutdown time.
[n addition, we wanted to take advantage of the object-oriented programming features of C++ to help us
develop a complex system with hopefully less effort than would have been required in C.

In retrospect, we feel that using a persistent, object-oriented programming language was very helpful
for the reasons we had hoped. The persistent objects and collections available in E made it relatively
straightforward to implement the persistent discrimination network, system catalogs, and relations. The
object-ariented programming features of C+ + simplified and streamlined our implementations of the syntax
trees output by the parser, the query plan trees, and the different types of a-memory nodes. As an example,
the class hierarchy for the query plan operators in Ariel is shown in Figure 17. All three of the class
hierarchies mentioned use polymorphism and inheritance extensively, simplifying them compared to a C-
based implementation.

The use of £ and C+ + was not without difficulties. One feature of E that caused us a problem is that
there is a distinction in E between regular C++ class types and E dbclass types. E thus does not have

the property of persistence orthogonality where persistence of an object is strictly independent of its type

QueryPlanOp

Scan
RelationScan
SequentialScan
IndexScan
StoreTemporary
PnodeScan

Join
NestedLooploin

NestedLoopJoinIndexInner

SortMergelJoin

Project

Figure 17: Class hierarchy for query plan operators in Ariel.

"ABC " 83). The type of any object that is persistent in E must be declared as a dbclass and all of its sub-
objects must also be db-objects. Several times we found ourselves wishing to create a persistent instance
of un object (e.g., & syntax tree or a query plan) which wasn’t declared as a dbclass since the need for a
persistent instance of the object hadn’t been anticipated. This resulted in time consuming maintenance of
the software in which classes were re-defined as dbclasses, and then all sub-objects pointed to by the changed
classes were changed to be dbclasses etc., with the affects rippling outward through the source code.

There are some advantages from the standpoint of language implementation to making a distinction
between database types and normal types, including increased portability, ability to provide an extremely
large persistent address space, and ability to easily reorganize disk-based storage. However, lack of persistence
orthogonality is such a software engineering problem that we feel every effort should be made to develop
persistent languages that do have persistence orthogonality [HHR91]. We are encouraged by development
of at least one commercial implementation of persistent C++, Object Design’s ObjectStore[Obj90], which
does have persistence orthogonality, as well as research into persistent virtual-memory in the Cricket project

SZ90! which may simplify implementation of persistent programming languages.

10 Review of Related Work

I here has been a significant amount of research on active databases recently. The main thing that differen-
tiates Ariel from other active database systems is its use of a discrimination network specially designed for

testing rule conditions efficiently. Other database rule system projects either:

e do not address the need for efficient data structures for finding which rules match a particular tuple

(RPL DE88a, DESSb], Starburst rule system [WCL91]),

39

o do not provide a data structure for testing selection conditions, or

e provide a data structure for testing selection conditions which cannot efficiently handle conditions
placed on an arbitrary attribute (e.g., one without an index) (POSTGRES rule system [SHP88, SHP89,
SRH90], HiPAC [C*89], DIPS [SLR89], Alert [SPAM91}).

Other distinguishing features of Ariel are its close adherence to the produci. 1. “ystem model, its unified
treatment of rules with normal conditions as well as event-based and transition conditions, its ability to
run rule action commands without creating any additional joins to the P-node, and its use of a rule-action
planner that produces optimal plans for executing rule actions.

The POSTGRES Rule System [SHP88, SHP89, SRH90] is a sophisticated tuple-level rule system that
allows triggers and integrity constraints to be defined with event and pattern-based conditions on a single
tuple. It is a functioning component of the POSTGRES implementation. The POSTGRES designers have
made the choice to trigger rules with single-tuple conditions as soon as the conditions of the rules are satisfied,
during processing of a database update command or query. This approach makes it possible to design triggers
with fine-grained, immediate response to changes, as well as implemnent rules which can modify tuple contents
as data is being retrieved. This latter feature can be useful for implementing security ...d integrity features
such as denying access to certain records or fields to a particular user. However, compared with rule systems
with a rule agenda and scheduling mechanism that runs rules at the end of a command, group of commands,
or transaction, the PRS approach is less flexible in its ability to schedule multiple rules based on recency
and priority. In addition, since PRS is a tuple-level rule system, it can’t take advantage of performance
optimizations that can be done by set-oriented rule systems that process all data matching a rule condition
together.

The HiPAC system has a sophisticated trigger model which allows specification of multiple coupling
modes describing the time rule conditions are evaluated and rule actions are run. These include immediate,
deferred, and decoupled modes for both conditions and actions [C*89]. In contrast, Ariel executes all rules in
the HiPAC mode condition=immediate and action=deferred. The HiPAC design was partially implemented
in a main-memory-based prototype.

RPL has a rule language based in SQL which is quite similar to the Ariel rule language. It provides an
interesting model for a production-rule-like trigger language extension for SQL. However, it was implemented
on top of another database system without a significant attempt to optimize rule condition testing [DE88a].

The work on the Data Intensive Production System (DIPS) describes a strategy for implementation of
OPS5 on top of a relational DBMS (SLR89]. DIPS uses mechanisms based on tables of partial matches that
rest rule conditions differently from traditional Rete and TREAT networks. However, no clear performance

measurements have been done to show which condition testing strategy is superior.

40

The Starburst Rule System (SRS) [WF90, WCL91] is a set-oriented rule system built on top of the Star-
burst extended relational DBMS. Starburst, similar to Ariel, allows specification of rules with sophisticated
1ransition conditions. SRS provides an elegant form of level 3 transition rule semantics as described in section
2.3.3. However, it does not use any form of discrimination network for testing rule conditions. It essentially
is required to execute a query for every rule that might be affected by a particular update, which is likely to
have prohibitive overhead if there are more than a handful of rules per relation.

Alert is another rule system based on top of Starburst which uses an architecture for transforming a
passive [JBMS into an Active DBMS [SPAM91]. Alert provides some interesting mechanisms for defining
triggers using queries which return a cursor that can be accessed again to find new matching data even
after an end of file (EOF) has been returned. This provides a convenient extension tc relational database
programming facilities to allow them to use data produced by active rules. However, Alert does not have a
rule condition testing mechanism that is efficient for a very general class of rules. Their approach to testing

selection conditions of rules is similar to PRS.

11 Conclusions

‘U'he Ariel project has shown that a database system can be built with an active rule system that is:
e based on the production system model,
e sct-oriented,
e tightly integrated with the DBMS,

e implemented in an efficient fashion using (1) a specially designed discrimination network, and (2) a

rule-action planner that takes advantage of the existing query optimizer.

Ariel is unique in its use of a selection-predicate index that can efficiently test point, interval and range
predicates of rules on any attribute of a relation, regardless of whether indexes to support searching (e.g.,
B¢ -trees) exist on the attribute. In addition, the concept of virtual o- {and 3-) memory nodes introduced
in Ariel can save a tremendous amount of storage, yet still allow efficient testing of rules with joins in their
conditions. The ability to use virtual memory nodes in a database rule system discrimination network opens
np tremendous possibilities for optimization, in which the most worthy memory nodes would be materialized
fur the best possible perforinance given the available storage. Prior to the development of the virtual memory
node concept, it was mandatory to materialize the a-memory nodes, limiting potential optimizations.
Some commercial database rule systems already support triggers using a general predicate on a singie

relation (e.g., the commercial INGRES systemn [ING89}). A selection predicate index like the one for Ariel

——“

REFERENCES 11

could be encorporated systems like this to improve performance with low risk. We hope that in the future, as
experience is gained with A-TREAT style join networks, that commercial systems will be able use A-TREAT
to provide tne added power of triggers with joins in their conditions with fast performance.

For the future, there are a number of potential research avenues for enhancing active database systems,

including:

e support for streamlined development of applications that can receive data from database triggers

asynchronously (e.g., safety and integrity alert monitars, stock tickers),

» optimization of the use of storage available throughoui the memory hierarchy (memory, disk, tertiary
store) for storing memory nodes in a combined Rete/TREAT network augmented with virtual memory

nodss,
e support for more efficient rule condition testing and execution in a DBMS using parallelism.

Transformation of databases from passive to active is a landmark in the evolution of DBMS technology. We
hope the development of fast, robust active database systems that may come from this research will lead to

innovative new applications *hat make more productive use of the information in the DBMS of the future.

12 Acknowledgements

I would like to thank all the people who have contributed to the Ariel project, including Yu-Wang Wang,
Moez Chaabouni, Michael E. Carey, Chang-Ho Kim, Soon Chung, Y. Satyanarayana, Min Zhang, Anjali
Rastogi, Indira Roy, and Hui Xu. [couldn’t have done it without you! In addition, I would like to thank
Abe Waksman and AFOSR for financial support of this project, and William R. Baker for giving me the

freedom to conduct this research.

References

CABCTT60 M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade,
and V. Watson. System R: Relational approach to database management. ACM Transactions
on Database Systems, 1(2), June 1976.

‘ABC* 837 M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An approach
to persistent programming. The Computer Journal, 26(4), 1983. (reprinted in [ZM90]).

BC79! O. P. Buneman and E. K. Clemons. Efficiently monitoring relational databases. ACM Transac-
tians on Database Systems, 4(3):368-382, September 1979.

.BFKMS85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Ezpert Systems in OPS5: an
Introduction to Rule-Based Programming. Addison Wesley, 1985.

niFERKNCES 42

BORY!

8y

CDE " 86

(ChaBd9

Chago!

Cozy

DBB* 88

hHissa

DESSL!

EswT76'

Fors1|

For82

W

Gutgd’

‘Han8&9

Han9p

HC90'

HOKW90]

Virginia k. Barker and Dennis E. O’Connor. Expert systems for configuration at Digital: XCON
and beyond. CACM, 32(3), March 1989.

S. Chakravarthy et al. HiPAC: A research project in active, time-constained database man-
agement, Final Technical Report. Technical Report XAIT-89-02, Xerox Advanced Information
Technology, August 1989.

M. Carey, D. DeWitt, D. Frank, G. Graefe, J. Richardson, E. Shekita, and M. Muralikrishna.
The architecture of the EXODUS extensible DBMS. In Procedings of the International Workshop
on Object-Oriented Database Systems, September 1986.

Sharma Chakravarthy. Rule management and evaluation: An active DBMS perspective. SIG-
MOD Record, 18(3):20--28, September 1989.

Moez Chaabouni. A top-level discrimination network for database rule systems. Master’s thesis,
Dept. of Computer Science and Eng., Wright State Univ., December 1990.

Larry Collins. Informal survey of relational database applications at Wright-Patterson AFB.
(personal communication), 1989.

U. Dayal, B. Blaustein, A. Buchmann, et al. The HiPAC project: Combining active databases
and timing constraints. SIGMOD Record, 17(1):51-70, March 1988.

Lois M. .. Delcambre and James N. Etheredge. The relational production language: A produc-
tion language for relational databases. In Proceedings of the Second International Conference
on Ezpert Database Systems, pages 153-162, April 1988.

Lois M. L. Delcambre and James N. Etheredge. A self-controlling interpreter for the relationa!
production language. In Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, pages 396-403, Chicago IL, June 1988.

K. P. Eswaran. Specifications, implementations and interactions of a trigger subsystem in an
integrated database system. Technical report, IBM Research Laboratory, San Jose, CA, 1976.

Charles L. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie-Mellon
University, Pittsburgh, PA 15213, July 1981.

C. L. Forgy Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence, 19:17-37, 1982.

J. E. Freund and R. E. Walpole. Mathamaltical Statistics. Prentice-Hall, 1980.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the
1984 ACM SIGMOD International Conference on Management of Data, June 1984.

Eric N. Hanson. An initial report on the design of Ariel: a DBMS with an integrated production
rule system. SIGMOD Record, 18(3), September 1989.

Eric N. Hanson. The interval skip list: A data structure for finding all intervals that overlap
a point. In Proceedings of the 1991 Workshop on Algorithms and Data Structures. Springer
Verlag, August 1991,

Eric N. Hanson and Moez Chaabouni. The IBS tree: A data structure for finding all intervals
that overlap a point. Technical Report WSU-(CS-90-11, Wright State University, April 1990.

Eric N. Hanson, Moez Chaabouni, Chang-ho Kim, and Yu-wang Wang. A predicate matching
algorithm for database rule systems. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, May 1990.

REFERENCES 43

HCL*90]

HHRY1

ING8Y'

'MD89)]

Obj90]

Pugyo!

‘Ras91]

RC8T]

"RCS89I

'RSL8Y!

ISam90)]

SHPSS!

SHP89)

'SLR89;

'SPAM91]|

'SRH90!

'SSHS6]

.. Haas, W. Chang, G. M. Lohman, et al. Starburst mid-flight: as the dust clears. [EEE
Transactions on Knowledge and Data Engineering, 2(1), March 1990.

Eric N. Hanson, Tina Harvey, and Mark Roth. Experiences in DBMS implementation using an
object-oriented persistent programming language and a database toolkit. In Proceedings of the
1991 ACM Conference on Object-oriented Programming Systems, Languages and Applications,
October 1991. Also appears as WSU-CS-90-17.

INGRES Corporation. INGRES/SQL Reference Manual, November 1989. Version 6.3.

Dennis R. McCarthy and Umeshwar Dayal. The architecture of an active data base management
system. In Proceedings of the 1989 ACM SIGMOUL Internalional Conference on Management
of Data, June 1989.

Object Design, Inc. ObjectStore technical overview, release 1.0, August 1990.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the
ACM, 33(6), June 1990.

Anjali Rastogi. Transition and event condition testing and rule execution in Ariel. Master’s
thesis, Dept. of Computer Science and Eng., Wright State Univ., June 1991.

Joel E. Richardson and Michael J. Carey. Programming constructs for database system imple-
mentation in EXODUS. In Proceedings of the 1987 ACM SIGMOD International Conference
on Management of Data, May 1987.

Joel E. Richardson, Michael . Carey, and Daniel T. Schuh. The design of the E programming
language. Technical report, University of Wisconsin, 1989.

l.ouiga Raschid, Timos Sellis, and Chih-Chen Lin. Exploiting concurrency in a DBMS imple-
mentation for production svstems. Technical Report UMIACS-TR-89-5, University of Maryland,
January 1989.

P. Selinger et al. Access path selection in a relational database management system. In Proceed-
ings of the 1979 ACM SIGMOD International Conference on Management of Data, June 1979.
(reprinted in {Sto88)).

Hanan Samet. The Design and Analysis of Spatial Data Structures. Addision Wesley, 1990.

Michael Stonebraker, Eric Hanson, and Spiros Potamianos. The POSTGRES rule manager.
IEEE Transactions on Software Engineering, 14(7):897-907, July 1988.

M. Stonebraker, M. Hearst, and S. Potaminos. A commentary on the POSTGRES rules system.
SIGMOD Record, 18(3), September 1989.

Timos Sellis, Chih-Chen Lin, and Louiga Raschid. Data intensive production systems: The
DIPS approach. SIGMOD Record, September 1989.

UIf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An architecture for
transforming a passive DBMS into an active DBMS. In Proc. 17th International Conference on
Very Large Data Bases, Barcelona, September 1991.

Michael Stonebraker, Lawrence Rowe, and Michael Hirohama. The implementation of POST-
GRES. IEEFE Transactions on Knowledge and Data Engineering, 2(7):125-142, March 1990.

M. Stonebraker, T. Sellis, and E. Hanson. An analysis of rule indexing implementations in data
base systems. In Proceedings of the First Annual Conference on Ezpert Database Systems, April
1986.

aNFERENCES

Sto7d

Stanf

Stoak

SZ90

WOLOY

W EuD

ZNY0

.-

M. Stonebraker. Implementation of integrity constraints and views by query modification. In
Procecdings of the 1975 ACM SIGMOD International Conference on Management of Data, June
1975.

Michael Stonebraker. Inclusion of new types in relational database systems. In Proceedings of
IEEE Data Engineering Conference, pages 262-269, 1986. (reprinted in [Sto88]).

Michael Stanebraker, editor. Readings :n Database Systems. Morgan Kaufmann, 1988.

Fugene shekita and Michael Zwilling. Crickel: A mapped, persistent object store. Technical
report, University of Wisconsin, Fall 1990,

Jennifer Widom, Koberta J. Cochrane, and Bruce G. Lindsay. Implementing set-oriented pro-
duction rules as an extension to Starburst. In Proceedings of the Seventeenth Intrrnational
Conference on Very Large Data Bases, 1991.

Jennifer Widom and Sheldon J. Finkelstein. Set-oricnted production rules in relational database
svstems In Proceedings of the 1990 ACM SIGMOD International Conference on Management
Uf 1)111(1. 1990,

Stanlevy B. Zdonik and David Maier, editors. Readings in Object-Oriented Databases. Morgan
Kaufmann, 1990.

Lot vsrnament Printing O i 8- 7

