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ABSTRACT

Tests conducted in Japan as part of the High Level
Vibration Test (HLVT) program for reactor piping systems
revealed fatigue crack growth in a cast stainless steel
pipe elbow. The material tested was equivalent to ASME SA-
351CF8M. The David Taylor Research Center (DTRC) was
tasked to develop the appropriate material property data to
characterize cyclic deformation, cyclic elastic-plastic
crack growth and ductile tearing resistance in the pipe
elbow material.

The tests conducted included monotonic and cyclic
tensile tests, monotonic J-R curve tests, and cyclic
elastic and elastic-plastic fatigue crack growth rate
tests. The cyclic elastic-plastic fracture behavior of the
stainless steel was of primary concern and was evaluated
using a cyclic J-integral approach.

It was found that the cast stainless steel was very
resistant to ductile crack extension. J-resistance curves
essentially followed a blunting behavior to very high J
levels. High cycle fatigue crack growth rate data obtained
on this stainless steel was typical of that reported in
standard textbooks. Low cycle fatigue crack growth rate
data obtained on this material using the cyclic J integral
approach was consistent with the high cycle fatigue
crack growth rate and with a standard textbook correlation
equation typical for this type of material. Evaluation of
crack closure effects was essential to accurately determine
the crack driving force for cyclic elastic-plastic crack
growth in this material.

ADMINISTRATIVE INFORMATION

This work was performed at the David Taylor Research Center and the U.S.
Naval Academy under the program, "Elastic-Plastic Fracture Mechanics
Evaluation of LWR Alloys," E.M. Hackett, Program Manager. The program is
sponsored by the Office of Nuclear Regulatory Research of the U.S. Nuclear
Regulatory Commission (NRC). The technical monitors for the NRC were Mr.
Michael Mayfield and Mr. Allen Hiser. This effort was undertaken in support
of work being conducted by the Brookhaven National Laboratory (BNL) for the
NRC under the program, "Analysis of Crack Initiation and Growth in the High
Level Vibration Test at Tadotsu, Japan." The technical points of contact at

BNL were Professor Mumtaz Kassir, Dr. Kamal Bandyopadhyay and Dr. Charles

Hofmayer.




The HLVT project was performed by BNL and the Nuclear Power Engineering
Center (NUPEC) in Japan as part of a nuclear power technical cooperative
agreement between the USNRC and the Ministry of International Trade and
Industry in Japan. The test results are reported in USNRC report NUREG/CR-

5585.

INTRODUCTION

Tests conducted in Japan as part of the High Level Vibration Test (HLVT)
program for reactor piping systems revealed fatigue crack growth in a cast
stainless steel pipe elbow.l The material tested was equivalent to ASME SA-
351CF8M. Upon detailed examination of the fracture surfaces from the HLVT
elbow test, it was found that both fatigue and ductile tearing were present
concurrently, leading to the postulate that the crack growth may have been "J-
controlled."” 1In support of analyses being conducted by the Brookhaven
National Laboratory (BNL), the David Taylor Research Center (DTRC) was tasked
to develop the appropriate material property data to characterize cyclic
deformation, cyclic elastic-plastic crack growth and ductile tearing

resistance in the pipe elbow material.

MATERIAL

CHEMISTRY
The chemistry of the HLVT elbow material was determined by DTRC and was
found to meet specifications given for ASME A351 grade CF-8M. The results of

the chemical analysis are presented in Table 1.




Table 1. Chemical Analysis of HLVT Program Stainless Steel

Pipe Elbow

Element Analysis A351, CF-8M
Carbon 0.048 0.08 max.
Manganese 1.00 1.50 max.
Silicon 0.91 1.50 max.
Phosphorus 0.023 0.04 max.
Sulfur 0.004 0.04 max.
Chromium 17.8 18 to 21
Nickel 11.0 10 to 12
Molybdenum 2.09 2 to 3

METALLOGRAPHY

A macroetch was performed on a cross section of the pipe material using
Marble’s reagent (Fig. 1) in order to determine the details of the processing
history. The grains were found to be elongated in the direction of the radial
axis of the pipe cross section and curved in a fashion that is characteristic
of a centrifugal casting.2 Due to the irregularities in shape, an average

grain size determination was impracticable.

TENSILE PROPERTIES
MONOTONIC
Round tensile specimens were prepared in a longitudinal orientation with
respect to the pipe and tested in accordance with ASTM Standard E8. Three
specimens had 0.505 inch (12.5 mm) diameters and 2 inch (51 mm) gage lengths,
the remaining three specimens had 0.252 inch (6.4 mm) diameters and 1 inch (25
mm) gage lengths. The resulting tensile mechanical properties are presented

in Table 2.




Table 2. Monotonic Tensile Properties of Cast Stainless Steel

Yield Stress Ultimate Fracture Reduction
Diameter 0.2% Offset Tensile Stress Elongation in Area
{in.) {ksi) Stress (ksi) (ksi) () (8)
0.505 38.4 77.2 54.8 52 80
0.505 39.9 76.8 56.6 54 78
0.505 38.6 79.2 59.5 64 76
0.252 38.1 75.1 47.4 48 84
0.252 447 76.9 58.8 49 78
0.252 42.0 79.0 60.5 --* --*

* Note: Specimen was necked outside the gage length, therefore the test was
terminated and elongation and reduction in area could not be
determined.

CYCLIC

Cyclic loading tensile properties were obtained on the material in the

following manner. Standard round tensile specimens of 0.252 inch (6.4 mm)

diameter and 1 inch (25 mm) gage length were axially, cyclically loaded to

produce cyclic stress-strain curves as shown in Fig. 2. The initial
displacement was taken to approximately 0.003 inch (0.08 mm), then the
specimen was unloaded to zero load. Subsequent displacement steps consisted
of increments of approximately 0.001 inch (0.025 mm). Data was taken
continuously and stored in digital form. Each cycle had a duration of
approximately six seconds, though this varied as the test proceeded because
the specimen became more compliant as its area was reduced and its length

increased. These results are presented in Figs. 2-4.

Specimens GPQ-33 and GPQ-36 were run until the 50% strain limit was reached

on the strain transducer, while specimen GPQ-34 fractured outside the gage




length after a uniform strain of approximately 20% was achieved. These
specimens demonstrated highly anisotropic and heterogeneous behavior as shown
in Fig. 4.

The upper envelope of the cyclic stress strain curve is shown in Fig. 5
and compared to the results of static tensile tests. Fig. 5 shows that the
cyclic loading tends to soften the material as far as ultimate strength is
concerned and increase the apparent ductility. An exact compa:.son of the
ductility, however, cannot be made since the cyclic tensile specimens were

extended to the limit of the elongation transducer, hence not fractured.

MONOTONIC J-R CURVE BEHAVIOX

J-R curves were evaluated using the ASTM Standard E1152-87. The
specimens used were 1T and 1/2T C(T) specimens according to E1152 with 1T
specimens removed only in the L-C orientation (due to mat-rial thickness) and
1/2T specimens removed in bsth L-R and L-C orientations. A single specimen
unloading compliance technique was utilized as described by Joyce and Gudas.3
The resulting J-R curves are shown in Fig. 6. along with blunting line
constructions of J = 2 * (flow stress) * (crack extension) and J = 4 * (flow
stress) * (crack extension). It is clear from these results that this
material follows a path between these blunting lines and does not fracture by
ductile tearing, at least until well beyond the standard E1152 validity
regions for 1/2T and 1T specimens. These validity regions are shown in Fig. 6
for comparison. This material is too tough to be characterized by the ASTM J-

integral methods (E813-87 and E1152-87) using 1/2T or 1T specimens.




FATIGUE CRACK GROWTH RATE BEHAVIOR

LINEAR ELASTIC

The specimens prepared for fatigue crack growth rate (FCGR) testing were
1/2T C(T) specimens machined with integral knife edges for loadline crack-
opening displacement (COD) measurements as shown in Fig. 7. The tests were
run within the requirements of ASTM Standard E647-88a. A computer was used to
estimate tke crack growth using an elastic compliance equation for C(T)
specimens. Tests were run in an increasing K mode at a constant frequency of
0.1 Hz and a minimum/maximum load ratio (R ratio) of 0.1. Data was stored
digitally at increments of 0.010 inches (0.25 mm) of crack growth. Two
specimens were tested, one in the L-C orientation, the other in the L-R
orientation. The results of these tests are shown and compared to the
Rolfe/Barsom® fatigue crack propagation equation for austenitic stainless

steels in Fig. 8.

ELASTIC-PLASTIC

Cyclic J-testing was utilized to evaluate the crack growth resistance of the
material under intense cyclic loading. 1t has been shown by several authors” -8
that an operational J-integral range correlates the fatigue crack growth under
cyclic growth conditions beyond that of linear elastic fracture mechanics as
standardized by ASTM E647. In this work the load histories shown in Figs. 9-11
were used and will be referred to as R=0, R=0.3 and R=-1 load histories
respectively. The "R=-1" case had, in fact, a range of negative R ratios,
initially with -1 < R < 0, then for a few cycles with R=-1, and then for the
remainder of the test, R was between -1 and -10 as the tensile load capacity
of the specimen diminished.

The specimens used for these tests were 1/2T C(T) specimens, as previously

described and shown in Fig. 7, with integral knife edges and 20% total side




grooves. Both L-R and L-C orientations were tested. Compression loading was
applied to these specimens using fixtures known as load caps which are shown
in Fig. 12. Basically, the clevis pin holes were toleranced such that on
reversal of the test machine, load was applied to the specimen via the load
caps instead of the loading pins. This system was a variant of that used by
Joyce8 for reversed loading cyclic fatigue/fracture tests, the improvement
here was that the compression load caps stayed in place during both the
compression and tensile loadings.

The J-integral was calculated on each cycle using the Merkle-Corten® J

equation as modified by Clarke and Landes10 to give:

nA
J =, (1)
Bpb

with B, = net specimen thickness,
b = (W-a) is the specimen’s remaining ligament,

A = the area enclosed by the load-COD cyclic curve as described

further below,

2[(1+a)/(1+a?) ], (2)

and n

(2(a/b)2+2[2(a/b) ]+2) /2. [2¢a/b)+1], (3)

with a

The cyclic area was calculated as shown schematically in Fig. 13. The cverlic

area, shown cross-hatched, is bounded by the loading portion of the load-COD
curve, by a maximum COD vertical line and along the bottom by a crack
closure load horizontal line. The critical calculation is to evaluate the

crack closure load. This was done in this work by comparing the slope during




the initial cycle loading (ky) with the slope of the first unloading portion
of the previous cycle (k*). The basic method is to fit a quadratic polynomial

to the initial load versus COD data as:
P = Ay + Ap COD + A3 CODZ. (4)
Then the slope is given by:
ky = Ay + 2Aa3 COD, (5)
and this can be set equal to the previous unloading slope, k* to give:
k* = k1 = Ay + 2A3 COD. (6)

Solving for the closure COD gives:
k* - Aj
cop* - | (7)
244
and then P* at closure can be evaluated from Eq. 4.

The crack length was evaluated for each cycle using the unloading compliance
equations of ASTM E1152-87 including the rotation correction. For each load
cycle the measured specimen compliance, crack length, correlation of the least
squares fit and maximum COD were stored on magnetic disk. Also stored was a

file giving load-COD pairs tracing out each cycle for post test processing for

closure load, cyclic area and cyclic J.

DISCUSSION
CYCLIC J DATA
As described in the previous section, the specimen compliance was calculated
while the test was in progress, the crack length was calculated, then stored
and this process was repeated for each cycle. Only a small part of the data

used to calculate the crack lengths was stored and these crack length estimates




were taken as the best measure of crack length for each cycle, i.e. they could
not be improved by post test processing. Typical data is shown for four of the
R=-1 specimens in Fig 14. Compliance estimates of crack length were generally very
consistent and appeared repeatable to a precision of about +/- 0.001 inch

(0.03 mm). For the R=-1 specimens, the initial and final compliance estimated
crack lengths were shown to be accurate in comparison with 9-point average
crack lengths measured optically from the specimen fracture surfaces after the
test. These results are shown in Table 3. For the R=0 and R=0.3 specimens,
the compliance estimates of crack extension, in some cases, were significantly
less than the measured values. This was attributed to crack curvature
(tunneling) which was observed on the specimen fracture surfaces and to

failure of the crack rotation correction procedure to adequately account for
the gross specimen deformation. Had the compliance and measured values been

in closer agreement, more rapid fatigue crack growth rates would have been

obtained.



Table 3. Estimated vs. Measured Crack Growth for Cyclic Crack Growth
Rate Tests and J-R Curve Tests of Cast Stainless Steel

Estimated Measured
Test Specimen Crack Growth Crack Growth
Condition 1.D. (in.) {(in.)
High Cycle GPQ-5 0.106 0.124
Fatigue
GPQ-15 0.083 0.115
Cyclic J GPQ-2 0.353 0.368
R=-1
GPQ-7 - Not Available -----
GPQ-16 0.352 0.378
GPQ-17 0.323 0.350
Cyclic J GPQ-8 0.091 0.123
R=0.3
GPQ-20 0.095 0.151
Cyclic J GPQ-9 0.071 0.094
R=0
GPQ-11 0.104 0.162
GPQ-23 0.100 0.143
GPQ-25 0.110 0.161
J-R Curve GPQ-38 0.112 0.119
Tests
GPQ-39 0.113 0.130
GPQ-3 0.038 0.050
GPQ-12 0.040 0.047
GPQ-18 0.035 0.030
GPQ-19 0.039 0.026
GPQ-26 0.025 0.030
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The R=0 and R=0.3 cases did not appear to demonstrate a crack closure
phenomena for this material, even for the most intense loading cycles. For
these specimens, the minimum load on each cycle was taken as the lower bound
load for the cyclic area and cyclic J calculation. The R=-1 case demonstrated
crack closure and required the calculation of a closure load for each cycle
before the cyclic area and cyclic J could be calculated. The method used for
this was discussed in the previous section. Results for the four R=-1
specimens are shown in Fig. 15. At the beginning, the method generally finds
a closure load near the minimum (compression) load in each cycle. Some
variability is shown on Fig. 15 for specimen GPQ-16 for the first few cycles,
but basically a rather steady, negative closure load is located before 25
cycles have been applied to the specimen. This closure load then remains
nearly constant throughout the remaining cycles until the tensile load
capacity is reached and the COD steps of 0.004 inch (0.1 mm) are applied.

When this happens, the closure load returns toward zero load if the test is
not terminated first due to COD transducer limitations.

The closure load of between -500 and -1000 lbs. is well above the -2500 lbs.
minimum load applied to the R=-1 specimens. The use of the winimum load in the
cyclic J calculation rather than the closure load would have dramatically
increased the cyclic J values resulting in an erroneous calculation of the
applied cyclic J.

Figures 16, 17 and 18 show cyclic J as a function of cycle count for the
R=0, R=0.3 and R=-1 cases respectively. For the cyclic loading used here, the
cyclic J range experienced by the R=0 and R=0.3 cases is very limited, while
for the R=-1 case a wide range of cyclic J was sampled by each specimen. In
all cases the cyclic J is seen to be a smooth function of cycle count which

can be utilized to obtain a da/dN versus AJ fatigue crack growth rate

11




characterization of the material.

This final step is shown in Figs. 19-21 for the R=0, R=0.3 and R=-1 cases.
Since the J range sampled by the R=0 and R=0.3 cases is limited, only limited
fatigue crack growth data is obtained from each of these specimen taken
independently. A combined plot showing one specimen of each orientation and R
ratio is shown in Fig. 22. It is clear that the R=0 and R=-1.0 data sets
define a single power law relationship while the R=0.3 seems to demonstrate
somewhat accelerated crack growth. The excellent comparison between the
estimated and measured crack lengths for the R=-1 specimens, shown in Table 3,
verifies the validity of the crack growth rates for these specimens. The
reason for the higher apparent crack growth in the R=0.3 specimens is not
completely understood and probably should be investigated further. The
optically measured crack extensions obtained from the R=0.3 specimens, shown
in Table 3, demonstrate that more crack growth occurred in these specimens
than was estimated by the compliance method. This suggests that the crack
growth rate was greater than that shown in Fig. 22. In most cases the L-R
orientation appeared to demonstrate slightly slower crack growth rates than

the L-C orientation.

COMBINED CYCLIC K AND J RESULTS
It was originally observed by Dowling and Begley11 that cyclic K and J
data can be combined on a single plot using the equation originally proposed by

Rice12 that:

K2 = E'* J (8)

where, E
Ef - (9)

12




and,
E = material elastic modulus

v = material Poisson’s ratio

Such a plot for this material is shown in Fig. 23 and includes the high
cycle AK results of the FCGR tests and the low cycle AJ results of the elastic-
plastic tests. Also shown on Fig. 23 is a correlation equation for austenitic
stainless steel from the standard textbook of Rolfe and Barsom,“ and a set of
Japanese1 data from the HLVT program previously used to characterize this
material. It was clear that in terms of J range the high and low cycle work
done as a part of this study are consistent, and in close agreement with the
standard textbook equation. The Japanese data differ by approximately one
order of magnitude. The details of the methods used to obtain the Japanese
data were not known except that the specimens were oriented in the L-C
orientation and were of 1T scale. From our experience on this project it also
appears that the Japanese data were obtained using a negative R ratio cyclic
load history since this is the only way in which such large cyclic K or J
ranges could be achieved. An attempt was made as a part of the project to
simulate the Japanese data by re-analyzing our R=-1.0 data using another
analysis and method to detine the closure load. Since AJ (or AK) can only be
increased by reducing the closure load, the first assumption was to use the
minimum load for closure and to calculate AJ and then AK using the full area
under each load cycle. The effect this had on a particular specimen is shown
in Fig. 24. As expected the data was shifted to higher AK values at
corresponding crack growth rates. A comparison of the adjusted data and the

Japanese data is shown in Fig. 25. The correspondence is clearly excellent.

13




In an attempt to explain the rate of fatigue crack growth in the HLVT pipe
elbow structure, the closure load at which the crack opens must be accurately
determined. Clearly, complete closure of the fatigue crack occurred at load
levels well above the minimum compressive load achieved in the laboratory
specimen used in this investigation. Such closure would also be expected in
the actual structure (pipe elbow) and could be more significant in the
structure than in the laboratory specimen. The Japanese data from the HLVT
program appears to have been generated by assuming that the entire loading
range (maximum tensile load to minimum compressive load) contributed to the
crack driving force. This has the net effect of lowering the overall crack
growth rate for a given driving force (J-integral), as previously described.
It is considered that this approach may not model the actual crack growth in
the structure as well as applying laboratory data that has been properly

adjusted for closure.

CONCLUSIONS

(1) The cast stainless steel is very resistant to ductile crack
extension. J-resistance curves follow blunting behavior to very high J

levels, well beyond the standard validity region defined by ASTM E1152,

(2) High cycle fatigue crack growth rate data obtained on the cast stainless

steel is typical of that reported in standard textbooks.

(3) Low cycle fatigue crack growth rate data obtained for the cast stainless
steel using the cyclic J integral approach is consistent wit!. the high cycle
fatigue crack growth rate and with the standard textbook correlation equation

typical for this type of material.

14




(4) Evaluation of crack closure effects was essential to accurately determine
the crack driving force for cyclic elastic-plastic crack growth in the cast

stainless steel material.
RECOMMENDATIONS

Further FCGR tests with higher R ratios should be conducted to attempt to
explain the observed elevation in crack growth rate for the R=0.3 tests
conducted for this investigation. Fractography should also be performed on

these specimens to evaluate the microfracture mode(s).

15
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Fig. 4. Tensile Specimen of Cast Stainless Steel Showing Anisotropic
Deformation
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Fig. 12. Improved Load Cap Fixtures for 1/2T C(T) Specimens
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