
REPO F _IIII ii Tl IZ II I~~Ii G omAPProvedAD-A242 28 0704-0188

oo-6-uxv~ ~. ~ u m un uua of ary 01ner kse f1i oicina w~am n J "WOcki ~lg foj.idu r redjwis udnt asig
Hedun S isDhctcrat. ir i~n eaido aadRinp 1215 Jeftsmon Davis HI0oway, t. 1204 kAir1pn, VA22224WZ anaoh 0o t kftmamwr and pagaimr Atlah. O#1M a,

Managemern and &udges Wasign. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3.* REPORT TYPE AND DATES COVERED

IFinal: 11 Apr 1991 to 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Hewlett-Packard Co./Apollo Systems Division, Domain Ada V6.Om, DN4500,
Domain/OS SR1 0.3 (Host & Target), 910411 W1.1 1137

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) - RM ING ORGANIZATION

Ada Validation Facility, Language Control Facility ASO/SCEL RTNME
Bldg. 676, Rm 135 IAVF-VSR-451-0491
Wright- Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTIONIAVAILABIUITY STATEMENT 1 2b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 wordS)

Hewlett-Packard Co./Apollo Systems Division, Domain Ada V6.Om, Wright- Patterson AFB, OH, DN4500, Domain/OS
SIR10.3 (Host & Target), ACVC 1. 11.

91-15048

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 1.PIECD
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 6 RIECO

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED IUNCLASSIFED IUNCLASSIFIED _________

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 239-128

~1 1 '~ t9

AVF Control Number: AVF-VSR-451-0491
21-AUG-1991

90-07-05-APO

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910411W1.11137
Hewlett-Packard Co./Apollo Systems Division

Domain Ada V6.Om
DN4500, Domain/OS SR1O.3 => DN4500, Domain/OS SR1O.3

Prepared By:
Ada-Validation IFacility

ASD/ SCEL
Wright-Patterson AFB OH 45433-6503

L 1 vl

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 11 April, 1991.

Compiler Name and Version: Domain Ada V6.Om

Host Computer System: DN4500 running Domain/OS SR1O.3

Target Computer System: DN4500 running Domain/OS SR10.3

Customer Agreement Number: 90-07-05-APO

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910411W1.11137 is awarded to Hewlett-Packard Co./Apollo Systems Division.
This certificate expires on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
P Director, Computer & Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program ffice
Q Dr. John Solomond, Director

Department of Defense
Washington DC 20301

Apollo System$ Divisioita po i
3UC0 Apollo Drive 018'4o

508 25,6 6IE0W o
Fax .503 2.56 1.599 ~~.s

Declaration of Conformance

Customer. Hewlett-Packard Co./Apollo Systems Division

Ada Validation Facility: Wright-Patterson AFB, Ohio 45433-6503

ACVC Version: 1.11

Ada Implementation;

Compiler Name and Version: Domain Ada V6.Om

Host Computer Systemn: DN4500. Domain/OS SR 10.3

1hrget Computer System: Same

Customer's Declaration

1. the undersigned. representing Hewlett-Packard Company. declare that Hewlett-Packard
Company has no knowledge of deliberate deviations from the Ada Language Standard
ANSI/MIL.-STD-1815A in the implementation listed in this declaration.

Peter J. Mow
Hewlett-Packard Co.
300 Apollo Drive
Chelmsford, MA 01824

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 9-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Ofice, August 1990.

tUG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAW TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 14 March 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D C83026A B83026B C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B BD1B02B
BD1BO6A AD1BO8A BD2AO2A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A41E CD2A87A CD2B15C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8002A
BD8004C CD9005A CD9005B CDA201E CE2107I CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55B09C B86001W C86006C CD71O1F

C35713C, B86001U, and C86006G check for the predefined type LONG_FLOAT.

C35713D and B8600lZ check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the safe numbers and must be
rejected. (See section 2.3)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX_MANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the followir.1 table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT-IO

CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT I0
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000, thus making the checking of this
objective impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B20049A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD1009I, CDlC03A, CD2A22J, CD2A24A, and CD2A31A..C (3 tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LENGTHCHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages -nly from the
instances of LENGTHCHECK--i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Peter J. Morris
Hewlett-Packard Co
300 Apollo Drive
Chelmsford MA 01824

For a point of contact for sales information about this Ada implementation
system, see:

Peter J. Morris
Hewlett-Packard Co
300 Apollo Drive
Chelmsford MA 01824

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3807
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 69
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 270 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were read by two workstations, in an adjacent building. The
contents were then copied over the network to the host computers.

Testing was done on three host computers connected together on a network.
After the test files were loaded onto the host computers, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option I Switch Effect

-el Produce Error Listing

3-2

PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by

the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in tUG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$BIGIDi (l..V-1 => 'A', V => '1')

$BIGID2 (1. V-i => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-1-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their

respective values:

Macro Parameter Macro Value
--

$MAXINLEN 499

$ACC SIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULTMEM SIZE 16777216

$DEFAULT STOR UNIT 8

$DEFAULT SYS NAME APOLLO UNIXM68K

$DELTA-DOC 0. 0000000004656612873077392578125

$ENTRYADDRESS SYSTEM. "+"(16#40#)

SENTRYADDRESSl SYSTEM. "+"(16#80#)

SENTRYADDRESS2 SYSTEM. "+"(16#100#)

$FIELDLAST 2147483647

$FILE-TERMINATOR rI

$FIXEDNAME NOSUCHFIXEDTYPE

$FLOATNAME NO SUCH FLOAT NAME

$FORMSTRING wl

$FORMSTRING2 "CANNOTRESTRICTFILE CAPACITY"I

$GREATERTHANDURATION
100_000.0

$GREATERTHANDURATION BASE LAST
10_OO6_000.0

$GREATERTFANFLOATBASE LAST
1.9E+308

$GREATERTHANFLOATSAFE LARGE
1 .0E308

A- 2

MACRO PARAMETERS

$GREATERTHANSHORTFLOAT SAFE LARGE
1.OE308-

$HIGHPRIORITY 99

$ILLEGALETERAL-FILE NAME1
7 illegal/file name/2fl$%2102C.DAT

$ILLEGALEXTERNAL FILE NAME2

/illegal/file-name/CE21O2C*.DAT

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMAl PRAGMA INCLUDE ("IA28006D1.A")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("-B28006F1.A-)

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER-LAST PLUS 1 2147483648

$INTERFACELANGUAGE C

$LESSTHANDURATION -100000.0

$LESSTHAN DURATIONBASE FIRST
-10 000 000.0

$LINETERMINATOR ASCII.LF

SLOWPRIORITY 0

$KACHINE CODE STATEMENT
CODE 2'(MOVEA L,AO,A.5);

SMACHINECODETYPE OPCODE

SKANTISSADOC 31

$MAXDIGITS 15

SMAXINT 2147483647

$KAX-INT-PLUS-1 2147483648

SHININT -2147483648

A- 3

MACRO PARAMETERS

$NAME TINYINTEGER

$NAMELIST APOLLOUNIXA88K,APOLLOUNIXM68K

$NAMESPECIFICATIONi //spas/acvc.m/results/ctests/ce/
ce2l2Oa. lib/X2120A

SNAMESPECIFICATION2 //spas/acvc.m/results/ctests/ce/
ce2l2Ob. lib/X2120B

SNAMESPECIFICATION3 //spas/acvc.m/results/ctests/ce/
ce3ll9a. lib/X3119A

$NEGBASED INT 16#FOOOOOOOE#

$NEWMENSIZE 16_777_216

$NEWSTORUNIT 8

$NEWSYS NAME APOLLOUNIXA88K

$PAGETERMINATOR ASCII.LF&ASCII.FF

$RECORDDEFINITION TYPE CODE 0 (OP:OPCODE) IS RECORD NULL;
END RECORD;

$RECORDNAME CODE_0

STASKSIZE 32

$TASKSTORAGESIZE 2000

$TICK 0.01

$VARIABLE-ADDRESS VAR 1'ADDRESS

$VARIABLEADDRESS1 VAR_21ADDRESS

SVARIABLEADDRESS2 VAR 3'ADDRESS

$YOUR PRAGMA EXTERNAL-NAME

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

COMPILER OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

-# id type value (define) Define an identifier of a specified type
and value.

-a file name (archive) Treat file name as an ar file. Since some
archive files end with .a, use -a-to distinguish archive files from
Ada source files.

-d (dependencies) Analyze for dependencies only. Do not do semantic
analysis or code generation. Update the library, marking any defined
units as uncompiled. a.make uses the -d option to establish
dependencies among new files.

-e (error) Process compilation error messages using a.error and send
it to stdout (standard output). Only the source lines containing
errors are listed. Use only one -e or -E option.

-E

-E file

-E directory (error output) Without a file or directory argument, ada
processes error messages using a.error and directs a brief output to
stdout; the raw error messages are left in ada source.err. If a file
pathname is specified, the raw error messages are placed in that file.
If a directory argument is supplied, the raw error output is placed in
dir/source.err. Then, the file of raw error messages can be used as
input to a.error. Use only one -e or -E option.

B-I

COMPILATION SYSTEM OPTIONS

-el (error listing) Intersperse error messages among source lines and
direct to stdout.

-El

-El file

-El directory (error listing) Same as the -E option, except that a
source listing with errors is produced.

-ev (error vi) Process syntax error messages using a.error, embed them
in the source file, and call the environment editor, EDITOR.

-K (keep) Keep the Intermediate Language (IL) file produced by the
compiler front end. The IL file will be placed in the .objects
directory, with the filename ada source.i If the -0 option is used,
the compiler places an ada source.O file in the same directory.

- L ada library (library) Operate in Domain/Ada library
library name (the current working directory is the default).

-ifile abbreviation (library) This is an option passed to the
Domain7OS linker telling it to search the specified library file. (Do
not put a space between the -1 and the file abbreviation.)

-M unit name (main) Produce an executable program using the
named unit as the main program. The unit must be either a
parameterless procedure or a parameterless function returning an
integer. The executable program will be left in the file a.out unless
overridden with the -o option.

-M ada source.a (main) Similar to -M unit name, except that the unit
name is assumed to be the root name of the .a file (In the example -M
example.a, the unit name is assumed to be example). Only one .a file
can be preceded by -M.

-n Suppress the generation of symbol table information (for use by
Apollo's performance analysis tools, tb and dpat) in the object
module.

-o executable file (output) Use this option in conjunction with the -M
option. executable file is the name of the executable rather than the
default, a.out.

B-2

COMPILATION SYSTEM OPTIONS

-0[0-9] (optimize) Invoke the code optimizer (no space before the
digit). An optional digit limits the number of passes by the
optimizer; without the -0 option, four passes are made (default). The
option levels are:

-0 Full optimization
-00 Prevents optimization
-01 No hoisting
-02 No hoisting, but more passes
-03 No hoisting, but even more passes
-04 Hoisting from loops
-05 Hoisting from loops, but more passes
-06 Hoisting from loops with maximum passes
-07 Hoisting from loops and branches
-08 Hoisting from loops and branches, more passes
-09 Hoisting from loops and branches, maximum passes

-P (preprocessor) Invoke the Domain/Ada preprocessor. See
Chapter 6 for a detailed discussion.

-R Domain/Ada library (recompile instantiation) Force analysis of all
generic instantiations, causing reinstantiation of any that are out of
date.

-S (suppress) Apply pragma SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the pathnames of the compiler components.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line, total
compilation time, and error summary line.

-w (warnings) Suppress warning diagnostics.

B-3

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

-E unit name (elaborate) Elaborate unit name as early in the
elaboration order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

-o executable file (output) Use the specified filename as the name of
the output rather than the default, a.out.

-sh (show) Display the pathname of the tool executable but do
not execute it.

-U (units) Print a list of dependent units in order and

suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command, but suppress execution.

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range -1.79769313486231E+308
1.79769313486231E+308;

type SHORTFLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;

type DURATION is delta 1.OOOOOOOOOOOOOOE-3 range -2147483.648 ..
2147483.647;

end STANDARD;

C-i

APPENDIX F OF THE Ada STANDARD

MC680XO Implementation-Dependent Characteristics

This section describes the Domain/Ada MC68OXO as required by Appendix F of
the Ada Language Reference Manual (RM).

Implementation-Dependent Pragmas and Attributes

This subsection details the Domain/Ada MC680X0 implementation-dependent

pragmas and attributes.

Implementation-Dependent Pragmas

Domain/Ada provides the following pragmas in its MC680XO implementation:

BUILT IN

Pragma BUILT IN is used in the implementation of some predefined Ada
packages, but provides no user access. It is used only to implement
code bodies for which no actual Ada body can be provided, for example
the MACHINECODE package.

EXTERNALNAME

Pragma EXTERNAL NAME allows a link name for an Ada variable or
subprogram to be specified so that-the object from programs written in
other languages can be referenced.

IMPLICITCODE

Pragma IMPLICIT CODE specifies that implicit code generated by the
compiler is allowed (ON) or disallowed (OFF). This pragma can be used
to be specified only within the declarative part of a machine code
procedure.

INLINEONLY

Pragma INLINE ONLY, when used in the same way as pragma INLINE,
indicates to The compiler that the subprogram must always be inlined.
(This is very important for some code procedures.) This pragma also
suppresses the generation of a callable version of the routine, which
saves code space.

INTERFACE-NAME

Pragma INTERFACE NAME allows variables and subprograms defined in
another language to be referenced from Ada programs, replacing all
occurrences of a adasubprogram or object name with an external

C-2

APPENDIX F OF THE Ada STANDARD

reference to a link name in e object file. The pragma
INTERFACENAME, used in con, -tion with pragma INTERFACE, allows the
exact name of the subprogram bcing called to be specified by providing
an optional linker name for the subprogram. This optional linker name
enables the calling of a subprogram defined in another language whose
name contains characters that are not allowed in an Ada identifier.

NOIMAGE

Pragma NO IMAGE suppresses the generation of the image array used for
the IMAGE attribute of enumeration types. This eliminates the
overhead required to store the array in the executable image.

NONREENTRANT

Pragma NON REENTRANT takes one argument which can be the name of
either a library subprogram or a subprogram declared immediately
within a library package spec or body. It indicates to the compiler
that the subprogram will not be called recursively, thus allowing the
compiler to perform specific optimizations. The pragma can be applied
to a subprogram or a set of overloaded subprograms within a package
spec or package body.

NOTELABORATED

Pragma NOTELABORATED, which is allowed only within a package
specification, suppresses elab,'ation checks for all entities defined
within a package, including the package specification itself. In
addition, this pragma suprresses the generation of elaboration code.
When using pragma NOTELABORATED, thera iz be no entities defined in
the program that require elaboration.

OPTIMIZECODE

Pragma OPTIMIZECODE takes one of the identifiers ON or OFF as the
single argument. This pragma is only allowed within a machine code
procedure. It specifies whetheL. the code should be optimized by the
compiler. The default is ON. When OFF is specified, the compiler
will generate the code as specified.

PASSIVE

Pragma PASSIVE has three forms:

PRAGMA PASSIVE;
PRAGMA P-;SIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma can be applied to a task or task type declared immediately
within a library package spec or body. The pragma directs the
compiler to optimize certain tasking operations. It is possible that
the statements in a task body will prevent the intended optimization;

C-3

APPENDIX F OF THE Ada STANDARD

in these cases, a warning will be generated at compile time and will
raise TASKINGERROR at runtime.

SHARECODE

Pragma SHARE CODE provides for the sharing of object code between
multiple instantiations of the same generic procedure or package body.
A "parent" instantiation is created, and subsequent instantiations of
the same types can share the parent's object code, reducing program
size and compilation times. The name pragma SHAREBODY instead of
SHARE-CODE can be used with the same effect.

In addition to the pragmas mentioned in the previous list, the Domain/Ada
MC68OX0 implementation expands upon the functionality of the following
predefined language pragmas:

INLINE

Pragma INLINE is implemented as described in Appendix B of the RM with
the addition that recursive calls can be expanded up to the .2.ximum
depth of 8. The compiler produces warnings for nestings that are too
deep or for bodies that are not available for inline expansion.

PACK

Pragma PACK causes the compiler to minimize gaps between components in
the representation of composite types. For arrays, the compiler packs
components to bit sizes corresponding to powers of 2 (if the field is
smaller than STORAGE UNIT bits). The compiler packs objects larger
than a single STORAGEUNIT to the nearest STORAGEUNIT.

SUPPRESS

Pragma SUPPRESS is supported in the single parameter form. The pragma
applies from the point of occurrence to the end of the innermost
enclosing block. DIVISION CHECK cannot be suppressed. The double
parameter form of the pragma with a name of an object, type, or
zubtype is recognized, but has no effect in the current release. This
pragma can be used to suppress elaboration checks on any compilation
unit except a package specification.

C-4

APPENDIX F OF THE Ada STANDARD

The Domain/Ada MC68OXO implementation recognizes the following pragmas, but
they have no effect in the current release:

Pragma CONTROLLED

Pragma MEMORYSIZE

Pragma OPTIMIZE

Pragma SHARED

Pragma STORAGE UNIT (This implementation does not allow modification
of package SYSTEM by means of pragmas. However, the same effect can
be achieved by recompiling package SYSTEM with altered values.)

Pragma SYSTEM NAME (This implementation does not allow modification of
package SYSTEM by means of pragmas. However, the file system.a can be
copied from the STANDARD library to a local Domain/Ada library and
recompiled there with the new values.)

The following pragmas are implemented as described in Appendix B of the RM:

Pragma ELABORATE

Pragma INTERFACE (supports C and FORTRAN only)

Pragma LIST

Pragma PAGE

Pragma PRIORITY

Implementation-Defined Attribute: 'REF

The Domain/Ada MC68OXO implementation provides one implementation-defined
attribute, 'REF. Attribute 'REF can be used in one of two ways: X'REF and
SYSTEM.ADDRESS'REF(N). X'REF can be used only in machine code procedures
SYSTEM.ADDRESS'REF(N) can be used anywhere that an integer expression is to
be converted to an address.

X'REF

The X'REF attribute generates a reference to the entity to which it is
applied.

In X'REF, X must be either a constant, variable, procedure, function,
or label. The attribute returns a value of the type
MACHINE CODE.OPERAND, which can be used only to designate an operand
within a machine code-statement.

C-5

APPENDIX F OF THE Ada STANDARD

The instruction generated by the code-statement in which the attribute
occurs can be preceded by additional instructions needed to facilitate
the reference (for example, loading a base register). If the
declarative section of the procedure contains pragma IMPLICIT CODE
(OFF), the compiler will generate a warning if additional code is
required.

References can also cause the generation of run-time checks. Pragma
SUPPRESS can be used to eliminate these checks.

CODE 1'(JSR, PROC'REF);
CODE_2'(MOVEL, X.ALL(Z)'REF, DO);

SYSTEM.ADDRESS'REF(N)

The effect of SYSTEM.ADDRESS'REF(N) is similar to the effect of an
unchecked conversion from integer to address. However, this attribute
should be used instead of an unchecked conversion in the following
circumstances (in these circumstances, N must be static):

Within any of the run-time configuration packages:

Use of unchecked conversion within an address clause would
require the generation of elaboration code, but the configuration
packages are not elaborated.

In any instance where N is greater than INTEGER'LAST:

Such values are required in address clauses that reference the
upper portion of memory. To use unchecked conversion in these
instances would require that the expression be given as a
negative integer.

To place an object at an address, use the 'REF attribute:

The integervalue, in the following example, is converted to an
address for use in the address clause representation
specification. The form avoids UNCHECKED_ CONVERSION and is also
useful for 32-bit unsigned addresses.

--place an object at an address
for object use at ADDRESS'REF (integer_value)

--to use unsigned addresses
for VECTOR use at SYSTEM.ADDRESS'REF(16#8080OOd0#);
TOP OFMEMORY: SYSTEM.ADDRESS:= SYSTEM.ADDRESS'REF(16#FFFFFFFF#);

C-6

APPENDIX F OF THE Ada STANDARD

In SYSTEM.ADDRESS'REF(N), SYSTEM.ADDRESS must be the type SYSTEM.ADDRESS.
N must be an expression of type UNIVERSAL INTEGER. The attribute returns a
value of type SYSTEM.ADDRESS, which represents the address designated by N.

Specification of the Package SYSTEM

with UNSIGNED TYPES;
package SYSTEM is

pragma SUPPRESS(ALL CHECKS);
pragma SUPPRESS(EXCEPTION_TABLES);
pragma NOT_ELABORATED;

type NAME is (apollounixa88k, apollo_unixm68k);

SYSTEMNAME : constant NAME := apollo_unix m68k;

STORAGE UNIT : constant 8;
MEMORYSIZE : constant := 16 777 216;

-- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX-INT : constant := 2 147 4831647;
MAX-DIGITS : constant 15; -
MAX MANTISSA : constant 31;
FINE DELTA : constant 2.0-*(-31);
TICK : constant 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXREC SIZE : integer := 64*1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNSIGNEDTYPES.UNSIGNEDINTEGER) return ADDRESS renames "+";

NOADDR : constant ADDRESS;

C-7

APPENDIX F OF THE Ada STANDARD

type TASK ID is private;
NOTASKID : constant TASKID;

type PROGRAM ID is private;

NOPROGRAMID : constant PROGRAMID;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

NOADDR : constant ADDRESS := 0;

pragma BUILT IN(">");
pragma BUILTIN("<");
pragma BUILTIN(">=");
pragma BUILT IN("<=");
pragma BUILTIN("-");
pragma BUILTIN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NOTASKID : constant TASKID := 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NOPROGRAM ID : constant PROGRAMID := 0;

end SYSTEM;

Restrictions on Representation Clauses and Unchecked Type Conversions

This section summarizes the restrictions on representation clauses and
unchecked type conversions for the MC680XO implementation of Domain/Ada.

Representation Clauses

The Domain/Ada MC68OX0 implementation supports bit level, length,
enumeration, size, and record representation clauses. Size clauses are not
supported for tasks, floating-point types, or access types. This
implementation supports address clauses for objects except for task objects
and for initialized objects given dynamic addresses. Address clauses for
task entries are supported; the specified value is a UNIX signal value.

The only restrictions on record representation clauses are the following:

If a component does not start and end on a storage unit boundary,
it must be possible to get the component into a register with one move
instruction. On a MC68OXO machine, where longwords start on even
bytes, the component must fit into 4 bytes starting on a word
boundary.

C-8

APPENDIX F OF THE Ada STANDARD

A component that is itself a record must occupy a number of bits
equal to a power of two. Components that are of a discrete type or
packed array can occupy an arbitrary number of bits subject to the
previously mentioned restrictions.

Unchecked Type Conversions

This implementation of Domain/Ada supports the generic function
UNCHECKED CONVERSION with the following restriction:

The predefined generic function UNCHECKED CONVERSION cannot be
instantiated with a target type that is an unconstrained array type or
an unconstrained record type with discriminants.

Denoting Implementation-Dependent Components
in Record Representation Clauses

Record representation clauses are based on the target machine's word, byte,
and bit order numbering so that Domain/Ada is consistent with various
machine architecture manuals. Bits within a STORAGE UNIT are also numbered
according to the target machine manuals. This implementation of Domain/Ada
does not support the allocation of implementation-dependent components in
records.

Interpretations of Expressions in Address Clauses

This implementation of Domain/Ada supports the SYSTEM.ADDRESS'REF(N)
summarized in Section F.1.2.2.

Implementation-Dependent Characteristics of I/O Packages

The Ada I/O system is implemented using Domain/OS I/O. Both formatted I/O
and binary I/O are available. There are no restrictions on the types with
which DIRECT IO and SEQUENTIAL 10 can be instantiated except that the
element size must be less than-a maximum given by the variable
SYSTEM.MAX REC SIZE. This variable can be set to any value prior to the
generic instanfiation; thus, any element size can be used. DIRECT 10 can
be instantiated with unconstrained types, but each element will be-padded
out to the maximum possible for that type or to SYSTEM.MAX REC SIZE,
whichever is smaller. No checking other than normal statiE Ada type
checking is done to ensure that values from files are read into correctly
sized and typed objects.

Domain/Ada file and terminal input/output are identical in most respects
and differ only in the frequency of buffer flushing. Output is buffered
(buffer size is 1024 bytes), and the buffer is flushed after each write
request if the destination is a terminal.

C-9

APPENDIX F OF THE Ada STANDARD

The procedure FILE SUPPORT.ALWAYS FLUSH (file ptr) will cause flushing of
the buffer associaTed with file ptr after all subsequent output requests.
Refer to the source code for file_spprtO.a in the standard library for
more information.

Instantiations of DIRECT I0

Instantiations of DIRECT 10 use the value MAX REC SIZE as the record size
(expressed in STORAGE UNITs) when the size of-ELEMENT TYPE exceeds that
value. For example, -or unconstrained arrays such as-a string where
ELEMENT TYPE'SIZE is very large, MAXREC SIZE is used instead.
MAX REC-SIZE (defined in package SYSTEM) can be changed before
insTantlating DIRECTI0 to provide an upper limit on the record size. The
maximum size supported is 1024 * 1024 * STORAGE UNIT bits. DIRECTI0 will
raise USEERROR if MAXRECSIZE exceeds this absolute limit.

Instantiations of SEQUENTIALI0

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as the record
size (expressed in STORAGE UNITs) when the size ol ELEMENT TYPE exceeds
that value. For example, for unconstrained arrays such as-STRING where
ELEMENT TYPE'SIZE is very large, MAXREC SIZE is used instead.
MAX REC SIZE (defined in package SYSTEM) can be changed before
instant-ating INTEGER 10 to provide an upper limit on the record size
SEQUENTIAL IO imposes no limit on MAXRECSIZE.

Additional Implementation-Dependent Features

This section details any other features that are specific to the Domain/Ada
MC68OX0 implementation.

Restrictions on "Main" Programs

Domain/Ada requires that a "main" program must be a non-generic subprogram
that is either a procedure or a function returning an Ada STANDARD.INTEGER
(the predefined type). In addition, a "main" program cannot be an
instantiation of a generic subprogram.

Generic Declarations

Domain/Ada does not require that a generic declaration and the
corresponding body be part of the same compilation, and they are not
required to exist in the same Domain/Ada library. The compiler generates
an error if a single compilation contains two versions of the same unit.

C-10

APPENDIX F OF THE Ada STANDARD

Implementation-Dependent Portions of Predefined Ada Packages

Domain/Ada supplies the following predefined Ada packages given by the Ada
RM C(22) in the standard library:

package STANDARD

package CALENDAR

package SYSTEM

generic procedure UNCHECKEDDEALLOCATION

generic function UNCHECKEDCONVERSION

generic package SEOUENTIALIO

generic package DIRECT I0

package TEXTIO

package IOEXCEPTIONS

package LOW LEVEL IO

package MACHINECODE

The implementation-dependent portions of the predefined Ada packages define

the following types and objects:

0n package STANDARD>

type BOOLEAN is <8-bit, byte>;
type TINY INTEGER is <8-bit, byte integer>;
type SHORT INTEGER is <16-bit, word integer>;
type INTEGER is <32-bit, longword integer>;
type SHORT FLOAT is <6-digit, 32-bit, float>;
type FLOAT-is <15-digit, 64-bit, float>;
type DURATION is delta 1.OOOOOOOOOOOOOOE-03 range

-2147483.648 .. 2147483.647;

<in package DIRECTI0>

type COUNT is range 0 .. 2 147 &83 647;

<in package TEXT I0>

type COUNT is range 0 .. 2 147_483_647;
subtype FIELD is INTEGER range 0 .. INTEGER'last;

C-11

APPENDIX F OF THE Ada STANDARD

Values of Integer Attributes

The MC68OXO implementation of Domain/Ada provides three integer types in

addition to universal integer: INTEGER, SHORTINTEGER, and TINY INTEGER.

Table F-1 lists the ranges for these integer types.

Table F-1. Domain/Ada Integer Types

Domain/Ada Integer Types

Name of Attribute Value Attribute Value Attribute Value

Attribute of INTEGER of SHORTINTEGER of TINYINTEGER

FIRST -2 147 483 648 -32 768 -128

LAST 2147483647 32767 127

C-12

APPENDIX F OF THE Ada STANDARD

Values of Floating-Point Attributes

Table F-2 lists the attributes of floating-point types.

Table F-2. Domain/Ada Floating-Point Types

Name of Attribute Value Attribute Value
Attribute of FLOAT of SHORT FLOAT

SIZE 64 32

FIRST -1.79769313486231E+308 -3.40282E+38
LAST 1.79769313486231E+308 3.40282E+38

DIGITS 15 6
MANTISSA 51 21

EPSILON 8.88178419700125E-16 9.53674316406250E-07
EMAX 204 84

SMALL 1.94469Z27433160E-62 2.58493941422821E-26
LARGE 2.571'CJ87081438E+61 1.93428038904620E+25

SAFE EMAX Ir.z 126
SAFESMALL J..11253692925360E-308 5.87747175411143E-39
SAFE-LARGE 4.49423283715578E+307 8.5075511654154E+37

MACHINE RADIY 2 2
MACHINE MAi'ISSA 53 24
MACHINE-EMAX 1024 128
MACHINE EMIN -1022 -126
MACHIN-ROUNDS TRUE TRUE
MACHINE-OVERFLOWS TRUE TRUE

C-13

APPENDIX F OF THE Ada STANDARD

Attributes of Type DURATION

Table F-3 lists the attributes for the fixed-point type DURATION.

Table F-3. Attributes for the Fixed-Point Type DURATION

Name of Attribute Value
Attribute for DURATION

SIZE 32

FIRST -2147483.648
LAST 2147483.647

DELTA 1.OOOOOOOOOOOOOOE-03

MANTISSA 31

SMALL 9.76562500000000E-04
LARGE 4.19430399902343E_06

FORE 8
AFT 3

SAFE SNALL 9.76562500000000E-04
SAFE-LARGE 4.19430399902343E+06

MACHINE ROUNDS TRUE
MACHINE-OVERFLOWS TRUE

Implementation Limits

Character Set: Domain/Ada provides the full graphiccharacter textual
representation for programs. The character set for source files and
internal character representations is ASCII.

Lexical Elements, Separators, and Delimiters: Domain/Ada uses normal
Domain/OS I/O text files as input. Each line is terminated by a newline
character (ASCII.LF).

Source File Limits: Domain/Ada imposes the following limitations on source
files:

499 characters per source line

1296 Ada units per source file

32767 lines per source file

C-14

APPENDIX F OF THE Ada STANDARD

Compiler/Tool Limits: Domain/Ada imposes the following limits on the use
of the Domain/Ada compiler:

499 characters in identifiers and literals

4,000,000 STORAGE UNITS in a statically sized record or array

32,768 bytes as the STORAGESIZE default for a task

No limit on the number of declared objects (except virtual space)

800 characters in a rooted name (full pathname of an object)

8 recursive inlines

8 nested inlines

400 nested constructs

2048 characters in ADAPATH (library search list)

2048 characters in a WITH or INFO directive

16M of memory use per compilation (other Domain/OS limits may apply)

50 lexical errors before the front end exits

100 syntax errors before the front end exits

10 attempts to lock GVAS table

10 attempts to lock ada.lib

20 attempts to lock gnrx.lib

64 debugger breakpoints

32 debugger array dimensions in a p command

9 debugger 'call parameters'

256 debugger 'run parameters'

C-15

