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1. Introduction

Carrier Sense Multiple Access with Collision Detection {CSMA/CD) is a
channel access protocol for packet broadcasting local area networks. This
protocol allows user stations to contend for time on a shared channel by
multiaccessing it in a random fashion. In an attempt to reduce the frequency
with which broadcast message packets collide on the shared channel, Ethernet
(Metcalfe and Boggs 1976) and IEEE 802 (IEEE 1985) use a technique known as 1l-
persistent CSMA/CD with binarv exponential backoff (Goodﬁan et al. 1988). An
alternative technique proposed for reducing the frequency of collisions is p-
persistent CSMA/CD (see. for example, Stallings 1987 and Takagi and Kleinrock
1985a); this protocol is considered in this paper.

The dvnamic behavior and performance of unbuffered CSMA/CD svstems has
been studied extensively (e.g., Lam 1980, Takagi and Kleinrock 1985a, and
Tobagi 1980). These studies assumed that there are an infinite number of
network users and each user can have at most cone packet in the message gqueue
at any time (called an infinite source model). This simplifving assumption has
been relaxed in recent studies on CSMA/CD systems: Apostolopoulos and
Protonotarios (1986}, Goodman et al. (1988), Hastu:d, Leighton and Rogoff
(1687), Park and Bartoszyﬁski (1%90a), Park and Bar:oszyﬁski (1990b), Takagi
and Kleinrock (1983b), and Tasaka (1986). In these studies, a finite number of
users are considered to have message queues with firite or infinite capacity
(called a finice source mocdel or a buffered CSMA/CD svstem).

Among these studies on buffered CSMA/CD. the following authors consicered
p-persistent CSMA/CD. Under the assumption of finite capacityv gueues,
Apostolopoulos and Protonotarios (1986) modeled the message queueing process
as a two-dimensional semi-Markov chain. With the state space reduced to a two-
dimensional space, it was necessary to emplov an iterative approximation
procedure to obtain the mean packe: delav in steadv state. The transmission
probability p was arbitrarily set equal to the inverse of the number of busy

users in the beginning of each contention period. Thus the dependencv of the
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(PGF hereinafter) of queue lengths for a system with two users, and obtained
an explicit formula for the mean packet delay based on that PGF. An exact
joint PGF of the queue length vector for a system with more than two users was
first developed by Park and Bartoszyﬁski (1990b). Further, they obtained
stability conditions analytically based on the PGF.

In implementing p-persistent CSMA/CD the major problem is to determine
the value of p so as to minimize the response time for users while maintaining
stability of the system. In this paper an approximation procedure is developed
to compute the optimal p which leads to a stationary operating mode and at the
same time yields the minimum mean packet delay in equilibrium. An optimization
of the p-value with respect to the response time has not been studied for a p-
persistent CSMA/CD svstem with more than two users, though it has been carried
out for slotted ALOHA by Saadawi and Ephremides (1981) and Sidi and Segall
(1983).

In the next section, the p-persistent CSMA/CD channel access protocol is
described and the queueing dynamics under this protocol is modeled as a multi-
dimensional semi-Markov chain. A stationary PGF of packxet backlog, i.e., the
sum of all queue lengths, is obtained in Section : based on the joint PGF of
the queue length vector. In Section 4 the Kolmogrov forward equation is
derived applving an M/G/l approximation to the stationary PGF of packet
backlog, and an iterative procedure is developed to evaluate the mean packet
delay in equilibrium and optimize p with respect to the mean delay. A numeric
analysis is conducted in Section 5 and the analvtic results are compared with
simulation results demonstrating the accuracy of the proposed approximation

scheme. Section 6 contains concluding remarks.

2. A Semi-Markovian Model of the Message Queueing Process

A brief description of the p-persistent CSMA/CD channel access protocol,
which is sufficient for the reader to follow the subsequent analysis, follows.

The system consists of a single server (the channel) and multiple,
infinite-capacitv gueues of customers (message packets). The number of queues,.

denoted by m, can be as large as 200 in local area networks. The channel time

to




is slotted with the slot size being the maximum propagation delay, and a slot
size is chosen as the unit of time. Discrete time index ¢=0,1,... is used to
denote slot boundaries.

If the channel is busy no users attempt transmission (due to carrier
sensing) until ongoing transmissions are completed and the channel becomes
empty again. Once the channel becomes empty, every busy user (i.e., a user
with a nonempty queue) persistently attempts at every C to transmit a message
packet from the top of its queue. In a transmission attempt a user samples a
random number from the uniform distribution over [0,1}. If the number is
smaller than p. it starts transmission of a packet; otherwise, it suppresses
the start of transmission. Thus whenever the channel is empty all busy users
contend to seize the channel with an equal chance. If only one among all busy
users samples a random number smaller than p at time ¢, the user starts
transmitting a packet at t and the packet is successfully transmitted. If two
or more users start transmitting packets at the same t, packets collide, the
collision is detected, and all collided transmissions are aborted before
transmissions are completed.

It is assumed that in each slot at most one packet arrives at a gqueue
(vkich is reminiscent of Poisson process assumption). The probability that a
packet arrives at a queue during a slot is -denoted by A. The numbers of
packets arriving in different slots at the same user are independent, and the
numrbers of packet arrivals at different users in the same or different slots
are incdependent. This message input process (called a geometric arrival
process) implies that queueing processes at different users are symmetric;
viz., queue lengths at individual users are exchangeable random variables
(Billingsley 1979).

Following Takagi and Kleinrock (1985a), the channel state dynamics are
modeled as depicted in Figure 1 (note that users 3 to m-1 in the figure are
assumed to be idle throughout the portion of time shown in the figure). The
channel state alternates between idle periods and busyv periods. During an idle
period all users have empty queues, and during a busv period there is at leas:

one busv user. With the assumed message input process. durations of idle




periods are independently and geometrically distributed; hence the beginning
of an idle period is a system regenerative point. A busy period is divided
into a number of sub(busy)periods, each in turn consisting of a transmission

delay followed by a packet transmission period.

Figure 1 about here

During a transmission delay no packets are transmitted, even though the
channel is empty, since all busv users continually sample random numbers
exceeding p. A transmission delay terminates at time t when one or more busy
users sample random numbers smaller than p and start packet transmissions. The
duration of a successful packet transmission is proportional to the length of
the packet transmitted. Packet lengths may vary. However, for analytic
convenience, we use the expected value of packet lengths and denote it by Z.
The duration of an unsuccessful transmission, which is the time to detect and
resolve a collision. is represented by 2'. In a baseband system like Ethernet,
it takes at most two slots to detect a collision. Thus 2' is usually much
shorter than Z. A p-persistent CSMA/CD svstem is completely described by the
set of parameters, {m,p,X,2,2'), at least for the purpose of our analysis.

Throughout the paper we use the follnwing convention in defining
rotations: A boldface capital letter indicates an m-vector or a function with
vector arguments, except that E and P stand for expectation and probapiiity,
respectively. An italic capital letter with an underlined superscript, i,
indicates the ith element of an m-vector, and an underlined italic capital
letter signifies the sum of all elements in an m-vector. An italic capital
letter without a superscript or an underscore signifies a set or a function
with scalar arguments.

Denoting the set of network users by I={1,2,.. m, we define Qt- {Q%,

. 5 m L
to be the vector of queue lengths at ¢. and Q = % 197 o be the packet
[ ™= -

or

cacklog at t. The process |Q.) is characzerized as an irreducible, aperiodic




discrete-time Markov chain whose state space is the m-dimensional vector space
O-{[wi' iell: wizo, integer}.

A semi-Markov chain model of the queueing process is constructed as
follows (which is more accurate than the semi-Markov chain model presented in
Takagi and Kleinrock 1985b): The beginning and the end of each idle period are
regarded as embedded Markov epochs. Within a busy period, the boundaries of
subperiods are chosen as embedded Markov epochs. Denoting these epochs by
k=0,1,.., with k=0 at r=0, we have an embedded Markov chain {Qk) which is a
multidimensional random walk. In Figure 1, the embedded epochs are shown by -,

a.. the packet backlog at those epochs, Q. are illustrated.

3. Stationary Probability Generating Function of Packet Backlog

The major difficulty in analyzing the queueing process (Q,} lies in that
queues at different users interfere with each other through the shared
channel. This problem of interacting multiple queues cannot be solved using
classical queueing theory. There are no analvtic results in the literature for
evaluating the mean packet delay in such a multidinensional queueing svstem,
and even approximatiors are difficult to obtain when m> 2 (see Kleinrock and
Yemini 198C). In this paper we base the derivation of the mean packet delay in
equilibrium on the stationary PGF of (¢,). By the aggregation of {Q,) into a
one-dimensional process {le we, of course, lose information about behaviors
of individual queues. The approximation needed to overcome this loss of
information can, however, be localized in the delay analysis (as will be shown
in Section 4) so as to generate accurate results (verified by simulation in
Section 9).

To describe the process (le we first define the following random
variables. Notations for each element in a random vector and the sum of all
elements in a random vector are defined according to the convention mentioned
earlier.

X{n) : numbers of packet arrivals at respective queues over an n-slot period.




Zk : numbers of packets that are successfully transmitted from respective
queues at the end of the subperiod which begins at the kth epoch; Note
that either Zk-O (0-vector) or Zi =] for some i and Zi =0 for all jmi.

Rk : duration (in number of slots) of the transmission delay in the sub-
period beginning at the kth epoch.

Lk : duration (in number of slots) of the packet transmission period in the
subperiod beginning at the kth epoch.

e 7 Qe e

Bk c= (i€l Qi =1}, i.e., the set of busy users at the kth epoch.

B/ (R,):= (iel: ¢f=0,¥1(R, )21}, i.e., the set of users who are idle at the kth

epoch, but become busy by the end of the transmission delay in the
subperiod beginning at the kth epoch.

The process (Qk} can now be recursively defined as
Qpe1= QY where U, = X1 if Qk=0; U, = X(R.+L

)-2, otherwise. )

K
In this equation £(1) represents rardom variable 2. 1) with the constraint
X(1)z 1. Under the geometric input process, X(l) has a binomial distribution
with parameters m and A. Therefore, if Qk=0 (i.e., 1f the kth epoch is the
beginning of an idle period), Qk+l follows a truncated binomial distribution
given by
- - N B1) BN PR TR » L« B s
P1Q, ,1=41Q,=0) {q]x (1-20)7 7 7{1-(1-0)7), 1= g= a. (2)

Note that Q, iven Q,=0 is the packet backlog at the start of a busv period.
k+1 & k P & yP
Next, if ka 1, the random drift Qk is the sum of random variables X(Rk),
K(Lk) and -gk. Unfortunately, the latter variables are stochastically

dependent on each other in a complex way. First, L, (and hence X(L,)) depends

k
\T = ’ 3 e - ] 3 ] -
on gk. Namely, Lk 2’ if Zk 0 and Lk Z otherwise (i.e., if ;k 1). Random
variable gk in turn depends on lBk' and 'Bk(Rk)i since the success of a packet
transmission depends on the number of bus: users a:t the end of the transmis-
1 & ] A wohiet i N ar ! ol T3 las=*~g ! !
sion delay, which is the sum of [3.| and [3;(R,)|. The latter, [3/(R,)],

n

cepends on K(Rk). Furcther, Rk and i(;k) are jointlv dependent on idkl. and




finally lBkl is uniquely determined given Q. but stochastically dependent on
Qk' These stochastic dependencies are summarized in Lemma 1 below. A detailed
analysis of these stochastic dependencies and the resultant conditional PGF of
Q1 given kal can be found in Park and Bartoszyﬁski (1990b). A derivation of
the latter PGF and the proof of Lemma 1 are summarized in Appendix 1 at the

end of this paper.

Lemma 1: For any k with Q,>0,

1B(R) | 13|

).

An optimization of the p-value with respect to the mean packet delay has

E(U, lQ,)- EE{K<Rk>+5E[E[K<Lk>IZk]'Zk Rk.x<Rk>]

been studied for slotted ALOHA, as mentioned earlier in Section 1. Compared
with slotted ALOHA, the delay analysis and optimization of the p-value is
significantly more complex for p-persistent CSMA/CD. The source of additional
complexity is the stochastic dependencies among the random variables as
described in Lemma 1. These stochastic dependencies stem from the carrier
sensing and collision detection mechanisms which have been added to the
slotted ALOHA protocol in devising p-persistent CSMA/CD (see Szpankowski 1988
and Tswbakov and Mikhailov 1980 for a Markov chain model of slotted ALOHA with
buffered users). In this paper the stochastic dependencies among Lk’ gk, Rk'
X(Rk) and }3k] are exactly incorporated in the delay analysis. An
approximation is introduced to simplify the dependency of IBkl on Qk‘

The process (@, ) is a random walk with random drifts tty ). The prccess is
uniformly downward bounded meaning that P(Qk<—l)—0 for all k. It also
possesses an important propertv ~alled the bounded homogeneiry, which is

described in the following l.emma (see Appendix I for the proof):

Lemma 2: For any k. k', Q, and Q,, such that |B,|=3,.1, P(Qk-u|Qk)-

P(Qk.=u|Qk,).

k(s) to be the PCGF of Qk' In view of (1) we write

~1




Fles1(S)™ Fry1(s]Q=0)P(Q=0) + F, . (s]Q,>0)P(Q,>0) . (2)
Letting H(s):= Fk+l(lek-o)’ we obtain from Equation (2)
H(s)= {(As+1-0)T- (-0 /01-(1-0)7) (4)

By Lemmata 1 and 2 we may write

Tr
£ (s]|0,>0)= E oLiegg] Fi 18,14 a,>0|=
Ck+l K k k
1 < nin(g.m) «
= —_— q u LA | | = =}1 = /") = E
) s U P(Uy=u] 13, 1=b) P(|3,1=b]Qu=¢) P{Qu=q). (5)
P20 oy b=l w=-1
Define G, (s|{8,|=b):= Ezz_lsuP(Qk=u|13k|=b). i.e., the conditional PGF of
;k given |3, |=b. By Lemma 2, for any b=0, G(s‘b}:~ Gk(slin[-b) is independent
of x and Qk' Bv setting si =s for all i=l in Equi~ion (A4) in Appendix I, we
get
R As J
G(s|b)= 2 %
= J (l-p)(As+1-23-(1-X)

1

- mA b+j- =it i i .
« [s Loase1-0™ 04 0o (1002 wasel-0™ (121092 L (be ) pi1-0) 2% 1:] ¥

; : N 21 -1
X [ § [i]<-1)J‘”[1-<1-p)b*”<1-x>m'“'“<xs+l~X>b+“J ]A (6)
n=0

“ote that index j in Equation (%) represents the number lBé’Rk)i.

By substituting (6) into (5), (4)-(5) into (3), and then byv passing k to

= in (3), the stationary PGF of (Q.!', denoted bv F/s), is written as
i ;




@ min(q,m)
F(s)= H(s)P(Q=0) + } s9 G(s|bYP(|B|=b|Q=q)P(Q=¢) (75
G¢=1 b=1

As in (7) we simply drop the time index k from an argument to indicate its

quantity in steady state.

4. Delay Analysis

In the sequel, we write F(j)(c) to denote the jth partial derivative of
F(s) with respect to s, evaluated at s=c. We need to evaluate F(l)(l) to
obtain the mean packet backlog at an embedded epoch in steady state, which in
turn is used to evaluate the mean packet delay. Analytic evaluations of F(s)
and its derivatives are difficult to obtain mainly because the conditional
probability P(|B|=b]2=¢) cannot be evaluated explicitly in the presence of
interactions among queues. Therefore, we introduce an M/G/l approximation in
formulating this probabilicvy.

In this approximation, we assume that in steaiv state the message queue
at a user behaves like a discrete M/G/l queue incderendentlv of other queues.
The queue at a user in the CSMA/CD svstem inceed has a single server (the
channel) and geometric arrivals (a discrete version of Poisson arrivals) of
message packets. But how about the service time? The service time for a packet
begins at the point when the packet is promoted to the top of its gueue. The
service time is defined, in the context of an M/G/l system, to consist of: (i)
a number of sub(busv)periods, since that beginning point, during each of which
the packet is not transmitted (aue to sampling a random number greater than p)
or is involved in a collision: plus (ii) the subperiod in which the packet is
finally transmitted with success. This service time is actually atfected by
other busy users’ contention for the server. Furthermore, the set of busy
users mav change during the service time of a particular packet. The
assumption of independence (or "no interference") among the queues in s<eadyv
state is thus introduced so that service times are 1i.i.d. in steadv state,.

wizh this assurp=ion., we now mav write




P(|B|=b)= [gjab(l-a)m'b, 8)

where § is defined to be the steady-state probability of a user h 'i.g a non-
empty queue at an embedded epoch.

The no interference assumption for the steady-state behavior of multiple
queues should lead to a closer approximation when it is applied to p-
persistent CSMA/CD than when applied to slotted ALOHA. This is because the
former suffers less from interference (viz., collisions) than the latter due
to additional controls, carrier sensing and collision detection. The
approximation in (8) is motivated by the results in Sidi and Segall (1983)
where an M/M/1 approximation is applied to the slotted ALOHA demonstrating
good accuracy over a wide range of system parameters. It should be noted that
the approximation is limited only to computing 6, and the rest of delay

analysis exactly reflects the dynamic behavior of interacting multiple queues.

In~orporating (8) into (7) and using the equation F(0)= P{Q=0), we obtain

F(s|9)= H(s)FG|3) + U(s|8)1F(s[5)-7(0]6)1, (9)
o1

where U(s|d):= } c(slb)[g]ab<1-9)”'3. (10)
b=1

Taking the first derivatives of both sides of (9) vields

F(H(s)8)- [H(l)(s)F(Olﬁ) N v(1)<s|9><p<s|9>-r<0|9>>]//<1'V<sl9>>- an
By evaluating Equation (l1) at s=1 and using the condition F(1]8)= V(ll&)- 1,
the equilibrium differential equation (i.e., Kolmogrov forward equation in

equilibrium: see Kleinrock 19753) can be derived as

0 = v yro)sy + v sy 1-Fo]an. (12)

10




which can be rewritten as
F(0]4)= v )y v )y 1)y (13)

Here H(l)(l) and V(l)(llﬁ) are the expected drift of packet backlog during an
idle period and that during a sub(busy)period, respectively. From (4) we get
1y = m/(1-1-0™) . v2)(1]8) is obtained simply by replacing G(s|b) by
¢ (1|b) in the RHS of Equation (10). G(17(1]b) is the expected drifc of
packet backlog over a subperiod beginning with b busy users, and is derived in
Appendix II using Equation (6).

In light of (12), the condizion V(*/(1]5)< 0 must be satisfied for the
system to achieve equilibrium. In Equation (10) we see that V(l)(lla) is the
marginal expectation of G(l)(llb) over b=1,..,m, which in turn is equivalent
to E(legk>0). Thus the equilibrium equation (12) implies that a necessary
condition for stability of p-persistent CSMA/CD (i.e., ergodicity of (Qc}) is
approximatelv given by E(gk|Qk>O)< 0. Furthermore, bv Pakes' (1969) lemma, the
latter condition is also sufficient for ergodicis: of the one-dimensional
random walk (Q,}. It can be easily proved that (Q_! is ergodic if and onlyv if
{Q,} is ergodic. Therefore, the condition E(;lek>O)< 0 can be regarded as a
sufficient and necessary condition for stability. However, a theoretical proof
of this assertion is difficult and has not been established in the literature.

The reader is referred to Park and Bartoszyﬁski (1990b) for a theoretical
analysis of stability conditions for p-persistent CSMA/CD. Some of the main
results in that paper are summarized in the following for later reference in

Section 5. The conjecture below has been numerically established.

Lemma 3: (Q,) is recurrent if G(l)(llb)=E(Qk||Bk|=b) < 0 for all b=1,...,m, and
only if m\Ia+(1-p)7/11-(1-p)™1 =< 1.

Conjecture: Given svstem parameters {m.,A.Z,£'). for any b there exist pL(b)

1
and p.(b) such that G ‘)(llb)s 0 if and onlv if pL(b)s joi ;C(b).




Further, (Q,} is recurrent if pL(l)s ps py(m) since Py (b)< p (b") and
pU(b)< pU(b') for any b> b’.

Recall that 6 is the probability of a user being busy in steady state,
and that F(O|9) is the conditional probability of all users being idle in
steady state given the value of §. It follows that, under the assumption of
independent queues, we must have 1-4= F(0|€)1/m. We thus compute the value of
§ iteratively using Equation (13) until the following convergence criterion is
met:

1§ - (1-Fo|$)/™

V< €. (14)
The function f(9):= 9+F(O|&)l/m-l is monotone increasing in § and changes sign
once in the range (0,1) of 9. Therefore, a bisecting search method can quickly
find the value of 4 satisfying (14) even for a extremelv small value of .

Let 4 be the wvalue of 4§ satisfying (l4). We can now evaluate F(l)(1|9) by
applying L'Hospital’'s rule to (1l1) and then replacing the RHS of Equation (13)
for F(O|5):

/

V(J)Klla-‘l /

sy o (2)
¥) H y)J /

1 as)- [3(1)<1) v(2) 1
2 v (19 [v(l)(1|9> - H(l)(l)]. (15)

In this equation. #Z)(1)= m(m-1)2%/(1-(1-0)™) from (&), and v(?)(1]9) is
obtained simply by replacing G(s|b) by 6(2)(1|b) in the RHS of Equation (10).
A derivation of 6(2)(1|b) is provided in Appendix IT.

Recall that F(l)(1|9) is the mean packet backlog observed only at the
embedded Markov epoch. In order to obtain the steady-state mean packet delay
observed at an arbitrary slot boundary t, we need to evaluate the mean packet
backlog at an arbirrary t in steadv state (see Takagi and Kleinrock 1985b for
a similar treatment). If t is in an idle period, the backlog is zero. The
prchability that an arbitrary ¢ is found in a busv period when the system is
in steadvy state is given by {l-F(Ol?)}. Letting Q denote the mean packet

backlog at an arbitrary ¢ in steady state, we have




Q= (1-F(O|8)nis/T (16)

where T is the expected duration of a sub(busy)period in steady state, and S
is the expected backlog accumulation over a subperiod in steady state.

First, to evaluate T, we note that the duration of a subperiod is i.i.d.
for all subperiods starting with the same number of busy users, due to the
bounded homogeneity (see Lemma 2). Letting §(b) denote the expected duration
of a subperiod starting with b busy users, we may write T= Eg_lé(b)P(lBl-b).
Furthermore, due to regeneracy of the queueing process the duration of a
subperiod starting with b (>0) busy users converges a.s. to E(R1+L1||Bll-b)

provided that the process is ergodic. Consequently, for any ¢>0 we have

§(b)= E(Ry+L | (B, |=5)= 5{31+E[E[Lll;1] Rl,{si<Rl);] |31[-b}, (17)

reflecting the stochastic dependencies among R, L.

% and gk (see Lemma 1).

Define F(slb) to be the conditional PCGF of (31+L1) given |Bl|-b>0. This
PGF and §(b)= F(l)(llb) are derived based on (17) in Appendix III. Using (A9)

in the Appendix and Equation (8) we get

m
T= } r(l)(1|b>[g]9b(1-a)”'b. (18)
b=1

Turning to § in (16), let us first define 5(g) as the expected backlog
accumulation over a subperiod beginning with g outstanding packets so that S=
E:_lﬁ(q)P(Q-q), To derive f(q) for ¢>0, we define Z(v|q.b) to be the total
time (in number of slots) that (QC} spends in state y during the subperiod
which starts with ¢ packets waiting at b (21) busy users. Due to bounded
homogeneicy, £(v|q,b) is i.i.d. for all subperiods that start with ¢ waiting
packets and b busy users. Further, it converges a.s. to its expected value if

the queueing process is ergodic. Therefore. for anv ¢>0 we have
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©° min(q.m)

B(qg)= y E£(y|q.b) P(|B|=b]0=q). (19)
y=q b=l

The process (Qt) is non-decreasing during a subperiod and the packet arrival
process is time homogeneous. Consequently, the average backlog at an arbitrary
slot boundary in the subperiod which starts with g waiting packets and b busy

users, or Zt_quE(qu,b)/6(b), is estimated by g+(.5)mA6(b). We thus can write

© © min(q,m)
S= }B(q)P(Q-q)- § §(b)(g+(.5)mA6(b)} P(|B|=b|Q=q)P(Q=2). (20)
g=1 q=1 b=1

From (9) we see that I__ qP(Q=q)= d[V(s|#)(F(s[8)-F(0]8)1i/ds] _ - F 1))+

V(l)(llﬁ){l-F(O|9)). Incorporating the latter and (8) into (20) we get

I
Hav@a-roolin| + Com S a2 Flhaanm . (21
5
b=1

5= T{F(l)(l

Finallv, using Little (1961)'s theorem the mean packet delav in steady
state, D, is given by

D= Q/mi= (1-F(0|8)15/mAT. (22)

The mean packet delay, D, includes (i) the elapsed time from the arrival of a
packet until the packet is promoted to the top of the queue, (ii) a number of
sub(busy)periods during each of which the packet is not transmitted or is
involved in a collision, and (iii) the subperiod in which the packet is

successfully transmitted.

5. Numeric and Simulation Experiments
The algorithm to compute D given parameters {p,m,X,2,2') was encoded in
Fortran 77; it first finds § and F(O|®) satisfying the condition (14) with

«+=1.E-10, and then compute D using Equaticns (15) through (l2).




Computational results are shown in Tables 1 and 2, respectively, for two
different cases. The two cases have the same values for m (=50) and £' (=3),
but different values for A and 2. The latter parameters were set to 1.6E-4 and
75, respectively, in Case 1 to represent a high utilization of the channel
capacity; and to 1.2E-4 and 25, respectively, in Case 2 to represent a low
utilization. Note that by Lemma 3 an upper bound on the channel capacity
(i.e., the maximum achievable throughput rate in equilibrium) can be given by
1/4. The ratio of the total input rate, mi, to 1/2 is 62% in Case 1 and 15% in

Case 2.

Tables 1 and 2 about here

In view of the conjecture in Section 4, the range :pL(l),pU(m)} of p that
guarantees stability is provided in each table. Among the steadv-state
measures reported in the tables, the new notation, 3%, signifies the set (b:
G(l)(llb)> 01, The p-wvalues, at which V(l)(113)< oand B+ is nonempty, yield a
finite mean packet delav, though not satisfying the sufficient condition for
stability given in Lemma 3. It should be noted, however, that the delay at
p=2.-(m) is close to the minimum delay: in Case 1 the minimum delay was 128.6
at the optimal p-value .16, while the delay at p-pU(SO)—.CS was 140.4,
exhibiting a 9% gap from the minimum; in Case 2 the gap was only 2%. It is
also notable that the expected number of busy users in steady state, or E([B])
{(= m5), was 1.5 and 1.1, respectively, in Cases 1 and 2 when p was set at the
optimum. This indicates that there is little interference among queues in
steady state if p is optimized with respect to the mean packet delay, which
justifies the M/G/1 approximation. Indeed, the ratio of collisions to all
packet transmissions observed in simulation runs was about 5% and 1% in Cases
1 and 2, respectively, with the optimal p-values.

The simulation model was written in SLAM II (Pritsker 1984) and run on an
124 2222AP mainframe. In the simulation model, we generated packe:z arrivals

for each user so that the interarrival times follow an exponential




distribution with intensity A. It is well known that the geometric distribu-
tion of interarrival times can be closely approximated by the exponential
distribution when A is small (Feller 1968). This exponential approximation
tremendously reduced the computing time. Approximately 5,000 packet transmis-
sions were collected to estimate the mean packet delay for each p-value. The
first 500 observations were discarded to eliminate the initial transient
period (see Wilson and Pritsker 1978, Schruben and Goldsman 1985).

The simulation results are shown in Figure 2 along with the numerical
approximation results. The solid line and dotted line show approximation
results for Cases 1 and 2, respectively. Simulation results for Cases 1 and 2
are plotted using svmbols '+’ and ‘*', respectively, and show good agreemcn:t
with approximation results. The delay (versus p) curve is U-shaped and the
minimum delay is attained in the neighborhood of the maximum p-value that
leads to equilibrium (viz., near the bottom right corner of the U curve). A
similar, vet different, pattern of the delay curve was found for slotted ALOHA
systems by Sidi and Segail (1983). The CSMA/CD achieves close-minimal mean
pacrket delavs over a much wider range of the p-value than the slotted ALOHA,
presumably due to the additional medium access con-rol mechanisms -— carrier

sensing and collision detection.

Figure 2 about here

6. Conclusion
A multidimensional queueing process with interactions among individual
queues arises in many computer and communication svstems such as coupled
processors (Szpankowski 1988), ALOHA satellite comrmunication (Sidi and Segall
1383) and CSMA/CD local area networks. However, there are no analvtic results .

for computing the mean queueing delay in such a svstem with more than two

queues. »




In this paper we have shown that the mean packet delay in CSMA/CD
networks can be obtained quite accurately using an M/G/1 approximation. The
success of this approximation method is ascribed to the following: (i) The
message queueing process has the bounded homogeneity property (Lemma 2). With
this property, after introducing the approximate distribution of the number of
busy users (Equation (8)), we could simplify the stationary PGF of the packet
backlog (Equation (7)) into a product form (Equation (9)). (Note that in
Equation (9), ZZ_lP(Q-q) in Equation (7) is factored out as (F(s|6)-F(O|6)}.)
(ii) The delay analysis incorporates an exact PGF for the random drift of the
packet backlog over a period between two consecutive embedded Markov epochs
(Equations (2), (6) and Lemma 1). (iii) Finally, the interference among queues
is actually minimal in steadv state if the control parameter p is optimized.

A practical and easy wav to determine the p-value would be to set it
equal to pt(m): this guarantees stability (by Lemma 3 and Conjecture) and at
the same time vields a close-minimal mean packet delav in equilibrium (as
numericallv demonstrated in Section 5). According to Conjecture, for given
svstem parameters (m. A, Z.2'), pt(m) is obtained »+ solving G(z)(llm)— 0 for p.

Substituting m for 5 in Equation (A3) in Apg-ndix I1. we obtain

¢ )=

— {k(l-p)m+(mki-l)p(l-p)m'1+Ai'{l-(l-p)m-mp(l-p)m_lﬁ}. (23)

7
Rewriting (23) we see that G(‘)(llm)t 0 is equivalent to

£(q)i= c1gTrerq™

+ca= O, (24)
where g=l-p, cy= c+A(2'-1), co= mA({£-£'}-1 and c3= A&’'. The equation f(q) has
the global minimum at q*-(m-l)CQ/mcl. It has exactly two solutions (q,,q3)
such that 0< g;< q*< G2< 1 provided that mAf< 1 (which is a necessary
condition for stability by Lemma 3) and f(q*)< 0. A bisecting search over the

range (O,q*) of ¢ can quickly find ¢;. and then we have pr(ﬁ)' l-0,4

17




Our approach -- viz., incorporating an exact transient analysis of

multiple interacting queues into an M/G/1 approximation for evaluating average
delay in steady state -- can be employed to analyze other CSMA/CD protocols.
It would be interesting to attempt applying this approach to the analysis of

new varlants of CSMA/CD that are designed for high-speed broadcast bus

networks (e.g., p; persistent protocol by Mukherjee and Meditch (1988), LCSMA-
CD by Maxemchuk (1988), and a modified CSMA/CD by Lin and Sousa (1990)).
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Appendix I. The Conditional Joint PGF of Q, , Civen Q,=0
The joint probabilicty of Rk-r and X(r)-[xi,ielz 05xi5rj conditional on Qk

is given by

|B 1 +18, (r)] o r) X; r-x,
P(R, =r X(r)=[x,,iel'}Q )= {1-(1-p) T (1-p) A T(l-0) fpX
K i k ieB X,
k

4 -1 |tV x.-1 r-w-x.+1
{ 717 avnH{m Y e T ot Ay oo
ie -Bk-Bé iEBé(r)w-l i

In this equation, w represents the slot in which the first packet since the
beginning of the kth subperiod arrives at user i (who had no waiting packets
in the beginning of the subperiod). It shouid be noted that Bé(r) is uniquely
determined given B, and X(r), and B, is uniquely determined given Q. Equation
(Al) thus shows that the joint distribution of R, and X(R.) depends only on
3,, apart from the system parameters p, A, and I. That is, the joint

<

distribution is identical for anv x and k’ with B”=Bk" even if k’Qk"
A o~

The probability of having a collision in the subperiod beginning at the

«th epoch, given Rk=r, is

/
/

|3, 1+18;(r) ] |3kl+!5;'((r)l-1} /
/

P(Z,=0]3, ,3/(r))= {1-(l-p\ (1B 1+1BL(r) 112{Ll-p)

IBRI+IB;’(<:‘) [}

{(l-(l-P) (A2)

The probability of having a successful transmission in the subperiod beginning
at the kth epoch, conditioral on Rkar. is simply given by P(Zk#OIBk,Bé(r))- 1-
P(2,=0[8, ,B;(r)). As such, given R,=r, Z, depends only on B, and B} (r). Recall
that Bé(Rk) is uniquely determined by Bk and X(Rk) and that Rk and X(Rk) are

jointly deperdent on B3, . Therefore, Z, is transitively dependent onlv on 3. .




Since X(Lk) depends only on Zk it follows that the random drifc Uk depends on
Q) only through B, . We thus have proved both Lemmata 1 and 2.
let Fk+1(s|Qkﬂ0), where s-[si,iEI}, be the conditional PGF of Qk+l given

Qk#O' and G(sIB):- ck<s|3k—s) be the conditional PGF of Uk given Bk-B which is
independent of k and Q (by Lemma 2). Then we have

Fk+l(s|Qk¢O)= E Lé} s, E :é' s 1B Q0=
1 m
- — } G(slB)[Fk(s:sizo ¥
P(Q=0) 521 wazrT31=b

ig3)- } Fk(s:s;,-O,si-O ViEB)] (A3)
i’e€3

Using (Al) and (A2), funcrion G(SIB) is eva.uated as:

=) [ o>
G(s|3)= E{ T s,  E|
= - |
iel |

: 1
K o n i
: i Loor S‘. Z:\,“! hk,x("k)j 3;(’5
x r b
5\ < —_ % N L Tl 1 -z,
=/ 1Los;” } EL"‘ s. Z,=z,; ie:jJ s T
r=0 x.=0 vieILl-%* 25=0 vier iel i€l |
* (z:+--+znsl)

Rk=r,X(r)=[xi,i:-

el '7]_3k=3] P[Rk=r,
mfb
{ -

-1
Asi{(l-p)(xsi+l-k)-(l-k)} } X
j=0 ¥B'CI-BT|B'|=j

i

ieB3UB’

X {[n(s)p(l-p)b+J'l- } 5;1] + ¢<s)(1-<1~p>b*1-(b+j)p(1-p)b+i‘1)} Y

(-l)j‘n[l-(l-p)b+n(1-X)m'b'n _
n=0 ¥AZB'.|A|=n

-1
| i (Xsi+l-k)] (AL)
ieB A




where NM(s)="T] (As;+1-1)" and 8(s)="T[ (as,+1-2)% are the PGF's of the
ierl iel

duration of a successful and an unsuccessful transmission period,
respectively. A detailed derivation of Equation (A4) can be found in Park and

Bartoszynski (1990b).

Appendix II. Derivatives of the PGF G(s|b) Evaluated at s=1

Taking the first and second derivatives of G(s|b), which is given in

Equation (6), with respect to s and evaluating the derivatives at s=1 we

obtain
m-b Jj
m-b A .
¢ 1b)- } [ , ] [———] [ w[(1-(l-p)b+J}jP(l-k)/(p-A) + (me-Da +
j=0 J A-p
+ Amf’!l-(l-p)b+j-a)] L oAgl1-(1-p)PHd) ], and (AS)
\ P2 (b)Y 2 )d - ,
¢ (1] = } [ ][-——] [w[a(kzmigJi-l)-2Am2+2) + ;-mz'(mf’-l){l-(l-p)b*J-a>]+
H i A'P
J-O 7

r ;
+ 2|{Am2-l)a + xmz'(l-(l-p>b*J-a>][A¢ + jp(l-l)v/(p-k)} +

+il-c1-p)Pt) {A2(2ﬂ+¢’) + 2jpk(l~))¢/(p-k)] +

+ jil-(l-P)b+j)v[j-l + 2jA(1-p)/(p-2) + <;+1>A2<1-p>2/<p-x>2]]. (A6)

where a:= (b+j)p(l-p)b+j-l; 8= 1-(1-p)b+n(l-X)m'b'n: Y= ﬁ [é](-l)j-n/ﬁ:
n=0
e j-n 2 St j-n 2
s ) [;](-l)f (b+n)(1-8) /8%, &':- {;](-1>J (5+m) (S+n-1)(1-8) /8%
n=0 n=0




and 7= ﬁ [—I];](~1)j'n(b+n)2(l-ﬁ)2//33.

n=0

Appendix IIX. Derivation of the PCF [(s|b) and Its First Derivative

In this Appendix, a, g and ¥ defined in Appendix II are used again. Based

on Equation (17) we can write

R L
T(s]b)= E{s 1 E[E[s llgl]

|
RI,IBi(Rl)l}IIBll-b}-

IBi<r>i=J,IBll-b]P[Rk-r,|Bi(r)|-j‘|al:-b]-

L
Els ‘£1=z P[Zl=z

8
3
o

r-b G . .
_ oF [ | ] [sla R (1_(1_p)b+1_a}] (l-A)r(m'b’J)(l-p)rb X
J

X [ } <1-A>w‘1x(1-p)r'”} . (A7)
w=1

Evaluating the summation over w and then the infinite series over r, we obtain

b ap)( A )Y . . L .
r(s|b)= E [ ](—-—] [sza + st <1-<1-p>b*J-a)]{ i [g](-1>J‘“/<1-s<1-a)>}.(As>

Jj=0 A-p n=0

m-b m-b x ) . .
r)ap)- } [ ][———] [w[za + E’{l-(l-p)b+J-a}} $1-(-pyPHy x

j=otJ

X { ﬁ [g]<-1>i-“<1-ﬂ>/52}]. (A9)

n=0




Table 1. Steady State Measures for Case 1 where m=30,2=75,2'=3 A=1.6E-4

(pL(l)—l.GBQAE-2, pU(SO)-8.4378E-2)

P B* E(|B])
1.144E-2 1
1.308E-2 1 2.2886
1.634E-2 - 2.0754
1.961E-2 - 1.9466
2.288E-2 - 1.8611
2.768E-2 - 1.7778
3.902E-2 - 1.6721
5.036E-2 - 1.6194
6.170E-2 - 1.5887
7.594E-2 - 1.5655
8.438E-2 - 1.5563

1.097E-1 32 - 50 1.5405
1.434E-1 29 - 50 1.5337
1.603E-1 26 - 50 1.5336

-.1067
-.1370
-.1598
-.1773
-.1964
-.2242
-.2398
-.2494
-.2570
-.2601
-.2655
-.2679
-.2679

[ T =T CR N S T V%)

[ e

.9976
.9448
L4314
L1347
.8762
.5871
.4565
.3832
.3273
.3047
.2611
.2312
.2223

.32
yan
.31

.13
.82
.11
.63
.43
NV
.14
.00
.14

427.
296.
233.

195

126.
109.
99.
91.
88.

81

76.

39
99
08

.91
1€63.

28
27
17
31
55
29

.63

36

.49

.15

26

.18
.57
.49
.65
.73
.51
.64
43
~.19
.89

62

* The system is unstable with v{1)(1]%)> 0.
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Table 2. Steady State Measures for Case 2 where m=50,£=25,£'=3,1=1.2E-4

(pL(l)—4.8303E~2, pU(SO)-l.O722E-1)

s~ &
W
&~
N
m
L]
)
—

w o~
- N
(Vo TR o
o w
1 m
1] 1]
NoWw
+ 1]

~3 W
W W
[@ 2o
O ol
1 421
L} L}
N [a%]
[} i

2.144E-1 24 - 50

— o = NN

—_

.4953
.1872
.8287
.7190
L6373
.1502
.0991
.0831
.0733
.0677
.0691
.0712
.0738

&

-

.5053
.1352
23321
.9372
.1881
.7534
.7062
.6928
.6846
.6791
.6775
.6778
.6784

139.
128.
109.
101.
76.
37.

247
22.
19.
18.
17.
17.

964 .

577

284

220

57

.65

79

.65
.77
.98
.25
.66
.97
.59
.66
A

.30

1065.
670.
366.
297.
163.

70.
56.
52.
49,
47.

46.

46

35
06
04
99
21
03
52
25
45
32
33

.27
.28

* The svstem is unstable with V(l)(l|9)2 0.
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Comparison between Approximation and Simulation: D versus p

Figure 2.
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