. e

A242 273 MENTATION PAGE S asotss)

3 average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sources gathering and maintaining the data
\mm m‘ “‘\\ |\\\| ““ \““ \““ ““ \“‘ regarding this burden estimate or any other aspect of this collection of information, inciuding suggestions for reducing this burden, to Washingion
i rons, 1215 Jetterson Davis Highway, Sute 1204, Arlington, VA 22202-4302, and to the Office of information and Reguiatory Affairs, Office of
e iy 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 17 May 1991 to 01 Jun 1993
4. TITLE AND SUBTITLE) 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: U. S. NAVY, AdaVAX, Version 5.0,
(/OPTIMIZE), VAX11/785 (Host & Target), 910517S1.11164

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD .
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) -~ ., -+ ' «
National Institute of Standards and Technology '

8. PERFORMING ORGANIZATION
REPORT NUMBER

National Computer Systems Laboratory R NIST90USNS10_3_1.11

Bldg. 255, Rm A266

Gaithersburg, MD 20899 USA

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

11, SUPPLEMENTARY NOTES - —
/\)‘7 v ik Vet irer bkl (—ﬁ/ dio g é) utcunN pra” /’n tclk,(,b(’,(kLQ_
fr D /’} T /l{[‘u Le e eon Wj/n,-)

[12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
U. S. NAVY, AdaVAX, Version 5.0, Gaithersburgh, MD, (/OPTIMIZE), VAX11/785 (Host & Target), ACVC 1.11.

91~
Ui!l'ill:'!,’:’lﬂHll!:l"'lllﬂHl II'HII:

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURi i 7 CLASSIFICATION 20. LIMITATION OF ABSTﬁCT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 _ Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Sud. 2398-128

gl 1iyd iot

AVF Control Number: NIST90USN510_3 1.11
DATE COMPLETED

BEFORE ON-SITE: 1991-04-05

AFTER ON-SITE: 1991-05-17

REVISIONS: 1991-07-24

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910517S1.11164

U.S. NAVY

AdaVvVAX, Version 5.0 (/OPTIMIZE)

VAX 11/785 => VAX 11/785

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266

‘Gaithersburg, Maryland 20899

Vhooesdica fop

Ry Y1

U AN 4" 8

\ Bpecind

A L

AVF Control Number: NIST90USN510_3 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 17 May 1991.

Compiler Name and Version: AdaVAX, Version 5.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version
5.3

Target Computer System: VAX 11/785, running VAX/VMS Version
5.3

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate

910517S1.11164 is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been reviewed and is approved.

Dr. David K. n
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899 '

Y N

Ada Validation Organization (~ Ada Joint Program Office
., Director, Computer & Software Dr. John Solomond
*'' Engineering Division Director

Institute for Defense Analyses Department of Defense

Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certificate Awardee: U.S. NAVY

Ada Validation Facilityﬁ National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: AdaVAX, Version 5.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version

5.3
Target Computer System: VAX 11/785, running VAX/VMS Version
5.3
Declaration:

I the undersigned, declare that I have no knowledge of deliperate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

R IRTIN iy
RIS M[”“J ' Lx4” L SIS %Cil

Customer Signature Date '

Company U.s. Navy

Title "~ SN p .

NN N A FAREN o

}‘ { L_/(_/\yu/‘,f, T_,\; N (,AQL) Ll e Lf

Certificate Awardee Signature Date:

Company U.S5. Navy
Title

TABLE OF CONTENTS

CHAPTER 1 . . & o o o o o s o o o & o« o
INTRODUCTION e s e

1.1 USE OF THIS VALIDATION SUMMARY

1.2 REFERENCES+ .« .« &
1.3 ACVC TEST CLASSES . . .
1.4 DEFINITION OF TERMS . .

CHAPTER 2 . =« + o ¢ o &+ o o o o =
IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS
2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS

CHAPTER 3 . . . e e e e e .
PROCESSING INFORMATION e s e o s e
3.1 TESTING ENVIRONMENT .
3.2 SUMMARY OF TEST RESULTS
3.3 TEST EXECUTION

APPENDIX A . . e e e e e v o e
MACRO PARAMETERS e e e e e e e e

APPENDIX B e & e s
COMPILATION SYSTEM OPTIONS e o e
LINKER OPTIONS . . ¢ « v o o = « =

APPENDIX C«
APPENDIX F OF THE Ada STANDARD .« e

e o & o e

e o o o o

LI S L

k‘HlJﬁ'Hbd
WRH PR

NN
1 Cd
NSNS

WWwWwww
0
NE NV

1
]

wey %%
N

%

A

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
vValidation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide ([UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 1In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this wvalidation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

[Adas3] Reference Manual for the Ada Programming Langquage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada 1library units, the
packages REPORT and SPPRT13, and the procedure CHECK_FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. cClass B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verlfled.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted. .

In some tests of the ACVC, certain macro strings have to be
replaced by impiementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

Fcr each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of maklng the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2

1-2

and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada
vValidation
Facility (AVF)

Ada

Validation
Organization
(AVO)
Compliance of
an Ada
Implementation

Computer
System

Conformity

The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and executicon thereof.

The means for testing compliance of Ada
implementations, Validation consisting of the
test suite, the support programs, the ACVC
Capability user's guide and the template for
the validation summary (ACVC) report.

An Ada compiler with its host computer system and
its target computer system.

The part of the certification body which carries
out the procedures required to establish the
compliance of an Ada implementation.

The part of the certification body that provides
technical guidance for operations of the Ada
certification systemn.

The ability of the implementation to pass an ACVC
version.

A functional unit, consisting of one or more
computers and associ.ated software, that uses
common storage for all or part of a program and
also for all or part of the data necessarv for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can executa programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer

Declaration of
Conformance

Host Computer
Systen

Inapplicable
test

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated ada
Implementation

validation

Withdrawn
test

An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to

be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/ocutput control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro9o0].

The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may ke incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been -
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C355081 C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B Cc45612C C45651Aa C46022A
B49008A B49008B A74C06A C74308A B83022B B83022H
B83025B 883025D B23026B C83026A C83041A B85001L
C86001F C94021A Cc97116A C93003B BA2011A CB7001A
CB7001B CB7004A CCl223A BC1226A CC1226B BC3009B
BD1B02B BD1BO6A AD1BO8A BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CcD4031A CD4051D CD5111A CcD7004C ED7005D CD700S5E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CcD9005Aa CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B
2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated:; references to Ada Issues
are included as appropriate.

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests)
C35706F..Y (20 tests)
C35708F..Y (20 tests)

C35705F..Y (20 tests)
C35707F..Y (20 tests)
C35802F..Z (21 tests)

C45241F..Y (20 tests)
C45421F..Y (20 tests)
C45524F..2 (21 tests)
C45641F..Y (20 tests)

C45321F..Y (20 tests)
C45521F..2 (21 tests)
C45621F..Z2 (21 tests)
C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORT_INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V Cc86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and <CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT: for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, there is no such type.

C45624A..B (2 tests) check that the proper exception is raised 7f
MACHINE_OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other thar
DURATION; for this implementation, there is no such type.

C96005B checks foir values of type DURATION'BASE that are outside
the range of DURATION; for this implementation, there are no such
values.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation doces not
support such sizes.

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types:; this
implementation does not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with

2=2

discriminants without defaults; these instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT_IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected
by this compiler.

The tests listed in the following table are not applicable because
the given file operations are supported for the given combinaticn

of mode and file access method.

Test File Operation Mode File Access Method
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT_FILE DIRECT_ IO
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL IO
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102P OFPEN OUT_FILE SEQUENTIAL IO
CE21029Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN QUT_FILE DIRECT IO
CE2102W RESET OUT_FILE DIRECT_ IO
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE =~ = ======== ZXT_1I0
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The tests listed in the following table are not applicable because

the given file operations are not

supported for
combination of mode and file access method.

the given

Test File Operation Mode File Access Method
CE2105A CREATE IN_FI1IE SEQUENTIAL_IO
CE2105B CREATE IN_FILE DIRECT_IO
CE3109A CREATE IN FILE TEXT IO
CE2107B..D (3 tests}, CE2110B, and CE2111D ~heck operations on

sequential files when multiple internal files are associated with
the same external file and one or more are open for writing;
USE_ERROR is raised when this association is attempted.

CE2107E and CE2107L check operations on direct and sequential files

when files of both kinds are associated with the same external
file; USE_ERRCOR is raised when this association is attempted.

2-3

CE2107G..H (2 tests), CE2110D, and CE2111H check operations on
direct files when multiple internal files are associated witb the
same external file and one or more are open for writing; USE_ERROR
is raised when this association is attempted.

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded:; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A check
operations on text files when multiple internal files are
associated with the same external file and one or more are open for
writing; USE_ERROR is raised when this association is attempted.

CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the
page number exceeds COUNT'LAST. For this implementation, the value
of COUNT'LAST is greater than 150000 making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 41 tests.
The following.tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B22004A B23004A B24005A B24005B B28003A
B33201C B33202C B33203C B33301B B37106A B37301I
B38003A B38003B B38009A B38009B B44001A B44004A
B54A01L BSSA01A B61005A B85008G B85008H B95063A
B97103E BB1006B BC1102A BCl10%A BC1109B BC1109C
BC11l09D BCl201F BC1201G BC1l201H BC1201I BC1201J
BC1201L BC3013A BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at appropriate points in
order to solve the elaboration problems for:

C83030C C860C7A

Parens were inserted into the various expressions that produce
out-of-range intermediate values in order to force the evaluation
order and thus avoid the exception. For the two tests, the
particular TModifications are:

[for C34005P]

at line 187, "I - X'FIRST" => "(I - X'FIRST)", yielding:

IF NOT EQUAL (X (I), Y ((I = X'FIRST) + Y'FIRST)) THEN
[for C34005S]
at lines 262/3

[(262] "I X'FIRST"

"(I - X'FIRST)"
[263] "J - X'FIRST(2)"

>
> "(J - X'FIRST(2))", yielding:

Y ((I - X'FIRST) + Y'FIRST,
(J - X'FIRST(2)) +

U

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity
Code 81, Room 301D
200 Catalina Blvd.
San Diego, cCalifornia 92147
619-553-9447

For a point of contact for sales information about this Ada
implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACvVC
[Pro90}.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3695
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 381
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

f) Total Number of Inapplicable Tests 381 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 381
tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/
target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Aprendix B
for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /NO_OPTIMIZE the optiodns were:

/SUMMARY /NO_TRACE_BACK /NO OPTIMIZE /SOURCE
/0UT=<filename>

FOR /QOPTIMIZE the options were:

/SUMMARY /NO _TRACE BACK /OPTIMIZE /SOURCE
/0UT=<filename>

The options invoked by default for validation testing during

this test were:

3-2

FOR /NO_OPTIMIZE the options were:

/NO_MACHINE_CODE /NO_ATTRIBUTE /NO_CROSS_REFERENCE
/NO_DIAGNOSTICS /NO _NOTES /PRIVATE /LIST

/CONTAINER GENERATION /CODE_ON_WARNING /NO MEASURE /DEBUG
/CHECKS '

FOR /OPTIMIZE the options were:

/NO_MACHINE_ CODE /NO_ATTRIBUTE /NO_CROSS_REFERENCE
/NO_DIAGNOSTICS /NO _NOTES /PRIVATE /LIST

/COﬁTAINER_GENERATION /CdbE_ON_WARNING /NO_MEASURE /DEBUG
/ CHECKS

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected

listings examined on-site by the validation team were also
archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89). The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is | the value for $MAX_IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_ IN_LEN 120

$BIG_ID1 (1..V=1 => 'A', V. => '1")

$BIG_ID2 (1..V=-1 => 'A', V => '2"')

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A"')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=1-V/2 => 'A')
$BIG_INT_LIT (1L..V=-3 => '0') & "298"

$BIG_REAL_LIT (1..V-5 => '0') & "690.0"

$BIG_STRING1 twr g (1..V/2 => 'A') & 'm¢

$BIG_STRING2 Ty & (1..V-1=-V/2 => 'A") & '1' & 'M!
$BLANKS (1..V=20 => ' ')

SMAX_ LEN_INT BASED_LITERAL
"2T" & (1..V-5 => '0') & "11:"

$MAX LEN REAL_BASED_LITERAL
"16T" & (1..V=7 => '0'} & "F.E:"

$MAX STRING_LITERAL '"' & (1..V=2 => 'a') & '"™!

The following table contains the values for the remaining

macro parameters.

Macro Parameter

SACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT_MEM SIZE
$DEFAULT_STOR_UNIT
SDEFAULT _SYS_NAME

$DELTA_DOC

$ENTRY_ADDRESS
$SENTRY_ADDRESS1
$ENTRY_ADDRESS2
SFIELD_LAST
$FILE_TERMINATOR
$SFIXED NAME
SFLOAT_NAME
$FORM_STRING
$FORM_STRING2

$GREATER _THAN_DURATION

Macro Value

2_147_483_647 .
1073741823

8

ADAVAX

0.000_000_000_465 661 287_307_
739 _257_812_5

164404

164804

16#1004#

32_767

'

NO_SUCH_TYPE_AVAILABLE
NO_SUCH_TYPE_AVAILABLE

"

"CANNOT RESTRICT FILE CAPACITY"

75_000.0

$SGREATER_THAN DURATION_BASE_LAST 131_073.0

SGREATER THAN FLOAT BASE_LAST

$GREATER _THAN_ FLOAT_SAFE_LARGE

1.80141E+38

1.0E308

SGREATER_THAN SHORT _FLOAT_SAFE_LARGE 1.0E308

SHIGH PRIORITY

15

$ILLEGAL_EXTERNAL FILE NAMEl1 BADCHAR~@.~!

$ ILLEGAL_ EXTERNAL _ FILE_NAME?2
MUCH_TOO_LONG_NAME_FOR_A_FILE_UNDER_VMS_SO_THE_SO_THERE

SINAPPROPRIATE LINE LENGTH 256

$INAPPROPRIATE_PAGE_LENGTH -1

$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")
$INTEGER_FIRST -32768

$INTEGER_LAST 32767

$INTEGER_LAST_PLUS_1 32768

$INTERFACE_LANGUAGE ASMVAX_JSB

$LESS_THAN DURATION -75000.0

$SLESS_THAN DURATION_BASE_FIRST -131073.0

SLINE_TERMINATOR U

$LOW_PRIORITY ' 1
$MACHINE_CODE_STATEMENT BYTE_OP_CODE' (OP=>NOP) ;
$MACHINE_CODE_TYPE BYTE

$MANTISSA_DOC 31

$MAX_DIGITS 9

$MAX_INT 2147483647

$MAX_INT PLUS_1 2147433648

$MIN_INT -2147483648

$NAME NO_SUCH_TYPE_AVAILABLE
$NAME_LIST ADAVAX, ADA_L, ADA M

$NAME _SPECIFICATION1
ALSNSTEST: (ALSN_TESTS.ACVC.TESTACVCVAX.RUNNING]X2120A.:1

SNAME_SPECIFICATION2
ALSNSTEST: [ALSN_TESTS.ACVC.TESTACVCVAX.RUNNING]X21208. ;1

$NAME SPECIFICATION3
ALSNSTEST: (ALSN_TESTS.ACVC.TESTACVCVAAX.RUNNING]X3119A.;1

SNEG_BASED_INT 164FFFFFFFE#

S$NEW_MEM_SIZE 1073741823

$NEW_STOR_UNIT 8

S$NEW_SYS_NAME ADA_L

$PAGE_TERMINATOR ASCII.FF

SRECORD_DEFINITION RECORD LWORD_1:LONG_WORD;
LWORD_2:LONG_WORD; END RECORD;

$RECORD_NAME QUADWORD

$TASK_SIZE 1624

$TASK_STORAGE_SIZE 1024

$TICK 0.01

SVARIABLE _ADDRESS 16400204

$VARIABLE_ADﬁRESSl 16#0024#

$VARIABLE_ADDRESS2 164#0028#

$YOUR_PRAGMA TITLE ("THIS IS AN ALS/N ACVC
TITLE")

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

ALS/N Reference Handbook Version 4.5
29 March 1991

Section 9

Compiler Options

temm———— - e cc e ————- -+

| oOption Function |

O e - ———————————— — = e e e -
MEASURE Generates code to monitor execution

frequency at the subprogram level for
the current unit. Default: NO_MEASURE

NO_CHECKS NO_CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.

Default: CHECKS

NO_CODE_ON_WARNING
NO_CODE_ON_WARNING means no code is
generated when there is a diagnostic
of severity WARNING or higher.
CODE_ON_WARNING generates code
only if there are nc diagnostics
of a severity higher than WARNING.
Default: CODE_ON_WARNING

NO_CONTAINER_GENERATION
NO_CONTAINER_GENERATION means that no
container is produced even if there
are no diagnostics.
CONTAINER_GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINER_GENERATION

Table 9-1a - Special Processing Options

9-01

Version 4.5 ALS/N Reference Handbook
29 March 1991

NO_DEBUG If NO_DEBUG is specified, only that
information needed to llnk export
and execute the current un1t is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic information are
stored in the container.

Default: DEBUG

NO_TRACE_BACK Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE_BACK

OPTIMIZE Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.

When NO_OPTIMIZE is in effect, no
global optimizations are performed,
regardless of the pragmas specified.
Default: NO_OPTIMIZE

- - ——— - - - = o -+

Table 9-1b - Special Processing Options (Continued)

ALS/N Reference Handbook Version 4.5
29 March 1991

ATTRIBUTE Produces a Symbol Attribute Listing.

. (Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_ATTRIBUTE

CROSS_REFERENCE Produces a Cross-Reference Listing.
(Produces an attribute cross-reference
listing when both ATTRIBUTE and
CROSS_REFERENCE are specified.)
Default: NO_CROSS_REFERENCE

DIAGNOSTICS Produces a Diagnostic Summary Listing.
Default: NO_DIAGNOSTICS

MACHINE_CODE Produces a machine code listing if
code is generated. Code is generated
when CONTAINER_ GENERATION option is
in effect and (1) there are no
diagnostics of severity ERROR, SYSTEM
or FATAL, and/or (2) NO_CODE_ON_WARNING
option is in effect and there are no
diagnostics of severity higher than
NOTE. Default: NO_MACHINE_CODE

NOTES Includes diagnostics of NOTE severity
level in the Source Listing.
Default: NO_NOTES

NO_PRIVATE Excludes listing of Ada statements in
private part if a Source Listing is
produced. Default: PRIVATE

SOURCE Produce listing of Ada source
’ statements. Default: NO_SOURCE

SUMMARY Produce a Summary Listing; always
produced when there are errors 1in the
compilation. Default: NO_SUMMARY

Table 9-2 - Listing Control Options

Version 4.5 ALS/N Reference Handbook
29 March 1991

MSG Sends error messages and the
Diagnostic Summary Listing to the
file specified. The default is to
send error messages and the Diagnostic
Summary Listing to Message Output
(usually the terminal).

ouT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

[- o o s e e i e o e e o -—————— - o e +

Table 9-3 - Control_Part (Redirection) Options

LINK:r." OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation
and not to this report.

ALS/N Reference Handbook Version 4.5
29 March 1991

Section 11

Linker Options

DEBUG Produces a linked_container to be
debugged. Default: NO_DEBUG.

MEASURE Produces a linked container to be
analyzed. Default: NO_MEASURE

NO_SEARCH Limits the contents of the linked
container to those units explicitly
specified in the UNITLIST.

Default: SEARCH.

PARTIAL Produces an inccmplete
linked_container with unresolved
references. Default: NO_PARTIAL.

o o o e o 2 s e e e P > - - - - - - - - - - <+

Table 11-1 - LNKVAX Linker Special Processing Options

11-01

Version 4.5 ALS/N Reference Handbook

29 March 1991

no option Linker Summary listing, always produced
unless diagnostics prevent its generation.

ELAB_LIST Generates an elaboration order listing.
Default: NO_ELAB_LIST.

SYMBOLS Produces a Linker symbols listing.
Default: NO_SYMBOLS.

UNITS Produces a Linker units listing.
Default: NO_UNITS.

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

ouT Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table 11-3 - Control_Part (Redirection) Options

11-02

ALS/N Reference Handbook Version 4.5
29 March 1991

Section 12

Exporter Options

R L - ———— e c e e —— e —————— +

ACCOUNTING Causes the amount of CPU time and
wall clock time used by the program
to be reported at program termination
to message output.

Default: NO_ACCOUNTING

DEBUG Produces a load module that can be
debugged by the ALS/N Symbolic
Debugger. Default: NO_DEBUG

DEBUG_SYMBOLS Produces a file of external symbols
suitable for input to the VAX/VMS
Debugger. Default: NO_DEBUG_SYMBOLS

MEASURE Produces a load module that includes
the invocation of frequency and
statistical analyzer.

Default: NO_MEASURE

B . —————— e +

Table 12-1 - Special Processing Options

12-01

Version 4.5
29 March 1991

b mme—----—————-
| Option
- -
no option
MAP
SYMBCLS
| option
MSG
ouT

ALS/N Reference Handbook

Exporter Summary Listing is always
roduced unless diagnostics prevent
1ts generation.

Produces a program sections map
listing that summarizes the
executable image. Default: NO_MAP

Produces a list of external symbol
descriptor information for external
definitions contained in the object
module. Default: NO_SYMBOLS

b o e - - e e o > e o e o 4

Table 12-2 - Listing Options

Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

Sends all selected listings to the
single file specified. The default
is to send listings to Standard
Output (usually the terminal).

Table 12-3 - Control_Part (Redirection) Cptions

12-02

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32_768 .. 32_767;
type LONG_INTEGER is range =-2_147_483_648 .. 2_147 483 647;
type FLOAT is digits 6 range
-(2#0.1111 1111 1111 1111 1111 14E127) ..
(2#0.1111 11131 1111 1111 1111 _1%4E127);
type LONG_ FLOAT is digits 9 range
-(240. 1111 1111 1111 1111 1111 1111 1111 111#E127) ..
(2#0. 1111 1111 1111 1111 1111 11111111 1114E127);
type DURATION is delta 2.0 ** (-14) range
-131_072.0 .. 131_072.0 - 2.0 ** (=~14);

end STANDARD;

ALS/N Reference Handbook Version 4.5
29 March 1991

Appendix F
The Ada Language for the VAX Target

The source language accepted by the compiler is Ada, as
described in the Military Standard, Ada Programming Language,
ANSI/MIL-STD-1815A-1983, 17 February 1983 ("Ada Language
Reference Manual®").

The Ada definition permits certain implementation
dependencies. Each Ada implementation is regquired to supply a
complete description of its dependencies, to be thought of as
Appendix F to the Ada Language Reference Manual. Thils section is
that description for the VAX/VMS target.

F.1 Options

There are several compiler options provided by all ALS/N
Compilers that directly affect the pragmas defined in the Ada
Language Reference Manual. These compiler options currently
include the CHECKS and OPTIMIZE opticns that affect the SUPPRESS
and OPTIMIZE pragmas, respectively. A complete list of ALS/N
Compiler options can be found in Section 9.

The CHECKS option enables all run-time error checking for the
source file being compiled, which can contain one or more
compilation units. This allows the SUPPRESS pragma to be used in
suppressing the run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragmas must be
applied to each compilation unit. The NO_CHECKS option disables
all run-time error checking for all compilation units within the
source file and is equivalent to SUPPRESSing all run-time checks
within every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain cne or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, but note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE pragma is not present,
the ALS/N Compiler’s Global Optimizer tends to optimize for TIME
over SPACE. The NO OPTIMIZE option disables all compile-time
optimizations for all compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

F.1 Options F-01

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.2 Pragmas

Both implementation-defined and Ada language-defined pragmas
are provided by all ALS/N Compilers. The syntax defined in the
Ada Language Reference Manual allows pragmas as the only element
in a compilation, before a compilation unit, at defined places
within a compilation unit, or following a compilation unit. The
AL?/N Compilers associates pragmas with compilation units as
follows:

a. If a pragma appears before any compilation unit in a
compilation, it will affect all following compilation units,
as specified below, and in the Ada Language Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
assoclated with that compilation unit, and in listings
associated with that compilation unit as described in the Ada
Language Reference Manual, or in this document.

c. If a pragma follows a compilation unit, it will be associated
with the preceding compilation unit, and the effects of the
pragma will be found in the container of that compilation
unit, and in listings associated with that container.

The pragmas MEMORY_SIZE, STORAGE_UNIT, and SYSTEM_NAME are
described in Section 13.7 of the Ada Langquage Reference Manual.
They may appear only at the start of the first compilation when
creating a new program library. In the ALS/N, however, since
program libraries are created by the Program Library Manager and
not by the compiler, the use of these pragmas is obviated. If
they appear anywhere, a diagnostic of severity level WARNING is
generated.

F.2.1 Language-defined Pragmas
The following notes specify the language-required definitions

of the predefined pragmas. Unmentioned language-defined pragmas
are implemented as defined by the Ada Language Reference Manual.

F-02 F.2.1 Language-defined Pragmas

ALS/N Reference Handbook Version 4.5
29 March 1991

pragma INLINE (subprogram_name) ;

There are three instances in which the INLINE pragma is
ignored. Each of these cases produces a warning
message that states the INLINE did not occur.

a. If a call to an INLINE subprogram is compiled
before the actual body of the subprogram has beer
compiled, a routine call is made instead.

b. If the compilation unit containing the INLINE
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

c. If an immediately recursive subprogram call is made
within the bod¥ of the INLINE subprogram, the
pragma INLINE 1s ignored entirely.

pragma INTERFACE (language_name, subprogram_name) ;
Two language_names will be recognized and implemented:
ASMVAX_JSB, and ASMVAX_CALLS.

The language_name ASMVAX JSB indicates that a
subprogram written in the VAX/VMS assembler language
will be called with a JSB instruction and the
parameters passed in registers. The language_name
ASMVAX_ CALLS will provide an interface to a VAX
assembler language subprogram via the CALLS
instruction, with the parameters passed on the stack,
with the same parameter passing conventions used for
calling Ada subprograms.

The user must ensure that an assembly-language body

container for this specification exists in the progranm
library before linking.

F.2.1 Language-defined Pragmas F-03

Version 4.5 ALS/N Reference Handbook
29 March 1991

pragma OPTIMIZE (arg):

This pragma is effective only when the "OPTIMIZE"
option has been given to the compiler. The argument is
either TIME or SPACE. If TIME is specified, the
optimizer concentrates on optimizing code execution
time. If SPACE is specified, the optimizer
concentrates on optimizing code size.

pragma PRIORITY (arg)l;

The PRIORITY arqument is an integer static expression
value of predefined integer subtype PRIORITY. The
pragma has no effect in a location other than a task
(type) specification or outermost declarative part of a
subprogram. If the pragma appears in the declarative
part of a subprogram, it has no effect unless that
iubpr ram is designated as the "main" subprogram at
ink time.

pragma SUPPRESS (arg(,arg]):

Pragmas to suppress OVERFLOW_CHECK will have no effect
for operations of integer types.

A SUPPRESS pragma will have effect only within the
compilation unit in which it appears, except that a
SUPPRESS of ELABORATION_CHECK applied at the
declaration of a subprogram or task unit will apply to
all calls or activations.

pragma MEMORY_SIZE;

?his pragma is ignored and a WARNING diagnostic is
issued.

pragma STORAGE_SIZE;

This pragma is ignored and a WARNING diagnostic is
issued.

pragma SYSTEM_NAME;

This pragma is ignored and a WARNING diagnostic is
issued.

F-04 F.2.1 Language-defined Pragmas

ALS/N Reference Handbook Version 4.5

F.2.2

29 March 1991

Implementation~defined Pragmas

The following is the only implementation-defined pragma:

pragma TITLE (arg):

F.2.3

This is a listing control pragma. It takes a
single argument of type string. The string
specified will appear on the second line of
each page of the source listing produced for
the compilation unit within which it appears.
The pragma should be the first lexical unit
to appear within a compilation unit
(excluding comments). If it is not, a
warning message is issued.

Scope of Pragmas

The scope of pragmas is as described in the Ada Language
Reference Manual except as noted below:

MEMORY_SIZE - No scope, but a WARNING diagnostic is generated.

PAGE ~ No scope.

STORAGE_SIZE - No scope, but a WARNING diagnostic is generated.

SYSTEM_NAME - No scope, but a WARNING diagnostic is generatad.

TITLE - The compilation unit within which the pragma occurs.

F.2.3

Scope of Pragmas ' F-05

Version 4.5

29 March 1991

F.3

Attributes

There is one implementation-@efined attribute in addition to
the predefined attributes found in Appendix A of the Ada Language

Reference Manual.

X'DISP

A value of type UNIVERSAL_INTEGER that
corresponds to the dlsplacement that is used
to address the first storage unit occupied
by a data object X at a static offset within
an implemented activation record.

This attribute differs from the ADDRESS
attribute in that ADDRESS supplies the
absolute address while DISP supplies the
displacement relative to some base value
(such as a stack frame 901nter) It is the
user’s responsibility to determine the base
value relevant to the attribute.

The followlng notes auqment the 1anguage-requ1red definitions

of the predefined attributes found in Appendix A of the Ada
Language Reference Manual.

F.

4

T’MACHINE_EMAX is 127.
T’MACHINE_EMIN is -127.

T/MACHINE_MANTISSA if the size of the base type T is 32,

MACHINE_MANTISSA is 24.

if the size of the base type T is €4,

MACHINE_MANTISSA is 56.
T’MACHINE_OVERFLOWS is true.
T/MACHINE_RADIX is 2.
T’MACHINE_ROUNDS is false.

Predefined Language Environment

The predefined Ada language environment consists of the

packages STANDARD and SYSTEM described below.

F-06

F.4 Predefined Language Environment

ALS/N Reference Handbook

ALS/N Reference Handbook Version 4.5
29 March 1991

F.4.1 Package STANDARD
The Package STANDARD contains the following definitions in
addition to those specified in Appendix C of the Ada Language
Reference Manual:
-- For this implementation, there is no corresponding body.
type BOOLEAN is (FALSE,TRUE); for BOOLEAN’SIZE use 1;
-- The universal type UNIVERSAL_INTEGER is predefined for Ada.
type INTEGER is range ~32_768 .. 32_767;
type LONG_INTEGER is range -2_147_483_648 .. 2_147_483_647;
-- The universal type UNIVERSAL_REAL is predefined for Ada.
type FLOAT is digits € range
- (240.1111 1111 1111 1111 1111_1#E127)} ..
(240.11117111171111_1111"1111_ 14E127);
type LONG_FLOAT is digits 9 range
-{2#0.1111 1111 1111_1111_1i11_ 1111 1111 111#E127) ..
(240.11117111171111°1111°11117111171111_111#E127);
-- Predefined subtypes within the Ada Language:
subtype NATURAL is INTEGER range O .. INTEGER’LAST; -- 32_767
subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST; -- 32_767
subtype LONG_NATURAL 1is LONG_INTEGER
range 0 .. LONG_INTEGER’LAST;
subtype LONG_POSITIVE is LONG_INTEGER
range 1 .. LONG_INTEGER’LAST;
-- Predefined STRING type within the Ada Langquage:

type STRING is array (POSITIVE range <>) of CHARACTER;:
pragma PACK(STRING);

-~ The type DURATION is predefined for use with Ada DEIAY.

type DURATION is delta 2.0 ** (-14)
range =-131_072.0 .. 131_072.0 = 2.0 ** (-1Q)

-- The predefined operators for the type DURATION are the same
-~ as for any fixed point type within the Ada language.

F.4.1 Package STANDARD ' F-07

Version 4.5 ALS/N Reference Handbook

29

March 1991

F.4.2 Package SYSTEM

Within the various implementations, no corresponding package

body is required for the package SYSTEM. The package SYSTEM is

as

follows:

type ADDRESS is new LONG_INTEGER;

type NAME is (AdavAX, Ada_L, Ada_M);
SYSTEM_NAME : constant NAME := AdaVAX;
STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2%*#*30 - 1;

System-Dependent Named Numbers:

MIN_INT ¢ constant := =(2#%*%*31);
MAX INT : constant := (2%*31)-1;
MAX DIGITS : constant := 9;

MAX MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31);
TICK : constant := 0.01;

Other System-Dependent Declarations
subtype PRIORITY is INTEGER range 1..15;

The following exceptions are provided as a "convention”
whereby the Ada program can be compiled with all implicit
checks suppressed (1.e., pragma SUPPRESS or equlvalent),
explicit checks included as necessary, the approprlate
exceptlon raised when required, and then the exception is
either handled or the Ada program terminates.

ACCESS_CHECK : exception;
DISCRIMINANT_ CHECK : exception;
INDEX_CHECK : exception;
LENGTH _CHECK : exception;
RANGE _CHECK ¢ exception;
DIVISION_CHECK : exception;
OVERFLOW_CHECK : exception;
ELABORATION_CHECK : exception;
STORAGE_CHECK : exception;

The following exceptions provide for (1) Ada programs that
contain unresolved subprogram calls and (2) VAX/VMS
system-level errors.

UNRESOLVED_REFERENCE : exception:
SYSTEM_ERROR : exception;

F-08 F.4.2 Package SYSTEM

ALS/N Reference Handbook Version 4.5
29 March 1991
F.5 Character Set

Ada compilations may be expressed using the following
characters, in addition to the basic character set:

lover case letters:
abcdefghijklmnopgqrstuvwzxyz
special characters:
!s 2?2 e []~ Yy -

The following transliterations are permitted (see Paragraph 2.10
of the Ada Language Reference Manual):

a. Exclamation mark for vertical bar;
b. Colon for sharp:; and
c. Percent for double_quote.

F.5 Character Set F-09

Version 4.5 ALS/N Reference Handbook
29 March 1991
F.6 Declaration and Representation Restrictions

Declarations are described in Chapter 3 of the Ada Language
Reference Manual. Representation specifications are described in
Chapter 13 and discussed here.

In the following specifications, the capitalized word SIZE
indicates the number of bits used to represent an object of the
type under discussion. The upper case symbols D, L, and R
correspond to those discussed in Section 3.5.9 of the Ada
Language Reference Manual.

F.6.1 Integer Types
Integer types are specified with constraints of the form:
RANGE L..R

where:
R <= SYSTEM.MAX INT & L >= SYSTEM.MIN_INT

For an integer type, length specifications of the form:
FOR t’SIZE USE n:

may specify integer values n such that n is in 2..32,
R <= 2#%*(n-1)-1 & L >= =2%*(n-1);

or else such that
R <= (2**N)-1 & L >= 0

and N is in 1..31.

For a stand-alone object of integer type, a default SIZE of 16
is used when:

R <= 2*%#]15-]1 & L >= 2*%*15
Otherwise a SIZE of 32 is used.
For components of integer types within packed composite

objects, the smaller of the default stand-alone SIZE or the SIZE
from a length specification will be used.

F-10 F.6.1 Integer Types

ALS/N Reference Handbook Version 4.5
29 March 1991
F.6.2 Floating Types
Floating types are specified with constraints of the form:

DIGITS D

where D is an integer value in 1 through 9.

For floating point types, length specificatiogs of the form:
FOR t’SIZE USE n;

are permitted only when the integer values N = 32 when D <= 6,
or N = 64 when D <= 9.

When no length specification is provided, a size of 32 is used
when D <= 6; 64 when D is 7 through 9.
F.6.3 Fixed Types
Fixed types are specified with constraints cf the form:
delta D range L..R
where:

max (abs(R), abs(L)) < 2%%3]1-]

actual_delta
The actual delta defaults to the largest integral power of 2
less than or equal to the specified delta D. (This implies
that fixed point values are stored right-aligned.)
For fixed point types, length specifications of the form:
for T’SIZE use N:;
are permitted only when N in 1 .. 32, if:

R - actual_delta <= 2**(N-1)-1 * actual_delta

and

L + actual_delta >= -2**(n-1) * actual)delta
or

R - actual_delta <= 2#*(N)-1 * actual_delta-
and

F.6.3 Fixed Types F-11

Version 4.5) ALS/N Reference Handbook
29 March 1991

L>0

For stand-alone cbjects of fixed point type, a default size of 32
is used. For components of fixed point types within packed
composite objects, the size from the length specification will be
used.

Specifications of the form:

for T’SMALL use X;
are permitted for any value of X, such that X <= D. X must be
specified either as a base 2 value or as a base 10 value. Note

that when X is specified as other than a power of 2, actual_delta
will still be the largest integreal power of two less than X.

F-12 F.6.3 Fixed Types

ALS/N Reference Handbook Version 4.5
29 March 1991

F.6.4 Enumeration Types

In the absence of a representation specification for an
enumeration type T, the internal representatlon cf T/FIRST = 0.
The default SIZE for a stand-alone object of enumeration type T
will be the smallest of the values 8, 16, or 32, such that the
internal representation of T’FIRST and T'LAST both falls within
the range:

-2**(T/SIZE-1) .. 2**(T’SIZE-1)-1.
For enumeration types, length specification of the form:
for T’/SIZE use N;
and/or enumeration representations of the form:
for T use <aggregate>;
are permitted for N in 2..32, provided that the internal
representatlons and the SIZE conform to the relationship
specified above.

Or else for N in 1..31, is supported for enumeration types
and provides an internal representation of:

T’FIRST>=O .o T/’LAST<=2**(T’SIZE)-1l.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE, or the SIZE
from a length specification will be used.

Enumeration representation on types derived from the

predefined type BOOLEAN will not be accepted, but length
specifications will be accepted.

F.6.4 Enumeration Types F-13

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.6.5 Access Types
For access type, T, length specifications of the form:
for T’/SIZE use N;

will not affect the run-time implementation of T, therefore N =
32 is the only value permitted for SIZE, which is the value
returned by the attribute.

For collection size specifications of the form:
for T’STORAGE_SIZE use N;

any value of N is permitted (and that value will be returned by
the attribute call). The collection size spec1f1catlon will

affect the implementation of T and its collection at run-time by
limiting the number of ¢bjects for type T that can be allocated.

F.6.6 Arrays and Records
For arrays and records, length specifications of the form:
for T’/SIZE use N;

may cause arrays and records to be packed, if required, to
accommodate the length specxflcatlon. If the SIZE specified is
not large enough to contain all possible values of the
components, a diagnostic message of severity ERROR is issued.

The PACK pragma may be used to minimize wasted space, if any,
between components of arrays and records. The pragma causes the
type representatlon to be chosen such that storage space
requ1rements are minimized at the possible expense of data access
time and code space.

For records, a component clause of the form:
at N (range i..j]

specifies the allocation of components in a record. Bits are
numbered 0..7 from the right and bit 8 starts at the right of the
next hlgher-number byte. Each 1ocat10n specification must allow
at least X bits of range, where X is large enough to hold any
value of the subtype of the component being allocated.

Otherwise, a diagnostic message of severity ERROR is generated.

F-14 F.6.6 Arrays and Records

ALS/N Reference Handbook Version 4.5
29 March 1991

For records, an alignment clause of the form:

at mod N

specify alignments of N bytes for 1 byte, 2 bytes (VAX "word"),
and 4 bytes (VAX "long_word").

If it is determinable at compilation time that the SIZE of a
record or array type or subtype maybe outside the range of
STANDARD.LONG_INTEGER, a diagnostic message of severity WARNING
is generated. Declaration of an object of such a type or subtype
would raise NUMERIC_ERROR when elaborated. Note that a
discriminant record or array may never raise the NUMERIC_ERROR
when elaborated based on the actual discriminant provided.

F.6.7 oOther length Specifications

Length Specifications are described in Section 13.2 of the
Ada lLanguage Reference Manual.

A length specification for a task type T, of the form: |
for T’SIZE use N; |

specifies the number of bits to be allocated for objects of the
task type T. 7For the VAX/VMS target, N must be defined:

N =8 % (109 + 13 * number_ of_entries)

Where number of entries is the number of entries declared in the |
ta=k type specification. !

F.6.7 Other Length Specifications F-15

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.7 System Names

Refer to Section 13.7 of the Ada Language Reference Manual
for a discussion of package SYSTEH.

The available system names are "AdaVAX", "Ada_L", and
"Ada_M"; the system name is chosen based on the targets
supported, but it can not be changed. In the case of VAX/VMS,
the system name is "AdaVAX".

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manual
for a discussion of Address Clauses. Address clauses for objects
and code are allowed by the VAX/VMS target, but they have no
effect beyond changing the value returned by the ’‘ADDRESS
attribute call.

The Run-Time Support lerary (RSL) for the VAX/VMS target
does not handle hardware xnterrupts. All hardware interrupts are
handled by the VAX/VMS operating system. However, the VAX VMS
target uses asynchronous system traps (ASTs) in a manner similar
to interrupt entries.

F.9 Unchecked Conversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
for a description of UNCHECKED_CONVERSION.

A program is erroneous if it performs UNCHECKED_CONVERSION
when the source and target have different sizes.

F.10 Restrictions on the Main (Sub)Program

Refer to Section 10.1 of the Ada Language Reference Manual
for a discussion of the main (sub)program. The subprogram
deSLgnated as the main (sub)program cannot have parameters. The
designation as the main (sub)program of a subprogram whose
specification contains a formal_part results 1in a diagnostic of
severity ERROR at link time.

The main (sub)prcqram can be a function, but the return value
will not be available upon completion of the main (sub)program’s
execution. The main (sub)program may not be an imported
subprogran.

F-16 F.10 Restrictions on the Main (Sub)Program

ALS/N Reference Handbook Version 4.5
29 March 1991

F.1l1 Input/Output

Refer to Chapter 14 of the Ada Language Reference Manual for
a description of Ada Input/Output (I/0).

The RSL I/0O subsystem provides the following packages to the
user: TEXT_I0, SEQUENTIAL_IO, DIRECT IO, and LOW_LEVEL_IO. These
packages execute in the context of the an individual Ada task
making the I/0 request. Consequently, all of the code that
process an I/0 request on behalf of the Ada task executes
sequentially. The package IO_EXCEPTIONS defines all of the
exceptions needed by the packages TEXT_IO, SEQUENTIAL_IO, and
DIRECT _IO. The specification of this package is given in Section
14.5 of the Ada LRM. This package is visible to all of the
constituent packages of the RSL I/O subsysteam so that appropriate
exception handlers can be inserted.

High-level I/0 in AdaVAX is performed solely on external
files. No allowance is provided in the RSL I/O subsystem for
memory resident files (i.e., files which do not reside on a
peripheral device). This is true even in the case of temporary
files. With the external files residing on peripheral devices,
only the various VAX/VMS quotas restricts the number of files
that may be open on an individual peripheral device.

Section 14.1 of the Ada LRM states that all I/O operations
are expressed as operations on objects of some file type, rather
than in terms of an external file. File objects are implemented
in AdavAX as access objects that point to a data structure call
the File Control Block (FCB). This FCB is defined internally to
each high-level I/0 package: its purpose is to represent an
external file. The FCB contains all of the I/O-specific
information about an external file that is needed by the
high-level packages to accomplish the requested I/0O operation.

F.11.1 Naming External Files
The naming conventions for external files in AdaVAX are of
particular importance to the user. An external file name for Ada

I/0 can be any valid path name (e.g.,
disk:[directories]filename.ext) in the VAX/VMS environment.

F.11.1 Naming External Files F-17

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.11.2 The FORM Specification for External Files

The FORM specification for external Files created by TEXT IO
include the default (i.e., the NULL string) and the two shorthand
strings: "PASS_ALL"™ or "LOG_FILE". The only FORM specification
for external files created by SEQUENTIAL_ IO and DIRECT_IO is the
default of the NULL string. Note that opening the external file
after its creation still utilizes the file attributes assigned to
the file when it was created and, therefore, the only legal FORM
specification is the NULL string.

An allowable FORM string in TEXT_IO0 has syntax defined by the
grammar is shown in Table F-1 below. The tokens of the grammar
may be separated by any combination of blanks (' ‘) and
horizontal tab (ASCII.HT) characters. The FORM parameter is not
case sensitive, but repetition of a file_attribute_item is not
allowed. The record format values valid with the file |
organization SEQUENTIAL are: STREAM, STREAM_CARRIAGE_RETURN, |
STREAM_LINE_FEED, and UNDEFINED. Note that the i
VARIABLE_FIXED_CONTROL record format is not valid with the ‘
INDEXED file organization.

In TEXT_IO, the following default FORM value is assumed when
the FORM parameter is the NULL string:

. "RECORD FORMAT := VARIABLE, " &

WFILE ORGANIZATION := SEQUENTIAL, " &
"CARRTAGE_CONTROL := CARRIAGE RETURN"

The "PASS_ALL" FORM parameter is equivalent to the string:
"RECORD_FORMAT := VARIABLE, " & '
"FILE ORGANIZATION := SEQUENTIAL, " &
"CARRIAGE_CONTROL := NCNE"

The "LOG_FILE" FORM parameter is equivalent to the string:
"RECORD_FORMAT := VARIABLE_FIXED_CONTROL, " &

"FILE ORGANIZATION := SEQUENTIAL, " &
"CARRIAGE _CONTROL := PRINT"

F-18 ' F.11.2 The FORM Specification for External Files

ALS/N Reference Handbook Version 4.5
29 March 1991

L Ty - - - - - - - - - - - — — - —— - - D D D - > D D . — — — —— " - —— - —

| Left Hand Side Right Hand Side }
form_string ;== "" | shorthand_string |
file_attribute_list
shorthand_string == PASS_ALL | LOG_FILE
file_attribute_list :== file attibute_item

{,fiTe_attribute_item)

file_attribute_item :== record_format_string
file_organization_string |
carriage_control _string

record_format_string :== RECORD_FORMAT := record_format
record_format t== VARIABLE ¥ FIXED | STREAM
VARIABLE _FIXED_ CONTROL

STREAM_CARRIAGE_CONTROL
STREAM_LINE_FEED | UNDEFINED

file_organization_string :== FILE ORGANIZATION :=
file organization

file_organization :== SEQUENTIAL | RELATIVE | INDEXED

carriage_control_string :== CARRIAGE_CONTROL :=
carriage_control

carriage_control t== FORTRAN | CARRIAGE_RETURN |
PRINT | NONE

Table F-1 ~ FORM String Grammar

F.11.2 The FORM Specification for External Files F-19

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.11.3 External File Processing

Section 14 of the Ada LRM defines two kinds of access to
external files: sequential access and direct access. A file
object used for sequential access is call a sequential file, and
one used for direct access is called a direct file. Three file
modes are defined: IN_FILE, OUT_FILE, and INOUT_FILE. All three
file modes are allowed for direct files, whereas only the modes
IN_FILE and OUT_FILE are allowed for sequential files.

AdaVAX takes the view that files of mode IN_FILE already
contain data, making them suitable for reading, while files of
mode OUT_FILE are empty, making them suitable for writing. Files
of mode INOUT_FILE may contain data or may be empty, making them
suitable for reading or writing. An attempt to create a file of
mode IN_FILE will raise the exception USE_ERROR since a newly
created file is empty (i.e., not suitable for reading). Stated
more simply, AdaVvVAX restricts the creation of files to those of
mode OUT_FILE or INOUT_FILE.

Processing allowed on external files is determined by the
access controls set by the owner of the file and by the physical
characteristics of the underlying device. The following
restrictions apply:

a. A user may open a file as an IN_FILE only if that user has
read access to the node. A user may open a file as an
OUT_FILE only if that user has write access to the node.
Finally, a user may open a file as an INOUT_FILE only if that
user has read and write access to the node.

b. The attempt to CREATE a file with the mode IN FILE is not
supported since there will be no data in the file to read.

C. Multiple OPENs are allowed to read from a file, but all OPENs
- to write require exclusive access to the file. The exception
USE_ERROR is raised if this restriction is violated.

®
d. No positioning operations are allowed on files associated

with a printer or hard-copy terminal. The exception
USE_ERROR is raised if this restriction is violated.

F-20 F.11.3 External File Processing

ALS/N Reference Handbook Version 4.5
: 29 March 1991

F.11.4 Text Input/Output

The specification of TEXT_IO is given by Section 14.3.10 of
the Ada LRM. TEXT_IO is invoked by the Ada task to perform
sequential access I/0 operations on text files (i.e., files whose
content is in a human-readable form). TEXT_IO is not a generic
package, and thus, its subprograms may be invoked directly from
the Ada task, using objects with base type or parent type in the
language~-defined type CHARACTER (and or course STRING). TEXT_IO
also provides the generic packages INTEGER_IO, FLOAT IO, FIXED_IO
and ENUMERATION_IO for the reading and writing of numeric values
and enumeration values. The generic packages within TEXT_IO
require an instantiation for a given element type before any of
their subprograms are invoked.

The implementation-defined type COUNT that appears in Section
14.2.10 of the Ada LRM is defined as follows:

type COUNT is range 0..LONG_INTEGER’LAST;

The implementation-defined subtype FIELD that appears in Section
14.3.10 of the Ada LRM is defined as follows:

subtype FIELD is INTEGER range O..INTEGER’LAST;

At the beginning of program execution, the STANDARD_INPUT
file and the STANDARD OUTPUT file are open and associated with
the ALS/N-supported standard input and ocutput files. The
STANDARD_INPUT and STANDARD OUTPUT file cannot be deleted,
attempts to do so raise the exception USE ERROR. Additionally,
if a procgram terminates before an open file is closed (except for
STANDARD INPUT and STANDARD_ OUTPUT), then the last line the uscr
put to the file may be lost. : ‘

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. Because of the physical nature of DecWriters and
Video terminals, the semantics of text layout as specified in Ada
Language Reference Manual Section 14.3.2 (especially the concepts
of current columh number and current line) cannot be guaranteed
when GET operations are interweaved with PUT operations.

Programs that rely on the semantics of text layout under those
circumstances are erroneous.

For TEXT_IO processing, the line length can be no longer than
the maximum VAX/VMS record length minus one (i.e., 255
characters). An attempt to writa over the record length boundary
will result in writing a full record and starting a new record.
An attempt to set the line length through SET_LINE_LENGTH to a
length grezater than 255 will result in USE_ERROR. An attempt to
read a file with a line length greater than 255 will alsc result
in a USE_ERROR.

F.11.4 Text Input/Output F-21

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.11.5 Sequential Input/Output

The specification of SEQUENTIAL_IO is given in Section 14.2.3
of the Ada LRM. SEQUENTIAL_IO is invoked by the Ada task to
perform I/0 of the records of a file in an arbhitrary order. The
package SEQUENTIAL_IO requires a generic instantiation for a
given element type before any of 1ts subprograms may be invoked.
Once the package SEQUENTIAL_IO is made visible, it will perform
any service defined by the subprograms declared in its :
specification.

The following restrictions are imposed on the use of the
package Sequential_IO:

a. A null file name parameter to the CREATE procedure (for
opening a temporary file) is not appropriate, and raises the
exception NAME_ERROR.

b. Wziting a record on a file associated with a tape adds the
record to the file such that the record just written becomes
the last record of the file.

c. On a disk or tape, the DELETE procedure closes the file and
sets its size to zero so that its data may no longer be
accessed.

d. The subprogram END_OF_FILE always returns FALSE for a
character-oriented device and RESET performs no action on a
character-oriented device. :

F.11.6 Direct Input/Output

The specification of DIRECT_IO is given in Section 14.2.5 of
the Ada LRM. DIRECT IO is invoked by the Ada task to perform I/O
of the rzcords of a file in an arbitrary order. The package
DIRECT_IO requires a generic instantiation for a given element
typz before any of its subprograms may be invoked. Once the
- package DIRECT_IO is made visible, it will perform any service
cefined by the subprograms declared in its specification.

The implementation-defined type COUNT that appears in Section
14.2.5 of the Ada LRM is defined as follows:

type COUNT is range O..LONG_INTEGER’IAST;

F-22 F.11.6 Direct Input/Output

ALS/N Reference Handbook Version 4.5
29 March 1991

F.11.7 Low Level Input/Output

The package LOW_LEVEL_IO defines a standard interface to
allow an application to interact directly with a physical device.
LOW_LEVEL IO provides a definition of data types for a physical
device and data to be operated on, along with the standard
procedures SEND_CONTROL and RECEIVE_CONTROL. The procedure
SEND_CONTROL may be used to send control information to a
physical device. RECEIVE_CONTROL may be used to monitor the
execution of an I/0 operation by requesting information from a
physical device.

with SYSTEM;

package LOW_LEVEL_IO is
type IO_BUFFER _ADDRESS is new SYSTEM.ADDRESS:
type IO_BUFFER_COUNT is new INTEGER;
type IO_TIME_OUT is new INTEGER;

type IO_FUNCTION is (

read_data, -- read data

write_data, -- write data

initialize, -=- initialize the device and
-- return the device code

cancel, -= cancel IO request

control) ; -=- return control information

type DEVICE_TYPE is new LONG_INTEGER;
DEVICE_NAME_LENGTH: constant INTEGER := 32;

type IO_REQUEST_BILOCK is record
REQUESTED_FUNCTION: IO_FUNCTION;

DEVICE_NAME: STRING(l..DEVICE_NAME LENGTH) ;
DEVICE: DEVICE_TYPE;

BUFFER_ADDRESS: IO_BUFFER_ADDRESS;
BUFFER_COUNT: IO_BUFFER_COUNT;

TIME_OUT: IO_TIME_OUT;

end record;

FP.11.7 Low Level Input/Output F-23

Version 4.5 ALS/N Reference Handbook
29 March 1991

type IO_RETURN_STATUS is (

ss_normal’, -- normal completion
ss_abort, -=- all "failure" status codes
ss_accvio,

ss devoffllne,

ss_exquota,

ss_illefc,

ss lnsfmem,

ss 1VChan,

ss_nopriv,

ss unasefc,
s_linkabort,

ss llnkdlscon,

ss_protocol,

ss connecfall

ss fllalracc,

ss 1nvlogln,

ss 1ndevnam,

ss_ “linkexit,

ss nolinks,

ss nosuchnode,

ss_reject,

ss_remrsrc,

ss shut

ss toomuchdata,

ss_unreachable) ;

type IO_STATUS_BLOCK is record
BYTE COUNT: IO_BUFFER_COUNT;
RETURNED_STATUS: I0_ ~ RETURN STATUS,
end record;

procedure SEND_CONTROL (DEVICE: in DEVICE_TYPE;
DATA: in out IO_REQUEST_BLOCK);

procedure RECEIVE_CONTROL (DEVICE: in DEVICE_TYPE;
DATA: in out IO_: STATUS _BLOCK) ¢

end LOW_LEVEL_IO;

F.12 System Defined Exceptions
In addition to the exceptlons defined in the Ada Language

Reference Manual, this implementation pre-defines the exceptions
shown in Table F-2 below.

F-24 F.12 System Defined Exceptions

ALS/N Reference Handbook Version 4.5
29 March 1991

e —————————— - - - ———— —-— ———————————— +

| Name Significance |
B e e ——— e e -
ACCESS_CHECK The ACCESS_CHECK exception has been

raised explicitly within the program.

DISCRIMINANT_CHECK DISCRIMINANT_CHECK exception has been
raised explicitly within the progran.

INDEX_CHECK The INDEX_CHECK exception has been
raised explicitly within the program.

LENGTH_CHECK The LENGTH_CHECK exception has been
raised explicitly within the program.

RANGE_CHECK The RANGE_CHECK exception has been
raised explicitly within the program.

DIVISION_CHECK The DIVISION_CHECK exception has been
raised explicitly within the program.

CVERFLOW_CHECK The OVERFLOW_CHECK exception has been
raised explicitly within the program.

ELABORATION_CHECK ELABORATION_CHECK exception has been
raised explicitly within the program.

STORAGE_CHECK The STORAGEvCHECK excegtion has been
raised explicitly within the program.

UNRESOLVED_REFERENCE Attempted call to a routine not linked
into the executable image. :

SYSTEM_ERROR Serious error detected in underlying
: VAX/VMS operating systen. |

Table F-2 - System Defined Exceptions

F.12 System Defined Exceptions F-25

Version 4.5 ’ ALS/N Reference Handbook
29 March 1991

F.13 Machine Code Insertions

The Ada language definition permits machine code insertions
as described in Section 13.8 of the Ada Language Reference
Manual. This section describes the implementation specific
details for writing machine code insertions as provided by the
predefined library package MACHINE_CODE.

The user may, if desired, include MACRO instructions within
an Ada program. This is done by including a subprogram in the
program which contains only record aggregates defining machine
code instructions. The package MACHINE_CODE, included in the
system program library, contains type, record and constant
declarations which are used to form the instructions. Each field
of the aggregate contains a field of the resulting machine
instruction. These fields are specified in the order in which
they appear in the actural instruction. Records for one- and
two- byte instruction codes are available. Each instruction
record is discriminated using the instruction code. The record
components determined by the discriminant are the arguments of
the record. Arguments are represented using records whose
discriminants are called address modes. The discriminant
determines what additional information (if any) must be
associated with the argument. Separate records are available for
specifying data.

WITH machine_code;
USE machine_code;
FUNCTION fixed _multiply
(multiplier_1 : IN LONG_INTEGER: -- in RO
multiplier_2 : IN LONG_INTEGER: -- in R1
scaling_factor : IN LONG_INTEGER -- in R2
) RETURN LONG_INTEGER IS -- in RO
BEGIN
-- EMUL RO, R1l, #0, RO
-- named aggregate notation
byte_op_code
(op => emul,
emul_1 => long _word_general_operand(op => RO),
emul_2 => long_word_general_operand(op => Rl),
emul_3 => long_word_general_operand(op => LO),
emul_4 => quad_word_general_operand(op => RO));
-- ASHQ R2Z, RO, RO
-=- positional notation
byte_op_code
(ashq,

byte_word_general operand(eop => R2),
quad_wecrd_general_operand (cp => RO),
quad_word general_operand(op => R2)):

END fixed multiply;

Note that either positional or named aggregates may be used.

F-26 F.13 Machine Code Insertions

ALS/N Reference Handbook Version 4.5
29 March 1991

ALS/N supports machine code insertions through calls to
procedures whose bodies are composed of sequences of assembly
language instructions. Each instruction in the sequence is
specified as an aggregate of either the record type BYTE OP_CODE
or WORD_OP_CODE, both declared in the Runtime Support Library
package MACHINE_CODE. These types are variant records whose
discriminant is”a symbolic VAX-11 instruction opcode. Components
of each discriminated record correspond to the instruction
operands appropriate to a given instruction opcode. Components
of BYTE_OP_CODE and WORD_OP_CODE are themselves variant records.
Their discriminated components are used to specify operand
addressing modes together with needed registers, displacements
and literal values. The type mark BYTE_OP_CODE is used for those
VAX-11 instructions whose opcodes can be represented in a single
byte (e.g., MOVL). WORD_OP_CODE is used for those VAX-11
instructicns whose opcodes consume two bytes (e.g., CMPH).

These ideas are illustrated in Fiqure F-1 below. A more
detailed explanation of how machlne code insertions are ccmposed
for the VAX target is given in section 6.14. In this example the
procedure TIMES_TWO is used to double integer valued objects. It
effects a multlpllcatlon of its single argument using the
Arithmetic shift Logical instruction, ASHL. The value to be
multiplied is passed by reference to the procedure TIMES_TWO and
can be found four bytes away from the address held in the
Argument Pointer, AP. Using byte displacement deferred
addressing mode (i.e., IB AP) to access the procedure argument
allows the shift by one bit to occur "in place".

F.13 Machine Ccde Insertions F=-27

ALS/N Reference Handbook Version 4.5
29 March 1991

with MACHINE CODE ; use MACHINE_ CODE ;
procedure TIMES TWO(value : IN OUT integer) is

begin
BYTE_OP_CODE’ (
OP => ASHL, -- Instruction = ASHL
ASHL 1 => (OP => IMD, B_IMD => 1), -- Operand 1 = "=1"
ASHL 2 => (OP => IB_AP, BYTE DISP => 4), -- Operand 2 = (E4(AP)
ASHL 3 => (OP => IB_AP, BYTE DISP => 4)) ;-- Operand 3 = "@4(AP)

end TIMES_TWO ;

Figure F-1 - Machine Code Insertion

F-28 F.13 Machine Code Inser:tion

ALS/N Reference Handbook Version 4.5
29 March 1991

F.13.1 Machine Features

This paragraph describes specific machine language features
needed to write code statements. These machine features include
the DISP and ADDRESS attributes and the address mode specifiers.
The address mode specifiers make it possible to describe both the
address mode and register number of any operand as a single value
by mapping these values directly onto the first byte of each
operand. The following is an enumeration of all mode specifiers:

-- The first 64 are the short literal modes. -
== These mode specifiers signify (short literal mode, value)
-- combinations. The values are in the range 0 to 63.

Lo, L, L2, L3,

14, LS, Ls, L7,

L8, L9, L10, L1i,
L1z, L13, Ll4, Ll1s,
Lls, L17, Lis, Lls,
L20, L21, L22, L23,
L24, L25, L2s, L27,
L28, L29, Lo, L31,
L3z, L33, L34, L3s,
L3s6, L37, L8, L39,
L40, 141, 142, 143,
Lia, 145, 146, L47,
L48, L49, Lso, L31,
L52, L53, L4, L53,
L56, L57, Ls8, Ls3,
L§o, L61, Le2, Le3,

F.13.1 Machine Features F-29

Version 4.5
29 March 1991

ALS/N Reference Handboock

-=- Next are the (index mode, register) combinations.

X_RO, X_R1, X_R2, X_R3,
X_R4, X_RS, X_RS, X_R7,
X_R8, X_R9, X_R10, X“R11,
X_AP, X_FP, X_SP, X_PC,

-- The following are the (register mode, register) combinations.

RO, R1, R2, R3,
R4, RS, RS6, R7,
RS, R9, R10, R11,
AP, FP, SP, PC,
-- The following are the (indirect register mode, register)
-- combinations.
IRO, IR1, IR2, IR3,
IR4, IRS, IRS6, IR7,
IRS, IR9, IRl0, IR11,
IAP, IFP, ISP, IPC,
-- Next are the (autodecrement register mode, register)
-- combinations.
DEC_RO, DEC_R1, DEC_R2, DEC_R3,
DEC_R4, DEC_ Rs, DEC_RS, DEC_R7,
DEC_RS, DEC_RS9, DEC_R10, DEC_ R11
DEC_AP, DEC_FP, DEC_SP, DEC_PC,

-- Next are the (aut01ncrement reglster mode, register)
-- combinations. IMD (immediate mode) is autoincrement
-- mode using the PC.

RO_INC, R1_INC, R2_1INC, R3_INC,
R4_INC, R5_INC, R6_INC, R7_INC,
R8_INC, RS_INC, R10 INC R11_ INC
AP_INC, FP_INC, SP_INC, IMD,

-- The following are the (autoincrement deferred mode, register)
-- combinations. A (absolute address mode) is autoincrement
-- deferred using the PC.

F-30

IRO_INC, IR1_INC, IR2_INC, IR3_INC,
IR4_INC, IR5_INC, IR6_INC, IR7_INC,
IR8_INC, IRS_INC, IR10 INC IR11_ IVC
IAP_INC, IFP_INC, ISP_INC, A,

F.13.1 Machine Features

ALS/N Reference Handbook Version 4.5
29 March 1991

-- The following are the (byte-displacement mode, register)
-- combinations. B_PC is byte-relative mode for the PC.

B_RO, B_R1, B_R2, B_R3,
B_R4, B_RS, B_R6, B_R7,
B_RS, B_R9, B_R10, B_R11,
B_AP, _ B_FP, B_SP, B_PC,

-- Next are the (byte-displacement deferred mode, register)
-- combinations. 1IB_PC is byte-relative deferred mode for
-- the PC. .

IB_RO, IB_R1, IB_R2, IB_R3,
IB_R4, IB_RS, 1B RS, IB_R7,
IB_RS, IB_R9, IB_R10, IB_R1l,
IB_AP, IB_FP, IB_SP, IB_PC,

-- The following are the (word-displacement mode, register)
-- combinations. W_PC is word relative mode for the PC.

W_RO, W_R1, W_R2, W_R3,
W_R4, W_RS, W_RS, W_R7,
W_RS, W_R9, W_R10, W_R11,
W_AP, W_FP, W_SP, W_PC,

-- The following are the (word-displacement deferred mode,
-- register) combinations. IW_PC is word relative deferred
-- mode for the PC.

IW_RO, IW_R1, IW_R2, IW_R3,
IW_R4, IW_RS, IW_RS, IW_R7,
IW_RS, IW_R9, IW_R10, IW_R11,
IW_AP, IW_FP, IW_SP, IW_PC,

-- Next are the (longword-displacement mode, register)
-- combinations. L_PC is longword-relative mode.

L_RO, L_R1, L_R2, L_R3,
L R4, L_RS, L_R6, L_R7,
L_R8, L_R9, L_R10, L_R:1,
L”AP, L_FP, L_SP, L_PC,

-- The following are the (longword-displacement deferred mode,
-- register) combinaticns. IL_PC is longword-relative deferred
-=- mode.

IL_RO, IL_R1, IL_R2, IL_R3,
IL R4, IL_RS, IL_R6, IL_R7,

IL RS, IL_R9, IL_R10, IL R11,
IL AP, IL_FP, IL_SP, IL_PC) ;

F.13.1 Machine Features ‘ F-31

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.13.2 ADDRESS and DISP Attributes

and

The following restriction applies to the use of the ADDRESS
DISP attributes:

All displacements and addresses (1 e., branch destinations,
program counter addressing mode displacements, etc.) must be
static expressions.

Since neither the ADDRESS nor the DISP attributes return
static values, they can not be used in code statements within
the Ada compilation unit.

F.13.3 Restrictions on Assembler Constructs

These unsupported Assembler constructs within the

MACHINE_CODE package are as follows:

a.

F-32

The VAX/VMS assembler’s capablllty to compute the length of
immediate and literal data is not replicated in MACHINE_CODE.
This means the user cannot supply a value without specifying
the length of that value. This disallows the assembler
operand general formats: D(R), G, G~G, #cons, #ccns[Rx],

D(R) [Rx], G[Rx], G*location(Rx], @D(R)(Rx], @G[Rx], @D(R), €G
such that D and G are byte, word, or long word values.
Operands must contain address mode specxflers which
explicitly define the length of any immediate or literal
values of that operand.

The radix of the assembler notation is decimal. To express a
hexadecimal literal, the notation 16#literal# should be used
instead of ~X.

To construct an octaword, quadword, g_float or h_float
number, it is important for the user to remember that the
component fields of the records that make up the long numeric
types are signed. This means that the user must take care to
be assured that the values for these components, although
signed, are interpreted correctly by the instruction set
archltecture.

Edit instruction streams must be constructed through the use
of the VAX data statements described in Section 6.12.3.

F.13.3 Restrictions on Assembler Constructs

ALS/N Reference Handbook Version 4.5

29 March 1991

Compatibility mode instruction streams must be constructed
through the use of the VAX data statements described in
Section 6.12.3, if still supported on the VAX computer being
utilized as the target machine (i.e., VAX-11/780 and 785, but
not the VAX-8600).

No error messages are generated if the PC is used as the
register for operands taking a single register, if the SP or
PC are used for operands taking two registers, or if the AP,
FP, SP, or PC is used for operands taking four registers.

No error message is generated if the PC is used in register
deferred or autodecrement mode.

If any register other than the PC is used as both the
simple_operand and as the index_reg for an operand (see
Section 6.14.1.2 for definitions of simple_operand and
index_reg), no error message is generated. An example of
this case is the VAX Assembler operand (7){7].

Generic opcode selection is nct supported. This means the
opcode which reflects the specified number of operands must
be used. For example, for 2 operand word addition, ADDW2
must be used, not just ADDW.

The PC is not surplied as a default if no register is
specified in an operand. The user must supply the mode
specifier which is mapped onto the PC. Examples are IMD, A,
B_PC, W_PC, etc.

F.13.3 Restrictions on Assembler Constructs F=-33

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.14 Machine Instructions and Data

This section describes the syntactic details for writing code
statements (machine code insertions) as provided for the VAX by
the pre-defined package MACHINE_CODE. The format for writing
code statements 1is detailed, as are descriptions of the values to
be supplied in the code statements. Each value is described by
the named association for that value and its defined in the order
in which it must appear in positional notation. The programmer
should refer to the VAX-11l Architecture Handbook along with this
section to ensure that the machine instructions are correct from
an architectural viewpoint.

To ensure a proper interface between Ada and machine code
insertions, the user must be aware of the calling conventions
used by the Ada compiler.

F.l14.1 VAX Instructions

. The general format for VAX cocde statements where the opcode
is a one byte opcode is

BYTE_OP_CODE (OP => opcode (,"opcode" 1 => operand

{,"opcode™_2 => operand

{,"opcode’ 3 => operand
{ ,"opcode™ 4 => operand
{,"opcode™ 5 => operand
{,"opcode"_6 => operand}}}}}}):

The general format for VAX code statements where the opcode
is a two byte opcode is

WORD _OP _CODE (OP => opcode2 {,'"opccde2" 1 => operand
- = {,"opcode2™ 2 => operand
z "opcode2® 3 => operand
i,"opcode2“_4 => operand
{,"opcode2" 5 => operand
{,"opcode2™ 6 => operand}}}}}});

where "opcode"_n and "opccde2"_n is the result of the
concatenation of the VAX opcode, an underscore, and the position
of the operand in the VAX instruction. The BYTE_OP_CODE and
WORD_OP_CODE statements always require an opcode and may include
from one to six operands. The opcode mnemonics are precisely the
same as described in the previously referenced VAX-11
Architecture Handboock. The VAX address modes divide the operands
into six general categories: Short Literal Operand, Indexed
Operand, Register Operand, Byte-Displacement Operand,
Word-Displacement Operand, and Long Word-Dispiacement Operand.

F-34 F.14.1 VAX Instructions

ALS/N Reference Handbook Version 4.5
29 March 1991
F.14.1.1 Short Literal Operands
The VAX/VMS Assembler format for short literal operards is
S~#cons

where cons is an integer constant with a range from 0 to 63
(decimal).

The code statement format for short literal operands is
(OP => short_lit)

where short_lit is one of the enumerated values, range 10 to Lé63,
of the address mode specifiers in Section 6.11.1.

The following are examples of how some VAX Assemslzr short
literals would be expressed in code statements:

s~47 becomes (OP => L7)
5$~4#33 becomes (OP => L33)
S~460 Dbecomes (OP => Lé60)
(For explanations of named and unnamed component asscciation, see
Section 4. 3 of the Ada Language Reference Manual.)
F.14.1.2 Indexed Operands
The VAX/VMS Assembler format for the indexed operands is
simple_operand(Rx]

where a 31mple operand is an operand of any address mode except
register, literal, or index.

The general code statement format for indexed operands is

(index_reg, simple_operand) or
(0P => index_reg, OPND => simple_operand)

where index_reg is one of the enumerated address mode spec1flers,

range X_RO to X _SP, from Section 6.11.1. Slmple operand is an
operand of any address mode except register, literal, or index.

F.14.1.2 Indexed Operands F-35

Version 4.5 . ALS/N Reference Handbook
29 March 1991
For example, the following are indexed assembler operands:
a. (R8)[R7] becomes (X_R7, (OP => IRS8))
b. (R8)+[R7] becomes (X_R7, (OP => R8_INC))
c. I~$600[R4] becomes (X_R4, (IMD,600))
d. -(R4)[R3] becomes (X_R3, (OP => DEC_R4))
e. B~4(R9)[R3] becomes (X_R3, (B_R9,4))
f. W~800(R8)[R5] becomes (X_R5, (W_RS8,800))
g. L~34000(R8) [R4] becomes (X_R4, (L_R8,34000))
h. B*10[R9] becomes (X_R9, (B_PC,10))
i. WA130[R2] becomes (X_R2, (W_PC,130))
j. L*35000({R6] becomes (X_R6, (L_PC,35000))
k. @(R3)+(R5] becomes (X_RS5, (OP => IR3_INC))
1. @#1432[RS] decomes (X_R5, (A,1432))
m. @B*4(R9) (R3] becomes (X_R3, 13_39,4))
n. @w~8(R8)[R5] becomes (X_R5, (IW_RS,8))
©o. @L*"2(R8) [R4] becomes (X_R4, (IL_RS,2))
p. @B~3[Rl] becomes (X_R1, (IB_PC,3))
@wW~150[R2] becomes (X_R2, (IW_PC,150))
r. 6L~100000(R3] becomes (X_R3, (IL_PC,100000))

F-36 F.14.1.2 Indexed Operands

ALS/N Reference Handbook Version 4.5
29 March 1991

Then would be expressed in named notation as:

a. (OP => X_R7, OPND => (OP => IR7))

b. (OP => X_R7, OPND => (OP => R8_INC))

c. (OP => X_R4, OPND => (OP => IMD, W_IMD => 600))

d. (OP => X _R3, OPND => (OP => DEC_R4))

e. (OP => X_R3, OPND => (OP => B_R9, BYTE_DISP => 4))
£. (OP => X_RS, OPND => (OP => W_R8, WORD_DISP => 800))

g. (OP => X_R4, OPND => (OP => L_R8,
LONG_WORD_DISP => 34000))

h. (CP => X_R9, OPND => (OP => B_PC, BYTE_DISP => 10))
i. (OP => X _R2, OPND => (OP => W_PC, WORD_DISP => 130))

j. (OP => X_R6, OPND => (OP => L_PC,
LONG_WORD_DISP => 35000))

k. (OP => X_RS5, OPND => (OP => IR3_INC))

1. (OP => X_RS, OPND => (OP => A, ADDR => 1432))

m. (OP => X_R3, OPND => (OP => IB_R9, BYTE_DISP => 4))
n. (OP => X_RS, OPND => (OP => IW_R8, WORD_DISP => 8))

o. (Or => X_R4, OPND => (OP => IL RS,
LONG_WORD_DISP => 2))

p. (OP => X R1, OPND => (OP => IB_PC, B_DISP => 3))
gq. (OP => X_R2, OPND => (OP => IW_PC, WORD_DISP => 150))

r. (OP => X R3, OPND => (OP => IL PC,
LONG_WORD_DISP => 100000))

F.14.1.2 1Indexed Operands F=-37

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.14.1.3 Register Operands
The VAX/VMS Assembler formats for register operands are

Rn -- Register mode

(Rn) -~ Register deferred mode
-(Rn) -= Autodecrement mode

(Rn)+ == Autoincrement mode
€(Rn)+ -~ Autoincrement deferred mode

where Rn represents a register numbered from 0 to 15.
The general code statement format for register operands is
(OP => regmode_value)

where regmode_value represents one of the enumerated address mode
specifier range RO to PC,. from Section 6.11.1.

The following are examples of how VAX/VMS Assembler register
mode operands would be written as code statements:

R7 becomes (OP => R7)
(R8) beconmes (OP => IRS8)
= (R9) becomes (OP => DEC_R9)
(R1)+ beconmes (0P => R1_INC)
8(R3)+ becomes (OP => IR3_INC)

F.14.1.4 Byte-Displacement Operands

The VAX/VMS Assembler syntax for the byte-displacement
operands is

B~d (Rn) -- Byte~-displacement mode
@B~d (Rn) -- Byte-displacement deferred mode

where d is the displacement added to the contents of register Rn.
If no register is specified, the program counter is assumed. The

code statement general format for the byte-displacement and
byte-displacement deferred modes is

(byte_disp_spec, value)
or
(OP => byte_disp_spec, BYTE_DISP => value)
where byte_disp_spec is one of the enumerated address mode
specifiers, range B RO to B PC for byte-displacement or IB_RO to

IB_PC for byte dispTacement deferred, from Section 6.11.1. Value
isTin the range -128 to 127.

F-38 F.14.1.4 Byte-Displacement Operands

ALS/N Reference Handbook Version 4.5
29 March 1991

The following are examples of how VAX/VMS Assembler
byte-displacement operands would be written in code statements:

B~4 (R5) becomes (B_RS, 4) or

(OP => B_R5, BYTE_DISP => 4)
B~200(RS) becomes (B_RS, 200) or

(OP => B_R5, BYTE_DISP => 200)

B~33 becomes (B_PC, 337 or
(OP => PC, BYTE_DISP => 33)
@B~ 4 (RS) becomes (IB_RS,) or

(0P —> IB_RS5, BYTE_DISP => 4)
@B~200(R5) becomes (IB_R5, 200) or

(0P => IB_R5, BYTE_DISP => 200)
eB~33 becomes (IB_PC, 33) or

(0P => IB_PC, BYTE_DISP => 33)

F.14.1.5 Word-Displacement Operands

The VAX/VMS Assembler syntax for the word-displacement
operands are

W~Ad (Rn) -- Word-displacement
ew~d (Rn)- -=- Word-displacemenc deferred

where d is the dlsplacement to be added to the contents of
register Rn. If no register is spec1f1ed the program counter is
assumed. In code statements, word displacement operands are
represented in general as

(word_disp_spec, value)
or
(OP => word_disp_spec, WORD_DISP => value)

where word_disp_spec is one of the enumerated address mcde
specifiers, range W_RO to W_PC for word-displacement mode or
IW_RO or IW_PC for word-displacement deferred mode, from Section
6.11.1. Value is in the range -2**15 to 2**15 - 1,

The following are examples of how VAX/VMS Assembler
word-displacement operands would be written in code statements:

W~10(R5) becomes (W_RS5, 10) or

(OGP => W_RS5, WORD_DISP => 10)
w~A20 becomes (W_PC, 20} or

(OP => W_PC WORD_DISP => 20)
@W~128 (R7) becomes (W_R7, 128) or

(OoP -> IW_R7 WORD_DISP => 128)
gw~324 becomes (W_PC, 324) or

(OP => IW_PC WORD_DISP => 324)

F.14.1.5 Word-Displacement Operands F-39

Version 4.5 ALS/N Reference Handbook
29 March 1591

F.14.1.6 Long_Word-Displacement Operands

The VAX/VMS Assembler general formats for the
long_word-displacement operands is

L~4A(Rn) == Long_ word-dlsplacement
eL~d (Rn) -- Long_word-displacement deferred

where d is the displacement to be added to the register
represented by Rn. Long_ word-displacement operands are
represented in code statements by the general format

(lword_disp_spec, value)
or
(OP => lword_disp_spec, LONG_WORD_DISP => value)

where lword_disp_spec is one of the enumerated address mode
specifiers, range L RO to L _PC for long_word-displacement mode or
IL RO to IL_PC for Tong_word-displacement defeirred mode, from
Section 6.11.1. Value 1s in the range -2#%31 to 2#%#*31 - 1.

The following are examples of how VAX/VMS Assembler
long_word-displacement operands would be written in code
statements:

L~1000(R7) becomes (L_R7, 1000) or

(OP => L_R7, LONG_WORD_DISP => 1000)
L~25000 becomes (L_PC, 25000) or

(OP => L _PC, LONG_WORD_DISP => 25000)
@L~1000(R9) becomes (IL_R9, 1000) or

(0P => IL_R5, LONG_WORD_DISP => 1000)
eL~3500 becomes (IL_PC, 3500) or

(OF => IL_PC, LONG_WORD_DISP => 3500)

F.14.2 The CASE Statement

The VAX case statements (mnemonics CASEB, CASEW, and CASEL)
have the following general symbolic form

opcode selector.rx, base.rx, limit.rx,
displ[0]}.bw, .. , displ{limit].bw

where x is dependent upon the opcode as to whether the operand is
of type BYTE, WORD, or LONG_WORD. Displ(0].bw, ..
displ(limit]}.bw is a list of displacements to which to branch.
Case statements would be written as code statements as:

F-40 F.14.2 The CASE Statement

ALS/N Reference Handbook Version 4.5
29 March 1591

BYTE_OP_CODE (OP => case_opcode, "case_opcode"_1=> operand,
rcase opcoae" 2 => operand,
“case_opcode™_3 => case_operand)

where case_opcode is one of CASEB, CASEW, or CASEL. The type of
operand and case operand are as indicated in the opcode (BYTE,
WORD, or LONG_WORD). A case_operand is a special case operand of
the form:

case_operand => (case_limit_address_mode, (case_enun))
or

case_operand => (LIMIT => case_limit_address_mode,
(CASES=>case_enum))

if case_limit_address_mode is one of the short literal address
specifiers. TIf case_limit_address_mode is the mode specifier
IMD, the case_operand takes the form:

case_operand => (IMD, (case_limit, (case_enum)))
or

case_operand => (LIMIT => IMD, CASE_LIST =>
(LIMIT => case_limit, (CASES => case _enum)))

where case_operand is one of BYTE_CASE_OPERAND,
WORD_CASE_OPERAND, or LONG_WORD__ CASE_OPERAND. The

case_ —1imit address mode is one of the short literal mode
specifiers or the mode specifier IMD. Case enum is a list of
branch addresses. The branch addresses must be of type WORD.
The case_limit is a value of the type indicated by the
case_opcode. _

Some examples of case statements written as ccde statements
are:

<<START>> ° BYTE_ OP CODE(CASEB, (OP =>R3, (IMD, S), (IMD
12,715,30,45))))): =-- Case statement using
-- immediate mode.

S2 BYTE_OP_CODE(CASEW, (OP => (W_PC, 10)), (IMD, 100),

(L2,(10,20,30))):; -- CaSe statement using
-- short literal mode.

F.14.2 The CASE Statement F=-41

Version 4.5 ALS/N Reference Handbook
29 March 1991

F.14.3 VAX Data

Constant values such as absolute addresses or displacements
may be entered into the code stream with any of these nine
statements:

BYTE_VALUE' (byte)

WORD_VALUE’ (word)

LONG_WORD VALUE'(lonq word)
QUADWORD_VALUE’ (quadword)
OCTAWORD_VALUE' (octaword)
FLOAT_VALUE'’ (float)
LONG_FLOAT VALUE'(long float)
G_FLOAT _VAIUE’ (g_float)
H_FLOAT_VALUE’ (h_float)

F-42 F.14.3 VAX Data

