N

OPM No. 0704-0188

l
A .
wwmmmn ' spect of this collection of information, including suggestions for reducing this burden, to Washingion
aq Service, Di rae 204, Arfington, VA 22202-4302, and 1o the Office of information and Regulatory Alfairs, Office of
le and Budget, Washin
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 02 Nov 1990 tp 01 Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

901102W11055Alsys, Inc., AlsyCOMP_016 Version 5.1, CompuAdd 320 (Host & -

Target), 901102W1.11056
J [1]

6. AUTHOR(S) S

Wright-Patterson AFB, Dayton, OH R , B N IR

USA R N

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) : » N

Ada Validation Facility, Language Control Facility ASD/SCEL B ' REPORT NUMBER

Bidg. 676, Rm 135 AVF-VSR-410-0891

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |
REPORT NUMBER

Ada Joint Program Office

United States Department of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

ms - w 4/~ e /)] C e i

N . ‘-')L”T}‘v{u'cc o G e Lol ey df l’*) DN Cony P veboely /\CL,

] e l»i’u[!qt */’Vdﬁ»‘ /

.\,,J/,»} S SN I { :

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

~

13. ABSTRACT (Maximum 200 words)
Alsys, Inc., AlsyCOMP_016 Version 5.1, Wright-Patterson AFB, OH, CompuAdd 320 (Host & Target), ACVC 1.11.

91-15050
RN

14, SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

Standard Form 298, (Rev. 2-89)

91] 1 ()4 1 2 O P’WWWA.NS'SN.zsmzs

NSN 7540-01-280-550

AVF Control Number: AVF-VSR-410-0891

23-August-1991
90-06-01-ALS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901102w1.11056
Alsys, Inc.

AlsyCOMP 016 Version 5.1
CompuAdd 320 => CompuAdd 320

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OB 45433-6503

['4

R

4

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 2 November 1990.

Compiler Name and Version: AlsyCOMP 016, Version 5.1

Host Computer System: CompuAdd 320 (under MS/DOS 3.30, Phar Lap 2.0)
Target Computer System: CompuAdd 320 (under MS/DOS 3.30, Phar Lap 2.0)
Customer Agreement Number: 90-06-01-ALS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901102wW1.11056 is awarded to Alsys, Inc. This certificate expires on 1
June 1993,

This report has been reviewed and is approved.

e VT

Ada Val1datlon Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

/ . b VN N AL L < P
Ada Valxdat1on Organization
Director,. Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

(5

Ada Joint ProgramPffice
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

CUSTOMER:

ADA VALIDATION FACILITY:

ACVC VERSION:

ADA IMPLEMENTATION:

COMPILER NAME AND VERSION:

HOST COMPUTER SYSTEM:

TARGET COMPUTER SYSTEM:

CUSTOMER'S DECLARATION:

Alsys, Inc.

Ada Validation Facility (ASD/SCEL)
Computer Operations Division

Information Systems and Technology Center
Wright-Patterson AFB OH 45433-6503

1.11

ALSYS_COMP_C16-386

CompuAdd 320
under MS/DOS 3.30, Phar Lap 2.0

CompuAdd 320
under MS/DOS 3.30, Phar Lap 2.0

I, the undersigned, representing Alsys, Inc., declare that Alsys, Inc. has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the

implementation listed in this declaration.

\yde (Roudd—

Mike Blanchette,

Vice President, Engineering
Alsys, Inc.

67 South Bedford Street
Burlington, MA 01803-5152

D -t - 34

Date

e e
. . L) L]
W

[SN SN N (8]
« s .
w N

§;

W ww
wN =

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES .« ¢« ¢ ¢« + ¢ ¢ & o o o & &
ACVC TEST CLASSES . . « +. &« « « « &
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS
INAPPLICABLE TESTS
TEST MODIFICATIONS
PROCESSING INFORMATION

TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

« o o

* o e e

-1
2-1
2-4

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION
1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-18154, February 1983 and 1SO 8652-1987.

[Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

(UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs ctructured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
alsc provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

Is0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters 1into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
wvhich validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90]}.

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet 1its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B €43004A C45114A
C45346Aa C45612B C45651A c46022a B49008A A74006A
C74308Aa B83022B B83022H B83025B B83025D B83026B
B85001L C83026A €83041A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CcCl223Aa BC1226A CCl1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A Cb2a4la CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B Cp4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD90058 CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3lllC
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

In addition to the tests indicated above, C35702A was withdrawn as a result

of a challenge by this customer; it was included in the subsequent list of
withdrawn tests, dated 21 November 1990.

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate. '

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring

more digits than SYSTEM.MAX DIGITS:

C24113L..Y
C35706L..Y
C35708L..Y
C45241L..Y
C45421L. .Y
C45524L. .Z
C45641L. .Y

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C
€45502¢C
C45612C
B52004D
CD7101F

C35713D and B86001Z check for a predefined floating-point type with a

(14 tests)
(14 tests)
(14 tests)
(14 tests)
(14 tests)
(15 tests)
(14 tests)

C45231cC
€45503C
C45613C
C55B07A

C35705L..Y (14
C35707L..Y (14
C35802L..Z (15
C45321L..Y (14
C45521L..Z (15
C45621L..Z (15
C46012L..Z (15

tests)
tests)
tests)
tests)
tests)
tests)
tests)

€45304C C45411cC
€45504C C45504F
C45614C C45631C
B55B09C B86001W

name other than FLOAT, LONG FLOAT, or SHORT FLOAT.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this

implementation, MAX MANTISSA is less than 47.

C45412C
C45611C
C45632C
C86006C

C45536A, C46013B, C46031B, C46033B, and C46034B contain ’SMALL
representation clauses which are not powers of two.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power—of-ten TYPE’SMALL; this implementation does not

support decimal

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits S.

'SMALLS.

(See section 2.3.)

implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6.

implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT IO, and hence

package REPORT, obsolete.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the

range of DURATION. T.ere are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a

floating-point type.

2-2

For this

For this

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL_IO
CE2102R OPEN INOUT_FILE DIRECT IO
CE2102s RESET INOUT FILE DIRECT IO
CE2102T OPEN IN _FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE —_— TEXT IO
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUT FILE TEXT IO

The tests listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method
CE2105A CREATE IN FILE SEQUENTIAL IO
CE2105B CREATE IN FILE DIRECT IO
CE3109A CREATE IN FILE TEXT IO

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE ERROR is raised when this
association is attempted. -

CE2107B..E CE2107G..H CE2107L
CE2111D
CE3115A

CD2110B CE2110D

CE2111H CE3111B CE3111D..E CE3114B

IMPLEMENTATION DEPENDENCIES

CE2111C raises a USE ERROR when file is RESET from IN FILE to OUT _FILE.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
evternal file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

EE2401D and EE2401G use instantiations of package DIRECT IO with
unconstrained array types and record types with discriminants without
defaults. These instantiations are rejected by this compiler.

CE2401H raises USE_ERROR when CREATE with mode INOUT FILE is used for
unconstrained records with default discriminants.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not
restrict file capacity.

CF>304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 25 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B25002A B26005A B27005A
B28003A B32202A B32202B B32202C B37004A B45102A
B61012A B85002A B91004A B95069A B95069B B97103E
BA1101B BC2001D BC3009A BC3009C

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

CD2AS53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as small
for a fixed-point type. The AVO ruled that, under ACVC 1.11, support of
decimal smalls may be omitted.

IMPLEMENTATION DEPENDENCIES

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is obeyed
for a function call in each of three contexts and that thus three library
units are made obsolete by the re-compilation of the inlined function’s
body, or else the pragma is ignored completely. This implementation obeys
the pragma except when the call is within the package specification. Wwhen
the test’s files are processed in the given order, only two units are made
obsolete; thus, the expected error at line 27 of file EA3004D6M is not
valid and is not flagged. To confirm that indeed the pragma is not obeyed
in this one case, the test was also processed with the files re-ordered so
that the re-compilation follows only the package declaration (and thus the
other library units will not be made obsolete, as they are compiled later);
a "NOT APPLICABLE" result was produced, as expected. The revised order of
files was 0-1-4-5-2-3-6.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

For a point of contact for sales information about this Ada implementation
system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90}.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3789
b) Total Number of Withdrawn Tests 82
c) Processed Inapplicable Tests 98
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 299
g) Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a VAX/VMS system and then transferred to the
host computer via a FTP LAN network.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. The options invcked
explicitly for validation testing during this test were:

OPTION/SWITCH EFFECT

SHOW => NO Do not show header nor error
summary in listing.

WARNING => NO Do not include warning messages.

GENERIC => STUB Place code of generic instantiation
in separate subunits.

ERROR => 999 Maximum number of compilation errors
permitted before terminating the
compilation.

CALLS => INLINED This option allows insertion of code for

subprograms inline and must be set for
the pragma INLINE to be operative.

3-2

PROCESSING INFORMATION

TASK => 5 Size of all task stacks to be SK bytes.

DIR => "-SymB" Directive for linker to generate low
level debugger symbols.

MAIN => 100 Size of main stack to be 100K bytes.
Test output, compiler and linker listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for custcmizing the ACVC.

The meaning and purpose of these parameters are explained in [UG89].
parameter values are presented in two tables.

The
The first table lists the

values that are defined in terms of the maximum input-line length, which is

the value for $MAX IN LEN--also

listed here. These values are expressed

here as Ada string aggregates, vhere "V" represents the maximum input-line

length.

Macro Parameter

- ———— — —_——— ———— o ———— —— o —

$BIG_ID1
$BIG_ID2

$BIG_ID3
SBIG_ID4

SBIG_INT LIT
$BIG_REAL_LIT
$BIG_STRING1
$BIG_STRING2

SBLANKS

Macro Value

e o ——— —— —— — = —— o ———

(1..V-1 => 'A", V. => '1")

(1..V-1 => A", V => 27)
(1..V/2 => "A’) & '3’ &
(1..V-1-V/2 => 'A")

(1..V/2 => 'A’) & '4' &
(1..V-1-V/2 => 'A’)

(1..v-3 => *0’) & "298"

(1..V-5 => '0’) & "690.0"

"s

& (1..V/2 => 'A7) &

tmro& (1..V-1-V/2 => 'A" & '1" & '™

(1..v=20 => * ")

$MAX_LEN INT BASED LITERAL

$MAX_LEN REAL_BASED _

SMAX_STRING_LITERAL

"2:" & (1..V-5 => '0") & "11:"

LITERAL

"16:" & (1..V-7 => *0') ¢ "F.E:"

rny & (1.'V_2 =D rAI) & '

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

SENTRY_ ADDRESS
SENTRY_ ADDRESS1
SENTRY_ ADDRESS2
SFIELD LAST
SFILE_TERMINATOR
SFIXED NAME
SFLOAT_NAME
SFORM_STRING

SFORM_STRING2

Macro Parameter Macro Value
SMAX_IN LEN 255
SACC_SIZE 32
SALIGNMENT 4
SCOUNT_LAST 2147483647
SDEFAULT MEM_SIZE 2%%32
SDEFAULT_STOR_UNIT 8
SDEFAULT_SYS_NAME 180386
$DELTA_DOC 2#1.0 #E-31

TO_ADDRESS (16440#)
TO_ADDRESS(16480#)
TO_ADDRESS(164100#)
255

‘e
NO_SUCH_FIXED TYPE
NO_SUCE_FLOAT TYPE

"CANNOT RESTRICT FILE CAPACITY"

SGREATER_THAN DURATION

75000.0

SGREATER_THAN DURATION BASE LAST

131073.0

SGREATER_THAN FLOAT BASE LAST

1.80141E+38

SGREATER_THAN_FLOAT SAFE LARGE

1.0E308

A-2

MACRO PARAMETERS
SGREATER_THAN_SHORT FLOAT SAFE_LARGE
1.0E308
SHIGH PRIORITY 10

SILLEGAL_EXTERNAL FILE NAMEl
\NODIRECTORY\FILENAME

SILLEGAL_EXTERNAL_FILE NAME2
THIS_FILE_NAME IS_TOO LONG_FOR_MY SYSTEM

SINAPPROPRIATE LINE LENGTH
-1

SINAPPROPRIATE_PAGE_LENGTH

-1
SINCLUDE_PRAGMAl PRAGMA INCLUDE ("A28006D1.TST")
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
SINTEGER_FIRST -2147483648
SINTEGER_LAST 2147483647

$INTEGER_LAST PLUS_1 2147483648
SINTERFACE_LANGUAGE C
SLESS_THAN_DURATION -75000.0

SLESS_THAN DURATION BASE FIRST
-131073.0

SLINE_TERMINATOR ASCTI.CR & ASCII.LF
SLOV_PRIORITY 1

SMACHINE_CODE_STATEMENT
NULL;

SMACHINE_CODE_TYPE NO_SUCH_TYPE

SMANTISSA DOC 31
SMAX_DIGITS 15
SMAX_INT 2147483647
SMAX_INT_PLUS 1 2147483648
SMIN_INT -2147483648

A-3

MACRO PARAMETERS

SNAME

SNAME_LIST
SNAME_SPECIFICATION1
SNAME_SPECIFICATION2
SNAME_SPECIFICATION3
SNEG_BASED INT
$SNEW_MEM_SIZE
SNEW_STOR_UNIT
SNEW_SYS NAME
SPAGE_TERMINATOR
SRECORD_DEFINITION
SRECORD_NAME
STASK_SIZE
STASK_STORAGE_SIZE
STICK
SVARIABLE_ADDRESS
SVARLABLE ADDRESS1
SVARIABLE ADDRESS2

$YOUR_PRAGMA

SHORT_SHORT_INTEGER
180386

E:\ACVC\X2120A
E:\ACVC\X2120B
E:\ACVC\X31194A
164FO00000E#

2%%32

16

180386

ASCII.CR & ASCII.LF & ASCII.FF
NEV INTEGER;
NO_SUCH_MACHINE CODE_TYPE
32

1024

1.0/18.2

TO_ADDRESS (16#0020#)
TO_ADDRESS(16#0024#%)
TO_ADDRESS(16#0028#)

INTERFACE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwvise, refere.ces in this appendix are to compiler documentation and
not to this report.

compile Options

COMPILE (SOURCE => source_name | INSTANTIATION,
LIBRARY => library name,
OPTIONS =>
(ANNOTATE => character_string,
ERRORS => positive_integer,
LEVEL => PARSE | SEMANTIC | CODE | UPDATE,
CHECKS => ALL | STACK | NONE,
GENERICS => STUBS | INLINE,
TASKING => YES | NO,
MEMORY => number_of kbytes),
DISPLAY =>
(OUTPUT => SCREEN | NONE | AUTOMATIC | file_name,
VARNING => YES | NO,
TEXT => YES | NoO,
SHOW => BANNER | RECAP | ALL | NONE,
DETAIL => YES | NO,
ASSEMBLY => CODE | MAP | ALL | NONE),
ALLOCATION =>
(STACK => positive_integer),
IMPROVE =>
(CALLS => NORMAL | INLINED,

REDUCTION => NONE | PARTIAL | EXTENSIVE,
EXPRESSIONS => NONE | PARTIAL | EXTENSIVE);

KEEP =>
(COPY => YES | NO,
DEBUG => YES | NO,
TREE => YES | NO));

B-1

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

compile Options
BIND (PROGRAM => main_program_name,
LIBRARY => library name,

OPTIONS =>
(LEVEL => CHECK | BIND | LINK,
EXECUTION => EXTENDED | PROTECTED,
FLOAT => AUTOMATIC | HARDWARE | SOFTVWARE,
MATHLIB => 1287 | 1387,
OBJECT => AUTOMATIC | file_name,
UNCALLED => REMOVE | KEEP,
TIMER => NORMAL | FAST,
SLICE => NO | positive_integer),
STACK =>
(MAIN => positive_integer,
TASK => positive integer,
HISTORY => YES | NO),
HEAP =>
(SIZE => positive integer,
INCREMENT => positive integer),
INTERFACE => -
(DIRECTIVES => options_for linker,
MODULES => file names,
SEARCH => library_names),
DISPLAY =>
(OUTPUT => SCREEN | NONE | AUTOMATIC | file_name,
DATA => BIND | LINK | ALL | NONE,
WARNING => YES | NO),
KEEP =>
(DEBUG => YES | NO,
TUNE => YES | NO));

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which-
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type SHORT INTEGER is range -32768 .. 32767;

type SHORT SHORT INTEGER is range -128..127;

type FLOAT is digits 6 range
-2#1.11111111111111111111111#E+127 ..
2$#1.111111111111111111111114E+127;

type SHORT FLOAT is digits 6 range
-2#1.111111111111111111111114E+127 ..
2$#1.1111121111111111111111114E+127;

type LONG FLOAT is digits 15 range

241.7111111111111111111112111111111111121111111111111111114E1023 ..

241.1111111111111111111111111111111111211121111113111111114E1023;
type DURATION is delta 2#0.00000000000001% range
-131072.0000 .. 131071.99994;

end STANDARD;

c-1

Alsys DOS Ada Software Engineering Environment

APPENDIX F

Version 5

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: October 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine
whether such changes have been made.

Alsys, AdaWorld AdaProbe. AdaXref, AdaReformat, and AdaMake are registered trademarks of Alsys.
Microsoft, MS-DOS and MS are registered trademarks of Microsoft Corporation.

IBM, PC AT, PS/2 and PC-DOS are registered trademarks of International Business Machines Corporation.
INTEL is a registered trademark of Inte! Corporation.

TABLE OF CONTENTS

APPENDIX F : 1
1 Implementation-Dependent Pragmas 3
1.1 INLINE 3
1.2 INTERFACE 3
1.3 INTERFACE_NAME 4
1.4 INDENT 5
1.5 Other Pragmas 5
2 Implementation-Dependent Attrit-vies 7
21 PIS_ARRAY , 7
22 EEXCEPTICN_CODE 7
23 Autributes Used in Record Represcrtauon Cl-ses 7
3 Specification of the package SYSTEM 9
4 Support for Representation Clauses 15
4.1 Enumeration Types 16
4.1.1 Enumeration Literal Encoding 16

4.1.2 Enumeration Types and Object Sizes 16

4.2 Integer Types 18
4.2.1 Integer Type Representation 18

4.2.2 Integer Type and Object Size 18

4.3 Floating Point Types 20
.21 Floating Point Type Representation 20

4.3.2 Floating Point Type and Object Size 21

44 Fixed Point Types 21
4.4.1 Fixed Point Type Representation 21

4.4.2 Fixed Point Type and Object Size 22

Table of Contents i

4.5
4.6
4.7

4.8

(7]}

6.1
6.2
6.3

81
8.2
83
8.4
85
8.6
8.7
88
8.9

Access Types and Collections

Task Types

Array Types
+.7.1 Array Layout and Structure and Pragma PACK

4.7.2 Array Subtype and Object Size
Record Types

4.8.1 Basic Record Structure

4.8.2 Indirect Components

4.8.3 Implicit Components

4.8.4 Size of Record Types and Objects

Conventions for Implementation-Generated Names

Address Clauses

Address Clauses for Objects
Address Clauses for Program Units
Address Clauses for Interrupt Entries

Unchecked Conversions

Input-Output Packages

Correspondence between External Files and DOS Files
Error Handling

The FORM Parameter

Sequential Files

Direct Files

Text Files

Access Protection of External Files

The Need to Close a File Explicitly

Limitation on the Procedure RESET

8.10 Sharing of External Files and Tasking Issues

i

24

28
29
29
31
35
39

41

43

43
46

47

49

49
50
50
S1
52
52
33
53
53
54

Appendix F, Version 5

9.1
9.2
9.3

10

10.1
10.2
103
104
10.5

11

11.1
11.2

Characteristics of Numeric Types

Integer Types
Floating Point Type Attributes

Attributes of Type DURATION

Other Implementation-Dependent Characteristics

Use of the Floating-Point Coprocessor
Characteristics of the Heap
Characteristics of Tasks

Definition of a Main Subprogram
Ordering of Compilation Units

Limitations

Compiler Limitations
Hardware Related Limitations

INDEX

Table of Contents

57
57
58
59
59

61

61
61

ii

e ey —

Appendix F, Version 5

v

APPENDIX F

Implementation - Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
386 DOS Compiler (32-bit mode).

Appendix F is a required part of the Reference Manual for the Ada Programming
Language (called the RM in this appendix).

The sections of this appendix are as follows:

1.

The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and the type of every implementation-dependent attribute.
3. The specification of the package SYSTEM.
4. The description of the representation clauses.
5. The conventions used for any impiementation-generated name denoting im-
plementation-dependent components.
6. The interpretation of expressions that appear in address clauses, including those
for interrupts.
7. Any restrictions on unchecked conversions.
8. Any implementation-dependent characteristics of the input-output packages.
9. Characteristics of numeric types.
10. Other implementation-dependent characteristics.
11. Compiler limitations.
Appendix F, Implementation-Dependent Characteristics 1

The name Alsys Runtime Execurive Programs or simply Runtime Execurive refers to the
runtime library routines provided for all Ada programs. These routines implement the
Ada heap, exceptions, tasking control, and other utility functions.

General systems programming notes are given in another document, the Applicarion
Developer’s Guide (for example, parameter passing conventions needed for interface with
assembly routines).

[}S

Appendix F, Version §

Section 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprograni in a
declarative part.

1.2 INTERFACE

Ada programs can interface with subprograms written in Assembler and other languages
through the use of the predefined pragma INTERFACE and the implementation-defined
pragma INTERFACE_NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which parameter passing conventions will be generated.
Pragma INTERFACE takes the form specified in the RM:

pragma INTERFACE (language_name, subprogram_name);
where,
s language_name is ASSEMBLER, ADA, or C.

= subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language names accepted by pragma INTERFACE are ASSEMBLER, ADA and
C. The full implementation requirements for writing pragma INTERFACE subprograms
are described in the Application Developer’s Guide.

The language name used in the pragma INTERFACE does not have to have any
relationship to the language actually used to write the interfaced subprogram. It is used
only to tell the Compiler how to generate subprogram calls; that is, what kind of
parameter passing techniques to use. The programmer can interface Ada programs with
subroutines written in any other (compiled) language by understanding the mechanisms

Appendix F, Implementation-Dependent Characteristics 3

used for parameter passing by the Alsys DOS Ada Compiler and the corresponding
mechanisms of the chosen external language.

1.3 INTERFACE_NAME

Pragma INTERFACE_NAME associates the name of the interfaced subprogram with the
external name of the interfaced subprogram. If pragma INTERFACE_NAME is not used,
then the two names are assumed to be identical. This pragma takes the form:

pragma INTERFACE_NAME (subprogram_name, string_literal);
where,

e subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

s sming_literal is the name by which the interfaced subprogram is referred to at link
time.

The pragma INTERFACE_NAME is used to identify routines in other languages that are
not named with legal Ada identifiers. Ada identifiers can only contain letters, digits, or
underscores, whereas the DOS Linker allows external names to contain other characters,
for example, the dollar sign (§) or commercial at sign (@). These characters can be
specified in the szring_literal argument of the pragma INTERFACE_NAME.

The pragma INTERFACE_NAME is ailowed at the same places of an Ada program as the
pragma INTERFACE. (Location restrictions can be found in section 13.9 of the RM.)
However, the pragma INTERFACE_NAME must always occur after the pragma
INTERFACE declaration for the interfaced subprogram.

The string_lizeral of the pragma INTERFACE_NAME is passed through unchanged to the
DOS object file. The maximum length of the szring_literal is 40 characters. This limit is
not checked by the Compiler, but the string is truncated by the Binder to meet the Intel
object module format standard.

The user must be aware however, that some tools from other vendors do not fully
support the standard object file format and may restrict the length of symbols. For
example, the IBM and Microsoft assemblers silently truncate symbols at 31 characters.

The Runnime Executive contains several external identifiers. All such identifiers begin
with either the string "ADA@" or the string "ADAS@". Accordingly, names prefixed by
"ADA@" or "ADAS@" should be avoided by the user.

4 Appendix F, Version 5

Example

package SAMPLE_DATA is
function SAMPLE_DEVICE (X: INTEGER) return INTEGER;
function PROCESS_SAMPLE (X: INTEGER) return INTEGER,;
private
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE);
pragma INTERFACE (ADA, PROCESS_SAMPLE),
pragma INTERFACE_NAME (SAMPLE_DEVICE, "DEVIOSGET_SAMPLE");

end SAMPLE_DATA;

1.4 INDENT

Pragma INDENT is only used with AdaReformat. AdaReformat is the Alsys reformatter
which offers the functionalities of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter. The line
pragma INDENT(OFF);

causes AdaReformar not to modify the source lines after this pragma, while
pragma INDENT(ON);

causes AdaReformar to resume its action after this pragma.

1.5 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses and records (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given compi-
lation by the use of the Compiler option CHECKS. (See Chapter 4 of the User’s Guide.)

Appendix F, Implementation-Dependent Characteristics 5

Appendix F, Version 5

Section 2

Implementation-Dependent Attributes

2.1 P’IS_ARRAY

For a prefix P that denotes any type or subtype, this attribute yields the value TRUE if P
is an array type or an array subtype; otherwise, it yields the value FALSE.

2.2 E’EXCEPTICN_CODE

For a prefix E *ha" - ¢cnotes an exception name, this attribute yields a value that
represents the ‘..ernal code of the exception. The value of this attribute is of the type
INTEGEF

2.3 Attributes Used in Record Representation Clauses

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the following
attributes are used to form names of indirect and implicit components for use in record
representation clauses, as described in Section 4.8.

"OFFSET
"RECORD_SIZE
"VARIANT_INDEX
'ARRAY_DESCRIPTOR
"RECORD_DESCRIPTION

Appendix F, Implementation-Dependent Characteristics 7

Appendix F, Version 5

Section 3

Specification of the package SYSTEM

The implementation does not allow the recompilation of package SYSTEM.

package SYSTEM is

.o Lo i aasad b e e et sad st dedlsd sl

== * (1) Required Definitions. *

bl o a s aadad ol Dl ol gl ol 2t sl]

type NAME is (180386);
SYSTEM_NAME : constant NAME := 180386;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2**32;

-- System-Dependent Nemed Nusbers
MAX_INT : constant := 2%*3] - 1;
MIN_INT : constant := - (2**31);
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2#1.0#E-31;
MAX DIGITS : constant := 15;

-- For the high-resolution timer, the clock resolution is
-- 1.0 7 1024.0.

TICK : constant := 1.0 / 18.2;

-+ Other System-Dependent Declarations:
subtype PRIORITY is INTEGER range 1 .. 10;

Appendix F, Implementation-Dependent Characteristics

-- The type ADDRESS is, in fact, implemented as a
-- 32 bit offset.

type ADDRESS is private;

NULL_ADDRESS : constant ADDRESS;

-a b aad A dd s ad e a2l 222 2t led]l

-- " (2) Operations on Addresses. *

- RARRE AT N T TN R RN AN NIRRT TN ONR

== VALUE converts a string to an address. The syntax of the string and
-- its meaning are target dependent.

-+ For the 80386 the syntax is:

== "00000000" where 00000000 is an 8 digit or less hexadecimal number
.- representing an offset either in the data segment or in

-- the code segment.

-~ Example:
== “00000008*

-- The exception CONSTRAINT_ERROR is raised if the string does nat have
-- the proper syntax.

function VALUE (LEFT : in STRING) return ADDRESS;

-- IMAGE converts an address to a string. The syntax of the returned
-- string is described in the VALUE function.

subtype ADDRESS_STRING is STRING(1..8);

function IMAGE (LEFT : in ADDRESS) return ADDRESS_STRING;

-~ SAME_SEGMENT always returns TRUE for the 80386.

10 Appendix F, Version 5

function SAME_SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

Appendix F, Implementartion-Dependent Characteristics 1

-- The following routines provide support to perform address

-- computation.

type OFFSET is range 0 .. 2**31-1;

-- The exception CONSTRAINT_ERROR can be raised by “+* and “-#,

ADDRESS_ERROR : exception;

function "+" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;
function "+# (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function "-" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

-« Perform an unsigned comparison on addresses.

function “<=* (LEFT, RIGHT
function ®<* (LEFT, RIGHT
function »>=% (LEFT, RIGHT
function “>% (LEFT, RIGHT

.

in ADDRESS) return BOOLEAN;
in ADDRESS) return BOOLEAN;
in ADDRESS) return BOOLEAN;
in ADDRESS) return BOOLEAN;

function "mod* (LEFT : in ADDRESS; RIGHT : in PCS.TIVE) return NATURAL;

-- Returns the given address rounded to a specific value.

type ROUND_DIRECTION is (DOWN, UP);

function ROUND (VALUE :
DIRECTION :
MODULUS

in ADDRESS;
in ROUND_DIRECTION;
in POSITIVE) return ADDRESS;

Appendix F, Version 5

-- These routines are provided to perform READ/WRITE operation

-~ in memory.

-~ WARNING: These routines will give unexpected results if used with
-- unconstrained types.

generic
type TARGET is private;
function FETCH_FROM_ADDRESS (A : in ADDRESS) return TARGET;

generic
type TARGET is private;
procedure ASSIGN_TO_ADDRESS (A : in ADDRESS; T : in TARGET);

-- MOVE is a procedure to copy LENGTH storage unit starting at the
-~ address FROM to the address TO. The source and destination may
-- overlap. OBJECT_LENGTH designates the size of an object in

-- storage units.

type OBJECT_LENGTH is range 0 .. 2**31 -1;
procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS:

LENGTH : in OBJECT_LENGTH);
private

end SYSTEM;

Appendix F, Implementation-Dependent Characleristics

13

14

Appendix F, Version 5

Section 4

Support for Representation Clauses

This section explains how objects are represented and allocated by the Alsys DOS Ada
compiler and how it is possible to control this using representation clauses. Applicable
restrictions on representation clauses are also described.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each tlass of type the representation
of the corresponding objects is described. '

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of array and record types it
is necessary to understand first the representation of their components.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

= a (predefined) pragma PACK, applicable to array types
= 2 record representation clause
s asize specification

For each class of types the effect of a size specification is described. Interactions among
size specifications, packing and record representation clauses is described under the
discussion of array and record types.

Representation clauses on derived record types or derived tasks types are not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

Appendix F, Implementation-Dependent Characieristics 15

4.1 Enumeration Types

4.1.1 Enumeration Literal Encoding

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, .., n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -2°° .. 2°°-1.

An enumeration value is always represented by its internal code in the program
generated by the compiler.

4.1.2 Enumeration Types and Object Sizes
Minimum size of an enumeration subtype

The minimum possible size of an enumeration subtype is the minimum aumber of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form.

A static subtype, with a null range has a minimum size of 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. Form >= 0, L is the
smallest positive integer such that M <= 2"--1. For m < 0, L is the smallest positive
integer such that 2l c=mand M <=2V"11. For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACK_AND_WHITE is 2 bits.

16 Appendix F, Version 5

subtype BLACK_OR_WHITE is BLACK_AND_WHITE range X .. X;
- Assuming that X is not static, the minimum size of BLACK_OR_WHITE is
- 2 bits (the same as the minimum size of its type mark BLACK_AND_WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
(- The usual ASCII character set.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

X, ¥, "2, 'C. "I’ ¥, '~ DEL,

— Extended characters

C_CEDILLA_CAP, U_UMLAUT, E_ACUTE, ..);
for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Appendix F, Implementation-Dependent Characteristics 17

4.2 Integer Types

There are three predefined integer types in the Alsys implementation for 180386
machines:

type SHORT_SHORT_INTEGER is range -2°°07 .. 2**07-1;
type SHORT_INTEGER is range -2**15 .. 2**15-1;
type INTEGER is range -2**31 .. 2**31-1;

4.2.1 Integer Type Representation
An integer type declared by a declaration of the form:
type Tisrange L .. R;

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the smallest that contains the values L toR
inclusive.

Binary code is used to represent integer values. Negative numbers are represented using
two’s complement.

42.2 Integer Type and Object Size
Minimum size of an integer subtype

The minimum possibie size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is deterrmned as
follows. For m >= 0, L is the smallest posmve integer such that M <= 21 For m <
0, L is the smallest positive integer that 2l «=mandM <=2L"11. For cxample:

subtype S is INTEGER range0.. 7,
- The minimum size of S is 3 bits.

18 Appendix F, Version 5

subtype DisSrange X .. Y;
- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT_SHORT_INTEGER, SHORT_INTEGER
and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or 10 its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORT_SHORT_INTEGER, its size is
- 8 bits.

typeJ is range 0 .. 255;
-- J is derived from SHORT_INTEGER, its size is 16 bits.

type N is new J range 80 .. 100;
- N is indirectly derived from SHORT_INTEGER, its size is
— 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;

for S'SIZE use 32;

- S is derived from SHORT_SHORT_INTEGER, but its size is
-- 32 bits because of the size specification.

type] is range 0 .. 255;

for J'SIZE use 8;

— I is derived from SHORT_INTEGER, but its size is 8 bits
-- because of the size specification.

Appendix F, Implementation-Dependent Characteristics . 19

type N is new J range 80 .. 100;

-- N is indirectly derived from SHORT_INTEGER, but its
-- size is 8 bits because N inherits the size specification
-of J.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

4.3 Floating Point Types

There are two predefined floating point types in the Alsys implementation for 180386
machines:

type SHORT_FLOAT is
digits 6 range -(2.0 - 2.0°*(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127;

type FLOAT is
digits 6 range (2.0 - 2.0°*(-23))*2.0**127 .. (2.0 - 2.0**(-23))*2.0**127;

type LONG_FLOAT is
digits 15 range -(2.0 - 2.0**(-51))*2.0**1023 .. (2.0 - 2.0**(-51))*2.0**1023;

Note that SHORT_FLOAT has the same range as FLOAT.

43.1 Floating Point Type Representation
A floating point type declared by a declaration of the form:
type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

20 Appendix F, Version 5

The values of the predefined types SHORT_FLOAT and FLOAT are represented using the
single float format. The values of the predefined type LONG_FLOAT are represented
using the double float format. The values of any other floating point type are represented
in the same way as the values of the predefined type from which it derives, directly or
indirectly.

43.2 Floating Point Type and Object Size

The minimum possible size of a floating point subtype is 32 bits if its base type is
SHORT_FLOAT or FLOAT or a type derived from SHORT_FLOAT or FLOAT; it is 64 bits
if its base type is LONG_FLOAT or a type derived from LONG_FLOAT.

The sizes of the predefined floating point types SHORT_FLOAT and FLOAT is 32 bits and
LONG_FLOAT is 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

An object of a floating point subtype has the same size as its subtype.

4.4 Fixed Point Types

44.1 Fixed Point Type Representation

If no specification of small applies to a fixed point type, then the value of small is
determined by the vaiue of deita as defined by RM 3.5.9.

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

To implement fixed point types, the Alsys compiler for [80386 machines uses a set of
anonymous predefined types of the form:

type SHORT_FIXED is delta D range (-2.0°*7-1)°S .. 2.0**7°S;
for SHORT_FIXED'SMALL use S;

Appendix F, Implementation-Dependent Characteristics 2]

type FIXED is deita D range (-2.0**15-1)*S .. 2.0**15°S;
for FIXED'SMALL use S;

type LONG_FIXED is deita D range (-2.0**31-1)*S .. 2.0**31*S;
for LONG_FIXED’SMALL use §;

where D is any real value and S any power of two less than or equal to D.
A fixed point type declared by a declaration of the form:

type T is delta D range L . R;
possibly with a small specification:

for TSMALL use S;

is implicitly derived from a predefined fixed point type. Th~ compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V/FBASE'SMALL

44.2 Fixed Point Type and Object Size
Minimum size of a fixed point subtype

The minimum possible size of a fixed point subtype is the minimum number of binary
digits that is necessary for representing the values of the range of the subtype using the
small of the base type.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such thats <mand M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
inte’ger such that I <= 2L, Fori< 0, Lis the smallest positive integer such that -
-l e=iand1 <= 211

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

22 ‘ Appendix F, Version 5

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D isSrange X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types SHORT_FIXED, FIXED and LONG_FIXED
are respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly. For example:

type S is deita 0.01 range 0.8 .. 1.0;
-- § is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is deita 0.01 range 0.0 .. 2.0;
- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8 .. 1.0;
— N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8 .. 1.0;

for S'SIZE use 32;

- § is derived from an 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type F is deita 0.01 range 0.0 .. 2.0;

for FSIZE use 8;

- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
- because of the size specification.

Appendix F, Implementation-Dependent Characteristics . 23

_

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully impiements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

4.5 Access Types and Collections
Access Types and Objects of Access Types

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Collection Size

As descricad in RM 13.2, a specification of collection size can be provided in ccder 1o
reserve storage space for the collection of an access type.

When no STORAGE_SIZE specification applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGE_SIZE is then 0.

The maximum size is limited by the amount of memory available.

24 Appendix F, Version 5

4.6 Task Types

Storage for a task activation

As described in RM 13.2, a length clause can be used to specify the storage space (that is,
the stack size) for the activation of each of the tasks of a given type. Alsys also allows the
task stack size, for all tasks, to be established using a Binder option. Ifa length clause is
given for a task type, the value indicated at bind time is ignored for this task type, and the
length clause is obeyed. When no length clause is used to specify the storage space to be
reserved for a task activation, the storage space indicated at bind time is used for this
activation.

A length clause may not be applied to a derived task type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of the

parent type.
The minimum size of a task subtype is 32 bits.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its usual size (32 bits).

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

4.7 Array Types

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

4.7.1 Array Layout and Structure and Pragma PACK

Gap

Appendix F, Implementation-Dependent Characteristics 25

If pragma PACK is not speciﬁéd for an array, the size of the components is the size of the
subtype of the components:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL _DIGIT is range 0.. 9;
for DECIMAL_DIGIT'SIZE use 4;
type BINARY_CODED_DECIMAL is
array (INTEGER range < >) of DECIMAL_DIGIT;
-- The size of the type DECIMAL _DIGIT is 4 bits. Thus in an array of
-- type BINARY_CODED _DECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

If pragma PACK is specified for an érray and its components are neither records nor
arrays, the size of the components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;

pragma PACK(A);

-- The size of the components of A is the minimum size of the type BOOLEAN:
- 1bit.

type DECIMAL _DIGIT is range 0 .. 9;
for DECIMAL_DIGIT'SIZE use 32;
type BINARY_CODED_DECIMAL is
array (INTEGER range <>) of DECIMAL_DIGIT;
pragma PACK(BINARY_CODED_DECIMALY);
-- The size of the type DECIMAL_DIGIT is 32 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays, since records and arrays may be assigned addresses consistent with the
alignment of their subtypes.

26 Appendix F, Version §

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record

K: SHORT_INTEGER;
B : BOOLEAN;
end record;
for R use
record
Kat0rangeO0.. 31;
Bat4 range0..0;
end record;
—~ Record type R is byte aligned. Its size is 33 bits.

type Ais array (1.. 10) of R;
~ A gap of 7 bits is inserted after each component in order to respect the
- alignment of type R. The size of an array of type A will be 400 bits.

Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has an even offset.

Appendix F, Implementation-Dependent Characteristics 27

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type R is

record
K : SHORT_INTEGER;
B : BOOLEAN;

end record;

type Ais array (1.. 10) of R;

pragma PACK(A);

-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 330 bits.

type NR is new R;
for NR'SIZE use 24,

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because
-- NR has a size specification.

— The size of an object of type B will be 240 bits.

K 8 x |8 K s ||
Component Component
Array of type A or B

4.7.2 Array Subtype and Object Size

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of the components and the size of the gaps (if any). If the subtype is
unconstrained, the maximum number of components is considered.

28 Appendix F, Version 5

The size of an array subtype cannot be computed at compile time

= if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

= if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is 10 suppress
the gaps. The consequence of packing an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The

only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application. '

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

4.8 Record Types

4.8.1 Basic Record Structure
Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys)

Appendix F, Implementation-Dependent Characteristics 29

implementation for 180386 machines there is no restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its size
can be any size from the minimum size to the size of its subtype. If a component is a
record or an array, its size must be the size of its subtype.

type DEVICE_INFO_RECORD is

record
8IT15
CTRL
NETWORK
BIT12
BIT11
BIT10
BIT9
BIT8
1SDEV
EQOF
BINARY
BITS
1sCLk
ISNuL
1scor
ISCIN

end record;

.

: BOOLEAN; --

BOOLEAN; --
BOOLEAN; --
BOOLEAN; --
BOOLEAN; --
BOOLEAN; -~
: BOOLEAN; --
BOOLEAN; --
BOOLEAN; --
BOOLEAN; --
BOQLEAN; --

8 B
£ £

1

E

for DEVICE_INFO_RECORD use

record

8IT1S
CTRL
NETWORK
81712
BIT11Y
BIT10
BIT®
8178

30

at
at
at
at
at
at
at

at

- ad b P ed b A A

range 7 ..
range 6 ..
range 5 ..
range 4 ..
range 3 ..
range 2 ..
range 1 ..
range 0 ..

Bit
git
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
git
Bit
Bit
git
8it
git

-

- =

—ONU.‘*U'O

15 (reserved)

14 (true if control strings processed)
13 (true if device is on network)

12 (reserved)

11 (reserved)

10 (reserved)

9 (reserved)

8 (reserved)

7 (true if device, false if disk file)
6 (true if at end of file)

S (true if binary (raw) mode)
4 (reserved)

3 (true if clock device)

2 (true if NUL device)

1 (true if console output device)
0 (true if console input device)

-- Bit 15
-- Bit 14
-- Bit 13
-- Bit 12
-- Bit 11
-- Bit 10
-- Bit 9
-- 8it 8

Appendix F, Version 5

1SDEV
EOF
BINARY
BIT4
ISCLK
ISNUL
1scor
ISCIN

end record;

at
at
at
at
at
at
at
at

O 0O 0O 0 0O 0o 0o o

rarge 7 .. 7;
range 6 .. 6;
range 5 .. 5;
range 4 .. &4;
range 3 .. 3;
range 2 .. 2;
range 1 .. 1;
range 0 .. O;

Bit
8it
Bit
Bit
it
Bit
Bit
Bit

O - N W s oo~

Pragma PACK has no effect on records. It is unnecessary because record representation

clauses provide full control over record layout.

A record representation clause need not specify the position and the size for every
component. [f no component clause applies to a component of a record, its size is the

size of its subtype.

4.8.2 Indirect Components

'OFFSET

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Appendix F, Implementation-Dependent Characteristics 31

Beginning of the record

Compile time offset
DIRECT

Compile time offset
OFFSET

Run time offset
INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);
type SERIES is array (POSITIVE range < >) of INTEGER;
type GRAPH (L : NATURAL) is
record
X : SERIES(1 .. L); -- The size of X depends on L
Y : SERIES(1 .. L); -- The size of Y dependson L

end record;

Q : POSITIVE;

32 : Appendix F. Version 5

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
caseD is
when SCREEN =>
C:COLOR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D = SCREEN D = PRINTER
N =2 N =1
Beginning of the record
S OFFSET S OFFSET
Compile time offsets
F OFFSET F OFFSET
N N

c - -
Run time offsets —[- F -

The record type PICTURE: F and S are placed at the end of the record

Appendix F, Implementarion-Dependent Characteristics ' 33

Note that Ada does not allow representation clauses for record components with non-
static bounds [RM 13.4.7], so the compiler’s grouping of dynamic components does not
conflict with the use of representation clauses.

Because of this approach, the only indirect components are dynamic components. But
not all dynamic components are necessarily indirect: if there are dynamic components in
a component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginmning of the record

Y OFFSET

Compile time offset
L

—— Compile time offset

X Size dependent on discriminant L
—_— Run time offset
Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in 2 component clause by the implementation generated name C'OFFSET.

34 ' Appendix F, Version 5

4.83 Implicit Components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant vaiues. To avoid
recomputation (which would degrade performance) the compiler stores this information
in the record objects, updates it when the values of the discriminants are modified and
uses it when the objects or its components are accessed. This information is stored in
special components called implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT_INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAY_DESCRIPTORs or
RECORD_DESCRIPTORS.

"RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defauited. It contains the size of the storage space
necessary to store the current vatue of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0... MS.

IfR is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'/RECORD_SIZE. This
allows user control over the position of the implicit component in the record.

Appendix F, Implementation-Dependent Characteristics 35

'VARIANT INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when

a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant part are
numbered. These numbers are the possible values of the implicit component

VARIANT_INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is

record

SPEED : INTEGER;

case KIND is

when AIRCRAFT | CAR =>
WHEELS : INTEGER;

case KIND is

when AIRCRAFT => -1
WINGSPAN : INTEGER;
when others => -2

null;
end case;

when BOAT => -3
STEAM : BOOLEAN;

when ROCKET =>

-4

STAGES : INTEGER;

end case;
end record;

The value of the variant index indicates the set of components that are present in a

record value:

Variant Index

Set

S W

{(KIND, SPEED, WHEELS, WINGSPAN)
{KIND, SPEED, WHEELS)
{KINO, SPEED, STEAM)
(KIND, SPEED, STAGES)

36

Appendix F, Version 5

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval

KIND .-
SPEED .-
WHEELS
WINGSPAN
STEAM
STAGES

S W

The implicit component VARIANT_INDEX must be large enough to store the number V
of component lists that don’t contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose rangeis 1.. V. ‘

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANT_INDEX. This
allows user control over the position of the implicit component in the record.

‘ARRAY_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, size of the component
may be obtained using the ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous array type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the impiementation generated name CARRAY_DESCRIPTOR.
This allows user control over the position of the implicit component in the record.

Appendix F, Implementation-Dependent Characteristics 37

'RECORD_DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record

component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, the size of the
component may be obtained using the ASSEMBLY parameter in the COMPILE

command.

The compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous array type. If Cis the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
CRECORD_DESCRIPTOR. This allows user control over the position of the implicit
component in the record.

Suppression of Implicit Components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD_SIZE and/orVARIANT_INDEX from a record type. This can be
done using an implementation defined pragma calied IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME | SPACE, [ON =>|] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT_INDEX or a
RECORD_SIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used 10 keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

38 Appendix F, Version 5

4.8.4 Size of Record Types and Objects °
Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its
components and the sizes of its gaps (if any). This size is not computed at compile time

s when the record subtype has non-static constraints,

= when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size

is less than or equal to 8K bytes. If the size of the subtype is greater than this, the object

has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change.

Appendix F, Implementation-Dependent Characteristics 39

40

Appendix F, Version 5

Section 5

Conventions for Implementation-Generated Names

The following forms of implementation-generated names [13.4(8)] are used to denote
implementation-dependent record components, as described in Section 4.8 in the
sections on indirect and implicit components:

C'OFFSET
R'RECORD_SIZE
R'VARIANT_INDEX
R'ARRAY_DESCRIPTORS
R’RECORD_DESCRIPTORS

where C is the name of a record component and R the name of a record type.

The following predefined packages are reserved to Alsys and cannot be recompiled:
ALSYS_BASIC_IO
ALSYS_ADA_RUNTIME

ALSYS_BASIC_DIRECT_IO
ALSYS_BASIC_SEQUENTIAL_IO

Appendix F, Implementation-Dependent Characteristics 41

42

Appendix F, Version 5

Section 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM 13.5.

- hen such a clause applies to an object, the compiler does not allocate storage for the
object. The program accesses the object using the address specified in the clause. It is
the responsibility of the user therefore to make sure that a valid allocation of storage has
been done at the specified address.

An address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8k bytes or for a constant.

There are a number of ways to compose a legal address expression for use in an address
clause. The most direct ways are:

= For the case where the memory is defined in Ada as another object, use the
'ADDRESS attribute to obtain the argument for the address clause for the second
object.

s For the case where the desired location is memory defined in assembly or another
non-Ada language (is relocatable), an interfaced routine may be used to obtain the
appropriate address from referencing information known to the other language.

» For the case where an address of an object is known by its physical address, it must
be mapped to the PharLap data segment before it can be accessed via an address
clause. The reason being that SYSTEM.ADDRESS is a 32 bit offset in the standard
PharLap data segment. "

Three Ada callable assembler routines are included in the Alsys Runtime to perform
physical address mapping. These routines are ADA@MAP_PHYSICAL,
ADA@MAP_PHYS_ADDR, and ADA@GET_PHYS_ADDR. ADA@MAP_PHYSICAL
maps physical pages into the Ada address space. ADA@MAP_PHYS_ADDR maps pages
that contain specified physical address and size into the Ada address space.
ADA@GET_PHYS_ADDR returns the physical address that corresponds to a given Ada

Appendix F, Implementation-Dependent Characteristics) 43

SYSTEM.ADDRESS. To call these routines from an Ada program, use the following
specifications:

function MAP_PHYSICAL (PHYSICAL_ADDR : INTEGER; -- physical address

PAGE_SIZE : INTEGER) -- size in pages
return SYSTEM.ADORESS; -- virtual address
pragmes INTERFACE (ASSEMBLER, MAP_PHYSICAL);

pragma INTERFACE_NAME (MAP_PHYSICAL, "ADASMAP_PHYSICAL%);

where:

PHYSICAL_ADDR is the physical address of memory pages to map and must be a

multiple of 4K
PAGE_SIZE is the number of physical 4K byte memory pages to map.

function MAP_PHYS_ADDR (PHYSICAL_ADDR : INTEGER; -- physical address
MEMORY_SIZE : INTEGER) -- size in bytes
return SYSTEM.ADDRESS; -- virtual address
pragma INTERFACE (ASSEMBLER, MAP_PHYS_ADOR);
pragme INTERFACE_NAME (MAP_PHYSICAL, "ADAGMAP_PHYS_ADDR™);

where:
PHYSICAL_ADDR is the physical address of memory to map.
MEMORY_SIZE is the number of bytes of physical memory to map.

Note: The entire page or pages that contain the physical address are mapped. If there
are other objects on the same page, there is no need to call MAP_PHYS_ADDR for those
objects as that page is already mapped. Use the address arithmetic routines in package

SYSTEM to create the virtual addresses for those other objects.

44 Appendix F, Version 5

function GET_PHYS_ADDR (SYSTEM_ADDR : SYSTEM.ADDRESS) -- virtual address

return INTEGER; -- physical address
pragma INTERFACE (ASSEMBLER, GETMAP_PHYS_ADDR);
pragma INTERFACE_NAME (MAP_PHYSICAL, “ADAQGET_PHYS_ADDR");

where:

SYSTEM_ADDR is the Ada system address of an object.

With these specifications visible from vour Ada program, the functions MAP_PHYSICAL
and MAP_PHYS_ADDR can be called to convert a known physical address to a virtual
address of type SYSTEM.ADDRESS, which can be used in address clauses.

For example, if there is a memory mapped device whose control register is 10 bytes long,

with two 32 bit fields and one 16 bit field, located at physical address 800150 (hex).

#ssuming the above MAP_PHYS_ADDR function is visible, this control register can be
.ccessed with the following declaration:

type CONTROL_REG_TYPE is
record
F1: INTEGER;
F2: INTEGER;
F3: SHORT_INTEGER;
end record;

for CONTROL_REG_TYPE use
record
F1 at 0 range 0..31;
F2 at 0 range 31..63;
F3 at 0 range 64..79;
end record;

CONTROL_REG : CONTROL_REG_TYPE;
for CONTROL_REG use at MAP_PHYS_ADDR (16#800150#, 10);

Note that very call 1o MAP_PHYSICAL or MAP_PHYS_ADDR causes a new entry to be.
created in the PharLap page table, even if every call is for the same physical page. Make
sure that for every physical page, MAP_PHYSICAL and MAP_PHYS_ADDR is executed

Appendix F, Implementation-Dependent Characteristics 45

only once during your program’s execution. If declaration such as the one above for
CONTROL_REG is placed within the declarative part of a procedure, and the procedure
is called repeatedly, one page table entry will be created for CONTROL_REG on every
procedure call. Thus memory is wasted and you can eventually get a STORAGE_ERROR
or CONSTRAINT_ERROR if the procedure is called continuously and memory does run
out. The proper place to put CONTROL_REG, for this case, is within the declarative part
of a package where MAP_PHYSICAL or MAP_PHYS_ADDR will be executed only once
during program execution.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Interrupt Entries

Address clauses for interrupt entries are supported. (See Chapter 7 of the Application
Developer’s Guide for details.)

46 Appendix F, Version 5

Section 7

Unchecked Conversions

Unchecked type conversions are described in [13.10.2]). The following restrictions apply
to their use:

s Unconstrained arrays are not allowed as target types. Unconstrained record types
without defaulted discriminants are not allowed as target types. Access types 10
unconstrained arrays are not allowed as target or source types. Notes also that
UNCHECKED_CONVERSION cannot be used for an access to an unconstrained

string.

» If the target type has a smaller size than the source type then the target is made of
the least significant bits of the source.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

= [fan unchecked conversion of a scalar or access source type to a composite target
type is performed, the result is a copy of the source operand. The result has the size
of the source.

= Ifan unchecked conversion of a composite source type to a scalar or access target
type is performed, the result is a copy of the source operand. The result has the size
of the target.

Appendix F, Implementation-Dependent Characteristics 47

48

Appendix F, Version 5

Section 8

Input-Output Packages

The RM defines the predefined input-output packages SEQUENTIAL_IO, DIRECT_IO,
and TEXT_IO, and describes how to use the facilities available within these packages.
The RM also defines the package I0_EXCEPTIONS, which specifies the exceptions that
can be raised by the predefined input-output packages.

In addition the RM outlines the package LOW_LEVEL_IO, which is concerned with low-
level machine-dependent input-output, such as would possibly be used to write device
drivers or access device registers. LOW_LEVEL_IO has not been implemented. The use
of interfaced subprograms is recommended as an alternative.

8.1 Correspondence between External Files and DOS Files

Ada input-output is defined in terms of external files. Data is read from and written to
external files. Each external file is implemented as a standard DOS file, including the use
of STANDARD_INPUT and STANDARD_OUTPUT.

The name of an external file can be either
= the nuil string
s aDOSs filename
« aDOS special file or device name (for example, CON and PRN)

If the name is a null string, the associated external file is a temporary file and will cease
to exist when the program is terminated. The file will be placed in the current directory
and its name will be chosen by DOS.

If the name is 2 DOS filename, the filename will be interpreted according to standard
DOS conventions (that is, relative to the current directory). The exception
NAME_ERROR is raised if the name part of the filename has more than 8 characters or
if the extension part has more than 3 characters.

Appendix F, Implementation-Dependent Characteristics 49

If an existing DOS file is specified to the CREATE procedure, the contents of the file will
be deleted before writing to the file.

If a non-existing directory is specified in a file path name to CREATE, the directory will
not be created, ana the exception NAME_ERROR is raised.

8.2 Error Handling

DOS errors are transiated into Ada exceptions, as defined in the RM by package
IO_EXCEPTIONS. In particular, DEVICE_ERROR is raised in cases of drive not ready,
unknown media, disk full or hardware errors on the disk (such as read or write fault).

8.3 The FORM Parameter

The form parameter is a string, formed from a list of attributes, with attributes separated
by commas. The string is not case sensitive. The attributes specify:

o Buffering
BUFFER _SIZE = > size_in_bytes

s Appending
APPEND => YES | NO

s Truncation of the name by DOS
TRUNCATE => YES | NO

s DIRECT_IO on UNCONSTRAINED objects
RECORD_SIZE = > size_in_bytes

where:

BUFFER_SIZE: Controls the size of the internal buffer. This option is not sup-
ported for DIRECT_IO. The default value is 1024. This option has no effect when
used by TEXT_IO with an external file that is a character device, in which case the
size of the buffer will be 0.

50 Appendix F, Version 5

APPEND: If YES output is appended to the end of the existing file. If NO output
overwrites the existing file. This option is not supported for DIRECT_IO. The
defauit is NO.

TRUNCATE: If YES the file name will be automatically truncated if it is bigger than
8 characters. The default value is NO, meaning that the exception NAME_ERROR
will be raised if the name is too long.

RECORD_SIZE: This option is supported only for DIRECT_10. This attribute
controls the logical record length of the external file.

- When DIRECT _IO is instantiated with an unconstrained type the user is
required to specify the RECORD_SIZE attribute (otherwise USE_ERROR
will be raised). The value given must be larger or equal to the largest record
which is going to written. If a larger record is processed the exception
USE_ERROR will be raised.

- When DIRECT_IO is instantiated with a constrained type the user is not
required 1o specify the RECORD_SIZE but if the RECORD_SIZE is specified
the only possible value would be the element size in bytes. Any other values
will raise USE_ERROR.

The exception USE_ERROR is raised if the form STRING in not correct or if a non
supported attribute for a given package is used.

Example:
FORM => "TRUNCATE => YES, APPEND => YES, BUFFER_SIZE => 20480"

8.4 Sequential Files

For sequential access the file is viewed as a sequence of values that are transferred in the
order of their appearance (as produced by the program or run-time environment). This

is sometimes called a stream file in other operating systems. Each object in a sequential
file has the same binary representation as the Ada object in the executable program.

Appendix F, Implementation-Dependent Characteristics 51

8.5 Direct Files

For direct access the file is viewed as a set of elements occupying consecutive positions in
a linear order. The position of an element in a direct file is specified by its index, which is
an integer of subtype POSITIVE_COUNT.

DIRECT_IO only allows input-output for constrained types. If DIRECT_IO is instantiated
for an unconstrained type, all calls to CREATE or OPEN will raise USE_ERROR. Each
object in a direct file will have the same binary representation as the Ada object in the
executable program. All elements within the file will have the same length.

8.6 Text Files

Text files are used for the input and output of information in ASCII character form.
Each text file is a sequence of characters grouped into lines, and lines are grouped into a
sequence of pages.

All text file column numbers, line numbers, and page numbeis are values of the subtype
POSITIVE_COUNT.

Note that due to the definitions of line terminator, page terminator, and file terminator
in the RM, and the method used to mark the end of file under DOS, some ASCII files do
not represent well-formed TEXT_IO files.

A text file is buffered by the Runtime Executive unless
s it names a device (for example, CON or PRN).
s itis STANDARD_INPUT or STANDARD_OUTPUT band has not been redirected.

If not redirected, prompts written to STANDARD_OUTPUT with the procedure PUT will
appear before (or when) a GET (or GET_LINE) occurs.

The functions END_OF_PAGE and END_OF _FILE always return FALSE when the file is a
device, which includes the use of the file CON, and STANDARD_INPUT when it is not
redirected. Programs which would like to check for end of file when the file may be a
device should handle the exception END_ERROR instead, as in the following example:

52 Appendix F, Version 5

Example

begin
toop
-- Display the prompt:
TEXT_IO.PUT (%"--> %),
-- Read the next line:
TEXT_IO.GET_LINE (COMMAND, LAST);
-- Now do something with COMMAND (1 .. LAST)
end loop;
exception
when TEXT_IO.END_ERROR =>
null;
end;

END_ERROR is raised for STANDARD_INPUT when ~ Z (ASCILSUB) is entered at the
keyboard.

8.7 Access Protection of External Files

All DOS access protections exist when using files under DOS. If a file is open for read
only access by one process it can not be opened by another process for read/write access.

8.8 The Need to Close a File Explicitly

The Runtime Executive will flush all buffers and close all open files when the program is
terminated, either normally or through some exception.

However, the RM does not define what happens when a program terminates without
closing all the opened files. Thus a program which depends on this feature of the
Rundme Execurive might have problems when ported to another system.

8.9 Limitation on the Procedure RESET

An internal file opened for input cannot be RESET for output. However, an internal file
opened for output can be RESET for input, and can subsequently be RESET back to
output.

.dppendix F, Implementation-Dependent Characteristics 33

8.10 Sharing of External Files and Tasking Issues

Several internal files can be associated with the same external file only if all the internal
files are opened with mode IN_MODE. However, if a file is opened with mode
OUT_MODE and then changed to IN_MODE with the RESET procedure, it cannot be
shared.

Care should be taken when performing multiple input-output operations on an external
file during tasking because the order of calls to the I/O primitives is unpredictable. For
example, two strings output by TEXT_IO.PUT_LINL in two different tasks may appear in
the output file with interleaved characters. Synchronization of I/O in cases such as this is
the user’s responsibility.

The TEXT_IO files STANDARD_INPUT and STANDARD_OUTPUT are shared by all
tasks of an Ada program.

If TEXT_IO.STANDARD_INPUT is not redirected, it will not block a program on input.
All tasks not waiting for input will continue running.

54 Appendix F, Version 5

Section 9

Characteristics of Numeric Types

9.1 Integer Types
The ranges of values for integer types declared in package STANDARD are as follows:

SHORT_SHORT _INTEGER -128 .. 127 .- 2*7 -1
SHORT_ INTEGER -32768 .. 32767 -- 2%%15 - 1
INTEGER ~2147483648 .. 2147463647 -- 2**31 -1

For the packages DIRECT_IO and TEXT_IO, the range of values for types COUNT and
POSITIVE_COUNT are as follows:

COUNT 0 .. 2147483647 .- 2**31 - 1

POSITIVE_COUNT 1 .. 2147483647 .- 2%*31 - 1

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0 .. 25 -« 2**8 - 1

9.2 Floating Point Type Attributes

SHORT_FLOAT LONG_FLOAT
and FLOAT
DIGITS 6 15
MANTISSA 21 51
EMAX 84 204

Appendix F, Implementation-Dependent Characteristics 55

EPSILON

LARGE
SAFE_EMAX
SAFE_SMALL
SAFE_LARGE
FIRST

LAST
MACHINE_RADIX
MACHINE_EMAX
MACHINE_EMIN

MACHINE_ROUNDS

MACHINE_OVERFLOMS

SI2E

9.53674E-07
1.93428E+25
125
1.17549€-38
4.25353E+37
-3.40282E+38
3.40282E+38
2
128
-125
true
false

32

9.3 Attributes of Type DURATION

56

DURATION'DELTA

DURATION®SMALL

DURAT ION'FIRST

DURATION'LAST

DURATION ' LARGE

2.0 ™ (-14)
2.0 ** (-14)
-131_072.0

131_072.0

same as DURATION'LAST

8.88178E-16

2.57110E+61

1021

2.22507E-308

2.247128+307

-1.79769€+308

1.79769E+308

2

1024

-1021

true

false

Appendix F, Version 5

Section 10

Other Implementation-Dependent Characteristics

10.1 Use of the Floating-Point Coprocessor

Floating point coprocessor instructions are used in programs that perform arithmetic on
floating point values in some fixed point operations and when the FLOAT_IO or
FIXED_IO packages of TEXT_IO are used. The mantissa of a fixed point value may be
obtained through a conversion to an appropriate integer type. This conversion does not
use floating point operations. Object code running on the 80386 using floating point
instructions can still execute without the coprocessor if the software floating point
emulation is linked with the object code (see Binder option FLOAT in User’s Guide,
Section 5.2). See Appendix D of the Application Developer’s Guide for more details.

If a program requiring floating point operation is not linked with the floating point
emulator, the Runrime Execusive will detect the absence of the floating point coprocessor
by raising CONSTRAINT_ERROR.

10.2 Characteristics of the Heap

All objects created by allocators go into the heap. Also, portions of the Runnime Execu-
nive representation of task objects, including the task stacks, are allocated in the heap.

UNCHECKLD_DEALLOCATION is implemented for all Ada access objects except access
objects to tasks. Use of UNCHECKED_DEALLGCATION on a task object will lead to
unpredictable results.

All objects whose visibility is linked to a subprogram, task body, or block have their
storage reclaimed at exit, whether the exit is normal or due to an exception. Effectively
pragma CONTROLLED is automatically applied to all access types. Moreover, all
compiler temporaries on the heap (generated by such operations as function calls
returning unconstrained arrays, or many concatenations) allocated in a scope are
deallocated upon leaving the scope.

Appendix F, Implementation-Dependent Characteristics) 57

Note that the programmer may force heap reclamation of temporaries associated with
any statements by enclosing the statement in a begin .. end block. This is especially
useful when complex concatenations or other heap-intensive operations are performed
in loops, and can reduce or eliminate STORAGE_ERRORs that might otherwise occur.

The maximum size of the heap is limited only by available memory. This includes the
amount of physical memory (RAM) and the amount of virtual memory (hard disk swap
space).

10.3 Characteristics of Tasks

The default task stack size is 1K bytes (32K bytes for the environment task), but by using
the Binder option STACK. TASK the size for all task stacks in a program may be set to a
size from 1K bytes to 64K bytes.

Normal priority rules are followed for preemption, where PRIORITY values are in the
range 1.. 10. A task with undefined priority (no pragma PRIORITY) is considered to be
lower than priority 1.

The maximum number of active tasks is restricted only by memory usage.

The accepter of a rendezvous executes the accept body code in its own stack.
Rendezvous with an empty accept body (for synchronization) does not cause a context
switch.

The main program waits for completion of all tasks dependent upon library packages
before terminating.

Abnormal completion of an aborted task takes place immediately, except when the ab-
normal task is the caller of an entry that is engaged in a rendezvous, or if it is in the
process of activating some tasks. Any such task becomes abnormally completed as soon
as the state in question is exited.

The message
GLOBAL BLOCKING SITUATION DETECTED

is printed to STANDARD_OUTPUT when the Runrime Execunve detects that no further
progress is possible for any task in the program. The execution of the program is then
abandoned.

58 ' Appendix F, Version 5

10.4 Definition of a Main Subprogram

A library unit can be used as a main subprogram if and only if it is a procedure that is not
generic and that has no formal parameters.

The Alsys DOS Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Appendix F, Implementarion-Dependent Characteristics 59

Appendix F, Version 5

Section 11

Limitations

11.1 Compiler Limitations

The maximum identifier length is 255 characters.

The maximum line length is 255 characters.

The maximum number of unique identifiers per compilation unit is-2500.
The maximum number of compilation units in a library is 1000.

The maximum number of Ada libraries in a family is 15.

11.2 Hardware Related Limitations

The maximum amount of data in the heap is limited only by available memory.

If an unconstrained record type can exceed 8192 bytes, the type is not permitted
(unless constrained) as the element type in the definition of an array or record type.

A dynamic object bigger than 4096 bytes will be indirectly allocated. Refer to
ALLOCATION parameter in the COMPILE command. (Section 4.2 of the User's
Guide.)

Appendix F, Implementation-Dependent Characteristics 61

62

Appendix F, Version 5

Abnormal completion 58
Aborted task 58

Access protection 53

Access types 24

Allocators 57

APPEND 51

Application Developer’s Guide 3
Array gaps 27

Array subtype 7

Array subtype and object size 28
Array type 7
ARRAY_DESCRIPTOR 37
ASSEMBLER 3

Attributes of type DURATION 56

Basic record structure 29
Binder 58
BUFFER_SIZE 50
Buffered files 52
Buffers

flushing 53

C3
Characteristics of tasks 58
Collection size 24
Collections 24
Column numbers 52
Compiler limitations 61
maximum identifier length 61
maximum line length 61
maximum number of Ada libraries
61
maximum number of compilation
units 61
maximum number of unique
identifiers 61
Constrained types

Index

INDEX

I/Oon 52
Control Z 53
COUNT 55
CREATE 50, 52

Device name 49
DEVICE_ERROR 50
DIGITS 55

Direct files 52
DIRECT_IO 49, 52,55
Disk full 50

DOS conventions 49
DOS errors 50

DOS files 49

DOS Linker 4

DOS special file 49
Drive not ready 50
DURATION'DELTA 56
DURATIONFIRST 56
DURATION'LARGE 56
DURATION’LAST 56
DURATION'SMALL 56

E’EXCEPTION_CODE 7
EMAX 55
Empty accept body 58
END_ERROR 52, 53
END_OF_FILE 52
END_OF_PAGE 52
Enumeration literal encoding 16
Enumeration subtype size 17
Enumeration types 16
EPSILON 56
Errors

disk full 50

drive not ready S0

hardware 50

63

unknown media 50
EXCEPTION_CODE
Attribute 7

FIELD 55
File closing

explicit 53
File names 49
File terminator 52
FIRST 56
Fixed point type representation 21
Fixed point type size 22
Floating point coprocessor 57
Floating point type attributes 55
Floating point type representation 20
Floating point type size 21
FORM parameter 50

GET 52

GET_LINE 52

GLOBAL BLOCKING SITUATION
DETECTED 58

Hardware errors 50
Hardware limitations
maximum data in the heap 61
maximum size of a single array or
record object 61
Heap 57

/O synchronization 54
Implicit component 37, 38
Implicit components 35
IN_MODE 54

INDENT $§

Indirect record components 31
INTEGER 55

64

Integer type and object size 18
Integer type representation 18
Integer types 55
Intel object module format 4
INTERFACE 3, 4
INTERFACE_NAME 3,4
Inierfaced subprograms 49
Interleaved characters 54
IO_EXCEPTIONS 49, 50
IS_ARRAY

Attribute 7

LARGE 56

LAST 56

Layout of a record 29
Legal file names 49
Library unit 59
Limitations 61

Line numbers 52
Line terminator 52
LOW_LEVEL_IO 49

MACHINE_EMAX 56

MACHINE_EMIN 56

MACHINE_MANTISSA 56

MACHINE_OVERFLOWS 56

MACHINE_RADIX 56

MACHINE_ROUNDS 56

Main program 58

Main subprogram 59

MANTISSA 55

Maximum data in the heap 61

Maximum identifier length 61

Maximum line length 61

Maximum number of Ada libraries 61

Maximum number of compilation units
61

Appendix F, Version 5 -

Maximum number of unique identifiers
61

Maximum size of a single array or
record object 61

NAME_ERROR 49, 50
Non-blocking /O 54
Number of active tasks 58

OPEN 52
Ordering of compilation units 59
OUT_MODE 54

P'IS_ARRAY 7

PACK 5

Page numbers 52

Page terminator 52
Parameter passing 2
POSITIVE_COUNT 52, 55
Pragma IMPROVE 5, 38
Pragma INDENT 5
Pragma INTERFACE 3,4
Pragma INTERFACE_NAME 4
Pragma PACK $§, 26, 31
Pragma PRIORITY 5, 58
Pragma SUPPRESS 5
Predefined packages 41
PRIORITY S5, 58

PUT 52

FUT_LINE 54

RECORD_DESCRIPTOR 38
RECORD_SIZE 35, 38, 51
Rendezvous 58

Representation clauses 15

RESET 53, 54

Runtime Executive 2, 4, 52, 53, 57, 58

Index

SAFE_EMAX 56
SAFE_LARGE 56

SAFE_SMALL 56

Sequential files 51
SEQUENTIAL_IO 49

Sharing of external files 54
SHORT_INTEGER 55
SHORT_SHORT_INTLGER S5
SIZE 56

Size of record types 39

SPACE 38

STANDARD_INPUT 49, 52, 53, 54
STANDARD_OUTPJT 49, 52, 54, 58
Storage reclamation at exit 57
STORAGE _SIZE 24

Stream file 51

SUPPRESS 5

Syncaronization of /O 54
SYSTEM 5

Task activation 25
Task stack size 25, 58
Task stacks 57
Task types 25
Tasking issues 54
Tasks

characteristics of 58
Text file

buffered 52
Text files 52
TEXT_IO 49,55
TIME 38
TRUNCATE 51

UNCHECKED_DEALLOCATION 57
Unknown media S0

65

USE_ERROR 51, 52

Variant part 36
VARIANT_INDEX 36, 37, 38

Appendix F, Version 5

END

