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ABSTRACT

The modeling of damped signals as the impulse response of a pole-zero system

is considered for a broad range of pole-zero modeling algorithms. The goal is to

obtain the best possible fit between the model impulse response and the modeled sig-

nal. Pronv's method, the least squares modified Yule-Walker equations (LSMYWE).

iterative prefiltering, and the Akakie maximum likelihood estimator are compared

on known test sequences for a variety of model degrading situations i e.g.. additive

noise) to develop an understanding of which methods are most suitable for mod-

eling real world signals. A correlation domain version of interative prefiltering is

also introduced. The most robust algorithms are determined to be LS.NYWE using

singular value decomposition and iterative prefiltering (including the correlatio, do-

main version). Modeling several laboratory generated short duration acoustic signals

confirmed the robustness of LSMYWE and iterative prefiltering. It is shown that

correlation domain iterative prefiltering out ,erforms standard iterative prefiltering

when large model orders are required for accurate modeling. Shank\s method was

determined to be the most effective method of determining the zeros of a pole-zero

model when a tim, domain match is required.
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I. INTRODUCTION

A. RATIONAL MODELING OF TIME SERIES DATA

The need to find a compact parametric representation for time series data arises

in many fields of study. In electrical engineering, finding such representations. or

models, appears under such topics as optimum control. optimm filtering, system

identification, model order reduction, waveform encoding. and spectrum estimation.

Other fields refer to such modeling as time series analysis or forecasting. In digital

systems, the model parameters take the form of difference equation coefficients or,

alternatively, transfer function coefficients. The most general form of a differen(e

equation is one that uses both feed-forward and feedback coefficients. The corre-

sponding transfer function is a ratio of two polynomials in the complex variable z

and is refered to as a rational, or pole-zero, model.

Historically, the more general pole-zero model has booen used in relatively few

applications compared to all-pole (feedback only) and 'r ifeed forward onl.%

models. In some cases. an all-pole or all-zero model is -,.., ,not appropriate. Nor,

,fto n. however. the all-pole or all-zero model is chosen becausf, the opt I:'a! ,-i1e

f.stiniation procedures are better understood and easier to implement than those for

pole-zero modeling. This is particularly true for the all-pole case which, ii many

situations, can be determined by solving a set of linear equations. Two recent devl-

opments have led to increased activity in applying pole-zero m,-dels: (I ) technological

advances in digital hardware have dramatically reduced computation costs and. (2i

a greater variety of efficient techniques for estimating pole-zero model parameters is

now available.



Literally hundreds of pole-zero modeling estimation algorithms andl applicat ions

have been published. The majority of these are built around prohablistic or stoch,ts-

tic modeling techniques. This is because stochastic mnodeling, is usually t he mlost

appropriate to forecasting [Ref. 1. 2. :31 and spect rum estimation [Rief. 4. 5. G' where

very lit tle i, known about the system iput which produced the tirne series lwirir

modeled.l et erminist ic mnet hodologv has also been used in which the input anid

out pit t ine series are available and the liear systemi which 'best' (lusuially ill a least

squares sens,,) produces this cause and effect is dietermined. This approach is usually

found undler the JpIhs system identification [RAf 7. , . 9, 10] andi waveform encodlini

*HP I~e IlAnot her large body of literature wich exists ini parale to stochastiW and

dle rmnist ic mnodeling is that of redlucvd- order miodel inff ' Ref. 12' w hicl ,1 rff.l v de als

%wl 'Ytpnil couHro alpplicat ons of puo-zero :riorieiig.

A'~lt u11 stochiatp anl!d (lterililistic pol e-ieo , Kei- ae e>i:'

ax:i ie the arne naiahernatical techniiques. the distinc'ioi ;iri,:fiant in thewa

a trae:aki in the pel-rfo ahnce croerioln ,ltf ( .>e ',.-.-'q~

re(:2e:iCNl1 nd irnll iip 1,?In albr the Prdia11:!v density" funrioin of ranr

in Ito' hast*ic In(iiodli!~ can be, linliiti Iw1C"hen deailnv wxith rIeal world sv -1e1n. In

r (;as ereriiinistic tehiqe iake no0 spcific alsr:I11tln lth iit' tune l rf e

,e. rnodoled ex cep~t. of course. that the formi of the mlodel rtioseli ik appropriate

Pipartirular determiist ic nrodtllni probleni that has received litt4 leetaie(

~t e~ r.i- that of hii~iig a ploe-zero mod"el %we th timev series heing riotield

Ia Iransiew~ . i tpulse response'-like waveformn Examples of sit uat, Ion, w.here suc h

n ir d'. Inav hef ulsefull ifnclurde in mnod al or shock anial sis of inechani ical syst ems )xef.

13. 1 1 anteriia response to electronragnet ic pulses We. IT, and~ wvele twinra

I on i n sne-smic ;tuidie, Ref. 1 6. Pole- zero IM Kdels mlake sense for tranisienit wave-

formi because such a mnodel is struct ural for mnariy transient signals. I hat is. impulse



response like transients are usually the result of a system of oscillators which have

been excited for a very short time period relative to the natural frequencies of the

oscillators. Pole pairs in pole-zero models correspondingly represent the resonant fre-

quencies of a digital system. System zeros allow the initial conditions or phasing of

the resonant frequencies to be modeled. This combination of poles and zeros allows

signals to be modeled based on time domain matching. When an effective time do-

main match is achieved many concerns about assumptions during modeling become

moot: an effective time domain match has. by definition, effectivelv characterized the

signal in question. Previous work has concentrated on finding only transient model

poles [Ref. 17. 1S. 19. 20 or concentrated on one particular technique of pole-zero

impulse response matching [Ref. 21'.

B. THESIS OUTLINE

I iv ?hesi- pro,,ides a performance comparisoln of several pole-zero m1odel in E
,r, applied to the problen of model est imat ion from impulse r, sp,,use (ati

I wer,,dire- ornMared are chosen to form a cros' section of opti mali1% ani ,,,., I-

rat nal ,ormplexitY of available tech niques . In C'hapter II. the rniodclin prced Irt-S

1,l.c-',i for st udv are described in detail. The remaining three chapters are concerned

with coniparinu the. performance of these modeling techniques and are organized as

f,,llows.

" study the Spcific rnoleling properties of each method. Ie,- i Ipulse response

",',q en",c are modeled in ('hapter Three. Test sequences are constructed to

sin ilate the degradations likely to he present in 'real world' transient signals

ie.g. noise, unknown model order).

2. 'sing the results obtained in Chapter III. laboratory generated acoustic tran-

sient data is modeled in Chapter IR. This data is considered to determine the

3



performance of various techniques when modeling the highly complex data char-

acteristic of real world sources about which very little is usually known.

3. Chapter V summarizes the main conclusions drawn from the results in Chapters

III and IV. Recommendations for further study are also presented.

4



II. POLE-ZERO MODELING

A. OVERVIEW-THE VARIETY OF TECHNIQUES

Choosing a pole-zero modeling technique from among the many available tech-

niques can be difficult. The complexity. applicability, and demonstrated effectiveness

of the different methods are not always well documented. Additional consideration of

the many refinements that often evolve as a technique is applied to different problems

can lead to a perplexing array of tools with which to attack the modeling problem.

For the particular case of modeling by impulse response matching, little work has ap-

peared which sorts out the strengths and weaknesses of available modelin!i echliqem-

or. in fact. indicates which methods may or may not be applicable.

Ihe basic scheme for fitting a pole-zero system impulse response to a tiveri data

seqlelice. x~r I. is illustrated in Figure 2. a. This is somnet imes referrd to a. tie dn,-ct

trodel. .-\s we shall see, the formulation of this problem leads to a set of nonlinear

,',,at ion which require the use of iterative te,-hniques to solve. lo overcome the"

,,rri.pexit ies inherent in solving nonlinear equations. the inpulse respoi se matchiic

problerm can be reformulated as shown in Figure 2.1b. This may be referred to as the

indirrrt method. Note that these two formulations are, not equivalent: the error of

the direct method of Figure 2.1a is f(n) = x(n)-h(n) while the error for the indirect

riethod of Figure 2.lb is r ,(,i) = b(n)-a(n)*x(n) .where h(n) is the impulse response

of the pole-zero svstem being found. b(n) is the corresponding sequence of numerator

coefficients and a(n) is the corresponding sequence of denominator coefficients. 'Ihe

solition of the indirect problem is considered suboptimal in the sense that. ex(ept



B(Z)

3*z h(n

fK n

1 1(z)

1 .(:~ h(n )

mulation and (b) indirect formulation.

6



when the modeling error goes to zero, the effect of minimizing e,(n) is not the same

as minimizing ed(n) in the direct method.

One way to organize pole-zero modeling techniques is shown in Figure 2.2. In

deterministic waveform matching, the ideal equations relating the proposed model to

the available input and output data sequences are formed. The solution which 'best'

satisfies these equations is chosen. In this context, 'best' usually means the solution

which minimizes the sum of squares of the equation error. These are essentially the

Prony type methods [Ref. 17, 22] (when the input is an impulse response) and least

squares system identification [Ref. 7. 8, 23] methods (for general input sequences).

A number of iterative techniques for waveform matching have also been proposed.

Waveforn fitting error Ref. 24. 25 and inverse filtering error lRef. 26. 27 are the

criteria most used.

Linear stochastic pole-zero modeling techniques rely primarily on estimates of

second order statistics (auto- and cross-correlations) to estimate model parameters.

Spectral estimation has been a driving force for these methods which are basLed on

solving some form of the modified Yule-Walker equations (see Chapter III! Other

methods which utilize reflection coefficients [Ref. 28 and higher order statistics jRef.

2!9. 307 have also appeared.

The marimum likdihood technique seeks parameter estimates for which the oh-

serve(] data is the most probable in the sense that its conditional probability density

function (likelihood function) is maximized. This technique is considered to be sta-

tistically optimum but is quite difficult to use because its implementation generally

requires the minimization of a highly nonlinear function [Ref. 1, 31. 32. 331. Four

widely applied methods from each of the categories of Figure 2.2 will be used in

this thesis. A number of improvements which have subsequently been suggested for

these methods will also be considered. Most recent work in pole-zero modeling and

7



spectrum estimation has occured at the internal boundaries of Figure 2.2, i.e. equiv-

alent linear techniques are sought that perform as well as modeling formulations that

require solving nonlinear equations [Ref. 34, 35, 28, 36. 371. The application of

these newer techniques to transient modeling will not be considered here since we

expect that the performance of the methods chosen will in most cases bracket the

performance of these newer techniques with the possible sacrifice of computational

efficiency. The four pole-zero modeling techniques chosen will be described in the re-

mainder of this chapter. The transient modeling performance of these methods that

will then be compared in Chapters III and IV.

Li near Iterat ve

I )ft erninistiW Equation Error \Vavcform Mat chilr
Methods Inverse :it er ic

W,,hA-q i( ( 'orrelat ion Equat ion \Maximum

Error Methods Likehhood Method-

Figure 2.2: One way of organizing the various pole-zero modeling tech-
niques.

B. THESIS MODELING TECHNIQUES

1. Prony's Method

One of the best known indirect techniques for matching a waveform to

the impulqP response of a linear time-invariant system is Pronv's method [Ref. 221.

8



This method is in fact a special case of least squares system identification in which

the system input sequence is taken to be a unit impulse and the numerator and

denominator coefficients are determined separately.

The pole-zero modeling problem is formulated as follows. The time domain

difference equation for a general feedback, feed-forward system can be written

P Q

J=O t=O

%%here u( n is the input sequence and x( n ) is the output sequence. W\hen tli* Input

sequence is taken to be a unit impulse (unit sample funct ion and the out put is taken

to he the corresponding impulse response. (2.1 ) can he expressed Iii t he formn of a

mnatrix equation.,

-
r

L N 2) . .. xiN P 2

w6here A.\ the il nmber of dat a points used] and, wit hou t loss of generalization. a,,) is

-? equal to o0w.

F"(puat ion 12.2, can be solved by partitioning,

[ B I a b (2.3
where a Il , apj. b = 'k) b, b(~ and XA and XR are the corresponding,

lower and upper partitions of the data matrix in (2.2). The upper partition consists

of thv First Q + I rows of the data matrix and the lower partition is composed of the

remrainiing rows.

The solution can then be obtained bv first solving the lower partition.

XAa = 0, (2A4)

9



for a and then finding b from the upper partition,

XBa =b.(.)

If N = P + Q + I then (2.2) may have a unique solution and the model limpulse

response will exactly match x(n) for 0 < n < P + Q + I. This is referred to as the

Pade approximation [Ref. 22].

Inl Most Circumstances. however. the length of the avai labie dat a 'eqluerlcf

far exceeds P Q Q 1. It is then desirable to use all available dat a Iii Set tini! up 12-2

his leads to an overdet erinined set of linear equatlin fo), thf. );AVC prart it(n.

exact solution to (2.4) usually exists in this case. The relatiorv~hip in 12.4 bevcrnie '

Vj a = e.

wl're e I-thle equat ioni error that will be present The S(J Au ioul Of 2.4A M '2.1

rteqiire, 0-ti part it ionini! of X4~ a. follows.

V, her'. X 4 is' the first C-oluimn of X4l. If the remnainll ing atrix X'4 i - 'o(Jlare anld Of fl

raulk. then-T the olutioni to (2.4) is given by

a 12[ 4 j
Otherwise the Irast squares frror solution of (2.6), which rivninies the squared error

e Tle, is given by

a' = X'*X A (2.10)

10



I

where X + is the Moore-Penrose pseudoinverse of XA. When XA is of full (column)

rank P. the psuedoinverse is given by

a' (XA X XA. (2.11)

(See [Ref. 4. pp. 28-331 for an example of this derivation). Otherwise. the pseudoin-

verse is defined by

a' = uf!' 2.12r

where 7,. u,. and v, are defined by the singular value decornposit iori IS\'D represeni-

I at ion of X'.4

= Z7, uv[ '2.13,
1=0

lie parameters (T, are the singular values of X',. u, and v, are the corrv' pondiii
f' ard right singular vectors, ard I" is the rank of X'. See 'tef :". ('1 f ,r

i more detailed explanation of sinlutar value decomposition. Once a is knowN , the

u;pner part it ion of (2.21 can be solved by simply carrying out the matrix nnilt 'TliDal tinn

1, , th,. left har( side of (2.5)

2. Modified Yule-WValker Equation Methods

A well known class of pole-zero niodeling techniiques I. hbaci of s. lvinu

IMV forni of the MIodified Yule-Walker Equations (MYNVE . equat ioin- (arl he

developed by multiplying (2.1) by x(n - k) and taking the expectation of both sides.

This yields.
p Q

aZ ar, (n - k) Y b -. tz) (21I
k=O 1=0

where r,,(I) is the autocorrelation sequence of the system output aid r,,I I) is the

crosscorrelation of the system input and output. If the original input to (2.1 ) is

assumed to be a unit variance white noise sequence then the cross correlation. r,(l).

is given by

11



Efu(n)x~n - ))=Eun)hkun- 
-

~h(k)W(+ k-)
k
h(- ). 

( 1. 15

Equation (2.14) can be then be written as
P 

Q
k)=z= 

, -2.!I (<
k=o=

or in matrix form.

.~ ~ ..1 . .. w .) . P
rr iQ). ''" rfl() _t

r . Q ~ p! 
........... ......

L ~

As in Prony's method, the solution for the a and A, C ffi-,, ran b,
1,'rrnined separat ely. "'aking a lower partition of t le last f' "quatPI(ns in ,2.17,

rsul ts ini lfe matrix eq uation,

RAa 0.
where the theoretical valns of the elements in R, are replaced hy estimatd val e

If 1) + I autocorrelation lags are used in ronstrucrin e RA, then (2.1o ranb, ,i d Ve(I (irec tJ.y for a. However. if additional reliable lag information is available, we

12



will again desire to extend RA by letting the index n in (2.16) run beyond Q + P * 1

resulting in additional equations. This leads to a an overdetermined set of equations.

RAa = e (2.19)

which will not in general be satisfied with zero error. As before. application of the

psuedoinverse results in a least squares solution of (2.19).

To understand how the MY\VE methods can be used to match a time

series to the impulse response of a pole-zero system observe that (2.16) describes the

relationship depicted in Figure 2.3. This operation can be equivalently expressed as

r, ? h(2 *h(-n . 2.20

If th,' signal to be nodeled is assumed to be a pole-zero syst em i mpi lise respon se. then

for the purpose of implementing (2.17). the signal being modeled can be ,u bstit uted

for htfn i In (2.20).

r4i B )
.4J

Figure 2.3: The system relationship described by (2.16).

The equations of the upper partition of (2.17) (the first Q equationsI are

not linear in the b coefficients and are generally not solved directly from (2.17). Once

the denominator coefficients have been determined from (2.18) or (2.19), any of a

number of techniques are available for finding the desired transfer function numerator

coefficients. One method already discussed is to set up and solve the upper partition of

Prony's method in (2.5). Three other techniques are spectral factorization, I)urbin's

method, and least squares identification, each of which are described below.

13



a. Spectral Factorization

Equation (2.16) describes the time domain relationship

r,,(l) * a(1) = b(1) * h(-1) (2.21

where a(I) anid h( 1) represent the sequences of denominator and numerator tranisfer

function coefficients. respectively. Taking the z-transforrni of (2.21 1 yields

.%aking the substitution

in (2.22_) arid rearraning es in

4-Z- I~ I)

I( )SXr(Z.t Z) =I3 Z II(Z

1, t I I! ie 12.24 ! o fin Id the pol ynonI alI coefficient of Bi wI I!. wi it are iihorilement

11 iflv vopitrnce hi !. we rnust perform spectral fact orli'at ioln 'PC ttlo c r<

;:ig frr''m the, convolution Of the three sequences a1 I,, af - . arid rz. i A 'o s~o

ox7'lariattI iOf this technIqIlejI Can, be fourndl II Ri'ef. .30' Or 'Ref. 40'

b. Durbin's Method

I~rinsmethod [Ref. 4 1 makes use oif the propertyv by which a

process containing zeros ran be represented by an all-pole system if enough pole'.

are used. The first step is to filter the sequence to be modeled throuvih the inverse,

of the previously determined all-pole filter coefficients as shown in Figure 2A4. The

resulting residual sequence. A~n). will nominally be an all-zero sequence. A large

order all-pole mnodel. Aj,,() can then be fitted to .00n to obtain the relationship

illstrtdinFigure 2.5. If the model order for A4i,,'(Z iss 1iinl large, all of

the 'Information' in q(n) will be contained in the coefficients of :.If an all

14



x (n) A(z) s(n)

Figure 2.4: Filtering process to generate the all-zero residual sequence for
the application of Durbin's method.

u, ( n) . I, 9 z

Figure 2.5: The residual sequence approximated by a large all-pole model.

pole model. 1,/B(z). is then constructed for the sequence cf ro,Rcie 71., iH I 1,

the relationship obtained is

1'

lI erf.fore the transfer fIIncT itn 1:4 s-ll, 1 Z of Viglrv 2.T is repia , ,

1

ii,. ,iif h 1i , - i , ,Mov nlgy average I all-zvro, 111,, tP1.

c. Shank's Method

'onsi er the s'stlem shown in igture 2.6 Ahere h t I h, t i, )1,s',

respojns,- of the previously deternilned all- pole portion of a pole zer, m ,,ic' 1 iiiili

Promv's met hod for example). Shank's method ARef. .12 is to satisfy the relatiotisil

,f I"ure 2.6 in1 the least, squares sense, This relationshi p can he ie-criIbed by the

riat ri x equation

1.5



hA(Q) hA(Q- 1) hA(O) bo
hA(Q + 1) hA(Q) ... hA(l) b ]
hA(N -- 1) hA(N -2) .. hA(A-I-Q) Q

x(Q) 1B[ Q)
x(Q + 1) C(Q + 1) (.27

x(N- 1) IB(A'- 1)

or

HAb = x - eB. 2.2 )

Equation (2.28) can be solved in the manner of (2.6) with HA analogous to X' A and x

analagous to XA. The bk coeffcients can therefore be found by using the psueuoinverse.

x (I I

Ii~ 14 7/i11

Figure 2.6: System for Shank's method determination of transfer function
numerator coefficients.

3. Iterative Prefiltering

An itprat ye technique for solving the di rec tuOdeli ug prol lvim of V igu rf-2 I

ralledl otrratire prr-fiutf rinuj bas bee-n proposedl in [R~ef. 241 ;\ ii ffeii Ie( ai ;c~jat 101n Of
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the technique has been reported in [Ref. 43]. The presentation below follows that of

[Ref. 40].

In this method, the direct modeling problem error (see Figure 2.1a).

Cd(n) = x(n) - h(n) (2.29)

is expressed in the alternative form

Cd(n) = x(n)- b(n)* hA(n)

= x(n) * hA(n) * a(n) - b(n) * hA(n) (2.30)

where a(n) and b(n) are the sequences of transfer function denominator and numer-

ator coefficients, respectively, and hA(n) is the impulse response of the AR (all-pole)

portion of the model. i.e.

h A(n) 4==
.4(z)

By then making the equation error iterative (superscripts represent the index of iter-

ation).

e__d,<(n) = x(n) hA(n) a''(n) - b'" (n) * h 4 (,. (2.31)

the least squares error solution for a'+I(r) and b'* (n at each iteration carl be cal-

culated using parameter estimates from the previous iteration. In matrix form (2.31

bfocomes

al 1

.- ,, , P (0 ) 1 , 4  P ) . . . h 4 P - 1 a

I ...l X4,(l h (P I) ... h14 ( '- Q -4-

x h, ..- I) .. h - I- P ) h'A(A - 1) . h 4 ( - 1 - Q ) J 0

'b+ + 1)
d

= I (2.32)

1- )
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where Xh(n) = x(n) * h'(n). Note that (2.32) can be solved in exactly the same

manner as (2.6).

a. Correlation Domain Iterative Prefiltering

Many pole-zero modeling algorithm's which were originally conceived

based of the time domain pole-zero difference equation, (2.1), have been reformulated

in the correlation domain. Examples of this include the correlation domain extension

of Pronv's method resulting in the modified Yule-Walker equation methods. and an

instrumental variable method of least squares system identification which Soderstrom

has indicated is simply a correlation domain formulation of least squares system

identification [Ref. 441. In modeling trials conducted for this thesis both of these

correlation domain methods were found to be significant improvements over their

time domain counterparts.

Iterative prefiltering can also be extended into the correlation domain.

To see how this is done first note that the direct formulation of the pole-zero modeling

problem of Figure (2.1a) may be reinterpreted in the correlation domain by employing

the relationship of (2.20) and Figure 2.3. Figure 2.7 illustrates this new direct pole-

zero modeling interpretation.

Proceeding as for the time domain iterative prefiltering above we write

the correlation domain error equation,

.,,n 'n) - r(-n) * h(n)

= r,(n) * hA(n) * a(n) - x(-TY)* b(n) * hA(n ) (2.33)

where, as before, a(n) and b(n) are sequences of the model 17oeffcients. hA(71f is the

impulse response of the AR (all-pole) portion of the estimated model, and K (n)

is -found using r(n) as the desired impulse response so that xn()) * x(-n).

18



r( n)

(-A) 9(- (-n) *h(n)

Figure 2.7: The direct pole-zero modeling problem formulation expressed
in the correlation domain.

When the error is made iterative. (2.33) becomes

t..... (n) = x(n)*x(-n) * hi4n) *a'n) - i(-r*) b 1 (n) * h~'n) (2.34)

where the superscripts represent the index of iteration. In matrix form (2.34) becomes

"4 1

rh(P) .. r.(O) A(P) 1,A(P - Q)

r ((-1) . r,(I) Xz(P+1) I :(P-Q ) I :

rh(2 N - I) .. r..(2 -l - P) x<(2.'-1) . A'(2A I - Q)

,hi

1+1

,+1 '.V 1)1
.Co.," -

where" rh(n) = 7(n)* hA(n) and rh(n) = z(-n) • h1(n) and which cani be solved as

before.
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4. Maximum Likelihood Techniques

Maximum likelihood estimation of parameters is the statistical standard

against which the performance of other estimators is measured. This estimator makes

use of all the useful statistical information available in a given set of data [Ref. 45. p.

73]. Difficulties arise, however, in the implementation of the maximum likelihood es-

timator (MLE). True maximum likelihood estimation requires exact knowledge of the

conditional probability density function (PDF) of the observed data conditioned on

the parameters to be estimated. This conditional PDF must then be simultaneously

maximized with respect to all parameters being estimated. In practice, most efforts

to employ maximum likelihood estimation make simplifying assumptions about the

nature of the input data to derive a useful algorithm. Such techniques are usually

called approximate maximum likelihood methods.

The approximate MLE chosen for this thesis is due to Akaike [Ref. 311.

The brief developement of this algorithm provided below follows that of Kay [Ref. 4.

Ch. 9.10. Additional backround on maximum likelihood estimation can be found in

[Ref. 1, 8. 32, 45] and references therein.

Given a sequence of independent random variable observations, z(n). and

a corresponding set of parameters to be estimated, Ok, the desired set of estimates for

the Ok's is the one for which the observed data set is the most likely. In terms of the

conditional probability density or likelihood function,

p(z(O), x(l),. ,x(N - I)JO,, 02, OK),

the desired set of estimates is the one which, for a given set of z(n), is maximized.

In the case of pole-zero modeling, an expression for the observed data sequence's

joint probability density function conditioned on the model parameters, a, and b, is

required. To obtain such an expression, it is generally assumed that the observed data

20



is Gaussian. If, further, it is assumed that the input to the pole zero model is white

Gaussian noise and that the data record length is much longer than the transient

response due to initial conditions, the conditional PDF for the observed data can be

arrived at fairly directly.

The joint PDF for the zero mean white Gaussian input sequence. u(n). is

of the form

N-i 1 u 2 (i)p(u(O),u(l),.. ,u(N- 1)) = fi (xp( -(2.36)

where or is the variance. Now the density function for x(),x(1),--. ,x(N - 1) con-

ditioned on the Ok's, can be found from (2.36) through the standard linear transfor-

mation,

p(x(O),x(l),. ,x(N - 1)) = p(uf(0).uf(1). ,.,u (V - 1)) 1y,. (2.37)

where u,(n) is the inverse filter relationshiD of the original pole-zero difference equa-

tion. (2.1). Specifically

1 P IQ
Uf (na,x(z - 1) - L 6bts(n - k-) (2.3,S)

and J is the Jacobian of the linear transformation uf. lo simplify the transformation

assume that the pole-zero filter in (2.38) has been expressed as its equivalent all-pole

filter.
PAP

u(n)= AP,(n - ().29
£-=O

The final result of the linear transformation (2.37) will then be

N - I rPA fkp(x(O), x(l), .. x(N - 1))- CX -1-p- z =  (2....

oo 2 . (2.40y

When (2.40) is expressed in terms of the pole-zero parameters,

,al, C2, . Iapt b , bl,. .2. ,1,
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for the purpose of maximization the relationship is highly nonlinear. Note that the

maximization of (2.40) requires the minimization, over all possible a,'s and bk's. of

the inverse filter error, u1 (n).

Akaike employed the Newton-Raphson iterative method for minimizing

(2.40). This method requires the computation of Gradient and the Hessian of (2.38)

at each iteration to generate the estimate updates

rh~ 1 k ] [8a~aT  a aq a 1241[ k+l I k a 0 2

Using frequency domain arguments, Akaike was able to provide expressions for the

above partial derivatives in terms of Fourier transforms which can in turn be expressed

in terms of linear filtering operations.

Note that there are several key assumptions made above which must be

valid for this method of approximate MLE to apply:

I. The data are real, Gaussian, and zero mean.

2. The data record is large. This is to avoid end effects of assuming all data values

outside the data record are zero when filtering the data.

3 The poles and zeros are not close to the unit circle. This is to avoid long

transients due to tile initial conditions which are ignored. (They are assumed

to be known and are set equal to zero.)

At first glance these assumptions would seem to indicate that this method is inappro-

priate to transient modeling. However, inverse filter error retains its meaning when

,onsidering transient waveforms; the ideal inverse filtering result for a transient signal

Is a single impulse rather than the minimum variance random sequence expected for

a stochastic process. In fact. this is exactly the appproach taken by Jackson [Ref. 26,

pp. 276-278] in extending Judell's maximum likelihood method [Ref. 33] to impulse
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response data. While this extension seems rather ad hoc, we will find that such ap-

proximate maximum likelihood methods can be effective in modeling transient signals

as impulse responses. A key limitation imposed by dealing with deterministic data

is that reliance on inverse filter error excludes signals that must be modeled by non-

minimum phase systems. In contrast, the restrictions of long data record and weak

poles and zeros (not near the unit circle) no longer apply. Data records end effects

and initial condition transient effects should have no impact since the assumption of

zero valued data outside the range of data is correct if the data is chosen to end after

most of the energy of the transient is dissipated.

C. IMPLEMENTATION

All modeling algorithms were implemented using the interactive language PRO-

MATLAB from The Mathuorks, Inc. on SUN workstations except for the Akaike

NILE algorithm which was implemented in FORTRAN using a program adapted

from 1 Ref. 4. Ch. 101. The FORTRAN program was also implemented on a SUN

workstation with a FORTRAN 77 compiler All graphics were generated in PRO-

M.ATLAB.
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III. MODELING PERFORMANCE

A. PERFORMANCE CONSIDERATIONS

Each of the pole-zero modeling techniques presented in Chapter II is effective

when modeling a signal that is truly the impulse response of a pole-zero system with

no noise present and with the system order known. However, real world transient

data rarely possess such characteristics. Real world signals of all types are notoriously

uncooperative in fitting the signal models proposed to describe them. Reasons that

this may be true for transient data include:

1. Inappropriate selection of model type or modeling algorithm.

" Linear versus non-linear models.

" Minimum phase versus non-minimum phase rational models.

2. The transient is time shifted because of and inappropriate selection of the data

record starting point due to the presence of noise.

3. The assumption of impulse system excitation is a poor approximation.

4. Incorrect selection of model order.

5.Noise is present in the signal.

The test sequences used in this chapter are all obtained as the impulse response of

linear pole-zero systems, therefore, the question of linear versus non-linear model type

will not be at issue. For the other problems. effective transient modeling requires both

selecting the appropriate algorithm and understanding how to use that algorithm to

its greatest advantage. The next section describes the test sequences used in this
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chapter. Subsequent sections address how difficulties encountered in the pole-zero

modeling of impulse response data can arise and how they can be overcome.

The effects of data selection, non-minimum phase systems. non-impulse excita-

tion, and incorrect model order on modeling will initially be considered for signals

observed with no added noise present. The effect of modeling a signal in which addi-

tive noise is present is considered separately. We will see that situations which modify

a linear pole-zero system often lead to another pole-zero system. This new system

usually has the same number of poles in the same locations but with different and

possibly additional zeros.

B. TEST SEQUENCES

The test impulse response sequences are generated using pole-zero models taken

from Kay rRef. 41. The test sequence ARMA3 uses one of Kay's models directly while

the test sequences ARMA4 LF. ARMA3 NM, and ARMA4 CL are from Kay models

which have been modified to enhance the illustration of certain points-. The unit

irnpulse response and pole-zero plot of each test sequence model is shown In Figures

3. la-h. The model coefficients for these sequences are listed in Table 3.1.

Model Model Coefficients (a0 bo 1
I a2  bi I,

.RMA.3 -2.760 3.809 -2.654 0.924 -0.9(.0 WSl

ARMA4 IF 1 -3.035 4.002 -2.727 0.778 -0.900 0.040
ARMA3 \M -2.760 3.809 -2.654 10.924 -. ",.000

ARMA4 (T -2.67 3.700 -2.5634 0.917.0

TABLE 3.1: Table of test sequence coefficients.
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Figure 3.1: The test sequence ARMA3. (a) Impulse response plot and (b)
pole-zero plot.
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Figure 3.1: continued The test sequence ARMA4 LF. (c) Impulse response
plot and (d) pole-zero plot.
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Figure 3.1: continued The test sequence ARNIA3 NM. (e) Impulse re-
sponse plot and (f) pole-zero plot.
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Figure 3.1: continued The test sequence ARMA4 CL. (g) Impulse response
plot and (h) pole-zero plot.
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C. ESTIMATING NUMERATOR COEFFICIENTS

1. Data Selection-Time Shifts and Initial Conditions

Defining the range of data to be used in modeling is an important and

usually staightforward exercise. The assumption that a signal represents the impulse

response of a linear pole-zero system, however, implies some very specific propertif's

about the initial few points of that signal. Each method of modeling the transfer

function numerator coefficients in Chapter II reacts differently when the beginning

points of the impulse response being modeled are degraded. Because real world

transients do not usually exhibit the instantaneous rise time of an ideal impulse

response and because noise is usually present. choosing the precise data range for a

ransient such as that illustrated in Figure 3.2 is often a verv uncertain t ask. I w(,

possible outcomes when the transient starting point is chosen incorrectly are:

1. The starting point is chosen before the signal begins so that early data value,

are unrelated (and presumably of lower armplitudei to the i- T,, res po , p

ew riiatched 'e.g. these points may consist of noisel.

Jim starting point is chosen late in which case early vaies , ,fthe impule

response are lost,

In the first case. an adequate number of additional model er(, i acc ,,unt

for the delay in the impulse response. Assuming, that the starting point for the data is

rvasonably close to the true beginning of the impulse response, any spectral feat ure,

introduced by the unrelated early data points will probably not have enough envrgy to

significantly alter the spectrum of the impulse response. 1'nder these circumstances

all methods (an effectively find the poles. It is important to note. however, that if

an insufficient number of zeros to account for the imposed delay is used. then som,

of the equations that are generated in Prony's method become invalid. \Vhen t hese
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n
Figure 3.2: An example of a laboratory generated acoustic transient. Note
the difficulty in determining a precise starting point for the transient.

equations are solved, the invalid equations can drastically degrade pole estimates. To

see this we can apply Prony's method to a system with the true orders P = 4 and

Q = 2. Assume the signal is delayed by inserting three zeros at the oeginning of the

data so that the original point z(O) is now the fourth data point. If we choose P = 4

and Q 3 in constructing the data matrix of (2.2), the resulting set of equations will

be
0 0 0 0 0
0 0 0 0 0 b0 0 0 0 0 1 b,

z(0) 0 0 0 0 a b2
X(l) X(O) 0 0 0 a2  b3
(2) x(I) x(O) 0 0 a3  0

z(3) z(2) x(1) x(O) 0 a4
x(4) x(3) x(2) x(l) z(O)

Note that when the lower partition is taken to find thf ak coefficients, the first two

equations of the lower partition are invalid. Compounding the problem is that the
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invalid equations occur in the high energy portion of a transient signal. To overcome

this effect a numerator order of at least five is required.

In finding the numerator coefficients of a delayed impulse response one

of three outcomes is possible depending on the estimation technique chosen. First.

any technique which depends directly on the initial values of the data sequence (for

example (2.5)) will be ineffective. Second, methods which rely on the autocorrelat ion

of the residual sequence will result in approximately the true zeros of the system un(er

study. The original time series will not be matched directly. This case is illustrated

in Figure 3.3. The resulting impulse response is an undelayed version of the signal.

Finally, signal matching techniques, iterative prefiltering and Shanl:*s method, result

iII zeros not related to the original undelayed model but which provide the best overall

time domain match of the delayed signal. This is shown in Figure 3.4.

The case of choosing the data record to far to the right and thus trun-

cating the first points of an impulse response will again have little effect on pole

estimation. This situation corresponds the same system with (non-zero) initial con-

ditions imposed. Since initial conditions are acounted for in the numerator, the zeros

are significantly altered. Here the previous discussion regarding finding the under-

lying model zeros versus obtaining a good match in the time domain still applies

with one exception: the direct calculation of the bA coefficients from (2.7' will no

be effective.

2. Non-minimum Phase Modeling

In Ref. 461 it is demonstrated that the appropriate discrete model of

a sampled analog waveform is often represented by a trarsfer function with zeros

outside the unit circle. Many of the techniques that are currentlv available are pur-

p,,sefully structured to rhmnzatr uch non-minimum phase models, In power spectrum

estimation, a minimum phase system with the same frequency response magnitude
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as a non-minimum phase system results in the same estimated spectrum. Thus for

spectrum estimation an equivalent minimum phase system is satisfactory. In fact.

the assumption underlying stochastic modeling techniques, namely white Gaussian

noise input, guarantees that all transfer function combinations of minimum phase

and maximum phase zeros are equivalent. By convention, stochastic modeling tech-

niques always choose the minimum phase model so that the important statistic of

inverse filter error is available. In time domain based applications, however, incor-

rectly choosing the model phase can seriously degrade system performance. Fields

such as seismic deconvolution. channel equilization, control, and matched filter de-

sign. generally require identification of the correct model phase [Ref. 47. 48. 49].

Also, we will see in Chapter IN' that effective modeling of real world acoustic signals

frequently requires non-minimum phase models.

A number of modifications to the basic stochastic model have been in-

troduced to allow selection of the model with the correct phase. These techniques

generally involve changing the Gaussian nature of the input noise !'Ref. 5U! and often

employ higher than second order moments or cumulants [Ref. 29. 301. However, when

a model's impulse response has effectively matched a signal in the time domain, the

re-ulting phase is immediately known to be the correct. Allowing for the possibilitv

:f non-minimum phase models places significant limitations on the modeling methods

which may be used. Techniques which rely on inverse filtering niaximuni liklihood

methods) are not applicable since the inverse of a non-minimum phase system is unsta-

ble. Also. techniques which use correlation information to calculate the bk coefficients

(spe ctral factorization and Durbin's method) will give poor results since correlation

data does not preserve phase information. Figure 3.5 shows the difficulty encountered

when Durbin's method attempts to model a non-minimum phase system. The best

Durbin's method can do is produce the spectrally equivalent minimum phase version
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of a maximum phase system since the autoregressive modeling techniques on which

it relys can only produce zeros within the unit circle. In contrast, Figure 3.6 shows

that Shank's method is able to find the correct model.

3. Numerator Modeling Summary

Table 3.2 provides a brief summary of the modeling properties of the nu-

merator coefficient modeling techniques considered in this thesis. Since the goal in

Chapter IV is to perform time domain modeling of the acoustic transients being

considered, those methods which provide the best time domain match between the

original signal and the model impulse response are preferred.

%ethod IEquation Non-minimum Data Selection
phase capable? Shifted Right Shifted Left ,i

_ (Delayed) (TruncatediI
Prony. upper 2.5 1 es Not Time Series
partition _Usable Match
Spectral 2.24 No Underlying Underlying
Factorization I_ lodel Model
Durbin's 2.2.5 i No Underlying Underlyin g
Method 2.26 t I Model Model
Shank's 2.28 1 e Time Series Time Series
Method Match Match
Iterative 2.32 Y 1 line Series Time Series
Prefilterin _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Pra in 1 Noatch Match
Akaike 2.41 No U'nderlying 1 Time Series
MI-E, Model Iatch

TABLE 3.2: Summary of the capabilities and limitations of numerator
modeling methods.

D. NON-IMPULSE EXCITATION
in any real world system the assumption of a unit impulse input is approxi-

mate. If the duration of the excitation waveform is small relative to the period of the
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Figure 3.3: The right shifted sequence ARMA, poles modeled using
LSMYWE and zeros modeled using Durbin's method. (a) Time signal
plot and (b) pole-zero plot. Durbin's method does not account for the
time delay but instead finds the underlying system's true zeros.
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Figure 3.4: The right shifted sequence ARMA3, poles modeled using
LSMYWE and zeros modeled using Shank's method. (a) Time signal
plot and (b) pole-zero plot. The least squares method does not find the
underlying system's true zeros but rather achieves the best overall time
domain match.
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Figure 3.5: The non-minimum phase sequence ARMA3 NM, poles mod-
eled using LSMYWE and zeros modeled using Durbin's method. (a) Time
signal plot and (b) pole-zero plot. Durbin's method cannot model zeros
outside the unit circle.
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Figure 3.0. Th~e ron-niinimum phase sequence ARMA3 NM, poles mod-
eled using LSMYWE and zeros modeled using Shank's method. (a) Time
signal plot and (b) pole-zero plot. The least squares method is effective
at modeling zeros outside the unit circle.
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lowest oscillation frequencies present then the assumption is justified. However, it is

reasonable to expect this criterion will often not be satisfied. Non-impulse excitations

which may be encountered include:

1. A long duration baseband type pulse.

2. An uncorrelated random train of impulses. This model is often used to account

for reverberation (echoes) in siesmic deconvolution [Ref. 51].

3. A frequency swept input that sweeps through the natural frequencies of a sys-

tem. This model is usually considered in conjunction with the starting and

stopping of rotating machinery.

If the system input were known, the modeling problem could be formulated as a sys-

tem identification problem. When no information about the system input is available.

other means must be found to deal with this problem.

1. Baseband Pulse Excitation

The effect of modeling a transient signal from a linear system in which the

input is a long duration. baseband-type pulse can best be understood as filtering by a

finite impulse response (FIR, all-zero) filter as illustrated in Figure 3.7. The spectral

properties of the original time series are windowed by the frequency response of the

FIR filter coefficients, For this type of pulse, the effect is that of low pass filtering.

Thus high frequencies are attenuated relative to low frequencies. If no frequency

component exists below the FIR filter's cutoff frequency then the original spectrum

is altered according to the side lobe structure of the FIR filter.

The new model that results can be viewed as a system with the original

model poles but with new numerator polynomial coefficients that are the result cf

convolving the FIR filter coefficients with the original numerator polynomial coeffi-

cients. This results in a higher order polynomial, hence more zeros than were present
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xo,i(n) FIR X.b.(n)

Figure 3.7: One way to view a linear system excited by a baseband pulse.

in the original model will be required. Observe how the original impulse response of

Figure 3.7a is altered to Figure 3.7b when a nine element triangular excitation pulse

is used. The dotted lines in Figures 3.7b.c,d indicate the modeling results obtained

when none, two, and four extra zeros, respectively, are used in the estimated pole-zero

model. In this case four extra zeros prove sufficient to account for the input pulse.

The corresponding model spectrum, Figure 3.7e illustrates the attenuation caused by

the baseband excitation. The pole-zero plot in Figure 3.7f shows that non-minimum

phase zeros were required to achieve an effective time domain match.

2. Random Impulse Train Excitation

If the input to a linear system is an uncorrelated random train of inluks,

then, although the time series may be significantly different from the original impulse

response. the autocorrelation function of the signal is theoretically unaltered except

for a scaling factor. This is because the autocorrelation of an uncorrelated impulse

train is a scaled unit impulse. Thus modeling methods which rely on correlation

information should be effective. However, over a finite time interval it is unlikely that

a random sequence will be truly uncorrelated. As the impulse train becomes correlated

the situation will be equivalent to the baseband pulse case described above.

3. Frequency Swept Excitation

The output of a system excited with a frequency swept signal depends on

the rate at which the sweep occurs. A slow sweep will result in a series of transient

events, each at a specific resonant frequency of the system. These events can each
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be modeled separately. When the sweep rate is rapid. all natural modes will appear

much as if the input were an impulse except that the phase relationships of the various

components may be changed.

E. MODEL ORDER SELECTION

In studies of rational modeling the issue which continues to be the most con-

founding is that of model order selection. The proposed methods which have a sound

theoretical basis (e.g. [Ref. 52, 53. 54]) are very difficult to actually implement.

These methods are invariably related to maximum likelihood concepts and therefore

rely heavily on inverse filter statistics. This implies that for model order evaluation

the inverse filter error must be calculated over all possible model orders. Then the

mode] order and inverse filter error which minimize some function of the two is se-

lected. The case of non-minimum phase systems is even more intractable since the

inverse filter of such systems is unstable.

A more attractive but less understood method is to initially overdetermine a

system and then allow the modeling algorithm to indicate the correct model order.

A method proposed by ('adzow [Ref. 39 uses singular value decomposition to aid in

model order selection in the denominator of all-pole and pole-zero models. Kurneresan

and Tufts [Ref. 211 have shown that when Prony's method is applied to exponentially

damped sinusoids reversed in time, valid poles occur outside the unit circle and excess

poles occur inside the unit circle. In both of these methods the denominator order

is initially overdetermined and the modeling method then provides the correct order.

For this thesis both of these methods were applied to a number of transients. They

were ,ffective when applied to the noiseless impulse responses of true pole-zero systems

but were not robust in the presence of noise or when many narrowband components

are present. There is no similar guidance for determining the numerator model order.
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Figure 3.8: The sequence ARMA4 LF with (a) unit impulse excitation
and (b) triangular pulse input modeled with correct model orders P = 4
and Q = 2 using Prony's method and Shank's method.
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Figure 3.8: continued The sequence ARMA4 LF with triangular pulse
input (c) modeled with Prony's method and least squares identification
with orders P = 4 and Q = 4 (d) modeled with Prony's method and Shank's
method orders P = 4 and Q = 6.
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Figure 3.8: continued The sequence ARMA4 LF with triangular input (e)
the original impulse response and triangular output model, order (4,6),

spectrums and (f) the corresponding pole-zero plot. Note how the base-
band pulse has attenuated the higher frequencies.
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Perhaps most desirable would be a modeling technique that, when overdeter-

mined, caused excess poles and zeros to either cancel or migrate well away from the

unit circle (all the way to the origin ideally). Tummala [Ref. 23] has demonstrated

some success with this concept using an iterative algorithm to solve the least squares

identification problem. Observing the degree to which the various transient modeling

techniques of this thesis exhibit this behavior is the approach taken in the following

comparison. This behavior was observed by modeling the ARMA3 test sequence with

different, combinations of numerator and denominator order. Table 3.3 summarizes

the results obtained. A 'Y' in Table 3.3 indicates a modeling technique achived an ex-

act time domain match between the model impulse response the modeled signal. The

most notable negative result is that both Prony's method and LSMYWE were ineffec-

tive when the numerator and denominator were overdetermined. Also, excess poles

without enough zeros causes problems for correlation domain iterative prefiltering.

Figure 3.9 is an example of the results obtained using LSMYWE when excess poles

and zeros are present. However. when these results were used to initialize iterative

prefiltering the excess poles and zeros were handled effectively.

The above results and experience gained during extensive modeling trials lead to

the following recommended strategy when modeling complex transients about which

ver" little is known:

I. Be conservative in estimating the denominator order. Signals composed of nar-

rowband components will generally be dominated by the few components high-

est in energy. Even if excess zeros are required to deal with a noisy signal (see

the next section) a small number of excess zeros will usually suffice when us-

ing LSMYWE. Pole detection techniques such as those of Cadzow[Ref. 51, and

Kumeresan. and Tufts [Ref. 21] may be helpful.
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Method Correctly Modeled? (Y/N)
P=10 P=4 P=10 P=6
Q=2 Q=10 Q=4 Q=10

Prony's Y Y N N
Method
LSMYWE Y Y N N

Iterative Y Y Y Y
Prefiltering
Corr Domain N Y Y Y
Iterative Pref
Akaike Y Y Y Y-]
MLE

TABLE 3.3: The effectiveness of thesis modeling methods on ARMA3
with varying overdetermination of model order. 'Y' indicates an exact
time domain match was achieved and 'N' indicates a poor time domain
match resulted.

2. Be expansive with estimates of numerator order. (Iterative prefiltering may be

an exception to this. See Chapter IV.) Additional zeros can help compensate

for mistakes made in data selection and effects of non-impulse excitation. Un-

needed zeros will usually migrate away from the unit circle. Note that when

using Prony's method or LSMYWE, one numerator order can be used when

calculating the denominator coefficients and an-ther numerator order can be

chosen when finding the numerator coefficients. Using Shank's method with

Pronv's method or LSMYWE provides the most flexibility when a model is

attempting to account for erroneous assumptions (e.g. data selection) which

may have been made by the user. The above recomendations are primarily

intended for Prony's method and LSMYWE. However, using any iterative tech-

nique requires reasonable initial estimates which are usually arrived at using

linear estimation techniques.
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Figure 3.9: Pole-zero plots for the sequence ARMA3 modeled with overde-
termined model orders of P=10 and Q=10. (a) Ismywe and Durbin's
method results in an unstable system, (b) iterative prefiltering provides
an effective estimation of the correct poles and zeros and an excellent time
domain match (not shown).
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F. NOISE PERFORMANCE

Kay [Ref. 551 has shown that for an all-pole process, additive white noise has

the effect of introducing zeros which migrate from the origin to the model poles as

the signal-to-noise ratio is decreased. Alternatively, if zeros are not introduced into

the model, poles move toward the origin as the signal-to-noise ratio is reduced [Ref.

561. In either case the overall effect is a loss of spectral resolution. This result extends

directly to pole-zero processes in white noise. Therefore one important feature of any

modeling technique is it's ability to resolve spectral components in the presence of

noise.

1. Rational Modeling of Noisy Data

Several authors have recently addressed the difficulties associated with

modeling a time series in which additive white noise is present. Kay [Ref. 57] has

noted that when the variance of the white noise can be estimated, its effect can

be removed from the zeroth autocorrelation lag to improve the resolution of pole

frequencies in correlation based autoregressive modeling. Alternatively, the zeroth

autocorrelation lag may be avoided by using (2.18). sometimes called the high order

Yule-Walker Equations, for Q > P or by eliminating the rows containing the zeroth

lag in certain lea-st squares formulations [Ref. 441. If the resulting high order Yule-

Walker equations yield a matrix that is well conditioned, this procedure is equivalent

to that of Kay above [Ref. 58]. Even with good correlation estimates. however, the

matrix RA is not guaranteed to be positive definite (i.e., invertible). Consequently,

RA is more likely to be a poorly conditioned matrix. This is not a problem in the

least squares formulation, (2.19), since the very act of choosing such a formulation

implies we expect a solution that is approximate.

A number of authors have noted that overdetermining the number of model

poles can have a profound effect when modeling noisy signals [Ref. 55, 56, 21, 36, 39].
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The explanation for this is that the extra poles are able to model the flat noise

spectrum of the signal, preventing that portion of the signal from interfering with

the poles needed for narrowband modeling. Finally, singular value decomposition has

been used to aid resolution by overcoming the conditioning problems that can result

from pole overdetermination and high order Yule-Walker equations [Ref. 5, 21. 36,

59, 60).

Little work has appeared which analyzes or demonstrates the effectiveness

of iterative prefiltering in the presence of additive white noise. Stoica and Soder-

strom [Ref. 611 have shown that iterative prefiltering will perform well for very long

stochastic data sequences in the presence of additive white noise if reasonable initial

cstimates are available to start the iterations. They also show that for arbitrary initial

estimates iterative prefiltering is not guaranteed to converge. Tufts and Kumeresan

[Ref. 62] have demonstrated superior performance for approximate MLE over linear

prediction methods when modeling sinusoids in white noise. Using the approximate

MLE method of Box and Jenkins. Cadzow found that such a method performed com-

parably to the overdetermined high order Yule-Walker equations for the sum of two

second order all-pole processes in white noise but with higher variance.

The above work suggests numerous possibilities in dealing with Toisy im-

pulse response data. The effectiveness of these techniques is evaluated empirically in

the following section by modeling noisy test sequences.

2. Discussion and Examples

The examples used to illustrate modeling performance are summarized

in Table 3.4. All noise modeling examples were conducted using the test sequence

ARMA4 CL (see Table 3.1). Figure 3.10 shows that Prony's method has difficulty

even when the SNR is as high as 30 dB although the excess poles introduced for

Figure 3.10b dramatically increase modeling effectiveness. The moderate impact of
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insuring that Q > P is illustrated for LSMYWE in Figure 3.11 in that the higher

frequency pole moves out toward the unit circle when the modeling order is altered

from (4,2) to (4,4). As with Prony's method, overestimating the number of poles

dramatically improves modeling in Figures 3.12 and 3.13. In Figure 3.14, the two

previous noise modeling examples are again modeled with the smallest singular value

set to zero to yield a data matrix of rank P. The technique is highly effective in

both cases. The effectiveness of singular value decomposition when overdetermining

the number of poles is illustrated by the examples in Figure 3.15. This is identical

to the result described in [Ref. 21]. Discarding the excess singular values aids both

in resolving the narrowband components present and in reducing the variance of the

excess poles. Figures 3.16 and 3.17 show the hazards that are possible when using

singular value decomposition. Any number of singular values discarded other than

the those necessary to achieve a data matrix rank equal to the transfer function

denominator order has undesirable side effects. Discarding too few singular values

such as in the Figure 3.16 examples will resolve the desired narrowband components

but also lead to excess poles near or even beyond the unit circle. This result will

at best increase the likelihood of spurious narrowband components and can, in the

worst case, lead to an unstable model. If too many singular values are discarded

as in Figure 3.17b, the accuracy of narrowband component estimates will be badly

degraded. Therefore. singular value decomposition, while potentially very useful in

modeling transient signals in noise, must be used with caution when the true model

order is unknown (which is basically always).

The iterative prefiltering. correlation domain iterative prefiltering. and

Akaike MLE algorithms were initialized with several of the preceeding examples and

the results are shown in and in Figures 3.18 and 3.19. Iterative prefiltering dramati-
cally improved the narrowband modeling of each example with which it was initialized.
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Figure 3.18a indicates that excess poles may cause problems by being close to the unit

circle. However, the ability of iterative prefiltering to cancel excess zeros with excess

poles demonstrated in this chapter may mitigate this effect. Correlation domain iter-

ative prefiltering also improved the resolution of each noise example on which it was

tried although its convergence was slower than and the bias of its results were higher

than standard iterative prefiltering. Also, correlation domain iterative prefiltering

showed a alarming tendency to place excess poles near the true poles on noisy sig-

nals. We experienced a great deal of difficulty in trying to model noisy signals with

the Akaike MLE algorithm. The primary problem encountered was early algorithm

termination due to an iteration which produced a non-minimum phase zero. Akaike

.ILE was able to improve the quality of a 'good' Prony estimate in Figure 3.19b.

Finally. Figure 3.20 shows a pole-zero modeling result corresponding to the example

in Figure 3.17a. Figure 3.20a shows the noisy signal used to during modeling and

Figure 3.20b compares the resulting model to the original noiseless impulse response.

G. MODELING PERFORMANCE SUMMARY

In modeling, the more that is known about the signal to be modeled, the better

the choice of model structure and modeling algorithm that can be made. The focus

of this thesis is the modeling of real world transient signals about which very little is

known and whose characteristics can vary widely. The type of model is also set by the

basic goal of this thesis, that is. a rational linear model. I'nder such circumstances.

a sensible criterion in choosing a modeling algorithm is robustness. For numerator

modeling. Shank's method is particularly robust in the sense that it provide the.

numerator coefficients which give the minimum norm, least squares fit based on the

previously determined denominator coefficients. Shank's method is insensitive to

time shifted data records and uncertainties in model order. Durbin's method is also
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effective but suffers from the limitations that only minimum phase models are possible

and the resulting models cannot account for time shifts. Since the Akaike MLE

algorithm requires a minimum phase initial estimate, Durbin's method can be used

provide an such an estimate. Equation (2.5) and spectral factorization are extremely

sensitive to degraded signals (e.g. noisy signals) and so will not be considered further.

Denominator modeling with Prony's method is extremely sensitive to even small

amounts of noise. This is only slightly less true of Akaike MLE. Also, Akaike MLE

cannot continue to iterate if a non-minimum phase model estimate is encountered. In

contrast, LSMYWE and iterative prefiltering are quite robust in noise and iterative

prefiltering is particularly robust to model order overdetermination. Our conclusion

is that for modeling the real world acoustic transients of the next chapter. LSMYVE

with Shank's method and iterative prefiltering are likely to perform the best on the

acoustic transients considered in the next chapter.
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Method(order P,Q) SNR Bias Variance of Pole Figure
(initialization) in dB (true minus model) Estimates
True Poles .6247 ± .7509j

.7144 -±-.671 Ii 3.1
Prony (4,2) 30 -. 0598 ±.0330j < 10-  3.l0a

poor poor
Prony (6,2) 30 .0283 ± .0186j < 10- 4  3.10b

.0176_ _ _.0074j < 10-4

LSMYWE (4,2) 15 .1788 ± .1872j < 10 4  3.1 la
.0346 ;.0180j .0012 + .0014j

LSMYWE (4.4) 15 .1475 ±. 1035j < 10- 4  3.11 b
.0386 F.0045j .0022 +.0019j

LSMYWE (6,2) 15 .0053± .0035i < 10-1 3.12a
.0027 ±.0014j < 10

- 4

LSMYWE (8,8) 10 .0040± .0054j < 10- 4  3.12b
.0002 ± .0037i < 10- 4

LSMYWE (8,8) 5 .0316 ± .0497j .0002 + .0001j 3.13a
.0147± .0212j .0008 + .0010j

LSMYWE (12.12) 5 .0115 ±.0077j < 10- 4  3.13b
.0017 ±,0063i < 10 - 4

Prony (4,2) SVD 30 -. 0010± .0040j .0001 + .0002j 3 14a
-. 0016 ±.0014j < 10

- 4 + 003j _

LSMYWE (4.4) SVD 15 .0017: .0005j < 10- 4  3 14b
- 0007 ±.0005j < 10 - 4

Prony (8,2) 20 -. 0030 ±.0387j .0001 4- .0001j 3.15a
.0275± .0188j 0001 + .0001j _

Prony (8,2) S'D 20 -,0105±.0043j < 10 -  3 15b
-.0059 ± .0077) < 10- 4

LSMYWE (8.8) SVD 5 -. 0074 ± .0100j .0006 + .0008) 3.16a I
-0070 ± .0086j .0003 + ,000.4j _

LSMYWE (8,8) SVD 5 -. 0012 ± .0069i .0004 + .0003j 3 16h
-. 0062 ± .0064j .0004 + .0008j t

LSMYWE (8,8) SVD 5 -. 0037 ± .0024j .0001 + .0001j 3.17a
-. 0049 ± .0022i 0002 + .0005 __

LSMYWE (8.8) SVD 5 -. 0342 ±.0526j .0001 + 0002j 3.17b
-0507 -±-.0730i < 10-4 1

Iterative 15 -. 0001 ± ,0001) < 10- 4  3.18a
Prefiltering (4,4) ._0002 ± .0001j < 10 - 4

Iterative 5 -. 0001 ± .0011j < 10-' 3.1sb
Prefilterinm (8,8) -. 0006 .0002j < 10 - 4

.r Domain (8,8) 5 -0054 ± .0030j < 10- 4 3.19a
lter Pref .0002 ±.0017j < 10

- 4

Akaike MLE (6.2) 30 - 0008 .0009j < 10- 4  3 19h
-. 0004; .0010j < 10-'

TABLE 3.4: Examples of pole-zero modeling performance of the impulse
response test sequence ARMA4 CL in added noise.
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Figure 3.10: Model pole scatter plots of twenty trials illustrating the ef-
fectiveness of overdetermining the number of model poles using Prony's
method. Test sequence is ARMA4 CL with 30 dB of noise. (a) Using the
correct model order, (4,2) and (b) Using two excess poles, model order
(6,2).
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Figure 3.11: Model pole scatter plots of twenty trials illustrating the mod-
erate benefits of zeroth lag correlation compensation by choosing Q = P
when using LSMYWE. Test sequence is ARMA4 CL with 30 dB of noise.
(a) Using the correct model order, (4,2) and (b) model order (4,4).
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Figure 3.12: Model pole scatter plots of twenty trials illustrating the
dramatic benefits of using excess poles with LSMYWE. Test sequence

is ARMA4c. (a) Model order (6,2) with 15 dB of added noise and (b)
model order (8,8) with 10dB of added noise.
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Figure 3.13: Model pole scatter plots of twenty trials illustrating the
dramatic benefits of using excess poles with LSMYWE. Test sequence
is ARMA4 CL. (a) Model order (8,8) with 5 dB of added noise and (b)
model order (12,12) with 5 dB of added noise.
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Figure 3.14: Model pole scatter plots of twenty trials illustrating the dra-

matic benefits of setting the smallest singular value of the data matrix to

zero (i.e. adjust data matrix rank to P) for Prony's method and LSMYWE.

Test sequence is ARMA4 CL. (a) Prony's method for model order (4,2)

with 30 dB of added noise and (b) LSMYWE for model order (4,4) with

15 dB of added noise.
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Figure 3.15: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for Prony's
method. Test sequence is ARMA4c. (a) Model order (8,2) with 20 dB
of added noise and no rank adjustment and (b) model order (8,2) with
20 dB of added noise with rank adjusted to Pt,,, = 4 using singular value
decomposition.
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Figure 3.16: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for LSMYWE.
Test sequence is ARMA4 CL. (a) Model order (8,8) with 5 dB of added
noise with rank adjusted to P,,., + 4 = 8 and (b) model order (8,8) with 5
dB of added noise with rank adjusted to P,,., + 2 = 6.
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Figure 3.17: Model pole scatter plots of twenty trials illustrating the effect
of adjusting the data matrix rank when using excess poles for LSMYWE.
Test sequence is ARMA4 CL. (a) Model order (8,8) with 5 dB of added
noise with rank adjusted to Pt,, = 4 and (b) model order (8,8) with 5 dB
of added noise with rank adjusted to P,,. - I = 3.
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Figure 3.18: Model pole scatter plots of twenty trials illustrating the abil-
ity of iterative prefiltering to improve the resolution of an LSMYWE es-
timate. In both cases the iterative prefiltering algorithm was initialized
using LSMYWE and Durbin's method. Test sequence is ARMA4 CL. (a)
Model order (4,4) with 15 dB of added noise and (b) model order (8,8)
with 5 dB of added noise.
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Figure 3.19: Model pole scatter plots of twenty trials on test sequence
ARMA4 CL illustrating (a) the ability of correlation domain prefiltering
to improve the resolution of an LSMYWE initial estimate, order (8,8), 5
dB added noise and (b) the ability of Akaike MLE to improve the resolution
of a Prony's method initial estimate, model order (6,2), 30 dB added noise.
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Figure 3.20: Pole-zero model of the ARMA4 CL test sequence with 5 dB
of additive white noise using LSMYWE and the smallest singular value
discarded. The MA part was found using least squares identification.
This example corresponds to the example in Figure (3.15a). (a) The noisy
sequence and (b) the estimated model impulse response and the original
noiseless sequence. Model order (8,8).
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IV. LINEAR MODELING OF ACOUSTIC
TRANSIENTS

A. ACOUSTIC DATA-GENERAL

The laboratory generated acoustic transient data available for this study were

generated in six different ways using ordinary laboratory objects. The data records

and their method of generation are summarized in Table 4.1. Each transient will

be refered to by the object used or the action performed to generate that particular

transient such as 'book' or 'slam'. The six data records modeled in this section are

shown in Figures 4.1a-f. The range of data that was actually modeled is listed in

Table 4.1. The sampling rate for the data is unknown but is not required since there

is no need to infer the specific characterics of the acoustic source or the acoustic

enviroment.

Data Name Generation Technique Indices of Modeled Data
(begin:end)

Book Dropped Book (55:454)
Slam Slammed Book (15:414)
Plate Struck Metal Plate (5:704)
Ruler Book Struck with Ruler (501:650)
Wood Clapped Wooden Blocks (171:320)

Wrench Dropped Wrench (101:250)

TABLE 4.1: Summary of Acoustic Transient Data and method of genera-
tion.

B. ACOUSTIC TRANSIENT MODELING RESULTS

Iterative prefiltering and correlation domain iterative prefiltering were found to

yield the most effective time domain match (in terms of squared error) between the
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original signal and the impulse response of the estimated model. LSMYWE with

the smallest singular value set to zero, as in Figures 3.13a,b, was used to find the

initializing model poles for the iterative algorithms. Removing the smallest singular

value allowed the LSMYWE algorithm to place zeros much closer to the unit circle

than was possible when all singular values were used. Prony's method and the Akaike

MLE algorithm were also used to model laboratory transients. However, their perfor-

mance was generally poor and they will not appear in the remainder of this chapter.

As noted in Chapter III, the problem with Prony's method is that it cannot easily

model highly resonant frequencies, that is, zeros close to the unit circle, in the pres-

ence of even small amounts of noise unless a large number of excess poles are used

and numerous singular values are discarded. This procedure is burdensome when

initializing iterative algorithms which do not require these excess poles. The primary

difficulty with Akaike MLE is its inability to handle zeros outside the unit circle. The

initializing model zeros were found using Shank's method which was by far the most

robust algorithm for finding numerator coefficients of the methods tested in Chapter

Three. In addition to the time domain plots of model impulse response, a pole-zero

model spectrum and pole-zero plot is be provided for each transient so that their

differing characteristics can be observed. All spectra were generated by squaring the

F'FT magnitude of either the model coefficients or the signal being modeled. Model

order was chosen based on the best educated guess of the author in accordance with

the recommendations in Chapter III. and augmented by trial and error.

The LSMYWE model used to initialize the iterative prefiltering algorithm for

the Slam transient is shown in Figures 4.2a and 4.3a. The corresponding iterative

prefiltering model shown in Figures 4.2b and 4.3b. Figure 4.4a shows the iterative

prefiitering model spectrum. Figure 4.4b illustrates a characteristic of the itera-

tive prefiltering algorithm that was observed throughout the modeling of acoustic
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transients. Namely, when an excess number of model parameters are used, the error

between the model impulse response and the signal being modeled increases dramat-

ically, mainly at the beginning of the signal. The subsequent application of Shank's

method is effective in reducing this initial error. This effect is shown in Figure 4.5a.

In general, the application of Shank's method as the last step in the modeling process

was found to reduce the the mean squared error between the original signal and the

model impulse response to some degree for all modeling methods. The sensitivity to

excess parameters shown by iterative prefiltering does not affect correlation domain

iterative prefiltering. Note that excess model zeros cause no difficulties in Figure

4.5b. For the Book transient, two modeling trials are shown. Figures 4.6 and 4.7

show the best time domain match obtained using iterative prefiltering and also an

LSMYWE. Shank's method. respectively. Although the LSMYWE model does not

achieve as effective an impulse response match as iterative prefiltering. with SV\D it

is more sensitive to the low energy. high frequency component present in the Book

transient at approximately 1. The best model of Ruler is shown in Figure 4.S. The

model spectra for Book and Ruler appear in Figure 4.9.

The assumption that the signal being modeled is a system impulse response

is problematic for the Plate. Wood. and Wrench signals since they do not exhibit

the rapid decay usually associated with an impulse response. However. it is still

possibl to achieve a resonable time domain match over small segments of each signal.

This result is illustrated in the models of in Figures 4.10. 4.11. 4.13. and 4.14. The

model spectra for Wood and Wrench are shown in Figure 4.15. The reason that

correlation domain iterative prefiltering was used for the Plate, Wood. and Wrench

signals instead of standard iterative prefiltering can be illustrated by comparing the

two techniques on a segment of the Plate signal. Although the impulse response error

of the two models in Figures 4.10 and 4.11 are nearly identical, Figure 4.12 shows
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that correlation domain iterative prefiltering clearly outperformed standard iterative

prefiltering in reproducing the spectrum _f the original sequence. In fact, at the more

suitable model order of (16,16), iterative prefiltering would not converge but instead

oscillated in a region of convergence for any model order over (12,12). Figure 4.16b

shows the model impulse response obtained when the large segment of Plate shown

in Figure 4.16a is modeled using iterative prefiltering. Although the time domain and

spectral properties of the model relative to the original signal are considerable poorer

than those obtained for a short segment, the model does clearly share many of the

features of the original signal.

C. ACOUSTIC SIGNAL MODELING SUMMARY

The modeling results obtained in the previous section of this Chapter indicate

the possible utility of pole-zero modeling algorithms with regard to modeling tran-

sient signals. Signals with decaying narrowband components (e.g. Slam. Book, and

Ruler i and signals with substained narrowband components (e.g. Plate. Wood. and

Wrench) can be modeled as the impulse response of a rational linear system. Robust

modeling algorithms are available which can effectively deal with the many uncertain-

ties associated with real world signals. Although the goal of achieving an exact time

domain match between the original signal and the pole-zero model impulse response

was not realized for any of the acoustic signals in this chapter, in all cases the degree

of match obtained clearly indicates that many signal characteristics are described by

the model.
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Figure 4.1: Laboratory generated acoustic transient data: (a) Slam and

(b) Book.
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Figure 4.1: continued Laboratory generated acoustic transient data: (c)

Ruler and (d) Plate.
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Figure 4.1: continued Laboratory generated acoustic transient data: (e)
Wood and (f) Wrench.
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Figure 4.2: Modeling the transient Slam-model impulse response versus
the original signal. Model order (6,8). (a) LSMYWE and Shank's method
and (b) iterative prefiltering initialized with (a).
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Figure 4.3: Modeling the transient Slam-model pole-zero plots. Model
order (6,8). (a) LSMYWE with SVD and Shank's method and (b) iterative
prefiltering initialized with (a).
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Figure 4.4: Modeling the transient Slam-model spectrum and and over-
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inal signal. (a) Model spectrum for iterative prefiltering with model order
(6,8) and (b) iterative prefiltering for model order(6,12). Note how excess
model parameters cause error at the beginning of the iterative prefiltering
model.
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Figure 4.5: Modeling the transient Slam-model impulse response versus
the original signal, overparameterized modeling effects. (a) The applica-
tion of Shanks method to the iterative preflltering model of order (6,12)
reduces the error at the beginning of th. model impulse response and

(b) correlation domain iterative prefllt,-rtng for model order (6,12) can
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Figure 4.6: Modeling the transient Book-model impulse response versus
the original signal. Model order (6,6). (a) LSMYWE with SVD and
Shank's method and (b) iterative prefiltering initialized with (a). Note
the sensitivity of LSMYWE with SVD to the high frequency components
present.
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ative prefiltering model impulse response versus the original signal and
(b) the corresponding model pole-zero plot. Note that the two beating
sinusoids have been effectively modeled.
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Figure 4.10: Modeling the transient Plate-Model order (12,12). (a) It-
erative prefiltering model impulse response versus the original signal and
(b) the corresponding model pole-sero plot.
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Figure 4.11: Modeling the transient Plate-Model order (16,16). (a) Cor-
relation domain iterative prefiltering model impulse response versus the
original signal and (b) the corresponding model pole-zero plot.
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relation domain iterative prefiltering model impulse response versus the

original signal and (b) the corresponding model pole-zero plot.
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Figure 4.16: Modeling the transient Plate over the large segment(450:1250) using iterative prefiltering, model order (16,16). (a) The orig-
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V. CONCLUSIONS

A. PERFORMANCE COMPARISON SUMMARY

The modeling of signals as the impulse response of a linear pole-zero system is

an important tool in digital signal processing. One natural area for applying such

an approach is in the modeling of transient, impulse response-like waveforms. The

specific approach taken in this thesis was to determine which pole-zero modeling al-

gorithms are most suited to modeling complex, real world transient waveforms. The

modeling criterion emphasized is to obtain the best (least squares error) time domazn

match between the model impulse response and the original signal. This criterion

was adopted because it provides a degree of signal characterization that is a step be-

yond normal power spectrum estimation. Indeed, the strength of pole-zero models is

their ability to describe not only the resonances present (model poles), but also how

these resonances are related (model zeros). Because of the widely varying character-

istics anticipated for real world signals, a key evaluation criterion for any modeling

algorithm is robustness. In particular, algorithms must be effective in the presence of

signal degrading effects like noise and model degrading effects such as unknown model

order. The performance of several selected algorithms were compared fo:- known im-

pulse response test sequences in Chapter III. The modeling experience gained in these

experiments was then applied to modeling laboratory generated acoustic transient

datain in Chapter IV as a test of 'real world' effectiveness.

Four basic algorithms were chosen for comparison: Prony's method, the least

squares modified Yule-Walker equations (LSMYWE), iterative prefiltering, and the

Akaike maximum likelihood estimator (MLE). An algorithm which is an extension of
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iterative prefiltering into the correlation domain was also presented. For those meth-

ods in which the model poles and zeros are determined separately (Prony's method

and LSMYWE), four methods for determining model zeros (i.e., transfer function nu-

merator coefficients) were considered: the upper partition of Prony's method, spectral

factorization, Durbin's method, and Shank's method. The major conclusions of the

algorithm performance comparisons conducted in Chapter III and Chapter IV are as

follows:

1. Algorithms that are unable to model zeros outside the unit circle (Durbin's

method, Akaike MLE) have limited versatility when modeling arbitrary tran-

sient waveforms. All the acoustic transients in Chapter I' required a non-

minimum phase model to obtain the best time domain match.

2. The most robust and effective method for finding zeros that gives the best least

squares time domain match was found to be Shank's method. In fact, applying

Shank's method as a last step improved the final model of all algorithms to

some degree. The upper partition of Prony's method and spectral factorization

are not very useful because of their extreme sensitivity to noisy or time shifted

signals.

3. Prony's method and Akaike NILE have difficulty modeling signals in which

additive noise is present. Even small amounts of additive noise causes a dramatic

loss of pole frequency resolution for Pronv's method. The use of excess poles

and singular value decomposition were found to be effective in overcoming these

effects but these methods depend on a knowledge of correct model order. Also.

unlike spectrum estimation, excess poles must be retained for time domain

matching. This is in direct contrast to the parsimonious use of model parameters

normally provided by a pole-zero model. The difficulties encountered with the
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Akaike MLE were computational in nature; for noisy signals the Akaike MLE

algorithm usually terminated prematurely when either a non-minimum phase

model was encountered during an iteration or when a numerical overflow was

induced by an unstable model estimate.

4. LSMYWE with singular value decomposition and iterative prefiltering (includ-

ing the correlation domain version) were found to be the most effective algo-

rithms for modeling a signal when additive noise is present. If the true model

order of a system is unknown, it is best to discard only one singular value.

Almost all the resolution gain occurs with the first singular value. I)iscarding

additional singular values is intended to reduce the variance of excess poles but

it will cause poles to be biased if all model poles are necessary for signal model-

ing. Both of these methods demonstrated the consistent ability to model poles

very close to the unit circle. This capability was essential when modeling the

acoustic transients used in this thesis.

Combining the above observations leads to our recommended strategy for mod-

eling an arbitrary transient signal. First, use LSMYWE with one singular value re-

moved and Shank's method to find an initial model estimate. Next. use this estimate

to initialize either iterative prefiltering or correlation domain iterative prefiltering. Fi-

nallv, if desired, apply Shank's method to optimize the time domain fit of the model

zeros.

B. RECOMMENDATIONS FOR FUTURE STUDY

The results of Chapter IV indicate that there are pole-zero modeling algorithms

available that are sufficiently robust to be useful for modeling many conmlex, real

world transients. A number of issues regarding the pole-zero modeling of transient

signals and the application of such models require further study. These issues include:
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1. The degree to which the noise performance of correlation domain iterative pre-

filtering may be improved by introducing noise compensation of the autocorre-

lation sequence requires study.

2. A study of the effectiveness of model order determination techniques when ap-

plied to transient modeling would facilitate more effective use of transient mod-

eling techniques.

3. The effectiveness of iterative prefiltering and correlation domain prefiltering as

a spectral estimation technique should be explored further.

4. The ability of pole-zero models to describe the time domain characteristics of

a signal could aid in the detection of signals. Such an application needs to be

persued.

. A stud) of the structural relationship of pole-zero models to the specific systems

that generate transients may increase the usefulness of such models.
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