- oA __ - (r
242 474 = o

AD-A TATION PAGE Bt
| OPM No. 0704-0188
needs \urden setimate or any other aspect of this collaction of information, inchuding suggestions for reducing this burden. 1o Washingion
m seon Davis Highway, Sule 1204, Aringron, VA 222024302, and 10 the Ofice of information and Ragudatory Aftairs, Office of
(1. AGENCY USEONLY (Loave Blank)] 2. REPORT DATE 3. AND DA

Final: 30 Jan 1991 to 01 Jun 1993
(4. YITLE AND SUBTITLE 5. FUNDING NUMBERS

Encore Computer Corporation, Parallel Ada Development System, Revision 1.0,

Encore 91 Series (Model No. 91-0340) under UMAX 3.0 (Host & Ta X
910130W1.11114
RO — = .

Wright-Patterson AFB, Dayton, OH

USA

' : (S) AN) Pal '
Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER
Bidg. 676, Rm 135 AVF-VSR-446-0991
Wright-Patterson AFB, Dayton, OH 45433
5. SPONSORING/MONIT OTING AGENCY NAME(S) AND ADDRESS{ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

77, SUPPLEMENTARY NOTES
1;\\’? Soddcvare. avolotl o deot bsheen ;P/Lv Micdocie Koo

1 ADA nylal s dlecan

22 DISTH AVAI A 12b. DISTRIBUTION COOE |
Approved for public release; distribution unlimited.

73, ABSTRAGT (Maximum 200 words)

Encore Computer Corporation, Parallel Ada Development System, Revision 1.0, Encore 91 Series (Model No. 91-0340)
under UMAX 3.0 (Host & Target), ACVC 1.11.

91- 15055
CBEELETLD

14, SUBJECT TERMS 5. NUMBER OF PAGES |

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. L o o] Sa——
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSUMIL-GTD-1815A, AJPO. 16.

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-850 ' Swandard Form 298, (Rev. 2-89)°

AVF Control Number: AVF-VSR-446-0991
5-September-1991

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910130wl1.11114
Encore Computer Corporation
Parallel Ada Development System, Revision 1.0

90-09-18-ECC

Encore 91 Series (Model No. 91-0340) under UMAX 3.0 =>
Encore 91 Series (Model No. 91-0340) under UMAX 3.0

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 30 January 1991.

Compiler Name and Version: Parallel Ada Development System, Revision 1.0

Host Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0

Target Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0

Customer Agreement Number: 90-09-18-ECC

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate _
910130wW1.11114 is awarded to Encore Computer Corporation. This certificate
expires on 1 June 1993.

This report has been reviewed and is approved. .

Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

\I' RS e -
Ada Validation Orqganization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria vA 22311

Q Joint Program Oﬁi ce

Dr. John Solamond, Director
Department of Defense
washington DC 20301

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the customer.

Declaration of Conformance
Customer: Encore Computer Corporation
Certificate Awardee: Encor= Computer Corporation

Ada Validation Facility: ASD/SCEL
Wright-Patierson AFB OH 45433-6503

ACVC Version: 1.11
Ada Implementation:

Ada Compiler Name and Version: Parallel Ada Development System,
Revision 1.0

Host Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0 '

T Computer System: Encore 91 Series (Model No. 91-0340)
et e under UMAX 3.0
Declaration:

1 the undersigned, representing Encore Computer Corporation, declare that
Encore Computer Corporation has no knowledge of deliberate deviations from
the Ada Lan ﬁ Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the

\ cmrm— :_> L 1\ Ei_\ \
%'ut;&mm Date

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current

ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act"” (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

r

INTRODUCTION
1.2 REFERENCES

Reference Manual for the Ada Programming Language [Ada83],
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

Ada Compiler Validation Capability User’s Guide [UG89], 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

[

D

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation. '

The part of the certification body that provides technical
quidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user—-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION
Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

wWithdrawn
test

DO

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C€34006D C35702A B41308B C€43004A
C€45114Aa C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L €97116A €98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BD1B02B BD1B06A AD1BO8SA BD2A02A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
Cb2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CDS111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CDS005A CDS005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

w——

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
s C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321%,..Y (14 tests)
r C45421L..Y (14 tests) C45521L..2 (15 tests)
I C45524L..Z (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C €45304C C45411C Ci5412C
€45502C €45503C €45504C C45504F C45611C
Cc45612C €45613C €45614cC C45631C €45632C
B52004D B55B09C C55B07A B86001wW C86006C
CD7101F

C35702B, C€35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
(nane other than FLOAT, LONG FLQAT, or SHORT_ FLQOAT.

' A35801E checks that FLOAT’FIRST..FLOAT’LAST may be used as a range
‘ constant in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must be rejected. (See 2.3)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

C45624A and C45624B check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE OVERFLOWS is TRUE.

| C86001F recompiles package SYSTEM, making package TEXT IO, and hence
package REPORT, obsolete. For this implementation, the package TEXT IO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2AB4A, CD2AS4E, CD2AB4I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

PEUIIUUSUUSRrRr T S S

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access rethod.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT_FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE31026G DELETE — TEXT 10
CE31021I CREATE OUT FILE TEXT_IO
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUT FILE TEXT 10

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT IO. This implemen.ation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET_PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either

line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT’ LAST is greater than 150000 making the checking of this objective
impracticai.

2.3 Test Modifications

Modifications (see section 1.3) were required for 23 tests.

2-3

IMPLEMENTATION DEPENDENCIES

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H B91001H BC1303F BC3005B BD2B03A
BD2D03A BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD1009I, CD1CO3A, CD2A22J, CD2A24A, and CD2A31A..C (3 tests) use
instantiations of the support procedure Length Check, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of Lenyth Check—i.e., the allowed Report.Failed messages
have the general form:

" % CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Gary Beerman
6901 W. Sunrise Blvd.
Ft. Lauderdale FL 33340-9148

For a point of contact for sales information about this Ada implementation
system, see:

Gary Beerman
6901 W. Sunrise Blvd.
Ft. Lauderdale FL 33340-9148

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3814

b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 72
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 273
g) Total Number of Tests for ACVC 1.11 4170

All I,/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked, and run on the computer system, as
appropriate. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-v Verbose

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived. .

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $SMAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX_IN LEN 499
$BIG ID1 (1..v-1 => 'A’, V=> r1’)
$BIG_ID2 (1..V=1 => 'A’, V => 72’}
$BIG_ID3 (1..V/2 => 'A’) & '3 &
(1..v-1-v/2 => 'A’)
$BIG ID4 (1..v/2 => 'A") & '4' &
(1..V-1-Vv/2 => 'A’)
$BIG_INT LIT (1..v=-3 => ’0’) & "298"
$BIG_REAL LIT (1..v-5 => ’0’) & "690.0"
$BIG_STRINGL rnro& (1..V/2 => 'Af) & "M
$BIG_STRING2 ‘" & (1..V-1-V/2 => 'A’) & 1" & '
$BLANKS (1..V=20 => * *)

$MAX LEN INT BASED LITERAL
"2:" & (1..v-5 => ’0’) & "1l1:"

$MAX_LEN REAL BASED LITERAL
"16:" & (1..V-7 => 0’) & "F.E:"

A-1

MACRO PARAMETERS
$MAX STRING LITERAL '"’ & (1..V=2 => 'A’) & '"’

The following table lists all of the other macro parameters and their
respective values.

$DELTA_DOC
$SENTRY ADDRESS
SENTRY_ADDRESS1
$ENTRY_ADDRESS2
$FIELD LAST
$FILE_TERMINATOR
$FIXED NAME
$FLOAT NAME
$FORM_STRING
$FORM_STRING2

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT_LAST 2147483647
$DEFAULT MEM SIZE 16777216
$DEFAULT STOR UNIT 8
$DEFAULT_SYS_NAME Umaxv_88k

0.0000000004656612873077392578125
SYSTEM. "+" (16440#)

SYSTEM. "+" (16#804#)
SYSTEM. "+" (164100#)

2147483647

NO_SUCH_TYPE

NO_SUCH_TYPE

"CANNOT RESTRICT FILE CAPACITY"

$GREATER THAN DURATION

100000.0

$GREATER THAN DURATION BASE LAST

T0000300

$GREATER THAN FLOAT BASE LAST

1.8E+308

$GREATER THAN FLOAT SAFE LARGE

5.0E307

A-2

MACRO PARAMETERS
$GREATER THAN SHORT FLOAT SAFE LARGE
9.0E37
$HIGH PRIORITY 99

SILLEGAL_EXTERNAL_FILE NAME1
W/illegal/file name,/2}]%2102c.dat"”

SILLEGAL EXTERNAL FILE NAME2
Tsillegal/file name/CE2102C*.dat"

SINAPPROPRIATE LINE LENGTH

-1
SIWPROPRLATE_PAGE_LEMI;TH
$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006Dl.TST")
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER FIRST -2147483648
$INTEGER LAST 2147483647

$INTEGER LAST PLUS 1 2147483648
$INTERFACE LANGUAGE C
$LESS_THAN DURATION -100000.0

$LESS THAN DURATION BASE FIRST
-17000000.0

$LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY 0

$MACHINE CODE_STATEMENT
CODE 0’ (OP => NOP);

$MACHINE CODE_TYPE CODE 0

$MANTISSA DOC 31

$MAX_DIGITS 15

$MAX_INT 2147483647

$MAX_INT PLUS 1 2147483648

$MIN_INT ~2147483648
A-3

MACRO PARAMETERS

$NAME TINY_ INTEGER
$NAME_LIST Umaxv_88k

$NAME_SPECIFICATION1 "/uS/acvcl.ll/work/ce2" & "X21202A"
SNAME SPECIFICATION2 "/uS/acvcl.ll work/ce2" & "X21202B"
$NAME SPECIFICATION3 "/uS/acvcl.llwork/ce3" & "X3119a"

$NEG BASED INT 164F000000E#
SNEW_MEM SIZE 65535
$NEW_STOR UNIT 16

$NEW_SYS NAME Umaxv_88k
$PAGE_TERMINATOR ASCII.FF

SRECORD_DEFINITION RECORD SUBP: OPERAND; END RECORD;
$RECORD_NAME CODE_0

$TASK SIZE 32

$TASK_STORAGE SIZE 1024

$TICK 0.01

$VARIABLE ADDRESS VAR_1’ADDRESS

SVARIABLE ADDRESS1 VAR 2’ADDRESS

SVARIABLE ADDRESS2 VAR 3’ADDRESS

$YOUR PRAGMA PRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted .
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

ada(l) UNIX Programmer’s Manual ada(l)
NAME
ada - invoke the Ada compiler
SYNOPSIS
ada [options] [source_file.a)... [linker_options) (object_file.0}...
DESCRIPTION

ada executes the Ada compiler and compiles source_file. source_file must end with the .a suffix and must
reside in a directory that has been initialized as an Ada library. The adalib file in this directory is modified
after each Ada unit is compiled.

You can specify non-Ada object files (.o files produced by compilers for other languages) to be linked with
the specified Ada object files.

By defauit, ada produces only object and nets files. If you specify the —M option, the compiler automati-
cally invokes a.ld and builds a complete program, with the specified library unit as the main program.

The order of compilation and the order of the files to be passed to the linker can be significant. You can,
however, specify command line options in any order.

Specify no more than one of the following options: ~E, ~e, ~El —el, —ev.

The options are:

—# identifier type value (define) Define an idendfier of the specified type and value. (For further
information, see "Ada Preprocessor Reference.”)

~a file_name (archive) Treat file_name as an object archive file created by ar. This
option distinguishes archive files, some of which end with .a, from Ada
source files, all of which end with .a.

-d (dependencies) Analyze for dependencies only, performing neither

semantic analysis nor code generation. Update the library, marking any
dependent units as uncompiled. The a.make utility uses this informa-
tion to establish dependencies among new files.

~E (file] [directory] (error output) Use a.error to process error messages. If neither file nor
directory is specified, ada directs a brief listing to standard output,
placing the raw error messages in ada_source.err. If file is specified,
ada places the raw error messages in the file with that name. If direc-
tory is specified, ada places the raw emor messages in
directory/source.err. You can use the file of raw error messages as
input {0 a.error.

-e (error) Use a.error 10 process compilation error messages, sending the
listing to standard output. Only the source lines containing errors are
listed.

—El [file] (directory] (error listing) Same as the —E option, except that error messages are
interspersed among source lines.

-d (error listing) Same as the —e option, except that error messages are
interspersed among source lines.

-ev {error vi(1)) Process syntax error messages using a.error, embed them
in the source file, and call the environment editor ERROR_EDITOR. If no
editor is specified, call vi(1). (If ERROR_EDITOR is defined, the environ-
ment variable ERROR_PATTERN <homld also be defined
ERROR_PATTERN is an editor search command that locates the first
occurrence of the string ### in the error file.)

-K (keep) Keep the intermediate language (IL) file produced by the

7th Edition 1

ada(l)

-L library_name

~Ifile_abbreviation

~M (unit_name]

—M source_file

-0 executable_file

-0[0-9]

7th Edition

DO

UNIX Programmer’s Manual ada(1)

compiler front end; name the file Ada_source., and place it in the
.objects directory.

(library) Operate in the Ada library library_name. The default is the
current working directory.

Note: If wwo files of the same name from different directories are com-
piled in the same Ada library using the —L option, the second compila-
tion overwrites the first, even if the contents and unit names are dif-
ferent. For example, ada /fusr/directory2/foo.a -L /ust/PADS/test

overwrites
ada /usr/directoryl/foo.a -L /usr/PADS/test

in library /usr/PADS/test.

(library search) Direct the linker, 1d(1), to search the library file
specified by file_abbreviation.

(main) Produce an execuiable program by linking unit_name as the
main program. unit_name must be either a parameterless procedure or
a parameteriess function retuming an integer. Unless it is being com-
piled by this invocation ofada, unit_name must already have been com-
piled. The executable program is named a.out unless you use the —o
option to specify another name.

(main) Produce an executable program by compiling and linking
source_file. The main unit of the program is assumed to be the root
name of the .a file (in foo.a, for example, the main unit is foo). Unless
you use the —0 option to specify another name, the executable program
is named a.out. Only one .a file can be preceded by ~M.

(output) Name the executable program executable_file rather than the
defauit, a.out. This option is used in conjunction with the —M option.

(optimize) Invoke the code optimizer (OPTIM3). The optional digit pro-
vides the level of optimization. The default is - 04.

This version of the compiler includes a preliminary M88k-specific
optimizer. The optimizer schedules load instructions 1o avoid pipeline
conflicts and moves instructions to the delay slots of branches and
calls. Since it can be siow for some programs, it is enabled only at
optimization levels greater than 4.

-0 full optimization

-00 no optimization

-01 no hoisting

-02 no hoisting but more passes

-03 no hoisting but even more passes

-04 hoisting from loops

-0s hoisting from loops but more passes ‘
-06 hoisting from loops with maximum passes
-07 hoisting from loops and branches

-08 hoisting from loops and branches, more passes

ada(1l)

-V

-W

FILES
ada.lib

gnrx.lib
GVaAS.lock, gnrx.lock
GVAS_table
.mports
Jines
.nets
.objects
SEE ALSO

UNIX Programmer’s Manual ada(l)

-9 hoisting from loops and branches, maximum passes
Note: Hoisting from branches (and case alternatives) can be slow and
does not always provide significant performance gains. You might
therefore want to suppress it,

(preprocessor) Invoke the Ada preprocessor, a.app.

(recompile instantiation) Force analysis of all generic instantiations,
causing reinstantiation of any that are out of date.

(suppress) Apply pragma SUPPRESS to the entire compilation for all
suppressible checks.

(show) Display the name of the executable compiler, but do not exe-
cute it. (Several versions of PADS may exist on one system. The ada
command in any PADS_location/bin executes the correct version of the
compiler based upon visible library directives.)

(timing) Print timing information for the compilation.

(verbose) Print compiler version number, date and time of compilation,
name of file compiled, command input line, total compilation tme, and
error summary line, Provide information about the object file's use of
storage. With OPTIM3 the output format of compression (the size of
optimized instructions) is shown as a percentage of input (unoptimized
instructions).

(wamnings) Suppress waming diagnostics.

Library reference file

Generic instantiation reference file

Lock the library while reading or writing special library files
Address assignment file

Imported Ada units directory

Line number reference files directory

DIANA nets files directory

(global) object files directory

aapp(1), a.error(1), ald(1), a.make(1)

1d(1), vi(1)
DIAGNOSTICS

The diagnostics produced by the compiler are intended to be self-explanatory. Most refer to the Ada
Language Reference Manual (Ada RM). Each Ada RM reference includes a section number and, option-
ally, a paragraph number enclosed in parentheses.

7th Edition

- ———

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and not
to this report.

B-2

ald(1) UNIX Programmer’s Manual ald(1)
NAME
ald - invoke the Ada prelinker
SYNOPSIS
ald (oprions) unit_name [ld_options)
DESCRIPTION

ald collects the object files needed o make unir_name a main program. a.ld then calls the linker Id(1) w0
link all Ada object files and any non-Ada object files required to produce an executable image in a.out.
unit_name specifies the main prograr and must be a nongeneric subprogram. If unit_name is a function, it
must return a value of type STANDARD.INTEGER. This integer result is passed back to the shell as the stawus
code of the execution.

All arguments after unit_name are passed 10 ld\1). These arguments may be ld options, archive libraries,
library abbreviations, or object files

The options are:

~-DX (debug) Debug memory overflow. Use this option in cases where link-
ing a large number of units produces the error message "local symbol
overflow".

~E unit_name (elaborate) Elaborate unit_name as early in the elaboration order as

. possible.

-F (files) Display a list of dependent files in order, but suppress linking.

~L library_name (library) Operate in the Ada library library_name. The default is the
current working directory.

~o0 executable_file (output) Name the executable file executable file rather than the
default, a.out.

~r Retain relocation entries in the output object file. Relocation entries

must be saved if the output file is to become an input file in a subse-
quent run of a link editor. The link editor does not complain about
unresolved references, and the output file is not executable.

~sh (show) Display the name of the a.ld executable file, but do not execute
it (Several versions of PADS can exist on one sysism.
PADS_location/bin/ald executes the correct version of a.ld based upon
directives visible in the ada.lib file.)

~T arget Use target as the target run-time environment.

-U (units) Print a list of dependent units in order, but suppress linking.
-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command, but suppress execution.

The a.ld tool reads the nets files produced by the Ada compiler to determine dependency information. The
tool produces an exception mapping table and a unit elaboration table and passes this information to the
linker.

ald reads instructions for generating executables from the ada.lib file in the Ada libraries on the search
list. In addition to information generated by the compiler, these instructions include WITHn directives,
which enable the automatic linking of object modules compiled from other languages or Ada object
modules not named in context clauses in the Ada source. The ada.lib ile can contain any number of WITHn
directives, but the directives must be numbered consecutively, beginning 4t WITH1. The directives have the
following form: WITHL:LINK:object_file: WITH2:LINK:archive_file: WITHn directives can be placed

Ttk Edition l

ald(1) UNIX Programmer’s Manual ald(l)

in the local Ada library or in any Ada libraries on the search list. A WITHn directive in the local Library or
earlier on the search list hides any WITHn directive with the same number in a library later on the search

list.
Use the tool a.info to change or display library directives in the current library.
FILES
a.out Default output file
.nets DIANA nets files directory
.objacts/* Ada object files
PADS_location/standard/* Start-up and standard library routines
SEE ALSO
ada(1), a.info(1)
1d(1)
DIAGNOSTICS
a.ld produces self-explanatory error messages for nissing files, etc. Additional messages are produced by
the linker, 1d(1).
7th Edition 2

APPENDIX C

APPENDIX F OF THE Ada S'I‘ANPARD

The only allowed implementation dependencies correspond to
implementation~dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range -1.701411183E+308 .. 1.70141183E+308;
type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;
type SHORT INTEGER is range -32768 .. 32767;

type SHORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type TINY INTEGER is range -128 .. 127;

Ii

Appendix F
of the Ada Language
Reference Manual

The Parallel Ada Development System provides the full Ada language as
specified in the Ada Language Reference Manual (Ada RM). Within the Ada RM,
a number of sections contain the annotation implementation dependent, meaning
that the interpretation of the section is left to the compiler implementor. This
appendix describes the implementation-dependent characteristics of the PADS
compiler.

PADS has attempted to provide an essentially uniimited capability to program in
Ada. Consequently, applications programmers can usually program in Ada
according to the Ada RM and good engineering practices without consideration of
any PADS specifics.

PRAGMAS AND THEIR EFFECTS

This section provides a brief description of every pragma supported by PADS.
You can find additional information about some of the pragmas under discussions
of particular language constructs elsewhere in this manual and in the Paralle! Ada
Development System User’s Guide.

pragma CONTROLLED

This pragma is recognized by the implementation but has no effect in the current
release.

Paraliel Ada bovclopmom System Programmer's Gulde

8-1

Pragmas and Their Etfects : Appendix F of the Ada Language Reference Manual

pragma ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

pragma EXTERNAL_NAME

This pragma enables you to specify an external link name for an Ada variable or
subprogram so that the object can be referenced from other languages. The
pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification. Objects
must be variables defined in a package specification; subprograms can be either
library level or within a package specification. For further information about
pragma EXTERNAL_NAME, see Chapter 4 of this manual.

pragma IMPLICIT_CODE

Il

. Use this pragma with caution. The pragma, used only within the declarative part of

a machine code procedure, specifies whether implicit code generated by the
compiler is allowed (ON) or disallowed (OFF). Implicit code includes preamble
and postamble code (for example, code used to move parameters to and from the
stack). A warning is generated if implicit code is required and OFF is specified.

Use of pragma IMPLICIT_CODE does not eliminate code generated for run-time
checks, nor does it eliminate call/return instructions. (These can be eliminated by
pragma SUPPRESS and pragma INLINE, respectively.)

For further information about pragma IMPLICIT_CODE, see Chapter 3 of this
manual.

pragma INLINE

This pragma is implemented as described in Appendix B of the Ada RM, with one
addition: Recursive calls can be expanded with the pragma up to the maximum
depth of 4. Warnings are generated for bodies that are not available for inline
expansion. When applied to subprograms that declare tasks, packages,
exceptions, types, or nested subprograms, pragma INLINE is ignored and causes
a warning to be issued.

Paraliel Ada Development System Programmer’'s Guide

r

Appendix F of the Ada Language Reference Manual

pragma INLINE_ONLY

Pragmas and Their Effects

When used in the same way as pragma INLINE, this pragma indicates to the
compiler that the subprogram must always be inlined. This is very important for
some code procedures. pragma INLINE_ONLY also saves code space by
suppressing the generation of a callable version of the routine. If you erroneously
make an INLINE_ONLY subprogram recursive, a warning is generated and a
PROGRAM_ERROR is raised at run time.

pragma INTERFACE

This pragma, with parameters language and subprogram, supports calls to Ada, C,
Pascal, and FORTRAN functions. You can also use pragma INTERFACE to call
code written in unspecified languages, specifying UNCHECKED as the language
name. The Ada specifications can be either functions or procedures.

For Ada, the'compilcr generates the call as if it were a call to an Ada procedure,
but it does not expect a matching procedure body.

For C, the types of parameters and the result type for functions must be scalar

- types, access types, or the predefined type ADDRESS in package SYSTEM.

Record and array objects can be passed by reference using the 'ADDRESS
artribute. All parameters must have mode in.

For Pascal, the types of parameters and the result type for functions must be
scalar types, access types, or the predefined type ADDRESS in package
SYSTEM. Record and array objects can be passed by reference using the
'ADDRESS attribute.

For FORTRAN, all parameters are passed by reference The parameter types
must have type SYSTEM.ADDRESS, and the result type for a function must be a
scalar type.

Use UNCHECKED to interface to an unspecified language, such as assembler.
The compiler generates the call as if it were a call to an Ada procedure, but it does
not expect a matching Ada procedure body.

For related information, see the section entitled "Parameter Passing” later in this
appendix. .

Parallel Ada'Development System Programmer’'s Guide

B8-3

Pragmas and Their Effects

Il

pragma INTERFACE_NAME

This pragma enables direct reference in Ada to variables or subprograms defined
in another language. pragma INTERFACE_NAME uses the following format:

pragma INTERFACE_NAME (Ada_subprogram, link_name);
where Ada_subprogram denotes either an object or a subprogram.

The pragma replaces all references to Ada_subprogram with an external reference
1o link_name in the object file.

If Ada_subprogram denotes an object, the pragma is allowed at the place of a
declarative item in a package specification and must apply to an object declared
carlier in the same package specification. The object must be declared as a scalar
or an access type and cannot be any of the following:

 Loop variable

+ Constant

+ Initialized variable

* Armay

* Record

If Ada_subprogram denotes a subprogram, a pragma INTERFACE must already
have been specified for the subprogram.

The link_name must be constructed as the linker expects; for example, C variable
names must be prefaced with an underscore. The following example makes the C
global variable errno available within an Ada program:

package PACKAGE_NAME is

ERRNO: INTEGER;
pragma INTERFACE NAME (ERRNO,"_errno®);

end PACKAGE_NAME;

For further information about pragma INTERFACE_NAME, see Chapter 4 of
this manual.

pragma LINK_WITH

3

- Use this pragma to pass arguments to the linker. The pragma can appear in any

declarative part and accepts one argument, a constant string expression. This
argument is passed to the target linker whenever the unit containing the pragma
is included in a link.

Parailel Ada Development System Programmer's Guide

" Appendix F of the Ada Language Reference Manual

Appendix F of the Ada Language Reference Manuai Pragmas and Their Effects

For example, the following package puts the ~Im option on the command line for
the linker whenever MATH is included in the linked program:

package MATH is
pragma LINK WITH("-lm "),
end;

And the following package links with the named object file sin.o:
package MATH is

- SIN is a routine written in C or assembly: the object
- for the routine is in the object file sin.o

function SIN (X:FLOAT) return FLOAT;
pragma interface (C, SIN):;
pragma LINK WITH("sin.o”);

end MATH;

If the constant string expression begins with "-", the string is left untouched. If
the string begins with neither "~" nor "/", then the string is prefixed with "./".

pragma LIST

This pragma is implemented as described in Appendix B of the Ada RM.

pragma MEMORY_SIZE

This pragma is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can, however, achieve the same effect by copying the file system.a
in library standard to a local Ada library and recompiling it there with new values.

pragma NO_IMAGE

This pragma suppresses the generation of the image array used for the 'IMAGE
atribute of enumeration types, eliminating the overhead required to store the
array in the executable image. Any attempt to use the 'IMAGE attribute on a
type whose image array has been suppressed results in a warning at compile time
and causes the exception PROGRAM_ERROR to be raised at run time.

Paraliel Ada Development System Programmer's Guide B85

ﬁ

' ' Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

pragma NON_REENTRANT

This pragma takes one argument, which can be the name of a library subprogram
or a subprogram declared immediately within a library package specification

or body. The pragma prevents the subprogram from being called recursively,
allowing the compiler to perform specific optimizations. You can apply

pragma NON_REENTRANT to a subprogram or a set of overloaded
subprograms within a package specification or package body.

pragma NOT_ELABORATED

This pragma suppresses the generation of elaboration code, issuing wamnings if
claboration code is required. The pragma prevents elaboration of a package that is
either part of the run-time system, a configuration package, or an Ada package
that is referenced from a language other than Ada. pragma NOT_ELABORATED
can appear only in a library package specification.

pragma OPTIMIZE

This pragma is recognized by the implementation but has no effect in the current
release. For code optimization options, see the ada — O entry in Chapter 9 of the
Parallel Ada Development System User's Guide.

pragma OPTIMIZE_CODE |

This pragma specifies whether the compiler optimizes code (ON) or does not
optimize code (OFF). When OFF (the default) is specified, the compiler
generates the code as specified. You can use the pragma in any subprogram.

You can suppress optimization selectively by using this pragma at the
subprogram level. Inline subprograms are optimized even if
OPTIMIZE_CODE(OFF) is specified, unless pragma OPTIMIZE_CODE(OFF)
is also specified for the caller.

pragma PACK

3

This pragma causes the compiler to minimize gaps between components in the
representation of composite types. Objects larger than a single STORAGE_UNIT
are packed to the nearest STORAGE_UNIT. Storage optimization generally
results in less efficient manipulation of the packed data type.

Paralls! Ada Deveiopment System Programmer’s Guide

Appendix F of the Ada Language Reference Manual _ Pragmas and Their Effects

pragma PAGE

This pragma is implemented as described in Appendix B of the Ada RM. The
pragma is also recognized by the source code formatting tool, a.pr.

pragma PASSIVE

This pragma directs the compiler to optimize certain tasks into passive tasks. The
pragma can be applied to a task or task type declared immediately within a library
package specification or body.

pragma PASSIVE has three forms:

pragma PASSIVE;
pragma PASSIVE(SEMAPHORE);
pragma PASSIVE(INTERRUPT, nnn);

The statements in the task body may prevent the intended optimization. In such
cases, a warning is generated at compile time and the exception
TASKING_ERROR is raised at run time.

For additional information about pragma PASSIVE and passive tasks, see the
section entitled “Passive Tasks” in Chapter 2 of this manual.

pragma PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM. The
allowable range for pragma PRIORITY is 0 .. 99.

pragma SHARE_CODE

This pragma enables multiple instantiations of the same generic procedure or
package body to share object code. A “parent” instantiation is created, and
subsequent instantiations of the same types can share the parent’s object code,
reducing program size and compilation times.

pragma SHARE_CODE takes the name of a generic unit or a generic
instantiation as its first argument and either of the identifiers TRUE or FALSE as
its second argument. When the first argument is the name of a generic unit, the
pragma applies to all instantiations of that generic. When the first argument is the
name of a generic instantiation, the pragma applies only to the specified
instantiation or overloaded instantiations. '

Paraliei Ada Deveiopment System Programmer's Guide : B-7

Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

If the second argument is TRUE, the compiler tries to share code generated for a
generic instantiation with code generated for other instantiations of the same
generic. When the second argument is FALSE, each instantiation gets a unique
copy of the generated code.

The pragma SHARE_CODE is allowed only immediately at the place of a
declarative item in a declarative part or package specification or after a library unit
in a compilation but before any subsequent compilation unit. The extent to which
code is shared by instantiations depends on this pragma and the kind of generic
formal parameters declared for the generic unit.

You can substitute the name pragma SHARE_BODY for the name pragma
SHARE_CODE.

_pragma SHARED

This pragma is recognized by the implementation but has no effect in the current
release.

pragma STORAGE_UNIT

This pragma is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can achieve the same effect by copying the file system.a in library
standard to a local Ada library and recompiling it there with new values.
(However, you should not redefine STORAGE_UNIT.)

pragma SUPPRESS

This pragma is implemented as described in Appendix B of the Ada RM, except
that DIVISION_CHECK and, in some cases, OVERFLOW_CHECK cannot be
suppressed.

Using pragma SUPPRESS(ALL_CHECKS) is equivalent to writing, at the same
point in the program, a pragma SUPPRESS for each of the checks listed in Ada
RM 11.7.

pragma SUPPRESS(EXCEPTION_TABLES) tells the code generator not to
generate, for the enclosing compilation unit, the tables that are normally generated
to identify exception regions. This reduces the size of the static data required for a
unit but also disables exception handling within that unit.

Parallel Ada Deveiopment System Programmer's Guide

g

Appendix F of the Ada Language Reference Manual Predefined Packages and Generics

pragma SYSTEM_NAME

This pragma is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can, however, achieve the same effect by copying the file system.a
in library standard to a local Ada library and recompiling it there with new values.

pragma VOLATILE

This pragma, with its argument, object, guarantees that loads and stores to the
named object are performed as expected after optimization. For example:

memory_flag : integer:
pragma volatile (memory_ flag);

PREDEFINED
PACKAGES AND GENERICS

The following predefined Ada packages, specified by Ada RM Appendix C(22),
are provided in the library standard:

+ generic function UNCHECKED_CONVERSION

» generic package DIRECT_IO

« generic package SEQUENTIAL_IO

» generic procedure UNCHECKED_DEALLOCATION
* package CALENDAR

+ package IO_EXCEPTIONS

« package LOW_LEVEL_IO

* package MACHINE_CODE

* package STANDARD

+ package SYSTEM

* package TEXT_I1O

Paraliel Ada Development System Programmer’s Guide B8-9

DD

Predefined Packages and Generics

Appendix F of the Ada Language Reference Manual

Specification of package SYSTEM

B-10

with UNSIGNED_TYPES:

package SYSTEM is
pragma SUPPRESS (ALL_CHECKS) ;
pragma SUPPRESS (EXCEPTION_TABLES) ;
pragma NOT _ELABORATED;
type NAME is (umaxv_ 88k);
SYSTEM_NAME
STORAGE_UNIT
MEMORY_SIZE
-- System-Dependent Named Numbers

MIN_INT
MAX_INT

MAX_DIGITS
MAX_MANTISSA
FINE_DELTA

TICK

: constant NAME := umaxv_B88k;

: constant := §;
: constant := 16 777_216

: constant := ~2_147_ 483_648;
: constant := 2_147_483_647

: constant := 15

: constant := 31;

: constant := 2,0**(-31);

: constant := 0.01;

-= Qther System-Dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 99;

MAX_REC_SIZE :

integer := 64*1024;

type ADDRESS is private:

function
function
function
function
function
function
function

function

n">" (A:
"<® (A:
">=" (A
emn (A:
"=" (A:
“+" (A:
"-" (A:
"4 (I

ADDRESS:;
function MEMORY
(I: UNSIGNED_ TYPES.UNSIGNED_INTEGER) return ADDRESS
renames "+";
constant ADDRESS;
type TASK_ID is private:

NO_ADDR :

NO_TASK_ID :

ADDRESS; B: ADDRESS) return BOOLEAN;
ADDRESS; B: ADDRESS) return BOOLEAN;
ADDRESS:; B: ADDRESS) return BOOLEAN;
ADDRESS:; B: ADDRESS) return BOOLEAN:;
ADDRESS; B: ADDRESS) return INTEGER;
ADDRESS; I: INTEGER) return ADDRESS;
ADDRESS; I: INTEGER) return ADDRESS:;

UNSIGNED_TYPES .UNSIGNED_INTEGER) return

_ADDRESS

constant TASK_ID;

type PROGRAM ID is private;
NO_PROGRAM_1ID :

type SIG_STATUS_T is array(l..64) of boolean;
pragma PACK(SIG_STATUS_T):;
SIG_STATUS_SIZE: CONSTANT := 8;

private

constant PROGRAM ID:

type ADDRESS is new UNSIGNED_TYPES.UNSIGNED_INTEGER;

NO_ADDR

: constant ADDRESS := (;

pragma BUILT_ IN(">");
pragma BUILT_IN("<");
pragma BUILT_IN(">=");
pragma BUILT_IN("<=");,

Paraliel Ada Deveiopment System Programmer's Guide

Appendix F of the Ada Language Reference Manual Predefined Packages and Generics

pragma BUILT_IN("-");
pragma BUILT_IN("+"):

end SYSTEM;

package CALENDAR

package CALENDAR operates as specified in Ada RM 9.6. It uses the clock
function in package CALENDAR.LOCAL_TIME (located in the file
calendar_s.a), which uses the operating system service routines
GETTIMEOFDAY and LOCALTIME to get the current time.

package MACHINE_CODE

package MACHINE_CODE provides an assembly language interface for the
target machine, including the necessary record types needed in the code
statement (see Ada RM 13.8), an enumeration type containing all the opcode
mnemonics, a set of register definitions, and a set of addressing mode functions.
Also supplied (for use only in units that with MACHINE_CODE) are pragma
IMPLICIT_CODE and the attribute 'REF. For the specification of the package,
see the section entitled “package MACHINE_CODE” in Chapier 3.

Machine code statements take operands of type OPERAND, a private type that
forms the basis of all machine code address formats for the target.

The general syntax of a machine code statement is
CODE_n’(opcode, operand [, operand),
where n indicates the number of operands in the aggregate.

In the following example, CODE_3 is a record ‘format’ whose first argument is an
enumeration value of type OPCODE followed by three operands of type
OPERAND:

CODE_3' (add, rl0, rll, b’ref);

For those opcodes requiring no operands, you must use named notation (see Ada
RM 4.3(4)):

CODE_0’(op => opcode);

opcode must specify an enumeration literal (that is, it cannot specify an object, an
artribute, or a rename). operand can specify only an entity defined in
MACHINE_CODE or the 'REF artribute.

The 'REF attribute denotes the effective address of the first storage unit allocated
to the object. "REF is not supported for a package, task unit, or entry. For details,
see the section entitled “’REF” later in this appendix.

Paralle! Ada Development System Programmer's Guide B-11

2

Predefined Packaqes and Generics Appendix F of the Ada Language Reference Manual

Arguments to any of the functions defined in MACHINE_CODE must be static
expressions, string literals, or the functions defined in MACHINFE_CODE.

As an example of machine code insertions, the procedure OS_EXTEND requests
the operating system to extend the program stack space to a new address:

procedure os_extend (new_top : in system.address) is
-- Extend the stack according to BCS Chapter 5
pragma implicit_code (off)
use machine_code:

begin
code_3’ (add, rl0, r31, r0); -- Save sp
code_3’ (add, r31, r2, r0): -— Set sp to new limit
code_2’ (st, r0, r31+0): -- Access it; this extends the stack
code_3' (add, r31, rl0, r0)); -- Restore sp

code_1’ (jmp, rl);
end os_extend;

package SEQUENTIAL_IO

Sequential I/O is currently implemented for variant records, with one restriction:
The maximum size possible for the record is always written. The same is true for
direct I70. For unconstrained records and arrays, the constant
SYSTEM.MAX_REC_SIZE can be set prior to the elaboration of the generic
instantiztion of SEQUENTIAL _IO or DIRECT_IO. For example, if unconstrained
strings are written, SYSTEM.MAX_REC_SIZE effectively restricts the maximum
size of strings. If you know the maximum size of such strings, you can set the
SYSTEM.MAX_REC_SIZE prior to instantiating SEQUENTIAL _IO for the
string type. You can reset this variable after the instantiation with no effect.

package UNSIGNED_TYPES

B-12

The package UNSIGNED_TYPES illustrates the definition of and services for
the unsigned types supplied in this version of PADS. Use this package at your
own risk. We do not warrant its effectiveness or legality, either expressly or by
implication.

We plan to withdraw this implementation of UNSIGNED_TYPES if and when the
Ada Joint Program Office and the Ada community reach agreement on a practical
specification of unsigned types. We will then standardize our implementation
based on that accepted version at the earliest practical date.

The package is supplied in comment form because the actual package cannot be
expressed in normal Ada — the types are not symmetric about 0, as is required by
the Ada RM. This package is supplied and is accessible through the Ada WITHn
statement, as if it were present in source form.

Paraliel Ada Development System Programmer’s Guide

Appendix F of the Ada Language Reference Manual

Il

Example:

with unsigned_types;
procedure foo(xxx: unsigned types.unsigned_integer) is

Note: Use package UNSIGNED_TYPES at your own risk.

Predefined Packages and Generics

Specification of package UNSIGNED_TYPES

-—~ package unsigned;;ypes is

-- type unsigned_integer is range 0 (2%*32 - 1); -~ 0..4294967295
-~function "=" (a, b: unsigned_integer) return hoolean:
-~function "/="(a, b: unsigned_integer) return boolean;
-~function "<" (a, b: unsigned_integer) return boolean:
-~function "<="(a, b: unsigned_integer) return boolean;
-~function “>" (a, b: unsigned_integer) return boolean;
-~function ">="(a, b: unsigned integer) return boolean:
-~-function “+" (a, b: unsigned_integer) return unsigned_integer:
--function "-" (a, b: unsigned_integer) return unsigned_integer:;
--function "+" (a : unsigned_integer) return unsigned_integer:
--function *-" (a : unsigned_integer) return unsigned_integer;
--function "*" (a, b: unsigned_integer) return unsigned_integer:;
--function “/" (a, b: unsigned_integer) return unsigned_integer;
--function "mod"{a, b: unsigned_integer) return unsigned integer;
-~function "rem"(a, b: unsigned_integer) return unsigned_integer:
=-function "**" (a, b: unsigned_integer) return unsigned_integer;
--function “abs"(a, b: unsigned_integer) return uniigned_integer:;
-- type unsigned short_integer is range 0 (2**16 - 1):;-- 0..65535
--function "=" (a, b: unsigned_short_integer) return boolean;
--function "/="(a, b: unsigned_short_integer) return boolean;
--function "<" (a, b: unsigned_short_integer) return boolean;
--function "<="(a, b: unsigned short_integer) return boolean;
—~function ">" (a, b: unsigned_short_integer)} return boclean;
-—function ">="(a, b: unsigned_short_integer) return boolean;
-—function "+" (a, b: unsigned_short_integer)
—-- return unsigned_short_integer:;
--function "-" (a, b: unsigned_short_integer)
—= return unsigned_short_integer:
--—function "+" (a : unsigned_short_integer)
-- return unsigned_short_integer;
=--function "-" (a : unsigned_short_integer)
-- return unsigned_short_integer;
--function "*" (a, b: unsigned_short_integer)
-- return unsigned_short_integer;
--function "/" (a, b: unsigned_short_integer)
-= return unsigned_short_integer;
--function "mod"(a, b: unsigned_short_integer)
-- return unsigned_short_integer;
--function "rem”(a, b: unsigned_short_integer)
-- return unsigned_short_integer:;
--function "**" {a, b: unsigned_short_integer)

Parallel Ada Development System Programmer's Guide B-13

Implementation-Defined Attributes Appendix F of the Ada Language Reference Manual

-- return unsigned_short_integer;

--function "abs"(a, b: unsigned_short_integer)

-- return unsigned_ short_integer;

-— type unsigned_ tiny integer is range 0 .. (2**8 ~ 1); =-- 0..255
~—function "=* (a, b: unsigned_tiny_integer) return boolean;
--function "/="(a, b: unsigned_tiny integer) return booclean;
~=function "<" (a, b: unsigned_tiny_integer) return boolean:
~—function "<="(a, b: unsigned_tiny integer) return boolean;
--function ">" (a, b: unsigned_tiny_ integer) return boolean:
-=—function ">="(a, b: unsigned_tiny integer) return boolean;
--function "+" (a, unsigned_tiny_ integer)

-- return unsigned_tiny_integer;

~—function "-" (a, b: unsigned_tiny integer)

~- return unsigned_tiny_ integer;

~-function "+" (a : unsigned_tiny_ integer)

~- return unsigned_tiny_integer:

--function "-" (a : unsigned_tiny_integer)

~- return unsigned_tiny_integer;

~-function "** (a, b: unsigned_tiny_integer)

-- return unsigned_tiny integer:

--function "/" (a, b: unsigned_tiny_integer)

-- return unsigned_tiny_ integer:

--function "mod"(a, b: unsigned_tiny_integer)

~- return unsigned_tiny_ integer;

--function "rem®(a, b: unsigned_tiny_integer)

~- return unsigned_tiny_integer;

~-function "**" (a, b: unsigned tiny_integer)

~- return unsigned_tiny_integex;

~-function "abs"(a, b: unsigned_tiny_integer)

~- return unsigned_tiny_integer;

-- end unsigned types;

U’U‘D’U‘O‘U‘U’

IMPLEMENTATION-DEFINED
ATTRIBUTES

This section describes the attributes defined by PADS.

'TASK_ID

For a task object or a value T, T"TASK_ID yields the unique task ID associated
with the task. The value of this attribute is of the type SYSTEM.TASK_ID.

{l

'REF

The 'REF attribute denotes the effective address of the first of the storage units
allocated to the object. 'REF is not supported for a package, task unit, or entry.
This attribute has two forms: X’REF and SYSTEM.ADDRESS’'REF(N). X'REF,

B-14 Parallel Ada Development System Programmer’'s Guide

Appendix F of the Ada Language Reference Manual Implementation-Defined Attributes

used only in machine code procedures, designates an operand within a code
statement. SYSTEM.ADDRESS’REF(N) can be used anywhere to convert an
integer expression to an address.

- X’REF

This attribute generates a reference to the entity to which it is applied.

In X’REF, X must be either a constant, variable, procedure, functon, or label. The
artribute returns a value of the type MACHINE_CODE.OPERAND and can only
be used to designate an operand within a code statement.

The instruction generated by the code statement in which the attribute occurs can
be preceded by additional instructions needed to facilitate the reference (for
example, loading a base register). If the declarative section of the procedure
contains pragma IMPLICIT_CODE (OFF) and additional code is required, a
warning is generated.

References may also cause the generation of run-time checks. You can use
pragma SUPPRESS to climinate these checks.

Example:

CODE_1’ (BSR, PROC’REF);
CODE_2‘ (1d, rll, X.ALL(Z)’REF}:;

For further information, see the section entitled “"Ada Entities as Operands” in
Chapter 3 of this manual.

SYSTEM.ADDRESS’'REF(N)

In SYSTEM.ADDRESS 'REF(N), SYSTEM.ADDRESS must be the type
SYSTEM.ADDRESS; N must be an expression of type
UNIVERSAL_INTEGER. The attribute returns a value of type
SYSTEM.ADDRESS, which represents the address designated by N.

The effect of this attribute is similar to the effect of an unchecked conversion from
integer to address. You should, however, use SYSTEM.ADDRESS’REF(N) in
the following circumstances (and in these circumstances, N must be static):

* Within any of the run-time configuration packzages. Use of
UNCHECKED_CONVERSION within an address clause would require the
generation of elaboration code, and the configuration packages are not
claborated.

« In any instance where N is greater than INTEGER'LAST. Such values are
required in address clauses that reference the upper portion of memory.
UNCHECKED_CONVERSION in these instances would require that the
expression be specified as a negative integer.

Paraliel Ada Development System Programmer’s Guide B-15

Restrictions on Main Programs Appendix F of the Ada Language Reference Manual

« To place an objéct at an address. The integer_value in the following example is
converted to an address for use in the address representation clause. The form
avoids UNCHECKED_CONYVERSION and is also useful for 32-bit unsigned

addresses:
--place an object at an address
for object use at ADDRESS'REF (integer_value)
-—to use unsigned addresses
for VECTOR use at SYSTEM.ADDRESS’/REF (16#80800040#) ;
TOP_OF_MEMORY : SYSTEM. ADDRESS := SYSTEM.ADDRESS! REF (16#FFFFFFFF#);

11

RESTRICTIONS ON MAIN PROGRAMS

In PADS, a main program must be a nongeneric subprogram that is either a
procedure or a function returning an Ada STANDARD.INTEGER (the predefined

type). A main program may be neither a generic subprogram nor an instantiation
of a generic subprogram.

GENERIC DECLARATIONS

In PADS, a generic declaration and the corresponding body need not be part of the
same compilation, nor must they exist in the same Ada library. If a single
compilation contains two versions of the same unit, an error is generated.

SHARED OBJECT CODE
FOR GENERIC SUBPROGRAMS

The PADS compiler generates code for a generic instantiation that can be shared
by other instantiations of the same generic, thus reducing the size of the
generated code and increasing compilation speed.

Shared code instantiations do entail some overhead because the generic actual

parameters must be accessed indirectly and, in the case of a generic package

instantiation, declarations in the package must also be accessed indirectly. In

addition, unshared instantiations permit greater optimization because exact actual
) m are known. You must therefore determine whether space or time is

in a specific application.

fn some cases. If the generic has a formal private type
ated to accommodate an instantiation with an arbitrary
emely inefficient.

; symm Programmer's Guide

Appendix F of the Ada Language Reference Manual

pragma SHARE_CODE lets you control whether an instantiation generates
unique code or shares code with other similar instantiations.

This pragma is allowed only in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit
in a compilation but before any subsequent compilation unit. pragma
SHARE_CODE takes the following form:

pragma SHARE_CODE (generic, boolean_literal)

You can apply pragma SHARE_CODE to a generic declaration or to individual
instantiations. When pragma SHARE_CODE references a generic unit, it sets
sharing on or off for all instantiations of that generic unless overridden by specific
SHARE_CODE pragmas for individual instantiations. When it references an
instantiated unit, pragma SHARE_CODE sets sharing on or off for that unit
alone. The default is to share all generics that can be shared unless the unit uses

pragma INLINE.

The compiler shares code by default if the generic formal type parameters are
restricted to integer, enumeration, or floating-point. To override the defauit, use
the pragma SHARE_CODE(name, FALSE). If there are formal subprogram
parameters, instantiations are not shared unless you specify pragma
SHARE_CODE(name, TRUE).

Generics are shared by default if a parent is visible, except in the following cases:

* When generic formal types other than integer, enumeration,
SYSTEM.ADDRESS or floating-point are used

« When pragma INLINE is applied to a generic subprogram or instantiation or to
a subprogram visible at the library level within a generic package or
instantiation

+ When the representations of the actual type parameters are not the same for
each of the instantiations

* When the generic has a formal in out parameter and the subtype of the
corresponding actual is not the same as the subtype of the formal parameter

Note that a parent instantiation (the instantiation that creates the shareable

body) is independent of any individual instantiation. Therefore, reinstantiation of a
generic with different parameters has no effect on other compilations that
reference it. The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

The unit SHARED _IO in the library standard instantiates all Ada /O generic
packages for the most commonly used base types. Thus, any instantiation of an
Ada /O generic package shares one of the parent instantiation generic bodies
unless the following pragma is specified:

pragma SHARE CODE (generic, FALSE):

Parailel Ada Development System Programmer’s Guide 8-17

Shared Object Code

Representation Clauses Appendix F of the Ada Language Reference Manual

REPRESENTATION CLAUSES

This section describes the PADS implementation of representation clauses.

—— Representation Clauses

PADS supports bit-level representation clauses.

——— Representation Pragmas

The language-defined pragma PACK is the only representation pragma supported
by PADS.

Il

Leh Clauses

PADS supports all length clauses.

Il

Enumeration Representation Clauses

PADS supports enumeration representation clauses.

Record Representation Clauses

Representation clanses are based on the target machine’s word, byte, and bit
order numbering, so that VADS compilers are consistent with machine
architecture manuals for both ‘big-endian’ and ‘little-endian’ machines. Bits
within a STORAGE_UNIT are also numbered according to the target machine
manuals. You need not understand the default layout for records and other
aggregates, since the use of record representation clauses gives you fine control
over the layout. You can align record fields correctly with structures and other
aggregate types from other languages by specifying the location of each element
explicitly. On the MC88100, PADS operates in the big-endian type ordering
configuration.

B-18 Parailel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Representation Clauses

Figure B-1 illustrates MC88100 addressing and bit numbering.

r WORD 500000000 (MSW)
HALF WORD $00000000 (MSH) HALF WORD $00000002 (LSH)

FYTE 500000000 BYTE $00000003 SYTE 500000002 BYTE 500000003
m‘< (MSB) (HMBS) (LB {LsB)
WORD

4 y it his Jiadslizfushoo fs [* s Tsla [s [[
31 Jo Isfa {3 f2{1 o
WORD S00000004 (LSW)
HALF WORD $00000004 HALF WORD $00000008
\ BYTE 500000004 I BYTE 500000003 BYTE 00000006 DYTE 500000007
WORD SFFPFFFIC
HALF WORD SFFFFFFFC HALF WORD SFFFFFFFE
BYTE SFFFFFPFEC BYTE SFEFTIFID SYTE SFFFFFFFE [BYTE SFFFFFFFT
S1G-RNDIAN BYTE ORDERING

Figure B-1: MC88100 Addressing and Bit Numbering

The only restrictions on record representation clauses are the following:

* If a component does not start and end on a storage unit (byte) boundary, it must
be stored within 4 consecutive bytes.

* A component that is itself a record must occupy a power of 2 bits. Components
that are of a discrete type or packed array can occupy an arbitrary number of
bits, subject to the preceding restriction.

Paraiiel Ada Deveiopment System Programmer's Guide B-19

Representation Clauses Appendix F of the Ada Language Reference Manual

———
e ———

———— Address Clauses

PADS supports address clauses for objects and entries.

Note: Use with caution code that references meuiory-mapped devices
using a for use at clause to locate an object at the I/O address.
The default optimization of the compiler eliminates redundant
moves to and from memory. If this causes problems, compile with
pragma OPTIMIZE_CODE(OFF).

Interrupt Entries

PADS allows task entries to be associated with operating system signals. The
operating system handles all interrupts and faults initially and then returns control
to the user program as a signal.

The available signals are described in UMAX V Programmers Guide. Due to
restrictions in the operating system, some of the signals cannot be caught.
Although an attempt to assign an entry to these signals does not result in an
error, the operating system will not deliver the signal to the piogram.

The Ada run-time system discourages attempts to catch the timer-related
signals.

The following example program shows you how to attach to the CTRL-c or
interrupt-from-keyboard signal:

with iface_intr;

with system; use system;
w.th text_io;

t .sk interrupt is
entry SIGINT;

for SIGINT use at address’ref (iface_intr.sigint); -- interrupt
end;
task body interrupt is
begin
loop
accept SIGINT do
text_io.put_line ("SIGINT");
end;
end loop;
end;
Signal handlers are set up for the following signals by the PADS run-time system:
#define SIGFPE 8 /* floating point exception */

#define SIGSEGV 11 /* segmentation violation */
#define SIGTRAP S /* txace trap */
#define SIGALRM 14 /* alarm clocks */.

B8-20 Parailel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Representation Clauses

If a task entry is attached to SIGFPE, NUMERIC_ERROR exceptions are not
raised correctly. If a task entry is attached to SIGSEGV, STORAGE_ERROR
exceptions may not be raised correctly. If a task entry is artacked to SIGALRM,
delay statements and time slicing do not work correctly.

Use of signal handlers is complicated when non-Ada routines are involved. For
further information, see Chapter 4 of this manual.

Change of Representation

PADS supports change of representation.

The package SYSTEM

il

For the specification of package SYSTEM, see the section entitled “Predefined
Packages and Generics” earlier in this appendix. The specification is also
available on line in the file system.a in the release library standard. The
pragmas SYSTEM_NAME, STORAGE_UNIT, and MEMORY _SIZE are
recognized by the implementation but have no effect. PADS does not allow
SYSTEM to be modified by means of pragmas. However, you can achieve the
same effect by recompiling package SYSTEM with altered values. Note that
such recompilation causes other units in the library standard to become out of
date. Consequently, you should recompile SYSTEM in some library other than
standard.

Representation Attributes

PADS supports the 'ADDRESS attribute for the following entides:

* Variables

+ Constants

* Procedures

* Functions

If the prefix of an 'ADDRESS attribute is an object that is not aligned on a
storage unit boundary, the attribute yields the address of the storage unit

containing the first bit of the object. This is consistent with the definition of the
"FIRST_BIT attribute.

All other Ada representation attributes are fully supported.

Parallei Ada Deveiopment System Programmer's Guide B-21

Parameter Passing ' Appendix F of the Ada Language Reference Manual

Representation Attributes of Real Types

PADS supports these attributes. See the section entitled “Predefined Packages
and Generics” earlier in this appendix.

Machine Code Insertions

PADS supports machine code insertions. See Chapter 3 of this manual for details.

Interface to Other Lalgua_gLes

PADS supports interface to other languages. See Chapter 4 of this manual and the
section entitled “Pragmas and Their Effects” earlier in this appendix for details.

Unchecked Programming

PADS provides both UNCHECKED_DEALLOCATION and
UNCHECKED_CONVERSION.

Unchecked Storage Deallocations

Any object that is allocated can be deallocated. No checks are currently performed
on released objects. However, when an object is deallocated, its access variable
is set to null. Subsequent deallocations using the null access variable are ignored.

Unchecked Type Conversions

The predefined generic function UNCHECKED_CONVERSION cannot be
instantiated with a target type that is an unconstrained array type or an
unconstrained record type with discriminants.

PARAMETER PASSING

Parameters are passed in registers or by pushing values (or addresses) on the
stack. Extra information is passed for records ('CONSTRAINED) and for arrays
(dope vector address).

Regisiers 12 through 12 are used to pass parameters. Parameters of 64-bit
floating-point type are passed in a register pair. Other parameters of scalar type,
access type, or the type SYSTEM.ADDRESS are passed in a single register. If
all parameter registers have been used, a parameter is transmitted in storage by
pushing its value on the stack.

Paraliel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reterence Manual Parameter Passing

Likewise, a function result of scalar type, access type, or the type
SYSTEM.ADDRESS is retuned in register r2 or in the pair r2, r3, as appropriate.

Small results are retumned in registers; large results with known targets are
passed by reference. Large results of anonymous target and known size are
passed by reference to a temporary created in the caller. Large results of
anonymous target and unknown size are returned by copying the value down from
a temporary created by the callee so that the space used by the temporary can be
reclaimed.

The compiler assumes the following calling conventions, defined in Object
Compatibility Standard (OCS):

Caller copies first 8 argument words into r2-19.

Caller pushes additional arguments on stack.

Caller calis callee.

Callee builds display and allocates space for local variables.

Callee stores any registers it modifies in the setrl4 .. r25.

Callee executes.

Callee restores registers saved in Step 5.

If callee is a function, callee leaves result in r2 (or in the pair 12, 13 for a 64-bit
floating-point result).

9. Callee deallocates local storage.

el U T A I

10. Callee returns to caller.
11. Caller copies back any out parameters or function values.
12. Caller deallocates the space used for arguments on the stack.

Note: Compilers for other languages may follow calling conventions other than
those expected by PADS. Use the debugger, a.db, to verify that the call
interface is the expected one.

When calling C routines (defined with pragma INTERFACE (C,
Ada_subprogram)), the caller allocates stack space for each parameter passed in a
register in accordance with the 88open Consortium Ltd. Object Compatibility
Standard (OCS). '

When compiler conventions are not compatible, or when interfacing to assembly

language, you can build a call interface explicitly using machine code insertions.
For further information, see Chapter 3 of this manual.

Paraiiel Ada Development System Programmer’s Guide B-23

Conversion and Deallocation Appendix F of the Ada Language Reference Manual

CONVERSION AND DEALLOCATION

The predefined generic function UNCHECKED_CONVERSION cannot be
instantiated with a target type that is an unconstrained array type or an
unconstrained record type with discriminants.

There are no restrictions on the types with which generic function
UNCHECKED_DEALLOCATION can be instantiated. No cnecks are performed

on released objects.

PROCESS STACK SIZE

The stack limit for the main program is set in the CONFIGURATION_TABLE
structure in the package V_USR_CONF. The default value is

MAIN_TASK_STACK_SIZE => 256000
The stack limit for tasks is also set in the configuration table. Its default value is
DEFAULT_TSK_STACK_SIZE => 10_240

For information on how to modify these values for your program, see Appendix C
of the Parallel Ada Development System User’s Guide.

TYPES, RANGES, AND ATTRIBUTES

B-24

This section describes the PADS implementation of the following types:
* Numeric literals

» Enumeration types

* Discrete types

* The type STRING

* Integer types

* Floating-point types

+ Fixed-point types

* Armay types

Parallel Ada Deveiopment System Programmer's Guide

Appendix F of the Ada Language Reference Manual

Numeric Literals

Types, Ranges, and Attributes

PADS uses unlimited precision arithmetic for computations with numeric literals.

Enumeration Types

PADS allows an unlimited number of literals within an enumeration type.

Attributes of Discrete Types

PADS defines the image of a character that is not a graphic character as the
corresponding 2- or 3-character identifier from package ASCII of Ada RM,
Appendix C. The identifier is in upper case without enclosing apostrophes. For
example, the image for a carriage return is the 2-character sequence CR
(ASCILCR).

The type STRING

Il

Except for memory size, PADS places no specific limit on the length of the
predefined type STRING. Any type derived from the type STRING is similarly
limited.)

By default, strings are represented with a single character in each byte of memory.

Thus, storage for string objects is automatically minimized.

Integer Types

Table B-1 summarizes the attributes of the predefined integer types.

Table B-1: Attributes of Integer Types

Name of | AttributeValue AttributeValue of AttributeValue of
Attribute | of INTEGER SHORT_INTEGER TINY_INTEGER

SIZE 32 16 8
FIRST -2_147_483_648 | -32_768 -128
LAST 2_147_483.647 | 32_767 127

Paraliel Ada Development System Programmer's Guide

B-25

Types, Ranges, and Attributes

(i

Appendix F of the Ada Language Reference Manual

Operation of Floating-Point Types

I

Table B-2 summarizes the attributes of PADS floating-point types.

Table B-2: Attributes of Floating-Point Types

Name of Attribute Value Attribute Value
Attribute of FLOAT of SHORT_FLOAT
SIZE 64 32

FIRST -1.79769313486232E+308 -3.40282E+38

LAST 1.79769313486232E+308 3.40282E+38

DIGITS 15 6

MANTISSA 51 21

EPSILON 8.88178419700125E-16 9.5367431(406250E-07
EMAX 204 84

SMALL 1.94469227433161E-62 2.58493941422821E-26
LARGE 2.57110087081438E+61 1.93428038904620E+25
SAFE_EMAX 1021 125

SAFE_SMALL 2.22507385850720E-308 1.17549435082229E-38
SAFE_LARGE 22471164185T789E+307 4.2535275582707TE+37
MACHINE_RADIX 2 2
MACHINE_MANTISSA 53 24

MACHINE_EMAX 1024 128

MACHINE_EMIN -1021 -125
MACHINE_ROUNDS TRUE TRUE
MACHINE_OVERFLOWS TRUE TRUE

Fixed-Point Types

B-26 -

PADS provides fixed-point types mapped to the supported integer sizes.

Paraliel Ada Development System Programmer’s Guide

Appendix F of the Ada Language Reference Manual Input/Output

Il

Operation of Fixed-Point Types

Table B-3 summarizes the attributes of the PADS fixed-point type DURATION.
Tab!~ B-3: Attributes of type DURATION

Name of Attribute Value
Attribute for DURATION
SIZE 32

FIRST -2147483.648
LAST 2147483.647
DELTA 1.0E-03
MANTISSA 31

SMALL 1.0E-3

LARGE 2147483.647
FORE 8

AFT 3
SAFE_SMALL 1.0E-3
SAFE_LARGE 2147483.647
MACHINE_ROUNDS TRUE
MACHINE_OVERFLOWS TRUE

Array Types

PADS array bound limits are:

INTEGER’’FIRST: -2,147,483,648
INTEGER’LAST: 2,147,483,647

INPUT/OUTPUT

The PADS /O system is implemented using UMAX V operating system services.
Both formatted and binary I/O are available. There are no restrictions on the types
with which DIRECT_IO and SEQUENTIAL _IO can be instantiated, except that
the element size must be less than a maximum specified by the variable
SYSTEM.MAX_REC_SIZE. Since you can set this variable to any value prior to

Parailel Ada Development System Programmer's Guide B-27

T

Input/Output Appendix F of the Ada Language Reference Manual

B-28

the generic instantiation, you can use any element size. DIRECT_IO can be
instantiated with unconstrained types, but each element is padded out to the
maximum possible for that type or to SYSTEM.MAX_REC_SIZE, whichever is
smaller. No checking, other than normal static Ada type checking, is done to
ensure that values from files are read into correctly sized and typed objects.

PADS file and terminal input-output are identical in most respects, differing only
in the frequency of buffer flushing. Output is buffered (buffer size is 1024 bytes).
The buffer is always flushed after each write request if the destination is a
terminal. The procedure FILE_SUPPORT.ALWAYS_FLUSH (FILE_PTR)
causes the buffer associated with FILE_PTR to be flushed after all subsequent
output requests. Refer to the source code for file_spprt_b.a in the standard
library. Note that the limited private type FILE_TYPE, defined in TEXT_IO, is
derived from the type FILE_PTR. Currently, you must convert between them
using UNCHECKED_CONVERSION, because the derivation happens in the
private part of the specification of TEXT_IO. For example, the following procedure
stops buffering for standard output:

with text_io;
with file_support;
with unchecked conversion;
procedure dont_buffer(file: text_io.file_type) is
function cvt is new unchecked_conversion(
source => text_io.file_type,
target => file support.file_ptr):
begin
file_support.always_flush(cvt(file)):
end;

Instantiations of DIRECT_IO use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITs) when the size of ELEMENT_TYPE exceeds
that value. For example, for unconstrained arrays such as a string, where
ELEMENT_TYPE’SIZE is very large, MAX_REC_SIZE is used instead.
MAX_REC_SIZE is defined in SYSTEM and can be changed before instantiating
DIRECT_IO to provide an upper limit on the record size. The maximum size
supported is 1024 * 1024 * STORAGE_UNIT biis. DIRECT_IO raises
USE_ERROR if MAX_REC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the
record size (expressed in STORAGE_UNITs) when the size of
ELEMENT_TYPE exceeds that value. For example, for unconstrained arrays
such as a string, where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE
is used instead. MAX_REC_SIZE is defined in SYSTEM and can be changed by
a program before instantiating SEQUENTIAL _IO to provide an upper limit on the
record size. SEQUENTIAL_IO imposes no limit on MAX_REC_SIZE.

Parallel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual

Implementation-Defined Values
of the Input/Output Packages

input/Output

The PADS-defined values in the input/output packages are as follows:

« In package TEXT_IO
type COUNT is range 0..INTEGER’LAST;
subtype FIELD is INTEGER range 0. INTEGER'LAST;

« In package DIRECT_IO
type COUNT is range 0..2_147_483_647;

Parailel Ada Development System Programmer’s Guide

