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ABSTRACT

The modeling of damped signals as the impulse response of a pole-zero system
is considered for a broad range of pole-zero modeling algorithms. The goal is to
obtain the best possible fit between the model impulse response and the modeled sig-
nal. Prony’s method, the least squares modified Yule-Walker equations (LSMYWE).
iterative prefiltering. and the Akakie maximum likelihood estimator are compared
on known test sequences for a variety of model degrading situations ie.g.. additive
noise) to develop an understanding of which methods are most suitable for mod-
eling real world signals. A correlation domain version of interative prefiltering is
also introduced. The most robust algorithms are determined to be LSMYWE using
singular value decomposition and iterative prefiltering (including the correlation do-
main version). Modeling several laboratory generated short duration acoustic signals
confirmed the robustness of LSMYWE and iterative prefiltering. It is shown that
correlation domain iterative prefiltering out serforms standard iterative prefiltering
when large model orders are required for accurate modeling. Shank's method was
determined to be the most effective method of determining the zeros of a pole-zero

model when a time domain match is required.
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I. INTRODUCTION

A. RATIONAL MODELING OF TIME SERIES DATA

The need to find a compact parametric representation for time series data arises
in many fields of study. In electrical engineering. finding such representations. or
models. appears under such topics as optimum control. optimum filtering. svstem
identification. model order reduction. waveform encoding. and spectrum estimation.
Other fields refer to such modeling as time series analysis or forecasting. In digital
svstems. the model parameters take the form of difference equation coefficients or.
alternatively. transfer function coefficients. The most general form of a difference
equation i1s one that uses both feed-forward and feedback coefficients. The corre-
sponding transfer function is a ratio of two polynomials in the complex variable :
and is refered to as a rational, or pole-zero. model.

Historically. the more general pole-zero model has been used in relatively few
applications compared to all-pole (feedback onlv) and »ro (feed forward onlyv:
models. In some cases. an all-pole or all-zero model is ... most appropriate. More
often. however. the ali-pole or all-zero model is chosen because the optimal mode]
estimation procedures are better understood and easier to implement than those for
pole-zero modeling. This is particularly true for the all-pole case which. in manv
situations. can be determined by solving a set of linear equations. Two recent devel.
opments have led to increased activity in applying pole-zero madels: (1) technological
advances in digital hardware have dramatically reduced computation costs and. (21
a greater variety of efficient techniques for estimating pole-zero model parameters is

now available.




Literally hundreds of pole-zero modeling estimation algorithms and applications
have been published. The majority of these are built arounda probablistic or stochas-
tic modeling techniques. This is because stochastic modeling is usually the most
appropriate to forecasting [Ref. 1. 2. 3] and spectrum estimation [Ref. 4. 5. 6, where
very little 1s known about the svstem input which produced the time series being
modeled. A deterministic methodology has also been used in which the input aud
output time series are available and the linear system which "best” {usually in a least
squares sens. ) produces this cause and effect 1s determined. This approach is usually
found under the topics system identification [Ref. 7. 5.9, 10" and waveform encoding
‘Ref. 11]. Another large body of literature which exists in parallel 1o stochastic and
deterministic modeling is that of reduced-order modeling ‘Ref. 127 which largely deals
with the sestern control applications of pole-zero modehng.

Although stochastic and deterministic pole-zero modelng have the same goa,
ared 1se the <ame mathematical techniques, the distinenion 1~ signitheant in the way
data s treated and i the performance criterion postuiated, Speciticalive stationans
regrirements and assumptions abont the probabiiny density funetions of randon: pro
cessesn stachastico modeling can be inting when deaiimeg with real world svstems, In
contrast. getermnnistic techmagues make no specific assumptions about the time series
1o e modeled except. of course, that the form of the model chosen ix appropriate.

One particular determmmistic modehng problem that has received hittie detaijed
attention s that of iinding a pole-zero model when the time series being modeled
15 a transient. impulse response’-like waveform Examples of situations where such
miodel< may be useful include in modal or shock analysis of mechanical svstems Ref,
3. 14 antenna response to electromagnetic pulses [Ref. 177, and wavelet estima
ron an stesmie studies [Ref. 161, Pole-zero models make sense for transient wave.

forms becanse such a model is structural for many transient signals. That s impulse




response like transients are usually the result of a system of oscillators which have
been excited for a very short time period relative to the natural frequencies of the
oscillators. Pole pairs in pole-zero models correspondingly represent the resonant fre-
quencies of a digital system. System zeros allow the initial conditions or phasing of
the resonant frequencies to be modeled. This combination of poles and zeros allows
signals to be modeled based on time domain matching. When an effective time do-
main match is achieved many concerns about assumptions during modeling become

wot: an effective time domain match has. by definition. effectively characterized the
signal in question. ’revious work has concentrated on finding only transient mode)
poles [Ref. 17. 138, 19, 20! or concentrated on one particular techuique of pole-zero

impulse response matching [Ref. 217,

B. THESIS OUTLINE

This thesis provides a performance comparison of several pole-zero modeling
procedires applied to the problem of model estimation from impulse response data.
e procedures compared are chosen to form a cross section of optimahty and com; -
tational complexity of available techiniques. In Chapter 1. the modeling procedires
selected for study are described in detall. The remaining three chapters are concerned
with comparning the performance of these modeling techniques and are organized as

fh”')WS.

To study the specific modeling properties of each method., test impulse response
sequences are modeled 1n Chapter Three. Test sequences are constructed to
sitnniate the degradations likely to be present in ‘real world™ transient signals

fe.g. noise. unknown model order).

2. Using the results obtained in Chapter I11. laboratory generated acoustic tran-

sient data is modeled in Chapter IV. This data is considered to determine the




performance of various techniques when modeling the highly complex data char-

acteristic of real world sources about which very little is usually known.

3. Chapter V summarizes the main conclusions drawn from the results in Chapters

IIT and IV. Recommendations for further study are also presented.
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II. POLE-ZERO MODELING

A. OVERVIEW—THE VARIETY OF TECHNIQUES

Choosing a pole-zero modeling technique from among the many available tech-
niques can be difficult. The complexity. applicability, and demonstrated effectiveness
of the different methods are not always well documented. Additional consideration of
the many refinements that often evolve as a technique is applied to different problems
can lead to a perplexing array of tools with which to attack the modeling problem.
For the particular case of modeling by impulse response matching. little work has ap-
peared which sorts out the strengths and weaknesses of available modeling techmques
or. in fact. indicates which methods may or may not be applicable.

The basic scheme for fitting a pole-zero svstem impulse response to a given data
sequence. rinjoisillustrated in Figure 2.1a. This is sometimes referred to as the direet
model. As we shall see. the formulation of this problem leads to a set of nonlinear
rauations which require the use of iterative techniques to solve  To overcome the
compexities inherent in solving nonlinear equations. the impulse resporse matching
problem can be reformulated as shown in Figure 2.1b. This may be referred 1o as the
indirect method. Note that these two formulations are not equivalent: the error of
the direct method of Figure 2.1ais e4(n) = r{n)— h(n) while the error for the indirect
method of Figure 2.1bas e,(n) = b(n)~—a(n)*r(n). where h(n) is the impulse response
of the pole-zero svstem being found. b{n) is the corresponding sequence of numerator
coeflicients and a(n) is the corresponding sequence of denominator coeflicients. The

solution of the indirect problem is considered suboptimal in the sense that. except
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Figure 2.1: Two pole-zero modeling problem formulations: (a) direct for-
mulation and (b) indirect formulation.




when the modeling error goes to zero, the effect of minimizing e,(n) is not the same
as minimizing e4(n) in the direct method.

One way to organize pole-zero modeling techniques is shown in Figure 2.2. In
deterministic waveform matching, the ideal equations relating the proposed model to
the available input and output data sequences are formed. The solution which ‘best’
satisfies these equations is chosen. In this context, ‘best’ usually means the solution
which minimizes the sum of squares of the equation error. These are essentially the
Prony type methods [Ref. 17. 22] (when the input is an impulse response} and least
squares system identification [Ref. 7. 8. 23] methods (for general input sequences).
A number of iterative techniques for waveform matching have also been proposed.
Waveform fitting error [Ref. 24, 23] and inverse filtering error {Ref. 26, 27} are the
criteria most used.

Linear stochastic pole-zero modeling techniques rely primarily on estimates of
second order statistics (auto- and cross-correlations) to estimate model parameters.
Spectral estimation has been a driving force for these methods which are based on
solving some form of the modified Yule-Walker equations {see Chapter 1111 Other
methods which utilize reflection coeflicients [Ref. 28! and higher order statistics ‘Ref.
29,30 have also appeared.

The marimum likelthood technique seeks parameter estimates for which the ob-
served data is the most probable in the sense that its conditional probability density
function (likelihood function) is maximized. This technique is considered to be sta-
tistically optimum but is quite difficult to use because its implementation generally
requires the minimization of a highly nonlinear function [Ref. 1, 31, 32, 33]. Four
widely applied methods from each of the categories of Figure 2.2 will be used in

this thesis. A number of improvements which have subsequently been suggested for

these methods will also be considered. Most recent work in pole-zero modeling and




spectrum estimation has occured at the internal boundaries of Figure 2.2, i.e. equiv-
alent linear techniques are sought that perform as well as modeling formulations that
require solving nonlinear equations [Ref. 34, 35, 28, 36. 37]. The application of
thiese newer techniques to transient modeling will not be considered here since we
expect that the performance of the methods chosen will in most cases bracket the
performance of these newer techniques with the possible sacrifice of computational
efficiency. The four pole-zero modeling techniques chosen will be described in the re-
mainder of this chapter. The transient modeling performance of these methods that

will then be compared in Chapters III and IV.

Linear Iterative
Determimstic j Equation Error Waveform Matching
Methods [nverse Filtering
i
Stochastye Correlation Equation Maximum
: Error Methods Likelihood Methods
\

Figure 2.2: One way of organizing the various pole-zero modeling tech-
niques.

B. THESIS MODELING TECHNIQUES
1. Prony's Method
One of the best known indirect techniques for matching a waveform to

the impulse response of a linear time-invariant system is Prony's method [Ref. 22

8




This method is in fact a special case of least squares system identification in which
the system input sequence is taken to be a unit impulse and the numerator and
denominator coefficients are determined separately.

The pole-zero modeling problem is formulated as follows. The time domain

difference equation for a general feedback, feed-forward system can be written
P
Za rin-—j) Zbun—r (2.1)
1=0
where u(n) is the input sequence and r(n) is the output sequence. When the input
sequence 1s taken to be a unit impulse {unit sample functionj and the output is taken

to be the corresponding impulse response. (2.1) can be expressed i the form of a

matrix equation,

T
[ 0 0 [ ( : '
ril) il 0 | ‘ﬁ!bql o
| | ; N
L AN-L 2 N-2 o aN=Py | e ] N !
L 0]

where N o the number of data points used and. without loss of generalization, ag is
<et equal to one.

Equation (2.21 can be solved by partitioning,

BN

where a = {1 ay - apiT. b=k b - bg]T and X, and Xg are the corresponding
lower and upper partitions of the data matrix in (2.2). The upper partition consists
of the first @ + 1 rows of the data matrix and the lower partition is composed of the
remaining rows.

The solution can then be obtained by first solving the lower partition,

an-‘; 0. (24)

9




for a and then finding b from the upper partition,

e
|
~—

Xga=>b. ({:

If N= P+ @+ 1 then (2.2) may have a unique solution and the model impulse
response will exactly match z(n) for 0 < n < P+ @ + 1. This is referred to as the
Pade approximation [Ref. 22].
In most circumstances. however. the length of the available data sequence
far exceeds P+ @ + 1. It is then desirable to use all available data in setting up 221
Iy

This leads to an overdetermined set of linear equations for the lower partition. No

exact solution to (2.4) usually exists in this case. The relation<hip in 124 becomes
Xia=-e. 2

where e 1¢ the equation error that will be present The solution of (2.4 and 2.6

requiires the partitioning of X4 as follows,

o .
A\A-‘)\,; X -

where X g 1 the first column of X4 If the remaining matrix X'y 1 square and of full

rank. then the solution to (2.4} 1s given by

where

)|
a= , P20
a
Otherwise the least squares error solution of (2.6). which minimizes the squared error

e’e. is given by

a':X'A‘xA (2.10}

10
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where XY is the Moore-Penrose pseudoinverse of X’;. When X/, is of full (column)

rank P. the psuedoinverse is given by

a’ = (XTX,)' X' x4. (2.11)
; {See [Ref. 4. pp. 28-33] for an example of this derivation). Otherwise. the pseudoin-
; verse 1s defined by
WooT
’ u; Xav,
a=) —— (2,121

where a,. u,. and v, are defined by the singular value decomposition { S\’ represen-
tation of X/y.

W
' T oy
X4=Zn,u‘vr 213

1=0

The parameters a, are the singular values of X', u, and v, are the corresponding
ieft and right singular vectors. and W is the rank of X', See Ref. 35 Ch. 12 for
| a more detailed explanation of singular value decomposition. Once a 1s known. the
upper partition of (2.2 can be solved by simply carrving out the matriy mult:phication
described by the Jeft hand side of (2.5,
' 2. Modified Yule-Walker Equation Methods
A well known class of pole-zero modeling techniques s hased of solving
~ome form of the Modified Yule-Walker Equations (MYWE ). These equations can be
developed by multiplying (2.1) by r(n — k) and taking the expectation of both sides.
This vields,

P Q
Yoawren— k) =3 bro(n-i) (2.14)
1=0

k=0

where r . (1) 1s the autocorrelation sequence of the svstem output and r,il} is the
crosscorrelation of the system input and output. If the original input to (2.1) is
assumed to be a unit variance white noise sequence then the cross correlation. r,(l).

is given by

11




Elu(n)z(n - 1)) = Eluln) " h(k)yu(n — I — k)]
k

B

> h(k)S(+ k)

k
= h(-1). (215
Equation (2.14) can be then be written as
P Q
Za‘.r”(n —A‘):Zb,/1(1~ni, 20160
k=0 =0
Or in matrix form.
r.-101 R ol P, 71
7‘,,11' 7‘,—-!0) T,,i-[’+ ! }
- 5
! P J:
I “ !
(‘ _____ el el -1 R “ 4 f
? 7‘,..! +l' 7‘:,/(‘)} T'..‘,i t)*}_'\})' i !
i !
]{ g LAy
’| Pt ‘«/” rf_iQ+‘/)—]) r.. ({)-‘1) |
Lren@=Psy r O p et () |
ST W TP
Zi‘):lf"h el
|
! ' .
= g tht(J‘ 7 20T
1”[
i
| |
{ : i
[ 0 |
o

As in Prony's method. the solution for the at and b, coefficient< cap he
determined separately. Taking a lower parution of the last p° ~quations in 237,

results o the matrix equation,

where the theoretical values of the elements in R, are replaced by estimated values.
P+ autocarrelation lags are used in constructing R, then (2.18) can

be solved directly for a. However. if additional rehiable lag information js available, we

12
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will again desire to extend R4 by letting the index n in (2.16) run beyond @ + P + 1

resulting in additional equations. This leads to a an overdetermined set of equations.

Raa=¢e (2.19)

which will not in general be satisfied with zero error. As before. application of the
psuedoinverse results in a least squares solution of (2.19).

To understand how the MYWE methods can be used to match a time
series to the impulse response of a pole-zero system observe that (2.16) describes the

relationship depicted in Figure 2.3. This operation can be equivalently expressed as

Lo
[
<=

reein) = h(n) s h{—nj. (2

If the signal to be modeled 1s assumed to be a pole-zero system impulse response, then
for the purpose of implementing (2.17). the signal being modeled can be substituted

for Afnyin (2.20).

hi—ni . Biz) - Tepin
A 1
i

Figure 2.3: The system relationship described by (2.16).

The equations of the upper partition of (2.17) (the first @ equationsi are
not linear 1n the b coeflicients and are generally not solved directly from (2.17). Once
the denominator coefficients have been determined from (2.18) or (2.19), any of a
number of techniques are available for finding the desired transfer function numerator
coefficients. One method already discussed is to set up and solve the upper partition of
Prony’'s method in (2.5). Three other techniques are spectral factorization. Durbin’s

method. and least squares identification, each of which are described below.
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a. Spectral Factorization

Equation (2.16) describes the time domain relationship

to
1o

ree(1) * a{l) = b(1) * h(=1) -

where a(!) and b(l) represent the sequences of denominator and numerator transfer

X

function coefficients. respectively. Taking the z-transform of {2.211 vields

S 2)A(z) = Bl Hiz™h. (220
Making the substitution
B(:=h
Hi: Y= (2,23
(= Al

i (2.22} and rearranging. results in

(4%
-

Az NS Az = BBz 2

To utilize (2,241 to find the polynomial coeflicients of Fiz1. which are the elements
of the sequence il we must perform spectral factorization of the wequence result
ing irom the convolution of the three sequences aili, ar - 1) and ro_ii A detatied
explanation of this technique can be found i 'Ref. 39" or ‘Refl 40
b. Durbin’s Method

Durbin’s method [Ref. 41} makes use of the property by which a
process containing zeros can be represented by an all-pole svstem if enough poles
are used  The first step is to filter the sequence to he modeled through the inverse
of the previously determined all-pole filter coefficients as shown in Figure 2.4, The
resulting residual sequence, s(n). will nominally be an all-zero sequence. A large
order all-pole model. Aj,.,.(2). can then be fitted to s(n) to obtain the relationship

illustrated in Figure 2.5. If the model order for Ay, 4. (2) 1s sufficient]y large, all of

the ‘information’ in s(n) will be contained in the coefficients of 4,...(z). If an all
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r(n) —m—— A(z) b————" s{n)

Figure 2.4: Filtering process to generate the all-zero residual sequence for
the application of Durbin’s method.

u,(n) e sini

Figure 2.5: The residual sequence approximated by a large all-pole model.

pole model, 1/B(z). is then constructed for the sequence of corflicrentsin AL 000

the relationship obtained 1s

1

i
P IR IS B
-~z . !

Bz

A[cug" hal
T'herefore the transfer function 1/ A4,0,.020 of Fignre 2.5 18 replaced by

Biz =~ ——I——— 20
A 7
which vields the desired moving average all-zeror model
c. Shank’s Method
Consider the svstem shown in Figure 2.6 where hyin i~ the impnlse
response of the previously determined all-pole portion of a pole zero model jusing
Prony’s method for example). Shank’s method [Ref. 427 is to satisfy the relationship

of Figure 2.6 1n the least squares sense. This relationship can be described by the

matri equation
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ha(Q) ha(Q - 1) 4(0) bo
ha(lQ+1)  ha(@) ha(1) by
}LA(;\: --l) }IA(.\'-—‘_)) hA(I\'—I—Q) iIQ

z(Q) es(@Q)
r(Q+1) N es(@ + 1)

(N =1) eglN = 1)
or

H.ib = x + ep. (2.2x%)

Fquation (2.28) can be solved in the manner of (2.6) with H4 analogous 10 X', and x

analagous to x 4. The b, coeflicients can therefore be found by using the psuedoimnverse.

rin)

eIy

hain) ————— Hiz)

i L oring
i i

.

Figure 2.6: System for Shank’'s method determination of transfer function
numerator coefficients.

3. TIterative Prefiltering
An iterative technique for solving the direct modehing problem of Figure 2

called aterative prefiltering has been proposed in [Ref. 241 An effective application of
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the technique has been reported in [Ref. 43]. The presentation below follows that of
[Ref. 40].

In this method, the direct modeling problem error (see Figure 2.1a).
eqd(n) = z(n) — h(n) {2.29)

1s expressed in the alternative form

eqa(n) z(n) — b(n) * ha(n)

= z{n)xhy(n)*a(n)—b(n)*hs(n) (2.30)

where a(n) and b(n) are the sequences of transfer function denominator and numer-
ator coeflicients, respectively, and h4(n) is the impulse response of the AR (all-pole)
portion of the model. 1.e.

) 1
ha(n) = A

By then making the equation error iterative (superscripts represent the index of iter-
ation).

e'lin) = z(n) = Kly(n) x a'*'(n) — b1 (n) e h(n), (2.31)

the least squares error solution for a'*'(n) and »*'{n) at each iteration can be cal-

culated using parameter estimates from the previous iteration. In matrix form (2.31)

bhecomes

o
) a|l+l

rai P ry(0) hy(P) Ry P —Q) _
P -1 (1) RyP+1) - KPP -Q+1) o

: : : : : ap

. ’ . . . by

TN =1) - N =1=P) hW(N=-1) -~ R(N=-1-Q) ,

b3

f;ﬂ(’))
e’ (P +1)

eHN =)
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where z4(n) = z(n) = h%(n). Note that (2.32) can be solved in exactly the same
manner as (2.6).
a. Correlation Domain Iterative Prefiltering

Many pole-zero modeling algorithm’s which were originally conceived
based of the time domain pole-zero difference equation, (2.1). have been reformulated
in the correlation domain. Examples of this include the correlation domain extension
of Prony’s method resulting in the modified Yule-Walker equation methods. and an
instrumental variable method of least squares system identification which Soderstrom
has indicated is simply a correlation domain formulation of least squares system
identification [Ref. 44]. In modeling trials conducted for this thesis both of these
correlation domain methods were found to be significant improvements over their
time domain counterparts.

Iterative prefiltering can also be extended into the correlation domain.
To see how this is done first note that the direct formulation of the pole-zero modeling
problem of Figure (2.1a) may be reinterpreted in the correlation domain by emploving
the relationship of (2.20) and Figure 2.3. Figure 2.7 illustrates this new direct pole-
zero modeling interpretation.

Proceeding as for the time domain iterative prefiltering above we write

the correlation domain error equation.

"d.carr(n\) = f‘,,(ﬂ\) - I(—n) b h(n)

H

Tee(n) e hy(n)sa(n) — r(—njsb(n) s hsin) (2.33)

where, as before, a{n) and b(n) are sequences of the model coeflicients. h4(n) is the
impulse response of the AR (all-pole) portion of the estimated model. and f,,(n)

is found using r(n) as the desired impulse response so that 7 .(n) = r(n)s r(—-n).




Tre(n)

ed.corr(n)

) [z(=n)*h(n)

Figure 2.7: The direct pole-zero modeling problem formulation expressed
in the correlation domain.

When the error 1= made iterative, {2.33) becomes

e! (n)=zx(n)ez(=n)shy(n)»a*(n) = z(—n) =" n)*hiyin) (2.34)

where the superscripts represent the index of iteration. In matrix form (2.34) becomes

R
141
ra(Py o r: (0) P . r(P-Q) ] ‘
rn(P<+1) - ri(1) (P+1) - P -Q+1) a'.”
s z : : : o
PA(2N = 1) o LN — 1= P) (2N = 1) - T (2N - 1-Q) 0
45 ]
€ gronen | P
(;‘:L,( P+1)
= , (235
e (N = 1)

where ry(n) = 7,.(n)« kY (n) and r4(n) = r{=n) « k% (n) and which can be solved as

before.
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4. Maximum Likelihood Techniques

Mazimum likelithood estimation of parameters is the statistical standard
against which the performance of other estimators is measured. This estimator makes
use of all the useful statistical information available in a given set of data [Ref. 45. p.
73]. Difficulties arise, however, in the implementation of the maximum likelihood es-
timator (MLE). True maximum likelihood estimation requires exact knowledge of the
conditional probability density function (PDF) of the observed data conditioned on
the parameters to be estimated. This conditional PDF must then be simultaneously
maximized with respect to all parameters being estimated. In practice, most efforts
to employ maximum likelihood estimation make simplifying assumptions about the
nature of the input data to derive a useful algorithm. Such techniques are usually
called approzrimate maximum likelihood methods.

The approximate MLE chosen for this thesis is due to Akaike [Ref. 31].
The brief developement of this algorithm provided below follows that of Kay [Ref. 4.
Ch. 9.10]. Additional backround on maximum likelihood estimation can be found in
[Ref. 1, 8. 32, 45] and references therein.

Given a sequence of independent random variable observations, z(n). and
a corresponding set of parameters to be estimated, 8,, the desired set of estimates for
the 6,'s is the one for which the observed data set is the most likely. In terms of the

conditional probability density or likelihood function,
p(I(O),z'(]), e 'I(A' - l)’ol‘ ozv Tt 0’\')9

the desired set of estimates is the one which, for a given set of z(n), is maximized.
In the case of pole-zero modeling, an expression for the observed data sequence's
joint probability density function cunditioned on the mode] parameters, a, and b, is

required. To obtain such an expression, it is generally assumed that the observed data
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is Gaussian. If, further, it is assumed that the input to the pole zero model is white
Gaussian noise and that the data record length is much longer than the transient
response due to initial conditions, the conditional PDF for the observed data can be
arrived at fairly directly.

The joint PDF for the zero mean white Gaussian input sequence. u(n), is

of the form

(ul0) (1) u(N = 1)) = T] —pmsenp~ 212 (2.36)
u(0),u(l), . u(N - = —===ezp(— . 2.

P =0 /2703 207

where o2 is the variance. Now the density function for z(0). z(1),---.x(N = 1) con-

ditioned on the 6;’s, can be found from (2.36) through the standard linear transfor-

mation,
p(x(Q). (1), - . 2(N-1)) = plug(0) up(l). - ugfN — 1)) [T, {2.37)

where u;(n) is the inverse filter relationship of the original pole-zero difference equa-

tion. (2.1). Specifically

o1 & 1
u,(n):;;i a,.r(n—z)—-zgi beuin — &) (2.3%)
k=1

1=0
and J is the Jacobian of the linear transformation uy. To simplify the transformation
assume that the pole-zero filter in (2.38) has been expressed as its equivalent all-pole

filter.
Pap

u{n) = Za,p‘,r(n—z). {2.3%

1=0

The final result of the linear transformation (2.37) will then be

Zf:g aap,T(n — k)

N-
1
p(I(O).I“)."'..I(A"—l))= I-I -\7===C.1'p( , ). (2.40)
2702 20}

n=0

When (2.40) is expressed in terms of the pole-zero parameters,

ah“?v"'sal’v%vblv""ba‘

21




for the purpose of maximization the relationship is highly nonlinear. Note that the
maximization of (2.40) requires the minimization, over all possible a,’s and bi's. of
the inverse filter error, uyz(n).

Akaike employed the Newton-Raphson iterative method for minimizing
(2.40). This method requires the computation of Gradient and the Hessian of (2.38)
at each iteration to generate the estimate updates

BREINE & iE A

Using frequency domain arguments, Akaike was able to provide expressions for the
above partial derivatives in terms of Fourier transforms which can in turn be expressed
in terms of linear filtering operations.

Note that there are several key assumptions made ahbove which must be

valid for this method of approximate MLE to apply:

——

. The data are real. Gaussian. and zero mean.

2. The data record is large. This 1s to avoid end eflects of assuming all data values

outside the data record are zero when filtering the data.

3 The poles and zeros are not close to the unit circle. This is to avoid long
transients due to the initial conditions which are ignored. (They are assumed

to be known and are set equal to zero.)

At first glance these assumptions would seem to indicate that this method is inappro-
priate to transient modeling. However, inverse filter error retains its meaning when
considering transient waveforms: the ideal inverse filtering result for a transient signal
1s a single impulse rather than the minimum variance random sequence expected for
a stochastic process. In fact. this is exactly the appproach taken by Jackson [Ref. 26,

pp. 276-278] in extending Judell’s maximum likelihood method [Ref. 33} to impulse
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response data. While this extension seems rather ad hoc, we will find that such ap-
proximate maximum likelihood methods can be effective in modeling transient signals
as impulse responses. A key limitation imposed by dealing with deterministic data
is that reliance on inverse filter error excludes signals that must be modeled by non-
minimum phase systems. In contrast, the restrictions of long data record and weak
poles and zeros (not near the unit circle) no longer apply. Data records end effects
and initial condition transient effects should have no impact since the assumption of
zero valued data outside the range of data is correct if the data is chosen to end after

most of the energy of the transient is dissipated.

C. IMPLEMENTATION

All modeling algorithms were implemented using the interactive language PRO-
MATLAB from The Mathworks. Inc. on SUN workstations except for the Akaike
MLE algorithm which was implemented in FORTRAN using a program adapted
from [Ref. 4. Ch. 10]. The FORTRAN program was also implemented on a SUN
workstation with a FORTRAN 77 compiler All graphics were generated in PRO-
MATLAB.
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III. MODELING PERFORMANCE

A. PERFORMANCE CONSIDERATIONS

Each of the pole-zero modeling techniques presented in Chapter Il is effective
when modeling a signal that is truly the impulse response of a pole-zero system with
no noise present and with the system order known. However. real world transient
data rarely possess such characteristics. Real world signals of all types are notoriously
uncooperative in fitting the signal models proposed to describe them. Reasons that

this may be true for transient data include:
1. Inappropriate selection of model type or modeling algorithm.

o Linear versus non-linear models.

e Minimum phase versus non-minimum phase rational models.

2. The transient i1s time shifted because of and inappropriate selection of the data

record starting point due to the presence of noise.
3. The assumption of impulse system excitation is a poor approximation.

4. Incorrect selection of model order.

o

5. Noise is present in the signal.

The test sequences used in this chapter are all obtained as the impulse response of
linear pole-zero systems. therefore, the question of linear versus non-linear model tvpe
will not be at issue. For the other problems, eflective transient modeling requires both
selecting the appropriate algorithm and understanding how to use that algorithm to

its greatest advantage. The next section describes the test sequences used in this
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chapter. Subsequent sections address how difficulties encountered in the pole-zero
modeling of impulse response data can arise and how they can be overcome.

The effects of data selection, non-minimum phase systems. non-impulse excita-
tion. and incorrect model order on modeling will initially be considered for signals
observed with no added noise present. The effect of modeling a signal in which addi-
tive noise is present is considered separately. We will see that situations which modify
a hinear pole-zero system often lead to another pole-zero system. This new system
usually has the same number of poles in the same locations but with different and

possibly additional zeros.

B. TEST SEQUENCES

The test impulse response sequences are generated using pole-zero models taken
from Kay [Ref. 4]. The test sequence ARMAS uses one of Kay's models directly while
the test sequences ARMA4 LF, ARMA3 NM, and ARMA4 CL are from Kay models
which have been modified to enhance the illustration of certain points. The unnt
impulse response and pole-zero plot of each test sequence model is shown in Figures

3.1a-h. The model coeflicients for these sequences are listed in Table 3.1.

{ Model Model Coefficients (ag = by = 1) :
! a, a as a, b L by |
{ ARMA3 i =2.760 | 3.809 | —-2.654 | 0.924 | —-0.900 ; 0810 -
PARMA4LF [ -3.035[4.002] -2.727 10.778 1 —0.200 © 0.040 |

- ARMAJZ NM | 2760 | 3.809 1 -2.654 | 0.924 | —4.8Ix  25.000 -
ARMA4 CL 1 —-2.678 | 3.700 | —2.5634 0.917 | —=0.200 | 0.040)

TABLE 3.1: Table of test sequence coefficients.
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Figure 3.1: The test sequence ARMAS3. (a) Impulse response plot and (b)
pole-zero plot.
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Figure 3.1: continued The test sequence ARMA4 LF. (c) Impulse response
plot and (d) pole-zero plot.
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Figure 3.1: continued The test sequence ARMA3 NM. (e) Impulse re-
sponse plot and (f) pole-zero plot.
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C. ESTIMATING NUMERATOR COEFFICIENTS
1. Data Selection—Time Shifts and Initial Conditions

Defining the range of data to be used in modeling is an important and
usually staightforward exercise. The assumption that a signal represents the impulse
response of a linear pole-zero system. however. implies some very specific properties
about the initial few points of that signal. Each method of modeling the transfer
function numerator coefficients in Chapter II reacts differently when the beginning
points of the impulse response being modeled are degraded. Because real world
transients do not usually exhibit the instantaneous rise time of an ideal impulse
response and because noise i1s usually present. choosing the precise data range for a
transient such as that illustrated in Figure 3.2 1s often a very uncertain task. Two

possible outcomes when the transient starting point is chosen incorrectly are:

I. The starting point is chosen before the signal begins so that early data valnes
P2y N i i }1 fl 4 1 'd 1 the i lce T 6
are unreiated tand presumably of fower amipiitude: to the implse respanse to

be matched te.g. these points may consist of noise).

2 The starting point s chosen late in which case earlv values of the impulee

response are Jost.

In the first case. an adequate number of additional model zeros can aceonnt
for the delay in the impulse response. Assuming that the starting point for the data is
reasonably close to the true beginning of the impulse response, any spectral features
introduced by the unrelated early data points will probably not have enough energy to
significant]y alter the spectrum of the impulse response. Under these rirr.umstances
all methods can effectively find the poles. It is important to note. however, that if
an insufhcient number of zeros to account for the imposed delav is used, then some

of the equations that are generated in Prony's methad become invalid. When these

30




2oooj : !

|

1000 - } K .

BN {

0k ‘f; AL % A\'{ \ _,'\',/\J

[

“1000L | ]

) |
~2000 500 1000

n
Figure 3.2: An example of a laboratory generated acoustic transient. Note

the difficulty in determining a precise starting point for the transient.

equations are solved, the invalid equations can drastically degrade pole estimates. To
see this we can apply Prony's method to a system with the true orders P = 4 and
Q@ = 2. Assume the signal is delayed by inserting three zeros at the peginning of the
data so that the original point z(0) is now the fourth data point. If we choose P = 4
and Q = 3 in constructing the data matrix of (2.2), the resulting set of equations will

be

0 0 0 0 0 ]
0 0 0 0 0 .
0 0 o0 0 O 1 {:"
#0) 0 0 0 O ay b;
(1) z0) 0 ©0 O ar | =| 4
2(2) z(1) z(0) 0 0 a3 0
z(3) =z(2) z(1) z(0) O aq _
z(4) z(3) =z(2) z(1) =z(0) [
L : . . . : )

Note that when the lower partition is taken to find the a, coeflicients, the first two

equations of the lower partition are invalid. Compounding the problem is that the
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invalid equations occur in the high energy portion of a transient signal. To overcome
this effect a numerator order of at least five is required.

In finding the numerator coefficients of a delayed impulse response one
of three outcomes is possible depending on the estimation technique chosen. First.
any technique which depends directly on the initial values of the data sequence (for
example (2.5)) will be ineffective. Second. methods which rely on the autocorrelation
of the residual sequence will result in approximately the true zeros of the system under
study. The original time series will not be matched directly. This case is illustrated
in Figure 3.3. The resulting impulse response is an undelayed version of the signal.
Finally, signal matching techniques, iterative prefiltering and Shank’s method. result
in zeros not related to the original undelayved model but which provide the best overall
time domain match of the delaved signal. This is shown in Figure 3.4.

The case of choosing the data record to far to the right and thus trun-
cating the first points of an impulse response will again have little effect on pole
estimation. This situation corresponds the same system with (non-zero) initial con-
ditions imposed. Since initial conditions are acounted for in the numerator. the zeros
are significantly altered. Here the previous discussion regarding finding the under-
Iving mode! zeros versus obtaining a good match in the time domain still applies
with one exception: the direct calculation of the by coeflicients from (2.5 will now
be effective.

2. Non-minimum Phase Modeling

In [Ref. 46 it is demonstrated that the appropriate discrete model of
a sampled analog waveform is often represented by a trarsfer function with zeros
outside the unit circle. Many of the techniques that are currently available are pur-
posefully structured to eliminate uch non-minimum phase models. In power spectrum

estimation, a minimum phase system with the same frequency response magnitude




as a non-minimum phase system results in the same estimated spectrum. Thus for
spectrum estimation an equivalent minimum phase system is satisfactory. In fact.
the assumption underlying stochastic modeling techniques, namely white Gaussian
noise input, guarantees that all transfer function combinations of minimum phase
and maximum phase zeros are equivalent. By convention. stochastic modeling tech-
niques always choose the minimum phase model so that the important statistic of
inverse filter error is available. In time domain based applications. however. incor-
rectly choosing the model phase can seriously degrade system performance. Fields
such as seismic deconvolution. channel equilization. control, and matched filter de-
sign. generaily require identification of the correct model phase [Ref. 47. 48 49].
Also, we will see in Chapter IV that effective modeling of real world acoustic signals
frequently requires non-minimum phase models.

A number of modifications to the basic stochastic model have been in-
troduced to allow selection of the mode! with the correct phase. These techniques
generally involve changing the Gaussian nature of the input noise [Ref. 507 and often
employ higher than second order moments or cumulants [Ref. 29, 30]. However, when
a model’s impulse response has effectively matched a signal in the time domain. the
resufting phase is immediately known to be the correct. Allowing for the possibility
of non-minimum phase models places significant limitations on the modeling methods
which may be used. Techniques which rely on inverse filtering (maximum liklihood
methods) are not applicable since the inverse of a non-minimum phase svstem is unsta-
ble. Also. techniques which use correlation information to calculate the by coeflicients
{spectral factorization and Durbin’s method) will give poor results since correlation
data does not preserve phase information. Figure 3.5 shows the difficulty encountered
when Durbin’s method attempts to model a non-minimum phase svstem. The best

Durbin’s method can do is produce the spectrally equivalent minimum phase version
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of a maximum phase system since the autoregressive modeling techniques on which
it relys can only produce zeros within the unit circle. In contrast. Figure 3.6 shows
that Shank’s method is able to find the correct model.
3. Numerator Modeling Summary

Table 3.2 provides a brief summary of the modeling properties of the nu-
merator coefficient modeling techniques considered in this thesis. Since the goal in
Chapter IV is to perform time domain modeling of the acoustic transients being
considered, those methods which provide the best time domain match between the

original signal and the model impulse response are preferred.

| Method Equation | Non-minimum Data Selection

l phase capable? | Shifted Right | Shifted Left |

‘ ‘ (Delaved) ! (Truncated; |

' Prony. upper 2.5 Yes Not " Time Series

! partition U'sable ~ Match :

; Spectral 224 No Underlying | Underlying |

! Factorization i Model I Model

i Durbin’s | 2.25 No | Underlving | I'nderl}'inga%
Method L 2.6 Model ' Model
Shank’s f 2098 Yes Time Series © Time Series

_Method ! i | Match . Match |
Iterative o232 | Yes Iime Series | Time Sertes

. Prefiltering Match |  Match |

. Akaike 2.41 No Underlying | Time Series |

'MLE Model | Match

TABLE 3.2: Summary of the capabilities and limitations of numerator
modeling methods.

D. NON-IMPULSE EXCITATION
In any real world system the assumption of a unit impulse input 1s approxi-

mate. If the duration of the excitation waveform is small relative to the period of the
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Figure 3.3: The right shifted sequence ARMAS3, poles modeled using
LSMYWE and zeros modeled using Durbin’s method. (a) Time signal
plot and (b) pole-zero plot. Durbin’s method does not account for the
time delay but instead finds the underlying system’s true zeros.
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underlying system’s true zeros but rather achieves the best overall time
domain match.
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eled using LSMYWE and zeros modeled using Durbin’s method. (a) Time
signal plot and (b) pole-zero plot. Durbin’s method cannot model zeros
outside the unit circle.
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lowest oscillation frequencies present then the assumption is justified. However. it is
reasonable to expect this criterion will often not be satisfied. Non-impulse excitations

which may be encountered include:

—

. A long duration baseband type pulse.

2. An uncorrelated random train of impulses. This model is often used to account

for reverberation (echoes) in siesmic deconvolution [Ref. 51].

3. A frequency swept input that sweeps through the natural frequencies of a sys-
tem. This model is usually considered in conjunction with the starting and

stopping of rotating machinery.

If the system input were known. the modeling problem could be formulated as a sys-
tem 1dentification problem. When no information about the system input is available.
other means must be found to deal with this problem.
1. Baseband Pulse Excitation

The effect of modeling a transient signal from a linear system in which the
input is a long duration. baseband-type pulse can best be understood as filtering by a
finite impulse response (FIR, all-zero) filter as illustrated in Figure 3.7. The spectral
properties of the original time series are windowed by the frequency response of the
FIR filter coefficients. For this type of pulse, the effect is that of low pass filtering.
Thus high frequencies are attenuated relative to low frequencies. If no frequency
component exists below the FIR filter's cutoff frequency then the original spectrum
1s altered according to the side lobe structure of the FIR filter.

The new model that results can be viewed as a svstem with the original
model poles but with new numerator polynomial coeflicients that are the result cf
convolving the FIR filter coefficients with the original numerator polyvnomial coefhi-

cients. This results in a higher order polynomial. hence more zeros than were present
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Zorig(N)—————— FIR f——— Zobs(n)

Figure 3.7: One way to view a linear system excited by a baseband pulse.

in the original model will be required. Observe how the original impulse response of
Figure 3.7a is altered to Figure 3.7b when a nine element triangular excitation pulse
is used. The dotted lines in Figures 3.7b.c.d indicate the modeling results obtained
when none, two, and four extra zeros, respectively. are used in the estimated pole-zero
model. In this case four extra zeros prove sufficient to account for the input pulse.
The corresponding model spectrum, Figure 3.7e illustrates the attenuation caused by
the baseband excitation. The pole-zero plot in Figure 3.7f shows that non-mimimum
phase zeros were required to achieve an effective time domain match.
2. Random Impulse Train Excitation

If the input to a linear svstem is an uncorrelated random train of impuises
then, although the time series may be significantly different from the oniginal nnpulse
response. the autocorrelation function of the signal is theoretically unaltered except
for a scaling factor. This is because the autocorrelation of an uncorrelated impulse
train i1s a scaled unit impulse. Thus modeling methods which rely on correlation
information should be effective. However, over a finite time interval it is unlikely that
a random sequence will be truly uncorrelated. Asthe impulse train becomes correlated
the situation will be equivalent to the baseband pulse case described ahove.

3. Frequency Swept Excitation

The output of a system excited with a frequency swept signal depends on

the rate at which the sweep occurs. A slow sweep will result in a series of transient

events, each at a specific resonant frequency of the system. These events can each
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be modeled separately. When the sweep rate is rapid, all natural modes will appear
much as if the input were an impulse except that the phase relationships of the various

components may be changed.

E. MODEL ORDER SELECTION

In studies of rational modeling the issue which continues to be the most con-
founding is that of model order selection. The proposed methods which have a sound
theoretical basis (e.g. [Ref. 52, 53. 54]) are very difficult to actunally implement.
These methods are invariably related to maximum likelihood concepts and therefore
relv heavily on inverse filter statistics. This implies that for model order evaluation
the inverse filter error must be calculated over all possible model orders. Then the
mode] order and inverse filter error which minimize some function of the two is se-
lected. The case of non-minimum phase systems is even more intractable since the
inverse filter of such svstems is unstable.

A more attractive but less understood method is to initially overdetermine a
svstem and then allow the modeling algorithm to indicate the correct model order.
A method proposed by ("adzow [Ref. 39! uses singular value decomposition to aid in
model order selection in the denominator of all-pole and pole-zero models. Kumeresan
and Tufts [Ref. 21] have shown that when Prony’s method is applied to exponentially
damped sinusoids reversed in time. valid poles occur outside the unit circle and excess
poles occur inside the unit circle. In both of these methods the denominator order
1s initially overdetermined and the modeling method then provides the correct order.
For this thesis both of these methods were applied to a number of transients. They
were effective when applied to the noiseless impulse responses of true pole-zero systems
but were not robust in the presence of noise or when many narrowband components

are present. There is no similar guidance for determining the numerator model order.
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Figure 3.8: The sequence ARMA4 LF with (a) unit impulse excitation
and (b) triangular pulse input modeled with correct model orders P = 4
and Q = 2 using Prony’s method and Shank’s method.
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method orders P = 4 and Q = 6.
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Perhaps most desirable would be a modeling technique that, when overdeter-
mined, caused excess poles and zeros to either cancel or migrate well away from the
unit circle (all the way to the origin ideally). Tummala [Ref. 23] has demonstrated
some success with this concept using an iterative algorithm to solve the least squares
identification problem. Observing the degree to which the various transient modeling
techniques of this thesis exhibit this behavior is the approach taken in the following
comparison. This behavior was observed by modeling the ARMAS test sequence with
different combinations of numerator and denominator order. Table 3.3 summarizes
the results obtained. A ‘Y’ in Table 3.3 indicates a modeling technique achived an ex-
act time domain match between the model impulse response the modeled signal. The
most notable negative result is that both Prony’s method and LSMYWE were ineffec-
tive when the numerator and denominator were overdetermined. Also. excess poles
without enough zeros causes problems for correlation domain iterative prefiltering.
Figure 3.9 is an example of the results obtained using LSMYWE when excess poles
and zeros are present. However. when these results were used to initialize iterative
prefiltering the excess poles and zeros were handled effectively.

The above results and experience gained during extensive modeling trials lead to
the following recommended strategy when modeling complex transients about which

very little 1s known:

I. Be conservative in estimating the denominator order. Signals composed of nar-
rowband components will generally be dominated by the few components high-
est in energy. Even if excess zeros are required to deal with a noisy signal (see
the next section) a small number of excess zeros will usually suffice when us-
ing LSMYWE. Pole detection techniques such as those of Cadzow[Ref. 5, and

Kumeresan. and Tufts [Ref. 21] may be helpful.
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Method Correctly Modeled? (Y/N)
P=10| P=4 [ P=10] P=6
Q=2 | Q=10 Q=4 | Q=10

Prony’s Y Y N N

Method

LSMYWE Y Y N N

Iterative Y Y Y Y

Prefiltering

Corr Domain N Y Y Y

Iterative Pref

Akaike Y Y Y Y

MLE

TABLE 3.3: The effectiveness of thesis modeling methods on ARMA3
with varying overdetermination of model order. ‘Y’ indicates an exact
time domain match was achieved and ‘N’ indicates a poor time domain
match resulted.

2. Be expansive with estimates of numerator order. (Iterative prefiltering may be
an exception to this. See Chapter I\V'.) Additional zeros can help compensate
for mistakes made in data selection and effects of non-impulse excitation. Un-
needed zeros will usually migrate away from the unit circle. Note that when
using Prony’s method or LSMYWE, one numerator order can be used when
calculating the denominator coefficients and an»ther numerator order can be
chiosen when finding the numerator coefficients. Using Shank's method with
Prony’s method or LSMYWE provides the most flexibility when a model is
attempting to account for erroneous assumptions (e.g. data selection) which
may have been made by the user. The above recomendations are primarily
intended for Prony's method and LSMYWE. However, using any iterative tech-
nique requires reasonable initial estimates which are usually arrived at using

linear estimation techniques.
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Figure 3.9: Pole-zero plots for the sequence ARMAS modeled with overde-
termined model orders of P=10 and Q=10. (a) Ismywe and Durbin’s
method results in an unstable system, (b) iterative prefiltering provides
an effective estimation of the correct poles and zeros and an excellent time

domain match (not shown).
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F. NOISE PERFORMANCE
Kay [Ref. 55] has shown that for an all-pole process, additive white noise has
the effect of introducing zeros which migrate from the origin to the model poles as
the signal-to-noise ratio is decreased. Alternatively, if zeros are not introduced into
the model, poles move toward the origin as the signal-to-noise ratio is reduced [Ref.
56]. In either case the overall effect is a loss of spectral resolution. This result extends
directly to pole-zero processes in white noise. Therefore one important feature of any
modeling technique is it's ability to resolve spectral components in the presence of
noise.
1. Rational Modeling of Noisy Data

Several authors have recently addressed the difficulties associated with
modeling a time series in which additive white noise is present. Kay [Ref. 57] has
noted that when the variance of the white noise can be estimated. its effect can
be removed from the zeroth autocorrelation lag to improve the resolution of pole
frequencies in correlation based autoregressive modeling. Alternatively, the zeroth
autocorrelation lag may be avoided by using (2.18). sometimes called the high order
Yule-Walker Equations, for @ > P or by eliminating the rows containing the zeroth
lag in certain least squares formulations [Ref. 44]. If the resulting high order Yule-
Walker equations yield a matrix that is well conditioned, this procedure is equivalent
to that of Kay above [Ref. 58]. Even with good correlation estimates. however, the
matrix R4 is not guaranteed to be positive definite (i.e., invertible). Consequently.
R4 is more likely to be a poorly conditioned matrix. This is not a problem in the
least squares formulation, (2.19), since the very act of choosing such a formulation
implies we expect a solution that is approximate.

A number of authors have noted that overdetermining the number of model

poles can have a profound effect when modeling noisy signals [Ref. 55, 56, 21, 36, 39).
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o e = b

The explanation for this is that the extra poles are able to mode! the flat noise
spectrum of the signal, preventing that portion of the signal from interfering with
the poles needed for narrowband modeling. Finally, singular value decomposition has
been used to aid resolution by overcoming the conditioning problems that can result
from pole overdetermination and high order Yule-Walker equations [Ref. 5. 21. 36,
59, 60).

Little work has appeared which analyzes or demonstrates the effectiveness
of iterative prefiltering in the presence of additive white noise. Stoica and Soder-
strom [Ref. 61] have shown that iterative prefiltering will perform well for very long
stochastic data sequences in the presence of additive white noise if reasonable initial
cstimates are available to start the iterations. They also show that for arbitrary initial
estimates iterative prefiltering is not guaranteed to converge. Tufts and Kumeresan
[Ref. 62] have demonstrated superior performance for approximate MLE over linear
prediction methods when modeling sinusoids in white noise. Using the approximate
MLE method of Box and Jenkins, Cadzow found that such a method performed com-
parably to the overdetermined high order Yule-Walker equations for the sum of two
second order all-pole processes in white noise but with higher variance.

The above work suggests numerous possibilities in dealing with noisv im-
pulse response data. The effectiveness of these techniques is evaluated empirically in
the following section by modeling noisy test sequences.

2. Discussion and Examples

The examples used to illustrate modeling performance are summarized
in Table 3.4. All noise modeling examples were conducted using the test sequence
ARMA4 CL (see Table 3.1). Figure 3.10 shows that Prony’'s method has difficulty
even when the SNR is as high as 30 dB although the excess poles introduced for

Figure 3.10b dramatically increase modeling effectiveness. The moderate impact of
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insuring that Q > P is illustrated for LSMYWE in Figure 3.11 in that the higher
frequency pole moves out toward the unit circle when the modeling order is altered
from (4,2) to (4,4). As with Prony’s method, overestimating the number of poles
dramatically improves modeling in Figures 3.12 and 3.13. In Figure 3.14, the two
previous noise modeling examples are again modeled with the smallest singular value
set to zero to yield a data matrix of rank P. The technique is highly effective in
both cases. The effectiveness of singular value decomposition when overdetermining
the number of poles is illustrated by the examples in Figure 3.15. This is identical
to the result described in [Ref. 21]. Discarding the excess singular values aids both
in resolving the narrowband components present and in reducing the variance of the
excess poles. Figures 3.16 and 3.17 show the hazards that are possible when using
singular value decomposition. Any number of singular values discarded other than
the those necessary to achieve a data matrix rank equal to the transfer function
denominator order has undesirable side effects. Discarding too few singular values
such as in the Figure 3.16 examples will resolve the desired narrowband components
but also lead to excess poles near or even beyond the unit circle. This result will
at best increase the likelihood of spurious narrowband components and can. in the
worst case, lead to an unstable model. If too many singular values are discarded
as in Figure 3.17b, the accuracy of narrowband component estimates will be badly
degraded. Therefore, singular value decomposition. while potentially very useful in
modeling transient signals in noise. must be used with caution when the true model
order is unknown {which is basically always).

The iterative prefiltering. correlation domain iterative prefiltering. and
Akaike MLE algorithms were initialized with several of the preceeding examples and
the results are shown in and in Figures 3.18 and 3.19. Iterative prefiltering dramati-

cally improved the narrowband modeling of each example with which it was initialized.
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Figure 3.18a indicates that excess poles may cause problems by being close to the unit
circle. However, the ability of iterative prefiltering to cancel excess zeros with excess
poles demonstrated in this chapter may mitigate this effect. Correlation domain iter-
ative prefiltering also improved the resolution of each noise example on which it was
tried although its convergence was slower than and the bias of its results were higher
than standard iterative prefiltering. Also, correlation domain iterative prefiltering
showed a alarming tendency to place excess poles near the true poles on noisy sig-
nals. We experienced a great deal of difficulty in trying to model noisy signals with
the Akaike MLE algorithm. The primary problem encountered was early algorithm
termination due to an iteration which produced a non-minimum phase zero. Akaike
MLE was able to improve the quality of a ‘good” Prony estimate in Figure 3.19b.
Finally. Figure 3.20 shows a pole-zero modeling result corresponding to the example
in Figure 3.17a. Figure 3.20a shows the noisy signal used to during modeling and

Figure 3.20b compares the resulting model to the original noiseless impulse response.

G. MODELING PERFORMANCE SUMMARY

In modeling. the more that is known about the signal to be modeled. the better
the choice of model structure and modeling algorithm that can be made. The focus
of this thesis is the modeling of real world transient signals about which very little is
known and whose characteristics can vary widely. The tvpe of model is also set by the
hasic goal of this thesis. that is. a rational linear model. Under such circumstances.
a sensible criterion in choosing a modeling algorithm is robustness. For numerator
modeling. Shank’s method is particularly robust in the sense that it provide the
numerator coefficients which give the minimum norm, least squares fit based on the
previously determined denominator coefficients. Shank’s method is insensitive to

time shifted data records and uncertainties in model order. Durbin’'s method is also
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effective but suffers from the limitations that only minimum phase models are possible
and the resulting models cannot account for time shifts. Since the Akaike MLE
algorithm requires a minimum phase initial estimate, Durbin’s method can be used
provide an such an estimate. Equation (2.5) and spectral factorization are extremely
sensitive to degraded signals (e.g. noisy signals) and so will not be considered further.

Denominator modeling with Prony’s method is extremely sensitive to even small
amounts of noise. This is only slightly less true of Akaike MLE. Also. Akaike MLE
cannol continue to iterate if a non-minimum phase model estimate is encountered. In
contrast, LSMYWE and iterative prefiltering are quite robust in noise and iterative
prefiltering is particularly robust to model order overdetermination. Qur conclusion
is that for modeling the real world acoustic transients of the next chapter. LSMYWE
with Shank’s method and iterative prefiltering are likely to perform the best on the

acoustic transients considered in the next chapter.
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Method(order P,Q) SNR Bias Variance of Pole | Figure
(initialization) in dB | (true minus model) Estimates
True Poles 6247+ .7509;
7144 £ 6711
Prony (4,2) 30 —.0598 & .0330; <10=% 3.10a
poor poor
Prony (6,2) 30 .0283 + .0186; < 1077 3.10b
.0176 F .0074;5 < 104
LSMYWE (4,2) 15 .1788 + .1872j < 10-% 3.11a
.0346 ¥ .01805 | .0012+ 0014,
LSMYWE (4.4) 15 .1475 + .1035; <1077 3.11b
.0386 F .00455 | .0022 + .0019;
LSMYWE (6,2) 15 .0053 + .0035; < 107% 3.12a
.0027 + .0014; < 10-4
LSMYWE (8,8) 10 .0040 + .0054; < 107 3.12b
.0002 £+ .0037; < 10-*
LSMYWE (8.8) 5 .0316 £ .04975 | .0002 + .0001; 3.13a
.0147 £ .0212; | .0008 + .0010;
LSMYWE (12.12) 5 .0115 % .0077; < 107% 3.13b
0017 £ .0063; < 10-4
Prony (4.2) SVD 30 —.0010% .0040;5 | .0001 + .0002; : 3.14a
—.0016% .0014; | < 10-*+ .003;
LSMYWE (4.4) SVD 15 0017 F .0005; < 10-% 3 14h
~ 0007 £ .0005; < 10-*
Prony (8.2) 20 -.0030+ .0387; | .0001 + .0001; 3.15a
1 0275+ 01885 | .0001 + 00015 !
{ Prony (8.2} SVD 20 —.0105 £ .0043; <107 1 315b
—.0059 % .0077; <10™* | |
LSMYWE (8.8) SVD 5 —.0074+ 01005 | .0006 + Q00%; : 3 16a |
— 0070+ 00865 | 0003 + .000Y; |
LSMYWE (8,8) SVD 5 —-.0012 4 .0069;5 | .0004 + .0003; 3 16b |
—.0062 4 .00645 | .0004 + 0008,
LSMYWE (8.8) SVD 5 —.0037 £ .0024; | .0001 + .0001; 317a
—.0049 £ 00225 { .0002 + .0005; :
LSMYWE (8§.8) SVD 5 —-.0342+ .0526, | .0001 + 0002; 3.17b
—.0507 £ .0730; < 10-4
Iterative 15 -.0001 £ 0001 < 10°%V 3.18a
Prefiltering (4.4) 0002 £ .0001; < 1074
Iterative 5 -.0001 + 0011, <10-% 3. 18b
Prefiltering (8,8) -.0006 + .0002; < 10~
Corr Domain (8,8) 5 —.0054 = .0030; < 10-7¥ 319a
Iter Pref 0002 £ 00175 < 10-¢
Akaike MLE (6,2) 30 -.0008 ¥ .0009) < 10-4 3 19b
-.0004 ¥ .0010y < 10~

TABLE 3.4: Examples of pole-zero modeling performance of the impulse
response test sequence ARMA4 CL in added noise.
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Figure 3.10: Model pole scatter plots of twenty trials illustrating the ef-
fectiveness of overdetermining the number of model poles using Prony’s
method. Test sequence is ARMA4 CL with 30 dB of noise. (a) Using the
correct model order, (4,2) and (b) Using two excess poles, model order
(6,2).
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Figure 3.11: Model pole scatter plots of twenty trials illustrating the mod-
erate benefits of zeroth lag carrelation compensation by choosing Q = P
when using LESMYWE. Test sequence is ARMA4 CL with 30 dB of noise.
(a) Using the correct model order, (4,2) and (b) model order (4,4).
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Figure 3.12: Model pole scatter plots of twenty trials illustrating the
dramatic benefits of using excess poles with LSMYWE. Test sequence
is ARMA4c. (a) Model order (6,2) with 15 dB of added noise and (b)
model order (8,8) with 10dB of added noise.
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Figure 3.13: Model pole scatter plots of twenty trials illustrating the
dramatic benefits of using excess poles with LSMYWE. Test sequence
is ARMA4 CL. (a) Model order (8,8) with 5 dB of added noise and (b)
model order (12,12) with 5 dB of added noise.
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Figure 3.14: Model pole scatter plots of twenty trials illustrating the dra-
matic benefits of setting the smallest singular value of the data matrix to
zero (i.e. adjust data matrix rank to P) for Prony’s method and LSMYWE.
Test sequence is ARMA4 CL. (a) Prony’s method for model order (4,2)
with 30 dB of added noise and (b) LSMYWE for model order (4,4) with
15 dB of added noise.
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Figure 3.15: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for Prony’s
method. Test sequence is ARMAA4c. (a) Model order (8,2) with 20 dB
of added noise and no rank adjustment and (b) model order (8,2) with
20 dB of added noise with rank adjusted to P, =4 using singular value
decomposition.
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Figure 3.16: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for LEMYWE.
Test sequence is ARMA4 CL. (a) Model order (8,8) with 5 dB of added
noise with rank adjusted to P... + 4 = 8 and (b) model order (8,8) with 5
dB of added noise with rank adjusted to P,,.. + 2 = 6.
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Figure 3.17: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for LSMYWE.
Test sequence is ARMA4 CL. (a) Model order (8,8) with 5 dB of added
noise with rank adjusted to F;,,. = 4 and (b) model order (8,8) with 5 dB
of added noise with rank adjusted to P,.. -1 =3.
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Figure 3.18: Model pole scatter plots of twenty trials illustrating the abil-
ity of iterative prefiltering to improve the resolution of an LSMYWE es-
timate. In both cases the iterative prefiltering algorithm was initialized
using LSMYWE and Durbin’s method. Test sequence is ARMA4 CL. (a)
Model order (4,4) with 15 dB of added noise and (b) model order (8,8)
with 5 dB of added noise.
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Figure 3.19: Model pole scatter plots of twenty trials on test sequence
ARMAg4 CL illustrating (a) the ability of correlation domain prefiltering
to improve the resolution of an LSMYWE initial estimate, order (8,8), 5
dB added noise and (b) the ability of Akaike MLE to improve the resolution
of a Prony’s method initial estimate, model order (6,2), 30 dB added noise.
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Figure 3.20: Pole-zero model of the ARMA4 CL test sequence with 5 dB
of additive white noise using LSMYWE and the smallest singular value
discarded. The MA part was found using least squares identification.
This example corresponds to the example in Figure (3.15a). (a) The noisy
sequence and (b) the estimated model impulse response and the original
noiseless sequence. Model order (8,8).




IV. LINEAR MODELING OF ACOUSTIC
TRANSIENTS

A. ACOUSTIC DATA—GENERAL

The laboratory generated acoustic transient data available for this study were
generated in six different ways using ordinary laboratory objects. The data records
and their method of generation are summarized in Table 4.1. Each transient will
be refered to by the object used or the action performed to generate that particular
transient such as ‘book’ or ‘slam’. The six data records modeled in this section are
shown in Figures 4.1a-f. The range of data that was actually modeled is listed in
Table 4.1. The sampling rate for the data is unknown but is not required since there

1s no need to infer the specific characterics of the acoustic source or the acoustic

enviroment.

Data Name | Generation Technique | Indices of Modeled Data

{begin:end) !

Book Dropped Book (55:454) |

Slam Slammed Book {15:414) :
Plate Struck Metal Plate {5:704)
Ruler Book Struck with Ruler (501:650)

' Wood Clapped Wooder Blocks (171:320) i

L Wrench Dropped Wrench (101:250) |

TABLE 4.1: Summary of Acoustic Transient Data and method of genera-
tion.

B. ACOUSTIC TRANSIENT MODELING RESULTS
Iterative prefiltering and correlation domain iterative prefiltering were found to

yield the most effective time domain match (in terms of squared error) between the
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original signal and the impulse response of the estimated model. LSMYWE with
the smallest singular value set to zero, as in Figures 3.13a,b, was used to find the
initializing model poles for the iterative algorithms. Removing the smallest singular
value allowed the LSMYWE algorithm to place zeros much closer to the unit circle
than was possible when all singular values were used. Prony’s method and the Akaike
MLE algorithm were also used to model laboratory transients. However, their perfor-
mance was generally poor and they will not appear in the remainder of this chapter.
As noted in Chapter I1I, the problem with Prony’s method is that it cannot easily
model highly resonant frequencies, that is, zeros close to the unit circle. in the pres-
ence of even small amounts of noise unless a large number of excess poles are used
and numerous singular values are discarded. This procedure is burdensome when
initializing iterative algorithms which do not require these excess poles. The primary
difficulty with Akaike MLE is its inability to handle zeros outside the unit circle. The
initializing model zeros were found using Shank’s method which was by far the most
robust algorithm for finding numerator coefficients of the methods tested in Chapter
Three. In addition to the time domain plots of model impulse response. a pole-zero
model spectrum and pole-zero plot is be provided for each transient so that their
differing characteristics can be observed. All spectra were generated by squaring the
FFT magnitude of either the model coefficients or the signal being modeled. Model
order was chosen based on the best educated guess of the author in accordance with
the recommendations in Chapter 111, and augmented by trial and error.

The LSMYWE model used to initialize the iterative prefiltering algorithm for
the Slam transient is shown in Figures 4.2a and 4.3a. The corresponding iterative
prefiltering model shown in Figures 4.2b and 4.3b. Figure 4.4a shows the iterative
prefiltering model spectrum. Figure 4.4b illustrates a characteristic of the itera-

tive prefiltering algorithm that was observed throughout the modeling of acoustic

66




transients. Namely, when an excess number of model parameters are used, the error
between the model impulse response and the signal being modeled increases dramat-
ically, mainly at the beginning of the signal. The subsequent application of Shank’s
method is effective in reducing this initial error. This effect is shown in Figure 4.5a.
In general, the application of Shank’s method as the last step in the modeling process
was found to reduce the the mean squared error between the original signal and the
model impulse response to some degree for all modeling methods. The sensitivity to
excess parameters shown by iterative prefiltering does not affect correlation domain
iterative prefiltering. Note that excess model zeros cause no difficulties in Figure
4.5b. For the Book transient, two modeling trials are shown. Figures 4.6 and 4.7
show the best time domain match obtained using iterative prefiltering and also an
LSMYWE. Shank’s method. respectively. Although the LSMYWE model does not
achieve as effective an impulse response match as iterative prefiltering. with S\'D it
is more sensitive to the low energy. high frequency component present in the Book
transient at approximately Z. The best model of Ruler is shown in Figure 1.5. The
model spectra for Book and Ruler appear in Figure 4.9.

The assumption that the signal being modeled is a system impulse response
is problematic for the Plate. Wood. and Wrench signals since they do not exhibit
the rapid decay usually associated with an impulse response. However. it is still
possible to achieve a resonable time domain match over small segments of each signal.
This result is illustrated in the models of in Figures 4.10, 4.11. 4.13. and 4.14. The
model spectra for Wood and Wrench are shown in Figure 4.15. The recason that
correlation domain iterative prefiltering was used for the Plate, Wood. and Wrench
signals instead of standard iterative prefiltering can be illustrated by comparing the
two techniques on a segment of the Plate signal. Although the impulse response error

of the two models in Figures 4.10 and 4.11 are nearly identical, Figure 4.12 shows

67




e

that correlation domain iterative prefiltering clearly outperformed standard iterative
prefiltering in reproducing the spectrum _f the original sequence. In fact, at the more
suitable model order of (16,16), iterative prefiltering would not converge but instead
oscillated in a region of convergence for any model order over (12,12). Figure 4.16b
shows the model impulse response obtained when the large segment of Plate shown
in Figure 4.16a is modeled using iterative prefiltering. Although the time domain and
spectral properties of the model relative to the original signal are considerable poorer
than those obtained for a short segment, the model does clearly share many of the

features of the original signal.

C. ACOUSTIC SIGNAL MODELING SUMMARY

The modeling results obtained in the previous section of this Chapter indicate
the possible utility of pole-zero modeling algorithms with regard to modeling tran-
sient signals. Signals with decaying narrowband components (e.g. Slam. Book. and
Ruler) and signals with substained narrowband components (e.g. Plate. Wood. and
Wrench) can be modeled as the impulse response of a rational linear svstem. Robust
modeling algorithms are available which can effectively deal with the many uncertain-
ties associated with real world signals. Although the goal of achieving an exact time
domain match between the original signal and the pole-zero model impulse response
was not realized for any of the acoustic signals in this chapter, in all cases the degree
of match obtained clearly indicates that many signal characteristics are described by

the model.
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Figure 4.1: Laboratory generated acoustic transient data: (a) Slam and
(b) Book.

69




2000 - Y , \
1000 flh .
im |
0 M%\anww— —{ (c)
f
~1000 |
~2000 & ' ‘
0 1000 2000 3000
n
- (d)
~1000 - . . ’
1000 2000 3000

n

Figure 4.1: continued Laboratory generated acoustic transient data: (c)
Ruler and (d) Plate.
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Figure 4.1: continued Laboratory generated acoustic transient data:

Wood and (f) Wrench.
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the original signal. Model order (6,8). (a) LSMYWE and Shank’s method
and (b) iterative prefiltering initialized with (a).
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prefiltering initialized with (a).
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Figure 4.5: Modeling the transient Slam—model impulse response versus
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75




original signal

--—-— model impulse response
1000

500 1

0

(a)
=500

-1000

t
|
1500+ E

; . N |
100 200 300 400

n
original signal
--—-- model impulse response

-2000
0

1000 ~
!,] hﬂ
oy
500+ ‘ -
N :
[ 3
Voo e [
Org ; ilyJ‘\Jf\ﬁN&Vxﬁfﬁfyw' (b)
S L ~ !
-500- ;] -
P Y
X
-1000 - h ~
|
!
-1500 k . — . J
0 100 200 300 400
n

Figure 4.6: Modeling the transient Book—model impulse response versus
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the sensitivity of LESMYWE with SVD to the high frequency components
present.
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Figure 4.9: Modeling the transient Book and Ruler—model spectrums.
(a) The iterative prefiltering model of order (6,8) for the transient Book
and (b) the iterative prefiltering model of order(6,12) for the transient

Ruler.
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Figure 4.10: Modeling the transient Plate—Model order (12,12). (a) It-
erative prefiltering model impulse response versus the original signal and
(b) the corresponding model pole-zero plot.
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Figure 4.11: Modeling the transient Plate—Model order (16,16). (a) Cor-
relation domain iterative prefiltering model impulse response versus the
original signal and (b) the corresponding model pole-zero plot.
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Figure 4.13: Modeling the transient Wood—Model order (16,18). (a)
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the original signal and (b) the corresponding model pole-zero plot.
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Figure 4.14: Modeling the transient Wrench—Model order (8,8). (a) Cor-
relation domain iterative prefiltering model impulse response versus the
original signal and (b) the corresponding model pole-zero plot.
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V. CONCLUSIONS

A. PERFORMANCE COMPARISON SUMMARY

The modeling of signals as the impulse response of a linear pole-zero system is
an important tool in digital signal processing. One natural area for applying such
an approach is in the modeling of transient, impulse response-like waveforms. The
specific approach taken in this thesis was to determine which pole-zero modeling al-
gorithms are most suited to modeling complex, real world transient waveforms. The
modeling criterion emphasized is to obtain the best (least squares error) time domain
match between the model impulse response and the original signal. This criterion
was adopted because it provides a degree of signal characterization that is a step be-
vond normal power spectrum estimation. Indeed, the strength of pole-zero models is
their ability to describe not only the resonances present (model poles). but also how
these resonances are related (model zeros). Because of the widely varying character-
istics anticipated for real world signals, a key evaluation criterion for any modeling
algorithm is robustness. In particular. algorithms must be effective in the presence of
signal degrading effects like noise and model degrading effects such as unknown model
order. The performance of several selected algorithms were compared for known im-
pulse response test sequences in Chapter II1. The modeling experience gained in these
experiments was then applied to modeling laboratory generated acoustic transient
datain in Chapter IV as a test of ‘real world’ effectiveness.

Four basic algorithms were chosen for comparison: Prony's method. the least
squares modified Yule-Walker equations (LSMYWE), iterative prefiltering, and the

Akaike maximum likelihood estimator (MLE). An algorithm which is an extension of

87




———

iterative prefiltering into the correlation domain was also presented. For those meth-
ods in which the model poles and zeros are determined separately (Prony's method
and LSMYWE), four methods for determining model zeros (i.e., transfer function nu-
merator coeflicients) were considered: the upper partition of Prony's method, spectral
factorization, Durbin’s method, and Shank’s method. The major conclusions of the
algorithm performance comparisons conducted in Chapter III and Chapter I\ are as

follows:

1. Algorithms that are unable to model zeros outside the unit circle (Durbin’s
method, Akaike MLE) have limited versatility when modeling arbitrary tran-
sient waveforms. All the acoustic transients in Chapter [V required a non-

minimum phase model to obtain the best time domain match.

2. The most robust and effective method for finding zeros that gives the best least
squares time domain match was found to be Shank’s method. In fact. applving
Shank’s method as a last step improved the final model of all algorithms to
some degree. The upper partition of Prony's method and spectral factorization
are not very useful because of their extreme sensitivity to noisy or time shifted

signals.

3. Prony’s method and Akaike MLE have difficulty modeling signals in which
additive noise is present. Even small amounts of additive noise causes a dramatic
loss of pole frequency resolution for Prony's method. The use of excess poles
and singular value decomposition were found to be effective in overcoming these
effects but these methods depend on a knowledge of correct model order. Also.
unlike spectrum estimation, excess poles must be retained for time domain
matching. Thisis in direct contrast to the parsimonious use of model parameters

normally provided by a pole-zero model. The difficulties encountered with the
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Akaike MLE were computational in nature; for noisy signals the Akaike MLE
algorithm usually terminated prematurely when either a non-minimum phase
model was encountered during an iteration or when a numerical overflow was

induced by an unstable model estimate.

4. LSMYWE with singular value decomposition and iterative prefiltering (includ-
ing the correlation domain version) were found to be the most effective algo-
rithms for modeling a signal when additive noise is present. If the true model
order of a system is unknown, it is best to discard only one singular value.
Almost all the resolution gain occurs with the first singular value. Discarding
additional singular values is intended to reduce the variance of excess poles but
it will cause poles to be biased if all model poles are necessary for signal model-
ing. Both of these methods demonstrated the consistent ability to model poles
very close to the unit circle. This capability was essential when modeling the

acoustic transients used in this thesis.

Combining the above observations leads to our recommended strategy for mod-
eling an arbitrary transient signal. First, use LSMYWE with one singular value re-
moved and Shank’s method to find an initial model estimate. Next. use this estimate
to initialize either iterative prefiltering or correlation domain iterative prefiltering. Fi-
nally, if desired. apply Shank’'s method to optimize the time domain fit of the model

Zeros.

B. RECOMMENDATIONS FOR FUTURE STUDY

The results of Chapter IV indicate that there are pole-zero modeling algorithms
available that are sufficiently robust to be useful for modeling many complex. real
world transients. A number of issues regarding the pole-zero modeling of transient

signals and the application of such models require further studyv. These issues include:
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. The degree to which the noise performance of correlation domain iterative pre-

filtering may be improved by introducing noise compensation of the autocorre-

lation sequence requires study.

A study of the effectiveness of model order determination techniques when ap-
plied to transient modeling would facilitate more effective use of transient mod-

eling techniques.

. The effectiveness of iterative prefiltering and correlation domain prefiltering as

a spectral estimation technique should be explored further.

. The ability of pole-zero models to describe the time domain characteristics of

a signal could aid in the detection of signals. Such an application needs to be

persued.

A study of the structural relationship of pole-zero models to the specific svstems

that generate transients may increase the usefulness of such models.
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