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1. INTRODUCTION

1.1 Background. The U.S. Army is conducting research into the design and operation of
a Large Blast/Thermal Simulator (LB/TS), essentially a large multi-driver shock tube with
thermal capabilities, Figure 1. The goal of the LB/TS is to be a controllable experimental
facility that will allow the Army to more efficiently test tactical equipment for nuclear hardness.
The LB/TS will accomplish this goal by subjecting full-scale Army equipment to the same
static pressure loading, dynamic pressure loading, and thermal pulse as the equipment would
experience in the event of a nuclear explosion. The LB/TS is designed to produce varying
duration decaying waveshapes over a range of primary shock overpressures.

Early LB/TS designs utilized convergent-divergent nozzles to retard the outflow of the
high-pressure driver gas, thus generating long duration waveforms. Convergent-divergent
nozzies have been investigated by many authors and an excellent review of efforts predating
1968 have been presented by Amann (1968). The efforts of previous investigators as
reported by Amann can be split into two groups. In one group, the unstationary starting
procedure within the jet is analyzed whereas, the other group concentrates on the newly
formed quasi-stationary conditions downstream of the diverging nozzle exit and beginning
after its start-up. A more recent effort, which uses computational fluid dynamics (CFD)
techniques, to investigate the start-up process of a shock tunnel as well as the
quasi-stationary conditions downstream of an M = 6 designed nozzle is presented by
Byun et al. (1990). In this paper, the flow start-up time required to get quasi-steady flow
around a circular cylinder downstream of the nozzle exit is computationally determined to be
9.5 milliseconds.

From an LB/TS standpoint, the unstationary starting procedure in the jet flow is of interest
as well as the flow after the start-up of the jet. However, the LB/TS is designed (through the
different volumes and lengths of the multiple drivers among other wave-shaping techniques)
so that the flow after the start-up of the jet produces unsteady, gradually decaying waveforms
at test stations of interest. See Figure 2 for an example of a typical static and dynamic
pressure blast waveform obtained from an existing blast simulator in France. The static
pressure was recorded from a probe located in the shock tube wall and seven diameters




downstream from the beginning of the driven section. A stagnation probe was located at the
same x location, but, approximately one quarter diameter off the shock tube wall.

The advantage of diverging nozzles in an LB/TS is to reduce the pressure losses
associated with the large area discontinuity at the exit of the nozzle throat (shown in Figure 1).
The disadvantages are a pressure spike that appears at the front of the blast wave which
becomes larger as the diverging nozzle cone angle is made smaller and the additional thrust
formed by the driver/nozzle combination on the reaction pier. Added to these concerns is the
question of the effect of the diverging nozzles on the desired smoothly decaying static and
dynamic pressure blast loading waveforms. Diverging nozzles after the throat sections are not
shown in the design of Figure 1, but are still under consideration for the proposed LB/TS
facility.

The complex three-dimensional (3-D) geometry of the proposed LB/TS would require
hundreds of hours of Cray cpu time for computer simulations. From an engineering design
standpoint, this is unacceptable. A computationally efficient tool is needed to perform design
parametric studies and obtain gross flow properties for the LB/TS at a reasonable cost. A
significant influence on the gas dynamics which result in the LB/TS shock tube (ignoring for
this study the thermal simulation) is due to the area ratios present in the geometry. Therefore,
one technique to simplify the 3-D problem is to keep the same length scales along the axis of
the shock tube, but compute a two-dimensional (2-D) axisymmetric or quasi-one-dimensional
(1-D) approximation to the 3-D geometry as follows:

D. =‘/47°,, (1)

2
n

A=A, 2
where A, is the 3-D cross-sectional area, D, is the 2-D axisymmetric diameter, and A, is the
1-D area necessary to maintain equivalent area ratios. The cross-sectional areas of the
multiple varying length drivers, converging nozzles, and throat sections are lumped into one
driver for the 2-D and 1-D geometries.

As shown in Figure 3, 1/57 scale 2-D axisymmetric shock tubes have been built as
experimental tools for LB/TS design studies. These lumped area approximations to the 3-D
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facility have been built with and without diverging nozzles to study the resultant flow
characteristics. Another difference between the tubes that is evident in Figures 3b and 3c,
but is not relevant to this study, is that the stepped driver was replaced with a single diameter
driver to facilitate volume versus flow duration studies. These 2-D axisymmetric shock tubes
were computationally modeled with 1-D and 2-D computer algorithms for comparison to the
experimental results and to gain insight into the flow physics present in divergent flows. The
next sections comment on the significant flow physics that are captured by each added
dimension of geometry as well as the results of previous computational modeling efforts.

The flow patterns encountered in the quasi-one-dimensional simulations for low shock
overpressures (< 28 kPa) are similar to the flow patterns which develop in a straight shock
tube, as shown in Figures 4a and 4b (Pearson, Opalka, and Hisley 1985). After diaphragm
burst, the flow consists of a primary shock moving to the right of the diaphragm into the
diverging nozzle and driven section which is open to ambient air at its end. The primary
shock is followed by a contact surface which separates the gas processed by the shock from
the gas initially in the driver. A rarefaction wave travels to the left of the diaphragm which
accelerates and cools the driver gas. The flow is subsonic everywhere in the simulator with
an expansion of the flow (velocity increase, pressure decrease) in the convergent nozzle and
a compression (velocity decrease, pressure increase) in the divergent nozzle. For subsonic
flow through the convergent-divergent nozzle, the flow is always isentropic. Also shown in
Figures 4a and 4b are typical pressure versus distance histories, at early time after diaphragm
burst, for a straight shock tube, and for the quasi-one-dimensional Q1D LB/TS.

As the shock overpressure is increased to the 28 to 70 kPa regime, the flow becomes
choked in the throat and expands supersonically in the divergent nozzle to very low static
pressure. Because the flow behind the primary shock is subsonic and at a higher static
pressure, a recompression shock must form to match the two flow states, Figure 4c.
Typically, the recompression shock stands somewhere in the divergent nozzle. For the
highest shock overpressures of interest, above 70 kPa, the recompression shock may be
swept out of the nozzle and into the driven section.

In addition to the nozzle flow, the rarefaction wave generated at diaphragm burst reflects
from the closed end of the drivers. The rarefaction then moves forward, is partially
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transmitted and partially reflected by the converging nozzle. The transmitted rarefaction
eventually overtakes the shock and decreases the pressure. The reflected rarefaction moves
back into the driver and reflects again from the closed end of the driver. Thus, a series of
rarefactions overtake the shock, which effectively empties the shock tube to ambient
conditions while producing pressure versus time histories that gradually decay to ambient and
are reasonable simulations of blast waveforms.

Up to this point, the LB/TS flow patterns have been described by means of a 1-D analysis.
However, the flow that develops in the diverging nozzle at shock overpressures above 28 kPa
are better represented by a 2-D analysis. From experimental shadowgraphs and
computations (Amann 1982; Hisley and Molvik 1986), it is readily discovered that the
recompression shock that develops in a divergent flow area is not planar, as a 1-D analysis
indicates, but consists of a system of oblique and normal shocks as shown in Figure 5.
Finally, the mixing of the flows from the separate drivers in the LB/TS can only be fully
captured by a 3-D calculation.

However, as stated earlier, 3-D calculations are not practical from a cost-effective
engineering standpoint, therefore, the initial analysis work for the LB/TS has been done with
experiments performed in single-driver, 1/57 scale, 2-D axisymmetric shock tubes and with the
Ballistic Research Laboratory Quasi-One-Dimensional (BRL-Q1D) Code (Coulter 1987a,
1987b; Opalka and Mark 1986). A comparison of the experimental results and the results of
the BRL-Q1D code showed that the code modeled low shock pressure cases with reasonable
accuracy, but, as expected from the previous discussion, was less accurate at higher shock
overpressures. The deviations were attributed to the strong influence of 2-D effects caused
by the large and rapid area expansion downstream of the throat section, typical of the LB/TS
geometry.

A 2-D axisymmetric inviscid code, BLAST2D, was developed to better simulate the flow in
the small-scale LB/TS axisymmetric shock tubes. The code was originally written by this
author in 1985 during a six month stay at NASA Ames Research Center. During this time
period, Dr. Man Mohan Rai was an excellent mentor who provided explanations of many
state-of-the-art computational fluid dynamics (CFD) concepts, such as the incorporation of
Riemann problems and the use of Total Variation Diminishing (TVD) concepts into solution
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algorithms. In subsequent years, a joint effort was maintained between BRL and NASA Ames
to further develop the code. Significant contributions were the addition and validation of a
laminar viscous subroutine and the addition of the Baldwin-Lomax turbulence model by
Gregory A. Molvik (1987) and an extension and validation of the code to three dimensions
(BLAST3D) by Christoper A. Atwood (to be published).

A recent validation of the inviscid BLAST2D algorithm was published by Hisley (1990a).
Computations were performed for the reflection of planar shocks from wedge surfaces. An
extensive amount of experimental, theoretical, and computational data has been published
(Glaz et al. 1986; Shirouzu and Glass 1984; Deschambault and Glass 1983; Lock and Dewey
1989) for the reflection of planar shocks from various inclined rigid surfaces. The wealth of
qualitative and quantitative data available makes the simulation of these problems a good
choice for computer code verification and comparison. The BLAST2D code was shown in this
report to produce accurate results which compared well to theory, experimental data, and
computational results from an established code, the SHARC code (Hikida, Bell, and Needham
1988). Other authors who have developed codes and published results in the past for the
simulation of blast wave/target interaction problems (external flow problems) are noted in Mark
and Kutler (1983), Bennet, Abbett, and Wolf (198€), and Yee (1987).

In a previous report (Hisley and Molvik 1986), BLAST2D results were presented for the
shock tube configuration in Figure 3a. Computational/experimental comparisons of static
pressure were improved over Q1D predictions for this configuration, however, dynamic
pressure comparisons were still poor. Figure 6 presents typical computational pressure and
density contour plots. Figure 7 presents typical static pressure and dynamic pressure
comparisons from this reference. The static pressure was recorded from a probe located in
the shock tube wall and seven diameters downstream from the beginning of the driven
section. A stagnation probe was located at the same x location, but, approximately
one quarter diameter off the shock tube wall.

Another report (Hisley 1986b) furthered the investigation for LB/TS geometries shown in
Figures 3b and 3c. Typical static and stagnation overpressure plots from this reference are
shown in Figure 8. Temperature, pressure, and numerical accuracy variations were performed
and analyzed to see if new insight about the physics of the flow and reasons for
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computational/experimental discrepancies could be obtained. The significant conclusion of
this report was to confirm that overexpanded diverging nozzles, particularly as the expansion
angle increased, were not properly modeled by an inviscid code and that physical dissipation
was present experimentally that was not being modeled numerically. As a result of these
findings, it was concluded that better understanding of the flow development in divergent flows
was required.

Experiments were next performed in overexpanded 2-D planar nozzles, Figure 9, to obtain
shadowgraphs of divergent flows as well as pressure versus time histories (Reichenbach and
Opalka 1990). The area ratios of the planar convergent-divergent nozzles were on the order
of the area ratios considered for the LB/TS. The experiments were performed in planar
nozzles instead of axisymmetric in order to facilitate the taking of shadowgraph pictures.

1.2 Objectives. Using the BLAST2D code, a systematic study of the unsteady,
overexpanded 2-D planar nozzle experiments is performed; first, with an inviscid algorithm and
then again with thin-layer laminar viscous terms added and finally with the addition of the
Baldwin-Lomax turbulence model. The objective of this report is to obtain better insight into
the flow processes that develop in diverging nozzles and how to computationally simulate that
flow. As stated earlier, previous efforts by this author for 2-D axisymmetric
converging-diverging nozzle configurations only involved inviscid computations. Therefore,
this report will go beyond previous work by performing not only inviscid computations, but
laminar viscous and turbulent computations as well. Furthermore, an assessment of the effect
of including the viscous terms will be made with emphasis on the changes that occur in static
pressure versus time, dynamic pressure versus time, and contour plots. Particular emphasis
will be placed on how well the computational simulations compare to the experimental data. It
is important for the computations to compare well to the experimental data so that the
BLAST2D code can be used with confidence in the future as a complement to the
experimental database that will be obtained with the LB/TS facility.

2. GOVERNING EQUATIONS

This section introduces the Navier-Stokes equations in 2-D Cartesian coordinates and
integral form. Subsequently, the governing equations are nondimensionalized, transformed to
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body-conformal coordinates, and the thin-layer viscous stress assumption is applied. Finally,
the governing equations are presented in discrete form for a generalized control volume.

2.1 Navier-Stokes Equations. The governing equations are the 2-D compressibie

Navier-Stokes equations, written in integral form,

thJ;Od'V+J;n-GdS=O 3)

where Vis the cell volume, ndS is the projection of surface area with outward normal n, Q is
the vector of conserved variables per unit volume,

(p\

a-|" @

pv

\ € )

and G is a second order tensor of the inviscid and viscous flux of Q expanded in terms
of vectors E and F below:

pu pv
pu2 +p+ Tax puv + T)”

E= puv + 1,  F= P+ p+ 1, (5)
(€ +P) + TuU + TV + G, (€+P)V+1T,u+1Vv+q,

This set of four integral equations represents the conservation of mass, momentum in
x (longitudinal) and y directions (height), and energy per unit volume. The density is p, the
pressure is p, the velocities in the x and y directions are u and v, respectively. The total
energy per unit volume is e, where

=_P 2, 2
e D) 12p (U% + v?) (6)

The total energy per unit volume is related to the internal energy per unit mass, ¢, by
e=pe+p (F+ V)/2. An equation of state p = p(p, ¢€) is required to complete the system of
equations. A perfect gas equation of state p = p AT is used in this study with the assumption
that intermolecular forces are negligible. A real gas equation of state is required when
intermolecular forces are important, that is, for very high pressures, p on the order of



1,000 atm, and/or low temperatures, T on the order of 30 K (Anderson 1989). Also, a
calorically perfect gas is assumed which implies constant specific heats, that is, negligible
electronic and vibrational molecular modes. Thus, e=¢, T, h=¢, T, and y = 1.4 apply.

The viscous stress terms are defined below with the assumption that Stokes’ hypothesis
can be used to define the relationship between the first, second, and bulk viscosity
coefficients. Thus, the bulk coefficient { is zero, and the first and second coefficients are
related through A = -2/3 p. Stokes’ hypothesis is strictly valid only for monatomic gases, but is
frequently used when the relative effects of the shearing stress are much larger than the
dilational stress effects (Jones 1989). The viscous stress terms are

ou 2 (du odv
= 20— + Zp[— + —
T Hox * 3"(ax * ay]
oy OV . 2 (0u  ov (7)
= 20— + Syl — + —
K 3”(ax ' ay]

_ _fou . av
'txy— u(_a7+$]

Fourier's law for heat transfer by conduction defines g, and g,

C
q=-(g,+q) = -kaT= -7, T) (8)

The Prandtl number, which relates the diffusion of momentum to the diffusion of heat, is
constant at .72 for air. Finally, the thermal conductivity and the viscosity are related through
the use of Sutherland’'s formula

o T Tml + 110K 9)
B | T T + 110K
where Sutherland’s formula is valid in the range of temperature from 100 K to 1,888 K.

2.2 Nondimensionalization. To this point, the variables and equations have been

presented in dimensional form. If a change of notation is made such that dimensional
quantities are now denoted by a ~, then the variables can be nondimensionalized as follows:




x a p

X = Uy = — p = _
L ¢, [

y=Y vV o-_6 (10)
L [ 5,8
- r -

T
Py L H

The reference length L is equal to 1 m, the reference speed of sound is & = _g‘_ , and the
NP,

superscript 1 represents the ambient conditions initially present in the driven section. The
Reynolds number is defined as

™

_ b

Re = ——
M,

(11)

With this nondimensionalization and change of notation, the equations look identical to

those already presented except a factor of T;'e' multiplies the viscous stress and heat transfer

terms. Also, the nondimensional Fourier's law for heat transfer and Sutherland's formula
become respectively,

- - =M™ (T .+ 12
q=-q,+gq,) (7_1)Pr(,+ y) (12)
"= 32 1 + 110K'T,

2.3 Transformation to Computational Space. The physical, independent variables (x, y, f)
are transformed into a body-conformal, curvilinear grid ( &, n, 1) by a general transformation of
the form

1T=1
§ = §(x. Y)
n = n(x, y) (14)

Note that £ and n are not functions of t; thus, this transformation only holds for grids that are
constant with respect to time.




In order to satisfy boundary conditions on arbitrarily shaped boundaries, it is convenient to
make this transformation. Thus, a variety of geometries can be treated with the same coding.
The lower and upper walls of the shock tube lie along the constant 1 lines of 1 and jmax,
respectively, where jmax is the total number of grid points in the y direction. The right and left
walls of the shock tube lie along the constant & lines of 1 and imax, respectively, where imax
is the total number of grid points in the x direction. The indices i and j correspond to the &
and n directions, respectively, in the computational mesh. The cell center of an elemental
volume in the grid is denoted by (i, j), the right and left cell walls are located at (i + 1/2, j) and
(i - 12, j). The top and bottom cell walls are located at (i, j + 1/2) and (i, j - 1/2). Application
of the chain rule of differentiation yields

9.9

Jt ot

0 - d d (15)
X" Ny

d ] .y 0

oo *3x "9y

The inverse transformation is

9.9

ot ot

J _ 0 d

Ix éxb—g + nxm (16)
d ., 9 d

" E

The metrics §,, £, n,, n,, can be solved for in terms of the inverse metrics x;, y;, X, ¥,
with the result,

E.- n, = —ng
€, = -x,‘J n, = xJ
J = Oy - oK) -

(17)
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The Jacobian of the coordinate transformation, J, is equivalent to the inverse of the cell

volume, ¥,

Application of the chain rule with these metrics to Eq. 3 transforms the governing
equations to computational space. For a 2-D cell, the integration of flux over the surface in
Eq. 3 is replaced by an integral over each face of the cell. Thus, the integral form of the
transformed nondimensionalized thin-layer Navier-Stokes equations for a 2-D generalized cell
volume becomes,

d <12 + 12
2f,00vs [ " (E .- E o+ [ 2R, - FLi) 0 o
1 + 172

= -ﬁe- e (Sjua - S/-1/2)d§

where, in terms of the inverse metrics,

P pU pV
Uu + yp pVu -y,
=P =P EL P (19)
pv pUv - xp pW + xp
e (e + p)U (e + p)V

The viscous stress terms have been grouped together and placed on the right-hand side
as vector Siin Eq. 18. The viscous stress terms have been nondimensionalized, transformed
to computational space, and a thin, shear layer approximation has been assumed. The
thin-layer viscous stress assumption neglects diffusion parallel to the surface of the shock
tube. Thus, all d(+)/9E stress terms are neglected. In contrast to boundary layer theory, the
full, normal momentum equation is retained and no assumptions are made about the normal
pressure. After algebraic manipulation, the vector S has the form (Molvik 1987)

0 )

wmu, - ‘g'mz)'§

P (pmyy, + %mzxg

m v
%(uz + V"’)n + %Vu? + ._L.mJ
\

1




The contravariant velocities U and V, written in terms of the inverse metrics and the constants
m, and m, are, respectively,

U=yu-xv V=yu+xv (21)
m o=y m,= -y + XV, (22)

If an average flux is defined on the cell faces and Af and An are set to unity, the
integral form of the Navier-Stokes equations can be rewritten in discrete form as

~n e ~n

O o A L] A Fm
'VI-ILAT—-—L-/ * (E/”.’ w2, j " Ei”:m,/) + (F/.m/n/z - Fi,j-1/2) (23)

1 m
= R—e(élfn/u/z - sl./-uz)

The vectors £ and F are the convective numerical fluxes, to be defined later, in
computational space (1, &, n) consistent with the transformed physical fluxes E and Fin
(z, £, ). The vector Q consists of the cell-averaged dependent variables. The integration

scheme is fully implicit if m = n + 1 and is explicit if m = n. The vector Q evaluated at time

level n represents known or initial conditions in Eq. 23. Thus, once the numerical fluxes in

Eq. 23 are evaluated, Q at time level n + 1 can be solved for. The next section presents

mathematical details of the techniques used to discretize and evaluate the fluxes presented in
Eq. 22.

3. NUMERICAL ALGORITHM

3.1 Introduction. Discretization of the governing equations into an upwind, TVD,
finite-volume, implicit scheme produces an algorithm that is well suited for blast wave
calculations, because, upwind flux difference splitting with TVD achieves second-order
accuracy without introducing spurious oscillations near discontinuities. Strong gradients and
complex flow fields are resolved accurately. TVD schemes are often referred to as a modern
shock-capturing method due to the fact that the numerical dissipation terms are nonlinear, that
is, the amount of dissipation is controlied by automatic feedback mechanisms that can vary
from one grid point to another. Also, the dissipation is scaled to the underlying eigensystem
of the hyperbolic Euler equations. In classical shock-capturing methods, as reported by
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Yee (1987), the numerical dissipation terms are either linear such that the same amount of
numerical dissipation is added at all grid points or the numerical dissipation is controlled by
parameters that must be optimized. Classical shock-capturing methods typically resuit in
oscillatory solutions at strong discontinuities.

The advantages of classical techniques are programming simplicity and adequate
resolution for weak gradient problems. However, for the complex flow fields and strong
gradients typical of blast problems, upwind differencing with TVD provides better resolution.
The disadvantage of upwind differencing with TVD are longer computing times caused by an
increase in the number of arithmetic operations per integration step and loss of programming
simplicity. The results shown in this paper were generated on a Cray XMP/48 and typically
took one hour of cpu time for the inviscid case, to five hours of cpu time for the viscous case.

Conservative schemes capture shocks and other discontinuities automatically. The finite
volume philosophy ensures conservation at interior points. The scheme is made implicit by
linearizing only the first-order contribution and by employing a Newton iteration of the type
described by Rai (1984) to reduce the linearization and factorization errors. The implicit
version of the scheme requires more computations per integration step than the explicit
version, but permits larger time steps which, for stiff problems, reduces computational
expense.

The next section presents the first-order accurate upwind scheme which is the foundation
of the computational algorithm. Subsequently, the first-order scheme is expanded to second-
order accuracy with the addition of second-order terms and TVD concepts. Development of
the implicit version of the algorithm and the Newton iterative procedure used is presented.
Next, boundary conditions are discussed. Finally, the turbulence modeling is described.

3.2 First-Order Scheme.

3.2.1 Upwind Flux Difference Splitting and the Riemann Problem. An understanding of
upwind flux difference splitting begins with an examination of the mathematical nature of the
unsteady Euler equations. Steger and Warming (1981) report that if the equation of state
used to close the Euler equations has the functional form p = p f (¢), then the nonlinear flux
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vectors E (Q) and F (Q) are homogeneous functions of degree one in Q, that is
E (o Q) = a E (Q) for any value o and similarly f~- F. Thus, the flux vectors can be shown to
be equivalent to

E = AQ (24)
F = BQ (25)
3E oF

where A and B are the Jacobian matrices 30 30" respectively. For the hyperbolic Euler

equations, A and B have a complete set of linearly independent eigenvectors such that a

similarity transformation exists. This similarity transformation for the § direction fiux is,
A=RAR' (26)

where R is the right eigenvector matrix, R is the left eigenvector matrix and A represents the
diagonalized eigenvalue matrix,

1/c i/c 1/c 1/¢c
u_s u_sg v,y v,
s c c c c
AR=2| v_g v, s v_ g v, & (27)
v _ d - - -+ S
2 C y C+, z y c+y
& _g.c L.v L v .0, °
\ 2¢ X 2c 2c 2c X
&, Xy- g Xy, X
2c c c c
2 .
X9 _y.c Xu-g Xy, X
» 2c c c c
A= (28)
—£+V+C lu+§y _x_v-éx X
2c c c c
xXa Xysg Xy, X
\ 2c c c c
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A=diag[U— x§+y§c,U,U,U+,/x§+y§é] (29)

where
§ = Wl\% + ¥
S, = “xn/V)é + y:
U = u$ + v$,
V = V5 - us,
q2 = U+ VP
x = v-1

The eigenvalue matrix can he split according to the sign of the eigenvalues (characteristic
speeds), thus A = A* + A". The superscript + denotes positive eigenvalues, or from
characteristic theory, right-running waves and the superscript - denotes negative eigenvalues
or left-running waves. Also, the Jacobian matrix A can be split,

A=A+ A (30}
where
A= RA*R? A = RA R

Similarly, B* and B can be constructed by replacing x, with -x,, and y, with -y,. From a
purely mathematical analysis of the Euler equations, a more physical picture of right and left
moving waves emerges which in turn suggests the use of the Riemann problem to determine
the constant states separated by the wave families.

Riemann problems are the building blocks upon which the upwind flux differencing is
performed. Therefore, it is appropriate to interject at this point exactly what the Riemann
problem is and how it is incorporated into the numerical solution procedure. Consider the
dependent variables at cell centers for all the cells in the grid, as pairs of states defining a
sequence of 1-D Riemann problems. The Riemann problem for the § direction Figure 10, is:
Given two states (p1, u1, p7) and (p4, u4, p4) determine the combination of shocks, contact
discontinuities, and expansions which result in these end states, that is, determine (p2, u2, p2)
and (p3, u3, p3). For the Riemann problem in the n direction, substitute v for u.
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To obtain an exact solution of states 2 and 3, Riemann solvers require an iterative
procedure which is computationally expensive when performed for a large number of cells and
time steps. The expense of producing an exact solution to the Riemann problem is justified
only if the information made available could be put to some sophisticated use. The
approximate Riemann solvers are considerably less expensive because the Riemann problem
is soived with a direct non-iterative method which is about as time consuming as one cycle of
the iterative procedures. Comparisons of the solutions from the exact vs. approximate
Riemann solvers reveal slight differences. Other approximate Riemann solvers could have
been used, but Roe’s method is the approach recommended by Chakravarthy (1985) when
computational efficiency is important.

From either an exact or approximate solution to the Riemann problem, the change in flux
across the right running and left running wave families can be determined, respectively.
Upwinding requires that the change in flux or flux difference across right running wave families
(positive eigenvalues) be used in the derivative evaluations of fluxes into neighboring fluid
cells to the right of the Riemann solution and that the flux difference across left running wave
families (negative eigenvalues) be used in the derivative evaluations of fluxes into neighboring
fluid cells to the left. In this way a method of characteristic-like flavor is brought into the
numerical algorithm and the concept of upwind flux difference splitting is illustrated.

The flux change associated with the waves traveling in the positive £ direction is given the
symbol A E* and that in the negative direction is represented by A £~. The flux remaining at
the interface for all time associated with this Riemann problem must then be represented by
either of the following equations:

E ,..o=E +AE (31)

Y

EIO1I2=E'¢1 —AE;¢1/2 (32)

i

or, by averaging the two equations, the final form of the numerical fiux becomes,
E.io=12(E+ E. , +AE. p - A}, p) (33)

The flux difference across the positive and negative velocity waves can be calculated:
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AE!, o = 12(R,, oA + |A]),. R e) (G, - Q) = A(Q,., - Q) (34)

AE ., 1p = 12(R,. A - |A]),. Rt ) (Q., - Q) = A(Q., - Q) (35)

However, the dependent variables are not defined at the cell interfaces where these matrices
must be evaluated.

3.2.2 Roe's Approximate Riemann Solver. Roe (1981) has developed a special averaging
process to calculate the dependent variables on the cell interface and satisfy the following
relations:

1) [A]f","',,2 constitutes a linear mapping from the vector space Q to the vector space E.

(2) [Alf*—A, . ,, = 9E/3Q.

@) E., - £=[A(Q., - Q) = [A" + AT0(Q, - Q)
(4) The eigenvectors of [A]f'i";,2 are linearly independent.

By satisfying the relations above, called Property U (intent of Property U is to insure uniform
validity across discontinuities) by Roe, the shock capturing capabilities of the algorithm are
retained and correct wave speeds are assured.

The superscript °*° denotes Roe-averaged dependent variables at the cell interfaces which
are defined as follows:

_UIJEI_+UI01JEM—1 v - VI\/;"'VI~1JF_)I‘—:

ul01l2 =

‘/‘?+\/p,T 1+ 1722 ‘/;+‘/p’T
h, v = hl‘/57—+ h/.1\/;/—:—1_
Crove = (B - 1200 1z + Vora)) (y - D)} (36)
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where the total enthalpy per unit mass is
h = (e + p)ip (37)

The first-order flux £ on the j + 1/2 interface can be obtained in a similar manner by replacing

X, with -x;, y, with -y, and j with j.

3.2.3 Entropy Fix. Chakravarthy and Osher (1985) report that an entropy fix is required
with Roe’s scheme. In Roe’s approximate Riemann solver, weak solutions (solutions with
shocks and contact discontinuities) are not uniquely determined by their initial values. An
entropy condition is required to determine the physically relevant solutions. The purpose of
the entropy fix is to remove expansion shocks and glitches from occurring at sonic
rarefactions, such as shown in Figure 11 (Chakravarthy and Osher 1985). Various authors
have presented their preferred versions of an entropy fix, however, the version used here is
attributed to Harten as reported by Yee (1987). A slight modification of the absolute value of
the eigenvalue matrix is performed,

- |A| IAl “8120

Al =
4] (A% + 8%)/25, [A] -8, <0 (38)
8 = e(|U] + &2 + &)

and is substituted for |A] in EQ. 34 and 35. In this study, € is a constant which is set equal to
.10. When §, = 0, the scheme is the least dissipative; the larger the 3, , the more dissipative
the scheme becomes.

3.3 Second-Order Scheme.

3.3.1 Inviscid Flux. A second-order inviscid flux can be produced by adding a correction
term to the first-order flux. However, the second-order correction term causes oscillations in
regions of high gradient, for example, in the region of shocks. In order to avoid these
instabilities, the correction term must fulfill the criteria for the algorithm to be TVD. TVD
schemes achieve second-order accuracy without introducing spurious oscillations near
discontinuities by employing a feedback mechanism—"smart numerical dissipation"—wherein
fluxes are compared at neighboring control volumes. In regions of little change, no numerical
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dissipation is added to the second-order correction terms, while in regions of large change,
numerical dissipation is added to ensure stability.

During this process, no new extrema are created by the numerical dissipation. TVD data
preserve monotonicity; a) no new extrema must be created and b) the absolute value of any
extrema must not increase. TVD schemes yield oscillation-free solutions by modifying flux
differences to meet the above criteria. Chakravarthy (1985) outlines a class of explicit fiux
limiting schemes that fulfill this criteria. The second-order flux for the fully upwind scheme can
be written as

Enlzfduz = E;f'uz + 12 [AEzl.- "7 - AEI-. arz] (39)

If the following definitions are made to provide the measure of the change in the right and
left running flux, respectively,

AG;. 1o = 112((A + 1A]),. R 1) (., - Q) (40)
AST. 1 = 12((A - |A)),. 2R} (@, - Q)
then the TVD limited values of the flux differences can be written as
AE-;.W = R,”,.‘,A('S,',,,z. AE-;.uz = RI.1I2Aé;o1l2 (41)

The symbols ~ and = shown over Ac denote flux-limited values and are computed as follows:

AG]. 1z = Minmod|Ac;. 1z, BAGT. o] (42)

A6I + 172

minmod[Ao,“ 12> PAG; . 3,2] (43)
where the "minmod” slope-limiter operator is defined as

minmod[x, y] = sign(x) = max[0, min{|x|, y = sign(x)}] (44)
and B is a compression parameter that is restricted to fall in the range
1<p<s2 (45)

The minmod limiter returns the smaller magnitude when the signs are equal, and returns zero
when the arguments are of opposite sign. The result is that dissipation is added locally in
regions of high flux gradient. At inflection points, the scheme reverts to first-order accuracy.
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Eq. 23 can be rewritten with the first-order numerical fluxes, £ and F, replaced with the

second-order fluxes:

5;'.'/‘1 - O,f', £ £ =2 [ i "
VI'IA—‘[+[ ier2,j = i-1/2,/'+ ijerr ~ ] (46)

- I:RLe(sl,/.wz - Si,/-wz]"-

3.3.2 Viscous Flux. A second-order evaluation of the viscous flux terms is obtained by
performing a central difference about the corresponding cell interface. The metrics on the cell
interface are known quantities and are not included in the averaging. For example, the
x-momentum viscous term becomes

1 1 1
5[[%]/ * (;/”-ﬂ [((m,».m ’ gn’](u,-.‘ - ) - ¥ (Vo - v,-)] = (). (47)

The y-momentum and energy viscous terms are differenced in a similar fashion. The viscous
flux terms are central-differcnced in order to obtain a second-order accurate evaluation. It is
not clear what effect the present numerical dissipation (due to the inviscid TVD terms) has on
the true viscosity terms in the boundary layer region. However, solutions using this algorithm
were presented by Molvik (1987) for a steady boundary layer, and a shock-induced boundary
layer. The steady boundary layer solution was in excellent agreement with results from an
established boundary layer code and the shock-induced boundary layer si!ution was in
excellent agreement with a similarity solution by Mirel.

3.3.3 Temporal Accuracy. The above discussion describes the explicit fully upwind
second-order accurate in space scheme. Second-order accuracy in time is achieved by
replacing the first-order, backward derivative of the time-dependent variables with a
second-order backward difference (Atwood, to be published).

C,Q"* " + C,Q" + C,Q" (48)

where
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- 1-o0
° T - o)A, + A1,

C, = 2
(1 - o)AT, + At
c, - -1
(1 - 0)AT, + A1,
. A 2
T
o=[1 +__.‘J, At, =1" -1, A, =1 - 1"
At
2

3.4 Implicit Scheme. The advantage of an implicit scheme over an explicit algorithm is
increased stability, which allows larger Courant numbers, that is, larger time steps to be taken.
This feature is critical to overcome the stiff nature of viscous problems where the disparate
length scales can lead to unacceptably small time steps in an explicit algorithm. For a fully
implicit scheme, the fluxes must be evaluated at the n + 1 time level. The first-order
numerical flux on the i + 1/2 cell interface evaluated at the n + 1 time level, see Eq. 33
through 35 is represented as:

E“n¢1 = % E,n:: + E/n.! . (A_ _ A.):'l::fz(o_ln'o: _ O-lnb“)] (49)

ie12

An approximate linearization of this interface flux may be achieved by freezing the coefficient
(A - A*) at time level n and linearizing the remaining terms. Numerical experiments have
shown that such an approximation is acceptable (Rai 1984). The linearized numerical flux is

then written as:
By = g|EL v ALAD + BT+ ATAQ s (A” - A).1a(G],+ A0, - Q] -40)] (50)
Reorganizing and using Eq. 49:

E,”:Jz = %[Ai"‘1 + (A‘ - A‘)i". 1:2]-’351«1 + %[Alﬂ _ (A' - A.)i"‘ 112]AC-5I. + E‘iﬂ‘ 2

= (AP, 2AQ,, , + (AL ,2AQ, + E/. (51)

where

Aolg 6/n01 _ Oln
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The linearization of the viscous numerical flux is accomplished by freezing the value of
viscosity and linearizing the remaining terms. Since these remaining terms are only a function
of the dependent variables in the neighboring cells, the linearization becomes:

" n S, . - S, . -
sl.m = s/.uz + [ﬁ]'AQ/1 + {——alaz AQ/. (52)

1

= S/n. 12 + Mjiz 1I2Ao/.1 + Mll 1I2AO_/

oS

In order to compute 3G express S in terms of combinations of the dependent variables in Q,

then compute {El while holding other g constant. For example, using Eq. 47 for
=1, 4

aq;

($)),. 1 @s a starting point, let

_ (pu);., V).,
= V/“ =
p101 p]01

]+ 1

then

a(sz)/.wz _ 1 (u] [u)] -u —v u Y
st ifo) () b)) o

a(§2)] « 1/2

P,
]
j+ 1. In this fashion, all elements of the matrices M® and M" can be computed.

The term is identical except the dependent variables are evaluated at j instead of

Letting the coefficient matrix be denoted by a B and using a similar type of linearization for
the body normal flux, F, as for the streamwise flux, E, the linearized, implicit numerical
algorithm is written as:
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+

¥ %[(A")ﬁmzsé,.,,, + (A2 - (ARIAQ, ) - (AY],0A0,, ]
i,

+

—1(B" - M).128Q, ., + (B - MYz - (B" - M) .30,
i

- (Bt - MY ,,8Q,, ]

_At = =4 ~n gn 1 n n
- 7, I[(El’:m.j - El-1l2./) + (Fl,/.uz - Fl.j-1/2 - Fe(si"‘m - S,_/_m)] (54)

Notice that the computational stencil in the previous equation involves five grid points: (i, j),
(i j+1/2), (i, j-1/2), (i+ 112, }), (i - 1/2, j). To avoid the expense of inverting a large, sparse

" pentadiagonal matrix, an approximate factorization is done to break the banded matrix into
two tridiagonal matrices. This is written in two steps with the asterisked * variables denoting
an intermediate step as:

AQ;, + -q-,A—‘/[(A"),-". 2B, + {AY. 2 - (AP) JAQT, - (AL 1280, ]
i,

At [ o an 2n 1 an " (59)
= - 'V—l[( ie1r2,§ = /-1/2,/) + (Fi,/.w - FI,]-1I2) - m(s@/.w - s,;,-_m)]
Once A5,f ; is solved for from Eq. 54, it is substituted below and A5,_ ; is computed.
~ At n ~ n n ~
AOI,/ + ’M'I[(BH - Mn)l N ‘QAOLI\ 1 + {(BL - ML)I 12 - (BR - MR)I - 1/2}Aoi.j (56)

- (BL - ML)ln-1/2A51,/-1] = AQ_IT[

3.5 [terative Scheme. In order to eliminate the linearization and approximate factorization
errors that might occur, a Newton iteration technique is employed. Newton’s method finds the
zeros of nonlinear equations. For example, to find the value of x such that the scalar function
f(x) = 0, guess a starting value x® and iterate as follows:

xP+1 = xP - fix?) (57)
f'(xP)

Each time x*' is computed it becomes x” for the next iteration. Updates of x**’ are computed
until very littie change in the value of x occurs, then the solution is said to be converged.
Another way of writing Eq. 57 by simply rearranging variables is
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fr(xe)xp+1 - xP] = _ f(xP). (58)
The exact same equation holds for a vector function so that
r@@ - &l- - 1@ (59)

Now, expanding f'(Q°) and - f(Q") fully and letting AQ be defined as the iterative change in
the cell-averaged dependent variables, (5" .o qQf ) instead of the time change, the Newton

iterative form for the implicit equations becomes

_‘ At —c _.
AQ;, + — [(A"),. Q.+ HAYE 1 ~ (AP). JAQ], - (AY. 1200,
i
=- (O:p/ - —[(Effdwz i Ezndwz / Fz,;d‘ 172 and 1/2)
- ( ije1R éi./_wz)]p (60)

+{(BY - MY,z - (B7 - MP)_0AQ,

i f+1

AQ,, + ;;L[(BR MF)?. .AQ,
i _ (61)
- (Bt - MY 120Q, ] = AQ,

Ideally, the linearization and factorization errors are completely eliminated when the
residual of EqQ. 61 is driven to zero. Notice that if the residual AQ is zero, then AQ" is
zero, and the left-hand side of Eq. 60 is zero. On the right-hand side, p=n+ 1, Q""" is
converged to an exact solution of the implicit form of the algorithm. However, in this study
convergence was defined after four iterations at which time the maximum density residual in
the flow solution had decreased by at least an order of magnitude. This definition has been
used by this author in previous work with good results and is necessary to reduce the number
of iterations and expense of the calculation. Notice that if no subiterations are taken, then
Eq. 60 and 61 revert to the implicit, noniterative form presented in the last section.

3.6 Boundary Conditions. The inviscid boundary conditions are obtained by computing a

slip boundary condition and specifying an appropriate flux on the walls of the shock tube. At
the walls, the normal component of velocity is zero, the tangential component of velocity is
nonzero. The flux on these surfaces can then be represented as
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0
‘Yg P
F= (62)
Xg P

0

Only a value of pressure need be evaluated at the surface. As a first approximation, one
might consider using the pressure of the cell directly above the surface. This translates into a
zero-order approximation. However a first-order approximation of the surface flux can be
made if a Riemann problem is set up on the surface. This is consistent with the interior
scheme and would seem like the reasonable approach. The first-order Riemann solver is
used between the first cell off the surface and a reflected cell. If the subscripts 1 and -1
denote the first cell off the surface and the reflected cell respectively, the surface flux can then
be written as

-

F, = 12[F, + F, + (B~ - B),(Q, - Q)] (63)

The dependent variables of the reflected cell are calculated using the following relations:

P =Py P4 =P
uy = [0 - ¥)u, + 201/ I¢ + ¥ (64)
v, = [0F - X¥)v, + 200,01/ € + ¥

The metrics above are those of the cell interface on the surface. A second order flux can be
obtained by reflecting even another set of dependent variables with a subscript of -2.

The viscous flux is evaluated on the surface by imposing a no-slip boundary condition, that
is, the velocity components are zero at the wall. For the derivatives appearing in the viscous
flux at the surface, a second-order accurate difference is used instead of the central
differencing used at the interior points.

3.7 Turbulence Modeling. In order to include the effects of turbulence, an eddy viscosity
coefficient y, is computed. Then, in the stress terms of the laminar Navier-Stokes equations,
the molecular coefficient of viscosity p is replaced by y + p. In the heat flux terms, % is
replaced by % + :;_r' where Pr, is taken to be .9 for air. The Baldwin-Lomax algebraic

t
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turbulence model (Baldwin and Lomax 1978) is used in this study to compute values of y,
Algebraic refers to the fact that y, is obtained from explicit algebraic equations that involve
flow properties and empirical parameters. Other turbulence models could have been used to
obtain values for y, such as one-equation and two-equation models which require the solution
of partial differential equations for the creation and dissipation of turbulent kinetic energy, but
with considerably more effort.

The purpose of this study is to discover if turbulence modeling provides the correct trends
for better computational/experimental comparisons. If so, then a future effort might be to
perform a study of various turbulence models to compare their results and relative
cost-effectiveness. However, for a first effort it seemed reasonable to use a simple and
computationally inexpensive turbulence model. The Baldwin-Lomax turbulence model is

outlined below for completeness.

The Baldwin-Lomax turbulence model defines p, in terms of an inner and outer layer in the

turbulent boundary layer;
u’l = (ul)lnmr y < yaussova! (65)
He = () ouer Y 2 Yerssover

where y is the normal distance from the wall and y____.... is the smallest value of y at which
(L)inner €QUAIS (1)~ The explicit equations for p, are
(1 iner = PE|O| (66)
(M douwer = PRCopF pureF i) (67)

where
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y - yvaaﬂtwall = pwdluty

uwall “'waﬂ

A =260, C,=16, k=.04, K= .0168

The only two functions left to be discussed are F,,,. and F,,, which are related to the

Fly) = ylwl[1 - exp{%]] (68)

“he function F(y) will have a maximum value, to be denoted F,,,, at a given normal distance

function

¥, to be denoted y,,, so that F,,.. is taken to be the smaller of

Yuax Fuax
or

Yoaax Concoie! Fuax (69)
where uy, = yu? + v and C,, = .25

Baldwin and Lomax (1978) report that, near the separation point, the function F(y) develops a
double peak and the inner peak is slightly larger. The inner peak occurs at a relatively smail
value of y,.x such that F,,.. is small and the calculated eddy viscosity is suppressed, causing
the predicted separation point to move forward. Their comparisons to experimental data show
this turbulence model predicts separation ahead of the experimental separation point by
approximately one boundary-layer thickness. For the purpose of this stucly, the elimination of
the need to find the edge of the boundary layer by this model is more significant than the
inaccuracy in the prediction of the separation point. Finally, F,,,, the Klebanoff intermittency

factor is given by,
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1

Fooly) = |1 + 5.5[CKMLI (70)

max

where Cy, = .3
4. GEOMETRY, GRID, AND INITIAL CONDITIONS

Figure 9 (Reichenback and Opalka 1990) presents the 16° and 45° diverging nozzle
configurations that are computationally modeled in this study. The dimensions are presented
in millimeters. Notice that the driver section is 30 mm wide, while the driven section (from the
throat to the end of the tube) is 40 mm wide. For a truly 2-D geometry, these widths should
be equivalent. Because the difference, 10 mm, is not too large, it will be assumed that 3-D
effects are not significant and a uniform width of 30 mm is assumed in the computational
models. However, area ratios must be equivalent to the original area ratios to simulate shock
overpressures correctly. In order to keep the proper area ratios, the diameter of the throat
section was enlarged from .016 mm to .0213 mm and the diameter of the driven section
(section after the nozzle) was enlarged from .090 mm to .120 mm. The inviscid computational
grids with these changes are presented in Figure 12.

The inviscid computational grids contain 214 grid points in the streamwise direction and
30 grid points in the body normal direction. The grids were generated using the GRIDGEN2D
code written by Steinbrenner, Chawner, and Fouts (1990). During grid generation, an
algebraic solution for the grid is first obtained, then an elliptic solver is applied to smooth the
solution and produce grid lines that are nearly orthogonal to the surface boundaries. The
viscous grids were generated by replacing the first three grid points (including the point on the
surface) with 14 grid points that are exponentially stretched from the surface to the location of
the third point in the inviscid grid. The exponential stretching function can be written as

S =AS + KAS + K*As + ... + K™?As (71)
where k = constant to be computed, s = distance between first point and last point involved in
exponential stretching (including end points), As = spacing between first two grid points and

jmax = total number of grid points involved in exponential stretching (including end points),
i.e., 14 grid points for the case here. Reorganizing,

28




_ As(km -1

s
k-1

=0 (72)

Now, Newton'’s iterative method, described earlier, can be used to solve for a value of k that
satisfies Eq. 72.

The two nozzle configurations were simulated at a driver to driven pressure ratio P,, = 80.
The driven section was evacuated to P, = 174 mbar. The temperature of the driver and
driven sections were equal at 296 K. The Reynold’s number based on conditions behind the
primary shock was computed to be 4.65 x 10°. Static overpressure was recorded
experimentally at a location 370 mm downstream from the diaphragm ana .7 : e ceiling of the
tube. Computationally, the static overpressure and the dynamic pressure were sampled at
three locations which were at the same x location as the experiment. A computational probe
was located at the first cell center off of each wall boundary and the third computational probe
was located midway between the two walls. The boundaries of the shock tube were solid
walls including the end of the driven section.

5. RESULTS AND DISCUSSION

The results have been organized such that the experimental data is presented for the 16°
and 45° expansions. Then the inviscid, laminar viscous, and turbulent computational results
are presented and compared to the experimental data.

5.1 Experimental Data. Shadowgraphs for the 16° and 45° nozzles at P,,, = 80 are
shown in Figures 13 and 14, respectively. In order to obtain these figures, two shadowgraphs
(one from each optical window) were pieced together; thus, halfway through the nozzle a
vertical line is present in some pictures which is not a physical gradient but the overlap of the
photographs. In the figures, the primary shock, the contact surtace, the recompression shock
system, the corner expansion, and diaphragm fragments can be seen. Two important
features to notice for the purpose of computational modeling is the turbulent region behind the
diffuse contact surface and the separation of the recompression shock system from the lower
wall. The purpose of the experiment was to reproduce one-half of the symmetrical flow
pattern shown in Figure 5. However, a boundary layer builds up on the lower wall, which
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eventually separates from the wall and causes the core flow to seek the center of the half
shock tube. These shadowgraphs indicate the need to model viscous and turbulent
phenomena in the present computations.

Static overpressure versus time histories are presented in Figures 15a and 15b which
were recorded from transducers located 370 mm downstream from the diaphragm location
and in the upper wall. A comparison of the experimental data for the two nozzles reveals a
similar waveshape up to 500 ps. After this time, the 16° experimental overpressure versus
time history reveals a much larger decay in static pressure than the 45° nozzle record. The
reason for this difference can be found by examining the shadowgraphs in Figures 13 and 14.
A larger decay in the static overpressure is recorded for the 16° nozzle because the
recompression shock that develops in this nozzle impinges the upper wall (Figure 13). Thus,
the change in static pressure across the recompression shock is recorded by the transducer in
the wall at the recording station. However, the recompression shock in the 45° nozzle
(Figure 15) does not extend to the wall. Thus, the pressure change across the recompression
shock is not recorded. Another point of interest is that the experimental pressure versus time
history for the 45° nozzle is noisier (indicative of increased turbulence) than the 16° nozzle
history.

5.2 Computational Results. Computationally generated, nondimensional contour plots of

density, Mach number, static pressure, and dynamic pressure are presented to aid in
visualization of the flow phenomena. Density contour plots will be compared to the
experimental shadowgraphs. This is not the best of comparisons because shadowgraphs

2,
reflect regions where %% + ? is significant. However, as reported by this author
X

previously (Molvik 1987), the large gradient regions in the shadowgraphs are typic=lly
reproduced in density contour plots. In the same report, it is shown that computational
shadowgraph contour plots can be generated but produce superior comparisons only if a very
fine computational grid is used throughout. In order to keep run times under five hours, grids
too coarse for computational shadowgraphs are used in this study.

For all of the computations performed, plots are presented of static overpressure and
dynamic overpressure versus time. In these plots, computational results are provided at the
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upper wall, mid-tube and at the lower wall at the same x location as the experimental static
pressure probe. Note that the experimental static pressure probe, as stated earlier, is located
in the upper wall. Stagnation pressure probes (typically present in blast experiments) couid
not be utilized in the experiments due to the small size of the tube. Therefore, an
experimental dynamic overpressure versus time history which is usually computed from the
experimental stagnation and static overpressure data could not be provided. However,
computational dynamic overpressure versus time histories are still presented and analyzed.

5.2.1 Inviscid. Figure 16 presents contour plots which occur at 1.45 ms for the
16° nozzle. An examination of these plots confirms trends that hold for moving normal
shocks, flow through onverging-diverging ducts, and the properties of oblique and normal
shocks. A moving normal shock analysis was performed for the primary shock after it moves
into the constant area duct dwnstream of the diverging nozzle. The moving shock analysis,
given a shock overpressure, (P, - P,), equal to 400 mbar and P, = 174 mbar results in the
following values:

P
T2.33, M =633, P2-20247,
P1 p1

which agrees with the contour data.

The flow through the converging-diverging nozzle is choked and subsequently expands to
a high supersonic, low pressure, and density conditions in the diverging nozzle. The flow
adjusts to the higher pressure downstream of the exit of the nozzle and behind the primary
shock by forming a recompression shock system. The recompression shock system is
composed of a normal shock near the lower wall and an oblique shock near the upper wall.
At a much later time of 4.87 ms, Figure 17 shows the primary shock which has reflected from
the right closed end and is interacting with the front of the complex field of reflected oblique
shocks. Gradients in total enthalpy are caused by the unsteady temporal nature of the
primary shock. Gradients in entropy occur when some streamlines experience a higher
entropy increase by going through the recompression shock system at angles close to normal
while other streamlines experience a lower entropy increase by going through the
recompression shock system at angles that are more oblique. From Crocco's theorem,
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TVs = Vh - Vx(VxV) + %‘?’ | (73)

where T is temperature, s is entropy, h is total enthalpy, Vis velocity and t is time, it is known
that whenever gradients in total enthalpy or gradients in entropy exist in the flow field,
rotational motion occurs.

The shocks in the recompression shock system repeatedly reflect from the walls. These
reflections set up a shock diamond pattern that stretches many diameters downstream without
weakening in an inviscid code. The contour data compares well with trends from inviscid
theory, however, the experimental shadowgraphs in Figure 13 show some separation of the
flow from the walls. Thus, the modeling of viscous and turbulent phenomena must be
pursued to improve the comparisons.

Figures 18a and 18b present inviscid computational static overpressure and dynamic
pressure versus time histories, respectively, at three radial locations for the 16° nozzle. The
static overpressure versus time plot reveals the computational primary shock is smeared
compared to the experimental record. This is due to the coarseness of the grid used in the
computation. The shock overpressure level at the wall compares well to the shock
overpressure level recorded in the experiment. The overpressure level behind the primary
shock compares reasonably well to the experiment, but the decrease in pressure at 500 ps,
caused by the influence of the recompression shock does not compare accurately. This
discrepancy is similar in nature to the computational/experimental comparison shown in
Figure 8.

The dynamic pressure (% M?P_,.) plot shows a jump in dynamic pressure after the
arrival of the initial shock to approximately 250 mbar. This is consistent with the increase in
Mach number and static pressure across the moving shock. After the arrival of the contact
surface, the dynamic pressure jumps to above 1,200 mbar. Although the pressure is constant
across the contact surface, the Mach number increases which accounts for the increase in
dynamic pressure.
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Figures 19 and 20 present similar plots for the 45° nozzle. The significant difference
between the 16° and the 45° case is the different angles the recompression shock system
makes with the walls of the shock tube and the increased radial complexity of the flow for the
45° nozzle. The density contour data in Figure 19 at .92 ms contains the same gross flow
features as shown in the shadowgraphs in Figure 14. However, the computation does not
reproduce the regions of separation which are present in the shadowgraphs. Ideally, the
addition of the viscous terms to the computations should improve the shadowgraph
comparison without degrading the static overpressure history comparison. The inviscid static
overpressure versus time history in Figure 20 compares reasonably well to the experimental
data at the upper wall. The computational static overpressure at mid-tube is similar to the
upper wall record, but the lower wall computational record experiences a large pressure
decrease similar to the 16° nozzle case. This is due to the fact that the recompression shock
system near the lower wall is swept past the x station where data is computationally sampled.
The dynamic pressure record shows histories that are dissimilar for all three locations. This is
an indication of the varying strength of the recompression shock system in the radial direction.
A recommendation for future experimental work is to sample data at various y locations in
order to assist validation of the radial complexity of the flow.

5.2.2 Laminar Viscous and Turbulence. In this section, computational results are
presented which show the effect of adding the laminar viscous terms and implementing a
no-slip boundary condition at the lower and upper wall. Also, results are presented for two
different implementations of the Baldwin-Lomax turbulence model. One implementation is
where the Baldwin-Lomax turbulence model is referenced relative to a laminar viscous bottom
boundary condition and a slip condition is assumed at the upper wall. This case is denoted
by "LV and TUR Bot" in the text and in the figures. Also, results are shown for the
Baldwin-Lomax turbulence model referenced relative to a laminar viscous upper boundary with
a slip condition assumed at the bottom boundary. This case is denoted by "LV and TUR
Top." More rigorous computations were attempted which made both boundaries no-slip
simultaneously. The influence of the two walls on the turbulent eddy viscosity was computed
using an inverse averaging procedure (Goldberg and Chakravarthy 1988) where




_ (w,/n)y + (n,/n),
- 1
(1/n? + 1/n?)2

(74)

and the indices 1 and 2 refer to the two walls and n refers to the coordinate locally normal to
the wall. However, these computations aborted in the subroutine which computes the time
step At from the Courant Friedrichs Lewey (CFL) stability condition. The CFL condition
requires the At must be less than or equal to the time required for a sound wave to propagate
between two adjacent grid points. Efforts to determine the exact cause of the instability which
occured in the CFL condition were unsuccessful, but are still thought to be an inaccuracy in
the numerical implementation and not because of a physical limitation.

Figure 21 presents the laminar viscous contour plots at 1.6 ms for the 16° nozzle case.
The geometry of the recompression shock system has changed from the inviscid solution.
The system is separating from the bottom surface which is confirmed in the velocity vector
plot in Figure 22. Figure 23 presents the contour data that results at 2.1 ms when a "LV and
TUR Bot” implementation of the Baldwin-Lomax turbulence model is used for the 16° nozzle.
The contours near the lower wall are similar to the laminar viscous solution, however, the
gradient clusterings near the lower boundary are more smeared. This trend is in agreement
with the idea that turbulence acts as an additional mechanism for diffusing energy in the
flowfield. Figure 24 presents the contour data that results at 2.0 ms when a "LV and TUR
Top" implementation is used. The contours near the slip condition are more like the inviscid
solution and the cont-urs near the top boundary (no-slip condition) are similar to the laminar
viscous contours except more smeared.

Figures 25-27 present comparisons of the inviscid, laminar viscous, and turbulent static
overpressure histories for probes located at the upper wall, the lower wall, and mid-tube,
respectively. Comparison of the inviscid, laminar viscous, and turbulent static overpressure
versus time histories in these figures reveals some differences. Two cases, the laminar
viscous and "LV and TUR Top," static overpressure histories at the upper wall location,

Figure 25, have increases in static overpressure at approximately 900 us. This increase
appears to be caused by a small region of separated flow in the corner of the diverging nozzle
where it attaches to the driven section. Other than this difference at 900 us, the comparisons
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of the inviscid, laminar viscous, and turbulent static overpressure histories at the upper wall
are virtually the same.

The "LV and TUR Bot" static overpressure at the lower wall, Figure 26, has a more slowly
decaying waveshape than the other three solutions. Also, this decaying waveshape is not
evident in the mid-tube or upper wall histories. Thus, it can be concluded that the effects of
the Baldwin-Lomax turbulence model are being confined to a region close to the no-slip wall
-.ondition from which it is implemented. The mid-tube comparisons of static overpressure
Figure 27, reveals slight differences which indicates the computational viscous terms are not
significant to the mid-tube flow conditions.

Comparison of the dynamic pressure histories (Figures 28-30) confirms the correct
implementation of the boundary conditions. The upper wall, Figure 28, and lower wall,
Figure 29, comparisons show the laminar viscous dynamic pressure jumps to approximately
150 and 75 mbar, respectively, and then decays to zero. The wall solutions are
computationally sampled at the first cell center from the wall surface, therefore, the Mach
number or velocity for the laminar viscous solution is not exactly zero but is very small, as it
should be for a no-slip boundary condition. The "LV and TUR Bot" implementation of the
turbulence model produces a dynamic pressure record at the upper wall, Figure 28, which is
very close to the inviscid solution. This is reasonable since this implementation of the
turbulence model uses a slip boundary condition at the upper wall. The "LV and TUR Top"
case produces a dynamic pressure record similar to the laminar viscous solution which is in
agreement with the no-slip boundary condition used by this case at the upper wall. At the
lower wall, Figure 29, the trends are reversed from the upper wall dynamic pressure
description. The mid-tube laminar viscous and turbulent dynamic pressure histories,

Figure 30, appear unchanged from the inviscid solution. The next sections examine similar
contour plots and overpressure histories for the 45° nozzle.

The 45° laminar viscous nozzle contour plot at 1.1 ms, Figure 31, also shows improved
agreement with the shadowgraphs. In addition to the separation of the flow along the lower
wall, a region of separation and reverse flow appears in the comer as the flow tries to
negotiate the 45° expansion. These regions of separation and reverse flow can be more
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clearly seen in the velocity vectors plot, Figure 32. Figure 33 presents the contour data that
results at 1.1 ms when a "LV and TUR Bot" implementation of the turbulence model is used
tor the 45° nozzle. Similar to the 16° nozzle, the contours near the lower wall are a little more
smeared. Figure 34 presents the contour data that results at 1.1 ms when a "LV and TUR
Top" implementation of the turbulence model is used. Again, similar to the 16° nozzle resuits,
the contours near the no-slip boundary become smeared.

With laminar viscous terms or turbulence on, the static overpressure comparisons at the
upper wall, Figure 35, are still similar to the inviscid solution. The inviscid solution appears to
provide the best comparison to the experimental data recorded at the upper wall. However,
recall that the inviscid solution provides the worst comparison of computational density contour
data to shadowgraphs. The comparisons of static overpressure histories at the lower wall,
Figure 36, show that the "LV and TUR Bot" static overpressure versus time history is
significantly different from the "LV and TUR Top" case, the laminar viscous case, and the
inviscid solution. At the mid-tube location, Figure 37, the "LV and TUR Bot" solution is
reasonably similar to the inviscid solution, and the laminar viscous solution and "LV and TUR
Top" solutions are reasonably similar. Recall that the 16° nozzle mid-tube comparisons were
practically identical for all four cases. Thus, the 45° nozzle results show that computationally
adding viscous effects alters the recompression shock system such that significantly different
pressure versus time histories can result between the inviscid, laminar viscous, and turbulent
solutions.

Comparison of the upper and lower wall dynamic pressure histories, Figures 38 and 39,
again confirms the correct numerical implementation of the boundary conditions, similar to the
16° nozzle discussion. At the mid-tube location, Figure 40, the "LV and TUR Bot" case and
the inviscid solutions are similar but different from the laminar viscous and "LV and TUR Top"
solutions. Again, it can be concluded that significantly different results are obtained for the
45° nozzle case depending on how viscous effects are included and at what radial location the
flow is sampled.

Finally, Figure 41 presents in one figure the 16° nozzle density contour plots for the
inviscid, laminar viscous, and turbulent solutions. Figure 42 presents the velocity vector plots
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for the four computational cases. Figures 43 and 44 present similar results for the 45° nozzle.
These plots help to further visualize the differences between the inviscid, laminar viscous, and
turbulent solutions previously described. Of particular note is the regions of separation in the
viscous solutions which are not present in the inviscid solutions. Also the slip and no-slip
boundaries are clearly evident in the velocity vectors plot.

6. CONCLUSIONS

A 2-D computational study of the flow patterns that develop in unsteady, overexpanded
divergent nozzles with comparison to experimental data was performed and analyzed for two
nozzie angles (16° and 45°). Experimental shadowgraphs indicated viscous effects were
present. Therefore, the addition of thin layer laminar viscous terms was investigated as well
as using the Baldwin-Lomax turbulence model in the computational simulations.

The thin-shear layer approximation improved the comparison of density contour data to
shadowgraph pictures over the inviscid computations for both nozzle configurations. The
laminar viscous computations produced regions of separation in the corner of the diverging
nozzles and along the lower boundary which were qualitatively in good agreement with the
shadowgraphs. Turning on the turbulence model relative to one wall or the other had the
effect of smearing the contours.

The laminar viscous solution for the 16° nozzle did not significantly alter the inviscid static
overpressure solutions. The effect of turning on the turbulence model relative to the lower
wall was to alter the static overpressure near the lower wall for the 16° nozzle to a slightly
more decaying waveshape. This effect was not noticeable at the mid-tube or upper wall
locations, even when the turbulence model was turned on relative to the upper wall. Thus, it
was concuded that the turbulence model did not significantly affect the flow for the 16° nozzle
configuration.

For the 45° nozzle, the effect of including the laminar viscous terms or the turbulence
model relative to the upper or lower wall was to produce significantly different waveshapes
from the inviscid solution particularly at the mid-tube and lower wall locations. The
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experimental static overpressure versus time histories recorded at the upper wall of the 16°
and 45° nozzle configurations were simulated equally well by the inviscid, laminar viscous,
and turbulent solutions at the upper wall. However, the computational addition of viscous
effects were very important for good comparisons of shadowgraphs and computational contour
plots. Moreover, it is concluded from the comparison of shadowgraphs and contour data that
the flow physics in the diverging nozzles was best captured by the laminar viscous
computations.

The BLAST2D code can be used as a design tool and as a complement to the
experimental database that will be obtained with the LB/TS facility. In order to improve the
computational modeling of viscous effects in the code, it is recommended that future
experimental work provide flowfield conditions at various radial locations and the same
x location. Thus, verification or improvement of computational predictions of radial complexity
in the flow can be further explored. Future computational work of interest is the coding of
various turbulence models in addition to the Baldwin-Lomax algebraic turbulence model used
here to determine which is the most suited to diverging nozzle flow.
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Figure 15b. Experimental Static Overpressure vs. Time—45° Nozzle.
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Figure 18a. Inviscid Static Overpressure vs. Time—16° Nozzle.
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Figure 18b. Inviscid Dynamic Pressure vs. Time—16° Nozzle.
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Figure 20a. Inviscid Static Overpressure vs. Time—45° Nozzle.
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Figure 25. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 16° Nozzle, Upper Wall.
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Figure 26. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 16° Nozzle, Lower Wall.
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Figure 27. Comparison_of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 16° Nozzle, Mid-tube.
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Figure 28. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.
Time, 16° Nozzle, Upper Wall.
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Figure 29. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.
Time, 16° Nozzle, Lower Wall.
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Figure 30. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.
Time, 16° Nozzle, Mid-tube.
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Figure 32. Laminar Viscous Velocity Vectors Plot, 45° Nozzle-1.1 ms.
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Figure 35. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 45° Nozzle, Upper Wall.
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Figure 36. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 45° Nozzle, Lower Wall.
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Figure 37. Comparison of Inviscid, Laminar Viscous, and Turbulent Static Overpressure vs.
Time, 45° Nozzle, Mid-tube.
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Figure 38. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time, 45° Nozzle, Upper Wall.
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Figure 39. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.
Time, 45° Nozzle, Lower Wall.
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Figure 40. Comparison of Inviscid, Laminar Viscous, and Turbulent Dynamic Pressure vs.

Time, 45° Nozzle, Mid-tube.
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LIST OF SYMBOLS

inviscid flux Jacobian matrices
speed of sound

specific heat at constant pressure
specific heat at constant volume
total energy per unit volume
inviscid flux vectors

maximum of function F(y)

second order tensor of inviscid and viscous flux
total enthalpy per unit mass

unit vectors in Cartesian space
coordinate transformation Jacobian
coefficient of thermal conductivity

- constants

viscous flux Jacobian or Mach number

static pressure

Prandtl number, .72

turbulent Prandtl number, .9

heat transfer gradients

heat transfer vector

vector of dependent variables

right eigenvector matrix or specific gas constant
left eigenvector matrix

Reynolds number

viscous flux vector or elemental surface area
time

absolute temperature

Cartesian velocity components

friction velocity, \/t,/p,

contravariant velocities
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LIST OF SYMBOLS (Con't)

v - cell volume

X, y - Cartesian physical space coordinates

y - law-of-the-wall coordinate, p U, y/u,,

Yuax - value of y at which Fy) is maximum

B - compression parameter

o, - measure of numerical dissipation for first-order upwind scheme
Y - ratio of specific heats - constant of 1.4

€ - internal energy per unit mass

4 - bulk coefficient of viscosity

A - second coefficient of viscosity

A - diagonal matrix of eigenvalues

1! - first coefficient or molecular coefficient of viscosity
T8 - eddy viscosity coefficient

€. n - curvilinear space coordinates

p - density

T - computational time

T, - viscous stress tensor

c - measure of change in flux

0 - vorticity

Subscripts

i j - &, direction indices

X,y - partial with respect to Cartesian coordinate

E.n - partial with respect to curvilinear coordinate

ref - reference quantity, taken to be ambient condition
Superscripts

n - time level

p - Subiteration level

Roe - Roe-averaged quantity
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Superscripts

~ -

+0rR -
-orL -

A

*

1st -
2nd -

LIST OF SYMBOLS (Con't)

dimensional quantity

positive eigenvalues or right-running waves
negative eigenvalues or left-running waves
denotes cell-averaged quantity

denotes numerical flux consistent with physical flux
denotes intermediate value

denotes first-order flux

denotes second-order flux
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