
AD-A24:2 474 TAM1N PAGE 1A t 7"a
Nft pa tepoeea.I II pft wa frS4~ kuAw~ir ain0i 1 g dim ocs " u, ww -dm

wde Of EV artoivores cb= ci kmme1ba* amg 1 1A MW bodw. 4
2 11111111 ~D Wavisga. Suke 12K. Mbapc VA n-3T; Uci Mna WoUw alwar au~ imy AMhh"O~s! GOc

I. Ztw usea (L"V IFA3. REPORT DAE YPE AND DATES COVERED

I I Final: 30 Jan 1991 to 01 Jun 1903

Encore Computer Corporation, Parallel Ada Development System, Revision 1.0,
Encore 91 Series (Model No. 91-0340) under UMAX 3.0 (Host & Ta

7. AURHORMIN) ORGNIZTIO NAES AN DDES(

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-446-0991
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/ONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. sPONSORING&MITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTESc C 4 vM~~ 'c ~ i>

128. DITRBU IAVLASUTY STATEMENT 12b. DISTRIBUTION CODE
Approved for pubic release; distribution unlimited.

13. ABSTRACT (Maxhmrn N0 mwds)

Encore Computer Corporation, Parallel Ada Development System, Revision 1.0, Encore 91 Series (Model No. 91-0340)
under UMAX 3.0 (Host & Target), ACVC 1.11.

91-15055

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 1_S._PRICECODE
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI*JIL-STD-1 8156A, AJPO. 6 RIECD

17. SECURITY CLASSIFICATION IS. SECURITY CLASSIFICATIN 19. SECURITY CLASSIFICATION *20. UMITATION OF ABSTRACT
OF REPORI I OF ASRC

UNCLASSIFIED IUNCLASSIFED UNCLASSIFIED_________
NMN 7540-o-No58 Sandwd Foim 296, (Rsv. 2-89)

AVF Control Number: AVF-VSR-446-0991
S-September-1991

90-09-18-ECC

Ada COMPILER
VALIDTIONq SUJ]iARY R~EPORT:

Certificate Number: 9l0l30W1.11114
Encore Computer Corporation

Parallel Ada Developmuent System, Revision 1.0
Encore 91 Series (Model No. 91-0340) under UMMA 3.0 -

Encore 91 Series (Model No. 91-0340) under UMAX 3.0

Prepared By:
Ada validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

? .

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 30 January 1991.

Compiler Name and Version: Parallel Ada Development System, Revision 1.0

Host Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0

Target Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0

Customer Agreement Number: 90-09-18-ECC

See Section 3.1 for any additional information about the testing
envi ronment.

As a result of this validation effort, Validation Certificate
910130W1.11114 is awarded to Encore Computer Corporation. This certificate
expires on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AF OH 45433-6503

Ara Validation organization
Director, Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

' ooint Program Of ice
Dr. John Solcinond, Director
Department of Defense
Washington DC 20301

DECARATION OF CONFORMANCE

The following declazalim of confemance was supplied by the customer.

Declaraon of Conforannce

Cusomer Encore Computer Corponcon

Crtificate Awardee: Encor- Computer Corpcraton

Ada Validation Facility: ASD/SCEL
Wright-Panterson AFB OH 45433-6503

ACVC Version: 1.11

Ada I eno

Ada Compiler Name and Version: Parslel Ada Development System,
Revision 1.0

oa Computer SysW Enec 91 Series (Mod No. 91-0340)
under UMAX 3.0

Taget Computer System: Encore 91 Series (Model No. 91-0340)
under UMAX 3.0

Deeuadxon:

I the undersigned, representing Encore Comp= Corporaon, dgclare that
Encor Computer COrpomdton has no knowledge of deliberate deviatons; from
the Aft a Stndard ANSIIMI-STD-115A ISO 8652-1987 in the

-04 abo.

Cu eislmpS tr Date

I _

1HAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sumnary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (389].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

l • 1ll ll N •lnl1

INTRODCTION

1.2 REFERENCES

Reference Manual for the Ada Programming Language [Ada83],
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

Ada Compiler Validation Capability User's Guide [UG89], 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the lass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programing
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BDlB02B BD1BO6A ADIBO8A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2BI5C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEKENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321r,..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D B55B09C C55B07A B86001W C86006C
CD7101F

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FL4AT, or SHORTFLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constant in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must be rejected. (See 2.3)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A and C45624B check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implemntation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete. For this implementation, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATIOtN DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access rethod.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL-IO
CE2102F CREATE INCUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECTI0
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN INFILE SEQUENTIAL 10
CE21020 RESET IN--FILE SEQUENTIAL0--I0
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUENTIAL-IO
CE2102R OPEN INCUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECTIO
CE2102T OPEN IN FILE DIRECT_10
CE2102U RESET INFILE DIRECTIO
CE2102V OPEN OUT FILE DIRECTIO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE TEXT IO
CE31021 CREATE OUT FILE TEXTIO
CE3102J OPEN IN FILE TEAI IO
CE3102K OPEN OUT FILE TEcT IO

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implemen;-ation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENTH or
SET PAGE LENTH specifies a value that is inappropriate -for tHe external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this i-mplementation, the value of
COUNT' AST is greater than 150000 making the checking of this objective
impracticai.

2.3 Test Modifications

Modifications (see section 1.3) were required for 23 tests.

2-3

IMPLEMENTATION DEPENDENCIES

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H B91001H BC1303F BC3005B BD2BO3A
BD2DO3A BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD009A, CD10091, CDlC03A, CD2A22J, CD2A24A, and CD2A31A..C (3 tests) use

instantiations of the support procedure Length Check, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ru-led that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of LengthCheck-i.e., the allowed Report.Failed messages
have the general form:

* CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Gary Beerman
6901 W. Sunrise Blvd.
Ft. Lauderdale FL 33340-9148

For a point of contact for sales information about this Ada implementation
system, see:

Gary Beerman
6901 W. Sunrise Blvd.
Ft. Lauderdale FL 33340-9148

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programing Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3814
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 72
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 273

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTICN

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked, and run on the computer system, as
appropriate. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-v Verbose

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $M~AXINLN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 499

$BIGIDl (1..V-1 W>'A, V Ill'1)

$BIG_1D2 (l..V-l W>'A, V -> 2')

SBIG_1D3 (1..V/2 W>'A) & '3' &
(l..V-l-V/2 -> 'A)

$BIG_1D4 (1..V/2 W>'A) & '4' &

$BIGINTLIT (1..V-3 1> 0') & "298"

$BIGREALLIT (l..V-5 -> 0') & "690.0"

SBIGSTRINGi 1 & (l..V/2 -> 'A) & '"'

$BIGSTRING2 ''& (l..V-l-V/2 -> 'A') & '1ll '"

$BLANKS (1..V-20 -

$MA)CLNINTBASED_-LITERAL
T12:" & (l..v-5 -> 0') &"11:"

SMAXLENREALBASEDLITEAL

"16:"

&(1..V-7

0)

&"F.E:"

MACRO PARAMETERS

SMAXSTRING-LITERAL '"' & (1..V-2-> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULTMEM_SIZE 16777216

SDEFAULT STOR UNIT 8

SDEFA LT_ SYS-NAME umaxv_88k

$DELTA DOC 0.0000000004656612873077392578125

SENTRY ADDRESS SYSTEM."+"(16#40#)

SENTRY ADDRESS1 SYSTEM."+"(16#80#)

SENTRY ADDRESS2 SYSTEM."+"(16#100#)

$FIELD LAST 2147483647

$FILETERMINATOR

$FIXED NAME NO SUCHTYPE

$FLOAT NAME NO SUCHTYPE

SFORMSTRING "IV

$FORM STRING2 "CANOT RESTRICT FILE CAPACITY"

$GREATERTHANDURATION
100000.0

$GREATER THAN DURATION BASE LAST
-00 OOOO

$GREATER THAN FLOAT BASE LAST
l.-- E+308

$GREATER THAN FLOAT SAFE LARGE
5.1E307

A-2

MACR.O PAiRAMIETERS

$GREATERTHANSHORT FLOAT SAFELARGE
-9.rE37

SHIGHPRIORITY 99

$ILLEGAL-E)TRL FILE NAiubEl
I/ilegal/filename/2} J%2102c.dat"

$ILLEG3ALEXTERNAL FILE NAME2
- i/illegal/file_name/CE21O2C*.dat--"

$INAPPRPRIATELINELENGTH
-1

$ INAPPROPRIATE PAGE LENGTH
-1

$ INCLUDEPRAGMA.1 PRAG2'A INCLUDE ("A28006D1 TST")

$INCLUDE-PRAGMA2 PRAQGIA INCLUDE ("828006D1 TST")

$INTEER._FIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPWUS_1 2147483648

S INTERFACELANGUAGE C

$LESSTHANDUATION' -100000.0

$LESSTHANDURATION BASE FIRST
-1-6000000.0

$LINE TERMINATIOR ASCII.LF

$LOWPRIORITY 0

$MACHINE-CODESTATEMENT
CODE_0' (OP -> ?P);

$MACHINECODE-TYPE CODE_0

$MANTISSADOC 31

SMAX DIGIT 15

$MIAX INT 2147483647

SYMXINTPUS-1 2147483648

$MIN IN'r -2147483648

A-3

MACo PARAMETERS

$NAME TINYINTEGER

$NAME LIST Uzaxv_88k

$NAMESPECIFICATION1 "/u5/acvcl. ll/work/ce2" & "X21202A"

$NAME SPECIFICATION2 "/u5/acvcl.ll/work/ce2', & "X21202B"

SNAMESPECIFICATION3 "1u5/acvcl.ll/work/ce3" & "X3119A"

$NEGBASEDINT 16#FOOOOOOE#

SNEW MEM SIZE 65535

$NEW STOR UNIT 16

$NE. SYS-NAME umaxv 88k

$PAGE TERMINATOR ASCII .FF

$RECORDDEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORD NAME CODE 0

$TASK SIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLE ADDRESS VAR_1'ADDRESS

$VARIABLE ADDRESS1 VAR 2'ADDRESS

$VARIABLE ADDRESS2 VAR 3'ADDRESS

$YOUR PRAGA PRAGMA PASSIVE

A-4

j mmmmmm•mm mmmmmmm m mm I((

APPEDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

ada(l) UNIX Programmer's Manual ada(1)

NAME
ada - invoke the Ada compiler

SYNOPSIS
ada [options] [sourcefieaJ]... [linker_options] (objectflle o...

DESCRIPTION
ada executes the Ada compiler and compiles sourcefie. source~fle must end with the .a suffix and must
reside in a directory that has been initialized as an Ada library. The adaJib file in this directory is modified
after each Ada unit is compiled.

You can specify non-Ada object files (.o files produced by compilers for other languages) to be linked with
the specified Ada object files.

By default, ada produces only object and nets files. If you specify the -M option, the compiler automati-
cally invokes a.ld and builds a complete program, with the specified library unit as the main program.

The order of compilation and the order of the files to be passed to the linker can be significanL You can,
however, specify command line options in any order.

Specify no more than one of the following options: -E, -e, -El, -el, -ev.

The options are:

-# idendfier type value (define) Define an identifier of the specified type and value. (For further
information, see "Ada Preprocessor Reference.")

-a file.name (archive) Treatfilename as an object archive file created by ar. This
option distinguishes archive files, some of which end with .a, from Ada
source files, all of which end with a.

-d (dependencies) Analyze for dependencies only, performing neither
senmntic analysis nor code generation. Update the library, marking any
dependent units as uncompiled. The aanake utility uses this informa-
tion to establish dependencies among new files.

-E (fie) [directory) (erir output) Use a.eorr to process error messages. If neither file nor
directory is specified, ada directs a brief listing to standard output,
placing the raw error messages in ada source.err. If file is specified,
ada places the raw error messages in the file with that name. If direc-
tory is specified, ada places the raw error messages in
directorylsource.err. You can use the file of raw error messages as
input to aerrOr.

-e (eor) Use a.error to process compilation error messages, sending the
listing to standard output. Only the source lines containing errors are
fisted.

-El [fiel [directory) (error listing) Same as the -E option, except that error messages are
- among source lnes.

-el (ror lising) Same as the -e option, except that aor messages are
interspeed among sor line.

-ev (error vi(l)) Process syntax eror messages using aerror, embed them
in the source file, and call the environnvet editor mOR_EDrroR. If no
editor is specified, call vl(l). (If MtoRP,.EDf is defined, the environ-
ment vaiable EtRORPATrItN qiI.ti d also be defined.
MtRORPAr N is an editor teach command that locates the first
occurrence of the suing *# in the eno file.)

-K (keep) Keep the intermediate language (IL) file produced by the

7th Edition I

ada(l) UNIX Programmer's Manual ada(l)

compiler front end; name the file Ada-source.i, and place it in the
.objects directory.

-L ibraryname Oibrary) Operate in the Ada library /ibrary_name. The default is the
current working directory.

Note: If two files of the same name from different directories are con-
piled in the same Ada library using the -L option, the second compila-
tion overwrites the first, even if the contents and unit names are dif-
ferent. For example, ada /unsdirecury2/foo.a -L lus/PADS/test

overwrites

ada /usr/directoryl/foo.a -L /usr/PADS/test

in library /usr/PADS/test.

- lfeabbreviaion (library search) Direct the linker, Id(l), to search the library file
specified byfleabbreviaion.

-M [uniname) (main) Produce an executable program by linking unit-name as the
main program. unitrname must be either a parameterless procedure or
a parameterless function returning an integer. Unless it is being com-
piled by this invocation ofada, unit.name must already have been com-
piled. The executable program is named a.out unless you use the -o
option to specify another name.

-M sourcejde (main) Produce an executable program by compiling and linking
source file. The main unit of the program is assumed to be the root
name of the a file (in foo.a, for example, the main unit is foo). Unless
you use the -o option to specify another name, the executable program
is named a.out Only one .a file can be preceded by -M.

-o execuablefile (output) Name the executable program executable fie rather than the
default, a.out. This option is used in conjunction with the -M option.

-0(0-9] (optimize) Invoke the code optimizer (oPTIM3). The optional digit pro-
vides the level of optimization. The default is -04.

This version of the compiler includes a preliminary M88k-specific
optimizer. The optimizer schedules load instructions to avoid pipeline
conflicts and moves instructions to the delay slots of branches and
calls. Since it can be slow for some programs, it is enabled only at
optimization levels greater than 4.

-0 full optimization

-00 no optimization

-01 no hoisting

-02 no hoisting but more passes

-03 no hoisting but even morepasses

-04 hoisting from loops

-OS hoisting from loops but more passes

-06 hoisting from loops with maximum passes

-07 hoisting from loops and branches

-08 hoisting from loops and branches, more passes

7th Edition 2

ada (1) UNIX Programmer's Manual ada (1)

-09 hoisting from loops and branches, maximum passes

Note: Hoisting from branches (and case alternatives) can be slow and
does not always provide significant performance gains. You might
therefore want to suppress it.

-p (preprocessor) Invoke the Ada preprocessor, app.

-R libraryname (recompile instantation) Force analysis of all generic instantiations.
causing reinstantiation of any that are out of date.

-S (suppress) Apply pragnm SUPPRESS to the entire compilation for all
suppressible checks.

-sh (show) Display the name of the executable compiler, but do not exe-
cute it. (Several versions of PADS may exist on one system. The ada
command in any PAD S location/bin executes the correct version of the
compiler based upon visible library directives.)

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time of compilauon,
name of file compiled. command input line, total compilation time, and
error summary line. Provide information about the object file's use of
storage. With oprw the output format of compression (the size of
optimized instructions) is shown as a percentage of input (unoptimized
instructions).

-w (warnings) Suppress warning diagnostics.

FILES
ada.lib Library reference file

gnrx.lib Generic instantiation reference file

GVAS.lock, gnrx.lock Lock the library while reading or writing special library files

OVAS table Address assignment file

.imports Imported Ada units directory

.lines Line number reference files directory

.nets DIANA nets files directory

.objects (global) object files directory

SEE ALSO
a.app(1), aerror(l), a.ld(l), a.make(l)
ld(]), vi(1)

DIAGNOSTICS
The diagnostics produced by the compiler are intended to be self-explanatory. Most refer to the Ada
Language Reference Manual (Ada RM). Each Ada RM reference includes a section number and, option-
ally, a paragraph number enclosed in parentheses.

7th Edition 3

CC1MPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-2

ald(l) UNIX Programmer's Manual ald(l)

NAME
ald - invoke the Ada prelinker

SYNOPSIS

ald (options] unit-name [Id options]

DESCRIPTION
aid collects the object files needed to make unitname a main program, ald then calls the linker ld(l) to
link all Ada object files and any non-Ada object fies required to produce an executable image in a.out.

unit_name specifies the main prograr and must be a nongeneric subprogram. If unit-name is a function, it
must return a value of type STANDARDZTGE. This integer result is passed back to the shell as the status
code of the execution.

All arguments after unit name are passed to ldJ). These arguments may be Id options, archive libraries,
library abbreviations, or object files

The options are:

-DX (debug) Debug memory overflow. Use this option in cases where link-
ing a large number of units produces the error message "local symbol
overflow .

-E unit name (elaborate) Elaborate unitname as early in the elaboration order as
possible.

-F (files) Display a list of dependent files in order, but suppress linking.

-L library name (library) Operate in the Ada library library name. The default is the
current working directory.

-o executableJile (output) Name the executable file executable fle rather than the
default. Lout.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a subse-
quent run of a link editor. The link editor does not complain about
unresolved references, and the output file is not executable.

-Sh (show) Display the name of the a.ld executable file, but do not execute
it. (Several versions of PADS can exist on one syst-m.
PADS.locationlbin/ald executes the correct version of aid based upon
directives visible in the ada.lib file.)

-T target Use target as the target run-time environment.
-U (units) Print a list of dependent units in order, but suppress linking.
-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command, but suppress execution.

The aid tool reads the nets files produced by the Ada compiler to determine dependency information. The
tool produces an exception mapping table and a unit elaboration table and passes this information to the
linker.

aid reads instructions for generating executables from the ada.iib file in the Ada libraries on the search
list. In addition to information generated by the compiler, these instructions include wrrHn directives,
which enable the automatic linking of object modules compiled from other languages or Ada object
modules not named in context clauses in the Ada souce. The ada.lib Sie can contain any number of wrTHn
directives, but the directives must be numbered consecutively, beginning Lt wrrul. The directives have the
following form: WITHlNlKobjecjfkle: WITH2: LINK :archivejule: WrTHn directives can be placed

7th Edition

a.ld(l) UNIX Programmer's Manual ald(1)

in the local Ada library or in any Ada libraries on the search list. A WTHn directive in the local hbrary or

earlier on the search list hides any WrTmn directive with the same number in a library later on the search
list.

Use the tool aiafo to change or display library directives in the current library.

FILES
Lout Default output file

.nets DIANA nets files directory

.objects/* Ada object files

PADS locaton/standardl* Start-up and standard library routines

SEE ALSO
ada(l), ainfo(l)
ld(l)

DIAGNOSTICS
aJd produces self-explanatory error messages for missing files, etc. Additional messages are produced by
the linker, ld(l).

7th Edition 2

j

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

..........

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range -1.701411183E+308 .. 1.70141183E+308;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

type SHORTINTEGER is range -32768 .. 32767;

type SHORT_FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type TINY INTEGER is range -128 .. 127;

oo......

end STANDARD;

C-1

B

Appendix F
of the Ada Language
Reference Manual

The Parallel Ada Development System provides the full Ada language as
specified in the Ada Language Reference Manual (Ada RM). Within the Ada RM,
a number of sections contain the annotation implementation dependent, meaning
that the interpretation of the section is left to the compiler implementor. This
appendix describes the implementation-dependent characteristics of the PADS
compiler.

PADS has attempted to provide an essentially unlimited capability to program in
Ada. Consequently, applications programmers can usually program in Ada
according to the Ada RM and good engineering practices without consideration of
any PADS specifics.

PRAGMAS AND THEIR EFFECTS

This section provides a brief description of every pragma supported by PADS.
You can find additional information about some of the pragmas under discussions
of particular language constructs elsewhere in this manual and in the Parallel Ada
Development System User's Guide.

pragma CONTROLLED

This pragma is recognized by the implementation but has no effect in the current
release.

Parallel Ada Development System Programmer's Guide B-1

Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

- pragma ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

-pragma EXTERNALNAME

This pragma enables you to specify an external link name for an Ada variable or
subprogram so that the object can be referenced from other languages. The
pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification. Objects
must be variables defined in a package specification; subprograms can be either
library level or within a package specification. For further information about
pragma EXTERNALNAME, see Chapter 4 of this manual.

pragma IMPLICITCODE

Use this pragma with caution. The pragma, used only within the declarative part of
a machine code procedure, specifies whether implicit code generated by the
compiler is allowed (ON) or disallowed (OFF). Implicit code includes preamble
and postamble code (for example, code used to move parameters to and from the
stack). A warning is generated if implicit code is required and OFF is specified.

Use of pragma IMPLICITCODE does not eliminate code generated for run-time
checks, nor does it eliminate call/return instructions. (These can be eliminated by
pragma SUPPRESS and pragma INIANE, respectively.)

For further information about pragma IMPLICITCODE, see Chapter 3 of this
manual.

pragma INLINE

This pragma is implemented as described in Appendix B of the Ada RM, with one
addition: Recursive calls can be expanded with the pragma up to the maximum
depth of 4. Warnings are generated for bodies that are not available for inline
expansion. When applied to subprograms that declare tasks, packages,
exceptions, types, or nested subprograms, pragnm INLINE is ignored and causes
a warning to be issued.

B-2 Parallel Ada Development System Programmers Guide

Appendix F of the Ada Language Reference Inual Pragmas and Their Effects

pragma INLINE ONLY

When used in the same way as pragma INLINE, this pragma indicates to the
compiler that the subprogram must always be inlined. This is very important for
some code procedures. pragma INLINEONLY also saves code space by
suppressing the generation of a callable version of the routine. If you erroneously
make an INLINEONLY subprogram recursive, a warning is generated and a
PROGRAMERROR is raised at run time.

pragma INTERFACE

This pragma, with parameters language and subprogram, supports calls to Ada, C,
Pascal, and FORTRAN functions. You can also use pragma INTERFACE to call
code written in unspecified languages, specifying UNCHECKED as the language
name. The Ada specifications can be either functions or procedures.

For Ada, the compiler generates the call as if it were a call to an Ada procedure,
but it does not expect a matching procedure body.

For C, the types of parameters and the result type for functions must be scalar
types, access types, or the predefined type ADDRESS in package SYSTEM.
Record and array objects can be passed by reference using the 'ADDRESS
attribute. All parameters must have mode in.

For Pascal, the types of parameters and the result type for functions must be
scalar types, access types, or the predefined type ADDRESS in package
SYSTEM. Record and array objects can be passed by reference using the
'ADDRESS attribute.

For FORTRAN, all parameters are passed by reference The parameter types
must have type SYSTEM.ADDRESS, and the result type for a function must be a
scalar type.

Use UNCHECKED to interface to an unspecified language, such as assembler.
The compiler generates the call as if it were a call to an Ada procedure, but it does
not expect a matching Ada procedure body.

For related information, see the section entitled "Parameter Passing" later in this
appendix.

Parallel AdaDevelopment System Programmers Guide B-3

Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

-pragma INTERFACE NAME
This pragma enables direct reference in Ada to variables or subprograms defined

in another language. pragma INTERFACENAME uses the following format:

pragma DnIRFACE_NAME (Adasubprogram, linkname);

where Ada_subprogram denotes either an object or a subprogram.

The pragma replaces all references to Adasubprogram with an external reference
to link name in the object file.

If Ada-subprogram denotes an object, the pragma is allowed at the place of a
declarative item in a package specification and must apply to an object declared
earlier in the same package specification. The object must be declared as a scalar
or an access type and cannot be any of the following:

* Loop variable

• Constant

I Initialized variable

• Array

* Record
If Adaubprogram denote subsubprogram, a pragma INTERFACE must already

have been specified for the subprogram.

The link-name must be constructed as the linker expects; for example, C variable
names must be prefaced with an underscore. The following example makes the C
global variable errno available within an Ada program:

package PACKAGENAME is

ERRNO: INTEGER;
pragma INTERFACENAME (ERRNO,"errno");

end PACKAGENAME;

For further information about prama IN'ERFACENAME, see Chapter 4 of
this manual.

pragma LINKWITH

Use this pragma to pass arguments to the linker. The pragma can appear in any
declarative part and accepts one argument, a constant string expression. This
argument is passed to the target linker whenever the unit containing the pragma
is included in a link.

8-4 Parallel Aa Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Pragmas and Their Effects

For example, the following package puts the -Im option on the command line for
the linker whenever MATH is included in the linked program:

package MATH is
pragma LINKWITH("-ir n);

end;

And the following package links with the named object file sin.o:

package MATH is

-- SIN is a routine written in C or assembly: the object
-- for the routine is in the object file sin.o

function SIN (X:FLOAT) return FLOAT;
pragma interface (C, SIN);
pragma LINKWITH("sino");

end MATH;

If the constant string expression begins with '-", the string is left untouched. If
the sting begins with neither "-" nor "r, then the string is prefixed with ".P'.

pragma LIST

This pragma is implemented as described in Appendix B of the Ada RM.

pragma MEMORY SIZE

This pragma is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can, however, achieve the same effect by copying the file system.a
in library standard to a local Ada library and recompiling it there with new values.

-- pragma NO IMAGE

This pragma suppresses the generation of the image array used for the 'IMAGE
attribute of enumeration types, eliminating the overhead required to store the
array in the executable image. Any attempt to use the 'IMAGE attribute on a
type whose image may has been suppressed results in a warning at compile time
and causes the exception PROGRAM-ERROR to be raised at run time.

Parallel Ada Development System Programmer's Guide S-5

Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

pragma NONREENTRANT

pragma takes one argument, which can be the name of a librar subprogram
or a subprogram declared immediately within a library package specification
or body. The pragma prevents the subprogram from being called recursively,
allowing the compiler to perform specific optimizations. You can apply
pragm NONREENTRANT to a subprogram or a set of overloaded
subprograms within a package specification or package body.

pragma NOTELABORATED

This pragma suppresses the generation of elaboration code, issuing warnings if
elaboration code is required. The pragma prevents elaboration of a package that is
either part of the run-time system, a configuration package, or an Ada package
that is referenced from a language other than Ada. pragma NOTELABORATED
can appear only in a library package specification.

pragma OPTIMIZE

This pragma is recognized by the implementation but has no effect in the current
release. For code optimization options, see the ada - 0 entry in Chapter 9 of the
Parallel Ada Development System User's Guide.

pragma OPTIMIZE CODE

This pragma specifies whether the compiler optimizes code (ON) or does not
optimize code (OFF). When OFF (the default) is specified, the compiler
generates the code as specified. You can use the pragma in any subprogram.

You can suppress optimization selectively by using this pragma at the
subprogram level. Inline subprograms are optimized even if
OPTIMIZECODE(OFF) is specified, unless pragm OPTIMIZECODE(OFF)
is also specified for the caller.

pragma PACK

This pragma causes the compiler to minimize gaps between components in the
representation of composite types. Objects larger than a single STORAGEUNIT
are packed to the nearest STORAGE_UNIT. Storage optimization generally
results in less efficient manipulation of the packed data type.

B-6 Parallel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Pragmas and Their Effects

pragma PAGE

This pragma is implemented as described in Appendix B of the Ada RM. The
pragma is also recognized by the source code formatting tool, a.pr.

pmgma PASSIVE

This pragma directs the compiler to optimize certain tasks into passive tasks. The
pragma can be applied to a task or task type declared immediately within a library
package specification or body.

pragma PASSIVE has three forms:

pragpma PASSIVE;
prgna PASSIVE(SEMAPHORE);
pragma PASSIVE(INTERRUPT, nnn);

The statements in the task body may prevent the intended optimization. In such
cases, a warning is generated at compile time and the exception
TASKINGERROR is raised at run time.

For additional information about pragm PASSIVE and passive tasks, see the
section entitled "Passive Tasks" in Chapter 2 of this manual.

- pmgma PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM. The
allowable range for pragma PRIORITY is 0.. 99.

pmgma SHARE CODE

This pragma enables multiple instantiations of the same generic procedure or
package body to share object code. A "parent" instantiation is created, and
subsequent instantiations of the same types can share the parent's object code,
reducing program size and compilation times.

pragma SHARE-CODE takes the name of a generic unit or a generic
instandation as its first argument and either of the identifiers TRUE or FALSE as
its second argumenm When the first argument is the name of a generic unit, the
pragma applies to all instantiations of that generic. When the first argument is the
name of a generic instantiation, the pragma applies only to the specified
instantiation or overloaded instantiations.

Parallel Ada Development System Progrmnmer's Guide B-7

Pragmas and Their Effects Appendix F of the Ada Language Reference Manual

If the second argument is TRUE, the compiler tries to share code generated for a
generic instantiation with code generated for other instantiations of the same
generic. When the second argument is FALSE, each instantiation gets a unique
copy of the generated code.

The pragma SHARE-CODE is allowed only immediately at the place of a
declarative item in a declarative part or package specification or after a library unit
in a compilation but before any subsequent compilation unit. The extent to which
code is shared by instantiations depends on this pragma and the kind of generic
formal parameters declared for the generic unit.

You can substitute the name pragma SHARE-BODY for the name pragma
SHARECODE.

pmgma SHARED

This pragma is recognized by the implementation but has no effect in the current
release.

pmgma STORAGEUNIT

This pragma is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can achieve the same effect by copying the file system.a in library
standard to a local Ada library and recompiling it there with new values.
(However, you should not redefine STORAGE-UNIT.)

pragma SUPPRESS

This pragma is implemented as described in Appendix B of the Ada RM, except
that DWISIONCHECK and, in some cases, OVERFLOW_CHECK cannot be
suppressed.

Using pragnm SUPPRESS(ALLCHECKS) is equivalent to writing, at the same
point in the program, a pragm SUPPRESS for each of the checks listed in Ada
RM 11.7.

pragma SUPPRESS(EXCEPTIONTABLES) tells the code generator not to
generate, for the enclosing compilation unit, the tables that are normally generated
to identify exception regions. This reduces the size of the static data required for a
unit but also disables exception handling within that unit.

B.S Parallel Ada Development System Programmer's Gulde

Appendix F of the Ada Language Reference Manual Predefined Packages and Generics

- pragma SYSTEMNAME

This prama is recognized by the implementation but has no effect in the current
release. PADS does not allow modification of package SYSTEM by means of
pragmas. You can, however, achieve the same effect by copying the file systen.a
in library standard to a local Ada library and recompiling it there with new values.

pragma VOLATILE

This pragma, with its argument, object, guarantees that loads and stores to the
named object are performed as expected after optimization. For example:

memory flag : integer;
pragma volatile (memoryflag);

PREDEFINED
PACKAGES AND GENERICS

The following predefined Ada packages, specified by Ada RM Appendix C(22),
are provided in the library standard:

* generic function UNCHECKEDCONVERSION
" generic package DIRECT_10

• generic package SEQUENTIAL_1O
* generic procedure UNCHECKEDDEALLOCATION

• package CALENDAR

* package IOEXCEPTIONS

* package LOWLEVELJO
* package MACHINE_CODE

" package STANDARD
* package SYSTEM

* package TEXTI 0

Parallel Ads Development System Programmers Guide 8-9

Predefined Packages and Generics Appendix F of the Ada Language Reference Manual

Specification of package SYSTEM
with UNSIGNED TYPES;

package SYSTEM is

pragma SUPPRESS (ALL CHECKS);
pragma SUPPRESS (EXCEPTIONTABLES);
pragma NOT ELABORATED;

type NAME is (umaxv_88k);
SYSTEM-NAME : constant NAME :- umaxv_88k;

STORAGE UNIT : constant :- 8;
MEMORY_SIZE : constant :-16_777_216

-- System-Dependent Named Numbers

MININT : constant :--2_147 483_648;
MAXINT : constant :-2 147_483_647;
MAX DIGITS : constant :-15
MAXMANTISSA : constant :- 31;
FINE DELTA : constant :2.0*(-31);
TICK : constant :-0.01;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer :- 64*1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "(IA: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function +" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNED INTEGER) return
ADDRESS;

function MEMORYADDRESS
(I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS

renames "+";

NOADDR : constant ADDRESS;

type TASKID is private;
NOTASKID : constant TASKID;

type PROGRAM ID is private;
NOPROGRAMID : constant PROGRAMID;

type SIGSTATUS T is array(l. .64) of boolean;

pragma PACK(SIGSTATUS T);

SIG STATUS SIZE: CONSTANT :- 8;

private

type ADDRESS is new UNSIGNED TYPES.UNSIGNEDINTEGER;

NOADDR : constant ADDRESS :-0;

pragma BUILT IN(">");
pragma BUILTIN("<");
pragma BUILT IN(">-");

pragma BUILT IN("<--);

3-10 Parallel Ada Devslopment System Programmers Guide

Appendix F of the Ada Language Reference Manual Predefined Packages and Generics

pragma BUILTIN ("-");
pragma BUILT IN("+"),

end SYSTEM;

-_ package CALENDAR

package CALENDAR operates as specified in Ada RM 9.6. It uses the clock
function in package CALENDAR.LOCALTIME (located in the file
calendars.a), which uses the operating system service routines
GETrIMEOFDAY and LOCALTIME to get the current time,

package MACHINE, CODE

package MACHINECODE provides an assembly language interface for the
target machine, including the necessary record types needed in the code
statement (see Ada RM 13.8), an enumeration type containing all the opcode
mnemonics, a set of register definitions, and a set of addressing mode functions.
Also supplied (for use only in units that with MACHINE_CODE) are pragnm
IMPUCITCODE and the attribute 'REF. For the specification of the package,
see the section entitled "package MACHINECODE" in Chapcer 3.

Machine code statements take operands of type OPERAND, a private type that
forms the basis of all machine code address formats for the target.

The general syntax of a machine code statement is

CODE n'(opcode, operand [, operand]);

where n indicates the number of operands in the aggregate.

In the following example, CODE_3 is a record 'format' whose first argument is an
enumeration value of type OPCODE followed by three operands of type
OPERAND:

CODE_3'(add, rlo, rll, b'ref);

For those opcodes requiring no operands, you must use named notation (see Ada
RM 4.3(4)):

CODE_0'(op => opcode);

opcode must specify an enumeration literal (that is, it cannot specify an object, an
attribute, or a rename). operand can specify only an entity defined in
MACHINE-CODE or the 'REF attribute.

The 'REF attribute denotes the effective address of the first storage unit allocated
to the object. 'REF is not supported for a package, task unit, or entry. For details,
see the section entitled "'REP" later in this appendix.

Parallel Ada Development System Programmers Guide B-11

Predefined Packaqes and Generics Appendix F of the Ada Language Reference Manual

Arguments to any of the functions defined in MACHINECODE must be static
expressions, string literals, or the functions defined in MACHINECODE.

As an example of machine code insertions, the procedure OSEXTEND requests
the operating system to extend the program stack space to a new address:

procedure osextend (newtop : in system.address) is
- Extend the stack according to BCS Chapter 5
pragma implicitcode(off)
use machinecode;

begin
code_3' (add, r10, r31, rO); -- Save sp
code_3'(add, r31, r2, rO); -- Set sp to new limit
code_2' (st, rO, r31+O); -- Access it; this extends the stack
code_3' (add, r31, r10, rO)); -- Restore sp
code1' (jimp, rl);

end os extend;

package SEQUENTIAL_10

Sequential I/O is currently implemented for variant records, with one restriction:
The maximum size possible for the record is always written. The same is true for
direct I/O. For unconstrained records and arrays, the constant
SYSTEM.MAXRECSIZE can be set prior to the elaboration of the generic
instantiation of SEQUENTIAL_1O or DIRECTJO. For example, if unconstrained
strings are written, SYSTEM.MAXREC_SIZE effectively restricts the maximum
size of strings. If you know the maximum size of such strings, you can set the
SYSTEM.MAXRECSIZE prior to instantiating SEQUENTIAL_1O for the
swing type. You can reset this variable after the instantiation with no effect.

package UNSIGNEDTYPES

The package UNSIGNED_TYPES illustrates the definition of and services for
the unsigned types supplied in this version of PADS. Use this package at your
own risk. We do not warrant its effectiveness or legality, either expressly or by
implication.

We plan to withdraw this implementation of UNSIGNED_TYPES if and when the
Ada Joint Program Office and the Ada community reach agreement on a practical
specification of unsigned types. We will then standardize our implementation
based on that accepted version at the earliest practical date.

The package is supplied in comment form because the actual package cannot be
expressed in normal Ada - the types are not symmetric about 0, as is required by
the Ada RM. This package is supplied and is accessible through the Ada WITHn
statement, as if it were p'.-sent in source form.

8-12 Parallel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Predefined Packages and Generics

Example:

with unsigned types;
procedure foo(xxx: unsigned types.unsigned integer) is ...

Note: Use package UNSIGNED-TYPES at your own risk.

Specification of package UNSIGNEDTYPES
-- package unsigned types is

-- type unsigned integer is range 0 .. (2**32 - 1); -- 0..4294967295
--function "-" (a, b: unsignedinteger, return boolean;
-function "/-"(ai b: unsignedinteger) return boolean;
--function "<" (a, b: unsignedinteger) return boolean;
--function "<-"(a, b: unsigned integer) return boolean;
-function ">" (a, b: unsigned integer) return boolean;
--function ">-"(a, b: unsignedinteger) return boolean;
--function "+" (a, b: unsigned integer) return unsigned integer;
-- function "-" (a, b: unsignedinteger) return unsigned integer;
-- function "+" (a : unsigned_integer) return unsigned integer;
-function -" (a unsigned integer) return unsigned integer;
--function " (" (a, b: unsigned integer) return unsigned integer;
--function "/" (a, b: unsigned integer) return unsigned-integer;
--function "mod"(a, b: unsigned integer) return unsignedinteger;
--function "rem"(a, b: unsigned integer) return unsigned integer;
--function "**" (a, b: unsigned integer) return unsigned integer;
--function "abs"(a, b: unsigned integer) return un3igned integer;

-- type unsigned short integer is range 0 .. (2**16 - 1);-- 0..65535
-function "-" (a, b: unsigned short integer) return boolean;
--function "/-"(a, b: unsigned shortinteger) return boolean;
--function "<" (a, b: unsigned short integer) return boolean;
--function "<-"(a, b: unsigned shortinteger) return boolean;
-function ">" (a, b: unsigned_short_integer) return boolean;
--function ">-"(a, b: unsigned_shortinteger) return boolean;
--function "+" (a, b: unsigned-short_integer)
- return unsigned short integer;
--function "-" (a, b: unsigned_short integer)
-- return unsigned short integer;
--function "+" (a : unsignedshortinteger)
- return unsigned short integer;
--function "-" (a : unsigned short integer)
-- return unsigned short integer;
-function "*" (a, b: unsigned shortinteger)
-- return unsigned short integer;
-- function "1" (a, b: unsignedshort integer)
-- return unsigned-short-integer;
-- function "mod" (a, b: unsigned, short integer)
-- return unsigned short integer;
-- function "rem"(a, b: unsigned_shortinteger)
-- return unsigned short integer;
-function "**" (a, b: unsigned short_integer)

Parallel Ada Development System Programmer's Guide 8-13

Implementation-Defined Attributes Appendix F of the Ada Language Reference Manual

-- return unsignedshort_integer;
--function "abs"(a, b: unsignedshort_integer)

return unsignedshortinteger;

-- type unsigned tiny integer is range 0 .. (2**8 - 1); -- 0..255
--function "' (a, b: unsigned tinyinteger) return boolean;

--function "/-"(a, b: unsignedtinyinteger) return boolean;
--function "<" (a, b: unsigned tiny integer) return boolean;
--function "<-"(a, b: unsignedtinyinteger) return boolean;

--function ">" (a, b: unsigned tinyinteger) return boolean;

--function ">-"(a, b: unsigned tiny integer) return boolean;

--function "+" (a, b: unsignedtinyinteger)
-- return unsignedtiny integer;
--function "-" (a, b: unsigned tiny-integer)
-- return unsigned tiny-integer;
--function "+" (a : unsigned tiny-integer)
-- return unsigned tiny integer;
--function "-" (a : unsigned tiny-integer)
-- return unsigned tinyinteger;
--function "*" (a, b: unsigned tinyinteger)
-- return unsigned tiny_integer;
--function "/" (a, b: unsigned tinyinteger)
-- return unsigned tiny-integer;
--function "mod"(a, b: unsigned tiny integer)
-- return unsigned tinyinteger;
--function "rem"(a, b: unsignedtiny-integer)
-- return unsigned_tiny integer;

--function "**" (a, b: unsigned tiny-integer)
-- return unsigned tiny integer;
--function "abs"(a, b: unsignedtinyinteger)
-- return unsigned tinyinteger;
-- end unsignedtypes;

IMPLEMENTATION-DEFINED
ATTRIBUTES

This section describes the attributes defined by PADS.

'TASKID

For a task object or a value T, T'TASKID yields the unique task ID associated

with the task. The value of this attribute is of the type SYSTEM.TASKID.

'REF

The 'REF attribute denotes the effective address of the first of the storage units

allocated to the object. 'REF is not supported for a package, task unit, or entry.

This attribute has two forms: X'REF and SYSTEM.ADDRESS'REF(N). X'REF,

B-14 Parallel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Implementation-Defined Attributes

used only in machine code procedures, designates an operand within a code
statement. SYSTEM.ADDRESS'REF(N) can be used anywhere to convert an
integer expression to an address.

This attribute generates a reference to the entity to which it is applied.

In X'REF, X must be either a constant, variable, procedure, function, or label. The
attribute returns a value of the type MACHINECODE.OPERAND and can only
be used to designate an operand within a code statement.

The instruction generated by the code statement in which the attribute occurs can
be preceded by additional instructions needed to facilitate the reference (for
example, loading a base register). If the declarative section of the procedure
contains pragma IMPLICITCODE (OFF) and additional code is required, a
warning is generated.

References may also cause the generation of run-time checks. You can use
pragma SUPPRESS to eliminate these checks.

Example:

CODE 1' (BSR, PROC'REF);
CODE 2' (Id, r11, X.ALL(ZJ'REF);

For further information, see the section entitled "Ada Entities as Operands" in
Chapter 3 of this manual.

SYSTEM.ADDRESS'REF(N)
In SYSTEM.ADDRESS'REF(N), SYSTEM.ADDRESS must be the type
SYSTEM.ADDRESS; N must be an expression of type
UNIVERSALINTEGER. The attribute returns a value of type
SYSTEM.ADDRESS, which represents the address designated by N.

The effect of this attribute is similar to the effect of an unchecked conversion from
integer to address. You should, however, use SYSTEM.ADDRESS'REF(N) in
the following circumstances (and in these circumstances, N must be static):

" Within any of the run-time configuration packages. Use of
UNCHECKEDCONVERSION within an address clause would require the
generation of elaboration code, and the configuration packages are not
elaborated.

" In any instance where N is greater than INTEGER'LAST. Such values are
required in address clauses that reference the upper portion of memory.
UNCHECKED-CONVERSION in these instances would require that the
exPression be specified as a negative integer.

Pamlilel Ada Development System Programmer's Guide 8-15

Restrictions on Main Programs Appendix F of the Ada Language Reference Manual

To place an object at an address. The integer value in the following example is
converted to an address for use in the address representation clause. The form
avoids UNCHECKEDCONVERSION and is also useful for 32-bit unsigned
addresses:
--place an object at an address
for object use at ADDRESS'REF (integervalue)
--to use unsigned addresses
for VECTOR use at SYSTEM.ADDRESS'REF(16#808000d0#);
TOPOFMEMORY : SYSTEM.ADDRESS :- SYSTEM.ADDRESS'REF(16#FFFFFFFF#);

RESTRICTIONS ON MAIN PROGRAMS

In PADS, a main program must be a nongeneric subprogram that is either a

procedure or a function returning an Ada STANDARD.NTEGER (the predefined

type). A main program may be neither a generic subprogram nor an instantiation

of a generic subprogram.

GENERIC DECLARATIONS

In PADS, a generic declaration and the corresponding body need not be part of the

same compilation, nor must they exist in the same Ada library. If a single
compilation contains two versions of the same unit, an error is generated.

SHARED OBJECT CODE
FOR GENERIC SUBPROGRAMS

The PADS compiler generates code for a generic instantiation that can be shared
by other instantiations of the same generic, thus reducing the size of the
generated code and increasing compilation speed.

Shared code instantiations do entail some overhead because the generic actual
parameters must be accessed indirectly and, in the case of a generic package
instantiation, declarations in the package must also be accessed indirectly. In
addilke, unshared instantiations permit greater optimization because exact actual

p Aurs ar known. You must therefore determine whether space or time is

In some cases. If the generic has a formal private type
to accommodate an instantiation with an arbitrary

S syllem Programmers Gums

Appendix F of the Ada Language Reference Manual Shared Object Code

pragma SHARECODE lets you control whether an instantiation generates
unique code or shares code with other similar instantiations.

This pragma is allowed only in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit
in a compilation but before any subsequent compilation unit. pragma
SHARE- CODE takes the following form:

pragma SHARE-CODE (generic, boolean_literal)

You can apply pragma SHAREI_CODE to a generic declaration or to individual
instantiations. When pragma SHARE-CODE references a generic unit, it sets
sharing on or off for all instantiations of that generic unless overridden by specific
SHARECODE pragmas for individual instantiations. When it references an
instantiated unit, pragma SHARECODE sets sharing on or off for that unit
alone. The default is to share all generics that can be shared unless the unit uses
pragma INLINE.

The compiler shares code by default if the generic formal type parameters are
restricted to integer, enumeration, or floating-point. To override the default, use
the pragma SHARE_CODE(name, FALSE). If there are formal subprogram
parameters, instantiations are not shared unless you specify pragma
SHARECODE(name, TRUE).

Generics are shared by default if a parent is visible, except in the following cases:

• When generic formal types other than integer, enumeration,
SYSTEM.ADDRESS or floating-point are used

- When pragma INLINE is applied to a generic subprogram or instantiation or to
a subprogram visible at the library level within a generic package or
instantiation

* When the representations of the actual type parameters are not the same for
each of the instantiations

* When the generic has a formal in out parameter and the subtype of the
corresponding actual is not the same as the subtype of the formal parameter

Note that a parent instantiation (the instantiation that creates the shareable
body) is independent of any individual instantiation. Therefore, reinstantiation of a
generic with different parameters has no effect oa other compilations that
reference iL The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

The unit SHARED-IO in the library standard instantiates all Ada 1/0 generic
packages for the most commonly used base types. Thus, any instantiation of an
Ada I/O generic package shares one of the parent instantiation generic bodies
unless the following pragma is specified:

praqaa SHARMCODE (generic, FALSE);

Parallel Ada Development System Progrmnmer's Guide 0-17

Representation Clauses Appendix F of the Ada Language Reference Manual

REPRESENTATION CLAUSES

This section describes the PADS implementation of representation clauses.

- Representation Clauses

PADS supports bit-level representation clauses.

-- Representation Pragmas

The language-defined pragma PACK is the only representation pragrna supported
by PADS.

Length Clauses

PADS supports all length clauses.

- - Enumeration Representation Clauses

PADS supports enumeration representation clauses.

- Record Representation Clauses

Representation clauses are based on the target machine's word, byte, and bit
order numbering, so that VADS compilers are consistent with machine
architecture manuals for both 'big-endian' and 'liUttle-endian' machines. Bits
within a STORAGE-UNIT are also numbered according to the target machine
manuals. You need not understand the default layout for records and other
aggregates, since the use of record representation clauses gives you fine control
over the layout. You can align record fields correctly with structures and other
aggregate types from other languages by specifying the location of each element
explicitly. On the MC88 100, PADS operates in the big-endian type ordering
configuration.

8.18 Parallel Ads Development System Programler's Guide

Appendix F of the Ada Language Reference Manual Representation Clauses

Figure B-I illustrates MC88 100 addressing and bit numbering.

BI.f WORD 0S00000 (MW) B AL WOA.D SOP0002 (L=)

3113 n -0h00 P, I hOD0011350000000 I 1 11 By Z 00000003

31b PI In Ibb1011116 114131211hyl 1276 5 210
WORD$00000OLW

HALI WOD 500000004 KAUF WORD 00000004

31115000IBM NY!50000005 ME? =0004 ITZ $00000

WORD STnFMr

HATL WOtD f sri HALF WRD M PFFM"E

DY!SVFP "n? 5ff~fMD SwZ T T! piritr uuSpvrinr

3O-ENDIAN I=? ORDfLInO

Figure B-1: MC88100 Addressing and Bit Numbering

The only restrictions on record representation clauses are the following:

• If a component does not start and end on a storage unit (byte) boundary, it must
be stored within 4 consecutive bytes.

* A component that is itself a record must occupy a power of 2 bits. Components
that are of a discrete type or packed array can occupy an arbitrary number of
bits, subject to the preceding restriction.

Parallel Ads Development Systen Programmer's Guide 9-19

Representation Clauses Appendix F of the Ada Language Reference Manual

Address Clauses

PADS supports address clauses for objects and entries.

Note: Use with caution code that references mcwory-m, ppcd devices
using a for use at clause to locate an object at the I/O address.
The default optimization of the compiler eliminates redundant
moves to and from memory. If this causes problems, compile with
pragma OPTIMIZECODE(OFF).

Interrupt Entries
PADS allows task entries to be associated with operating system signals. The
operating system handles all interrupts and faults initially and then returns control
to the user program as a signal.

The available signals are described in UMAX V Programmers Guide. Due to
restrictions in the operating system, some of the signals cannot be caught.
Although an attempt to assign an entry to these signals does not result in an
error, the operating system will not deliver the signal to the piogram.

The Ada run-time system discourages attempts to catch the timer-related
signals.

The following example program shows you how to attach to the CTRL-c or
interrupt-from-keyboard signal:

with ifaceintr;
with system; use system;
*-'th text io;
tsk interrupt is

entry SIGINT;
for SIGINT use at address'ref(ifaceintr.sigint); -- interrupt

end;
task body interrupt is
begin

loop
accept SIGINT do

text io.put line("SIGINT");
end;

end loop;
end;

Signal handlers are set up for the following signals by the PADS run-time system:

#define SIGFPE 8 /* floating point exception */
#define SiGSEGV 11 /* segmentation violation */
#dfine SIGTRAP 5 /* trace trap */
#define SIGALRM 14 /* alarm clocks */

0-20 Parallel Ada Development System Programmes Guide

Appendix F of the Ada Language Reference Manual Representation Clauses

If a task entry is attached to SIGFPE, NUMEIUCERROR exceptions are not
raised correctly. If a task entry is attached to SIGSEGV, STORAGEERROR
exceptions may not be raised correctly. If a task entry is attacked to SIGALRM,
delay statements and time slicing do not work correctly.

Use of signal handlers is complicated when non-Ada routines are involved. For
further information, see Chapter 4 of this manual.

- Change of Representation

PADS supports change of representation.

--- The package SYSTEM

For the specification of package SYSTEM, see the section entitled "Predefined
Packages and Generics" earlier in this appendix. The specification is also
available on line in the file systema in the release library standard. The
pragmas SYSTEMNAME, STORAGE-UNIT, and MEMORYSIZE are
recognized by the implementation but have no effect. PADS does not allow
SYSTEM to be modified by means of pragmas. However, you can achieve the
same effect by recompiling package SYSTEM with altered values. Note that
such recompilation causes other units in the library standard to become out of
date. Consequently, you should recompile SYSTEM in some library other than
standard.

-- Representation Attributes

PADS supports the 'ADDRESS attribute for the following entities:

" Variables

* Constants

" Procedures
* Functions

If the prefix of an 'ADDRESS attribute is an object that is not aligned on a
storage unit boundary, the attribute yields the address of the storage unit
containing the first bit of the object. This is consistent with the definition of the
'FIRSTBIT attibute.

All other Ada representation attributes are fully supported.

PaMM Ada Developent System Programne's Guide 9-21

Parameter Passing Appendix F of the Ada Language Reference Manual

Representation Attributes of Real Types
PADS supports these attributes. See the section entitled "Predefined Packages
and Generics" earlier in this appendix.

-- Machine Code Insertions

PADS supports machine code insertions. See Chapter 3 of this manual for details.

interface to Other Languages

PADS supports interface to other languages. See Chapter 4 of this manual and the
section entitled "Pragmas and Their Effects" earlier in this appendix for details.

Unchecked Programming

PADS provides both UNCHECKED_DEALLOCATION and
UNCHECKED-CONVERSION.

Unchecked Storaae Deallocations
Any object that is allocated can be deallocated. No checks are currently performed
on released objects. However, when an object is deallocated, its access variable
is set to null. Subsequent deallocations using the null access variable are ignored.

Unchecked TvRe Conversions
The predefined generic function UNCHECKED-CONVERSION cannot be
instantiated with a target type that is an unconstrained array type or an
unconstrained record type with discriminants.

PARAMETER PASSING

Parameters are passed in registers or by pushing values (or addresses) on the
stack. Extra information is passed for records ('CONSTR.AINED) and for arrays
(dope vector address).

&.,istcrs A , tovug -49 are used to pass parameters. Parameters of 64-bit
floating-point type are passed in a register pair. Other parameters of scalar type,
access type, or the type SYSTEM.ADDRESS are passed in a single register. If
all parameter registers have been used, a parameter is transmitted in storage by
pushing its value on the stack.

9-22 Palirllel Ada Development System Progrimmer's Guide

Appendix F of the Ada Language Reference Manual Parameter Passing

Likewise, a function result of scalar type, access type, or the type
SYSTEM.ADDRESS is returned in register r2 or in the pair r2, r3, as appropriate.

Small results are returned in registers; large results with known targets are
passed by reference. Large results of anonymous target and known size are
passed by reference to a temporary created in the caller. Large results of
anonymous target and unknown size are returned by copying the value down from
a temporary created by the callee so that the space used by the temporary can be
reclaimed.

The compiler assumes the following calling conventions, defined in Object
Compatibility Standard (OCS):

1. Caller copies first 8 argument words into r2-r9.

2. Caller pushes additional arguments on stack.

3. Caller calls callee.

4. Callee builds display and allocates space for local variables.

5. Callee stores any registers it modifies in the set r14 .. r25.

6. Callee executes.

7. Callee restores registers saved in Step 5.

8. If callee is a function, callee leaves result in r2 (or in the pair r2, r3 for a 64-bit
floating-point result).

9. Callee deallocates local storage.

10. Callee returns to caller.

11. Caller copies back any out parameters or function values.

12. Caller deallocates the space used for arguments on the stack.

Note: Compilers for other languages may follow calling conventions other than
those expected by PADS. Use the debugger, a.db, to verify that the call
interface is the expected one.

When calling C routines (defined with pragna INTERFACE (C,
Ada.subprogram)), the caller allocates stack space for each parameter passed in a
register in accordance with the 88open Consortium Ltd. Object Compatibility
Standard (OCS).

When compiler conventions are not compatible, or when interfacing to assembly
language, you can build a call interface explicitly using machine code insertions.
For further information, see Chapter 3 of this manual.

Pamllel Ada Devebopment Syoemw Progranm s Guide E-23

Conversion and Deallocatlon Appendix F of the Ada Language Reference Manual

CONVERSION AND DEALLOCATION

The predefined generic function UNCHECKEDCONVERSION cannot be
instantiated with a target type that is an unconstrained array type or an
unconstrained record type with discriminants.

There are no restrictions on the types with which generic function
UNCHECKEDDEALLOCATION can be instantiated. No checks are performed
on released objects.

PROCESS STACK SIZE
The stack limit for the main program is set in the CONFIGURATIONTABLE

structure in the package VUSRCONF. The default value is

MAIN_TASK_STACK_SIZE => 256000

The stack limit for tasks is also set in the configuration table. Its default value is

DEFAULTTSKSTACKSIZE => 10_240

For information on how to modify these values for your program, see Appendix C
of the Parallel Ada Development System User's Guide.

TYPES, RANGES, AND ATTRIBUTES

This section describes the PADS implementation of the following types:

* Numeric literals

* Enumeration types

* Discrete types

* The type STRING

" Integer types

* Floating-point types

* Fixed-point types

" Array types

0-24 Parallel Ada Development System Programmers Guide

Appendix F of the Ada Language Reference Manual Types, Ranges, and Attributes

Numeric Literals

PADS uses unlimited precision arithmetic for computations with numeric literals.

Enumeration Types

PADS allows an unlimited number of literals within an enumeration type.

Attributes of Discrete Types

PADS defines the image of a character that is not a graphic character as the
corresponding 2- or 3-character identifier from package ASCII of Ada RM,
Appendix C. The identifier is in upper case without enclosing apostrophes. For
example, the image for a carriage return is the 2-character sequence CR
(ASCILCR).

The type STRING

Except for memory size, PADS places no specific limit on the length of the
predefined type STRING. Any type derived from the type STRING is similarly
unlimited.

By default, strings are represented with a single character in each byte of memory.
Thus, storage for string objects is automatically minimized.

Integer Types

Table B-1 summarizes the attributes of the predefined integer types.

Table B-1: Attributes of Integer Types

Name of AttributeValue AttributeValue of AttributeValue of
Attribute of INTEGER SHORT INTEGER TINY INTEGER

SIZE 32 16 8

FIRST -2_147_483-648 -32768 -128

LAST 2_147_483647 32_767 127

tParallel Ads Development System Programmer's Guide 8-25

Types, Ranges, and Attributes Appendix F of the Ada Language Reference Manual

- Operation of Floating-Point Types

Table B-2 summarizes the attributes oi PADS floating-point types.

Table 83-2: Attributes of Floating-Point Types

Namne of Attribute Value Attribute Value
Attribute of FLOAT of SHORT-FLOAT

SIZE 64 32

FIRST -1.797693 13486232E+308 -3.40282E+38
LAST 1.79769313486232E+308 3.40282E+38

DIGITS 15 6
MANTISSA 51 21

EPSILON 8.88178419700125]--16 9.5367431' A06250E-07

FEMAX 204 84

SMALL 1.94469227433161E-62 2.5849394142282 1E-26
LARGE 2.5711008708 1438E+61 1.93428038904620E+25

SAFEEMAX 1021 125
SAFE_.SMALL 2.22507385850720E-308 1. 17549435082229E-38
SAFE-L.ARGE 212471 1641857789E+307 4.25352755827077E+37

MACHKhNERADIX 2 2
MACHIN-.MANTISSA 53 24
MAcHINEEMAX 1024 128
MACHINEEIN -1021 -125

MACI{INE..ROUNDS TRUE TRUE
MACHINE-.OVERFLOWS TRUE TRUE

- Fixed-Point Types

PADS provides fixed-point types mapped to the supported integer sizes.

3.26 Parallel Ada Development System Programmers Guide

Appendix F of the Ada Language Reference Manual Input/Output

- " Operation of Fixed-Point Types

Table B-3 summarizes the attributes of the PADS fixed-point type DURATION.

Tab!-" 8-3: Attributes of type DURATION

Name of Attribute Value
Attribute for DURATION

SIZE 32

FIRST -2147483.648

LAST 2147483.647

DELTA 1.OE-03

MANTISSA 31

SMALL 1.OE-3
LARGE 2147483.647

FORE 8
AFT 3

SAFESMALL 1.OE-3
SAFE-LARGE 2147483.647

MACHINEROUNDS TRUE
MACHINEOVERFLOWS TRUE

Array Types

PADS array bound limits are:

INTEGER'FIRST: -2,147,483,648
INTEGER'LAST: 2,147,483,647

INPUT/OUTPUT

The PADS 1/0 system is implemented using UMAX V operating system services.
Both formatted and binary 1/O are available. There are no restrictions on the types
with which DIRECT_10 and SEQUENTIAL. 10 can be instantiated, except that
the element size must be less than a maximum specified by the variable
SYSTEM.MAXRECSIZE. Since you can set this variable to any value prior to

Parallel Ada Development System Programmer's Guide 8-27

Input/Output Appendix F of the Ada Language Reference Manual

the generic instantiation, you can use any element size. DIRECTIO can be
instantiated with unconstrained types, but each element is padded out to the
maximum possible for that type or to SYSTEMLMAXRECSIZE, whichever is
smaller. No checking, other than normal static Ada type checking, is done to
ensure that values from files are read into correctly sized and typed objects.

PADS file and terminal input-output are identical in most respects, differing only
in the frequency of buffer flushing. Output is buffered (buffer size is 1024 bytes).
The buffer is always flushed after each write request if the destination is a
terminal. The procedure FILE_SUPPORT.ALWAYS_FLUSH (FILEPTR)
causes the buffer associated with FILEPTR to be flushed after all subsequent
output requests. Refer to the source code for file spprtb.a in the standard
library. Note that the limited private type FILE.TYPE, defined in TEXTIO, is
derived from the type FILE_PTR. Currently, you must convert between them
using UNCHECKEDCONVERSION, because the derivation happens in the
private part of the specification of TEXT_IO. For example, the following procedure
stops buffering for standard output:

with text io;
with file support;
with uncheckedconversion;
procedure dont buffer(file: textio.file-type) is

function cvt is new unchecked-conversion(
source -> text io.file type,
target -> file support.file_ptr);

begin
file support.alwaysflush(cvt(file));

end;

Instantiations of DIRECTIO use the value MAX_REC_SIZE as the record size
(expressed in STORAGE_UNITs) when the size of ELEMENTTYPE exceeds
that value. For example, for unconstrained arrays such as a string, where
ELEMENT-TYPE'SIZE is very large, MAXREC_SIZE is used instead.
MAXRECSIZE is defined in SYSTEM and can be changed before instantiating
DIRECTJO to provide an upper limit on the record size. The maximum size
supported is 1024 * 1024 * STORAGEUNIT biLs. DIRECT_10 raises
USEERROR if MAXREC_SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL IO use the value MAXREC_SIZE as the
record size (expressed in STORAGEUNITs) when the size of
ELEMENTTYPE exceeds that value. For example, for unconstrained arrays
such as a string, where ELEMENT_TYPE'SIZE is very large, MAXRECSIZE
is used instead. MAX_REC_SIZE is defined in SYSTEM and can be changed by
a program before instantiating SEQUENTIALIO to provide an upper limit on the
record size. SEQUENTIAL_1O imposes no limit on MAXRECSIZE.

B-28 Parallel Ada Development System Programmer's Guide

Appendix F of the Ada Language Reference Manual Input/Output

Implementation-Defined Values
of the Input/Output Packages

The PADS-defined values in the input/output packages are as follows:

" In package TEXT0
type COUNT is range .JNTEGER'LAST;
subtype FIELD is ITEGER range .JnTGER'LAST;

" In package DIRECT_10
type COUNT is range O..2_147_483647;

Parallel Ada Development Systemi Programmers Guide B-29

