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THEORETICAL ANALYSIS OF MICROWAVE AND MILLIMETER WAVE INTEGRATED

CIRCUITS BASED ON MAGNETIC FILMS

Under the sponsorship of the ONR Contract Contract N00014-89-J-1019 we have

published 24 refereed journal and conference papers.

A full modal analysis is used to study the dispersion characteristics of microstrip

lines periodically loaded with crossing strips in a stratified uniaxially anisotropic medium.

Dyadic Green's functions in the spectral domain for the multilayered medium in conjunc-

tion with the vector Fourier transform (VFT) are used to formulate a coupled set of vector

integral equations for the current distribution on the signal line and the crossing strips.

Galerkin's procedure is applied to derive the eigenvalue equation for the propagation con-

stant. The effect of anisotropy for both open and shielded stuctures on the stopband

properties is investigated.

The input impedance of a microstrip antenna consisting of two circular microstrip

disks in a stacked configuration driven by a coaxial probe is investigated. A rigorous anal-

ysis is performed using a dyadic Green's function formulation where the mixed boundary

value problem is reduced to a set of coupled vector integral equations using the vector

Hankel transform. Galerkin's method is employed in the spectral domain where two sets

of disk current expansions are used. One set is based on the complete set of orthogonal

modes of the magnetic cavity, and the other employs Chebyshev polynoials with the

proper edge condition for the disk currents. An additional term is added to the disk cur-

rent expansion to properly model the current in the vicinity of the probe/disk junction.

The input impedance of the stacked microstrip antenna including the probe self-impedance

is calculated as a function of the layered parameters and the ratio of the two disk radii.

Disk current distributions and radiation patterns are also presented. The calculate rcsults

are compared with experimental data and shown to be in good agreement.
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The coupled-wave theory is generalized to analyze the diffraction of waves by chiral

gratings for arbitrary angles of incidence and polarizations. Numerical results for the

Stokes parameters of diffracted Floquet modes versus the thickness of chiral gratings with

various chiralities are calculated. Both horizontal and vertical incidences are considered for

illustration. The diffracted waves from chiral gratings are in general elliptically polarized;

and in some particular instances, it is possible for chiral gratings to convert a linearly

polarized incident field into two nearly circularly polarized Floquet modes propagating in

different directions.

A general spectral domain formulation to the problem of radiation of arbitrary

distribution of sources embedded in a horizontally stratified arbitrary magnetized linear

plasma is presented. The fields are obtained in terms of electric and magnetic type dyadic

Green's functions. The formulation is considerably simplified by using the kDB system

of coordinates in conjunction with the Fourier transform. The distributional singular

behavior of the various dyadic Green's functions in the source region is investigated and

taken into account by extracting the delta function singularities. Finally, the fields in any

arbitrary layer are obtained in terms of appropriately defined global upward and downward

reflection and transmission matrices.

We have investigated a method for the calculation of the current distribution, resis-

tance, and inductance matrices for a system of coupled superconducting transmission lines

having finite rectangular cross section. These calculation allow accurate characterization

of both high-T and low-T, superconducting strip transmission lines. For a single stripline

geometry with finite ground planes, the current distribution, resistance, inductance, and

kinetic inductance are calculated as a function of the penetration depth for various film

thickness. These calculations are then used to determine the penetration depth for Nb, NbN,

and YBa 2Cu07-, superconducting thin films from the measured temperature dependence

of the resonant frequency of a stripline resonator. The calculations are also used to convert

measured temperature dependence of the quality factor to the intrinsic surface resistance

as a function of temperature for a Nb stripline resonator.
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Proximity-print x-ray lithography is commonly performed with gold or tungsten

structures of sizes down to 30 nm wide and 50-800 nm tall which are patterned onto the

surface of a thin, x-ray transparent membrane. X-rays in the wavelength range of 0.5-5 nm

are used for replication with mask-substrate gaps ranging from zero (contact print) up to

20 im or more. The resolution o f this method (minimum achievable linewidth) is limited

predominantly by the diffraction of the x-rays around these structures and the spreading

of the diffracted waves into the 0-20 um gap. Work to date has assumed that scalar

diffraction theory is applicable-as calculated, for example, by the Rayleigh-Sommerfeld

formulation-and that Kirchhoff boundary conditions can be applied. Kirchhoff boundary

conditions assume that the fields are constant in the region between the absorbers, and

also (a different) constant in the region just under the absorbers, and that there are no

fringing fields. In this report we explore the validity of this assumption for the case

of 30 nm-wide by 30-100 nm-tall gold absorbers with 4.5 nm (CK) x-rays. Because of

computational time limitations, the shorter wavelength and larger absorber cases are not

currently possible.) Because the absorber is only 7 wavelengths wide and 7-20 wavelengths

high, strong diffractive effects are expected. The finite-difference time-domain (FD-TD)

technique was used on a Cray-2 supercomputer to predict the fields diffracted by the gold

absorbers. In applying the FD-TD technique, Maxwell's equations are discretized in space

and time on a uniform rectangular grid. A second-order absorbing boundary condition is

applied at the outer boundary of the computational domain in order to simulate unbounded

space. The results indicate that strong fringing fields exist in the shadow region of the

absorber, and hence Kirchhoff boundary conditions are not accurate in this regime.

Because the effects of diffraction during proximity-print x-ray lithography are of

critical importance, a number of previous researchers have attempted to calculate the

diffraction patterns and minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is applicable-as calculated, for

example, by the Rayleigh-Sommerfeld formulation-and that Kirchhoff boundary conditions

can be applied. Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant in the open regions between absorbers, and a different constant in

regions just under the absorbers (i.e., that there are no fringing fields). An x-ray absorber

is, however, best described as a lossy dielectric that is tens or hundreds of wavelengths

tall, and hence Kirchhoff boundary conditions are unsuitable. In this report we use two
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numerical techniques to calculate (on a Cray 2 supercomputer) accurate diffracted fields

from gold absorbers for two cases: a 30 nm-wide line at A = 4.5 nm, and a 100 nm-wide

line at A = 1.3 nm. We show that the use of Kirchhoff boundary conditions introduces

unphysically high spatial frequencies into the diffracted fields. The suppression of these

frequenc.es-which occurs naturally without the need to introduce an extended source or

broad spectrum-improves exposure latitude for mask features near 0.1 pm and below.

In order to understand the physical meaning of rational reflection coefficients in

one-dimensional inverse scattering theory for optical waveguide design, we have studied

the relation between the poles of the transverse reflection coefficient and the modes in

inhomogeneous dielectrics. By using a stratified medium model it is shown that these

poles of the reflection coefficient have a one-to-one correspondence to the discrete modes,

which are the guided and leaky modes. The radiation modes have continuous real values of

transverse wave numbers and are not represer+ed by the poles of the reflection coefficient.

Based on these results, applications of the Gel'fand-Levitan-Marchenko theory to optical

waveguide synthesis with the rational function representation of the transverse reflection

coefficient are discussed.

We developed an inversion algorithm based on a recently developed inversion method

referred to as the Renormalized Source-Type Integral Equation approach. The objective

of this method is to overcome some of the limitations and difficulties of the iterative Born

technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution

of a set of linear equations; however, the final inversion equation is still nonlinear. The

derived inversion equation is an exact equation which sums up the iterative Neuman (or

Born) series in a closed form and; thus, is a va!"ld representation even in the case when

the Born series diverges; hence, the name Renormalized Source-Type Integral Equation

Approach.

The scattering and receiving characteristics of a probe-fed stacked circular mi-

crostrip antenna, both as an isolated element and in an infinite array, are investigated.
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The receiving case, where the antenna is loaded with impedance ZL, is solved by

superposition, decomposing the problem into the scattering case with ZL = 0 and the trans-

mitting case. In the scattering case, the coaxial probe is short-circuited to the ground plane

and the induced probe current I due to an incident plane wave excitation is determined.

In the transmitting case, a voltage V is applied to the base of the probe and the input

impedance Zj, is solved for, giving a relationship between the applied voltage V and the

transmitting probe current 12. With the knowledge of I, and Z1., for a given load impedance

ZL, the total probe current, I = I, + 12, and the received power are determined.

The scattering and transmitting problems are solved rigorously using a dyadic

Green's function formulation where the mixed boundary value problem is reduced to a set

of coupled vector integral equations for the unknown disk and probe currents. Galerkin's

method is employed in the spectral domain where the disk current distributions are ex-

panded in terms of the complete set of transverse magnetic (TM) and transverse electric

(TE) modes of a cylindrical resonant cavity with magnetic side walls. An additional term

is added to the disk current expansion to properly model the singular behavior of the

current in the vicinity of the probe, to ensure continuity of the current at the probe/disk

junction, and to speed up the convergence of the solution.

The radar cross section (RCS) of a single stacked microstrip antenna is calculated

for both the open and short-circuited cases. For an infinite array of phased elements, the

reflection coefficient seen at the input of the antenna and the received power are calculated.

The complex resonant frequencies of the open structure o f a microstrip antenna

consisting of two circular microstrip disks in a three layer stacked configuration have been

rigorously calculated as a function of the layered parameters and the ratio of the radii

of the two disks. Using a dyadic Green's function formulation for horizontally stratified

media and the vector Hankel transform, the mixed boundary value problem is reduced to

a set of coupled vector integral equations. Employing Galerkin's method in the spectral

domain, the complex resonant frequencies are calculated and convergence of the results is

demonstrated. It is shown that for each mode, the stacked circular microstrip structure has

dual resonant frequencies which are associated with the two coupled constitutive resonators

of the structure and which are a function of the mutual coupling between them. This mutal

coupling depends on the geometrical configuration of the stacked structure, the layered
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parameters, and the disk radii. The maximum coupling effect occurs where the real parts

of the resonant frequencies of the constitutive resonators are approximately equal, where

the behavior of the resonances in this region is a function of the coupling. The dual

frequency behavior of the stacked microstrip structure, easily controlled by varying the

parameters of layer 2 and disk radii ratio, given fixed parameters for layer 1 and layer 3,

may be used to broaden the bandwidth or provide for dual frequency use of the antenna.

We rigorously analyze the radiation problem of a circular patch which is center fed

by a coaxial-line driven probe over a ground plane and situated in an arbitrary layered

medium. The current distribution on both the patch and the probe is rigorously formu-

lated using a planar stratified medium approach. A set of three coupled integral equation

is derived which governs the axial current distribution on the probe, the radial current

distribution on the patch and the azimuthal magnetic current sheet across the aperture of

the driving coaxial line. This set of equations is then solved using the method of moments.

The resulting matrix equation is obtained in terms of Sommerfeld-type integrals that take

into account the effect of the layered medium. These integrals are efficiently computed by

a simple deformation in the complex wavenumber domain. The probe current distribu-

tion, input impedance and radiation pattern are presented and compared to the case of a

uniform probe current distribution.

Microstrip antennas of stacked configurations have received attention in recent years

for both wideband and dual frequency use, overcoming the narrow bandwidth of conven-

tional single layer microstrip antennas. Although much experimental work has becr. per-

formed, theoretical analyses of stacked microstrip patches is limited. Resonant frequencies

of the stacked microstrip antennas have been rigorously calculated. Numerical methods

have been used to calculate the current and radiation fields of a stacked microstrip antenna.

The method of moments has been applied to analyze to the stacked microstrip structure

when excited by an incident plane wave. A spectral domain iterative analysis for a stacked

microstrip antenna where the antenna is described by a rectangular sampling grid has been

used to calculate radiation patterns. This analysis does not allow for accurate modeling

of the probe feed.
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In our approach, the input impedance and radiation fields of a coaxial probe-fed

microstrip antenna consisting of two circular microstrip disks in a stacked configuration

aze investigated. Using a dyadic Green's formulation, a rigorous analysis of the microstrip

antenna is performed for two stacked configurations. Assuming uniform current along the

probe, the mixed boundary value problem is reduced to a set of coupled vector integral

equations using the vector Hankel transform and solved using Galerkin's method in the

spectral domain. Due to the singular nature of the current on the driven disk in the vicinity

of the probe, an additional term is included in the current expansion to account for the

divergent nature of the current near the probe feed junction and insure continuity of the

current at the junction.

The input impedance and radiation patterns of the stacked microstrip antenna is

calculated as a function of the layered substrate, permittivities and thicknesses, and the

ratio of the radii of the two disks. Both dual frequency and wideband operation is discussed.

Microstrip discontinuities, such as open end, gap and step in width, have been

widely studied by many authors. There are different methods for analyzing microstrip dis-

continuities, such as quasi-static approach, planar waveguide model and integral equation

formulation. As the frequrncy gets higher, the quasi-static assumption is not valid. In the

planar waveguide model analyses, the thickness of the substrate is assumed much smaller

than the wavelength so that a two-dimensional model may be applied. In this case, the

effect of the radiation and the surface waves are not considered. The integral equation

method has been applied to study the open end and gap dicontinuities on isotropic sub-

strates. In applying the integral equation method, various approximation were introduced

in the computation procedure. More recently, finite element expansion currents are used

to formulate a full-wave analysis of micristrip discontinuities on isotropic substrates.
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The open end, gap and step in width discontinuities placed on anisotropic substrates

are rigorously analyzed. Both uniaxial and tilted uniaxial anisotropy are considered. The

materials are assumed to be lossless and the metal strips to be infinitely thin. A dyadic

Green's function for layered anisotropic media is used to formulate a set of vector integral

equations for the current distribution. The fundamental hybrid mode is assumed to be

propagating on the input and output of microstrip lines. In solving the set of vector integral

equations, the method of moment is employed. The basis functions for the current on the

metal strip consider the edge effect. Both logitudinal and transverse currents are considered

in the calculation. The propagation constant for the infinitely long uniform microstrip line

is first calculated. Then the propagation constant of the fundamental mode is used to

formulate the excitation of the discontinuity problem. At the discontinuity, local basis

functions are used to simulate the local currents near the discontinuity. The scattering

matrix can then be obtained, and an equivalent circuit model can be proposed. The effect

of the anisotropy is investigated and the results are discussed.

The leakage phenomenon is important in the area of millimeter-wave integrated

circuits and integrated optics. Theoretical analyses and experiments have been performed

to investigate this phenomenon. The leakage is due to the TE-TM coupling occurring at

the geometrical discontinuities, and the leaky power in the form of surface wave propagates

in the background medium.

There are different methods to analyze the dielectric strip waveguides, including

the approximate field matching method, effective dielectric constant (EDC) method, mode

matching method, etc. The first two methods are approximate, and can not be used to

predict the imaginary part of the propagation constant. In the third one, ground planes

have to b- put at some distance away from the guiding structure, hence the effect of

radiation loss is neglected.

An integral equation formulation using dyadic Green's function is derived to solve

for the dispersion relation of single and coupled dielectric strip waveguides. A method to

predict the leakage is presented, and the leakage properties are investigated.
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Three different dielectric strip waveguides are investigated : optical rib waveguide,

strip dielectric guide, and insulated image guide. Both single and coupled strip waveguides

are studied. The cross section of the dielectric strips are assumed to have rectangular shape.

Applying the Galerkin's method, the field distribution on the cross section are represented

by a set of unit pulse basis functions. Substituting these basis functions into the integral

equations, and choosing the same set of basis functions as the testing functions, we can

obtain a determinant equation from which the propagation constant can be solved.

For single dielectric strip waveguide, it is observed that the leakage occurs when the

effective refractive index is smaller than that of a surface wave mode in the background

medium. It is also observed that if the lowest TE-like (TM-like) mode is leaky, the lowest

TM-like (TE-like) mode is non-leaky. When the lowest order mode leaks, the surface wave

mode of opposite polarization is excited. When the higher order mode leaks, the surface

wave modes of both polarizations can be excited.

For two symmetrical dielectric strip waveguides, both the even and odd modes

are investigated. For the leaky mode, the total leakage is due to the leakage from each

individual strip waveguide. At the separation where the even mode has a maximum leakage,

it implies that the surface wave modes excited by each waveguide add in phase. For the

odd mode at about the same separation, these coaxial line feed, the reflection coefficient

for the TEM mode is obtained which allows one to compute the input impedance at the

terminals of the probe. Numerical results for the input impedance are presented.

A finite difference time domain technique for two dimensional time domain scat-

tering of electromagnetic waves is derived. The triangular grids and the control region

approximation are employed to discretize Maxwell's equations. The finite difference time

domain techniques with uniform rectangular grids has been used in the past. The scatter-

ers are modeled using staircases and, recently, the accuracy of this approximation has been

investigated. Several types of other grids have been proposed to improve the staircase ap-

proximation. Generalized nonorthogonal grid can model scatterer without staircasing. It

has been applied to spherical systems, yet they appear to be cumbersome for general scat-

terers. The "distorted rectangular grid" model approximates the computational domain

using rectangular grids and distorts the boundary grids to fit the interfaces. The triangular
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grid is used in this paper, which is very flexible in dealing with arbitrary scatterers and

absorbing boundaries.

The control region approximation, which calls for Delaunay and Dirichiet tessella-

tion, has been successfully applied to the frequency domain problems in the past. Two

double integral terms are obtained by integrating the Helmholtz equation about the De-

launay tessellation. The term involving the Laplace operator can be converted to a closed

loop integral of normal derivatives, which can easily be approximated in finite difference

manner by utilizing the orthogonal property of Delaunay and Dirichlet tessellation. The

remaining term can be approximated by multiplying the field at the node with the area. In

the time domain problem, the same approximation is applied to the wave equation, except

the term involving time derivatives is used in time marching scheme. Alternatively, as in

Yee's algorithm, the first order Maxwell's equations are solved by spatially and temporally

separating the electric and magnetic fields. In the case of electric polarization, the electric

fields are placed at the nodes and the magnetic fields are placed at the center of triangular

edges. The curl H equation is integrated by applying Stoke's theorem and convert it to a

closed loop integral of tangential magnetic fields. This equation can be used to advance

electric fields in time. To update magnetic fields, the second -url equation is used. This

equation is approximated in the finite difference manner by utilizing the orthogonality

property of the tessellation. The equations for the magnetic polarization case can also be

derived following the similar procedure.

In order to limit the computation domain, the scatterers are enclosed with artificial

outer boundaries. Continuous smooth outer boundaries, such as circles and ellipses, are

chosen. The second-order time domain absorbing boundary conditions derived from the

pseudo-differential operator approach is imposed at the outer boundaries. These boundary

conditions are implemented with the control region approximation to determine necessary

field quantities at the boundary. The results of the time domain control region approach

are presente-d for simple scatterer geometries, such as conducting and coated cylinders and

strips, by calculating both the transient and time-harmonic responses.
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The Finite-Difference Time-Domain (FD-TD) method was first introduced by Yee

who discretized Maxwell's time dependent curl equations with second-order accurate

central-difference approximations in both the space and time derivatives. Since then, it

has been applied extensively to scattering and wave absorption problems. Application of

the FD-TD method to microstrip problems, in which frequency-domain approaches have

dominated, has so far attracted little attention until recently it was used to obtain fre-

quency characteristics of microstrip cavities. Also, it has been extended to the analyses

of open microstrip line and microstrip discontinuity problems where absorbing boundary

conditions are needed for the simulation of the unbounded domain. However, only isotropic

or simple anisotropic media are considered in the above papers.

A new FD-TD grid model is used to solve microstrip problems in anisotropic media

having tilted optical axes expressed by permittivity or permeability tensor with off-diagonal

elements. This grid model is indeed a superposition of two conventional grids with some

displacement which depends on the optical axes of anisotropy. Implementations of different

boundary conditions are discussed. Using this model, the frequency-dependent character-

istics of microstrip lines are investigated. The microstrips are assumed to be placed on

top of anisotropic substrates with tilted optical axes. The case with superstrates is also

investigated.

In the finite difference computation, the open-end termination is simulated by using

the open-circuit, short-circuit technique. The source plane is implemented by using a

magnetic wall with a Gaussian pulse excited on the surface under the strip. Because of the

symmetry of the problem, the region under consideration can be reduced by half, using a

magnetic-wall at the center plane.

The fields at different positions are first calulated. Then the Fourier Transform is

taken to give the field spectra from which the voltage and current can also be obtained.

Using these data, the effective permittivity and the characteristic impedance can be de-

termined. The frequency characteristics of microstrip lines in anisotropic media obtained

by this method are compared with the published results.
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Finite difference time domain (FDTD) techniques show great promise in their ability

to solve three dimensional problems with arbitrary geometry. Advantages of this method

include the ability to model spatially or temporally varying media. These advantages

are due to the complete discretization of both space and time. Considering the volume

of information being calculated these techniques are very efficient and are well suited to

calculation on future parallel processing computers. This method was first formulated

by Yee in 1966 and his basic algorithm is still in use. Recent work has demonstrated the

applicability of the FDTD technique to microstrip problems. The centered finite difference

approximations used are second order accurate in both space and time yielding good results

for reasonable mesh sizes. Numerical techniques used to solve electromagnetic problems

must limit the domain over which the fields are to be calculated. This mandates the use of

an absorbing boundary condition to simulate the outward propagation of waves incident

on the walls of the mesh. An absorbing boundary condition has been developed by Mur

based on the work of Enquist and Majda.

Our work in this area includes development of the algorithms mentioned above into

a general purpose computer code which may be used to solve for the transient response

of electromagnetic problems with an arbitrary geometry. In addition to the transient

response, frequency domain parameters may be obtained by fourier transform of the time

domain results. Since the fields are calculated throughout space and time all other desired

parameters may be calculated from the field quantities. Specifically, we are analyzing

rectangular mricrostrip structures with as many as two or more ports. Such structures may

be used in MMIC filters or antennas. This problem is of interest for several reasons. First,

there are existing frequency domain solutions to the resonance problem of a rectangular

microstrip patch, which we may compare with the FDTD solution. Secondly, the FDTD

technique may be used to analyze coupling of microstrip lines to the rectangular structure.

This coupling may be either a direct connection or a gap coupled connection. Advantages

of the FDTD solution of this problem are that it is a full wave solution which allows for

radiation or surface wave loss and that no empirical values such as "effective" dimensions

are needed for the analysis, also the geometry may be altered easily to allow for various

connections or coupling to the patch. This is a significant improvement over methods

which rely on a planar circuit approach in which the substrate thickness must be small
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compared to wavelength and inherently three dimensional coupling problems are not easily

handled. Comparison of our results with various planar circuit approaches will be made.

A new perturbation series, coupled integral equation approach for calculating the

frequency dependent circuit parameters for quasi-TEM transmission lines with lossy con-

ductors is presented. The method considers the addition of loss and dispersion to be

perturbations on the lossless TEM case, and therefore the difference between the propaga-

tion constant and the wavenumber in free space is a small parameter. We obtain the lowest

order term of the perturbation series by solving two quasistatic problems; the electrostatic

problem to get the capacitance, and the magnetoquasistatic problem, with the distribution

of current inside the wire considered, which gives the frequency-dependent inductance and

resistance. Both of these problems are solved using one-dimensional integral equations

for quantities on the surface of the conductor; this represents a significant improvement

in efficiency over previous methods. For most cases of practical interest, the lowest order

term of the series will suffice. If, however, the change in the propagation constant from the

lossless case, due to the altered inductance and the addition of resistance, is significant,

additional terms in the perturbation series can be calculated.

The method is illustrated with the case of one or more wires embedded in a uniform

dielectric. In the original magnetoquasistatic problem, the current is entirely directed along

the axis of propagation, and satisfies the frequency-domain diffusion equation. Outside the

wire, the magnetic vector potential is in the same direction, and obeys Laplace's equation.

The boundary conditions are the continuity of tangential and normal magnetic field at the

interface, which can be expressed in terms of the current density and vector potential and

their derivatives. Since we can express the ratio of the frequency-dependent resistance to

the DC resistance in teris of the values of the volume current and its normal derivative

on the surface of the wire only, we can use a pair of coupled integral equations to solve for

these quantities alone, which we can solve by Gaerkin's method or other finite element

methods.
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Results obtained using this technique are shown for some important cases, includ-

ing rectangular wires, and are compared with earlier methods and with experimental data.

Previous methods for calculating the resistance fall into three categories. First, for cer-

tain cases, exact analytical results can be obtained. Secondly, especially in the case of a

rectangular wire, the cross-section can be divided into rectangular segments, each much

smaller than a skin-depth, across which the current is assumed to be constant. Magne-

toquasistatics gives simple answers for the resistance and self-inductance of each element,

and the mutual inductance between elements. This leads to a matrix equation which is

solved for the current distribution. The disadvantages of this technique are that it requires

basis functions throughout the cross-section of the conductor, which is especially intensive

as the frequency gets large. Also, closed form expressions for the matrix elements only

exist when the elements are rectangular - other shapes, such as triangular patches, which

might be used to fit a wire of arbitrary shape, lead to nested numerical integrals.

The third method used is a variational procedure. This is similar to the method

presented here, except that the current and the magnetic vector potential are expanded in

functions which span the entire cross-section. This has two drawbacks: first, it requires that

there be a closed outer conductor, which is not physical in many important cases. Second,

as in the previous method, using elements which fill the entire cross-section increases

the computation time unnecessarily, since only the value of the current and its normal

derivative at the surface of the wire are needed to calculate the resistance.

A new method for analyzing frequency-dependent transmission line systems with

nonlinear terminations is presented. The generalized scattering matrix formulation is used

as the foundation for the time domain iteration scheme. Compared to the admittance

matrix approach proposed in a previous paper, it has the advantage of shorter impulse

response which leads to smaller computer memory requirement and faster computation

time. Examples of a microstrip line loaded with nonlinear elements are given to illustrate

the efficiency of this method.
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As the speeds of integrated circuits increase, the effect of interconnection lines be-

comes more and more important. Traditional lumped element circuit model must be

supplemented by the transmission line model in order to account for propagation de-

lays, dispersion and losses. This has created needs for new numerical procedures that

can be easily incorporated into current CAD tools. To make matters more complicated,

the interconnection lines are terminated with not only linear resistors but also nonlinear

semiconductor devices, such as diodes and transistors.

Several techniques are now commonly used to deal with nonlinear circuit prob-

lems, for example, the direct time domain approaches, and the semi-frequency-domain ap-

proaches, such as the harmonic balance technique. The semi-frequency-domain approaches

are useful for microwave and millimeter wave integrated circuits but become impractical

for digital integrated circuits because of the latter's wide band nature. On the other hand,

frequency-dependent parameters often make it awkward to apply the direct time domain

approach to the interconnection line systems.

We propose a hybrid frequency-domain time-domain technique based on the gen-

eralized scattering matrix formulation. For an n line system, we define 2 n scattering

parameters according to the frequency-dependent characteristic impedances of individual

lines (Z0j = V1L,,(w)/C 3 (w)). The time-domain transfer matrix (impulse response) of this

2n-port system is then obtained by the inverse Fourier Transform. Lastly, the nonlin-

ear equations associated with terminal characteristics are incorporated and solved with

iteration procedures such as the Newton-Ralphson method.

The key to efficient and stable solutions in this problem is shortening the duration

of every transfer matrix element. With the generalized scattering parameters approach, we

are able to achieve that yet eliminating the need for artificial matching networks adopted

by a previous work. Furthermore, the use of individual characteristic impedances in the

definition of scattering parameters enables us to generalize this method to coupled lines

with distinct properties while keeping the duration of transfer matrix elements short. This

cannot be realized if traditional scattering parameters are used. We shall illustrate the

elegance and efficiency of our approach for a dispersive microstrip line with different non-

linear loads and excited with narrow Gaussian pulses. The elements of transfer matrix

are found out to be either zero or single retarded delta-impulse accompanying a small
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spike with very narrow spread. Typical computation time for a 1000 time-step iteration

ranges from 4 to 27 seconds on a VAXStation 3500. The effects of line dispersion and load

nonlinearity will be clearly delineated in the presentation.

The transient propagation characteristics of VLSI interconnects with discrete ca-

pacitive loads at various locations is analyzed based on a hybrid transmission lines-lumped

element circuit model. Exact expressions of the Laplace transform of unit step responses

are first obtained through the ABCD matrix formulation. We then apply the equivalent

dominant pole approximation to the transfer function with the propagation delays factored

out. The approximated transfer function can be inverted in closed form and quickly eval-

uated. These results provide efficient ways of finding approximately the effects on delays

and rise time brought by VLSI off-chip interconnects.

Because of the dramatic increase in device densities on microelectronic chips, the

propagation delay for off-chip interconnects has become the limiting factor to the speed

of VLSI packages. Typical scales of these interconnects will be comparable or larger to

the characteristic wavelength of high frequency components of the signal. Therefore, to

calculate the delays caused by these interconnects properly, a hybrid circuit model con-

taining transmission line sections as well as lumped elements must be used in place of

the all-lumped element one. Most circuit simulation packages are nevertheless based on

the latter and have to resort to subsection approximation when dealing with transmission

lines. This scheme will undoubtedly lead to lengthy computation, which is not desirable

when a quick, heuristic estimate of bounds are needed for the initial phase of the design

cycle.

Two approaches have been developed for obtaining the approximate transient re-

sponse without lengthy simulation. The first kind of solution techniques emphasize the

calculation of bounds to voltage responses from the differential equations either by direct

integration or by using the optimal control theory. On the other hand, the second kind of

techniques analyze the properties of Laplace transform domain solution. Thus far, their ap-

plications are limited to all lumped-element and distributed RC networks, which can only

take care of on-chip interconnects. We shall take the second approach by incorporating

transmission line elements for off-chip delay estimation.
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Our configuration includes a series of transmission line sections with arbitrary dis-

crete capacitances and resistances loaded at junctions. The ABCD matrix formulation is

used to obtain the Laplace transform of the unit step response. We express the latter in

the form of exp(-sT)/Q(s), where Q(s) = Ao(s)± AI(s)exp(sr,) +A2 (s)exp(sr2)+... with all

{A,(s)} being rational functions in s. The factor {exp(-sT)} is identified with direct trans-

mission delay over the total length of the line. For the rest part (1/Q(s)), we proceed to

apply the equivalent dominant pole approximation technique[7]. Either a single negative

real pole or second-order complex conjugate pair will be chosen for approximation depend-

ing upon the property of lumped loads at junctions as well as the source impedances. A

phase-correction factor exp(-sT,,,) is introduced to make up for the discrepancies caused

by our low-order approximation. The first-order and second order approximations enable

us to obtain closed-form solution to the transient response. Comparison of the approxi-

mated responses with those obtained from brute-force numerical Laplace inversion shows

very good match when the propagation delay of an average transmission line section is

less than half the product of junction load capacitance and transmission line characteristic

impedance. Yet we only have to spend a fraction of the time for computations. The accu-

racy of this method will be discussed in detail with some examples of lossless transmission

line networks in which lumped capacitors are loaded at regular intervals.

The propagation properties of single and coupled inhomogeneous slab waveguides

are analyzed. An integral equation formulation using the dyadic Green's function which

covers both the TE and TM modes is proposed. The dispersion relations are obtained by

applying the Galerkin's method to solve the integral equation. The coupling between two

symmetrical inhomogeneous slab waveguides is also investigated. This method is shown

to be applicable to arbitrary dielectric constant profiles.

The guidance and leakage properties of single and coupled dielectric strip waveg-

uides are analyzed using the dyadic Green's function and integral equation formulation.

Galerkin's method is used to solve the integral equation for the dispersion relation. The

effects of the geometrical and the electrical parameters on the dispersion relation are inves-

tigated. A method to predict the occurrence of leakage is proposed. The properties of the

even and the odd leaky modes are also investigated. Results are compared with previous

analysis and shown to be in good agreement.
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A spectral domain dyadic Green's function for multilayered uniaxially anisotropic

media containing three-dimensional sources is derived. Tractable forms are shown to be

easily deduced from the physical picture of the waves radiated by the primary sources

and the multiple reflections from the stratified medium. The formulation decomposes

the dyadic Green's function into TE and TM waves. The dyadic Green's function in the

source region is properly represented by extracting the delta function singularity. A simple

proceedure to obtain the fields in any arbitrary layer is described. Recursion relations for

appropriately defined reflection and transmission coefficients are presented. Forms suitable

for transmission line applications in multilayered media are derived.

Full modal analysis is used to study the dispersion characteristics of microstrip

lines periodically loaded with crossing strips in a stratified uniaxially anisotropic medium.

Dyadic Green's functions in the spectral domain for the multilayered medium in conjunc-

tion with the vector Fourier transform (VFT) are used to formulate a coupled set of vector

integral equations for the current distribution on the signal line and the crossing strips.

Galerkin's procedure is applied to derive the eigenvalue equation for the propagation con-

stant. The effect of anisotropy for both open and shielded structures on the stopband

properties is investigated.

A direct three dimensional finite difference time domain (FDTD) method is applied

to the full-wave analysis of various microstrip structures. The method is shown to be an

efficient tool for modelling complicated microstrip circuit cumnonents as well as microstrip

antennas. From the time domain results, the input impedance of a line-fed rectangular

patch antenna and the frequency dependent scattering parameters of a low pass filter and

a branch line coupler are calculated. These circuits are fabricated and the measurements

are compared with the FDTD results and shown to be in good agreement.
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A rigorous dyadic Green's function formulation in the spectral domain is used to

study the dispersion characteristics of signal strip lines in the presence of metallic crossing

strips. A set of coupled vector integral equations for the current distribution on the

conductors is derived. Galerkin's method is then applied to derive the matrix eigenvalue

equation for the propagation constant. The dispersion properties of the signal lines are

studied for both cases of finite and infinite length crossing strips. The effects of the

structure dimensions on the passband and stopband characteristics are investigated. For

crossing strips of finite length, the stopband is mainly affected by the period, the crossing

strip length, and the separation between the signal and the crossing strips. For crossing

strips of infinite length carrying travelling waves, attenuation along the signal line exists

over the whole frequency range of operation.
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Abstract- In this paper, full modal analysis is used to study the dispersion character-
istics of microstrip lines periodically loaded with crossing strips in a stratified uniaxially
anisotropic medium. Dyadic Green's functions in the spectral domain for the multilayered
medium in conjunction with the vector Fourier transform (VFT) are used to formulate a
coupled set of vector integral equations for the current distribution on the signal line and
the crossing strips. Galerkin's procedure is applied to derive the eigenvalue equation for
the propagation constant. The effect of anisotropy for both open and shielded structures
on the stopband properties is investigated.

I. INTRODUCTION

In compact modules of high performance computers, signal transmission lines
between integrated circuit chips are embedded in multilayered dielectric media.
These signal lines are usually placed in different layers and run perpendicular
to each other. The interaction between the orthogonal crossing lines and the
signal line affects its propagation characteristics and may cause considerable signal
distortion.

The interaction of a pair of crossing lines in an isotropic medium has been stud-
ied using a time-domain approach [1], where coupling is described qualitatively.
This method becomes computationally expensive when the number of crossing
lines increases. With many identical crossing strips uniformly distributed above
the signal line, the transmission properties are characterized by stopbands due to
the periodicity of the structure. Periodic structures have been investigated using
frequency-domain methods. In [2], periodically nonuniform microstrip lines in an
enclosure are analyzed on the basis of a numerical field calculation. A technique
based on the network-analytical formulism of electromagnetic fields has been used
to analyze striplines and finlines with periodic stubs [3]. The propagation charac-
teristics of waves along a periodic array of parallel signal lines in a multilayered
isotropic structure in the presence of a periodically perforated ground plane is
studied in [4, and that in a mesh-plane environment is studied in [5). More re-

cently, the effect of the geometrical properties on the propagation characteristics of
strip lines with periodic crossing strips embedded in a shielded one-layer isotropic

medium have been investigated [6].
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In this paper, both open and closed multilayered uniaxially anisotropic struc-
tures are considered. A full-wave analysis is used to study the propagation char-
acteristics of a microstrip line in the presence of crossing strips. The signal line
and the crossing strips are assumed to be located in two arbitrary layers of a
stratified uniaxially anisotropic medium. An integral equation formulation using
dyadic Green's functions in the periodically loaded structure is derived. Galerkin's
method is then used to obtain the eigenvalue equation for the propagation con-
stant. The effects of anisotropy on the stopband properties are investigated.
Numerical results for open and shielded three-layer uniaxially anisotropic media
are presented.

II. FORMULATION OF THE PROBLEM

In this section, we present a dyadic Green's function formulation of the problem

shown in Fig. 1(a) where the microstrip line and the crossing strips are placed
at two different interfaces of a uniaxially anisotropic multilayered medium. The
crossing strips are assumed to be placed in a layer (i) and the signal line to be
in a layer (j). The crossing strips are considered to be periodic with period p as
shown in Fig. 1(b). In general, the permittivity and permeability tensors of an
arbitrary layer (1) are assumed to be given by

and
( 0 0

= 111 0 (2)
0 Plz

where I = 0, 1,2,..., t.
For the stratified medium, the electric fields in layers (i) and (j) due to current

distributions Ji(ir) and ijj(i') may be expressed as

Eif =IJJ dV' =C . Ta' +r dV' Gji(f,r). Jj(r t) (3a)

E w JJJ dV' 5j , ). -7iOr-) + iwJJ dV"V j(i7,-). 7j(-) (3a)

where Glm(?,F) is the dyadic Green's function in layer (I) due to current sources
in layer (m).

For the multilayered structure shown in Fig. 1(a), the current distributions on
the conducting strips are assumed to be surface currents lying on planes transverse

to z. Thus, if we are interested in the transverse electric fields and in

layers (i) and (j), respectively, we can write

-( ) F) -4) -

~+=E1 ) ± E,, (r) (4b)

pop 0
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z y

(2)

A crossing strips

*~ 
mfrostrip fine

* (n)

Figure 1. Geometrical configuration of a signal line in layer jloaded with
crossing strips in layer i.

where lm is the transverse electric field in layer (1) due to current sources in

layer (in), and is given by

Ff = iWJJ dV'G2(y) nm~ (5)

Km(F') is the surface current distribution in layer (mn), and Gli(, r') is the (2 x 2)

transverse part of the dyadic Green's function G Im(F, 4)-
Since the structure is assumed to be periodic in the y-directiorn, the electric field
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EP( ) and the surface currents Km can be expressed using the Floqu-t harmonic
representation in the y-direction. In this case we can get

cc -p/2

where I = i,j, and
Gl(F_ , r dk., gt,- (,,;z, z) (6b)

Pn-00 0

+ r, ) y, = , =k , + On, fln= J + -
P

Here p is the period, go is the propagation constant of the dominant harmonic

in the Floquet representation, and 9=($) 'z Ilm , n snZ, z ) is the spectral dyadic Green's

function.

Using the explicit expressions for the dyadic Green's functions Gii ,

and Gjj [ij, the transvc -e zlectxc fields on the surface of the conducting strips
in layer (i) d" : t. Liie currents in layer (j) can be expressed in the following form

-- (() = "r dk, F(k,n, F.)"- ijkn " K,(k n)(7
P 00

where F(k,,n,F,) is the kernel of the vector Fourier transform (VFT) given by [8]
=-1 [kz On )]ei!.,..

F(k,,F,)= l -kj (8)

and Kj(k,n) is the vector Fourier transform of the surface current KT(F,). It is

given by

The matrix ij(k3 n) is given by

TM 0 1iTE (10)
.n) 0 fTEJ

whose elements for different i and j are given in Appendix A.

In the above, the transverse electric field expressions T(s) (l,m = i,j) satisfy
the boundary conditions at the dielectric interfaces of the layered medium. Apply-
ing the final boundary condition that the tangential electric field vanishes on the
conducting strips, we can get the following set of dual vector integral equations
for the currents on the metallic strips

00 tOO - _

>3 ]dk. F(knF.0 Cji(k,) K.(k,.)

0+ 00
+ E -oo "~n F, ---) jkn 0 ,E t (1
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on the crossing strips, and

+ Z ] dk. F(kan,f.) j(ksn)Kk) = 0, F, E S2  (12)

on the signal line.
The next step is to solve this coupled set of vector integral equations to find

the dispersion relation for the signal line in the presence of the crossing strips.

* III. GALERKIN'S METHOD AND THE EIGENVALUE EQUATION

The formulation up to this stage is exact. We now solve the set of vector integral
equations (11) and (12) by using Galerkin's method. The unknown current distri-
butions on the crossing strips Yi(F.) and on the signal line F,(F,) are expanded
in terms of the appropriate vector basis functions as follows:

m=1 r=1
K Q2

=jxy Tj k P(x) e'139Y Rk q (14)
k=1 q=-Q 1

where K 1 (z,y) and ,K(z,i,) are the surface currents on the crossing strips and

* the signal line, respectively, -Pm, and '!ke'~" are the basis functions, Am7 and
B 11 q are the expansion coefficients.

* Using (13) and (14), the vector Fourier transform (VET) of the currents Ki(F,)
and K,(F 5 ) are obtained as

M R_

Ktka) Z EU+)r~~k,1)Am,- (15)
m=1 r=1

K,(.~)= ~ V(+)k~q,n(k.,13) -Bk (16)
k=1 q=-Q,

where

U( (k,3) = 2)2 Jdr- F~s,:F, - mr(X, Y) (17)

and 
±~V (:)kqn.(k.,fl) = (27r) 2 JJ dra F(!.n,3FT.) - Tk(z),/ 3  (18)

Substituting (15) and (16) into (11) and (12), we obtain

E>1: E dkz F(k, ,F.) -Zii(is.) -U(+)m.rnk~
m=1 2=1n=-oo-0
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K Q2 00 0

(19)

for T, E Si, and

K Q2 00

+~ E S J: dkz, F(ksn, F) jy(k~n)-V (+)Aqf(k,) 3 ) Bkq 0

(20)

for Fs E Si.

Multiplying (19) by -I,,(x,y) and integrating over the support of K,(i3 ) for
u =1, 2,..., Mand v =1,2, .. , R, weobtain

z z zj dk~U(-..) (k.,I3) .(1,n) '=(+)mnrn~k~3
1 f=I=-oo -00

K Q 2 00

k=1 q=-Qjn=11-00

(21)

Similarly, multiplying (20) by qf(x)e-ty and integrating over the support of

: E E fJd0kA V(-),,n(k.,I3) - ji(an) -U(+)mtn (kz, 3)Am

K Q2-00

+5dkc, V(-) 1 t(k.,,3) - jj(ksn) (+kn(k., 0) Bkq =0

k=1 q=-Q~ f=-o00

(22)

Equations (21) and (22) constitute a system of (S + T) linear algebraic equations
with S =MR and T =K(Qj + Q2 + 1), and may be written in matrix form as

N - = 0(23a)

whererfN ]ss[2ST1

N=[N21IT.S (N22]T-TI1(26

and 
= f~hx ~(23c)

9 A'
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Each element o; the submatrices of N is given by

[Nii,,,,mr = dk, U().v, (k.,/3) - •(+),,,,,(k.,')

(24a)

[N12Luv,kq = 0j dkz U(_)uv,n(k.,3) "ij(kn) " V(+)kq,n(kz,)

(24b)

[N2l],t,, r = dk, V(-).,k) •U(+).ri(kzf3)
n=-oo

(24c)

IN22],tq = fJ dk V(_),t.,,(k,) )jij(kn,,) V(+)kqn(k,')

(24d)

For nontrivial solution to exist, the determinant of the coefficient matrix of
(21) and (22) must be zero,

det [7(w,/)] = 0 (25)

This is the eigenvalue equation for the propagation constant 03 which describes
the dispersion relation of the loaded microstrip line in the multilayered anisotropic
medium.

The next step is to choose appropriate basis functions for the surface currents
K j (Ts) and Ki(fs) on the signal line and the crossing strips, respectively. The
expansion functions we use are

21r [P() = 0 Qm(z, Li) 0 R (y, wi)

and

'ik()= ~. Pk (X, W) 0kz~9 (27)

where

P. (a,-r) = I sin 2n-r- (28)
7 7

Q ,I (a , ") = - (29)

Rn (at, ) = I sin n,( /)(30)
7 't

wi and w, are the widths of the crossing strips and the signal line, respectively,
and L i is the length of the crossing strips. When choosing the basis functions
for the surface currents, it should be borne in mind that the current cannot have
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a normal component to the strip edges. Futhermore, the edge condition for the
parallel component should be considered. By substituting (26) and (27) into (17)
and (18), respectively, we can get

P [ X,.(k., Li) 0
U(±)mn(kZ'J) =(21r) 3k,--[---, 0 Ym(kz,Li)] (31)

[Y,,(,-,,) 0
0 o Z(± (fl),, w)

and

V (k.) = Psqn [±Xk(kzW j ) 0 (32)
V(W)A:,, n (21r) 3 k,0 Y (k,.,,j)

where

4n7r sin -1
Xn(a, 7) = i( -)n4n21r2 + + (33)

-i in. Irf

z(( ,r) = 222 re(n~r ± cr7) sini(.j-

e e -(nnr :F ct) sin( 2 ± 2) (35)

Equations (31) and (32) are then substituted into the determinantal equation (25)
for the calculation of the dispersion characteristics.

IV. NUMERICAL TREATMENT AND RESULTS

In this section, we present numerical results for open and closed three-layer struc-
tures with the crossing strips and the signal line embedded in two different layers
as shown in Figs. 2(a) and (b). In numerical calculation, the infinite series of
Floquet modes and the basis functions are truncated. The ranges of indices in
(24) are chosen as: -10 < n < 9, k = 1, -1 < q < 0, 1 < m < 3, r = 1, . =
1, -1 < t < 0, 1 < u < 3, and v = 1. It can be seen that each element in the co-
efficient matrix can be reduced to a sum of TE and TM terms, a summation over
n Floquet modes, and an integral over k,. Due to the symmetrical properties of
the Green's function, the basis functions and the test functions, all the integrands
are found to be even functions of k2 . So the integration path can be reduced to
an integral from 0 to oo. In numerical computation, the path of integration in the

complex k, plane is deformed to avoid the singularities on the real axis [9].
In the following calculations, the parameters used for Fig. 2 are: d, = d2 = d3=

0.2 mn, p = 0.5 mm, w1 = w2 = 0.125 mm, L1 = 1.7 mm, and ju = pjp = /o.
Since the crossing strip length is much longer than the signal line width, the

current near the crossing strip edges is relatively small so that the edge condition

in the basis functions can be neglected.

-. . . ... - ... -.. , -. I .
• . ... , * . , ,p ,
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Figure 2. (a) Cross section of an open structure. (b) Cross section of a

closed structure.
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Figure 3 shows the dispersion characteristics of a closed microstrip line loaded

with periodic crossing strips (Fig. 2(b)). The result shows that the first stopband

appears due to the coupling between the Floquet modes n = 0 and n = -1 of
the fundamental mode of the signal line. The upper and lower bounds of the
stopband is denoted by wU and wL, respectively. At higher frequencies, higher
order stopbands are encountered because of the interaction with the higher order
modes of the signal line. However, we concentrate only on the first stopband
which is in the region of practical interest.

In Fig. 4, the dispersion characteristics of an open and a shielded structure
are plotted in solid and dashed lines, respectively. It can be seen that both the
stopband position and width are close to those of each other. This is because the
fields are mostly confined under the first layer where the coupling between signal
line and crossing strips takes place. So removing the top conducting plate does
not affect the stopband properties much in this case. This point is illustrated in
Figs. 5(a) and (b) which shows the effect of changing d1 on the stopband position
and width, respectively. In the following, we are going to investigate the effect of
anisotropy in the second and the third layer of a closed structure. It is believed
that similar effects can be observed in an open structure.

The plot in Fig. 6 shows the effect of the anisotropy ratio (AR = c2/(2z) of
the second layer on the stopband position and the stopband width. The center
frequency of the stopband is not much affected by the anisotropy. However, the
stopband width is quite sensitive to it. The width increases with 1/AR. For fixed
f2, it corresponds to an increase of C2z, which enhances coupling between the
signal line and the crossing strips, resulting in the rise of stopband width. For
1/AR > 1, it is found in the dispersion diagram that a high order stopband starts
to merge with the first order stopband, resulting in a large stopband width. Fig. 6
is thus plotted up to that value only.

In Fig. 7, we investigate the effect of anisotropy in the third layer on the
stopband properties. As we have expected, the stopband width is not so sensitive
to the anisotropy in the third layer as it is in the second layer where coupling
occurs. The change of stopband position with the anisotropy is close to that in
the second layer. Both are due to the change of the dispersion characteristics of
the signal line which results in the lowering of the intersecting point of the Floquet
modes n = 0 and n = --1. A high order stopband is encountered for 1/AR > 1.

Various combinations of substrate materials have been used to minimize the
stopband width for the closed structure (Fig. 2(b)). The results are summarized
in the following table:

Case layer 1 layer 2 layer 3 (kop/7r)c 1 A(kop/ir)

1 1oco sapph. loo 0.3093 5.93E-3
2 1 0 o 10o 10o 0.3144 3.67E-3
3 loco Eps-10 l0o 0.3061 3.40E-3
4 2 .3qo 10co 1oo 0.3194 0.80E-3
5 2.3o 10c sapph. 0.3054 0.53E-3
6 _ 0  l0 0  sapph. 0.3058 0.87E-3

M I'm I
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where (kop/ir)c is the normalized center frequency of the stopband and A(kop/ir)
is the normalized stopband width.

The two types of anisotropic substrates considered are Epsilam-10 (c = 13o,
(Z = 10.3eo) and sapphire (e = 9.4f 0 , c, = 11.6E0 ). Comparison shows that the
fifth case has the smallest stopband width. In fact, the stopband width is quite
sensitive to the separation of the crossing strips due to the resonance effect [6].
Once the periodicity p is fixed, the stopband width can be minimized by a proper
choice of substrate material.

V. CONCLUSIONS

A dyadic Green's function formulation for the analysis of open and closed mi-
crostrip lines in the presence of periodic crossing strips in a stratified unia.xially
anisotropic medium is presented. The dispersion characteristics for a three-layer
structure is studied. Numerical results illustrate the relationship between the
s4 ,pband properties and the material parameters. The effect of anisotropy has
also been investigated. It is found that the crossing strip separation and the
anisotropy in the second layer are important factors affecting the stopband width.
To achieve small stopband width, careful choice of anisotropy must be made to
avoid the lowering of the high order stopband. It should also be noted that by the
proper choice of substrate materials, the stopband width can be much reduced for

fixed crossing strip separation.

APPENDIX A

Using the dyadic Green's function formulation [7], the elements of ij(kn) can
be obtained as follows:

For i = j, where the source and observation points are in the same layer, we
have

f E i -RRTE wy\ + R~e2ikj"zdi) (1 + RTE)RT Th) .i~~-n

JTM l - . k(e) l -TMM 2ik is (1 Rn
¢tjj - ).e )

1E - RTMRT2ik j di) e~ ~

(A2)

and for j > i, where the source is in layer (j) and observation point is in layer (i),
w. nave

xTE.2k'd
l k(.h)  1- R-TE, TE 2ik(h)d - j U

l RlRj e i

(A3)

. - . . * ... . . . .; ,
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fTM I k Us,) ike)d TM T

e ___ Rnj ) -R .Me2

W~~j kI(TMT 2ikj(:)d.)T)j i(I - Rnj 116j e

(A4)

where XTE. and XTM are, respectively, the TE and TM upward transmissionu,2 UiZ,)

coefficients from layer () to layer (i), given by

ik( ) (I + RTE+
x TE =xTE 1),e (1+1)zd(1+1) U1)(5

., u(l+),n (1 + RTiFe2ik h)di)

k'e k(1 - RT(+)

XTM XTM 1 "(+1)z itk(' ) d(l+ ,)  U (M+1 )
XU1,m =u(l+1),m k 1~ (e R~l,) T 2ik(L)dl) (M1z I(+)-tx R(Ae)

for I (m - 2),(m - 3),...,0, and for I = (m- 1), we have

xTE (1n+ 
(A7)

U(M-1,M I+ RTI 2ik (h) ,-) (A7

xTM - k1 ki: - m ))(A8)U(m-1),m kzj; km -R e2ik(e L d~m)

and

k~)- k2  _±k (A9)

)z j -J
Ijz

k(e) -
2  'j-k. .k (A1O)

k= w2(j1j (All)

Using the symmetrical properties of the dyadic Green's function in the layered
media, it can be shown that fk = fi'j, where a denotes TE or TM. In the above

equations, the superscripts (h) and (e) denote TE and TM fields, respectively.
Rai and R', are, respectively, the Fresnel reflection coefficients at the lower and
upper boundaries of layer (1) and can be determined recursively by the following
relations

R+ + Ra +

S2ik (A12)
1 + R RlR+(1+) (

where = 0,... ,(r - 1) and Rn = R%.t.

.. R P.W wlr.".
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a + a R l 2e )d-1
- 1 + 1) a 1  2ik-l1)zdt- (A 13)

1 + Ra t R)au~_U

where l 2,3,.. ,t and RI =1R 0.n Ri) Ri+l) are the Fresnel reflection

coefficients across the interface between layers (1) and (I + 1).
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Input Impedance of a Probe-Fed Stacked
Circular Microstrip Antenna

Ann N. Tulintseff, Sarni M. All, Senior Member, IEEE, and Jin Au Kong, Fellow, IEEE

Abstract-The input Impedance of a microstrip antenna consisting of
two circular microstrip disks in a stacked configuration driven by a
coaxial probe Is Investigated. A rigorous analysis is performed using a
dyadic Green's function formulation where the mixed boundary value
problem is reduced to a set of coupled vector integral equations using 0,4

the vector Hankel transform. Galerkin's method is employed In the 'S= ,t,
spectral domain where two sets of disk current expansions are used. One #, " 9." . -=

set Is based on the complete set of orthogonal modes of the magnetic ),, ,, A, 3,

cavity, and the other employs Cbebyshev polynomials with the proper 2edge condition for the disk currents. An additional term Is added to the 01'8,.
disk current expansion to properly model the current In the vicinity of
the probe/disk junction. The input impedance of the stacked microstrip
antenna including the probe self-impedance is calculated as a function
of the layered parameters and the ratio of the two disk radi. Disk (a)
current distributions and radiation patterns are also presented. The
calculated results are compared with experimental data and shown to be
in good agreement. ' - z"d.

/ii, ii =di
02, t2 2 h2 d2

I. INTRODUCTION 4,.3,, 2R h,

C ONVENTIONAL microstrip antennas, consisting of a s-- I/I/I/z=Id.

,gle conducting patch on a grounded dielectric substrate,
have received much attention in recent years [1] due to their ',

many advantages, including low profile, light weight, and easy (bi)

integration with printed circuits. However, due to their resonant Fig. I. Stacked microstnp antenna configurations.

behavior, they radiate efficiently only over a narrow band of
frequencies, with bandwidths typically only a few percent [1]. ring, and elliptic geometries has been investigated by many
While maintaining the advantages of conventional single patch authors [15]-[19]. The impedance parameters of two planar
microstrip antennas, microstrip antennas of stacked configura- coupled microstrip patches have also been studied [19], [20].
tions, consisting of one or more conducting patches parasitically In the calculation of the input impedance of probe-driven
coupled to a driven patch, overcome the inherent narrow band- microstrip antennas on thin substrates, the effect of the probe
width limitation by introducing additional resonances in the results in an additional inductive component to the input
frequency range of operation, achieving bandwidths up to impedance. This probe inductance has been accounted for by
10-20%. In addition, stacked microstrip configurations have several authors through use of a simple formula 119], 121]. In
achieved higher gains and offer the possibility of dual frequency more rigorous methods to include the effects of the probe, an
operation. "attachment mode" in the disk current expansion is used to

Experimental work with multilayered microstrip elements has account for the singular behavior of the disk current in the
been abundant [21-191. However, to date, theorctical work has vicinity of the probe, ensure continuity of the current at the
been relatively limited, where the study of resonant frequencies, probe/disk junction, and speed up the convergence of the solu-
modes and radiation patterns have been investigated [101-[13]. tion. An "attachment mode" which represented the disk current
Recently, the finite-difference time-domain technique was ap- of a lossy magnetic cavity driven by a uniform cylindrical probe
plied to stacked rectangular microstrip patch configurations [14). current was introduced in [161. More recently, similar and other
There is little or no theoretical analysis of the input impedance "attachment modes," with the I/p dependence in the vicinity of
of coaxial probe-fed stacked circular microstrip patches. How- the probe and the appropriate boundary condition on normal
ever, the input impedance for conventional single-layer coaxial current, defined over the entire disk or locally over a portion of
probe-fed microstrip antennas of circular, rectangular, annular the disk, have also been used [221-[251. In a different approach,

the effects of the probe were accounted for by expanding the

Manuscript rccived March 12, 1990; revised July 27, 1990. This work currents on the disk and probe in terms of the modes of a
was supported by RADC under Contract F19628-88-K-0013, the ARO under cylindrical magnetic cavity satisfying boundary conditions on the
Contract DAALO3-88-K-0057, the ONR under Contract N00014-90-J-1002, eccentrically located probe 126].
the Joint Services Electronics Program under Contract DAAL03-89-C-0001, Considered here is a microstrip antenna consisting of two
and NSF Grant ECS86-20029. circular microstrip disks in a stacked configuration driven by a

The authors are with the Department of Electrical Engineering and coaxi probe. The two stacked configurations shown in Figs.
Computer Science and Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA 02139. l(a) and l(b), denoted configurations A and B, respectively, are

IEEE Log Number 9041263. investigated. The disks are assumed to be infinitesimally thin and

0018-926X/91/0300-0381$01.00 © 1991 IEEE
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perfectly conducting and the substrates are taken to be infinite in equations for the disk currents
extent. A rigorous analysis of the two stacked circular disks in a
layered medium is performed using a dyadic Green's function [ ( ,ZffiZ;)IT= - eI dkk,,J(kpP)
formulation. Using the vector Hankel transform, the mixed m = - -

boundary value problem is reduced to a set of coupled vector z
integral equations and solved by employing Galerkin's method in •
the spectral domain. Two solutions using two different basis sets = m o"
to expand the unknown disk currents are developed. The first set + e dkp k kpJ,,,(kp)

of basis functions used are the complete set of transverse mag- f

netic (TM) and transverse electric (TE) modes of a cylindrical
cavity with magnetic side walls. The second set of basis func- "z.2(k,, z = z , z' = zj) -

tions used employ Chebyshev polynomials and enforce the cur- a,!
D kkO i

rent edge condition. An additional term in the current expansion + dkeo0 Jm.kp)

is taken to account for the singular nature of the current on the
disk in the vicinity of the probe and to ensure continuity of • .(kp, z = z')' m(kp)
current at the junction. This term, the "attachment mode," is

taken to be the disk current of a magnetic cavity under a uniform = 0, p < aj (3)

cylindrical current excitation. It is shown here explicitly that -

continuity of the current at the probe/disk junction must be K.4(p) = dppJm(kop)
enforced to rigorously include the probe self-impedance. The
convergence of the results is investigated and ensured by using a "Kmi)(k) = 0, p > aj (4)
proper number of basis functions. The input impedance of the
stacked microstrip antenna is calculated for different configura- where j = 1, 2, and k, is the transverse wavenumber satisfying
tions of substrate parameters and disk radii. Disk current distri- the dispersion relation
butions and radiation patterns are also presented. Finally, the 2
results are compared with experimental data and shown to be in kP + kI k =w 2ple, (5)
good agreement. Throughout the analysis, the exp (- iwt) time in each region 1. In (3), z and z' correspond to the longitudinal

dependence is used and suppressed. positions of observer and source, respectively. Km )(k.) and

2)(kp) are the vector Hankel transforms of the two disk

BI. DYADic GREEN'S FUNCTION AND INTEGRAL currents K()(o) and K2)(p), respectively, defined by
EQUATION FORMuLATION

For a general formulation which applies to both configurations K JN(k) = 0 dp pJ1(k.p) - (p) (6)

A and B of Fig. 1, we consider two coaxial, circular perfectly
conducting disks, of radii a, and a2 , carrying current distribu- where KQ( p) is the Fourier coefficient
tions Jj(i) = Kj(-)b(z - z ) where j = (1,2) and 6(') is the
Dirac delta function. Configuration A is obtained when z, = d, KR.)(p) = - d eokj( (7)
and z = d2 and configuration B results when zj = do and 2 2w J= d2.

Using the induced EMF method [27], a stationary formula for and Jm(kpP) is the kernel of the vector Hankel transform
Usin th indced(VHT) [28] given by

the input impedance is obtained as -kHpi ]

S=- dV() () ()(kpp) im (8)

where Jp,, is the current distribution on the probe and E is the -J.(kpp) J ,(kpp)
total electric field due to the probe current and induced diskA
currents.

The current on the probe, of radius R and at the position Jm(') is the Bessel function of the first kind of order m and the
The curre on then tobe, ufradis gien by the n prime denotes differentiation with respect to the argument.

J,1(kop) is the complex conjugate transpose of Jm(kop).
In the last term of (3), ,m(kp) is associated with the probe

j4 (, z) = - --R6(p, - R), d 2 < z < d 2 (2) current and is given by

with local coordinates defined as ,= - (P,,, 0,P). Pn(k0)[pm(k)] (9)

Using a dyadic Green's function formulation in cylindrical
coordinates for horizontally stratified media [11), we obtain where

expressions for the transverse components of the electric fields I kop.(k,) - - J(k.,0) Jo(k,n) e - ' -"0 . (10)

due to the disk and probe current distributions. Boundary condi- Pm(k2) = 2 "3(
tions require that the transverse components of the electric field 3

vanish on the perfectly conducting disks and the currents vanish The matrix P,-m(kP, z) includes the effects of the stratified
off the disks, to give the following set of coupled integral medium when relating the probe current to the transverse elec-



TUUNTSEFF ;I aI.: PROBE-FED STACKED CIRCULAR MICROSTRIP ANTENNA 38

ric fields and is defined as for m=O,± 1,±2,"', n= 1,2,'", and p= 1,2,-

[~m~ 1 'IA p) correspond to the TM cavity modes and i((p) corre-
f.3 (k,, z) = Oj. (11) spond to the TE cavity modes. The constants 0,,,, and amp

0 correspond to the nth and pth zeros of J,(OM) = 0 and

It is clear that the assumed probe current excites TM modes Jm(amp) = 0, respectively. The VHT of these basis functions is

only. The matrices Z .j(k, z, z') with 1, j = (1, 2) in (3) in- - J'(koa )
clude the effects of the stratified medium when relating the disk 2

currents to transverse electric fields and are of the form -('( (16a)

g , j k, . ~ ') = li '  0 (12) - k J m ( k ,,aj )  (1 a

ooj kz, z') = ;~o (1)L ma k a)

" J(k,) P ajJM(ar°)[ 0  ] (16b)
The expressions for Tm(k 2 p k2 I Jm(kma) "

C , ( k 0k, z , z ) , a n d k( ( amAp p e ndi x
B. Chebyshev Polynomial Expansion with Edge

ERl. GALERKIN's METhOD Condition

Galerkin's method is employed to solve the coupled vector
integral equations of (3) and (4). The currents on the circular The second set of basis functions taken includes the edge
disks are expanded in terms of a set of basis functions condition for the disk currents and is taken to be [23]

N e (Yr(p/aj) /1- for p <
a. (p) +--_, + pb,-,),( p) (13a) *,(p) = aj (17a)

P . for p > aj
Rt S(

K,)(P) -+ b4'~(+) T(/a)/ /- p2 /+, for p <a (17b)2E~~~~m; m,(#),Jpaj I VI , -  p;2 aj; -- for-r ] eat 1 ()p

r MS mn(P) (7b

(13b) r0, for p > aj

N and P correspond to the number basis functions 4mj(p) and for m =0,± 1,± 2,... and n = 0,1, 2 ,--. T,(x) is the
4'.Jp), respectively, taken for the upper disk and R and S Chebyshev polynomial [291 and satisfies the recursion formula
correspond to those taken for the lower disk. Kg,,,(p) is the T,+(x) - 2xT,(x) + T,-,(x) = 0 with To(x) = I and
"attachment mode." 2'_

The thecurordentsisfgivn To(x) = x. The term by - p/a provides for the proper
The corresponding - singular edge behavior for the azimuthally directed current and

the zero edge condition for the normally directed current. SinceN P

(' ) Z (k,) + _ b k,) (14a) the current basis functions must have continuous current distri-
- vbutions on the disk, the mode index m and the Chebyshev

R p polynomial index n may not be both even or both odd when

L )- , ( k,,) + Zb b(2))k ) + W- (k ) performing the current expansion.
--(kmr) r r r e The VHT of the above basis functions is given by

(14b)
R k€ , [,) - mJmO'j)(k,)

A. TM and TE Modes of Cylindrical Cavities with -4u'Nk) J '(k 1 (18a)
Magnetic Side Walls imJ n( kl)

One set of basis functions taken are those currents associated
with the complete orthogonal set of TM and TE modes of a -imdT 1(
cylindrical cavity of radius aj (j = 1,2) with magnetic side = (j) mn () , (18b)

walls and electric top and bottom walls. These current modes are 17nmkp) - m(k =(k)
given by for m > 0. The integrals, with y= kaj, are defined byJ',t(amnploj) 1]iIm n 2

" (')(p = m J( aa) fop , (lSa) mn 8 y 2 [- 2 )

AmP 0, for P j"(m+n+2,/2(Yj/2) J(mn-2,r2(YJ/2)
-imaj fo p < - 2

- ma _f (m 2 ) J (m+ " - '2)/2(yj/2)

= ampPJm(amp
p/

aj) for p < aj (15b) 
J~m~n+22(Yj/2)

0, for p > aj + mJ(m+n)/2( yj /2) J(m-n)/2 ( yj /2)] (19a)
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00 j 1 (r(D. Matrix Equation

4 yJ 2 Substituting the current expansion of (14) into (3), and apply-
'2 ing Parseval's theorem, we obtain a system of N + P + R + S

+2J('+") Y~i/2  )J~m-l)I 2(yj/2) linear algebraic equations for each mode m which may be

-J(m+n)/(yj/2)Jm-,n+ 2)/2 (yj/2)] (19b) written in matrix form

2- j v A. - Z.=mdm (22)
MM = I Jm+n ) /2 ( y j / 2 )JAm-n-2 /2 ( y j / 2 )

whe
2 where

-m+mn 2)/ 2 (yj/2)J(i-nn)/2 (Yj/2)] (19c) (i AIP'(7 )AIp LAI() A] 1
00 (1) 1) (1) 1)02)

J,*(,) - km+.)12 ( yj/2) J(m - )/2 (yj /2)]. (19d) N A]".4 1)()SA. (2), (1) . (2) (1) 0 (2).1(2) W2• 0)0

In the above expressions, when m and n are not both even or Am AJ0N [LAf]xp [ A] AJix
both odd, the Bessel functions JM2() are of half-integer order A2) ])
1301. Aa m SXP SXR [ ,

C. Attachment Mode (23)

The "attachment mode" term in the current expansion is and
taken to approximate the rapidly varying currents in the vicinity [
of the probe/disk junction, ensure continuity of the current, and a()] Nx I
speed up the convergence of the solution. This term is taken as [ b(] p.
the disk current of a magnetic cavity of radius a2 due to a cm - (24)
uniform cylindrical current source of radius R positioned at Po ag)] R .Iand given by 2L I[b~a ) S-I

k. ) 2 -,1 ei"g~o-0 dk ~[~~N

J,,,(k)p) 1",. -o I

*J0(kPR)Jm(kpp) im ,i. d = ,,1 (25)

ik3l Liw-0 md2) lS.I

+~ e" -*o )e

4 ME co Each element of the submatrices of Am is given by

J0(k3R) Jm(k3P ) H((k 3 a2)k ) ,j(k ,z;,z ) -s (k,)

J(k 3a2) AmaP 1" ) " -- ()

J;(k 3P) (26)
mJ.(k P) / 5'2 (0 where -.'J,() and ) -J

3  ]()(k) and mm(kp) represent either ,m.(kp) or
k3 P J m)(kp). Each element of the excitation matrix dm is given by

where H,)(-) is the Hankel function of the first kind of order _ - *dk3
nf kz;) ,Pm(kp.)

m. The first term in (20) is the current induced on infinite dt dk=kD, -(k, ) • C3(k'). (k
parallel conducting planes by a uniform cylindrical current. The
second term is a homogeneous solution to the wave equation d
added to satisfy the boundary condition H (p = a2) = 0, pro- - ( ) , 2 (k,,z;,z2)
viding for vanished normal current at the edge of the disk. (27)

The VHT of the above attachment mode current distribution
has a closed form analytic expression given by IV. INPUT IMPEDANCE

'_ (k) e o k Once the induced current distribution on the microstrip disks

2. o m 1  due to the coaxial probe excitation is solved for, the input

- im o J0 (k 3 R) Jm (k 3 Po) impedance of the stacked microstrip antenna may be calculated.
- -e Applying (1), the input impedance for the stacked microstrip

2w J,(k3a2 ) antenna is given by

.[ ' SJrn(kDa2) Zm (21) " L: dJo dPJo dppPp{[3.l( )]Z
3zi,, (21)T

im J(,a)bp,-R) (28)
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where E 3.(r) is the electric field due to disk current j and waveguide. In the small k 3R limit, this term reduces to

Emf(i) is the electric field due to the probe current. After
integration over the cylindrical probe surface and some manipu- lir 1-1 k3h3Jo(k3R)H0o"(k3R)
lation, we arrive at k3 R-o 4

Z " - L - dkkpP(k){T(kp) - k 0 h 3 L In (kR) = i60koh 3  n (k 3 R)

2r --r ok 2: 3s 3I

+ + which is the formula used by some authors as the probe reac-

=a- 2:k)1 tance [241. Upon careful inspection of the expression for the
- -*k /. (kp) probe self-impedance 7/- ) it is noted that the second term in

in colcoIin

(32) containing e3 (k.) is zero when RTM is equal to one-the

N P case of a probe-fed parallel plate waveguide. When RTM is not
k Q E(k ) ( p equal to one, this term diverges. This is because the uniform

1 P current on the probe leads to a singular charge accumulation at
R the probe end giving rise to a singular reactance. Thus, in the
r.+ ( t a mr (k J r case of a microstrip disk excited by a probe, in order to account

S properly for the probe-self impedance, the continuity of the

S + c + 2.) current at the probe-disk junction must be ensured. If we take
S S i n  +- the impedance due to the probe and the attachment mode current

(29) together, we arrive at the following:

where Z-10 + Zq "m)

jT' vkt 73 J~ )o'(
2 (Q. = -k 3 h 3= 3 3R)2 k,4

[I - R TM] [I - Rm][l - R TeJ2k3(dO- z )] 1 eimoJo(k3 R)Jm(k 3Po)

[I R - m RjRIi2k1Zh IIIl - R Tme i2k2zh2I IJm EM J(~

eikI<zJ- d)eik2zh2 (30) .J'dkkap,(k)J;,(ka 2)( 3  .(k (34)

o \k3z ]

"2( k [ - R(k] [i 2 k3zh3 1 (31) where the divergent term in the probe self-impedance ZIfr) has

been cancelled by the contribution of the attachment mode which

and 17, = V-./iZ7*. The expressions for the generalized reflec- ensures continuity of the current.
tion coefficients R1 1 and R', are given in the Appendix. Z.O
represents the self-impedance of the probe and may be expressed
as The radiation field, or far field, components in region 0 may

1 = !be obtained from the longitudinal components with

in ' 3 h3 J0 (k 3 R)Ho(')(k 3R) 1 0 0  04-w 0 0 = )o Ho, E06E , ( 5
sin-0

k 3.( For large observation distances, the expressions for the field

components may be evaluated using the saddle point method

Zi(2. is the input impedance term due to the attachment mode with the saddle point being ko, = ko sin 0 where 0 =
and is given by tan- (p/z). The longitudinal field components due to disk

2 current Kj(#) are given by

_. = E( ( ,z) = F_ e"'(- i)"{kaeo.(ko,z')

I . J(k 3 R) 4(k 3PO) c o- - Yo e 0,I
I -C J (k 3 a 2 ) JO m ikkoO (36)

,.2(k,). (33) Ho(Jz) e_ e -'(-,) kho.,(koz'
° ,kp.*(k)J (ka 2 )

3zm M -CID
e iko

r

The first term of the probe self-impedance in (32) corresponds • [ J)(kp) 0) kkoi n (36b)

to the input impedance of a coaxial probe driven parallel-plate r lokoktO
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where and R = 0.048a2. Given these parameters, the antenna is char-
,, kiz acterized by varying the upper radius a, and the separation

0 1 (kz) -- - between the disks h2. Convergent results for the input impedance
and radiation fields using cavity mode basis functions are ob-

[I - Rlm] [I - Rme 1e Z~zj-d)j tained with (N = 4,P = 3), (R = 4,S = 3), while those using

1 - RTMRTMei 2klzAl the Chebyshev polynomial basis functions with the edge condi-
- *, vi*, nl- tion use (N = 3,P = 3), (R = 3,S = 3). For the calculation of

eil do-zl)e - ikozdO (37a) the input impedance given by (29), very good results are ob-
tained with m = ± 1 for the terms associated with the disk

fi koz current amplitudes, a(,,), b(1 a ,2), and b(, and taking m =
= -- p' mr' M

po kiz 0, ± 1, ± 2 for the probe self-impedance and attachment mode
terms in (34). Additional modes produce only a I or 2 0

[1 + RJ 1] ][1 + R i erk l-] difference in the input impedance calculations for the parameters
1 - R TE R TE e,*lzhl considered here. It is found numerically that the probe self-im-

Ut nik pedance and attachment mode impedance terms taken together in

•e-ikozdeikIz(dO=
z) (37b) (34) give rise to a primarily inductive reactance contribution.

12 k 2 z Computation time for the input impedance of the stacked struc-
eo.2(k,zi) = -- ture is approximately a half-hour of CPU time per frequency on

2 k2  a VAXstation 3500.

[I - RT] ][I - R ][I - RrJ Calculated and measured [61 reflection coefficients, r = (z.h U2 7_h Zo)/(Zm + Zo) where Z0 = 50 0, are shown in Figs. 2(a)
[ - T2 RTfRe zU2z22[1 - RTlIe'l ]  and 2(b) for the stacked configuration case A with a,1a2 = 1.01

.e-ikozdOeikI 
z i eik2z

h 2  (37c) and h2 / a 2 equal to 0.36 and 0.48, respectively. The agreement
between the measured and calculated results is very good. The

= 12 k0 z loop in the impedance locus of Fig. 2(a) reduces in size in Fig.
ho.2(kp,z2) = k 2 z 2(b) as h 2 /a 2 is increased from 0.36 to 0.48, leading to the

wide bandwidth behavior of this configuration. Especially off

[I + RTE I [I + RT 2 [I + R 2 ] resonance, it is seen that the attachment mode and probe self-im-

[I - R T R 2 e i2k2zh2I [I + RTE ei2 klzhli pedance terms are required for accurate results.
In Fig. 3, return loss calculations using both cavity mode and

-e- koZdOe iklzhei2zh2. (37d) Chebyshev polynomial basis functions are compared with mea-
sured results [6] for the case of Fig. 2(b). The agreement

Likewise, the radiation field component due to the probe is given between the calculated and measured results is very good. A
by frequency shift in the results on the order of 1-2% is observed

OD for the two sets of basis functions. Due to the presence of the

E , z) = Z eim(_i)' upper disk in the stacked configurations, two resonances associ-
m = - m ated with the two constitutive resonators of the stacked structure

eOikor 11] are easily distinguished, giving rise to a 16 % -15 dB
ke Pn.(k).. - (38) bandwidth in this case. One resonance is associated with the

. .kO-o r resonator formed by the lower disk and the ground plane and the
second resonance is associated with the resonator formed by the

where two disks. Comparing the return loss of the stacked configura-

( 3 k3  [I - RTv] [I - RT}] [I - RTI [- e12k3zh3] -

2 k3 [I - R Tei2k3zh3] [I - RTei2kiZh] [I R - Rje '2k2zA2] e-ozdoeiklzAleik2zh2 (39)

VI. NUMERICAL RESULTS AND DISCUSSION tion to that of the single disk, when the upper disk and substrate
are removed, it is shown that the input impedance of the single

The integrals of the matrix elements, (26) and (27), and in the disk presents an impedance mismatch. When the probe position
impedance expression (29), are evaluated numerically along an is changed from 0.6a2 to approximately 0.302 to obtain a
integration path deformed below the real axis to avoid the match, a 2.3% -10 dB bandwidth is achieved.
singularities on the real axis which correspond to the radiating Fig. 4 illustrates the effect of the separation h 2 / 2 on the
and guided modes of the layered medium. When using cavity input impedance for the cases a,1 a 2 = 1.05, where the im-
mode basis functions, the integrands vary asymptotically as pedance has been calculated using the Chebyshev polynomial
1/k 3 while those using the Chebyshev polynomial basis func- basis functions including the probe self-impedance and attach-
tions with the edge condition vary asymptotically as I / k.. To ment mode terms. While the position of the lower resonance
enhance the convergence of the integrals when using the Cheby- remains essentially the same, the position of the upper resonance
shev polynomial basis functions, the asymptotic values of the is a function of the height h2 , decreasing with increasing h 2 . As
integrands are subtracted out and evaluated analytically. seen in the figure, the excitation of the upper resonance in-

For the stacked microstrip configurations discussed here, the creases with increasing h2 (up to a certain h2 beyond which
following parameters are used: a2 = 1.3233 cm, h3 - 2hi, = there is little coupling [11). This is due to the fact that the
0-115a2, t 1

= f 3 = 2.45t 0 , f2 = 1.22t, (foam), po = 0.6a 2, coupling interaction between the two modes increases as the
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Frequency (GI~r)
Fig. 3. Return loss of Stacked ConfigUraxion A. 0,1a2 = 1.01 and h2 /02

-0.48. Return loss of single disk with no upper substrate and PO /a2
0.3,0.6.

0.1 GOzinmcrement 3.2- 3.001 ioo10,....
01,/02 - 1.01 %2/a, 0.38 

102 10
o (3.3) Chebyohwv (rn-il) with attachment moad. (m-w0.*1.*2)

* (4.3) Cavity nrodes (m-.1,*2) with attach, modle (mn0.*1.t2) h/2 04
* (3.3) ClheysNN (m-*1) without ottochment mwoe- 

.3
e Meo.,red 16] 02

a)

3.5 4 4.5 5
(5.0Frequentcy (GHz)

3.9Fig. 4. Input impedance of stacked conftiguration A. 01 /02 =1.05 and
h2 / a2 = 0.24 (-), 0.36 (--,0.48 +-)

Shown in Fig. 6 are the input impedance results of configura-
tions A and B with parameters a, /02 = 1.2 and h2 la2 = 0.24.
Generally, the two configurations have similar characteristics.
For configuration B, the increased distance between the two
disks and the higher "effective" dielectric constant between the
disks results in an upper resonance occurring at a lower fre-

0 1 GH: i,,Crement 3.2 - 5.0 GFU quency as compared with configuration A.
*1/02 ' 1.01 h2/a2 a 0.4a Illustrated in Fig. 7 are the disk current distributions for

* (3.3) Clebyhr, (-'-*I) with ottaChmwlt mnod. (n,.O.a1.*2) configuration A with a, /02 = 1.01 and h2 /a2 = 0.48 at the
* (4.3) Covity mod". (m-0.,1.*2) with attach, made tnm-0.*1.*2) lower resonance, that is with k 3a2 = 1.655 using (4,4) Cheby-

*(3.3) Chtysw (rnal) without ottochnent mo.shev basis functions for each disk and k 3 a2 = 1.68 using (5,4)
[6] cavity mode basis functions for each disk. As the number of
(b) caNity mode basis functions is increased, the singular behavior at

Fig. 2. r of stacked configuration A. a]/o la 1.01.- (a) h2 /02 =0,36. the disk edge of the * component of the current distribution is
(b) h2 /02 - 0.48. better characterized. The magnitude of the component of the

current for the upper disk iq approximately uniform across the
disk where the amplitude slightly increases toward the edges due

upper resonant frequency approaches the lower resonant fre- to the parasitic effect of the upper disk excited by the fringing
quency, i.e., as the upper resonant frequency decreases with fields.
increasing h2. Or, conversely, the coupling interaction de- In Fig. 8. the radiation patterns of the stacked microstrip
creases as the separation between the disks approaches zero. antenna configuration of Fig. 7 are compared with those of the
Calculated and measured [6] return loss results are compared in single disk with no upper substrate. For the probe-fed single
Fig. 5, where a 13 %- 1 dB bandwidth is obtained in Fig. 5(a) microstrip disk, the probe position is taken to be p0 /a 2 = 0.3,
and where dual frequency operation is observed in Fig. 5(b). while p0 /0a2 = 0.6 for the stacked configuration. The E, com-
Again, the agreement between the calculated and measured ponent remains essentially the same for both the single disk and
results is good. stacked configuraition. The radiation pattern of the stacked con-
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3.5 4 4.5 5
Frequency (GHz) coaxial probe is investigated. A rigorous analysis is performed

Fig. 6. Input impedance of stacked configurations A and B 01/02 f 1.2
and h2 /02 - 0.24. using a dyadic Green's function formulation where the mixed

boundary value problem is reduced to a set of coupled vector
integral equations using the vector Hankel transform. Galerkin's

figuration is More directive than that of the single disk, where method is employed in the spectral domain with an additional
the E# bearnwidth is decreased in the stacked case. ter~m used in the current expansion to account for the singular

V.CONCLUSION nature of the current in the vicinity of the probe, ensure continu-
ity of the current, and to speed up convergence of the solution.

The input impedance of a microstrip antenna consisting of two Ensuring continuity of the current by means of the attachment
circular inicrostrip disks in a stacked configuration driven by a mode is shown to be necessary for rigorously including the
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probe self-impedance and obtaining accurate results for the R*1+t) + R*n° t)eak(t+t)Zhi+l (45b)
stacked microstrip configuration. The input impedance of the nt = I + R(4+)R5(b+))eb k )+ j)z 5b)

stacked microstrip antenna is calculated as a function of the

layered parameters and the ratio of the two disks. Both wide where RTE = R'j = 0 and R = -l and Rn = I. The
bandwidth and dual frequency operation are shown. Disk current Fresnel reflection coefficients RTE and RT, are defined
distributions and radiation patterns are also presented. Calcu- by
lated results for the stacked microstrip configuration are shown
to compare well with experimental data. RTE P± tI)kz - 1 ,k(1t5 

1)z (45a)
VM. APPEN~~~~~ix /(I ± 1) )A= tIkz+ l(: ~

TM (t± t)ktz + 1S1k(ir, l)z
VIII. APPENDIX

The explit expressions for t7'.(k.,z), kT(ko,z,z'), and R 7k-) (46b),Ek0I R(121) mEItIkz+ l( ~
Q .,,z

') of (11) and (12) are given here. For the stacked Et±itktz + ftk(± (4b
configurations of Fig. 1, we have

I 173 k 3z 
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Analysis of Diffraction from Chiral Gratings

S. H. Yueh and J. A. Kong
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and Computer Science
Research Laboratory of Electronics
Massachusetts Institute of Technology
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Abstract- The coupled-wave theory is generalized to analyze the diffraction of waves
by chiral gratings for arbitrary angles of incidence and polarizations. Numerical results
are illustrated for the Stokes parameters of diffracted Floquet modes versus the thick-
ness of chiral gratings with various chiralities. Both horizontal and vertical incidences
are considered for illustration. The diffracted waves from chiral gratings are in general
elliptically polarized; and in some particular instances, it is possible for chiral gratings
to convert a linearly polarized incident field into two nearly circularly polarized Floquet
modes propagating in different directions.

I. INTRODUCTION

There has been considerable interest in the theoretical study of scattering from
chiral media. A detailed account regarding the chiral medium (or optical activity)

* and some suggested applications can be found in [1-3]. Chiral medium charac-
terized by a biisotropic constitutive relation is a special case of the bianisotropic
medium whose electromagnetic properties have been extensively studied by Kong
[4,5]. Jaggard et al. [6] studied the propagation of electromagnetic waves through
a random collection of short helices and demonstrated the physical basis of chiral-
ity. Recently, Bassiri et al. [1] analyzed the reflection and transmission of waves
from a half-space chiral medium. Viitanen et al. [7] solved the eigensolutions for
the reflection of waves by the interface of two chiral half-spaces. Jaggard et al. 12]
analyzed the propagation of electromagnetic waves in periodic chiral structures
under the weak coupling approximation for the case that the wave is normally
incident on a chiral slab with the fringes parallel to the interface.

Periodic gratings have also been the object of extensive research through the
years because of its many applications in distributed feedback laser, integrated
optics, acousto-optics, quantum electronics, and holography. For the analysis of
wave diffraction by periodic surface gratings, methods including the method of
moments [8,9] and extended boundary condition method [10] are rigorous and in
general computationally efficient. For the analysis of periodic slanted dielectric
gratings, a rigorous coupled-wave method has been developed [11] and generalized
to anisotropic gratings by (12,13].

In this paper, we present a generalization of the coupled-wave method to inves-
tigate the diffraction of electromagnetic waves by a periodic chiral grating with
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the fringes allowed to be slanted. The coupled-wave approach writes the fields
inside the grating region by Fourier series expansions and converts the Maxwell's
equations into a set of coupled first-order differential equations for the Fourier co-
efficients. This system of equations is solved by the state variable method which
gives the eigenmodes of fields inside the grating. Subsequently, the fields inside
the grating are expanded by these eigenmodes and the unknown coefficients of the
diffracted Floquet modes outside the grating are solved by matching the boundary
conditiors on the interfaces.

II. COUPLED WAVE THEORY

Consider the configuration (Fig. 1) that a plane wave with the time harmonic
dependence {exp(-iwt) impinges on a periodic chiral grating. The electric field
of the incident wave is given by

j= iiexp(,) (1)

having the incident wave vector ki defined as

ki = iki + tkyi - ikzi (2)

kzi = k sin 0 cos 0 (3a)
ky = k sin 9 sin 0 (3b)

k, k cos 0 (3c)

where k is the wavenumber in free space.

z

0
\\ /

/

F-0/

k, X
/

/ \

/ --

I

-2
-1 0

Figure 1. Configuration of the diffraction from a slanted modulated chiral
grating.
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Assuming that the periodicity of the grating is characterized by the grating

vector 2ir
2- (C + i tan.09), -7r/2 < 9g < 7r/2 (4)
P

and expanding the diffracted fields outside of the grating region by the Floquet

modes yield the following expressions for the total fields above and below the

grating region, P and T2, respectively.

P=E+ER. exp(ikO..), z>0 (5a)
n

T2= Y,1 Tn exp (-inczd) exp [ikm. (F + di)], z < -d (5b)
n

where

= ikzn + 'k,,. + ik 2 n (6)

k. = ik,, + ky - ik2 n (7)

and kzn, k3n, and k 22 n are given by

kzn = kzi + nGz (8a)

kzn = k 2 - k2 - k 2 .  (8)

2n Y (8c)

where the branch cut of the square xoot operation is chosen along the negative

real axis of its argument.
Assuming that the medium in the grating region is characterized by the con-

stitutive relations for chiral medium [14]

D = feE + i*X H (9a)

B = Po'H - iXc'oo E (9b)

where e and p are the relative permittivity and permeability, and Xc charac-

terizes the chirality or handedness of the chiral medium. Xc is a dimensionless

quantity and Xc < 1 denotes small chirality. The constitutive relations given by
(9) can be related to the constitutive relations [2] by the following transformations

Xc - /' V,/0/
S--* £ + hL,.L0/ 0

where Cc is the chirality admittance.
In the constitutive relations given by (9), f, p, and c are all assumed to be

periodic in the direct;on of grating vector ? so that the following Fourier series

expansion of the grating parameters can be defined as

e = Cexp (inG. ) (lOa)

= Epmn exp(iG.1) (10b)

Xc = >3Xmexp (inG ) (10c)

POT
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XC

2 ~exp (inG- ) (10d)

2 -n eXP(ing. (10e)

2 Z(n exP(inG 7 (101)
xc PI

Substituting the constitutive relations, (9a) and (9b), into Maxwell's equations
yields

V x P = kti 77+ kxE 11

V x 77 = -ik~e + k)ci7 -H (12)

where 77 = V;zL/lfj represents the free space impedance.
For the coupled wave theory, electromagnetic fields inside the grating region

(0 > z > -d) are assumed to have the following series expansions

H H, [ (z)(Z + Hy, (z)i+ Hzn(z) 1] exp(i&i- F) (13b)

where

)n= -i~ + 9ky + ZTLGz (14)
Substituting (10) and (13) into (11) and (12) yields the following coupled wave

equations

dz- = _ inGE + I k F, ln-M77 Hy + kc E Xn-mEyrn + ikznEzn (15a)

dEz = - %nGZEy - ile 1: /An-mHzm - kc E Xn-mEzm + ikyiE~n (15b)
TM M

dz H = _ mnGiH~n - ik E3 CnmEym + k E Xn-mtiHym + ikzn77Hzn (15c)

dH I: - nf 7 ~±z> n-mEzm - kI: Xn-m'7Rzm + iky1iHzn (15d)
dz mIn

and

Yi [in- (k~ E - Ezm) + -rn-m (k Hyn- k Ic z

~' L (16a)

7 Zn [-n-m ( k Ey, - ky2 E.m + i~- k z, 7Hm 7 H--)]

Tm (16b)

In deriving (16), the z components of T and F are first solved in terms of the

z components of V x P and V x H using (11) and (12). Subsequently, (16) is
obtained by substituting (13) into the resulting equations. Note that the chirality
of the gratings can be considered small in (15a)- (15d) if

f, U - 0(0) > Xc:
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On the other hand, if Xc is of the order of one, then it would have significant
amount of contribution.

By substituting (16) into (15), (15a)-(15d) can be recast into a matrix form
as d-V=AV 

(17)
dz

where

E (18)

and matrix A is the coupling matrix. Note that in the above equation vector V
should be realized as containing the modes with all indices n's and in fact is an
infinite dimensional vector.

The solutions to the coupled-wave equations can be expressed as

'P1,nm 1

V cPmxp (Amz) ~cm 2, nm exp (AmZ) (19)
m m 1 P3,1,,m

LP4, nr,
where Pm is the eigenvector corresponding to the eigenvalue Am for the matrix

A. Pi,nm, P2,nm, P3,nm, and P4,nm correspond to Ezn, Eyn, 17H2n, and 77Hyn,
respectively. In practice, the series expansions will be truncated so that matrix
A becomes a finite matrix. Eigenvalues and eigenvectors of the truncated ma-
trix are solved by using a computer library program EIGCC in the International
Mathematics and Statistics Library (IMSL). cma's are the unknown coefficients to
be determined from boundary conditions.

Note that Gauss' law for the source-free region gives two additional equations

k. R, = 0 (20a)

k2n'Tn = 0 (20b)

Furthermore, the continuity of the tangential components of electric and magnetic
fields on the upper and lower interfaces of gratings yields the following equations:

Exn(0) = ezbn0 + Rzn (21)

Ew,(0) = ey6no + Ry, (22)

kirHzn(O) = 6no(kyiez + kziey) + (kyiRzn - kznRym)  (23)

k,'Hyn(0) = bno(-k.,e. - kie,) + (knRn - kznRzn) (24)

Ezn(-d) = T~n (25)

Ey(-d) = Ty (26)

kt7Hzn(-d) = k Tn + k2,nTvn (27)

.. .. . . . . , .

%A 7 , -
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k,7Hyn(-d) =-kz, T.. kznTzn (28)

where n is the Kronecker delta and ex, ey, and ez are the z, V, and z com-
ponents of ii which defines the polarization of the incident electric field given by
(1).

The above equations (20)-(28) can be used to solve all the unknowns. For
example, if N modes are kept, there are 4N eigenvectors inside the grating
region and 3N components for each of Wn and Tn. Note that the total number of
unknowns is ION which equals the total number of equations. For the efficiency
of numerical computation, the components of R and T, are first expressed
analytically in terms of Cm'S. Thus (20)-(28) reduce to 4N equations for cm's.

After Tn is solved, the horizontal and vertical components of the nth trans-
mitted Floquet mode are defined as

Eh = Tn (29a)

E, = i"- Tn (29b)

where

k31j~ -+ kzn,' (30a)
kp (30a)

ko 2
k2z n kznx, + kyi / + kp(3b

kp= k, + k2  (31)

and k 2 is the wavenumber of lower half-space.
Similarly, the horizontal and vertical components of the nth reflected Floquet

mode are defined as

Eh =h . n (32a)

E, = A•n (32b)

where h is still defined by (30a) and 6 is givcn as

- kzn k~n + kyi kP.kV n k+ + -z (33)

The diffraction efficiency is defined as the ratio of the z component of the
power carried by Floquet modes to the z component of the power of the incident
wave.

DErn = Re(k.n/kt)R, 2  (34a)

DEti = Re (k 2zn/kzi)!Tn 12 (34b)

For lossless gratings, the sum of the efficiencies for all the propagating modes
should be unity. For the numerical examples illustrated in this paper, the coupled
wave method gives highly convergent results where the computed total diffrac-
tion efficiency deviates from I by 0.02% for the worst case. Note that a VAX
workstation is used for our numerical computation.

FW1 .jjj 1114
. . . . . . .. . . . . . . I ll
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III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical examples for the effects of chirality are illustrated for the
polarization states of the waves diffracted by gratings with rectangular grooves
(Fig. 2), even though the theory developed in Section II can be applied for much
more general cases. However, gratings with sinusoidal modulation have also been
analyzed but the features observed are essentially the same as those of rectangular
modulations presented in this paper.

z
-1 0

Z -d

Figure 2. Wave diffraction from a rectangular chiral grating.

Figure 2 shows the geometry of the rectangular grating for the cases presented.
For all the cases considered, P equals A which is the electromagnetic wavelength
in free space. The relative permittivity of the substrate below the corrugated
region is f2 = 2.5, and the relative permeability is one for all regions. The
chirality parameter (Xc) is chosen as 0, 0.188, and 0.377 to illustrate the effects
of chirality.

Two sets of incident angles (0, 0) are selected: (30 deg, 0 deg) and (35.26 deg,
30deg). The former one corresponds to the situation that the incident direction
is perpendicular to the ruling direction; whereas the latter one is not. In either
case the incident angle is chosen such that

kzn 1 = -kzi (35)

In other words, the wave is incident at the first Bragg angle. For the cases studied
in this paper, most of the power are carried by the -1 and 0 transmitted Floquet
modes.
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Hence only the diffraction efficiency and polarization state of these two doni-
nant modes are illustrated. In order to present the polarization state of diffracted
Floquet modes in a compact format, orientation (a) and ellipticity (/3) angles
(Fig. 3) are utilized to express the transmitting and receiving polarization states.
Here, the definitions from [1] are adopted. Therefore, horizontal (H) and vertical
(V) polarization states will have zero degree ellipticity angles, with orientation
angles of 0deg and 90deg. Right and left polarization states are orientation
independent with ellipticity angles of 45 deg and -45 deg, respectively. In addi-
tion, 0deg a < 180deg and -45deg <3 < 45deg.

POLARIZATION ELLIPSE

\ -.-

Figure 3. Polarization ellipse, a and /3 represent orientation and ellip-
ticity angles, respectively.

A general polarization vector,

Eh [Ehlexp(ikh) (6
E, J-E,I exp(iv)

written in terms of horizontal (h) and vertical (0b) vector components, can be
transformed into a normalized Stokes vector as follows

SO 1 ' Eh 12 + jE,, 2 ] [ I
S1 = IEhl - EJI 12  =(Ehl2 + levi2) cos20cos2a

522~~E I2 Eos El 2  cos cf i o
/21i,,i + iosI) cos2/3si"2 (:37)

.3 . 2jEhflE,4,sinO .. sin2,6

where 0 = 4- Oh Using this equation, the angles a and fl are obtained.

.1.w
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Figure 4. Diffraction efficiencies and Stokes parameters of transmitted
Floquet modes 0 and -1 for horizontal polarization incidence.
8 = 30 deg and 4a = 0Odeg. (a)-(c): Xc =0; (d)-(f): Xc
0.188; (g)-(i): xc = 0.377. Solid and dashed lines correspond
to Floquet mode 0 and -1, respectively.

Figures 4 and 5 illustrate the Stokes parameters of the transmitted 0 and -I
Floquet modes versus the thickness of rectangular gratings (d), respectively, for
horizontally and vertically polarized incidences. The incident angle is 9 = 30 deg
and 0~ = Odeg. For the case of zero chirality (achiral grating) and horizontal
incidence [Fig. 4(a)-(c)[ which has been studied in [15), the diffraction efficiencies
oscillate when the thickness of the grating increases. Note that for Xc = 0 the

diffracted polarizations remain horizontally polarized (at = 0Odeg and )3 = 0 deg)

in Figs. 4(a)-(c) and vertically polarized (a =Odeg and 0 = Odeg) in Figs.

5(a)-(c). When the grating mate!rial becomes chiral (X, 34 0), the diffracted
Floquet modes are in general elliptically polarized.
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Figue 5 Difracionefficiencies and Stokes parameters of transmitted
Floquet modes 0 and -1 for vertical polarization incidence.
S= 30deg and 0 = 0Odeg. (a)-(c): X, = 0; (d)-(f): Xc

0.188; (g)-(i): Xc = 0.377. Solid and dashed lines correspond to
Floquet mode 0 and -1, respectively.

Figures 6 and 7 represent the cases that the incident direction is not perpen-
di cular to the ruling direction (0 = 30 deg and 8 = 35.26 deg), respectively, for
horizontal and vertical incidence. All the diffracted modes are generally ellpti-
cally polarized. In contrast to the cases of 46 = 0Odeg [Figs. 4 and 5 (a)-(c)], Figs.
6(c) and 7(c) show that the Floquet modes are elliptically polarized for achiral
gratings. This is due to the fact that horizontal and vertical polarizations are
coupled for an oblique incidence (0 36 0).

Several features regarding the effects of chirality can be observed in all cases.
The chirality introduces more coupling between 0 and -1 modes, thus resulting in
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* more even distribution of the power between these two modes, therefore, smaller
fluctuation for the diffraction efficiencies as a function of thickness d. In addition,
like the diffraction efficiencies, the ellipticity angles also show oscillations f(f) and

* (i) of Figs. 4-7] as the chirality is introduced. Moreover, at some particular
instances, it is possible for chiral gratings to convert a linearly polarized incident

* field into two nearly circularly polarized Floquet modes propagating in different
directions. For example, for the case of Xc = 0.188 ( = 0.0005 mho), when the
depth of the grating is about 2.4 A, both modes are nearly circularly polarized
(,3 ±45 deg).
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Figure 7. Diffraction efficiencies and Stokes parameters of transmitted

Floquet modes 0 and -1 for vertical polarization incidence.
e = 35.26deg and € = 30deg. (a)-(c): Xc = 0; (d)-(f):

X, = 0.188; (g)-(i): Xc = 0.377. Solid and dashed lines cor-
respond to Floquet mode 0 and -1, respectively.

Note that the orientation angle of the diffracted waves in general has a nef
ative slope versus thickness d of the grating in the cases studied (Xc > 0
right-hand chiral). In fact when chirality Xc becomes negative (left-hand chiral
the curves of orientation angles become the mirror images of the correspondii

right-hand chiral cases with respective to c = 90 deg. The phenomenon observ.

can be explained by studying how the orientation of waves rotates as it propagat
through a chiral slab [31. Neglecting the reflection from the boundaries, a lineay

polarized wave impinging on a chiral slab can be divided into two circularly pol;
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ized waves of opposite handedness. For the case of right-hand chiral medium, the
right-hand-circularly polarized wave travels slower than the left-hand-circularly
polarized wave. If we trace the polarization of the total field along the propa-
gation path at any given time, then the resulting polarization trajectory would
circulate in the clockwise direction. In other words, the orientation of the trans-
mitted wave will decrease if the thickness of the chiral slab increases. For the
case of a wave diffracted by a chiral grating, the same argument applies for each
Floquet mode. When the wave enters gratings, Bragg diffraction will split it into
Floquet modes propagating in several directions, the orientation of each mode
will rotate in the clockwise direction for the case of right-hand chirality. However,
it should be noticed that for some particular thickness, the orientation of some
Floquet mode has a fast transition [Figs. 4-7(e)] and may show an opposite trend,
such as in Fig. 5(e) where the orientation of Floquet mode 0 increases instead of
decreases near d = 1.2A. Nevertheless, it can be observed that whenever there is
a fast transition in the plots of the orientation angle versus depth, the correspond-
ing Floquet mode is nearly circularly polarized, for example, Floquet mode 0 at d
near l.2A in Figs. 4-7(f). It is known that the orientation of a circularly polarized
wave can be arbitrary or undefined. Hence, it should not be surprised that the
orientation exhibits a fast transition around the thickness where the waves are
nearly circularly polarized. Also some of the fast jumps shown in the plots of ori-
entation angles from 0deg to 180 deg or the opposite are not important because
0 deg and 180 deg orientations represent essentially the same orientation.

IV. SUMMARY

In this paper, the diffraction of waves from chiral gratings is analyzed. The
problem is formulated by the coupled wave method which gives highly convergent
results for all the cases studied where the computed total diffraction efficiency is
different from 1 by 0.02% for the worst case. It is shown that a grating of chiral
medium is capable of nut only dividing the power into different Floquet modes,
but sometimes also making both dominant modes nearly circularly polarized in
the cases studied.
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ABSTRACT

We present an inversion algorithm based on a recently developed inversion method referred to as
the Renormalized Source-Type Integral Equation approach. The objective of this method is to
overcome some of the limitations and difficulties of the iterative Born technique. It recasts the
inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however,
the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which
sums up the iterative Neuman (or Born) series in a closed form and; thus, is a valid representation even
in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral
Equation Approach.

1. INTRODUCTION

Most of the monochromatic profile inversion methods that exist in literature utilize an iterative Born
approach in the implementation of the reconstruction process1-8. This approach does not work well at
high frequencies or for the transverse-magnetic (TM) polarization, but appears to be useful only for the
low frequency transverse-electric (TE) case. This is attributed to the fact that at high frequencies or in
the case of the TM polarization, the inversion problem becomes highly nonlinear rendering perturbative
approaches inappropriate.

In this paper we present an inversion algorithm based on a recently developed inversion method
referred to as the Renormalized Source-Type Integral Equation approach9 ,10 . The objective of this
method is to overcome some of the limitations and difficulties of the above-mentioned iterative Born
technique. This approach can be summarized in three simple steps. In the first step, the induced
currents in the probed medium are determined from the known data on the surface of the medium by
use of the source-type integral equation. Next, the field induced in the medium is computed from the
induced currents. In the final step, the medium parameters are reconstructed from the induced currents
and fields which were obtained in the previous two steps. This method recasts the inversion, which is
nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion
equation is still nonlinear.

There are a number of apparent advantages to this scheme: i) it is applicable to TE, TM and hybrid
polarizations, ii) there is no explicit frequency limitations, iii) by pre-storing the elements of the
inversion operator (which depend only on the background medium and are independent of the unknown
profile), the method does not require the solution to the full forward problem repeatedly as in the case
of the Distorted Born approach and is therefore faster to implement, iv) it can be generalized to two-
dimensional cases where the previous property becomes an attractive feature of the inversion, v) it
allows, in some cases, the rigorous study of the degree of nonuniqueness involved in the inversion, a
point of great importance in the design problem, and vi) it provides an inversion equation which has an
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explicit dependence on the unknowns to be obtained in the inversion. This explicit dependence allows
one to compute the derivatives of the response with respect to the unknowns in a closed form..
Associated with this approach, however, is the need to incorporate a priori information, such as the
type of likely profiles, that are derived from means other than those supplied by measurement. The
judicious use of such information allows us to overcome the non-uniqueness which is characteristic of
all inversion problems.

Another advantage of this approach is that the inversion equation obtained is an exact equation. If
approximations are to be made they will occur in the numerical methods employed in the solution of this
inversion equation. Thus, the major virtue of our method is that the approximations to be used can be
under good control and may be improved upon to an arbitrary degree. This is to be distinguished from
other methods, e.g., Born inversion, ray tracing, etc., which are inherently approximate, often unstable
and hard to improve when they give inaccurate results.

In this paper, the inversion scheme is demonstrated for the cases where the exciting source is of the
dipole-type that generates only TE or TM polarized waves. The data required for inversion are the
tangential components of the electric or magnetic fields at various locations on the probed medium's
surface performed at a number of frequencies.

2. FORMULATION

We limit our analysis to the problem of profile inversion of a one-dimensional layered medium
whose permittivity can vary as a function of depth in a planar stratified medium or as a function of
radial distance in a cylindrically layered medium. For the sake of simplifying the analysis, we restrict
ourselves to the planar stratified case where the medium is assumed to be z-stratified, i.e., the
permittivity E and the conductivity a of the medium are functions of z only. The geometrical
configuration of the problem is depicted in figure 1.

x-axis

The unknown slab

R x to be inverted
R X
RX

E 1  R x C()E 2R X

Tx

z-axis

Figure 1. Geometrical configuration of the inversion problem.

The source is assumed to be localized, and without any loss of generality, the source characteristics
can be chosen such that they excite either a purely transverse electric (TE) or transverse magnetic (TM)
type of field. For the sake of further simplifying the analysis, we assume that the exciting TE source is
an electric line current, situated at x = 0, z = zs and extending from y = - -* to y = + *. In this case,
the nonvanishing field components are Hx, Hz and Ey which are functions of x and z only. For the TM

SPIE Vol 1351 Digital Image Synthesis and Inverse Optics (1990) / 99



case, we assume the source to be a magnetic line current and, in this case, the nonvanishing field
components are Ex, Ez and Hy.

In formulating the problem using the source-type integral equation, one assumes that the unknown
inhomogeneous slab (extending from z = 0 to z = L) is embedded inside a known background medium
(Eb(z)) which is not necessarily homogeneous. The scattering from this inhomogeneous slab is then
assumed to be produced by a volumc distribution of currents induced inside the slab. The field can thus
be decomposed into a superposition of two parts. The first part (Eyb for TE and Hyb for TM) is
produced by the exciting source in the background medium. The second (Eys for TE and Hys for TM)
represents the field scattered by the inhomogeneous slab and is given by the field produced by the
volume currents induced inside the slab. Thus, for the TE polarization we have:

Ey = E + g,(1)

V2 Eyb + kj Lb Eyb = 0 (2a)

V26 k4 i b Eys = -k & F (2b)

and for the TM polarization, we have:

Hy= Hyb + Hys (3)

V2 Eb' alHybV-b ± DZ +X1 i b + l yb -0 (4a)

V2Iy - + k3" bH = -k , [ ' Lb HIiy (4b)
Lb az YS Eb Jaz

where

be = E(z) - Lb(Z) (5)

Using the Green's function formulation, eqs. (2b) and (4b) can be cast in the following integral form:

L

E1 , (x,z) = kj j dz' f J dx' G (x,z,x', z') Ey(x', z') (6)
0 -- TE

for the TE polarization. For the TM polarization, we get

L

Hy,(x,z) = k3 J' dz' 8 f dx' GTM(x, z, x', z') Hy(x', z')
0 --

-LA fL d'fd G (,zx, j- Hxz') (7)

0- EZ -." TM ax,
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where GTE and GTM are the Green's functions for the TE and TM polarizations, respectively, and are
given as the solution of:

V2 G + kg Lb G Q = -8(x-x') 8(z-z') (8a)

V2G _ b aZ
irIzb- +kgbG =-8(x-x') &(z-z') (8b)

The source-type integral equation is then solved by applying successive iterations where a
Distorted-Born approximation is applied at each iteration step. For the iteration scheme to converge,
IEysI and IHysI have to be small. It is clear that the term on the right-hand side of eq. (6) and the first
term. on the right-hand side of eq. (7) can be made arbitrarily small by either lowering the frequency of
operation k0 or making IIl small. However, the second term on the right-hand side of eq. (7) can only
be made small by making IIl small, i.e., if Eb(z) is sufficiently close to E(z). Thus, one can conclude
that by choosing a frequency of operation that is sufficiently low, the iteration can be made to converge
in the case of the TE polarization even for fairly large values of 181 , whereas in the case of the TM
polarization, the only way the iteration will converge is when the initial guessed profile cb(z) is chosen
to be very close to the true profile e(z). It is interesting to note that the presence of the second term on
the right-hand side of eq. (7), causes the TM measurement to be more sensitive to abrupt changes in the
permittivity profile. Thus, the TM measurement is a better candidate than the TE case for imaging
applications where one can delineate boundaries.

Another difference between the TE and TM polarizations lies in the degree of nonlinearity associated
with each case. It is clear that eqs. (6) and (7) are nonlinear integral equations in the unknown profile
E(z) due to the nonlinear dependence of the field (E or H ) on E(z). Using a Born-type approximation
in carrying out the iteration is in effect linearizing the problem. This linearization is expected to work
better in the case of the TE polarization than in the TM case because the TM case is highly nonlinear
compared to the TE case. This can be seen by transforming eqs. (2) and (4) into a canonical form for
comparison. This is done by first carrying out a Fourier transform along the x-direction (assuming kx
to be the transform variable) and then introducing the field transformations

u(k x, z) = E(k., z) , for TE (9a)

u(k x, z) = eAh -(kx z), for TM (9b)

This yields the Schroedinger-type equation in the field variable u

2u + 2 u -qu (10)
Dz2

where y is given by

Y2 = k3b-k (11)
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and
q = k3 (eF - Cb), for TE (12a)

q = k3 (e - cb) - +{ ] -- -, for TM (12b)

Note that the right-hand side of eq. (10) can be interpreted as a source term resulting from the
medium inhomogeneities in the region z > 0. From eq. (12), it is thus clear that for the TE polarization,
E(z) is directly calculable from q; however, it is necessary to solve a second-order nonlinear differential
equation to obtain £(z) for the TM case. Thus, the TM case is relatively nonlinear compared to the TE
case.

3. THE RENORMALIZED SOURCE-TYPE INTEGRAL EQUATION APPROACH

The Renormalized Source-Type Integral Equation approach9 -10 can be summarized in the following
three simple steps:

Step 1. -1,e Inverse Source Problem: From the collected data on the surface of the probed medium
(r E Sm), the currents induced inside the medium, J(r), are solved for from the following equation:

I dT Gb(), T)-J-(-- ) = E(f)- Eb('F)I1E S (13)

Step 2. The Forward Problem: From the knowledge of the currents induced inside the slab (obtained
from step 1), the electric field, E(r), can be calculated everywhere (inside as well as outside the slab)
from the following equation:

E(T) = Eb(T) + f dT' Gb(T T') J-(T') (14)

Step 3. The Inversion Equation: From the knowledge of the currents induced inside the slab
(obtained from step 1) and the electric field inside the slab (computed from step 2), the unknown
difference profile Q(r) = o2 p0[E(r) - Eb] is obtained from the following constitutive relation:

Q(-T) E(T) = J(f) (15)

Thus, this method recasts the inversion, which is nonlinear in nature, in terms of the solution of a
set of linear equations; however, the final inversion equation is still nonlinear. In this paper, the
inversion scheme is demonstrated for the cases where the exciting source is of the dipole type that
generates only TE or TM polarized waves. The data required for inversion are the tangential
components of the electric and/or magnetic fields at various locations on the surface of the probed
medium performed at a number of frequencies. In the next section this inversion approach is tested on
a one-dimensional profile where data are generated by exciting the medium once by a horizontal
magnetic dipole (exciting TE-polarized waves) and a second time by a horizontal electric dipole
(exciting TM-polarized waves).
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4. RESULIS

In this section we apply the inversion algorithm described in the previous section to the problem
depicted in figure 2.

zlX 0 =ozl . 1/30 zl; 1/15 z2l.= 0.1

4. z-axls
a

RIO X -V40

It= 2

______ __________ Jntia guess

R1 X C=1

Tx * It = 0 Probed medium

Figure 2. Permittivity profile used in the inversion

The data used in the inversion are generated by exciting the medium once by a horizontal magnetic
dipole (exciting TE-polarized waves) and a second time by a horizontal electric dipole (exciting TM-
polarized waves). The data are collected at ten receiver locations with the appropriate type and
orientation. A single electric field component (E0) is measured for the TE case whereas two electric
field components (Ez and Ep) are measured for the TM case. Note that the dimensions of the slab is
normalized to the free space wavelength.

Figure 3a shows the result of inversion using only TE-polarized data whereas figure 3b shows the
result of inversion using only TM-polarized data. From figure 3a, it is clear that the reconstructed
profile employing TE data is a filtered (or a smoothed) version of the true profile and hence TE-
polarized data offer poorer resolution in delineating abrupt changes in the permittivity profile. On the
other hand TM-polarized data offer a higher resolution, however, the inverted profile exhibits nonlinear
effects depicted by the presence of hom-type features in the reconstructed profile. From figure 3, it is
also clear that TE-inversion offers higher accuracy than TM in retrieving the permittivity values around
the peak of the profile. It is also interesting to note that the TM-inversion has a shallow depth of
investigation which is manifested by the lower resolution at the further edge of the profile compared to
the higher resolution at the near edge. Finally, the TE-based inversion converged after 8 iterations
whereas the TM-based inversion converged after 33 iterations. Hence, faster convergence can be
achieved by employing TE-polarized data.
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Figure 3a. Inversion result employing TE-polarized CW data
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Figure 3b. Inversion result employing TM-polarized CW data.
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Figure 4 shows the result of inversion combining both TE and TM polarized data where improved
resolution and accuracy has been achieved.

45 21st iterate exact profile

36

27
" 18 '

181st iterate m

9

0.00 0.02 0.04 0.06 0.08 0.10

normalized z-axis

Figure 4. Inversion result employing the combined TE and TM polarized CW data.

5. CONCLUSIONS

In this paper we have presented a new and exact inversion equation which is applicable to data of
TE, TM or hybrid polarization. If approximations are to be made they will occur in the numerical
methods employed in the solution of this inversion equation. This is to be distinguished from other
methods, e.g., Born inversion, ray tracing, etc., which are inherently approximate and are hard to
improve when they give inaccurate results. The inversion equation is a closed form summation of the
iterative (or perturbative) Neumann (or Born) series of the Source-Type Integral Equation. This
equation is a valid representation even in the case when the Born series diverges.
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Because the effects of diffraction during proximity-print x-ray

lithography are of critical importance, a number of previous

researchers have attempted to calculate the diffraction patterns and

minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is

applicable-as calculated, for example, by the Rayleigh-Sommerfeld

formulation-and that Kirchhoff boundary conditions can be applied.

Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant in the open regions between absorbers, and a

different constant in regions just under the absorbers (i.e., that there are

no fringing fields). An x-ray absorber is, however, best described as a

lossy dielectric that is tens or hundreds of wavelengths tall, and hence

Kirchhoff boundary conditions are unsuitable. In this report we use

two numerical techniques to calculate (on a Cray 2 supercomputer)

accurate diffracted fields from gold absorbers for two cases: a 30 nm-

wide line at X = 4.5 nm, and a 100 nm-wide line at X = 1.3 nm. We

show that the use of Kirchhoff boundary conditions introduces
unphysically high spatial frequencies into the diffracted fields. The
suppression of these frequencies-which occurs naturally without the

need to introduce an extended source or broad spectrum-improves
exposure latitude for mask features near 0.1 gm and below.
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I. INTRODUCTION

The limits and practicality of proximity-print x-ray lithography continues to

be a topic of discussion and debate. Of particular concern are the limits of

resolution imposed by the effects of diffraction. Because the mechanical

limits imposed on the mask-substrate gap during the volume manufacturing

of ULSI circuits are not presently certain, it remains prudent to ask: what is

the minimum practical feature size that can be printed at a given gap?

In order to resolve these issues, a series of papers have appeared in the

literature which present theoretical calculations for the diffraction of x rays

from mask absorbers. Early papers simply considered absorption [1-3], but

later papers also included the effects of phase-shift [4-8]. Most recently,

authors have included the effects of source spatial and temporal coherence,

and have generated exposure "trees" which allow the determination of

exposure latitude versus gap for various types of mask features [9-151.

The method most commonly used to calculate the diffraction pattern is to

apply a Fresnel-Kirchhoff or Rayleigh-Sommerfeld diffraction integral [16,17],

or a more sophisticated formulation (Hopkin's formula) which takes into

account source partial coherence [181. These calculations can be carried out

either in the spatial or the spatial-frequency domain. In any of these cases,

approximate boundary conditions known as Kirchhoff boundary conditions

(KBC) are generally applied. KBC assume that the field (amplitude and phase)

is constant in the open regions between absorbers, and also constant (but

attenuated and phase shifted) in regions just under the absorbers-in other

words, that there are no fringing fields at the boundary between the two

regions.

In general, KBC apply when the wavelength, X, is much smaller than the

lateral size, d, of the feature being printed-which is the case in most x-ray

lithography (e.g., d = 0.1 pm, X = 1 nm). However, what is not generally

recognized is that KBC will not necessarily apply when the absorbers are lossy

dielectrics that are tens or hundreds of wavelengths tall.

Work to date concerning the printability of 0.25 gm features is probably

reasonably accurate. However, in this report we show that the assumption of

KBC for features near 0.1 gm and below is not tenable. In particular, we show

that the suppression of the undesirable high-spatial-frequency components-

2



which some authors note an extended source and/or a broad spectrum
achieves--occurs naturally in the absorber due to the "lossy dielectric" effect.

IL CALCULATIONS

We used two different methods to calculate the diffraction from gold
absorbers: the Method of Moments (MoM) and the Finite Difference-Time
Domain (FD-TD) method. (We used two algorithms in order to check for
consistency.) The only approximations inherent in these methods are in the
discretization of the object space and Maxwell's equations. Because the
discretization can performed on a scale that is small compared to the
wavelength, and furthermore the discretization scale can be reduced until
convergence is achieved, accuracy is assured.

Of these two techniques, the MoM is typically faster and uses less memory
for single-frequency calculations. On the other hand, the FD-TD method is
simpler to code and therefore less likely to have errors. In practice we ran
small test cases using both methods and then increased the spatial resolution
(reduced discretization scale) until both methods converged to the same
solution. Then the computationally-intensive cases reported here were
calculated with the MoM.

A. METHOD OF MOMENTS

The Method of Moments (MoM) is a numerical technique useful in the
solution of steady-state electromagnetic wave scattering and radiation
problems [19,20]. The method calculates steady-state fields on the surface of a
closed dielectric object in free space, which is impinged upon by a known
exciting wave. The surface of the object is broken up into small patches
which are small compared to the wavelength. The surface currents at each
patch and thus the tangential surface fields are then calculated. Computation
time was up to two hours on a Cray 2. Once the fields are known on the
boundary of the object they can readily be propagated to any desired point or
plane [16,17].
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B. FINITE DIFFERENCE-TIME DOMAIN METHOD

The Finite Difference-Time Domain (FD-TD) method is a numerical

technique useful in the solution of time-dependent electromagnetic wave

scattering and radiation problems [21-24]. The method involves the

formation of a computational domain which encompasses the object of

interest and is typically several times larger. The entire domain inside the

boundary-including the object-is discretized on a rectangular grid. The

spacing between adjacent nodes on the grid is small compared to the

wavelength. A clock is started and incremented in time steps that are small

compared to the light-travel time between adjacent nodes. Then discretized

forms of Maxwell's equations are used to calculate the fields at each node

from the fields at nearby nodes which were in effect at the previous time step.

Absorbing boundary conditions are imposed at the edges of the

computational domain in order to simulate unbounded space. Also, a

boundary condition is typically imposed on a surface surrounding the object

to simulate an incoming plane wave. The result can be displayed as a video

image of the fields inside the domain. Computation time was up to oae hour

on a Cray 2. In practice the calculation is run until steady state is achieved,

and the fields at nodes along a line just under the absorber are saved for

comparison with the MoM results.

IIl. RESULTS

Calculations were performed using MoM and FD-TD on single gold

parallelepiped absorbers, infinite in length and rectangular in cross-section,

which were impinged upon by a monochromatic plane wave. The electric-

field polarization was used (E-field perpendicular to the page). (The

magnetic-field polarization yielded results similar to the electric-field

polarization.) These were compared to the results of a Rayleigh-Sommerfeld-

Kirchhoff (RSK) calculation [16]. We considered two cases (see Table I), which

were selected in order to explore a range of spatial frequencies: Case 1, which

is a 30x100 nm absorber with the 4.5 nm (CK) x ray, and Case 2, which is a

100x250 nm absorber with the 1.3 nm (CuL) x ray. Note that the attenuation of

the absorber in both cases is roughly equivalent. (-12 dB).
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A. CASE I (X = 4.5 nm)

Figs. I (a) to (d) show the resulting -ntensities or irradiance distributions
for both the MoM and RSK methods calculated for a from 0-1.5 (gap G from 0-
0.3 gim). Here a is a dimensionless gap given by a = GX/W 2 , where G is the

gap, X is the wavelength, and W is the linewidth. Note the suppression of
high spatial frequencies in the MoM calculation, and the "fuzzy edge" of a few

tens of nanometers in extent. Figs. 2 (a) and (b) show the beneficial effects of

the suppression of high spatial frequencies on exposure latitude in the form
of exposure "trees" [9-121 which plot ±10 % linewidth contours versus cc. Here
we have used a line bias of 33 % (40 nm resist line). (A line bias is the use of a

smaller-than-desired feature size in the mask than on the wafer in order to

compensate for diffractive broadening.) An enlightening way to view the
suppression of high spatial frequencies is to plot the intensity of the waves at
a = 0 (gap G = 0) as a function of spatial frequency, as shown in Fig. 3. Note

that at low spatial frequencies the RSK and MoM calculations agree, but the

MoM calculation "rolls off" at around 0.05 nm-1 .

B. CASE 2 (X = 1.3 nm)

The results for the intensities versus cX for Case 2 are shown in Figs. 4 (a) to
(d). Note that even though the wavelength is much smaller, the "fuzzy edge"
length is roughly the same-a few tens of nanometers. This may be due to

the smaller wavelength (3.3x smaller) being partially compensated by a taller
absorber (2.5x taller). The exposure trees are shown in Figs. 5 (a) and (b). Here
we have used a line bias of 50% (150 nm resist line). The intensity versus

spatial frequency is shown in Fig. 6. Note that the roll-off in this case is still
around 0.05 nm-1, but that this represents a higher spatial frequency relative

to the information content in the larger-line/smaller-wavelength case.

IV. CONCLUSION

We have shown that the use of Kirchhoff boundary conditions introduces
unphysically high spatial frequencies into the diffracted fields. The natural

suppression of these frequencies by the electromagnetic properties of x-ray

5



absorbers tremendously improves exposure latitude for mask features near

0.1 gm and below.
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Figure Captions

FIG. 1. Intensity vs. lateral position for Case 1. (a) c = 0 (gap = 0), (b) a = 0.5

(gap = 0.1 jpm), (c) ax = 1.0 (gap = 0.2 pm), (d) a = 1.5 (gap = 0.3 jpm).

FIG. 2. Exposure trees vs. a (dimensionless gap) for Case 1. (Gaps range from

0-0.3 gm.) The line is biased 33% (40 nm resist line). (a) MoM

solution, (b) Rayleigh-Sommerfeld-Kirchhoff approximation.

FIG. 3 Intensity vs. spatial frequency for Case 1. Note roll-off at 0.05 nm-1.

FIG. 4 Intensity vs. lateral position for Case 2. (a) ac = 0 (gap = 0), (b) cc = 0.5

(gap = 3.7 pm), (c) a = 1.0 (gap = 7.5 gm), (d) o = 1.5 (gap = 11.2 jim).

FIG. 5 Exposure trees vs. ac (dimensionless gap) for Case 2. (Gaps range from

0-11.2 pm.) The line is biased 50% (150 nm resist line). (a) MoM

solution, (b) Rayleigh-Sommerfeld-Kirchhoff approximation.

FIG. 6 Intensity vs. spatial frequency for Case 2. Note roll-off at 0.05 nm-1.
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TABLE I. Computational cases considered.

Case 1 Case 2
Wavelength I (nm) 4.48 1.334

Refractive Index [25] 1 - 7.54x10-3 + j1.04x10 -2 1 - 2.31x10-3 + jl.9x10-3

Width W (rum) 30 100

Height (nm) 100 250

Transmission 0.0541 0.0607

Phase Shift (rad) 1.058 2.72

Patch Size (nm) -0.64 -0.19
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