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ABSTRACT A-1

Moment models of carrier transport, derived from the Boltzmann equation, have made
possible the simulation of certain key effects through such realistic assumptions as energy
dependent mobility functions. This type of global dependence permits the observation of
velocity overshoot in the vicinity of device junctions, not discerned via classical drift-diffusion
models, which are primarily local in nature. It has been found that a critical role is played
in the hydrodynamic model by the heat conduction term. When ignored, the overshoot is
inappropriately damped. When the standard choice of the Wiedemann-Franz law is made for
the conductivity, spurious overshoot is observed. Agreement with Monte-Carlo simulation in
this regime has required empirical modification of this law, as observed by IBM researchers,
or nonstandard choices. In this paper, simulations of the hydrodynamic model in one and
two dimensions, as well as simulations of a newly developed energy model, the RT model, will
be presented. The RT model, intermediate between the hydrodynamic and drift-diffusion
model, was developed at the University of Illinois to eliminate the parabolic energy band and
Maxwellian distribution assumptions, and to reduce the spurious overshoot with physically
consistent assumptions. The algorithms employed for both models are the essentially non-
oscillatory shock capturing algorithms, developed at UCLA during the last dccade. Some
mathematical results will be presented, and contrasted with the highly developed state of
the drift-diffusion model.
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1 Introduction

During the last decade, device modeling has attempted to incorporate general carrier heating,
velocity overshoot, and various small device features into carrier simulation. The popular
wisdom emerging from such concentrated study holds that global dependence of critical
quantities, such as mobilities, on energy and/or temperature, is essential if such phenomena
are to be modeled adequately. In this paper, we examine in detail the simulation of two
such energy models, including the hydrodynamic model and the RT model. We describe the
models, summarize some associated mathematical results, as well as the basic features of the
numerical algorithm, and then present the results of extensive numerical simulations for two-
dimensional MESFET devices, and for one-dimensional diodes. Both models represent one
carrier flow. The hydrodynamic model contains hyperbolic modes related to the momentum
equations, while the RT model does not possess such modes. In both cases, however, we
employ a conservation law format, and numerical methods suitable for such systems. The
ENO (essentially non-oscillatory) method employed makes use of adaptive stencils, and is
particularly adept at shock capturing if the parameter regime crosses from supersonic to
subsonic. Even if this does not occur, the convective terms are effectively discretized, via
this procedure, in both models. The first use of such methods in device simulation was in
(7], followed by the study [6], in which shocks were detected in micron devices at liquid Ni-
trogen temperatures, and at room temperature in shorter devices, by independent numerical
techniques.

Our development of the RT model follows that of [5]. These researchers attempted
to utilize a microscopic relaxation time approximation, which would allow for nonparabolic
energy bands and non-Maxwellian distribution functions. The approach allows for parameter
fitting of certain key quantities via Monte-Carlo simulation.

One of the principal conclusions of the paper is the essential dependence of the hydrody-
namic model upon the heat conduction term. Standard choices lead to numerically detected
spurious overshoot at the drain junction of an nt —n —nt* diode, while other choices signifi-
cantly damp this overshoot. Monte-Carlo simulations show that substantial underestimation
occurs when the heat conduction term is neglected. We refer the reader to [10], and to the
simulation results of this paper for amplification. The RT model was developed, partly in
response to the continuing debate concerning heat conduction processes in the hydrodynamic
model.

The status of mathematical results differs sharply between the hydrodynamic model,
on the one hand, and the drift-diffusion model on the other. For the former, we have

summarized two results, one by Gamba (cf. [8]) for an idealized model, in which the adi-




abatic relation is employed, and another by Gardner, Jerome, and Rose (cf. [9]) in which
a Newton-Kantorovich theorem is developed for the n* — n — n* diode, yielding existence
and convergence in a specialized subsonic regime. The drift-diffusion model, on the other
hand, has been widely studied. Existence and approximation results have been carefully
developed, although uniqueness is still not well understood for this model. Existence for
the steady-state model is due in varying degrees of generality to many authors, including
Mock ({17]), Seidman ([21]), and the first author ({13]). A convergence theory, based upon
a calculus due to Krasnosel’skii, was presented in ([15]). Mathematical results have not yet

been developed for the strongly nonlinear RT model.

2 Hydrodynamic and Drift-Diffusion Models

2.1 Mass, momentum and energy transport equations

The equations as presented here are discussed in references [3], [20], and [4]. They are derived
as the first three moments of the Boltzmann equation, with the latter written for electrons

moving in an electric field as

d
U v f-SFvf=c (1)
ot m

Here, f = f(«,u,t) is the numerical distribution function of a carrier species, = is the

position vector, u is the species’ group velocity vector, F' = F(z,t) is the electric field, e
is the electron charge modulus, m is the effective electron mass, and C is the time rate of
change of f due to collisions. In the Boltzmann equation above, it has been assumed that the
traditional Lorentz force field does not have a component induced by an external magnetic
field. The moment equations, which will be derived subsequently, are expressed in terms of
certain dependent variables, where n is the electron concentration, v is the average velocity,
p is the momentum density, P is the symmetric pressure tensor, q is the the heat flux, e; is

the internal energy, and (', C,, and Cw represent moments of C, taken with respect to the

functions
holu) = 1,
hi(u) = mu,
ho(u) = n Fu 2.
2
The equations are given by:
an
. v ! = "ns 2
i + V- (nv)y=( (2)
dp N .
7)7—# o(Vep)y+(p - Ne==cnF =N P+ (. (3)
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0
at(m_n | v |* +mne;) + V- (v {—— | v |* +mnes}) =

—env- F —V-(vP)-V-q+ Cw. (4)

The first Maxwell equation for the electric potential must be adjoined; each species con-
tributes a corresponding moment subsystem, with appropriately signed charge. We begin the
derivation with the definitions and assumptions. The concentration is given by n := [ f du;
the average velocity by v := } fuf du; the momentum by p := mnv; the random velocity
by ¢ := u — v; the pressure tensor by P;; := m [ ¢;c; f du; and the internal energy density by
er := 3= [ | ¢ |* f du. This function represents energy/unit mass/unit concentration. The
heat flux ¢ is given by ¢; := Z [¢; | ¢ |* f du. Finally, for reference in subsequent subsec-
tions, the electron current density is given by J := —env, and the energy flux is given by

S:= [u{% | u |*}f du. The assumptions on f are now stated. The function f is assumed

to decrease sufficiently rapidly at infinity:

im hi(u)f(u) =0, i=0,1,2.

Ju|—o00

The derivation of (2), (3), (4) proceeds by multiplying the Boltzmann equation (1) by
ho, h1, and hq, respectively, and integrating over group velocity space. With the application
of certain standard identities ([16]), the mass/momentum/energy system is obtained. Ir
addition to these transport equations, we have Poisson’s equation for the electric field, whkere

nq := doping and e := dielectric:

V- (quS) = - Z € n; — Tiq. (6)

Here, we have used the convention that there are different species, each «.i concentration n;
and charge e;. The entire system consists of equations (2), (3), (4) repeated according to

species, and (5), (6).

2.2 Moment closure and relaxation relations

The system derived in the preceding subsection has fif‘een dependent variables in the case
of one species, determined by ¢, n, v, P, e, and y. By moment closure is meant the
selection of compatible relations among these va:iables, so that the number of equations is
equal in number to the remaining primitive variables selected. The relations to follow are
characterized by the isotropic/parabolic cuergy band assumption. We begin by introducing

a new tensor variable T', the carrier teinperature, defined by
P, = nkT;,

3




where k is Boltzmann’s constant, and a scalar variable W, the total carrier energy. A
program of reduction to a set of basic variables, n, v, W, and ¢, or a set equivalent to these,

can be implemented by the following assumptions:

o The pressure tensor is isotropic, with diagonal entries P, and off-diagonal entries zero,

for a suitable scalar function, P,. P, is related to e; via mne; = %P,.

e It follows from the previous assumption that temperature may be represented by a

scalar quantity T, and that the internal energy is represented in terms of T' by

mey; = ng.
2

o The total energy density (per unit concentration) w is given by combining internal

energy and parabolic energy bands with m assumed constant:
1 2
w=me;+§m|v],
and the total energy (per unit volume) W is the product, W = nw.
o The heat flux is obtained by a differential expression involving the temperature:
g =—xrVT.

Here,  is the thermal conductivity governed by the Wiedemann-Franz law (cf. [2}),
described by

b) k2u0 T r
n—-(§+7‘)n e T(T(;) . (7)
The standard choice for 7 is 7 = —1, but this has some associated difficulties. This

will be amplified later in the paper. Here we simply remark that the term raised to
the exponent r in (7) is proportional to the mobiliiy, which in turn is proportional to

the momentum relaxation time.

In the case of N species, the closure relations determine (d + 2)N + 1 variables in d
spatial dimensions. It is possible to rewrite the system (2, 3, 4) with the closure assumptions

incorporated. We have the following.

dn
o7 TV ) = G, (8)
)
((,7? +o(Vp)+(p-Vv = —enF =V (nkT) + C,, (9)
i)—;:—/ + V- (v W) = —env- F=V-(vnkT)
F

+V-(kVT) + Cyy. (10)




The final step deals with the replacement of the collision moments. Motivated by the
approach of [18], (1], [20], and [11], we define the recombination rate R and the momentum

and energy relaxation times, 7, and 7, respectively, in terms of averaged collision moments
as follows.

1. The particle recombination rate R is given by

R::—Cn:=—/Cdu.

2. The momentum relaxation time 7, is given via

P._ —m/uC du := —C,.

Tp

3. The energy relaxation time 7, is given via

W -W,

Tw

:=m/|u|2fdu::0w.
2
Here, Wy denotes the rest energy, %kTo, where Tp is the lattice temperature.

The forms for the relaxation times used in [1] and retained by subsequent authors are:

T r

T = CP(FO)’ (11)
T 1

Tw = CwT—_{-—TO+-2—Tp. (12)

Here, ¢, and c, are physical constants, and the standard choice for 7, just as in (2.7), is —1.

2.3 Drift-diffusion model

The drift-diffusion model may be obtained by taking zeroth order moments of the BTE

and adjoining the Poisson equation. Thus, one obtains the system for N carriers with

concentrations n; and charge e;, 1 = 1,---, N:
an,‘
51 +V-J; = —R,, (13)
F = —Vo, (14)
V-(eVé) = = en; —ng. (15)

There still remains the issue of determining the constitutive current relations. Classical

drift-diffusion theory gives, for N =2, n; = n, and ny = p,

Jo = —ep,nVo +eD,Vn, {
Jp = —eu,pVo—eD,Vp. (

p—
-1 (o]
S N

-

o)




The introduction of exponential relations for n and p is also common, as is the use of the
Einstein relations linking the mobilities, yi,, 15, and the diffusion coefficients D,, D,. These

relations are specified by

Du = (KT/e)n, (18)
D, = (KT/e)us. (19)

It is also possible to derive the constitutive relations (16), (17), from the first order moment
relations under the assumption that the momentum relaxation times tend to zero. The
details are given in [20]. In fact, the constitutive relations include a heat flux term as well,
which is suppressed at constant temperature. If it is not suppressed, one has an energy drift-
diffusion model. In this derivation, one uses the definition of mcbility in terms of relaxation

time.

3 RT Models

In this section, we shall employ a microscopic assumption upon the momentum relaxation

time, viz. , we shall assume that the collision term C in (1) is of the form,

_h

Tp

C = (20)

where f; is the odd part of f. Note that this contrasts with the macroscopic assumption on
7p, employed in the hydrodynamic model as described in Section 2. There, the representation
defining 7, was a post averaged expression. Here, the expression is employed in the averaging.

In this case, we may obtain an expression for the energy flux S:
S = —[nuf F + V(nDF)), (21)

where uZ and DF are tensor expressions for mobility and diffusion, defined in terms of
moments, and F represents average energy per unit concentration. The details are furnished
in [5]. It is also shown there that the current density has the usual drift-diffusion form, with
tensor expressions for mobility and diffusion. The RT model makes the following microscopic

assumptions, with distinction between £ and its average, E.

. The even part of f is isotropic, and a function of £ alone, and the relaxation time is

an inverse power function of &:

Jo = fol€),
T, = 1,(&)=CE.
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2. The microscopic kinetic energy is a quadratic function of £, and the mass is not assumed
constant:

G(E) := % |ul? =€+ af?, (22)

where « is an appropriate fitting parameter.

3. The temperature is a modified variable in terms of which the following constitutive
relation holds for E: 3 5
E= akT(l + iakT). (23)

Equation (23) allows for nonparabolic energy bands as well as non-Maxwellian distributions.
Altogether, the model may be written in terms of the Poisson equation, (6), in conjunction
with the system,

v.J = 0, (24)
V.§ = J- F-n (‘aa—f Icoll)- (25)

Here, J and S have been described previously, the latter in (21). In the expressions for J
and S, the assumptions made for the model lead to scalar representations for the mobility

and diffusion coefficients. For example, the choice made in [5] leads to

o= poTo/T, (26)
uF = g(l—%kT)ka. (27)

The diffusion coefficients are defined by Einstein’s relations. The collision term in (25) is
a specified quadratic function of 7. One significant advantage of the microscopic relax-
ation time (RT) assumption is that certain key parameters may be fitted via Monte-Carlo

preprocessing, ensuring reliability of their values.

4 Mathematical Results for the Hydrodynamic Modél

In this section, we shall describe some recent mathematical results, obtained in one spatial
dimension. In the first subsection, we shall present existence and boundary layer results for
a simplified version of the steady state hydrodynamic model. This will be followed by a

convergence analysis for Newton’s method in the subsonic case.

4.1 Existence and boundary layer theory

We first write down the one dimensional evolution system in the case of a single carrier, in
the absence of recombination.
dn  d(nv) ‘
a o = (

o
03]
S

=1




Op | 9(pv+knT) _ P

FT A " enF o (29)
oW 4 A(vW + vknT) = —envF 4+ d(k(0T)/(0z)) W ~ Wo’
ot oz oz Tw

oF
65; = —€n — Ny. (31)

(30)

The corresponding steady state system is obtained by setting the time derivatives equal to
zero.

If we rewrite the second steady state equation by use of the pressure, P, we obtain the
equation,

d(pv+ P) P
5 = —eF - (32)

The approach of (8] is to eliminate the energy equation (30) from the system, and replace

its role by a relation in the spirit of gas dynamics, i. e. by the constitutive relation,
P(n) = Kn", y > 1. (33)

When units are selected in which e =1, e =1, m = 1, and K = 1, we obtain the system, in

which n and ¢ are the only dependent variables,

J = nv = constant, (34)

(F)ei= (2 +07), = —ng, = L= =S(¢sn),, (35)
p

$rz = N~ ng. (36)

One can nominally specify boundary conditions on n and ¢ at the endpoints of the device,
taken here as the interval, [0, 1]. If the doping is such that the built-in potential is the same

at both ends of the device, then we may take,

$(0) =0, ¢(1) = ¢1, (37)
for ¢ and
n(0) = no, n(1) = nq, (38)

for n, where ¢, must satisfy the following consistency relation with respect to j, ng, and n;:

b1 = Flmd) = floo,j) 45 [ s (39)

Here,
2

J(n,j) = 3=+ (40)




It is shown in [8] that a weak solution exists for the system (34), (35), (36), satisfying
the boundary conditions exactly, or, in lieu of this, satisfying precise limiting relationships.
The result for ¢ is classical, because the equation is elliptic. The result for n is provisional,

and is detailed now. If 7 > 0, there is a weak solution n such that the relation,
n =G+ a, (41)

holds, where G is Holder () continuous, and « is monotone increasing. Although n need

not be of bounded variation, it is an entropy solution, in the sense that the function of z,
H(n(z)) = (F(n(z)) — F(nmin))signum(n(z) — npmin) + Ce, (42)

is monotone increasing. Here, n,;, is a minimum (location) for F, and C = sup S over
relevant arguments. The following precise statement is available for subsonic boundary

conditions. If ng,n; > Nmin, then the following holds.

e Either

Tl(].) = N1,
e or

lil}l_ n(z)

exists, and is a supersonic value, i. e. , is less than n,,;,, and even less than the conjugate

value of n,.

o Similarly, either

Tl(O) = Ny,
® Or
Jig e

exists and is not less than n,,;,.
In the second instance of both cases above, boundary layers occur, the one on the right
involving transition through the supersonic regime.
4.2 Newton convergence theory

In this subsection, we order the basic variables as v, n, T, and @, because of symmetry
considerations. Dirichlet boundary conditions ure imposed, on n, T, ¢, with n(zmin) =
n(Zmaz)- In one dimension, the steady state equations are obtained from (28), (29), (30), and

(31) by setting the time derivatives equal to zero. Dirichlet boundary conditions are imposed

9




in this subsection on n, 7', and ¢, with n(,im) = n(&mer). Since, by the conservation of
mass equation, nv = j, it follows that the boundary conditions for v are periodic. The map
defined by bringing all terms to the left hand side of the steady state system is called ®. The
linearized equations thus assume the form, where the boundary conditions are homogeneous
Dirichlet conditions for én, 87", and ¢, and the boundary conditions on év are prescribed

to be periodic,

0 6v 50 7
0 (A B d | én E F| | én .
ragenty || o D} dc | T +{G H] o7 | =7 (143)

—fee | 56 8¢

The (spatially) dependent eigenvalues of the symmetric matrix A are calculated to be

T 1 T \?*
/\:1(11+——>i—\/<n+—F—> ——4(2—-1)2). (44)
2 mn 2 mn m

A:f’? i ] (45)

mn

Here.

and the smaller eigenvalue is positive if n and T are strictly positive, and if
A T
vt < — = (46)
m

This typr of point in function space is termed a subsonic point. This case was first considered
in [9], where damped Newton/standard finite difference methods were presented. When
Newton’s method is employed in this way, it is essential to determine conditions under
which the lincar increments are appropriately bovnded. This is equivalent to uniform bounds
for the operator derivative inverse maps, and represents one of the three properties for an
(exact) operator Newton method to yield existence of a root and R-quadratic convergence.
The other two are sullicient regularity, and a sufficiently small starting residual, as measured
in the range space norm. Explicit representations of B, C', D and of F, G, H are given in
[L1]. Morecover, if the system map ¢, subject tc appropriate Dirichlet boundary conditions
on n, T, and . and periodic boundary conditions on v, accordingly l:as the domain D¢ C
X = [ W [T W™ ana range in Y = []} L™, then (46) will hold for every element
in a closed ball B, C X. centered at a subsonic element ug € X, such that n and T are
strictly positive. if 1y 1s sufliciently small. It is appropriate to assnme at the outset, then,
that Dy C I3,,. so that every function point in Dy satisfies (46); we may also assume that
n and T are aniformly bounded away from zero in this set.

The Lipschitz property of the map ¢, where here we view the system (43) as the repre-

sentation for '(von T 0)(z,w) = [, with
s=(eeoon). w = (01, 60). [=h2). (47)

10




is evident from the representation for ®’.

The uniform inverse bounding proceeds as follows. As shown in [9], with the function
spaces selected in this paper, the [{' product norm of z can be estimated in terms of the
L? norms of w, &', and f;, under the conjunction of the hypothesis (46) and the L? x L?

coerciveness assumption,

, dA
A=F+FE" - d—/ is uniformly positive definite. (48)
z

Here, £~ is the matrix transpose of F and the latter is defined by

dn dv
E= d v : 4
[z—;+:‘; (=% T—] (49)

A final calculation, making use of the inner product of [0,w] with (43), and the hypothesis,
hqy is positive, and sufficiently large, (50)

where hq; is the nonzero entry of H, given by

b - d_v+ e T — (W = Wo)r,,
"7 dr T2 ’

with 7, = %r?’ shows that the f/T product norm of [2,w] is estimated in terms of the L? norm

of f. This series of calculations controls the L* norm of [z,w]; the L* norm of [z/,w"] is
now estimated by direct use of the system (43), making use of the fact that [v,n,T,¢] € B,,.

We have now outlined the proof of the following.

Theorem 4.1 Let the function spaces X and Y be selected as above, let the steady state
system map ® be given with Dirichlet boundary conditions on n, T, ¢, and periodic boundary
conditions on v, such that D¢ C B,,, where every point in By, is a subsonic point, with uni-
form positivity bounds. If ({8) and (51) hold, and rq is such that ®(xo) is sufficiently small,
then an R-quadratically convergent Newton sequence {x,} may be defined in the standard

way, with limit x, satisfying ®(x) = 0.




5 Discrete Schemes Based on Adaptive Stencils: ENO

In this section, we shall briefly describe the ENO schemes as developed in {24] and [25].

Consider a system of hyperbolic conservation laws of the form

d
Ut+zfi(u)r.' =g(u,x,t), (52)

where
)T

\
uz(ula"'aum ,1‘:(1:1?"'337"1),

and the hyperbolicity condition,

i Hf
Z {ig{t—' is diagonalizable, with real eigenvalues,

1
holds for any real £ = (£;,--+,£4). An initial condition is adjoined to (52).

For systems of conservation laws, local field by field decomposition is used, to resolve
waves in different characteristic directions. Analytical expressions are employed for the
eigenvalues and eigenvectors of an averaged Jacobian matrix. Typically, the Roe average
[19] is employed. One feature of the ENO schemes in {24] and [25], which is distinct from
the original ENO schemes of Harten et al [12], is that multidimensional regions are treated
dimension by dimension: when computing f;(u)., in any particular direction, variables in all
other directions are kept constant, and the Jacobians are treated in this direction. This, in
essence, reduces the determination of the scheme to the case of a single conservation law in
one spatial dimension. Thus, to describe the schemes, consider the scalar one dimensional

problem, and a conservative approximation of the spatial operator given by

L(u); = —i(ﬂﬁu - fi_1). (53)

2 2

Here, the numerical flux f is assumed consistent:

A

j]+ :f(uj—ly""uj+k); f(u""vu)‘:f(u)' (54)

L
2

The conservative scheme (53), which characterizes the f divided difference as an approx-

imation to f(u),, suggests that f can be identified with an appropriate function h satisfying

fatey = [ 7 he) de. (55)

If 1 is any prumitive of h, then h can be computed from H'. H itself can be constructed

by Newton's divided difference method, beginning with differences of order one, since the

12




constant term is arbitrary. The necessary divided differences of H, of a given order, are
expressed as constant multiples of those of f of order one lower. After the polynomial @ of

degree r + 1 has been constructed, set

~

d
fj+% = EQ(‘I’)11=11+§, (56)

to obtain an rth order method. The construction is based on an adaptive stencil in the

following sense:

e One begins with an appropriate starting point to the left or right of the current “cell”

by means of upwinding as determined by the sign of the derivative of a selected flux.

e As the order of the divided differences is increased, the divided differences themselves
determine the stencil: the “smaller” divided difference is chosen from two possible

choices at each stage, ensuring a smoothest fit.

e Lax-Friedrichs building blocks or Roe building blocks can both be used. For the lat-
ter, in cells with sonic points, a local Lax-Friedrichs building block is used to avoid

expansion shocks.

Steady states are reached by explicit time stepping of arbitrary order; nonstandard high
order Runge-Kutta methods exist [24] which preserve nonlinear stability of the first order
Euler forward version under suitable CFL time step restrictions. The computer program
is fully vectorized for computations on Cray supercomputers. For details of the efficient

implementation, see [23].

6 Conservation Law Format for Hydrodynamic and
RT Models

In this section, we shall specify the conservation law format for the two dimensional hydro-

dynamic model, and for the one dimensional RT model.

6.1 Hydrodynamic model conservation format
Define the vector of dependent variables as
u = (n,o,7, W), (57)

where p = (o,7). The system (8), (9), (10) can be written in the concise form, in two

dimensions, as
us + fi(u): + fa(u)y = c(u) + Gu, ¢) +(0,0,0,V- (,«VT)). (58)

13




The following identifications have been made in (58).

. o 2 o? T2 ot 50W ot 4 7?
filu) = (;n—’ 3 mn +W- 2mn)’ mn’ 3mn C 3mn? )y (59)
r or 2 712 o? 5tW ot 4 12
(L L we -
falu) m’ mn’ 3(mn t 2mn)’ 3Imn T 3m?2n? ), (60)

C(u) = (0’_2’_1’_LV___.%), (61)

Tp Tp Tw

G(u) = (0,—enkFy,—enFy, —enF-v). (62)

The eigenvalues and eigenvectors of f and f) are known (cf. [23]), and are readily

incorporated into the field by field decomposition required for the implementation of ENO.

6.2 RT conservation format

We shall present the conservation law form of the RT model. We begin with the vector form,

ue + f(u)e = g(u)zz + h(u). (63)
In equation (63),
u = (en, 2"-?), (64)
flu) = ¢'n(ep(E), u¥(E) + D(E)), (65)
g(v) = (nD(E), nDE(E)), (66)
M) = (0 enu(E)@)? + Sn— manD(E) — n( o ). (&)

It can be shown that the left hand side defines a hyperbolic system, since the eigenvalues of

f'(u) are real, for all positive n and T'.

7 Numerical Simulation Results

We now present numerical simulation results for one carrier, two dimensional MESFET
devices and one dimensional diodes. The third order ENO shock-capturing algorithm with
Lax-Friedrichs building blocks, as described briefly in Section 5 and in more detail in [25], is
applied to the hyperbolic part (the left hand side) of Equations (6.2) and (6.7). A nonlinearly
stable third order Runge-Kutta time discretization {24] is used for the time evolution towards
steady states. The forcing terms on the right hand side of (6.2) and (6.7) are treated in a

time consistent way in the Runge-Kutta time stepping. The double derivative terms on the
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right hand side of (6.2) and (6.7) are approximated by standard central differences owing to
their dissipative nature. The Poisson equation (2.6) is solved by direct Gauss elimination for
one spatial dimension and by Successive Over-Relaxation (SOR) or the Conjugate Gradient
(CG) method for two spatial dimensions. Initial conditions are chosen as n = ny for the
concentration, T' = Tp for the temperature, and u = v = 0 (two spatial dimensions) or u = 0
(one spatial dimension) for the velocities. A continuation method is used to reach the steady
state: the voltage bias is taken initially as zero and is gradually increased to the required
value, with the steady state solution of a lower biased case used as the initial condition for

a higher one.

7.1 Two dimensional MESFET

We simulate, using the Hydrodynamic model (6.2)-(2.6), a two dimensional MESFET of the
size 0.6 x 0.2um?. The source and the drain each occupies 0.1um at the upper left and the
upper right, respectively, with the gate occupying 0.2um at the upper middle (Figure 1, left).
The doping is defined by ng = 3x10'7em™3 in [0,0.1] x [0.15,0.2] and in [0.3,0.6] x [0.15,0.2],

and ng = 1 x 107 em=3

elsewhere, with abrupt junctions (Figure 1, right). A uniform grid
of 96 x 32 points is used. Notice that even if we may not have shocks in the solution, the
initial condition n = ng4 is discontinuous, and the final steady state solution has a sharp
transition around the junction. With the relatively coarse grid we use, the nou-oscillatory

shock capturing feature of the ENQ algorithm is essential for the stability of the numerical

procedure.
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Figure 1: Two dimensional MESFFT. Left: the geometry; Right: the doping ny4

We apply, at the source and drain, a voltage bias vbias = 2V. The gate is a Schottky




contact, with a negative voltage bias vgate = —0.8V" and a very low concentration value
n = 3.9 x 10°cm™ obtained from Equation (5.1-19) of {22]. The lattice temperature i
taken as Ty = 300° K. The numerical boundary conditions are summarized as follows (where

&y = ‘—“flezln (’;—4) with &, = 0.138 x 107, ¢ = 0.1602, and n; = 1.4 x 10%m~2 in our units):

o At the source (0 < z < 0.1,y = 0.2): & = ®; for the potential; n = 3 x 107 cm 3
for the concentration; T' = 300° K for the temperature; u = Oum/ps for the horizontal
;]

velocity; and Neumann boundary condition for the vertical velocity v (i.e. 5% = 0

where 17 is the normal direction of the boundary).

e At the drain (0.5 < 2 < 0.6,y = 0.2): & = &y + vbias = &y + 2 for the potential;
n =3 x 10'7cm ™ for the concentration; 7 = 300° A" for the temperature; u = Qum/ps
for the horizontal velocity; and Neumann boundary condition for the vertical velocity

V.

o At the gate (0.2 <z <04,y =0.2): & = ¢y + vgate = &y — 0.8 for the potential;
n = 3.9 x 10°cm ™ for the concentration; T = 300° K for the temperature; u = Qum/ps
for the horizontal velocity; and Neumann boundary condition for the vertical velocity

V.

£
1L

o At all other parts of the boundary (0.1 <2 <02,y =0.2; 04 <z < 0.5,y = 0.2
r=0,0<y <02 2=06,0<y<02 and 0 <2z <£0.6,y = 0), all variables are

equipped with Newmann boundary conditions.

The boundary conditions chosen are based upon physical and iumerical considerations.
They may not be adequate mathematically, as is evident fromn some serious boundary layers
observable in Figures 2 through 6. ENO methods, owing to their upwind nature, are robust
to different boundary conditions (including over-specified boundary conditions) and do not
exhibit numerical difficulties in the presence of such boundary layers, even with the extremely
low concentration prescribed at the gate (around 107!? relative to the high doping). We point
out, however, that boundary conditions affect the global solution significantly. We have also
simulated the same problem with different boundary conditions, for example with Dirichlet
boundary conditions everywhere for the temperature, or with Neumann boundary conditions
for all variables except for the potential at the contacts. The numerical results (not shown
in this paper) are noticeably different. This indicates the importance of studying adequate
boundary conditions, fiom both a physical and a mathematical point of view.

In Figures 2 through 6, we show pictures of the concentration n, temperature T, horizontal

velocity u, vertical velocity v, and the potential . Surfaces of the solution are shown at
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horizontally, are shown

the left, and cuts at y = 0.175, which cut through the middle of the high doping “blobs”

at the right.

r
200004

100000

surface of the solution;

Figure 2: Two dimensional MESFET, concentration n. Left

Right: cut at y = 0.175
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Left: surface of the solution;

Figure 3: Two dimensional MESFET, temperature 7

Right: cut at y = 0.175
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Figure 4: Two dimensional MESFET, horizontal velocity u. Left: surface of the solution;

Right: cut at y = 0.175

Figure 5: Two dimensional MESFET, vertical velocity v.

Right: cut at y = 0.175
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Figure 6: Two dimensional MESFET, potential ®. Left: surface of the solution; Right:
cut at y = 0.175

Notice that there is a boundary layer for the concentration n at the drain but not at the
source. Also notice the rapid drop of n at the depletion region near the gate. The temperature
achieves its maximum around the left corner of the drain. The leakage current at the gate
appears negligible from the normal velocity component, while the horizontal component
shows evidence of strong carrier movement toward the source beneath the left gate area, and
strong movement toward the drain immediately to the left of the drain junction.

We have also simulated the same MESFET with a higher doping ratio: 3 x 10'7e¢m™2 in

3

the high doping region versus 1 x 10'®cm™ in the low doping region. We observe similar

results (pictures not shown here).

7.2 HD model for a one dimensional diode — spurious velocity
overshoot

A notorious phenomenon of HD models is that spurious velocity overshoot occurs at the
drain junction of an n*-n-n* diode. It is intrinsic to tiie model and is not a numerical
artifact, as is verified by our grid refinement study and by using different numerical algo-
rithms. This phenouenon is closely related to the physical assumption governing the heat
conduction term. Gnudi, Odeh and Rudan [10] observed that the spurious overshoot can be
greatly reduced by an empirical modification of the Wiedemann-Franz law for the thermal
conductivity.

In this subsection we perform an extensive numerical study of the dependency of the
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spurious velocity overshoot upon the heat conduction term. The nt-n-n* diode we simulate
has a length 0.6, with a doping defined by ny = 3x10'7cm =2 in [0,0.1] and in [0.5, 0.6}, and
ng = 1 x 10~ in [0.15,0.45], with smooth junctions (Figure 7). The lattice temperature

is taken as To = 296.21° K. We apply a voltage vbias = 1.5V, as is the case in {10].
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Figure 7: The doning ny for the one dimensional n*-n-n* diode
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The standard 1D model uses r = —1 in the Wiedemann-Franz law (2.7) and the relax-
ation times (2.11). The numerical solution of this is shown as solid lines in Figure 8. We
can clearly observe the spurious velocity overshoot at the right junction, but otherwise the
solution is basically correct comparing with direct Monto-Carlo simulations (not shown).
When r is taken as —2 in (2.7) and (2.11), the solution is completely wrong (dashed line in
Figures 8). However, when one takes 7 = —2 only in the coefficient of « in (2.7) but leaves
r = —1 in the power of x in (2.7) and in (2.11), i.e., when one uses

1 Ky, T

K= g T(E)'l, (68)

in the place of (2.7) and leaves r = —1in (2.11) unchanged, as was done in [10], one obtains a
greatly reduced spurious overshoot (the circles in Figures 8). Finally, the result with r = -2
in x in (2.7) but with » = —1 in (2.11) unchanged, is shown by pluses in Figure 8. We can

see that the spurious overshoot also disappears.

7.3 RT model for a one dimensional diode

We present numerical simulation results for the RT model, described in Section 3, for the
same one dimensional diode used in Subsection 7.2. Although the RT model is a parabolic
system with two equations, the existence of sharp transition regions near the junctions
justifies the usage of ENO shock capturing algorithms for the hyperbolic part.

In Figure 9, we show the results of velocity u, temperature T, concentration n, total
energy E, and electric tield —®’ of the RT simulation, in circles, in a background of standard
HD results (= —1) in solid lines, and of HD results with r = —2 in the coefficient of « in
(2.7 but with r = —1 in the power (i.e., (2.7} is replaced by (7.1)), and r = =1 in (2.11), in
dashod lines. We can see that the RT model greatly reduces the spurious velocity overshoot
and is comparable with the result of the empirically modified HD result in dashed lines.

Extensive numerical tests about the RT model, as well as comparisons between the RT
and HD models. constitute ongoing research, jointly with U. Ravaioli, E. Kan and D. Chen
at th T ecs e L0 Lo,
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Pittsburgh Supercomputing Center and on the Cray YMP at the University of Illinois.
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