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Abstract

The paper demonstrates how multi-period portfolio optimization problems

can be efficiently solved as multi-stage stochastic linear programs. A scheme

based on a blending of classical Benders decomposition techniques and a special

technique, called importance sampling, is used to solve this general class of

multi-stage stochastic linear programs. We discuss the case where stochastic

parameters are dependent within a period as well as between periods. Initial

computational results are presented.

Research and reproduction of this report were partially supported by the Office of Naval llesvarch

Contract N00014-89-J-1659; the National Science Foundation Grants ECS-8906260, I)M S-8.9130!).

the Electric Power Research Institute Contract RP 8010-09, CSA-4005335, and the Austriani Sci-

ence Foundation, "Fonds zur F6rderung der wissenschaftlichen Forschung," Grant J032:-Phv. Anv

opinions, findings, and conclusions or recommendations expressed in this publication are 'hose ,of

the authors and do NOT necessarily reflect the views of the above sponsors.

tDepartment of Operations Research, Stanford University, Stanford, CA 94305-4022. U...

I



1. Introduction

Methods of Operations Research, especially Mathematical Programming methods, are

receiving broader acceptance in the financial industry. The increasing complexities

and inherent uncertainties in financial markets have lead to the need of mathematical

models supporting the decision making process. This paper addresses the portfolio

selection prcblem. Since Markowitz (1959) [20], several models have been developed

that allow one to determine portfolios with the highest expected returns for a given

level of risk. His model (and certain closely related ones) require the solution of a

quadratic program. Other approaches model the stochastic nature of the problem

directly as a stochastic program. For example, Mulvey (1987) [21] and Mulvey and

Vladimirou (1989) [22] [23] formulate asset allocation problems as a stochastic network

problem.

The use of stochastic programming techniques has been hampered until recently

by the sheer size of practical problems when they are restated as deterministic linear

problems. To solve them it was necessary that the number of scenarios representing

uncertainties be kept small. Most models developed so far have been single-stage or

single-period models, that is to say to the case where the decision making process and

the future events (foresight) are restricted to a single time period. Only few attempts

have been made to solve practical multi-stage decision making models whose future

events are spread over several periods.

Multi-stage planning problems can often be formulated as linear programs with

a dynamic matrix structure which, in the deterministic case, appear in a staircase

pattern of blocks with non-zero submatrices. These blocks correspond to and are

different for different time periods. In the stochastic case, the blocks of coefficients

and right hand sides in different time periods are functions of several parameters

whose values vary stochastically with dependent and independent distributions which

we assume to be known. The resulting problem is a multi-stage stochastic linear

program. Even for problems with a small number of stochastic parameters per stage

the size of multi-stage problems when expressed in equivalent deterministic form can

get so large as to appear intractable. The simplest case and most studied is that with
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two stages. Stochastic linear programs were first introduced by Dantzig (1955) [4]

and Beale (1955) [1]. Since then it has been studied by many authors, some recent

references are Birge (1985) [3], Ermoliev (1983) [10], Frauendorfer (1988) [12], Higle

and Sen (1989) [14], Kall (1979) [19], Pereira et al. (1989) [25], Rockafellar and Wets

(1989) [28], Ruszczynski(1986) [29], and Wets (1984) [31]. See Ermoliev and Wets

(0988) [11] for a survey of different ways proposed to solve the stochastic programs.

A new approach based on Benders decomposition and importance sampling was

introduced by Dantzig and Glynn (1990) [5] and developed jointly by them and In-

fanger (1990) [17]. Our approach turned out to be very powerful. We demonstrated

its power by solving several practical large-scale stochastic linear programs with nu-

merous stochastic parameters. Infanger (1991) [18] and Dantzig and Infanger (1991)

[7] report on computational results of large-scale problems with up to 52 stochastic

parameters, where the deterministic equivalent problem if attempted to express it

explicitly would have had several billions of constraints. These problems were two-

stage problems or belonged to a restricted class of multi-stage problems which could

be reexpressed in the two-stage framework.

2. The Multi-Period Asset Allocation Problem

In this paper we formulate a class of multi-period financial asset allocation problems

(Mulvey and Vladimirou (1989) [22]) and show how they can be solved by adaptations

of multi-stage stochastic linear programs methodology and software.

At the initial time period 1 a certain amount of wealth is available to a decision

maker in assets i = 1,...,n and in cash which we index as asset n + 1. We denote

= 1,...,n + I to be the dollar value of the initially available assets. The decision

maker has to decide each period how to rearrange his portfolio to achieve best return

on his initial investment over time. We consider the problem in discrete time and

define time steps t = 1,... ,T, e.g. by months, with T being the end of the planning

horizon.

At each time period t the investor can either hold on to asset i, buy more, or sell

off part (or all) of asset i. We denote y! the amount sold of asset i in period t and by
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x! the amount of asset i in period t held on to. Selling means decreasing the value

of asset i and increasing the value of cash, x'+.1 Also the investor has the choice

of using his resulting cash to buy certain amounts of assets i. The amount bought in

period t is denoted with z .

Buying and selling causes transaction costs which we assume to be proportional

to the amount of dollar value of asset traded. We denote by 1OOvi the transaction

costs (expressed as a percentage) associated with buying one unit of i and with 100,

the transaction costs (expressed as a percentage) associated with selling off 1 unit of

asset i. Buying 1 unit of asset i requires 1 + vi units of cash and selling 1 unit of asset

i results in 1 - yj units of cash.

Through buying and selling the investor can restructure his portfolio in each time

period t. Once this t-th stage decision is made, the holdings x , i = 1,... ,n + 1 can

be calculated. The shares in the portfolio is then kept constant till the next time

period. The value of x is affected by the returns on the market. For example a

portfolio x at time t changes its value to Rx!x where R! denotes the return factors

from period t to period t + 1.

At time t, when the decision on rearranging the portfolio has to be made, returns

R', for i = 1,... ,n are not known to the decision maker with certainty. Only the

return on cash, R,,+I is assumed known. However, we assume we know the probability

distributions of R . The problem is of the "wait-and-see" type. While the decision at t

has to be made on the basis of distributions of future returns R', for i = 1,...,n, t =

1,... ,T, the values of prior returns R!, i = 1,... ,n, t = 1 ,...,t - 1 have already

been observed. We denote with Rt = R , for i = 1,...,n the n-dimensional ra;rdom

vector with outcomes r'(wt), wt E Qt, with p' the corresponding probability, and f,

the set of all possible outcomes in t. The random returns Rt of period t , mutually

dependent and dependent on the random parameters of the previous period.

After the last period T no decision is made. Only the value of the portfolio is

determined by adding all values of assets including the last period returns. We call

this value vT. The goal of the decision maker, however, is to maximize Eu(vT), the

expected utility of the value of the portfolio after period T. The utility function
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u(vT) describes the way the investor views risk. If u(vT) is linear, it describes risk

neutrality, if u(vT) is concave, it models risk averseness. Nonlinear utility functions

require non linear programming techniques for the solution of the problem. Our

methodology is not restricted to linear problems. However, for the sake of ease and

computational speed we approximate the nonlinear function by a piecewise linear

function with sufficiently large number of linear segments.

In the model presented here we do not consider shortselling of assets, although

this feature could be incorporated easily. We also do not consider borrowing of cash,

which also could be incorporated easily. The holdings of assets, as well as the amounts

of assets sold or bought have to be positive. In general there are also lower (x) and

upper (Y) bounds on holdings as well as on amounts of assets to be sold (y,Y) or to

be bought (z., -f) which are given by the investor and/or by the market. E.g. a certain

asset may only be available up to a certain amount or an investor wants to have a

certain asset with at least a certain amount of dollar value in the portfolio. Therefore
t<tL t - z t <z ,- where xt>0,ytOin general we formulate x < x i < Yi, Yi < y! <-- Yi, z! -- z! -- Z, where -- > -- 0, y'>O,

_4> 0, x9 given for i= I,... ,n+ 1, t= 1,...,T.

We can now state the model:

t 1,...,T, i = 1,..., n +1, rixo given:
t-1 + +t = 0,

-ri i +X + Y! - ..

-t-1I t-1 +X n( U)!+F I+V) 0
-rn+ln+1 +x I=li =

- = rT + V 0,

max Eu(vT)
t t < -- t, Y! < -t< t < -I -;t,

x <x,_<i, Y_,:Y --Y, z, < <., i= 1,... ,r, 1= 1... T

We describe correlation between asset returns using a factor model. Using factors

is common in the financial industry (e.g. Perold (1984) [271), hence historical data of

various factors are commercially available. The idea of the factor model is to relate

the vector of asset returns Rt = (R,,...,R,,) t to factors V' = ( -..... )t hile

the number of assets, n is large, e.g. a model should be able to handle about 500 1o
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3000 assets, the number of factors h is comparatively small. Factor models used in

the financial industry typically involve no more than 20 different time series called

factors. The factor matrix F(n x h) relates Rt to V1

R t = FV t

The coefficients of the factor matrix are estimated using regression analyses on his-

torical data. By linear transformations of historical factors the transformed factors

can always be determined in such a way that the factors Vt are orthogonal. These

factors can then be interpreted as independent random parameters assumed nor-

mally distributed or log normally distributed. Using the factor model stochastically

dependent returns can be generated in the computer by using these stochastically

independent factors. We denote the random factor V' by v" , also denoted as v ,

with corresponding probability p(v), where p(v ) = prob (V t = v).

We also consider inter-period dependency. For example we may wish to have a

higher probability of having a high rate of return in period t if it was high in period

t - 1 than if it was low in period t - 1. We can model this inter-period dependency

as a Markovian type process applied directly on the factors:
t t-1

Vi i +=V , 7 =l,...,hl

The value of factor i in period t is the sum of the value of factor i in the previous

period t - 1 plus some independent random variation of the factor in t, denoted by

,i'. The Markovian type model can be estimated based on historical data. Instead

of having an additive effect as above we may prefer to have a multiplicative effect

by applying the Markovian process directly to the logs of the factors. We haven't

explored this alternative.

3. Multi-Stage Stochastic Linear Programs

As one can now see easily, the multi-period asset model proposed fits exactly into the

framework of a general class of multi-stage stochastic linear programs with recourse.

The factor model for generating dependent returns and the Markovian process for
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inter-period dependency define a special class of dependencies between stochastic

parameters which we will exploit to solve the problem. Before doing so we state the

general problem and the methodology we have developed to solve it.

The multi-stage stochastic linear program can be formulated as follows:

minz = x .... E(cr T".....)
cixi + E(c 2X'd + ... + E(CT-IXT-I + T

s/t
Aix, = bi

-Br'x, + A 2X' = bL' 2

-B _ _ 'B.,iW2 + ATX" Tr .... W2 = b W T

.X
T -

1 ,...T

X 1 X 2 T - 1 'T~ ... w > 0

wt E Qt, t = 2,..., ,T

The problem is the stochastic extension of a deterministic dynamic linear program.

While the first stage parameters cl, A,, b, are known to the planner with certainty,

the parameters of stages 2,..., T are assumed known only by their distribution. \Ve

assume uncertainty in the coefficients of the transition matrices B", t = 1, T and

the right hand sides b"', t = 1,..., T and assume the coefficients of the technology

matrices At, t = 2,. .. , T and the objective function coefficients ct, t = 2,. T to

be known with certainty. The goal of the planner is io minimize the expected value

of present and future costs.

The underlying "wait-and-see" decision making-process is as follows: The deci-

sion maker makes a first stage decision 11 before observing any outcome of randon)

parameters. Then he waits until an outcome of the second stage random parameters

gets realized. The second stage decision then is made based on the knowledge of the

realization w2 but without observing any outcome of random parameters of stages

2,.. . , T, and so forth. As the state (the actual outcome) is carried forward to th'e

following period, the decision tree grows exponentially with the number of stages. We

7



consider discrete distributions of random parameters with finite number of outcomes,

e.g. t E f2t, Qt = {1,... ,Kt}, t = 1,...,T. With Kt being the number of scenarios

in period t, the total number of scenarios for all T stages is f1 Kt. The number

Kt is expected to be large, as it is computed by the crossing of the sets of possible

outcomes of the different random parameters within a period. E.g. the dimension of

the random vector in period t is ht and Qj contains ki elements; then Kt = HJl k.

For example, in the asset allocation problem, consider the case of 20 factors, modeled

as random parameters with 5 outcomes each: the number of scenarios per period is
520 1014. If there are 3 periods, then the total number of scenarios grows to 1028.

The dimensions of an equivalent linear program of an asset allocation problem with

a universe of about 500 assets is approximately 5- 1030 rows and 1.5. 1031 columns.

It is of course impossible to write down this linear program explicitly.

It is clear that the multi-period asset allocation problem defined above is a special

case of the multi-stage stochastic linear program. The correspondence is as follows:

the vector xt now denotes the vector of all decision variables (holdings, amount to

be bought and to be sold) in period t. Uncertainty occurs only in the transition

matrices Bt which contain in their diagonal the return factors R . The right hand

sides b2,.... b, are zero, as well as the objective function coefficients c2,. .. , cT-1. We

now describe the techniques we have developed to solve the multi-stage program.

4. Benders Decomposition

A description of how Benders (1962) [21 Decomposition Algorithm can be applied to

solve stochastic linear programs can be found in Van Slyke and Wets (1969) [30], Birge

(1985) [3]. Using Benders decomposition we decompose the problem into subproblems

of different stages t. In the most general case where there is a dependency of stochastic

parameters between stages the number of subproblems is equal to the number of

scenarios in each stage t. To distinguish one subproblem from another, each is indexed

with wt,. . . ,w2 , where wt is the random event in stage t and w- 1 ,... ,w 2 is the path

of previous events which gave rise to the particular subproblems in stage t.

For expository purposes, we assume initially the random events that happen in
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one stage are independent of those that happen in the next stage. For example, when

the probability of having a high rate of return in period t is the same for all values of

rate of return in period t - 1. In the independent case scenarios Wt+j E 11t+1 in period

t + 1 are identical for each scenario wt E ft in period t. The history is only carried

forward through optimal decisions t_1 . "2 from previous periods. In the special

class of Markovian dependency which we described earlier, B67I +1''W = B 1 + c"+,

where ft represents a matrix of random parameters independent of those in period

t - 1.

The idea of using Benders decomposition is to express in each stage t, t =

1,..., T-1 and scenario wt the expected future costs (the impact of stages t+l,....., )

by a scalar Ot and "cuts", necessary conditions for feasibility and optimality which are

expressed only in terms of the stage t decision variables xt and Or. Cuts are initially

absent and then sequentially added to the stage t problems. Each scenario subprob-

lem wt in stage t collects the information about expected future costs by means of

the cuts.

The relation between the stages and scenarios in the decomposed multi-stage

problem is summarized as follows:

Stage 1 problem:

min z, = clxl + 01

s/t

7r1 : Aix, =b

P1 - x, + 0, 1 g,', , 1,...L,

X1 ,01 > 0

Stage t, t = 2,..., T - 1, problem:

min = ct Xj' + 0'"

s/t

~rl, Atx" = b't' + BLz15 I
It,UJtpt : -G tlxr + 0 " > g", It . Lt

X"' , ' > 0
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Stage T problem:

mn ZT = CTX11T

s/t

wT r  ATTX+T  = b+BfTlT_1
XT > 0

min z, represents the optimal objective function value in the first stage. xi, 01

represent the optimal solution, the vector ri denotes the optimal dual prices associ-

ated to the original stage 1 constraints, and the scalars p,1 are the optimal dual prices

associated to the cuts, which have been added so far in iterations 11 = 1,... , L1.

The optimal objective function values min z' = min z"(it-]), and the optimal

dual prices r" 7rt (xt-) associated to the original stage t constraints in stages

t, t = 2,..., T and the optimal dual prices pt"t = Pt (it-,) associated to the cuts

in stages t, t = 2,..., T - 1 are all dependent upon it-,, the optimal solution passed

as input from the previous stages t - 1. According to the scenario development in the

previous stages an optimal solution 1t-, is actually indexed by the scenario outcomes

of all previous stages and is therefore denoted as 1 For the sake of exposition,

we suppress the scenario history and present the optimal solution of subproblems in

stage t, scenario wt as a function of the input t-,.
We compute the expected future costs as zt+1 = E -,+ 1,z', the right hand sides

of the cuts as g t = E,,,, t7r ' ' b, +l v.+ = ^t ,+, 9t,+1tlt+ wt+l+) and the coefficients of the
oftcuts as t = Eta,+2+ (7ra,+l where +a ftar~

cuts as Glt' £ E,,+, Bt+l', where eTT= 0, G T = 0, and g'T = 0.

A subproblem in stage t and in scenario wt interacts with its predecessors and

descendants by passing forward optimal solutions and backwards cuts. Benders de-

composition splits the multi-stage problem into a series of two-stage relations which

are overall connected by a nesting scheme. We call the stage t, scenario Wt problem

the current master problem. It receives from its ancestor in period t - 1 a solution

it-,. The current scenario is determined by the outcome wt of the random param-

eters in stage t which are reflected in the right hand side bt' + B'lit-1 . As stated

above, it-, has a history. The history has to be considered when nesting several

stages. Given and subject to if-, we solve the stage t problem in scenario wt and
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pass the obtained solution it" to the descendant problems. By selving all problems

wt+, E /t+1 (referred to as the universe case) we compute the expected value of the

(,escendant stage costs z++1 = E,,+Iz" 1 and the coefficients Gt = "Bw '+'
{n t+1ht~ x-L,+ I lt+,+l+ ,,+1 fa c t h

and the right hand side gt = E-,,,+, "b't + E,,= p ot+1 9 ') a

cut is added to the current master problem (stage t, scenario wt problem) and by

solving the problem again another trial solution is obtained.

The optimal solution the of current master problem in stage t, scenario wt gives

a lower bound, and the expected cost of the trial solution gives an upper bound of

the expected costs of all scenarios descendant from the stage t scenario wt. If lower

bound and upper bound are sufficiently close, the current master problem is said

to represent the future expected cost and contains (by means of a sufficient number

of cuts) all the information needed from future scenarios. In this case we say the

current master is balanced with its descendant problems.

Note that the current master problem represents the expected future costs only

subject to the trial solution it-, which was passed from its ancestor and subject to the

current scenario wt. Note also that we have implicitly assumed that the descendant

problems in stage t + 1 are also balanced with their descendant problems in stage t + 2

by means of having collected a sufficient number of cuts to represent the expect -d

costs of descendant scenarios for t+2 on, and so forth. However, note that the slutijii

of the current stage t scenario wt problem gives a lower bound of the expected costs

of all scenarios descendant from the stage t scenario Wt problem regardless of having

collected a sufficient number of cuts. We shall exploit this fact.

Two properties of cuts are crucial for the solution procedure:

1. In the case of independence of stochastic parameters between stages:

The cuts derived from any trial solution i" are valid cuts for all subproblems ,, C

fQ. E.g. the cut: Oj > E Bw'+lx + 7rw'+'hb '+' is a constraint whose

coefficients don't depend on x,, hence is valid for all values of xt. To see this, nite

7rt+l = 7t++I (;t) are optimal dual prices that do depend on .i for optiiality but

they remain dual feasible independent of the values of the right hand side as a

function of ;t. The validity of the cuts depends only on the dual feasibility of the
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7rt+4'1. It represents an outer linearization of the future expected cost function zt+1 (xt),

evaluated at t. Different scenarios wt are in stage t are distinguished by different

right hand sides of the original stage t constraints, e.g. Atxt = b' + B 'Lpt_1 . The

set of cuts -Gt xt + Ot > gt', 1i = 1,..., Lt represent an outer linearization of the

expected future costs independent of scenarios wt E Qt. The outer linearization

defined by the set of cuts equals the expected future cost function, if Ez"t' (-it) = Ot,

where Ot is the value of Ot corresponding to the solution it of any stage t problem.

If Ez t ( = E", w O e Qt, then a sufficient number of necessary cuts have been

generated to represent the expected future costs for all solutions i"' of scenarios

Wt E Qt in stage t and we say stage t is balanced with stage t + 1.

2. In the case of dependency of stochastic parameters between stages:

Cuts now depend on scenario wt in period t. Sharing of cuts between different scenario

subproblems wt e Qt is no longer directly possible. However, for additive dependency,

(e.g. Markovian type dependency) cuts can be easily adjusted to different scenarios.

(See Pereira and Pinto (1989) [26] for additive dependent right hand sides.) For

example in the case of the Markovian type dependency which we introduced in the

multi-period asset allocation problem B")t+1."t = B 1 + c" +' . Here ct represents a

matrix whose elements are functions of random parameters which are independent of

the period t- 1 random parameters. (The elements of c are the independent part of the

random returns and are generated by the product F 77t where rt is the random change

in Vt that generated ct.) In the case of the additive dependency a cut in stage i and
scenario wt has the form: Ot > [(E,,,+, ""ot+l )B' + E ,+, t+l t']xt + E <' t +

t+1 t t +J t It E ,+7L'+ 1  "

It can be easily seen that the coefficients of the cut consist of a part independent of

scenarios wt and a dependent part. The cut can be adjusted to different scenarios

wt E Pt by adding the scenario dependent part (E.,+, ro')B+" according to scenario

Lot. This requires storing of the expected value of the dual variables E,,+, 7r"+ 1 .

Taking advantage of the above stated properties we actually only need to store

one subproblem per stage t. For different scenarios Lot and different solutions it-1

passed from the previous stage we determine the right hand side accordingly. The

cuts are valid for all scenarios wt E Qt in the case of independence of the stochastic
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parameters between stages or are adjusted in the gradient according to the actual

scenario wt in case of Markovian type dependency between stages. Therefore it is

easily possible to generate any wt subproblem. Future information is represented in

the cuts which have been generated so far and can be efficiently used in any scenario

wt E Qt independently from which scenario originated it.

5. Multidimensional Integration

The computation of the expected future costs zt+1 , the coefficients Gt and the right

hand side gt of the cuts requires the computation of multiple integrals or multiple

sums. The expected value of the second stage costs in period t + 1 (we suppress the

index t for this discussion), e.g. z = Ezw = E(C) is an expectation of functions

C(vw),w E Q, where C(vw) is obtained by solving a linear program. V (in general) is

a h-dimensional random vector parameter, e.g. V = (V1,..., V), with outcomes t, =

(VI,.... vh)w. For example V represents the value of the i-th factor v the observed

random outcome. The vector v' is also denoted by v, and p(vw) alias p(v) denotes the

corresponding probability. Q is the set of all possible random events and is constructed

by crossing the sets of outcomes Q = Q1 X Q2 X... x Ph. With P being the probability

measure under the assumption of independence the integral E C(V) = IC(I,)P(d,,:)
takes the form of a multiple integral E C(V) = f... f C(v)p(z)dv1 ... dl,. or. in case

of discrete distributions, the form of a multiple sum E C(V) = , " ,. C(z,)p(t').

where p(v) = pI(Vl)' ph(vh).

The number of terms in the multiple sum computation gets astronomically large

and therefore the evaluations of multiple sums by direct summation is not practical.

This is especially true because function evaluations are computationally expensive

since the evaluation of each term in the multiple sum requires the solution of a linear

program. In the following we discuss a scheme for estimating the expected values

with a sufficiently low estimation error without having to evaluate each term.
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6. Importance Sampling

Monte Carlo Methods are recommended to compute multiple integrals or multiple

sums for higher h-dimensional sample spaces (Davis and Rabinowitz (1984) [91 , Glynn

and Iglehart (1989) [13]). Suppose C- = C(vw) are independent random variates

of vW, w = 1,...,n with expectation z, where n is the sample size. An unbiased

estimator of z with variance o', = o'/n, U2 = var(C(V)) is

z = (1/n) C'.
W=1

Note that the standard error decreases with n-0 5 and the convergence rate of 4, to z is

independent of the dimension of the sample space h. We rewrite z = EZ, C(vw)p(vw)

as

T C(vw)p(vw)q(vw)
wE- q(vw)

by introducing a new probability mass function q(vw) and we obtain a new estimator

of z
1 C(vw)p(vw)

/ ol q(vw)

by sampling from q(vw). The variance of is given by

var(z) =1 C(vw)p(vw) Z q (Vw)wY EQ v').

Choosing q(v) c(,)v, " would lead to var(i) = 0, which means one couldChoosingL~e q'v ) =F. C(v,.)P(v- )

get a perfect estimate of the multiple sum from only one estimation. Practically,

however, this is useless since to compute q(vw) we have to know z = ZwEl CwAp(v),

which is what we are trying to compute in the first place.

The result, however, helps to derive a heuristic for choosing q. It should be

proportional to the product C(vw)p(vw) and should have a form that can be integrated

easily. Thus a function F(v') z: C(vw) is sought, which can be integrated with less

effort than C(vw). Additive and multiplicative (in the components of the stochastic

vector v) approximation functions and combinations of these are potential candidates

for our approximations. Especially for financial investment problems, we have been
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getting good results using C(V) ; E = Ci(V). We compute q as

C(vw)p(vw)
q(v') ;: E , V)(W

In this case one has to compute only h 1-dimensional sums instead of 1 h-dimensional

sum. The variance reduction depends on how well the approximation function fits

the original cost function. If the original cost function has the property of additivity

(separability) the multiple sum can be computed exactly by h 1-dimensional sums. If

the additive model is a bad approximation of the cost function the only "price" that

has to be paid is increasing the sample size. If the observed variance is too high using

a starting sample size, the sample size is adjusted higher. Actually we use a variant of

the additive approximation function. By introducing C(r), the costs of a base case,

we make the model more sensitive to the impact of the stochastic parameters Z'.

h

r(v) = C(T)+ r,(v,), ri(v) = c(7,.... ,,,r,+ 1 ,...,To - c(7)
i=1

We denote this as a marginal cost model. r can be any arbitrary chosen point of the

set of values vi, i = 1,..., h. For example we choose 7i as that outcome of , which

leads to the lowest costs, ceteris paribus.

Summarizing, the importance sampling scheme has two phases: the preparation

phase and the sample phase. In the preparation phase we explore the cost function

C(V) at the margins to compute the additive approximation function F(V). For this

process nrep = 1 i=L1(ki - 1) subproblems have to be solved. Using F(V) we

compute the approximate importance density

q~v') =rFOIW)p(t, )

q(Cv) =
C(r)+i=1 Eln, F(vw)p(v)"

Next we sample n scenarios from the importance density and, in the sample phase,

solve n linear programs to compute the estimation of Z using the Monte Carlo esti-

mator. We compute the gradient G and the right hand side g of the cut using the

same sample points at hand from the expected cost calculation. See Infanger (1991)

[18] for the computation of the cuts and details of the estimation process.
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7. The Algorithm

By solving a sample of subproblems wt+, according to the importance sampling scheme

we compute estimates of the expected future costs z",, the gradients G' and the

right hand sides g,' of the cuts in each stage t and scenario wt. The objective function

value of the solution of each stage t, scenario wt subproblem gives a valid lower-bound
estimate of the expected costs z' = cti' + 0k" subject to scenario Wt and subject to

it-,, the (optimal) solution passed forward from the previous stage. The obtained

lower-bound estimate is the tightest lower bound that can be generated, if in stage

1 + 1 a sufficient number of cuts have been added to represent the expected future costs

with respect to stage t + 1 for all scenarios wt+ E ftt+1 and is a weaker lower-bound

estimate if there is not a sufficient number of cuts.

We are especially interested in the lower-bound estimate of the first stage costs

which we obtain by solving the first stage problem. If the first stage problem is

balanced with the second stage, that is, if the cuts added so far to the first stage

problem fully represent the expected second stage costs, and if the second stage is

balanced with the third stage for all scenarios w2 E Q 2 and all values of il, passed

to it from the first stage, and so forth till stage T - 1, then the solution of the first

stage problem is the optimum solution of the multi-stage stochastic linear program.

In this case the lower bound estimate of z1 takes on the value of the total expected

costs of the multi-stage problem.

To obtain an upper bound of the total expected costs of the multi-stage problem,

we evaluate the expected costs of the current first stage trial solution i. This can be

accomplished by sampling paths from stages 2,..., T. For a reference, see Pereira and

Pinto (1989) [26]. To efficiently sample a small number of paths to obtain an accurate

estimate of the expected costs associated with il, we also use importance sampling.

We define a path .' = (ii,i 2 ,. .. ,-i;T)w, w E 11, where Q = {f 2 x Q3 x ... x QT},

as a sequence of optimal solutions i" of stage t scenario wt problems, t = 2,. . ., T

and il being the first stage trial solution. A path is computed by observing the
"wait-and-see" requirements: We pass ;i to the second stage and solve the second

stage problem for scenario w2 and obtain the optimal solution i'. Next we pass the
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obtained second stage solution i" to the third stage and solve the third stage problem

for scenario w3 to obtain i3. We continue in this way until we obtain ir in stage

T. Note that when solving the stage t problem no future outcomes wt+,... ,WT are

used. All future information at each stage is solely represented by means of the cuts

added in stage t so far. The costs of a path S,, C(S"w) is given by C( ') = T .

The expected value of the costs of all paths Sw, w E f9, E. w gives an upper bound to

the costs of a trial solution il.

We sample paths by applying the importance sampling scheme to the dimensional

space of size t=2 ht of all random parameters Vt, it = 1,..., ht, t = 2,..., T.

For sampling paths the importance density q(V) is computed based on the additive

marginal approximation function analogous to the way it was defined earlier:

T he

r(v) = c(,r) + E E c(Ti,.,... I , 1 V,,,, t 4 4 ,. .... TT,hT) - C(7)
t=1 it=l

where V = (V ,..., V, V,., Vh) and r = (r,...,r,.,...,rh) . Sampling

paths w E Q according to this importance sampling scheme we obtain an equal

number of sample points wt E Pt in stages t = 2,..., T. At these sample points we

define the current stage t scenario wt subproblems and generate cuts to be added at

stages t = 1,...,T - 1 by employing importance sampling as described above for

cuts.

The overall procedure works as follows: Solving the stage 1 problem in iteration

1 we obtain a trial solution il and a lower bound estimate of the expected costs z1 .

Now we employ the path sampling procedure to obtain an upper bound estimate of

the expected costs z1 . If the upper bound estimate and the lower bound estimate

are within a given optimality tolerance, we call the first stage solution the optimal

solution of the multi-stage problem, and quit. Otherwise we generate cuts in stages

1,..., T - 1. The path sampling procedure used for the upper bound estimate has

produced sample points wt E Qt in stages t = 2,..., T with corresponding ancestor

solutions il and i"' in stages t = 2,.F. T- 1 to be passed to the current stage

t scenario wt problem. Starting at stage T - 1 and moving backwards till stage I

we take each sample problem wi in stage t and finally the stage I problem as the
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current master problem and compute cuts by sampling again w+1 E 9t+, descendant

problems until each scenario problem Wt in stage t is balanced with stage t + 1 with

regard to ancestor solutions ii-I which have been passed from stage t - 1. Arriving

at stage 1 we obtain a new solution il and a new lower bound estimate. We continue

as defined above by sampling new paths for the upper bound estimate. Finally, after

a finite number of iterations, upper and lower bound estimates will be sufficiently

close. Upper and lower bound estimates can be seen as the sum of i.i.d. random

terms which for sample sizes of 30 or more can be assumed normally distributed with

known (derived from the sampling process) variances. A 95% confidence interval of

the obtained solution is computed.

8. Computational Experience

Computational results of using Benders decomposition and importance sampling for

two-stage asset allocation problems can be found in Infanger (1991) [18] and Dantzig

and Infanger (1991) [7] where we report on the solution of test problems with up

to 52 stochastic parameters and a number of universe scenarios of more than 1024.

These problems were formulated as two-stage stochastic programs. Using importance

sampling and sample sizes between 200 and 600 very accurate results were obtained,

e.g. the estimated 95% confidence interval was less than 0.8% on each side based on

the optimal objective function value. Additional tests on these examples showed that

the ratio of variance reduction obtained by using importance sampling versus crude

(naive) Monte Carlo sampling was about 10'.

Inspired by these results we implemented an earlier version of the methodology

described above for the multi-stage case which did not consider dependency between

stages. Instead of the path sampling procedure for obtaining upper bounds we imple-

mented a procedure where we sampled points rather than paths which requested the

handling of an exponentially expanding decision tree. Therefore even when we used

very small sample sizes, the number of stages that was practical to solve was limited.

We did test up to 3-stage problems. F13 is a 3-stage test problem derived from a

2-stage financial portfolio problem found in Mulvey and Vladimirou (1989) [22]. The
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problem is to select a portfolio which maximizes expected returns in future periods

taking into account the possibility of revising the portfolio in each period. There are

transaction costs and bounds on the holdings and turnovers. Our test-problem covers

a planning horizon of 3 periods whereas the original Mulvey-Vladimirou test-problem

was a 2-stage problem which compressed all future periods into a single second stage.

They solved the stochastic problem by restricting the number of scenarios in Q.

We assumed the returns of the stocks in the future periods to be independent

stochastic parameters with 3 outcomes each. With 13 assets with uncertain returns,

the problem had 26 stochastic parameters instead of 39 because after the last stage

decision was made, the expected money-value of the portfolio can be evaluated. The

number of universe scenarios was 2.5- 1012. (The deterministic equivalent formulation

of the problem has more than 1014 rows and a similar number of columns.) Wke

obtained an estimated optimal solution of the 3-stage stochastic problem using a

sample size of only 50 per stage. The optimal objective function value was estimated

to be 1.10895 with an estimated 95% confidence interval of 0.004% on the left side and

0.001% on the right side of the obtained objective function value. Thus the optimal

objective value lies within 1.10881 < z" < 1.10895 with 95% probability. Note how

small the confidence interval is.

9. Conclusion

We have demonstrated how real-world multi-period asset allocation problems can

be efficiently solved as multi-stage stochastic linear programs using our approach of

combining Benders decomposition and importance sampling. Tile numerical results

obtained so far are very promising: We obtained very accurate solutions for a 3-stage

asset allocation test-problem using remarkably small sample sizes.
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