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1. INTRODUCTION

1.1 Background. The U.S. Army is conducting research into the design and operation of

a Large Blast/Thermal Simulator (LB/TS), essentially a large multi-driver shock tube with

thermal capabilities, Figure 1. The goal of the LB/TS is to be a controllable experimental

facility that will allow the Army to more efficiently test tactical equipment for nuclear hardness.

The LB/TS will accomplish this goal by subjecting full-scale Army equipment to the same

static pressure loading, dynamic pressure loading, and thermal pulse as the equipment would

experience in the event of a nuclear explosion. The LB/TS is designed to produce varying

duration decaying waveshapes over a range of primary shock overpressures.

Early LB/TS designs utilized convergent-divergent nozzles to retard the outflow of the

high-pressure driver gas, thus generating long duration waveforms. Convergent-divergent

nozzles have been investigated by many authors and an excellent review of efforts predating

1968 have been presented by Amann (1968). The efforts of previous investigators as

reported by Amann can be split into two groups. In one group, the unstationary starting

procedure within the jet is analyzed whereas, the other group concentrates on the newly

formed quasi-stationary conditions downstream of the diverging nozzle exit and beginning

after its start-up. A more recent effort, which uses computational fluid dynamics (CFD)

techniques, to investigate the start-up process of a shock tunnel as well as the

quasi-stationary conditions downstream of an M = 6 designed nozzle is presented by

Byun et al. (1990). In this paper, the flow start-up time required to get quasi-steady flow

around a circular cylinder downstream of the nozzle exit is computationally determined to be

9.5 milliseconds.

From an LB/TS standpoint, the unstationary starting procedure in the jet flow is of interest

as well as the flow after the start-up of the jet. However, the LB/TS is designed (through the

different volumes and lengths of the multiple drivers among other wave-shaping techniques)
so that the flow after the start-up of the jet produces unsteady, gradually decaying waveforms

at test stations of interest. See Figure 2 for an example of a typical static and dynamic

pressure blast waveform obtained from an existing blast simulator in France. The static

pressure was recorded from a probe located in the shock tube wall and seven diameters



downstream from the beginning of the driven section. A stagnation probe was located at the

same x location, but, approximately one quarter diameter off the shock tube wall.

The advantage of diverging nozzles in an LB/IS is to reduce the pressure losses

associated with the large area discontinuity at the exit of the nozzle throat (shown in Figure 1).

The disadvantages are a pressure spike that appears at the front of the blast wave which

becomes larger as the diverging nozzle cone angle is made smaller and the additional thrust

formed by the driver/nozzle combination on the reaction pier. Added to these concerns is the

question of the effect of the diverging nozzles on the desired smoothly decaying static and

dynamic pressure blast loading waveforms. Diverging nozzles after the throat sections are not

shown in the design of Figure 1, but are still under consideration for the proposed LB/TS

facility.

The complex three-dimensional (3-D) geometry of the proposed LB/IS would require

hundreds of hours of Cray cpu time for computer simulations. From an engineering design

standpoint, this is unacceptable. A computationally efficient tool is needed to perform design

parametric studies and obtain gross flow properties for the LB/TS at a reasonable cost. A

significant influence on the gas dynamics which result in the LB/IS shock tube (ignoring for

this study the thermal simulation) is due to the area ratios present in the geometry. Therefore,

one technique to simplify the 3-D problem is to keep the same length scales along the axis of

the shock tube, but compute a two-dimensional (2-D) axisymmetric or quasi-one-dimensional

(1-D) approximation to the 3-D geometry as follows:

02 - (1)

D(2
, = A3, (2)

where A3 is the 3-D cross-sectional area, D2 is the 2-D axisymmetric diameter, and A, is the

1 -D area necessary to maintain equivalent area ratios. The cross-sectional areas of the

multiple varying length drivers, converging nozzles, and throat sections are lumped into one

driver for the 2-D and 1-D geometries.

As shown in Figure 3, 1/57 scale 2-D axisymmetric shock tubes have been built as

experimental tools for LB/TS design studies. These lumped area approximations to the 3-D
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facility have been built with and without diverging no7les to study the resultant flow

characteristics. Another difference between the tubes that is evident in Figures 3b and 3c,

but is not relevant to this study, is that the stepped driver was replaced with a single diameter

driver to facilitate volume versus flow duration studies. These 2-D axisymmetric shock tubes

were computationally modeled with 1 -D and 2-D computer algorithms for comparison to the

experimental results and to gain insight into the flow physics present in divergent flows. The

next sections comment on the significant flow physics that are captured by each added

dimension of geometry as well as the results of previous computational modeling efforts.

The flow patterns encountered in the quasi-one-dimensional simulations for low shock

overpressures (< 28 kPa) are similar to the flow patterns which develop in a straight shock

tube, as shown in Figures 4a and 4b (Pearson, Opalka, and Hisley 1985). After diaphragm

burst, the flow consists of a primary shock moving to the right of the diaphragm into the

diverging nozzle and driven section which is open to ambient air at its end. The primary

shock is followed by a contact surface which separates the gas processed by the shock from

the gas initially in the driver. A rarefaction wave travels to the left of the diaphragm which

accelerates and cools the driver gas. The flow is subsonic everywhere in the simulator with

an expansion of the flow (velocity increase, pressure decrease) in the convergent nozzle and

a compression (velocity decrease, pressure increase) in the divergent nozzle. For subsonic

flow through the convergent-divergent nozzle, the flow is always isentropic. Also shown in

Figures 4a and 4b are typical pressure versus distance histories, at early time after diaphragm

burst, for a straight shock tube, and for the quasi-one-dimensional Q1 D LB/TS.

As the shock overpressure is increased to the 28 to 70 kPa regime, the flow becomes

choked in the throat and expands supersonically in the divergent nozzle to very low static

pressure. Because the flow behind the primary shock is subsonic and at a higher static

pressure, a recompression shock must form to match the two flow states, Figure 4c.

Typically, the recompression shock stands somewhere in the divergent nozzle. For the

highest shock overpressures of interest, above 70 kPa, the recompression shock may be

swept out of the nozzle and into the driven section.

In addition to the nozzle flow, the rarefaction wave generated at diaphragm burst reflects

from the closed end of the drivers. The rarefaction then moves forward, is partially
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transmitted and partially reflected by the converging nozzle. The transmitted rarefaction

eventually overtakes the shock and decreases the pressure. The reflected rarefaction moves

back into the driver and reflects again from the closed end of the driver. Thus, a series of

rarefactions overtake the shock, which effectively empties the shock tube to ambient

conditions while producing pressure versus time histories that gradually decay to ambient and

are reasonable simulations of blast waveforms.

Up to this point, the LB/TS flow patterns have been described by means of a 1 -D analysis.

However, the flow that develops in the diverging nozzle at shock overpressures above 28 kPa

are better represented by a 2-D analysis. From experimental shadowgraphs and

computations (Amann 1982; Hisley and Molvik 1986), it is readily discovered that the

recompression shock that develops in a divergent flow area is not planar, as a 1 -D analysis

indicates, but consists of a system of oblique and normal shocks as shown in Figure 5.

Finally, the mixing of the flows from the separate drivers in the LB/TS can only be fully

captured by a 3-D calculation.

However, as stated earlier, 3-D calculations are not practical from a cost-effective

engineering standpoint, therefore, the initial analysis work for the LB/TS has been done with

experiments performed in single-driver, 1/57 scale, 2-D axisymmetric shock tubes and with the

Ballistic Research Laboratory Quasi-One-Dimensional (BRL-Q1 D) Code (Coulter 1987a,

1987b; Opalka and Mark 1986). A comparison of the experimental results and the results of

the BRL-Q1 D code showed that the code modeled low shock pressure cases with reasonable

accuracy, but, as expected from the previous discussion, was less accurate at higher shock

overpressures. The deviations were attributed to the strong influence of 2-D effects caused

by the large and rapid area expansion downstream of the throat section, typical of the LB/TS

geometry.

A 2-D axisymmetric inviscid code, BLAST2D, was developed to better simulate the flow in

the small-scale LB/TS axisymmetric shock tubes. The code was originally written by this

author in 1985 during a six month stay at NASA Ames Research Center. During this time

period, Dr. Man Mohan Rai was an excellent mentor who provided explanations of many

state-of-the-art computational fluid dynamics (CFD) concepts, such as the incorporation of

Riemann problems and the use of Total Variation Diminishing (TVD) concepts into solution
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algorithms. In subsequent years, a joint effort was maintained between BRL and NASA Ames

to further develop the code. Significant contributions were the addition and validation of a

laminar viscous subroutine and the addition of the Baldwin-Lomax turbulence model by

Gregory A. Molvik (1987) and an extension and validation of the code to three dimensions

(BLAST3D) by Christoper A. Atwood (to be published).

A recent validation of the inviscid BLAST2D algorithm was published by Hisley (1 990a).

Computations were performed for the reflection of planar shocks from wedge surfaces. An

extensive amount of experimental, theoretical, and computational data has been published

(Glaz et al. 1986; Shirouzu and Glass 1984; Deschambault and Glass 1983; Lock and Dewey

1989) for the reflection of planar shocks from various inclined rigid surfaces. The wealth of

qualitative and quantitative data available makes the simulation of these problems a good

choice for computer code verification and comparison. The BLAST2D code was shown in this

report to produce accurate results which compared well to theory, experimental data, and

computational results from an established code, the SHARC code (Hikida, Bell, and Needham

1988). Other authors who have developed codes and published results in the past for the

simulation of blast wave/target interaction problems (external flow problems) are noted in Mark

and Kutler (1983), Bennet, Abbett, and Wolf (1986), and Yee (1987).

In a previous report (Hisley and Molvik 1986), BLAST2D results were presented for the

shock tube configuration in Figure 3a. Computational/experimental comparisons of static

pressure were improved over 01 D predictions for this configuration, however, dynamic

pressure comparisons were still poor. Figure 6 presents typical computational pressure and

density contour plots. Figure 7 presents typical static pressure and dynamic pressure

comparisons from this reference. The static pressure was recorded from a probe located in

the shock tube wall and seven diameters downstream from the beginning of the driven

section. A stagnation probe was located at the same x location, but, approximately

one quarter diameter off the shock tube wall.

Another report (Hisley 1986b) furthered the investigation for LB/TS geometries shown in

Figures 3b and 3c. Typical static and stagnation overpressure plots from this reference are

shown in Figure 8. Temperature, pressure, and numerical accuracy variations were performed

and analyzed to see if new insight about the physics of the flow and reasons for
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computational/experimental discrepancies could be obtained. The significant conclusion of

this report was to confirm that overexpanded diverging nozzles, particularly as the expansion

angle increased, were not properly modeled by an inviscid code and that physical dissipation

was present experimentally that was not being modeled numerically. As a result of these

findings, it was concluded that better understanding of the flow development in divergent flows

was required.

Experiments were next performed in overexpanded 2-D planar nozzles, Figure 9, to obtain

shadowgraphs of divergent flows as well as pressure versus time histories (Reichenbach and

Opalka 1990). The area ratios of the planar convergent-divergent nozzles were on the order

of the area ratios considered for the LB/TS. The experiments were performed in planar

nozzles instead of axisymmetric in order to facilitate the taking of shadowgraph pictures.

1.2 Objectives. Using the BLAST2D code, a systematic study of the unsteady,

overexpanded 2-D planar nozzle experiments is performed; first, with an inviscid algorithm and

then again with thin-layer laminar viscous terms added and finally with the addition of the

Baldwin-Lomax turbulence model. The objective of this report is to obtain better insight into

the flow processes that develop in diverging nozzles and how to computationally simulate that

flow. As stated earlier, previous efforts by this author for 2-D axisymmetric

converging-diverging nozzle configurations only involved inviscid computations. Therefore,

this report will go beyond previous work by performing not only inviscid computations, but

laminar viscous and turbulent computations as well. Furthermore, an assessment of the effect

of including the viscous terms will be made with emphasis on the changes that occur in static

pressure versus time, dynamic pressure versus time, and contour plots. Particular emphasis

will be placed on how well the computational simulations compare to the experimental data. It

is important for the computations to compare well to the experimental data so that the

BLAST2D code can be used with confidence in the future as a complement to the

experimental database that will be obtained with the LB/TS facility.

2. GOVERNING EQUATIONS

This section introduces the Navier-Stokes equations in 2-D Cartesian coordinates and

integral form. Subsequently, the governing equations are nondimensionalized, transformed to
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body-conformal coordinates, and the thin-layer viscous stress assumption is applied. Finally,

the governing equations are presented in discrete form for a generalized control volume.

2.1 Navier-Stokes Equations. The governing equations are the 2-D compressible

Navier-Stokes equations, written in integral form,

d f OdV+ fn.GdS=O (3)

where 'V is the cell volume, ndS is the projection of surface area with outward normal n, 0 is

the vector of conserved variables per unit volume,

P

Pu
0 = (4)

Pv

e

and G is a second order tensor of the inviscid and viscous flux of 0 expanded in terms

of vectors E and F below:

pu ] p

Pu 2 + p + x puv + "yX5E=puv + ITx , F pv2 + p + T{ (5)

(e + p) +.u + Tyv + qx (e + p)v + rYu + T rlv + qY

This set of four integral equations represents the conservation of mass, momentum in

x (longitudinal) and y directions (height), and energy per unit volume. The density is p, the

pressure is p, the velocities in the x and y directions are u and v, respectively. The total

energy per unit volume is e, where

e P + 1/2p(u 2 + v 2) (6)
(Y - 1)

The total energy per unit volume is related to the internal energy per unit mass, C, by

C = p E + p (U2 + v)12. An equation of state p = p(p, e) is required to complete the system of

equations. A perfect gas equation of state p = p RT is used in this study with the assumption

that intermolecular forces are negligible. A real gas equation of state is required when

intermolecular forces are important, that is, for very high pressures, p on the order of
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1,000 atm, and/or low temperatures, Ton the order of 30 K (Anderson 1989). Also, a

calorically perfect gas is assumed which implies constant specific heats, that is, negligible

electronic and vibrational molecular modes. Thus, e = c, T, h = cp T, and Y = 1.4 apply.

The viscous stress terms are defined below with the assumption that Stokes' hypothesis

can be used to define the relationship between the first, second, and bulk viscosity

coefficients. Thus, the bulk coefficient C is zero, and the first and second coefficients are

related through X = -2/3 p. Stokes' hypothesis is strictly valid only for monatomic gases, but is

frequently used when the relative effects of the shearing stress are much larger than the

dilational stress effects (Jones 1989). The viscous stress terms are

1:x = -2g- au +2 (au + av ,

ax 3 -

. v 2 (au . av (7)

1: Y = -11--- 1 au - + -a
(aUy ax)

Fourier's law for heat transfer by conduction defines qx and qY,

q= -(q, + qy) = -kAT - PT + TY) (8)

The Prandtl number, which relates the diffusion of momentum to the diffusion of heat, is

constant at .72 for air. Finally, the thermal conductivity and the viscosity are related through

the use of Sutherland's formula

-t + 11OK (9)

where Sutherland's formula is valid in the range of temperature from 100 K to 1,888 K.

2.2 Nondimensionalization. To this point, the variables and equations have been

presented in dimensional form. If a change of notation is made such that dimensional

quantities are now denoted by a -, then the variables can be nondimensionalized as follows:
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x Ux= , U p_L T, A
y= V=-I e= (0

L 1

_ 74p = . =- .-,- I1 -
p1  L

The reference length .is equal to 1 m, the reference speed of sound is 4 = .-. , and the

superscript 1 represents the ambient conditions initially present in the driven section. The

Reynolds number is defined as

Re - (11)

With this nondimensionalization and change of notation, the equations look identical to

those already presented except a factor of "L multiplies the viscous stress and heat transfer
Re

terms. Also, the nondimensional Fourier's law for heat transfer and Sutherland's formula

become respectively,
qJ - -(,+()-T, + Ty) (12)

(y- 1)Pr

T 3= T 1 + 110K/1t_

T { 110K/T (13)

2.3 Transformation to Computational Space. The physical, independent variables (x, y, t)

are transformed into a body-conformal, curvilinear grid (, r, T) by a general transformation of

the form

:= t

= (x, y)

Ti = 'I(x, ) (14)

Note that 4 and 11 are not functions of t, thus, this transformation only holds for grids that are

constant with respect to time.
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In order to satisfy boundary conditions on arbitrarily shaped boundaries, it is convenient to

make this transformation. Thus, a variety of geometries can be treated with the same coding.

The lower and upper walls of the shock tube lie along the constant 1 lines of 1 and jm7ax,

respectively, where jmax is the total number of grid points in the y direction. The right and left

walls of the shock tube lie along the constant t lines of 1 and imax, respectively, where imax

is the total number of grid points in the x direction. The indices i and j correspond to the t

and il directions, respectively, in the computational mesh. The cell center of an elemental

volume in the grid is denoted by (i, J), the right and left cell walls are located at (i + 1/2, j) and

(i - 1/2, j). The top and bottom cell walls are located at (i, j + 1/2) and (i, j - 1/2). Application

of the chain rule of differentiation yields

a a
aT at

a = 4 y4a (15)

at ax a
a =X a + Y

The inverse transformation is

aa
at oT

a = a + 1xa(16)
x X7a -
a a a

The metrics t, ty, ,yr can be solved for in terms of the inverse metrics x,, y,, xn, yn

with the result,

S= YJ 71, = -YtJ

ty=-xJ iy= x, J

J = (xty' - xny)-1

(17)
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The Jacobian of the coordinate transformation, J, is equivalent to the inverse of the cell

volume, V

Application of the chain rule with these metrics to Eq. 3 transforms the governing

equations to computational space. For a 2-D cell, the integration of flux over the surface in

Eq. 3 is replaced by an integral over each face of the cell. Thus, the integral form of the

transformed nondimensionalized thin-layer Navier-Stokes equations for a 2-D generalized cell

volume becomes,

d V . (E, - E, + 2 ) r f (F 112 -Fj d" - r-1 2 _ j1 - d I 1 /2 1 2( 8
(18)

Re."-*12 j.1,2 - s 1/2

where, in terms of the inverse metrics,

)'PU )V

PU PUu + Ynp P VU - y4
0 =! E = jF= (19)P V pUv- x'p p VV + xyD 19

e. (e +p)U (e + p)V

The viscous stress terms have been grouped together and placed on the right-hand side

as vector S in Eq. 18. The viscous stress terms have been nondimensionalized, transformed

to computational space, and a thin, shear layer approximation has been assumed. The

thin-layer viscous stress assumption neglects diffusion parallel to the surface of the shock

tube. Thus, all a(*)/ stress terms are neglected. In contrast to boundary layer theory, the

full, normal momentum equation is retained and no assumptions are made about the normal

pressure. After algebraic manipulation, the vector S has the form (Molvik 1987)

10

p.m1un - .Hm2y4

S mlv + 9.m2x, (20)

Tgm Vq +/ mr T

T (u2 + v2) + -+ 1

11



The contravariant velocities U and V, written in terms of the inverse metrics and the constants

m, and m. are, respectively,

u yju - x v V= yu + xv (21)

m, = 4 + x m2 = -ytu + x4v (22)

If an average flux is defined on the cell faces and A4 and Al are set to unity, the

integral form of the Navier-Stokes equations can be rewritten in discrete form as

V, i - (T - 1, J) + -

& 'c (23)

---- , j 1/'2 -- ,j- 1/2)

The vectors E and F are the convective numerical fluxes, to be defined later, in

computational space (,, , ir) consistent with the transformed physical fluxes E and F in

(,r, t, TI). The vector 0 consists of the cell-averaged dependent variables. The integration

scheme is fully implicit if m = n + 1 and is explicit if m = n. The vector 0 evaluated at time

level n represents known or initial conditions in Eq. 23. Thus, once the numerical fluxes in

Eq. 23 are evaluated, (0 at time level n + 1 can be solved for. The next section presents

mathematical details of the techniques used to discretize and evaluate the fluxes presented in

Eq. 22.

3. NUMERICAL ALGORITHM

3.1 Introduction. Discretization of the governing equations into an upwind, TVD,

finite-volume, implicit scheme produces an algorithm that is well suited for blast wave

calculations, because, upwind flux difference splitting with TVD achieves second-order

accuracy without introducing spurious oscillations near discontinuities. Strong gradients and

complex flow fields are resolved accurately. TVD schemes are often referred to as a modern

shock-capturing method due to the fact that the numerical dissipation terms are nonlinear, that

is, the amount of dissipation is controlled by automatic feedback mechanisms that can vary

from one grid point to another. Also, the dissipation is scaled to the underlying eigensystem

of the hyperbolic Euler equations. In classical shock-capturing methods, as reported by

12



Yee (1987), the numerical dissipation terms are either linear such that the same amount of

numerical dissipation is added at all grid points or the numerical dissipation is controlled by

parameters that must be optimized. Classical shock-capturing methods typically result in

oscillatory solutlans at strong discontinuities.

The advantages of classical techniques are programming simplicity and adequate

resolution for weak gradient problems. However, for the complex flow fields and strong

gradients typical of blast problems, upwind differencing with TVD provides better resolution.

The disadvantage of upwind differencing with TVD are longer computing times caused by an

increase in the number of arithmetic operations per integration step and loss of programming

simplicity. The results shown in this paper were generated on a Cray XMP/48 and typically

took one hour of cpu time for the inviscid case, to five hours of cpu time for the viscous case.

Conservative schemes capture shocks and other discontinuities automatically. The finite

volume philosophy ensures conservation at interior points. The scheme is made implicit by

linearizing only the first-order contribution and by employing a Newton iteration of the type

described by Rai (1984) to reduce the linearization and factorization errors. The implicit

version of the scheme requires more computations per integration step than the explicit

version, but permits larger time steps which, for stiff problems, reduces computational

expense.

The next section presents the first-order accurate upwind scheme which is the foundation

of the computational algorithm. Subsequently, the first-order scheme is expanded to second-

order accuracy with the addition of second-order terms and TVD concepts. Development of

the implicit version of the algorithm and the Newton iterative procedure used is presented.

Next, boundary conditions are discussed. Finally, the turbulence modeling is described.

3.2 First-Order Scheme.

3.2.1 Upwind Flux Difference Splitting and the Riemann Problem. An understanding of

upwind flux difference splitting begins with an examination of the mathematical nature of the

unsteady Euler equations. Steger and Warming (1981) report that if the equation of state

used to close the Euler equations has the functional form p = p f (e), then the nonlinear flux

13



vectors E (0) and F (Q are homogeneous functions of degree one in Q, that is

E (a Q = a E (Q) for any value a and similarly f- - F. Thus, the flux vectors can be shown to

be equivalent to

E = AQ (24)

F= BQ (25)

where A and B are the Jacobian matrices aE W respectively. For the hyperbolic Euler

equations, A and B have a complete set of linearly independent eigenvectors such that a

similarity transformation exists. This similarity transformation for the direction flux is,

A = RA R-1  (26)

where R is the right eigenvector matrix, R' is the left eigenvector matrix and A represents the

diagonalized eigenvalue matrix,

1/c 1/c 1/c 1/c

S+ ,y U +

1 yVV g (27)

C C C C

q2 _ + C q2 + ±+

2c X 2c 2c 2c x

2

xq2 + C+ -(28u- &x v , )_
2c c C c

-q 2 - Vx+ C -u- , v + &, -

R-1 2cC C C(28)
--q2+9+ 'c I-_ y 2 V-§
2c c C C

2q..j_-0 -. Ku + §,, _. v+ g1y X42c c c c
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A =diag[lU- x yc, U, U, U+ x~yc] (29)

where

qJ = uk + v§y

X= -1

The eigenvalue matrix can be split according to the sign of the eigenvalues (characteristic

speeds), thus A = A+ + A-. The superscript + denotes positive eigenvalues, or from

characteristic theory, right-running waves and the superscript - denotes negative eigenvalues

or left-running waves. Also, the Jacobian matrix A can be split,

A = A+ + A- (30)

where

A+ = RA* R-1  A- = RA- R-1

Similarly, B" and B can be constructed by replacing x. with -x,, and y, with -y,. From a

purely mathematical analysis of the Euler equations, a more physical picture of right and left

moving waves emerges which in turn suggests the use of the Riemann problem to determine

the constant states separated by the wave families.

Riemann problems are the building blocks upon which the upwind flux differencing is

performed. Therefore, it is appropriate to interject at this point exactly what the Riemann

problem is and how it is incorporated into the numerical solution procedure. Consider the

dependent variables at cell centers for all the cells in the grid, as pairs of states defining a

sequence of 1-D Riemann problems. The Riemann problem for the 4 direction Figure 10, is:

Given two states (p 1, ul, p1) and (p4, u4, p4) determine the combination of shocks, contact

discontinuities, and expansions which result in these end states, that is, determine (p2, u2, p2)

and (p3, u3, p3). For the Riemann problem in the i1 direction, substitute v for u.
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To obtain an exact solution of states 2 and 3, Riemann solvers require an iterative

procedure which is computationally expensive when performed for a large number of cells and

time steps. The expense of producing an exact solution to the Riemann problem is justified

only if the information made available could be put to some sophisticated use. The

approximate Riemann solvers are considerably less expensive because the Riemann problem

is solved with a direct non-iterative method which is about as time consuming as one cycle of

the iterative procedures. Comparisons of the solutions from the exact vs. approximate

Riemann solvers reveal slight differences. Other approximate Riemann solvers could have

been used, but Roe's method is the approach recommended by Chakravarthy (1985) when

computational efficiency is important.

From either an exact or approximate solution to the Riemann problem, the change in flux

across the right running and left running wave families can be determined, respectively.

Upwinding requires that the change in flux or flux difference across right running wave families

(positive eigenvalues) be used in the derivative evaluations of fluxes into neighboring fluid

cells to the right of the Riemann solution and that the flux difference across left running wave

families (negative eigenvalues) be used in the derivative evaluations of fluxes into neighboring

fluid cells to the left. In this way a method of characteristic-like flavor is brought into the

numerical algorithm and the concept of upwind flux difference splitting is illustrated.

The flux change associated with the waves traveling in the positive t direction is given the

symbol A E* and that in the negative direction is represented by A E-. The flux remaining at

the interface for all time associated with this Riemann problem must then be represented by

either of the following equations:

E,1,2 = E + AE- ,1 2  (31)

-E i . =/ Ei - A E1'_11 (32)

or, by averaging the two equations, the final form of the numerical flux becomes,

A'. 1r = 1/2 (Ei + E, + AE ,/ 2 - AE. 1 2) (33)

The flux difference across the positive and negative velocity waves can be calculated:
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AE*,1 12 = 1/2(Ri. ,/ 2(A + IAI),.,/ R," ,2) (5., - 0) = A(j, 1 - 0,) (34)

AE7,+ j2 1/2 (R,+ 1 /2 (A - AI),.,2 R,',.) (5, - 0,) = A-(0, - 05) (35)

However, the dependent variables are not defined at the cell interfaces where these matrices

must be evaluated.

3.2.2 Roe's Approximate Riemann Solver. Roe (1981) has developed a special averaging

process to calculate the dependent variables on the cell interface and satisfy the following

relations:

(1) [A]R, 2 constitutes a linear mapping from the vector space 0 to the vector space E.

(2) [A]7, 2- A, 1,2 = aElaQ.

(3) E, 1 - E = [A]RO, 2 ( 0(l. - 0) = [A+ + A-]R-1 2 ((,, - 0,)

Roe
(4) The eigenvectors of [A] ,, 2 are linearly independent.

By satisfying the relations above, called Property U (intent of Property U is to insure uniform

validity across discontinuities) by Roe, the shock capturing capabilities of the algorithm are

retained and correct wave speeds are assured.

The superscript P= denotes Roe-averaged dependent variables at the cell interfaces which

are defined as follows:

r + P, r1 + A _+1

hU. 1. 2 = h, =, +h1 +IV =7j

c,,, 1 2 = {(h, .1 2 - 1/2(u U ,112 + V. ,/)) 1} 2 (36)
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where the total enthalpy per unit mass is

h = (e + p)/p (37)

The first-order flux / on the j + 1/2 interface can be obtained in a similar manner by replacing

x, with -x,, y, with -y,, and i with j

3.2.3 Entropy Fix. Chakravarthy and Osher (1985) report that an entropy fix is required

with Roe's scheme. In Roe's approximate Riemann solver, weak solutions (solutions with

shocks and contact discontinuities) are not uniquely determined by their initial values. An

entropy condition is required to determine the physically relevant solutions. The purpose of

the entropy fix is to remove expansion shocks and glitches from occurring at sonic

rarefactions, such as shown in Figure 11 (Chakravarthy and Osher 1985). Various authors

have presented their preferred versions of an entropy fix, however, the version used here is

attributed to Harten as reported by Yee (1987). A slight modification of the absolute value of

the eigenvalue matrix is performed,

{IAI IAI - 81 > 0
I = , + 6)I25 IAI - $ <0 (38)

8,= e(IUI cC + e )

and is substituted for IAI in Eq. 34 and 35. In this study, e is a constant which is set equal to

.10. When 81 = 0, the scheme is the least dissipative; the larger the 81 , the more dissipative

the scheme becomes.

3.3 Second-Order Scheme.

3.3.1 Inviscid Flux. A second-order inviscid flux can be produced by adding a correction

term to the first-order flux. However, the second-order correction term causes oscillations in

regions of high gradient, for example, in the region of shocks. In order to avoid these

instabilities, the correction term must fulfill the criteria for the algorithm to be TVD. TVD

schemes achieve second-order accuracy without introducing spurious oscillations near

discontinuities by employing a feedback mechanism-"smart numerical dissipation"-wherein

fluxes are compared at neighboring control volumes. In regions of little change, no numerical
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dissipation is added to the second-order correction terms, while in regions of large change,

numerical dissipation is added to ensure stability.

During this process, no new extrema are created by the numerical dissipation. TVD data

preserve monotonicity; a) no new extrema must be created and b) the absolute value of any

extrema must not increase. TVD schemes yield oscillation-free solutions by modifying flux

differences to meet the above criteria. Chakravarthy (1985) outlines a class of explicit flux

limiting schemes that fulfill this criteria. The second-order flux for the fully upwind scheme can

be written as

pd - t.isf 1 .FZ
1.1f2 - 1*1/2 + 1/2 [AEl 1/ - (39)

If the following definitions are made to provide the measure of the change in the right and

left running flux, respectively,

+ = 1/2((A + A I) /1 2R 1 2 5 - (5) (40)

A( 1/2 '= 1/2((A - IAI)I . 1/2 R 1 1 /2 ) (P. 1- (5)

then the TVD limited values of the flux differences can be written as

AEI* 1 2 = R, . 1VA61 - 1/2 , AE7. 1/2 = R* 1 2 A.1/,2 2  (41)

The symbols - and = shown over Aa denote flux-limited values and are computed as follows:

Mir. 1/2 = minmod[Ai,. 1/2, 1Aai_ 1,2] (42)

S2minmod[AoC. 1,Ao- 3/2] (43)

where the "minmod" slope-limiter operator is defined as

minmod[x, y] = sign(x) * max[O, min{ IxI, y * sign(x)}] (44)

and 13 is a compression parameter that is restricted to fall in the range

1 < 13 2 (45)

The minmod limiter returns the smaller magnitude when the signs are equal, and returns zero

when the arguments are of opposite sign. The result is that dissipation is added locally in

regions of high flux gradient. At inflection points, the scheme reverts to first-order accuracy.
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Eq. 23 can be rewritten with the first-order numerical fluxes, t and ,P, replaced with the

second-order fluxes:

S-1(46)

0i Re  . 1/ 1/ . ,2 •

3.3.2 Viscous Flux. A second-order evaluation of the viscous flux terms is obtained by

performing a central difference about the corresponding cell interface. The metrics on the cell

interface are known quantities and are not included in the averaging. For example, the

x-momentum viscous term becomes

1 /2 + (L.. U,) -(y_ (v . 1 - vj)]= (2)j .1,2 (47)~+ +  j [(ml),' + Iu I =yx -+,

The y-momentum and energy viscous terms are differenced in a similar fashion. The viscous

flux terms are central-differcnced in order to obtain a second-order accurate evaluation. It is

not clear what effect the present numerical dissipation (due to the inviscid TVD terms) has on

the true viscosity terms in the boundary layer region. However, solutions using this algorithm

were presented by Molvik (1987) for a steady boundary layer, and a shock-induced boundary

layer. The steady boundary layer solution was in excellent agreement with results from an

established boundary layer code and the shock-induced boundary layer sLution was in

excellent agreement with a similarity solution by Mirel.

3.3.3 Temporal Accuracy. The above discussion describes the explicit fully upwind

second-order accurate in space scheme. Second-order accuracy in time is achieved by

replacing the first-order, backward derivative of the time-dependent variables with a

second-order backward difference (Atwood, to be published).

co"- + Clon+ C2Q- 1  (48)

where
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CO 1 - a
(1 - a)At 2 + ArT

C, 0
(1 - o)A; + A;

-1
(1 - o)A 2 + A

"AT1 ] A ,In 1 , = ,no =1 +~ , At, =t-t:"" A==Tf"1 -t
AT2)

3.4 Implicit Scheme. The advantage of an implicit scheme over an explicit algorithm is

increased stability, which allows larger Courant numbers, that is, larger time steps to be taken.

This feature is critical to overcome the stiff nature of viscous problems where the disparate

length scales can lead to unacceptably small time steps in an explicit algorithm. For a fully

implicit scheme, the fluxes must be evaluated at the n + 1 time level. The first-order

numerical flux on the i + 1/2 cell interface evaluated at the n + 1 time level, see Eq. 33

through 35 is represented as:

= .1 [ . * 1 + (A- - A-)17: (n l dn,, 1)] (49)

An approximate linearization of this interface flux may be achieved by freezing the coefficient

(A- - A+) at time level n and linearizing the remaining terms. Numerical experiments have

shown that such an approximation is acceptable (Ral 1984). The linearized numerical flux is

then written as:

/2 . A,+I, En , + E A,"AOj + (A- - A)i")., 1 2(Q,,'1 +/AQ, - Q - AO)I (50)

Reorganizing and using Eq. 49:

r = ["I + (A- - A*),n. ,2] Ad,., + 1 [Al -(A- A+), 112]AQ5 + t.1

= (AR) I n 2A, . + (AL)/n. 1, 2A 1 + t" ,/ (51)

where

AQ= Q 1 - Q in
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The linearization of the viscous numerical flux is accomplished by freezing the value of

viscosity and linearizing the remaining terms. Since these remaining terms are only a function

of the dependent variables in the neighboring cells, the linearization becomes:

9n + R LTA a112 A

- .1/2+ M 1,2AQj. 1 + M1IAQ

In order to compute express S in terms of combinations of the dependent variables in 0,

then compute S , while holding other q constant. For example, using Eq. 47 for

(92)j . 2 as a starting point, let

(pu). = (pv) 1,,
Pi.1 Pj .I

then

9 0601~. 12 -.(~' 1(1 U1K+ -

apj. (5 PP3)

The term 2)j. 1/2 is identical except the dependent variables are evaluated at j instead of

j + 1. In this fashion, all elements of the matrices MR and ML can be computed.

Letting the coefficient matrix be denoted by a B and using a similar type of linearization for

the body normal flux, F, as for the streamwise flux, E, the linearized, implicit numerical

algorithm is written as:
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+ A [(A) A +((A . - (A")'_,,,AQ1 , - (A')7 1 IA, ,,]

Vi. j'- "
+ At [(B R _ MR)7,nA,. + {(BL -ML 1~1 - (B R _ MR)7. 1I2)A05ij

ij12A . . ° ° )in 1
- (BL - L)-1/Aj -

V 0,T 6. 11" " .J - /, , J) + (Fn. 1.,, - F j _,,, - R _.. 1. , - , 1_ (54 )

Notice that the computational stencil in the previous equation involves five grid points: (i, j),

(i, j + 1/2), (i, j - 1/2), (i + 1/2, j), (i - 1/2, J). To avoid the expense of inverting a large, sparse

pentadiagonal matrix, an approximate factorization is done to break the banded matrix into

two tridiagonal matrices. This is written in two steps with the asterisked * variables denoting

an intermediate step as:

Qj .. (. {(A'. 1  - (A)',2)AQi, (A') 1,2 A Q7l
o; . _,[(A ),. ,r AOi. 1. j + ( , .12-(

At r '""" 1 . . (55)At ,_., _ ,, + ( , ,., 1 -_FP,,_,/2) - (6,n j in, ,)

Once AQ7J is solved for from Eq. 54, it is substituted below and AQ, j is computed.

-At [RB _ " A, . , L( _ ML). - (BRQ MR)nA.A _, + - 1 - M,, 1 + { _ B. _2 (Rj- (

- (B L _ ML);_,nAQ.1 ,] = A1&J

3.5 Iterative Scheme. In order to eliminate the linearization and approximate factorization

errors that might occur, a Newton iteration technique is employed. Newton's method finds the

zeros of nonlinear equations. For example, to find the value of x such that the scalar function

Ax) = 0, guess a starting value x P and iterate as follows:

x = -XqxP) (57)
f'(xP)

Each time xP" is computed it becomes xP for the next iteration. Updates of xP*' are computed

until very little change in the value of x occurs, then the solution is said to be converged.

Another way of writing Eq. 57 by simply rearranging variables is
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f'(xP)[xP" - XP] = - f(x ). (58)

The exact same equation holds for a vector function so that

f- - f (59)

Now, expanding f'(QP) and - f(QP) fully and letting AO be defined as the iterative change in

the cell-averaged dependent variables, (&Q* 1 - (p) instead of the time change, the Newton

iterative form for the implicit equations becomes

= At (Q. R ) _) R~ (. , ./.)P + L2 _ )A0+ R) .0,+ [( + ((A)i . 1- (A, 1/2 A (A 1/ 2 A

A j + i / 1t 1/A+0 1{(B - L) j - - ( 5B*- MX ,A j]
n, ) _ A t [rI

2 fd pnd n,1 .2d p2nd

Ot -2-%i - 1/2)]P' (60)
Re

t +R _[(BR - MR)P. ,j.1 + {(L ML) R M

(61)
- (BL - ML)_ r 2A,,j_ 1 ] = _1 AJ

Ideally, the linearization and factorization errors are completely eliminated when the

residual of Eq. 61 is driven to zero. Notice that if the residual A(Q is zero, then AQ ° is

zero, and the left-hand side of Eq. 60 is zero. On the right-hand side, p = n + 1, Ql + 1 is

converged to an exact solution of the implicit form of the algorithm. However, in this study

convergence was defined after four iterations at which time the maximum density residual in

the flow solution had decreased by at least an order of magnitude. This definition has been

used by this author in previous work with good results and is necessary to reduce the number

of iterations and expense of the calculation. Notice that if no subiterations are taken, then

Eq. 60 and 61 revert to the implicit, noniterative form presented in the last section.

3.6 Boundary Conditions. The inviscid boundary conditions are obtained by computing a

slip boundary condition and specifying an appropriate flux on the walls of the shock tube. At

the walls, the normal component of velocity is zero, the tangential component of velocity is

nonzero. The flux on these surfaces can then be represented as

24



F= P(62)

Only a value of pressure need be evaluated at the surface. As a first approximation, one

might consider using the pressure of the cell directly above the surface. This translates into a

zero-order approximation. However a first-order approximation of the surface flux can be

made if a Riemann problem is set up on the surface. This is consistent with the interior

scheme and would seem like the reasonable approach. The first-order Riemann solver is

used between the first cell off the surface and a reflected cell. If the subscripts 1 and -1

denote the first cell off the surface and the reflected cell respectively, the surface flux can then

be written as

t, = 1/2[F + F1 + (B- - B-),(Q - Q )] (63)

The dependent variables of the reflected cell are calculated using the following relations:

P-1 2 Pi, P-1 = P

u (x,2 - y4)u, 2 xy, v]/[X4 + (64)

v_1 [(/ - x4)v, + 2xyu,]/[x + y]

The metrics above are those of the cell interface on the surface. A second order flux can be

obtained by reflecting even another set of dependent variables with a subscript of -2.

The viscous flux is evaluated on the surface by imposing a no-slip boundary condition, that

is, the velocity components are zero at the wall. For the derivatives appearing in the viscous

flux at the surface, a second-order accurate difference is used instead of the central

differencing used at the interior points.

3.7 Turbulence Modelinq. In order to include the effects of turbulence, an eddy viscosity

coefficient p, is computed. Then, in the stress terms of the laminar Navier-Stokes equations,

the molecular coefficient of viscosity p is replaced by p + P, In the heat flux terms, -_ is
Pr

replaced by + L where Prt is taken to be .9 for air. The Baldwin-Lomax algebraic
Pr Pr
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turbulence model (Baldwin and Lomax 1978) is used in this study to compute values of I.r

Algebraic refers to the fact that p, is obtained from explicit algebraic equations that involve

flow properties and empirical parameters. Other turbulence models could have been used to

obtain values for p, such as one-equation and two-equation models which require the solution

of partial differential equations for the creation and dissipation of turbulent kinetic energy, but

with considerably more effort.

The purpose of this study is to discover if turbulence modeling provides the correct trends

for better computational/experimental comparisons. If so, then a future effort might be to

perform a study of various turbulence models to compare their results and relative

cost-effectiveness. However, for a first effort it seemed reasonable to use a simple and

computationally inexpensive turbulence model. The Baldwin-Lomax turbulence model is

outlined below for completeness.

The Baldwin-Lomax turbulence model defines p, in terms of an inner and outer layer in the

turbulent boundary layer;
= , Y < Y (65)

= (g-d)o,, Y Yf.,,v,

where y is the normal distance from the wall and y,. ..,r is the smallest value of y at which

(pA)inw equals (Pd our. The explicit equations for g, are

(g')M. = p/2 1(01 (66)

(gt),w = pkCcpFwAK'FKw(y) (67)

where
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a= u avI- -I
a3y ax

/=4k{1- exp zyij
Y y P a..fwa.- PwauSY

A= 26.0, Ccp = 1.6, k = .04, K = .0168

The only two functions left to be discussed are FWKE and FKw, which are related to the

function

F(y) = y I co1[1 - exp(.i. ij (68)

The function F(y) will have a maximum value, to be denoted F,", at a given normal distance
y, to be denoted y,, so that FwAK is taken to be the smaller of

YWx FMx

or

YAX CWUg21F/ FMX (69)

where uDIF = 1 + v2 and C. = .25

Baldwin and Lomax (1978) report that, near the separation point, the function F(y) develops a

double peak and the inner peak is slightly larger. The inner peak occurs at a relatively small
value of ymx such that FwAK is small and the calculated eddy v;scosity is suppressed, causing

the predicted separation point to move forward. Their comparisons to experimental data show

this turbulence model predicts separation ahead of the experimental separation point by
approximately one boundary-layer thickness. For the purpose of this stucy, the elimination of
the need to find the edge of the boundary layer by this model is more significant than the
inaccuracy in the prediction of the separation point. Finally, FKt, the Klebanoff intermittency

factor is given by,
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FKI b(y) = + 5.5 CKJ.f (70)

where CKI,, = .3

4. GEOMETRY, GRID, AND INITIAL CONDITIONS

Figure 9 (Reichenback and Opalka 1990) presents the 160 and 450 diverging nozzle

configurations that are computationally modeled in this study. The dimensions are presented

in millimeters. Notice that the driver section is 30 mm wide, while the driven section (from the

throat to the end of the tube) is 40 mm wide. For a truly 2-D geometry, these widths should

be equivalent. Because the difference, 10 mm, is not too large, it will be assumed that 3-D

effects are not significant and a uniform width of 30 mm is assumed in the computational

models. However, area ratios must be equivalent to the original area ratios to simulate shock

overpressures correctly. In order to keep the proper area ratios, the diameter of the throat

section was enlarged from .016 mm to .0213 mm and the diameter of the driven section

(section after the nozzle) was enlarged from .090 mm to .120 mm. The inviscid computational

grids with these changes are presented in Figure 12.

The inviscid computational grids contain 214 grid points in the streamwise direction and

30 grid points in the body normal direction. The grids were generated using the GRIDGEN2D

code written by Steinbrenner, Chawner, and Fouts (1990). During grid generation, an

algebraic solution for the grid is first obtained, then an elliptic solver is applied to smooth the

solution and produce grid lines that are nearly orthogonal to the surface boundaries. The

viscous grids were generated by replacing the first three grid points (including the point on the

surface) with 14 grid points that are exponentially stretched from the surface to the location of

the third point in the inviscid grid. The exponential stretching function can be written as

s = As + kAs + k2As +... + klu-2As (71)

where k = constant to be computed, s = distance between first point and last point involved in

exponential stretching (including end points), As = spacing between first two grid points and

jmax = total number of grid points involved in exponential stretching (including end points),

i.e., 14 grid points for the case here. Reorganizing,
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s As(km"x- 1 -1 = 0 (72)k-1

Now, Newton's iterative method, described earlier, can be used to solve for a value of k that

satisfies Eq. 72.

The two nozzle configurations were simulated at a driver to driven pressure ratio P, = 80.

The driven section was evacuated to P, = 174 mbar. The temperature of the driver and

driven sections were equal at 296 K. The Reynold's number based on conditions behind the

primary shock was computed to be 4.65 x 106. Static overpressure was recorded

experimentally at a location 370 mm downstream from the diaphragm ano.1 .'-e ceiling of the

tube. Computationally, the static overpressure and the dynamic pressure were sampled at

three locations which were at the same x location as the experiment. A computational probe

was located at the first cell center off of each wall boundary and the third computational probe

was located midway between the two walls. The boundaries of the shock tube were solid

walls including the end of the driven section.

5. RESULTS AND DISCUSSION

The results have been organized such that the experimental data is presented for the 160

and 450 expansions. Then the inviscid, laminar viscous, and turbulent computational results

are presented and compared to the experimental data.

5.1 Experimental Data. Shadowgraphs for the 160 and 450 nozzles at P4, = 80 are

shown in Figures 13 and 14, respectively. In order to obtain these figures, two shadowgraphs

(one from each optical window) were pieced together; thus, halfway through the nozzle a

vertical line is present in some pictures which is not a physical gradient but the overlap of the

photographs. In the figures, the primary shock, the contact surface, the recompression shock

system, the comer expansion, and diaphragm fragments can be seen. Two important

features to notice for the purpose of computational modeling is the turbulent region behind the

diffuse contact surface and the separation of the recompression shock system from the lower

wall. The purpose of the experiment was to reproduce one-half of the symmetrical flow

pattern shown in Figure 5. However, a boundary layer builds up on the lower wall, which
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eventually separates from the wall and causes the core flow to seek the center of the half

shock tube. These shadowgraphs indicate the need to model viscous and turbulent

phenomena in the present computations.

Static overpressure versus time histories are presented in Figures 15a and 15b which

were recorded from transducers located 370 mm downstream from the diaphragm location

and in the upper wall. A comparison of the experimental data for the two nozzles reveals a

similar waveshape up to 500 lIs. After this time, the 160 experimental overpressure versus

time history reveals a much larger decay in static pressure than the 450 nozzle record. The

reason for this difference can be found by examining the shadowgraphs in Figures 13 and 14.

A larger decay in the static overpressure is recorded for the 160 nozzle because the

recompression shock that develops in this nozzle impinges the upper wall (Figure 13). Thus,

the change in static pressure across the recompression shock is recorded by the transducer in

the wall at the recording station. However, the recompression shock in the 450 nozzle

(Figure 15) does not extend to the wall. Thus, the pressure change across the recompression

shock is not recorded. Another point of interest is that the experimental pressure versus time

history for the 450 nozzle is noisier (indicative of increased turbulence) than the 160 nozzle

history.

5.2 Computational Results. Computationally generated, nondimensional contour plots of

density, Mach number, static pressure, and dynamic pressure are presented to aid in

visualization of the flow phenomena. Density contour plots will be compared to the

experimental shadowgraphs. This is not the best of comparisons because shadowgraphs

reflect regions where a°P + ±P- is significant. However, as reported by this authorax2  ay2

previously (Molvik 1987), the large gradient regions in the shadowgraphs are typicqlly

reproduced in density contour plots. In the same report, it is shown that computational

shadowgraph contour plots can be generated but produce superior comparisons only if a very

fine computational grid is used throughout. In order to keep run times under five hours, grids

too coarse for computational shadowgraphs are used in this study.

For all of the computations performed, plots are presented of static overpressure and

dynamic overpressure versus time. In these plots, computational results are provided at the
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upper wall, mid-tube and at the lower wall at the same x location as the experimental static

pressure probe. Note that the experimental static pressure probe, as stated earlier, is located

in the upper wall. Stagnation pressure probes (typically present in blast experiments) could

not be utilized in the experiments due to the small size of the tube. Therefore, an

experimental dynamic overpressure versus time history which is usually computed from the

experimental stagnation and static overpressure data could not be provided. However,

computational dynamic overpressure versus time histories are still presented and analyzed.

5.2.1 Inviscid. Figure 16 presents contour plots which occur at 1.45 ms for the

160 nozzle. An examination of these plots confirms trends that hold for moving normal

shocks, flow through onverging-diverging ducts, and the properties of oblique and normal

shocks. A moving normal shock analysis was performed for the primary shock after it moves

into the constant area duct dwnstream of the diverging nozzle. The moving shock analysis,

given a shock overpressure, (P2 - P1), equal to 400 mbar and P1 = 174 mbar results in the

following values:

=2 3.3, M=.633, L = 2.247,'P, PI

which agrees with the contour data.

The flow through the converging-diverging nozzle is choked and subsequently expands to

a high supersonic, low pressure, and density conditions in the diverging nozzle. The flow

adjusts to the higher pressure downstream of the exit of the nozzle and behind the primary

shock by forming a recompression shock system. The recompression shock system is

composed of a normal shock near the lower wall and an oblique shock near the upper wall.

At a much later time of 4.87 ms, Figure 17 shows the primary shock which has reflected from

the right closed end and is interacting with the front of the complex field of reflected oblique

shocks. Gradients in total enthalpy are caused by the unsteady temporal nature of the

primary shock. Gradients in entropy occur when some streamlines experience a higher

entropy increase by going through the recompression shock system at angles close to normal

while other streamlines experience a lower entropy increase by going through the

recompression shock system at angles that are more oblique. From Crocco's theorem,
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TVs= Vh- Vx(VxV) ... .V (73)
t

where T is temperature, s is entropy, h is total enthalpy, V is velocity and t is time, it is known

that whenever gradients in total enthalpy or gradients in entropy exist in the flow field,

rotational motion occurs.

The shocks in the recompression shock system repeatedly reflect from the walls. These

reflections set up a shock diamond pattern that stretches many diameters downstream without

weakening in an inviscid code. The contour data compares well with trends from inviscid

theory, however, the experimental shadowgraphs in Figure 13 show some separation of the

flow from the walls. Thus, the modeling of viscous and turbulent phenomena must be

pursued to improve the comparisons.

Figures 18a and 18b present inviscid computational static overpressure and dynamic

pressure versus time histories, respectively, at three radial locations for the 160 nozzle. The

static overpressure versus time plot reveals the computational primary shock is smeared

compared to the experimental record. This is due to the coarseness of the grid used in the

computation. The shock overpressure level at the wall compares well to the shock

overpressure level recorded in the experiment. The overpressure level behind the primary

shock compares reasonably well to the experiment, but the decrease in pressure at 500 lis,

caused by the influence of the recompression shock does not compare accurately. This

discrepancy is similar in nature to the computational/experimental comparison shown in

Figure 8.

The dynamic pressure (I MPs, ) plot shows a jump in dynamic pressure after the

arrival of the initial shock to approximately 250 mbar. This is consistent with the increase in

Mach number and static pressure across the moving shock. After the arrival of the contact

surface, the dynamic pressure jumps to above 1,200 mbar. Although the pressure is constant

across the contact surface, the Mach number increases which accounts for the increase in

dynamic pressure.
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Figures 19 and 20 present similar plots for the 450 nozzle. The significant difference

between the 160 and the 450 case is the different angles the recompression shock system
makes with the walls of the shock tube and the increased radial complexity of the flow for the
450 nozzle. The density contour data in Figure 19 at .92 ms contains the same gross flow

features as shown in the shadowgraphs in Figure 14. However, the computation does not
reproduce the regions of separation which are present in the shadowgraphs. Ideally, the

addition of the viscous terms to the computations should improve the shadowgraph

comparison without degrading the static overpressure history comparison. The inviscid static

overpressure versus time history in Figure 20 compares reasonably well to the experimental

data at the upper wall. The computational static overpressure at mid-tube is similar to the
upper wall record, but the lower wall computational record experiences a large pressure

decrease similar to the 160 nozzle case. This is due to the fact that the recompression shock
system near the lower wall is swept past the x station where data is computationally sampled.
The dynamic pressure record shows histories that are dissimilar for all three locations. This is

an indication of the varying strength of the recompression shock system in the radial direction.
A recommendation for future experimental work is to sample data at various y locations in

order to assist validation of the radial complexity of the flow.

5.2.2 Laminar Viscous and Turbulence. In this section, computational results are
presented which show the effect of adding the laminar viscous terms and implementing a

no-slip boundary condition at the lower and upper wall. Also, results are presented for two

different implementations of the Baldwin-Lomax turbulence model. One implementation is
where the Baldwin-Lomax turbulence model is referenced relative to a laminar viscous bottom

boundary condition and a slip condition is assumed at the upper wall. This case is denoted

by "LV and TUR Bot" in the text and in the figures. Also, results are shown for the

Baldwin-Lomax turbulence model referenced relative to a laminar viscous upper boundary with
a slip condition assumed at the bottom boundary. This case is denoted by "LV and TUR

Top." More rigorous computations were attempted which made both boundaries no-slip

simultaneously. The influence of the two walls on the turbulent eddy viscosity was computed

using an inverse averaging procedure (Goldberg and Chakravarthy 1988) where
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(St,In), + (pIn) 2  (74)

(1ln2 + lln2)7

and the indices 1 and 2 refer to the two walls and n refers to the coordinate locally normal to

the wall. However, these computations aborted in the subroutine which computes the time

step Ac from the Courant Friedrichs Lewey (CFL) stability condition. The CFL condition

requires the At must be less than or equal to the time required for a sound wave to propagate

between two adjacent grid points. Efforts to determine the exact cause of the instability which

occured in the CFL condition were unsuccessful, but are still thought to be an inaccuracy in

the numerical implementation and not because of a physical limitation.

Figure 21 presents the laminar viscous contour plots at 1.6 ms for the 160 nozzle case.

The geometry of the recompression shock system has changed from the inviscid solution.

The system is separating from the bottom surface which is confirmed in the velocity vector

plot in Figure 22. Figure 23 presents the contour data that results at 2.1 ms when a "LV and

TUR Bot" implementation of the Baldwin-Lomax turbulence model is used for the 160 nozzle.

The contours near the lower wall are similar to the laminar viscous solution, however, the

gradient clusterings near the lower boundary are more smeared. This trend is in agreement

with the idea that turbulence acts as an additional mechanism for diffusing energy in the

flowfield. Figure 24 presents the contour data that results at 2.0 ms when a "LV and TUR

Top' implementation is used. The contours near the slip condition are more like the inviscid

solution and the cont' urs near the top boundary (no-slip condition) are similar to the laminar

viscous contours except more smeared.

Figures 25-27 present comparisons of the inviscid, laminar viscous, and turbulent static

overpressure histories for probes located at the upper wall, the lower wall, and mid-tube,

respectively. Comparison of the inviscid, laminar viscous, and turbulent static overpressure

versus time histories in these figures reveals some differences. Two cases, the laminar

viscous and "LV and TUR Top," static overpressure histories at the upper wall location,

Figure 25, have increases in static overpressure at approximately 900 tis. This increase

appears to be caused by a small region of separated flow in the comer of the diverging nozzle

where it attaches to the driven section. Other than this difference at 900 ps, the comparisons
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of the inviscid, laminar viscous, and turbulent static overpressure histories at the upper wall

are virtually the same.

The "LV and TUR Bot" static overpressure at the lower wall, Figur 26, has a more slowly

decaying waveshape than the other three solutions. Also, this decaying waveshape is not

evident in the mid-tube or upper wall histories. Thus, it can be concluded that the effects of

the Baldwin-Lomax turbulence model are being confined to a region close to the no-slip wall

• ondition from which it is implemented. The mid-tube comparisons of static overpressure

Figure 27, reveals slight differences which indicates the computational viscous terms are not

significant to the mid-tube flow conditions.

Comparison of the dynamic pressure histories (Figures 28-30) confirms the correct

implementation of the boundary conditions. The upper wall, Figure 28, and lower wall,

Figure 29, comparisons show the laminar viscous dynamic pressure jumps to approximately

150 and 75 mbar, respectively, and then decays to zero. The wall solutions are

computationally sampled at the first cell center from the wall surface, therefore, the Mach

number or velocity for the laminar viscous solution is not exactly zero but is very small, as it

should be for a no-slip boundary condition. The "LV and TUR Bot" implementation of the

turbulence model produces a dynamic pressure record at the upper wall, Figure 28, which is

very close to the inviscid solution. This is reasonable since this implementation of the

turbulence model uses a slip boundary condition at the upper wall. The "LV and TUR Top"

case produces a dynamic pressure record similar to the laminar viscous solution which is in

agreement with the no-slip boundary condition used by this case at the upper wall. At the

lower wall, Figure 29, the trends are reversed from the upper wall dynamic pressure

description. The mid-tube laminar viscous and turbulent dynamic pressure histories,

Figure 30, appear unchanged from the inviscid solution. The next sections examine similar

contour plots and overpressure histories for the 450 nozzle.

The 450 laminar viscous nozzle contour plot at 1.1 ms, Figure 31, also shows improved

agreement with the shadowgraphs. In addition to the separation of the flow along the lower

wall, a region of separation and reverse flow appears in the comer as the flow tries to

negotiate the 450 expansion. These regions of separation and reverse flow can be more
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clearly seen in the velocity vectors plot, Figure 32. Figure 33 presents the contour data that

results at 1.1 ms when a "LV and TUR Bor implementation of the turbulence model is used

for the 450 nozzle. Similar to the 160 nozzle, the contours near the lower wall are a little more

smeared. Figure 34 presents the contour data that results at 1.1 ms when a "LV and TUR

Top" implementation of the turbulence model is used. Again, similar to the 160 nozzle results,

the contours near the no-slip boundary become smeared.

With laminar viscous terms or turbulence on, the static overpressure comparisons at the

upper wall, Figure 35, are still similar to the inviscid solution. The inviscid solution appears to
provide the best comparison to the experimental data recorded at the upper wall. However,

recall that the inviscid solution provides the worst comparison of computational density contour

data to shadowgraphs. The comparisons of static overpressure histories at the lower wall,

Figure 36, show that the "LV and TUR Bot" static overpressure versus time history is

significantly different from the "LV and TUR Top" case, the laminar viscous case, and the

inviscid solution. At the mid-tube location, Figure 37, the "LV and TUR Bot" solution is

reasonably similar to the inviscid solution, and the laminar viscous solution and "LV and TUR

Top" solutions are reasonably similar. Recall that the 160 nozzle mid-tube comparisons were

practically identical for all four cases. Thus, the 450 nozzle results show that computationally

adding viscous effects alters the recompression shock system such that significantly different

pressure versus time histories can result between the inviscid, laminar viscous, and turbulent

solutions.

Comparison of the upper and lower wall dynamic pressure histories, Figures 38 and 39,

again confirms the correct numerical implementation of the boundary conditions, similar to the

160 nozzle discussion. At the mid-tube location, Figure 40, the "LV and TUR Bot" case and

the inviscid solutions are similar but different from the laminar viscous and "LV and TUR Top"

solutions. Again, it can be concluded that significantly different results are obtained for the

450 nozzle case depending on how viscous effects are included and at what radial location the

flow is sampled.

Finally, Figure 41 presents in one figure the 160 nozzle density contour plots for the

inviscid, laminar viscous, and turbulent solutions. Figure 42 presents the velocity vector plots
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for the four computational cases. Figures 43 and 44 present similar results for the 450 nozzle.

These plots help to further visualize the differences between the inviscid, laminar viscous, and

turbulent solutions previously described. Of particular note is the regions of separation in the

viscous solutions which are not present in the inviscid solutions. Also the slip and no-slip

boundaries are clearly evident in the velocity vectors plot.

6. CONCLUSIONS

A 2-D computational study of the flow patterns that develop in unsteady, overexpanded

divergent nozzles with comparison to experimental data was performed and analyzed for two

nozzle angles (160 and 450). Experimental shadowgraphs indicated viscous effects were

present. Therefore, the addition of thin layer laminar viscous terms was investigated as well

as using the Baldwin-Lomax turbulence model in the computational simulations.

The thin-shear layer approximation improved the comparison of density contour data to

shadowgraph pictures over the inviscid computations for both nozzle configurations. The

laminar viscous computations produced regions of separation in the corner of the diverging

nozzles and along the lower boundary which were qualitatively in good agreement with the

shadowgraphs. Turning on the turbulence model relative to one wall or the other had the

effect of smearing the contours.

The laminar viscous solution for the 160 nozzle did not significantly alter the inviscid static

overpressure solutions. The effect of turning on the turbulence model relative to the lower

wall was to alter the static overpressure near the lower wall for the 160 nozzle to a slightly

more decaying waveshape. This effect was not noticeable at the mid-tube or upper wall

locations, even when the turbulence model was turned on relative to the upper wall. Thus, it

was concuded that the turbulence model did not significantly affect the flow for the 160 nozzle

configuration.

For the 450 nozzle, the effect of including the laminar viscous terms or the turbulence

model relative to the upper or lower wall was to produce significantly different waveshapes

from the inviscid solution particularly at the mid-tube and lower wall locations. The
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experimental static overpressure versus time histories recorded at the upper wall of the 160

and 450 nozzle configurations were simulated equally well by the inviscid, laminar viscous,

and turbulent solutions at the upper wall. However, the computational addition of viscous

effects were very important for good comparisons of shadowgraphs and computational contour

plots. Moreover, it is concluded from the comparison of shadowgraphs and contour data that

the flow physics in the diverging nozzles was best captured by the laminar viscous

computations.

The BLAST2D code can be used as a design tool and as a complement to the

experimental database that will be obtained with the LB/TS facility. In order to improve the

computational modeling of viscous effects in the code, it is recommended that future

experimental work provide flowfield conditions at various radial locations and the same

x location. Thus, verification or improvement of computational predictions of radial complexity

in the flow can be further explored. Future computational work of interest is the coding of

various turbulence models in addition to the Baldwin-Lomax algebraic turbulence model used

here to determine which is the most suited to diverging nozzle flow.
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Figure 20b. Inviscid Dynamic Pressure versus Time - Forty-Five Degree Nozzle.

Figure 20b. Inviscid Dynamic Pressure vs. Time-450 Nozzle.
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Figure 25. Comparison of Inviscid. Laminar Viscous, and Turbulent Static Overpressure vs.

Time, 1 60 Nozzle, Upper Wall.
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Figure 26. Comparison of Inviscid. Laminar viscous, and Turbulent Static Overpressure vs.
Time. 160 Nozzle, Lower Wall.
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Figure 27. Comparison of Inviscid. Laminar Viscous, and Turbulent Static Overpressure vs.

Time. 160 Nozzle, Mid-tube.
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Figure 28. Comparison of Inviscid. Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time. 160 Nozzle. Upper Wall.
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Figure 29. Comparison of Inviscid. Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time. 160 Nozzle, Lower Wall.
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Figure 30. Comparison of Inviscid. Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time, 160 Nozzle, Mid-tube.
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Figure 35. Comparison of InviSCid. Laminar Viscous, and Turbulent Static Overpressure vs.

Time. 450 Nozzle, Upper Wall.
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Figure 36. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Ovemressure vs.

Time, 450 Nozzle, Lower Wall.

74



N45/080-STAl1
Mid-Tube

700-

Inviscid

600 -- Lamninar Viscous
-- LV and TUR Bot

~o 500--- LV and TUR Top
E7

cn
30-

> 200-
0

-6 100-

0-

-100

0 250 500 750 1000 1250 1500

Time (microseconds)

Figure 37. Comparison of Inviscid. Laminar Viscous, and Turbulent Static Overpressure vs.

Time. 450 Nozzle, Mid-tube.

75



N45/080-STAl

Upper Wall

1900 -

nviscid
1700- 

- - rninar Viscous

-. 1500 - LV and TUR Bot
O---- LV and TUR Top

E~ 1300-

a) 1100-

a) - - - - -

() 700-, 7

S300- 1-

100-

0 250 500 750 1000 1250 1500

Time (microseconds)

Figure 38. Comparison of Inviscid. Laminar Viscous, and Turbulent Dynamic Pressure vs.
Time. 450 Nozzle, Upper Wall.
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Figure 39. Comparison of Inviscid. Laminar Viscous, and Turbulent Dynamic Pressure vs.
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Figure 40. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time, 450 Nozzle, Mid-tube.
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LIST OF SYMBOLS

A, B - inviscid flux Jacobian matrices

c - speed of sound

cp - specific heat at constant pressure

cv  specific heat at constant volume

e - total energy per unit volume

E, F - inviscid flux vectors

FMx - maximum of function F(y)

G - second order tensor of inviscid and viscous flux

h - total enthalpy per unit mass

i, j, k - unit vectors in Cartesian space

J - coordinate transformation Jacobian

k - coefficient of thermal conductivity

m 1, m2 - constants

M - viscous flux Jacobian or Mach number

p - static pressure

Pr - Prandtl number, .72

Pr - turbulent Prandtl number, .9

q,, qy - heat transfer gradients

q - heat transfer vector

0 - vector of dependent variables

R - right eigenvector matrix or specific gas constant

R1 - left eigenvector matrix

Re - Reynolds number

S - viscous flux vector or elemental surface area

t -time

T - absolute temperature

U, V - Cartesian velocity components

u, friction velocity, 'r/p.

U, V - contravariant velocities
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LIST OF SYMBOLS (Con't)

V - cell volume

x, y - Cartesian physical space coordinates

y - law-of-the-wall coordinate, p,,uy/p,,

YM x - value of y at which F(y) is maximum

P - compression parameter

51 - measure of numerical dissipation for first-order upwind scheme

7 - ratio of specific heats - constant of 1.4
e - internal energy per unit mass

- bulk coefficient of viscosity
- second coefficient of viscosity

A - diagonal matrix of eigenvalues
!9 - first coefficient or molecular coefficient of viscosity
1. - eddy viscosity coefficient

, 1j - curvilinear space coordinates
p - density

Ic - computational time

Ti .j - viscous stress tensor

a - measure of change in flux

0 - vorticity

Subscripts

i, j - , Tj direction indices

x, y - partial with respect to Cartesian coordinate

T, 1 - partial with respect to curvilinear coordinate
ref - reference quantity, taken to be ambient condition

Superscripts

n - time level

p - subiteration level

Roe - Roe-averaged quantity
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LIST OF SYMBOLS (Con't)

Superscripts

- dimensional quantity

+ or R - positive eigenvalues or right-running waves

- or L - negative eigenvalues or left-running waves

- denotes cell-averaged quantity
A - denotes numerical flux consistent with physical flux

- denotes intermediate value

1st - denotes first-order flux

2nd - denotes second-order flux
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