242 275 WENTATION PAGE R

‘) average 1 hour Per resp including the time for reviewing instructions, searching existing data gathering and maintaining the data
l “l!, wm-WWouwmmdm-mmuummwmmmwxowmwu
H\ \ ‘ ons, 1215 Jetterson Davis Highway, Sulte 1204, Arlington, VA 222024302, and to the Office of information and Reguiatory Aftairs, Office of
I. AGENCY USE ONLY {Leave Bia Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEFED
Final: 29 Nov 1990 to 01 Jun 1993
3, TITLE AND SUBTITLE 5. FUNDING NUMBERS

R.R. Software, Inc., IntegrAda 386 5.1.0, North gate 386/25 PHar Lap/DOS 3.3
(Host & Target), 901120W1.11087

=3
/]
F o)

6. AUTHOR(S) —
Wright-Patterson AFB, Dayton, OH L A
USA

1]

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

=N
Ada Validation Facility, Language Control Facility ASD/SCEL §;}
Bldg. 676, Rm 135 AVF-VSR-435-0891

Wright-Patterson AFB, Dayton, OH 45433

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office . REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES 3 Lo . ~ ,
)\ . <)c‘+' L et P OPACTRE T S Sy ':Q,\/ J’"ﬁ'*"‘ /3 oY e JZ G /” VGl

e VNl Rl an g

723 DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

R.R. Software, Inc., IntegrAda 386 5.1.0, Wright-Patterson AFB, OH, North gate 386/25 PHar Lap/DOS 3.3 (Host &
Target), ACVC 1.11.

31-
T '!l/lﬁh‘llll l/rHr/ Iil

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

91 1104 127

"

Certificate Information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on 29 November 1990.

Compiler Name and Version: IntegrAda 386 5.1.0

Host Computer System: Northgate 386,25 (under Phar Lap/DOS 3.3)

Target Computer System: Northgate 386,25 (under MS DOS 3.3)

Customer Agreement Number: 90-08-02-RRS

See Section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, validation Certificate

901120w1.11087 is awarded to R.R. Software, Inc.
on 1 June 1993.

This report has been reviewed and is approved.

N .
7 — /
Ada Vailaﬁtion Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Ada validation Organization

Director, Computer & Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

Ega Joint Program 5Tfice

Dr. John Solomond, Director
Department of Defense
wWashington DC 20301

This certificate expires

$Nndy B
1)-'[rh}: ‘
Aol [AR dd I
h
Sl | SET Y o
ir
IV
‘ K . =
LY Jdee
Yum? : e -
Sran)

AVF Control Number:AVF-VSR-435-0891
1 August 1991
90-08-02-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901120wW1.11087
R.R. Software, Inc.
IntegrAda 386 5.1.0
Northgate 386,25 Phar Lap/DOS 3.3 => Northgate 386,25 MS DOS 3.3

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Declaration of Conforﬁance

Compiler Implementor : R.R. Software, Inc.
Ada Validation Facility : Wright-Patterson AFB, Ohio 45433-6503
Ada Compiler Validation Capability (ACVC) Version : 1.11

Base Configuration

Ada Compller Name : IntegrAda 386 Version : 5.1.0
Host Architecture: Northgate 386/25 Host OS & Ver.:Phar Lap/DOS 33
Target Architecture: Northgate 386/25 Target OS & Ver.:MS Dos 3.3

Implementor's Declaration

I, the undersigned, representing R.R. Software, 1Inc. have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler listed in this declaration. I
declare that AETECH, Inc. is the owner of record of the Ada
compiler listed above, and as such, is responsible for maintaining-
said compiler conformance to ANSI/MIL-STD-1815A. All
certlflcates and reglstratlon for Ada language compller listed in

declaratlon shall be made only in the owner's corporate name.

_Zé%/ ///C.
mes A«/Stewaft Date °

lce President
R.R. Software, Inc.

owner's Declaration

I, the undersigned, representing AETECH, Inc. take full
responsibility for implementation and maintenance of the Ada
compiler listed above, and agree to the public disclosure of the
final Validation Summary Report. I declare that all of the- Ada
language compilers listed, and their host/target performance are
in compliance with the ANSI/MIL-STD-1815A.

President,
AETECH, Inc.

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY
ACVC TEST CLASSES
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS
INAPPLICABLE TESTS
TEST MODIFICATIONS
PROCESSING INFORMATION
TESTING ENVIRONMENT

TEST EXECUTION . . .
MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

REPORT

o ¢

ooooo

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3-1
3-1

. 3-2

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
{Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

Reference Manual for the Ada Programming Language, [Ada83]
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler validation Procedures, Version 2.1, [Pro90]
Ada Joint Program Office, August 1990.

Ada Compiler Validation Capability User’s Guide, [UG89] 21 June 1989.

1.3 ACVC TEST CLASSES

Complxance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

2Ada
Vvalidation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report. '

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user~written or user-designated programs; performs
user~designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSIMIL-STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C€43004A
C45114A C45346A C45612B €45651A €46022a B49008A
A74006A C74308A B83022B "B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C97116A €98003B
BA2011A CB7001A CB7001B CB7004A CCl223A BCl12.26A
CC1226B BC3009B BD1B02B BD1B06A AD1BO8A BED2A02A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022a CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118Aa CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C456328B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT INTEGER.

C35702a, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT FLQOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 48 or
greater.

C45624A checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

DSS5A03E..H (4 tests) use 31 or more levels of loop nesting which exceeds
the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

D64005F..G (2 tests) use 10 or more levels of recursive procedure calls
nesting which exceeds the capacity of the compiler.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

C96005B checks for values of type CURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F check for
pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2AB4A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

AD9004A uses pragma INTERFACE for overloaded subprograms; this
implementation rejects this use due to calling conventions. (See
section 2.3.)

CDA201C instantiates Unchecked Conversion with an array type with a
non-static index constraint; this implementation does not support
Unchecked Conversion for types with non-static constraints.

The tests listed in the following table are not applicable because ihe
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102Z CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE21020Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102v OPEN OUT_FILE DIRECT IO
CE2102W RESET OUT FILE DIRETT 10
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE S —— TEXT IO
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUT FILE TEXT_ IO

2-3

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE _ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115Aa

EE2201D uses instantiations of package SEQUENTIAL IO with unconstrained
array types; this implementation raises USE ERROR on the attempt to
create a file of such type.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL IO. This implementation does
not restrict file capacity.

EE2401D uses instantiations of package DIRECT IO with unconstrained
array types; this implementation raises USE _ERROR on the attempt to
create a file of such type.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT I0. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate Tor the external
file. This implementation does not have inappropriate values for either
line length or page length.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 88 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002A B26005A B27005A
B29001A B37106A B51001A B53003A B55A01A B63001A
B63001B B73004B B83003B B83004B B83004C B83004D
B83004F B83030D B83EOLC B83EOLD B83EOQLE B83EOLF
€85006A C85006B €85006C €85006D C85006E B91001H
BA1001A BA1001B BA1001C BA1010A BA1010D BA1101A
BAl1101E BA3006A BA3006B BA3007B BA3008A BA3008B
BA3013A BC2001D BC2001E BC3005B BD2B03A BD2D03A
BD4003A

2-4

IMPLEMENTATION DEPENDENCIES

C85006A. .E (5 tests) were graded passed by Test Modification as directed by
the AVO. This implementation generates more object code for these tests
than it can contain in a single compilation unit. Each of these tests was
split into five equivalent subtests.

The tests below were graded passed by Test Modification as directed by -the
AVO. These tests all use one of the generic support procedures,

Length Check or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA),
which use the generic procedure Unchecked Conversion. This implementation
rejects instantiations of Unchecked Conversion with array types that have
non-static index ranges. The AVO ruled that since this issue was not
addressed by AI-00590, which addresses required support for

Unchecked Conversion, and since AI-00590 is considered not binding under
ACVC 1.11, the support procedures could be modified to remove the use of
Unchecked Conversion. Lines 40..43, 50, and 56..58 in LENCHECK and lines
42, 43, and 58..63 in ENUMCHEK were commented out.

CD1009A CD10091 CD1009M CD1009V CD1009w CD1C03A
CD1C04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C
CD2AB1A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

BD4006A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that non-static values in component and
alignment clauses are rejected; but static alignment values of 8, 16, & 32
are assumed to be supported. This implementation supports only values 1 &
2; it rejects the clauses at lines 42, 48, 58, and 63, which are not marked
as errors.

AD9001B was graded passed by Processing Modification as directed by the
AVO. This test checks that, if pragma INTERFACE is supported, no bodies
are required for interfaced subprograms. This implementation requires that
some foreign bodies exist, even if the subprograms are not called. This
test was processed in an environment in which implementor-supplied foreign
bodies were present.

AD9004A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test uses a single INTERFACE pragma for several overloaded
procedure and function subprograms; this implementation does not support
the pragma in such circumstances due to the calling conventions of the
interfaced language, and thus rejects the pragma.

CDA201C was graded inapplicable by Evaluation Modification as directed by
the AVO. This test instantiates Unchecked Conversion with an array type
with a non-static index constraint; this implementation does not support
Unchecked Conversion for unconstrained types and so rejects the
instantiation. The AVO ruled that various restrictions on

Unchecked Conversion may be accepted for validation under ACVC 1.11,

because AI-00590, which addresses Unchecked |_Conversion, did not show an ARG
consensus at the time of ACVC 1.11's release.

2-5

IMPLEMENTATION DEPENDENCIES

CE2108B, CE2108D, and CE3112B were graded passed by Test Modification as
directed by the AVO. These tests, respectively, check that temporary files
that were created by (earlier—processed) CE2108a, CE2108C, and CE3112A are
not accessible after the completion of those tests. However, these tests
also create temporary files. This implementation gives the same names to
the temporary files in both the earlier- and later-processed tests of each
pair; thus, CE2108B, CE2108D, and CE3112B report failed, as though they
have accessed the earlier-created files. The tests were modified to remove
the code that created the (later) temporary file; these modified tests were
passed. Lines 45..64 were commented out in CE2108B and CE2108D; lines
40..48 were commented out in CE3112B.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Isaac Pentinmaki
R.R. Software, Inc.
P.O. Box 1512
Madison, WI 53701

For a point of contact for sales information about this Ada implementation
system, see:

Jim Stewart

R.R. Software, Inc.
P.0O. Box 1512
Madison, WI 53701

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 Summary Of Test Results

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3773

b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 113
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201
f) Total Number of Inapplicable Tests 314
g) Total Number of Tests for ACVC 1.11 4170

3.3 TEST EXECUTION

The diskettes containing the customized test suite (see section 1.3) were
taken on-site by the validation team for processing. The contents of the
diskettes were installed onto a Northgate 386 with DOS 3.30.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

The options used for IntegrAda are:

/Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running B-Tests; otherwise every error would have
to be responded to.

/W —~ Warnings off - warnings were suppressed mainly because of the
many confusing warnings the validation tests produce. Many
validation tests have intenticnal errors (such as an expression
which always raises an exception, use of null ranges, unreachable
code, etc.). The large volume of warnings produced made it
difficult to grade the B-Tests in particular, so they were
suppressed.

/BS ~ Brief Statistics. This was also used to cut the amount of output
produced by the compiler during compile time.

/S? - Used this option to re-direct the compiler scratch files into
a Ram disk where possible (? is replaced by a drive path),
thus speeding up the compiles.

/01 - Memory model 1 - this directs the compiler to use memory model 1
for the output. This model allows much more code than memory
model 0, and is necessary in order to have a few large tests be
able to run.

/D — Debugging code off - this directs the compiler to not generate
any debugging code (generally line numbers and walkbacks). This
was also used to cut the space used by the tests.

All other options used their default values.
Then, all of the non-B-Tests were linked with the options:

/Q - Quiet error messages - suppresses user prompting on errors.
Necessary for running L-Tests; otherwise every error would have
to be responded to.

/T — Trim unused code - this option directs the linker to remove
unused subroutines from the result file. This can make as much
as a 30K space saving in the result file.

/B - Brief Statistics. This was also used to cut the amount of output
produced by the Linker.

/0l - Memory model 1 - to match the compiler memory model.
All other options used their default values.
Test output, compiler and linker listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived. '

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN LEN 200
$BIG_ID1 (1..V-1 => 'A’, V => r17)
$BIG_ID2 (1..v=1 => 'A’, V => '2')
$BIG_ID3 (1..v/2 => 'A’) & '3" &
(1..v=-1-v/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & '4" &
(1..v-1-v/2 => 'A’)
$BIG_INT LIT (1..v-3 => ’0’) & "298"
$BIG REAL LIT (1..Vv=5 => r0’) & "690.0"
$BIG_STRING1 rmeog (1..V/2 => 'A’) & '
$BIG_STRING2 'Mro& (1..V-1-v/2 => 'A’) & '1" & '
$BLANKS (1..v=20 => ’)

$MAX LEN INT BASED LITERAL
"2:" & (1..V-5 => ’0’) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..v=7 => '0') & "F.E:"

$MAX STRING LITERAL '"’ & (1..V-2 => 'A’) & "’

A-l

MACRO PARAMETERS

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter Macro Value
$ACC_SIZE 16
SALIGNMENT 2
$COUNT_LAST 32_767
$DEFAULT MEM SIZE 65536

$DEFAULT STOR UNIT 8
SDEFAULT SYS NAME MS_DOS2

$DELTA DOC 241.04E-31
SENTRY_ ADDRESS (0, 16%40%)
$ENTRY_ADDRESS1 (0, 16#05%)
SENTRY_ADDRESS2 (0, 16#01%)
S$FIELD LAST 32 767

SFILE TERMINATOR v

$FIXED NAME NO_SUCH FIXED TYPE
SFLOAT NAME NO_SUCH_FLOAT TYPE
$FORM_STRING "o

SFORM_STRING2 CANNOT RESTRICT FILE CAPACITY

SGREATER THAN DURATION
300_000.0

$GREATER THAN DURATIONIBASE_LAST
- .0E6

SGREATER THAN FLOAT BASE LAST
1.0E+40

SGREATER THAN FLOAT SAFE LARGE
1.0E38

A-2

MACRO PARAMETERS

$GREATER_‘IHAN_SHORT_FLQAT SAFE LARGE

1.0E308 ~
$HIGH PRIORITY 0
$ILLEGAL EXTERNAL FILE NAMEL

/NODIRECTORY,/FILENAME
$ILLEGAL EXTERNAL FILE NAME2

<BAD/"">
$INAPPROPR1ATE__LINE_LE1\K13'IH
SINAPPROPRIATE_PAGE_LENETH
$INCLUDE PRAGMAL PRAGMA INCLUDE ("A28006D1.ADA")
$INCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006El.ADA")
$INTEGER FIRST ~32768
$INTEGER LAST 32767

SINTEGER LAST PLUS 1 32768
SINTERFACE_LANGUAGE MASM
S$LESS_THAN DURATION ~305_000.0

S$LESS_THAN DURATION BASE FIRST
-170E6

SLINE_TERMINATOR ASCII.CR & ASCII.LF
$LOW_PRIORITY 0

$MACHINE CODE_STATEMENT
NULL;

SMACHINE CODE_TYPE NO_SUCH TYPE

SMANTISSA_DOC 31
$MAX DIGITS 15
$MAX INT 2147483647
SMAX INT PLUS 1 2147483648
SMIN_INT -214783648

MACRO PARAMETERS

$NAME NO_SUCH_INTEGER TYPE
$NAME LIST MS_DOsS2

$NAME SPECIFICATIONl D:/VALID/X2120A
SNAME_SPECIFICATION2 D:/VALID/X2120B
$NAME SPECIFICATION3 D:/VALID/X3119A

$NEG_BASED INT 164FFFF_FFFF#
SNEW_MEM SIZE 65536
$NEW_STOR_UNIT 8
$NEW_SYS_NAME MS_DOS2
$PAGE_TERMINATOR ASCII.FF

$RECORD DEFINITION RECORD NULL; END RECORD;
SRECORD_NAME NO_SUCH_MACHINE CODE_TYPE
$TASK_SIZE 16

$TASK STORAGE SIZE 512

$TICK 0.01

$VARIABLE ADDRESS FCNDECL.SOME_VAR'’ADDRESS
$VARIABLE ADDRESS1 FCNDECL.SOME_VAR2'’ADDRESS
SVARIABLE ADDRESS2 FCNDECL.SOME VAR3’ADDRESS

$YOUR PRAGMA ALL CHECKS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation are provided by the
customer and can be found in Appendix F, section F.9, page F-14.

B-1

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation are provided by the customer
and can be found in Appendix F, section F.9, page F-14.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-~specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -21474838648 .. 2147483647;

type FLOAT is digits 6 range —({2.0 ** 128) - (2.0 ** 104)) ..
((2.0 ** 128) - (2.0 ** 104);

type LONG FLOAT is digits 15 range —((2.0 ** 1024) ~ (2.0 ** 271)) .,
((2.0 ** 1024) ~ (2.0 ** 971));

1)/4096.0 ..
1),/4096.0;

type DURATION is delta 0.00025 range -((2.0 ** 31)
((2.0 ** 31)

Appendix F: Implementation Dependencies

) 4 Implementation Dependencies

This appendix specifies certain system-dependant characteristics
of the IntegrAda version 5.1.0 386 to DOS compiler.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, IntegrAda also provides
several others. Some of these pragmas have a textual range.

Such pragmas set some value of importance to the compiler,
usually a flag that may be On or Off. The value to be used by
the compiler at a given point in a program depends on the
parameter of the most recent relevant pragma in the text of the
program. For flags, if the parameter is the identifier On, then
the flag is on; if the parameter is the identifier Off, then the
flag is off; if no such pragma has occurred, then a default value

is used.

The range of a pragma - even a pragma that usually has a textual
range -~ may vary if the pragma is not inside a compilation unit.
This matters only if you put multiple compilation units in a
file. The following rules apply:

1) If a pragma is inside a compilation unit, it
affects only that unit.

2) If a pragma is outside a compilation unit, it
affects all following compilation units in the
compilation.

Certain required Ada pragmas, such as INLINE, would follow
different rules; however, as it turns out, IntegrAda ignores all
pragmas that would follow different rules.

The following system-dependent pragmas are defined by IntegrAda.
Unless otherwise stated, they may occur anywhere that a pragma
may occur.

ALL_CHECKS Takes one of two identifiers On or Off as its
argument, and has a textual range. If the
argument is Off, then this pragma causes
suppression of arithmetic checking (like pragma
ARITHCHECK - see below), range checking (like
pragma RANGECHECK - see below), storage error
checking, and elaboration checking. If the
argument is On, then these checks are all
performed as usual. Note that pragma ALL_CHECKS
does not affect the status of the DEBUG pragma:;
for the fastest run time code (and the worst run
time checking), both ALL_CHECKS and DEBUG should

Fo1

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix f: Implementation Dependencies

be turned Off «nd the pragma OPTIMIZE (Time)
should be used. Note also that ALL_CHECKS does
not affect the status of the ENUMTAB pragma.
Combining check suppression using the pragma
ALL_CHECKS and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ALL_CHECKS may be combined with the
IntegrAda pragmas ARITHCHECK and RANGECHECK;
whichever relevant pragma has occurred most
recently will determine whether a given check is
performed. ALL_CHECKS is on by default. Turning
any checks off may cause unpredictable results if
execution would have caused the corresponding
assumption to be violated. Checks should be off
only in fully debugged and tested programs. After
checks are turned off, full testing should again
be done, since any program that handles an
exception may expect results that will not occur
if no checking is done.

ARITHCHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for
situations where it is permitted to raise
NUMERIC_ERROR; these checks include overflow
checking and checking for division by zero.
Combining check suppression using the pragma
ARITHCHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done.
However, ARITHCHECK may be combined with the
IntegrAda pragma ALL_CHECKS; whichever pragma has
occurred most recently will be effective.
ARITHCHECK is on by default. Turning any checks
off may cause unpredictable results if execution
would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

CLEANUP Takes an integer literal in the range 0 .. 3 as
its argument, and has a textual range. Using this
pragma allows the IntegrAda run-time system to be
less than meticulous about recovering temporary
memory space it uses. This pragma can allow for
smaller and faster code, but can be dangerous;

F-2
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

certain constructs can cause memory to be used up

very quickly. The smaller the parameter, the more

danger is permitted. A value of 3 - the default

value -causes the run-time system to be its usual ‘
immaculate self. A value of 0 causes no
reclamation of temporary space. Values of 1 and 2
allow compromising between "cleanliness" and
speed. Using values other than 3 adds some risk
of your program running out of memory, especially
in loops which contain certain constructs.

DEBUG Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of line number code and
procedure name code. When DEBUG is on, such code
is generated. When DEBUG is off, no line number
code or procedure names are generated. This
information is used by the walkback which is
generated after a run-time error (e.g., an
unhandled exception). The walkback is still
generated when DEBUG is off, but the line numbers
will be incorrect, and no subprogram names will be
printed. DEBUG's initial state can be set by the
command line; if no explicit option is given, then
DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of IntegriAda's
povwer in describing run time errors.

Notes:

DEBUG should only be turned off when the program
has no errors. The information provided on an
error when DEBUG is off is not very useful.

If DEBUG is on at the beginning of a subprogram or
package specification, then it must be on at the
end of the specification. Conversely, if DEBUG is
off at the beginning of such a specification, it
must be off at the end. If you want DEBUG to be
off for an entire compilation, then you can either
put a DEBUG pragma in the context clause of the
compilation or you can use the appropriate
compiler option.

ENUMTAB Takes one of the two identifiers On or Off as its
argument, and has a textual range. This pragma
controls the generation of enumeration tables.
Enumeration tables are used for the attributes
IMAGE, VALUE, and WIDTH, and hence to input and
output enumeration values. The tables are

F-3
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

generated when ENUMTAB is on. The state of the
ENUMTAB flag is significant only at enumeration
type definitions. If this pragma is used to
prevent generation of a type's enumeration tables,
then using the three mentioned attributes causes
an erroneous program, with unpredictable results;
furthermore, the type should not be used as a
generic actual discrete type, and in particular
TEXT_IO.ENUMERATION_IO should not be instantiated
for the type. If the enumeration type is not
needed for any of these purposes, the tables,
which use a lot of space, are unnecessary.
ENUMTAB is on by default.

OPTIMIZER Takes one of the identifiers On or Off, or an
integer literal, as an argument. This pragma
turns optimization on or off, either totally or
partially. It has a textual range, except that if
the global optimizer is turned on for any part of
a compilation unit, then it is on for the entire
compilation unit. If the identifier is On or Off,
then IntegrAda's optimizers are turned totally on
or totally off, as appropriate. An integer
literal as an arguement causes optimization to be
turned partially on or off.

The following integer literals are meaningful as
an argument to this pragma:

1) Turns check elimination optimizations on.

2) Turns the basic block optimizer on.

3) Turns the global optimizer on. If this is on
anywhere in a compilation unit, it will be on
everywhere in that unit.

4) Turns peephole optimizations on.

5) Puts the optimizer in 'Space' optimization
mode (the default).

6) Puts the optimizer in 'Careful' optimization
mode. The can take much longer than 'Quick'
optimization, but will find more
optimizations.

7) Puts the compiler in 'Fastest alignment'
mode. Data objects will be aligned for the
fastest performance on the target (unless
overridden by rep. clauses). This takes more
data space. .

51) Turns check elimination optimizations off.
Useful for finding uninitialized variables.
52) Turns the basic block optimizer off.

F-4
Copyright 1990, R.R. Software, Inc. . Revision 4.6

Appendix F: Implementation Dependencies

53) Turns the global optimizer off.

54) Turns peephole optimizations off.

55) Puts the optimizer in 'Time' optimization
mode.

56) Puts the optimizer in 'Quick' optimization
mode. This is faster than 'Careful’
optimizations, and often will generate nearly
the same code.

57) Put the compiler in 'Smallest alignment'
mode. Data is only aligned when required or
when the performance penalty is severe.
Takes less data space.

Other integer literals will be ignored. 1In
general, this pragma should not be mixed with the
OPTIMIZE pragma, since one has a textual arange
and the other does not; this can lead to
surprising situations. However, the OPTIMIZE
pragma may be used inside a compilation unit for
which pragma OPTIMIZER(On) has been listed before
the start of the compilation unit.

PAGE_LENGTH This pragma takes a single integer literal as its
argument. It says that a page break should be
added to the listing after each occurrence of the
given number of lines. The default page length is
32000, so that no page breaks are generated for
most programs. Each page starts with a header
that looks like the following:

IntegrAda Version 5.1.0 compiling file on
date at time

RANGECHECK Takes one of the two identifiers On or Off as its
argument, and has a textual range. Where
RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for
situations where it is expected to raise
CONSTRAINT_ERROR; these checks include null
pointer checking, discriminant checking, index
checking, array length checking, and range-
checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS
may cause unexpected results; it should not be
done. However, RANGECHECK may be combined with
the IntegrAda pragma ALL_CHECKS; whichever pragma
has occurred most recently will be effective.
RANGECHECK is on by default. Turning any checks
off may cause unpredictable results if execution

F-5
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

would have caused the corresponding assumption to
be violated. Checks should be off only in fully
debugged and tested programs. After checks are
turned off, full testing should again be done,
since any program that handles an exception may
expect results that will not occur if no checking
is done.

SYSLIB This pragma tells the compiler that the current
unit is one of the standard IntegrAda system
libraries. It takes as a parameter an integer
literal in the range 1 .. 15; only the values 1
through 4 are currently used. For example, system
library number 2 provides floating point support.
Do not use this pragma unless you are writing a
package to replace one of the standard IntegrAda
system libraries.

VERBOSE Takes On or Off as its argument, and has a textual
range. VERBOSE controls the amount of output on
an error. If VERBOSE is on, the two lines
preceding the error are printed, with an arrow
pointing at the error. 1If VERBOSE is off, only
the line number is printed.

VERBOSE (Off) :

Line 16 at Position 5
ERROR Identifier is not defined

VERBOSE (On) :

ERROR Identifier is not defined

The reason for this option is that an error
message with VERBOSE on can take a long time to be
generated, especially in a large program.
VERBOSE's initial condition can be set by the
compiler command line.

Pragma INTERFACE is supported for the language MASM. Pragma
INTERFACE_NAME can be used to specify a name other than the Ada
one as the name of the MASM function called. INTERFACE_NAME
takes two parameters, the Ada subprogram name, and a string
representing the MASM name for the function. Pragma
INTERFACE_NAME is provided so-that convienient Ada names can be

F-6
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

used as appropriate, including operator symbols, and so that
foreign language names which are not legal Ada identifiers can be
interfaced to. If pragma INTERFACE is used in a program,

Jbind must be used to link it, and it must be linked with the

Interface run-time.

Several required Ada pragmas may have surprising effects in
IntegrAda. The PRIORITY pragma may only take the value 0, since
that 1s the only value in the range System.Priority. Specifying
any OPTIMIZE pragma turns on optimization; otherwise,
optimization is only done if specified on the compiler's command
line. The SUPPRESS pragma is ignored unless it only has one
parameter. Also, the following pragmas are always ignored:
CONTROLLED, INLINE, MEMORY_SIZE, SHARED, STORAGE_UNIT, and
SYSTEM_NAME. Pragma CONTROLLED is always ignored because
IntegrAda does no automatic garbage collection: thus, the effect
of pragma CONTROLLED already applies to all access types. Pragma
SHARED is similarly ignored: IntegrAda's non-preemptive task
scheduling gives the appropriate effect to all variables. The
pragmas INLINE and SUPPRESS (with two parameters) provide
recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORY_SIZE,
STORAGE_UNIT, and SYSTEM_NAME all attempt to make changes to
constants in the System package; in each case, IntegrAda allows
only one value, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

IntegrAda does not provide any attributes other than the required
Ada attributes.

F.3 B8pecification of the Package SYSTEM
The package System for IntegrAda has the following definition.
package System is

-- System package for IntegrAda

-~ Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset_Type is new Word:
type Address is record
Offset : Offset_Type:
Segment : Word;
end record;
Function "+" (Left : Address; Right : Offset_Type) Return
Address;

F-7

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

Function "+" (Left : Offset_Type:; Right : Address) Return
Address:;

Function "-" (Left : Address; Right : Offset_Type) Return
Address;

Function "-" (Left, Right : Address) Return Offset_Type:;

type Name is (MS_DO0S2);

System_Name : constant Name := MS_DOS2;
Storage_Unit : constant := 8;
Memory_Size : constant := 65536;

-- Note: The actual memory size of a program is
-- determined dynamically; this is the maximum
-- number of bytes in the data segment.

~- System Dependent Named Numbers:
Min_Int : constant := -2_147_483_648;
Max_Int : constant := 2_147_483_647;
Max_Digits : constant := 15;
Max_Mantissa : constant := 31;
Fine_Delta : constant := 2#1.0#E-31;
-- equivalently, 4.656612873077392578125E-10
Tick : constant := 0.01; -- Some machines have less
-- accuracy; for example, the IBM PC actually ticks
-=- about every 0.06 seconds.

~- Other System Dependent Declarations
subtype Priority is Integer range 0 .. 0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

end System;

The type Byte in the System package corresponds to the 8-bit
machine byte. The type Word is a 16-bit Unsigned Integer type,
corresponding to a machine word.

F.4 Restrictions on Representation Clauses

A length clause that specifies T'SIZE has the following
restrictions:

If T is a discrete type, or a fixed point type, then the
size expression can given any value between 1 and 32 bits
(subject, of course, to allowing enough bits for every
possible value). Signed and unsigned representations are
supported.

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Isplementation Dependencies

If T is a floating point type, sizes of 32 and 64 bits are
supported (corresponding to Float and Long_Float
respectively).

If T is an array or record type, the expression must give
enough room to represent all of the components of the type
in their object representation. This can be smaller than

the default size of the type.

If T is an access type or task type, the expression must
give the default size for T.

A length clause that specifies T'STORAGE_SIZE for an access type
is supported.

Any integer value can be specified. STORAGE_ERROR will be raised
if the value is larger than available memory; no space will be
allocated if the value is less than or equal to zero.

A length clause that specifies T'STORAGE_SIZE for a task type T
is supported. Any integer value can be specified. Values
smaller than 256 will be rounded up to 256 (the minimum
T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type
must give a value (subject to the Ada restrictions) in the range

2.0 ** (-99) ., 2.0 ** 99,

inclusive.

An enumeration representation clause for a type T may give any
integer values within the range System.Min_Int .. System.Max_Int.
If a size length clause is not given for the type, the type's
size is determined from the literals given. (If all of the
literals fit in a byte, then Byte'Size is used; similarly for
Integer and Long_Integer).

The expression in an alignment clause in a record representation
clause must equal 1 or 2 (to specify Byte or Word alignment
respectively). The alignment value is respected for all object
creations unless another representation clause explicitly
overrides it. (By placing a component at a non-aligned address,
for example). :

A component clause may give any desired storage location. The
size of the record is adjusted upward if no representation clause

F-9
Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

has been given, and more space is needed for the specified
storage location to be obeyed.

The range for specifying the bits may specify any values within
the following limitations (assuming enough bits are allowed for

any value of the subtype):

If the component type is a discrete or fixed point type, any
value may be specified for the lower bound. The upper bound

must satisfy the equation

UB - (LB - (LB Mod System.STORAGE_UNIT_SIZE)) <= 32.

If the component type is any other type, the lower bound
must satisfy

LB Mod System.STORAGE_UNIT_SIZE = 0.
The upper bound must be
UB := LB + T'Size - 1;

IntegrAda supports address clauses on most objects. Address
clauses are not allowed on parameters, generic formal parameters,
and renamed objects. The address given for an object address
clause may be any legal value of type System.Address. It will be
interpreted as an absolute machine address, using the segment
part as a selector if in the protected mode. It is the user's
responsibility to ensure that the value given makes sense (i.e.,
points at memory, does not overlay other objects, etc.) No other
address clauses are supported.

P.5 Implementation Defined Names

IntegrAda uses no implementation generated names.

F.6 Address Clause Bxpressions

The address given for an object address clause may be any legal
value of type System.Address. It will be interpreted as an
absolute machine address, using the segment part as a selector if
in the protected mode. It is the user's responsibility to ensure
that the value given makes sense (i.e., points at memory, does
not overlay other objects, etc.)

F.7 Unchecked Conversion Restrictions

We first make the following definitions:

Copyright 1990, R.R. Softwsre, Inc. Revision 4.6

Appendix F: I[mplementation Dependencies
A type or subtype is said to be a simple tvype or a simple subtype

(respectively) if it is a scalar (sub)type, an access (sub)type,
a task (sub)type, or if it satisfies the following two
conditions:

1) If it is an array type or subtype, then it is
constrained and its index constraint is static; and

2) If it is a composite type or subtype, then all of its
subcomponents have a simple subtype.

A (sub)type which does not meet these conditions is called non-
simple. Discriminated records can be simple; variant records can
be simple. However, constraints which depend on discriminants
are non-simple (because they are non-static).

IntegrAda imposes the following restriction on instantiations of
Unchecked_Conversion: for such an instantiation to be legal, both
the source actual subtype and the target actual subtype must be
simple subtypes, and they must have the same size.

F.8 Implementation Dependencies of I/O

The syntax of an external file name depends on the operating
system being used. Some external files do not really specify
disk files; these are called devjces. Devices are specified by
special file names, and are treated specially by some of the I/0
routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:
[d:)[path])filename[.ext)

where "d:" is an optional disk name:; "path" is an optional
path consisting of directory names, each followed by a
backslash; "filename" is the filename (maximum 8
characters); and ".ext" is the extension (or file type).
See your MS-DOS manual for a complete description. 1In
addition, the following special device names are recognized

STI: MS-DOS standard input. The same as Standard_Input.
Input is buffered by lines, and all MS-DOS line editing
characters may be used. Can only be read.

STO: MS-DOS standard output. The same as Standard_Output.
Can only be written.

ERR: MS-DOS standard error. The output to this device
cannot be redirected. Can only be written.

CON: The console device. Single character input with
echoing. Due to the design of MS-DOS, this device can
be redirected. Can be read and written.

F-11

Copyright 1990, R.R. Software, Inc. Revision 4.6

Apperndix F: Implementation Dependencies

AUX: The auxiliary device. Can be read or written.

LST: The list (printer) device. Can only be written.

KBD: The console input device. No character interpretation
is performed, and there is no character echo. Again,
the input to this device can be redirected, so it does
not always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN
without colons ':'). For compatibility reasons, we do not

recommend the use of these nanes.

The MS-DOS 2.xx version of the I/0 system will do a search
of the default search path (set by the DOS PATH command) if
the following conditions are met:

1) No disk name or path is present in the file name;
and

2) The name is not that of a device.

Alternatively, you may think of the search being done if the
file name does not contain any of the characters ':', '/°',
or '\'.

The default search path cannot be changed while the program
is running, as the path is copied by the IntegrAda program
when it starts running.

Note:
Creates will never cause a path search as they must work in

the current directory.

Upon normal completion of a program, any open external files are
closed. Nevertheless, to provide portability, we recommend
explicitly closing any files that are used.

Sharing external files between multiple file objects causes the
corresponding external file to be opened multiple times by the
operating system. The effects of this are defined by your
operating system. This external file sharing is only allowed if
all internal files associated with a single external file are
opened only for readlng (mode In_File), and no internal file is
Created. Use_Error is raised if these requirements are violated.
A Reset to a wrltlng mode of a file already opened for reading
also raise Use_Error if the external file also is shared by
another internal file.

Binary I/0 of values of access types will give meaningless
results and should not be done. Binary I/0 of types which are

F-12
Copyright 1990, R.R. Software, Inc. Revision 4.6

Apperdix F: Implementation Dependencies

not simple types (see definition in Section F.7, above) will
raise Use_Error when the file is opened. Such types require
specification of the block size in the form, a capability which
is not yet supported.

The form parameter for Sequential_IO and Direct_IO is always
expected to be the null string.

The type Count in the generic package Direct_IO is defined to
have the range 0 .. 2_147_483_647.

Ada specifies the existence of special markers called terminators
in a text file. IntegrAda defines the line terminator to be <LF>
(line feed), with or without an additional <CR> (carriage
return). The page terminator is the <FF> (form feed) character;
if it is not preceded by a <LF>, a line terminator is also

assumed.

The file terminator is the end-of-file returned by the host
operating system. If no line and/or page terminator directly
precedes the file terminator, they are assumed. If the form "Z"
is used, the <Ctrl>-Z character also represents the end-of-file.
This form is not necessary to correctly read files produced with
IntegrAda and most other programs, but may be occasionally
necessary. The only legal forms for text files are "" (the null
string) and "Z". All other forms raise USE_ERROR.

If the form is "", the <Ctrl>-Z character is ignored on input.
The <CR> character is always ignored on input. (They will pot be
returned by Get, for instance). All other control characters are
sent directly to the user. Output of control characters does not
affect the layout that Text_IO generates. In particular, output
of a <LF> before a New_Page does not suppress the New_Line caused
by the New_Page.

On output, the "Z" form causes the end-of-file to be marked by a
<Ctrl>-Z; otherwise, no explicit end-of-file character is used.
The character pair <CR> <LF> is written to represent the line
terminator. Because <CR> is ignored on input, this is compatible
with input.

The type Text_IO.Count has the range 0 .. 32767; the type
Text_IO.Field also has the range 0 .. 32767.

I0_Exceptions.USE_ERROR is raised if something cannot be done
because of the external file system; such situations arise when
one attempts:

F-13
Copyright 1990, R.R. Software, Inc. Revigion 4.6

Appendix F: Implementation Dependencies

- to create or open an external file for writing when the
external file is already open (via a different internal
file).

- to create or open an external file when the external
file is already open for writing (via a different
internal file).

- to reset a file to a writing mode when the external
file is already open (via a different internal file).

- to write to a full disk (Write, Close):;

- to create a file in a full directory (Create):;

- to have more files open than the 0S allows (Open,
Create) ;

- to open a device with an illegal mode:

- to create, reset, cr delete a device:

- to create a file where a protected file (i.e., a
directory or read-only file) already exists;

- to delete a protected file:

- to use an illegal form (Open, Create):; or

- to open a file for a non-simple type without specifying
the block size;

- to open a device for direct I/O.

IO_Exceptions.DEVICE_ERROR is raised if a hardware error other
than those covered by USE_ERROR occurs. These situations should
never occur, but may on rare occasions. For example,
DEVICE_ERROR is raised when:

- a file is not found in a Close or a Delete;

- a seek error occurs on a direct Read or Write; or

- a seek error occurs on a sequential End_Of_File.

The subtypes Standard.Positive and Standard.Natural, used by some
I/0 routines, have the maximum value 32767.

No package Low_Level_ IO is provided.

F.9 Running the compiler and linker

The IntegrAda compiler is invoked using the following format:
Iada (path] filename [.ext] {/option)

where filename is an MS/DOS file name with optional path [path]

(here path includes disk names), optional extension [.ext], and

compiler options {/option). If no path is specified, the current

disk and path is assumed. If no extension is specified, .PKG is

assumed.

The compiler options are:

Copyright 1990, R.R. Software, Inc. Revigion 4.6

Appendix F: Implementation Dependencies

B Brief error messages. The line in error is not printed
(equivalent to turning off pragma VERBOSE).

BS Brief statistics. Few compiler statistics are printed.

D Don't generate debugging code (equivalent to turning

off pragma DEBUG)

F Use in-line 8087 instructions for Floating point
operations. By default the compiler generates library
calls for floating point operations. The 8087 may be
used to execute the library calls. A floating point
support library is still required, even though this
option is used.

L Create a listing file with name filename.PRN on the
same disk as filename. The listing file will be a
listing of only the last compilation unit in a file.

Lpath Create a listing file on specified path 'path'.

ox Object code memory model. X is 0 or 1. Memory model O
creates faster, smaller code, but limits all code in
all units of a program to one MS-DOS segment (i.e., 64
kilobytes); Memory model 1 allows code size limited
only by your machine and operating system. See the
linker (JLINK) manual for more information. Memory
model 0 is assumed if this option is not given. The
compiler records the memory model for which each
library unit was compiled, and it will complain if any
mismatches occcur. Thus, the compiler enforces that if
it is run using the /ol option, then all of the withed
units must have been compiled with the same option.

Q Quiet error messages. This option causes the compiler
not to wait for the user to interact after an error.
In the usual mode, the compiler will prompt the user
after each error to ask if the compilation should be
aborted. This option is useful if the user wants to
take a coffee break while the compiler is working,
since all user prompts are suppressed. The errors (if
any) will not stay on the screen when this option is
used; therefore, the console traffic should be sent to
the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many
error messages for each and every line in the program.
A lot of paper could be used this way! Note that the /Q

Copyright 1990, R.R. Software, Inc. . Revision 4.6

Rpath

Spath

Wx

Appendix F: Implementation Dependencies

option disallows disk swapping, even if the /S option
is given.

Route the SYM, SRL, and JRL files produced by the
compiler to the specified path 'path'. The default is
the same path as filename.

Route Scratch files to specified path. This option is
useful if you have a RAM disk or if your disk does not
have much free space. The use of this option also
allows disk swapping to load package specification
(.SYM) files. Normally, after both the compiler and
source file disks are searched for .SYM files, an error
is produced if they are not all found. However, when
the /S option is used, the compiler disk may be removed
and replaced by a disk to search. The linker has a
similar option, which allows the development of large
programs on systems with a small disk capacity. Note
that disk swapping is not enabled by the /S option if
the /Q (quiet option) is also given. The /Q option is
intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problenm is
that when the /S option is used to put scratch files on
a RAM disk, a batch file may stop waiting for a missing
.SYM or ERROR.MSG file; such behavior would not be
appropriate when /Q is specified.

Generate information which allows trimming unused
subprograms from the code. This option tells the
compiler to generate information which can be used by
the remove subprograms from the final code. This
option increases the size of the .JRL files produced.
We recommend that it be used on reusable libraries of
code (like trig. 1libraries or stack packages) - that
is those compilations for which it is likely that some
subprograms are not called.

Don't print any warning messages. For more control of
warning messages, use the following option form (Wx).

Print only warnings of level less than the specified
digit 'x'. The given value of x may be from 1 to 9.
The more warnings you are willing to see, the higher
the number you should give.

Handle eXtra symbol table information. This option is
for the use of the JScope debugger and other tools.
This option requires large quantities of memory and
disk sprace, and thus should be avoided if possible.

F-16

Copyright 1990, R.R. Software, Inc. Revision 4.6

Appendix F: Implementation Dependencies

yA Turn on optimization. This has the same effect as if
the pragma OPTIMIZE were set to SPACE throughout your
compilation.

The default values for the command line options are:

Error messages are verbose.

Statistics are verbose.

Debug code is generated.

Library calls are generated for floating point operations.
No listing file is generated.

Memory model 0 is used.

The compiler prompts for abort after every error.

The SYM, SRL, and JRL files is put on the ¢. me path as the
input file.

Scratch files are put in the current directory.

No trimming code is produced.

All warnings are printed.

Extra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

NXES® NOO[‘"‘!U%W

Leading spaces are disregarded between the filename and the call
to Iada. Spaces are otherwise not recommended on the command
line. The presence of blanks to separate the options or between
the filename and the extension will be ignored.

Examples:
Iada test/Q/L
Jada test.run/w4
Iada test
TJada test .run /B /W/L

The compiler produces a SYM (SYMbol table information) file when
a specification is compiled, and a SRL or JRL (Specification
ReLocatable or Iada Relocatable) file when a body is compiled.
To make an executable program, the appropriate SRL and JRL files
must be linked (combined) with the run-time libraries. This is
accomplished by running the IntegrAda linker, JLINK.

The IntegrAda linker is invoked using the following format:
JLINK ([path] filename {/option}

Here "filename" is the name of the SRL or JRL file created when
the main program was compiled (without the .SRL or .JRL
extension) with optional path name [path] (again, the disk name
is consider part of the path here), and compiler options
{(/option). The filename usually corresponds to the first eight

F-17
Copyright 1990, R.R. Software, Inc.) Revigion 4.6

Appendix F: Isplementation Dependencies

letters of the name of your main program. A path may be
specified where the files are to be found. See the linker manual
for more detailed directions. We summarize here, however, a few

of the most commonly used linking options:

E Create an EXE file. This is assumed if the /01 option is
given. This allows allow a slightly larger total program
size if memory model is used.

FO Use software floating point (the default).

F2 Use hardware (8087) floating point.

L Display lots of information about the loading process.

00 Use memory model 0 (the default); see the description of the
/0 option in the compiler, above.

01 Use memory model 1.

Q Use quiet error messages; i.e., don't wait for the user to
interact after an error.

B Use brief statistics.

T Trim unused subprograms from the code. This option tells

the linker to remove subprograms which are never called from
the final output file. This option reduces space usage of
the final file by as much as 30K.

Examples:
JLINK test
JLINK test /Q/L
JLINK test/0l1/L/F2

Note that if you do not have a hardware floating point chip, and

if you are using memory model 0, then you generally will not need
to use any linker options.

Copyright 1990, R.R. Software, Inc. Revision 4.6

