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ABSTRACT

In this paper we present a class of ENO schemes for the numerical solution of multidimen-

sional hyperbolic systems of conservation laws in structured and unstructured grids. This

is a class of shock-capturing schemes which are designed to compute cell-averages to high-

order of accuracy. The ENO scheme is composed of a piecewise-polynomial reconstruction

of the solution from its given cell-averages, approximate evolution of the resulting initial-

value problem, and averaging of this approximate solution over each cell. The reconstruction

algorithm is based on an adaptive selection of stencil for each cell so as to avoid spurious

oscillations near discontinuities while achieving high order of accuracy away from them.
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1. Introduction

In this paper we generalize the ENO schemes of [8], [9] and [3]. to several space

dimensions with structured and unstructured grids; it should be read in conjunction

with these earlier articles.

The ENO schemes are of the form

vn+ 1 = A. E(r). R(.;v') =, (1.1)

where v' are cell-averages of u (x, tn), the solution at time tn. R(x; vn ) is a reconstruc-

tion procedure which produces a high-order accurate global approximation to u (x, tn)

from its given cell-averages v; in this paper we consider R to be a polynomial function

in each cell. E(t) is the evolution operator of the PDE which includes the influence of

boundary conditions. A is the cell-averaging operator. When we consider E(t) which

corresponds to a PDE with divergence free form, the scheme Eh (1.1) is automatically

in conservation form no matter what is the particular shape of the cells.

The scheme (1.1) is linked to a grid in a very loose way. Rewriting (1.1) as

Eh = R. A. E = Ph" E (1.2)

we can view the scheme as a composition of exact evolution E with a projection Ph =

R • A, the role of which is to project the solution into a finite-dimensional space of

functions. The averaging A and the reconstruction R may even use a different set of

cells. This observation is particularly useful for purposes of various grid manipulations

like component grids, multigrid calculations, and time-dependent adaptive grids.

The question of stability and convergenc7e of numerical schemes is related to the

boundedness or possible growth of spurious oscillations in the computed solution. The

largest source of spurious oscillations in the numerical solution is a Gibbs-like phe-

nomenon associated with interpolation through a discontinuity; these are 0(1) oscilla-

tions with respect to refinement.



The particular form of the scheme (1.1) leaves the question of control over spurious

oscillations to the design of the reconstruction R, which is a problem in the approxima-

tion of functions. The ENO schemes attempt to avoid growth of spurious oscillations

by an adaptive-stencil approach, in which each cell is assigned its own stencil of cells for

purposes of reconstruction. For each cell we select an interpolating stencil in which the

solution is smoothest in some sense. Thus cells near a discontinuity are assigned sten-

cils from the smooth part of the solution and a Gibbs-like phenomenon is so avoided.

The term essentially non-oscillatory is used because spurious oscillations on the scale

of the interpolation error in the smooth part of the solution are not ruled out. This

adaptive-stencil strategy seems to ensure the stability and convergence of the scheme

(1.1)

The question of accumulation of error, i.e., the relation between the local trunca-

tion error and the actual error at the end of the calculation is related to the nature of

the stability of the scheme. In [7] we have examined a problem in whicb the selection

of smoothest stencil for the reconstruction leads to a scheme (1.1) which is linearly

unstable in the whole interval. We have found that once the high-order derivatives

have begun to oscillate and grow, the selection of stencil became erratic and this has

stabilized the computation, so the calculation was convergent but with a reduced order

of accuracy. Later Meiburg [13] has shown that similar loss of accuracy can occur near

a point at which all the derivatives up to a certain order vanish. Shu [14] has demon-

strated that this unnecessary loss of accuracy can be avoided by biasing the selection

of the stencil toward a central one in the smooth part of the solution - we adopt this

strategy here as well.

In Section 2 we introduce notation which enables us to describe the scheme (1.1)

in the most general case. In Section 3 we describe the process of reconstruction in a

given cell. After these preliminaries we begin to tackle the two really important issues

of designing a procedure for selecting a stencil in general geometries and the practical

aspect of an efficient implementation.



In Section 4 we go through several levels of approximation for the numerical flux,

to finally arrive at a simple expression which is easy to use and is yet adequate.

In Section 5 we describe two efficient implementations of the resulting scheme.

In Section 6 we examine the schemes (1.1) with a fixed central stencil which is

to be used with some form of added numerical dissipation. In this context we outline

a new technique to obtain an ENO reconstruction within the fixed central stencil by

hybridizing the high-order reconstruction with the first-order one. In Appendix 1 we

present more detailb and analysis. \We bring this preview of a future paper here in o,'ivr

to give a general picture.

In Section 7 we present the adaptive algorithm for the selection of an appropriate

stencil of cells in the most general case and describe its efficient implementation as an

ordered Gauss elimination with adaptive row-pivoting. At the end of this section we

show how to use this procedure to automatically select fixed stencils which are either

central or directionally biased. We also show how to bias the ENO stencil toward a

central one.

In Section 8 we discuss special reconstruction techniques for solutions of hyperbolic

systems of conservation laws. These special techniques may be needed in order to handle

particularly strong interaction of discontinuities in the computed solution.

In Section 9 we describe the application of ENO schemes for rectangular ,rids and

show the great simplification that occurs in this case. For rectangular and smoothly

varying grids we use reconstruction via deconvolution in order to obtain efficient schemes

that use a tensor-product of one-dimensional stencils. The third-oricr accurate scheme

turns out to be particularly simple, and we feel that it is of immediate practical impor-

tance as the next generation to the second-order accurate T\ D schemes. In Appendix 2

we describe the implementation of the third-order scheme to the solution of the Euler

equations of gasdynamics.
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In Section 10 we consider the question of time-integration and compare the relative

merits of a method of lines approach to a local Cauchy-Kowalewski procedure of a single

step. The method of lines is easier to program but more expensive to use. Thus we

advocate the use of the one-step procedure for production codes whenever feasible.

In Appendix 3 we outline a new scheme which uses alternating dual grids. The

two sets of grids correspond to centroids and vertices. The new scheme alternatingly

computes point-values in one set of cells and cell-averages in the dual one, at no extra

computational cost. The use of these two sets of values enables us to obtain a more

compact reconstruction. We preseit this "2 for the price of 1" scheme because we feel

that this is the next step in the development of high-order ENO schemes.

In writing this paper we have attempted to give as broad a picture as possible on

the development of ENO schemes as we see it. The number of schemes which can be

formed by different numerical fluxes, various reconstruction techniques, and methods

of time-integration is huge. Consequently our numerical experimentation amounts to a

mere sampling. The use of analysis for the design of these highly nonlinear schemes is

still very limited and one has to rely heavily on numerical experimentation. We hope

that this article will encourage others to experiment with these schemes.

We would like to point out some related work that we know of. The scheme (1.1)

was originated by Godunov to design his first-order scheme [6], and was subsequently

extended to second-order accuracy by van Leer [17], and improved upon by Colella and

Woodward [4].

The case r - 2 of the ENO schemes also corresponds to second-order accurate

TVD schemes; thus all finite-volume TVD schemes are related to it. In this context we

would like to refer the reader to a recent work by Durlofsky, Osher, and Engquist [5]

on second-order TVD schemes in a triangular grid.

We would also like to point out the work of Casper [2] on fourth-order accurate

ENO implementation for rectangular and smoothly varying grids and the work of Shu
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and Osher [15]. The latter scheme is an efficient ENO scheme for point-values on rect-

angular and smoothly varying grids, and thus is not of the form (1.1). The conservation

form of this scheme is obtained by a clever trick in which the numerical flux is treated

as a primitive of some other function.

We would also like to refer the reader to a recent paper by Barth and Fredrickson

[1] who have implemented the scheme (1.1) for unstructured triangular grids using

large fixed central stencils with least squares reconstruction. Their numerical results

demonstrate that a high order of accuracy can be achieved for smooth solutions even

on highly irregular grids.
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2. The Numerical Scheme

In this paper we consider the Initial Boundary Value Problem (IBVP) for a hy-

perbolic system of conservation laws in S-space dimensions:

ua+divf(v)=O , xEVC7ZS, t>O (2.1a)

U(x,O) = tto(x) , x E 7 (2.1b)

with given boundary conditions on DR, the boundary of V. The computational domain

1 is divided into cells Cj

V=Uc, , ciflCk=o (2.2a)

We assume that OCj, the boundary of the cell Cj, is piecewise-smooth, i.e.,

Dcj = UqCk (2.2b)
k

where DC is smooth. Usually DCj is linear, yet our formulations allow for nonzero

curvature. We also assume that there is a refinement parameter h such that, the largest

sphere contained in the cells is of radius O(h), and that the ratio between the largest

sphere to the smallest one in the computational domain remains bounded 'under refine-

ment. We denote

IC 1 K dV , (2.2c)

and by cj, the centroid of the cell C,

c = xdV (2.2d)

Let i denote the cell-average of the function u(x) over C,

uj - - fj (x)dx = A(Cj)u (2.3)

and denote by A (Cj) the cell-averaging operator. Given cell-averages 5 = {Ti} of ?I(x)

in V, we denote by R(x; U ) a reconstruction of u from i which satisfies

R(x;T) = u(.r) + O(h1 r) wherever u is smooth (2.4a)

A (Cj) R(.; i7 ) = iT, (conservation) (2,4b)
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Typically R is a piecewise-polynomial function of degree r - 1 which is discontin-

uous across the cell-boundary OCj. Let Rj(x; v) denote the polynomial which defines

R in Cj, i.e.,

R(x;v") = Rj(x;v) for x C CJ (2.4c)

Let E(t) denote the evolution operator of the IBVP (2.1)

,(,t) E ( ,)uo (2.5)

Note that E(t) includes the boundary conditions on 0).

We turn now to describe the numerical scheme which is an explicit method for the

approximation of the cell-averages of u(x, t)

vj' -_ A(Cj)u(.tn) (2.6)

We initialize the computation by setting

vjo = A(Cj)uo (2.7a)

where u0 is the initial value (2.1b). Given v" = {v} we compute vn+ ' by

vn+1 = A(Cj)E(r)R(.;v') (2.7b)

Thus we first get a piecewise-polynomial approximation R(x; vn) to the solution u(x, tn).

Then we apply E(r) to R(x; un), i.e., we get a solution in the small (small r) to the

IBVP

wt+divf(w)=O , xE) O<t<r (2.8a)

W(x,O)=R(x;vn) , xED (2.8b)

with the given boundary conditions on O.

Integrating the PDE (2.8a) over Cj x [0, r] and using the divergence theorem we

get

C (1, + 1 -V + [f(w(x,t)).N]dS=0 (2.8c)
'Cj



Here N is the outward normal to aCj and the integration is over the boundary of the

cell. Hence the application of A (Cj) to the solution of (2.8a), (2.8b) at time r is given

by

n 1 " -,no [f (E(t) . (.;v')). N] dS (2.9)V I I C3 1107,Jacj

The above expression is an explicit scheme in conservation form. We point out that

the term v7 in (2.9) is obtained from

A(Cj)w(x,0) = A(Cj)R(x; v") = v7 (2.10)

Thus property (2.4b) of the reconstruction is essential in order to get conservation form

from (2.7b).

Since A(Cj) is a positive operator and E(-r) is the exact evolution operator, the con-

trol over possible growth of oscillations in the numerical solution is applied through the

reconstruction R(x; v n ). In Section 7, we shall describe an Essentially Non-Oscillatory

(ENO) reconstruction technique which is designed in order to achieve this goal.

In this paper we concentrate on the semi-discrete formulation of (2.9), which is

obtained by dividing (2.8c) by r and letting r --+ 0. In all the cells which do not have

a common side with the boundary OD we get

kacj"= -IC I J q .(.la

In (2.11) we have introduced some new notations and conventions:

fN=fN ; (2.11b)

fR (U1 ,U 2 )= fN(W(0;u 1 ,u 2)) , (2.11c)

where W ( it; Ul, u2) is the self-similar solution of the one-dimensional Riemann prob-

lem

Wt + fN(w) = 0 (2.12a)

W (,O=U 0 < 0  (2.12b)
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Observe that is scalar. Rj in the term f R (Rj, R.) is the polynomial (2.4c) which

is evaluated at the boundary OCj; R, is the reconstruction in the cell which is in the

exterior of Cj and has C in common. Thus * is a symbolic notation for the index of

such a cell. Another innovation is the breakup of the integral over 9Cj into its smooth

pieces C in (2.2b). (The superscript R in fN stands for "Riemann".)

When OCk is an element of the boundary O we make the following substitution

in (2.11)

fwp (Rn , R ) ds o fN (E(O+) ) ds (2.11')

which is computed at 49D and includes the boundary conditions.
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3. Reconstruction

Given cell-averages -t = {itj} of u(x), we describe in this section a reconstruction

technique R(x ii) which satisfies properties (2.4)

R(X; T7 ) = a(x) + 0 (h') wherever t(x) is smooth (accuracy) (3.1a)

A (Cj) R(.; at) = itj (conservation) . (3.1b)

In this paper we consider a piecewise-polynomial reconstruction, which is defined

by a polynomial of degree (r - 1) in each of the cells. As in (2 4c) we denote the

polynomial in the (cell C, by Ri(x;i7) and express it as a Taylor expansion around the

centroid ci:
r--1 1

R(x;-)=Ri x;T1 ) = _E E ( x - cl Di xEC, (3.2)
k,=o ifl=k

Here we use a nmulti-index notation and convention

f= (Cl,"'- , ) , Itl= +f2 + -.. +g (3.3a)

Y' =- (Yj)" (Y2)1 ' ' ' - ( y s) t (3.3b)

The summation convention in Zjf1=k stands for

k k k

I: =1: : .. I:(3.3c)
Ifl=k t1=O t2=0 11=0

6l + f2 +'" -- f = k

so that terms De corresponding to mixed derivatives appear in the summation ex-

actly the number of times they should. We also use the multi-index convention for

differentiation
of OI
of - x .

(3.3d)

Comparing (3.2) with the Taylor expansion of u(x) around the centroid Ci

r- 1 "-' O'u I
u(X) 1 X -(x Ci)' +O(11") (3.4)

k=0 "ifIk C,
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we see that the accuracy requirement (3.1a) amounts to

DI -j (ci) + 0 (h --r ) 0 < I! r -1 (3.5a)

We note that (3.5a) for Hfl = 0 reads

Do = Ri (ci; i) = u(ci) + O(h) (3.5b)

Let J(i) be a set of indices of cells which includes i. We shall refer to J(i) as a

stencil of cells associated with the cell i and denote the number of cells in it by IJI. We

:on'ider now the set of linear equations for Dt, 0 < Ilel r - 1, whbih ;s ohtained by

taking a cell-average of the polynomial R 2 (x; T) in (3.2) over all the cells j in J(i)

A (Cj) Ri= , j E J(i) (3.6a)

or
r-1

E >Z aj,tDf=i , jE J(i) (3.6b)
k=O ItI=k

where

= )A(Cj)(x - c) t= k (x - ci) t dV (3.6c)a k!t k!(j)x c -~ j j~

To get proper scaling let us also consider an alternative form of (3.6)

S 5 ajtD = iu, (3.6b')
k=O It=k

wh 2re aj,t = ajt tletI

D' = hltlDt

Next we rewrite this system of linear equations in matrix form

Qd=u (3.7a)

Here d is the vector of unknowns

d = (di, dr,) , K = K(r) (3.7b)
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in which Dj' are arranged in groups of equal If with increasing order of If . Q is a inatr-ix

with I J(I) I rows and K~(r) columns; let us agree that the first row always corresponds to

3= i. The entries of Q are the p~roper rearrangemnrt of the coefficients a'.in (3.6b').

'U is the vector of the given cell1-averages

7=(II.,Tj TOII = Ui (3. 7c)

When we apply the cell-averaging operator to u(x) in (3.4) we get

aj-A (Cj)u(x) a~ c)+0(
k=O IfI=k (3.8a)

- al,e [h "tu (ci)] +O0(hr)

k=o I11=k

Let us denote by dE the vector (3.71)) in which we substitute D' by h"il 2 u(ci); clearly

d E =ii±+O0(h'-) (3.8b)

Subtracting (3.8b) from (3.7a) we get

Q (d -d E) = 0O(hr) .(3.8c)

Let us denote symbolically by Q1 the solution procedure we are going to use in order

to obtain d from U, i.e.,

ifd = Q i (3 .9 a )

11 Q 1 constant as h -~0 (3.9b)

then it follows from (3.8c) that

11 d - d E 0 (hr) .(3.9c)

This, due to the scaling (3.6b'), implies the accuracy requirements (3.5a) and (3.1a).
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We turn now to consider the requirement (3.9b) from the point of view of the

stencil J(i). Clearly we need

rank Q = K(r) (3.10a)

i.e., the number of linearly independent equations in (3.6) should be the same as the

number of terms in the Taylor expansion (3.2). This, of course, implies that IJ(i)I, the

number of cells in the stencil J(i), should be at least ,()

SJ (i) I>!K r (3.10b)

Moreover. to assure that there are enough linearly independent equations in the stencil,

the stencil should be large enough in all spatial directions, so that all derivatives can

be properly approximated to the required order of accuracy (3.5a).

When the computational cells are defined by some structured grid, it is possible to

predetermine proper stencils with IJ(i)l = (r). However, for completely unstructured

grids it seems wise to start with very large stencils,

IJ(i0l >> K(r) (3.11a)

and to either use a least-squares approach, i.e., to solve the , x , system

T- Q T (3.11b)

thus minimizing

II Qd- IIL , (3.11c)

or to use techniques that select (r) linearly independent equations out of the many

available in the stencil. In this latter category we can use an ordered Gaussian elimina-

tion with row pivoting (of the type that is described in Section 7 for ENO reconstruc-

tion) or to get the exact number of linearly independent equations needed by grouping

several of the cells in J(i) into a single "super-cell" and replace the several equations

for the individual cells by a single one for the average over the super-cell. In all such

techniques the process of selection should be ordered so as to give preference to closest
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neighbors, i.e., the stencil should be as centered around Ci as permissible by the various

constraints.

We turn now to examine the conservation property (3.1b), and observe that this

is exactly the equation for j = i in the system of linear equations (3.6) (which by

agreement is the first equation in (3.7)). It follows that if we use the above selection

procedures, this property is satisfied automatically. However, if we use the least-squares

approach (3.11), we have to replace the first element d, in the computed solution by

K(r)
di = Tli - E -l,kdk ,(3.11d)

k=1

in other words, we make sure that the first equation is satisfied exactly. In this case,

the first equation may first be eliminated from every other equation forming matrix Q
of rank K(r) - 1 and a reduced set of equations may be solved before applying (3.11d).

1) , -- OT, (3.11b')

More generally, if we compute approximations DI to the derivatives for [f I 2

which satisfy the accuracy requirement (3.5a), we define

r-1

Do= U, - Z E ao,,Dt (3.12)
k=2 111=k

This ensures that the resulting reconstruction (3.2) satisfies the conservation require-

ment as well as the accuracy requirement in (3.1).

We point out that the summation in (3.12) starts with k = 2. The reason for that

is that

ai,t = A(Ci) " (x - ci) = 0 for Ifl = 1 (3.13a)

due to the fact that the centroid ci (2.2d) is defined by

ci = A (Ci) x
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It follows therefore that the cell-average is an 0 (h 2 ) approximation to the point-value

at the centroid

- u (ci) = 0 (h 2 ) (3.131)

We remark that the coefficients in the 0 (h 2) term above are ai, for VIf = 2, which

depend on the shape of the cell. Consequently, numerical differentiation of iTi (instead

of the point values u (ci)) can give an 0 (h 2 ) approximation to the derivatives of u,

only in the case of a smoothly 'arying structured grid.

We end this section with the analogous problem for point-values: Given point-

values of u(x) in the centroids. uj = u (cj) for j E J(i), find an rth order polynomial

approximation I(x; 0) to u(x) in Ci. Rewriting this polynomial as a Taylor expansion

around ci
r-1 1

I~~u =Z . (-c~ e Dtk314

j=0 ltl=k

we consider the system of linear equations for D1

(cj; u) =uj E J(i*) (3.15a)

or

SE aj,tD=uj, j E J(i) (3.15b)
k=o Itl=k

where 1

aj,t (cj - ci) t  (3.15c)

From this point on we proceed as in the reconstruction procedure to rewrite (3.15) in

the matrix form

Qd=u , (3.16)

which can be solved either by a least-squares approach

QTQd= QTU (3.17)

or by the same selection techniques that were mentioned before.

15



We observe that aj, for the reconstruction (3.6c) is the cell average of (x - ci)

while aj,t in (3.15c) is the point-value of it. Consequently,

Q --+ Q as h --+ 0 (3.18)

Hence for h sufficiently small we can use the set of cells which yield linearly independent

equations in Q for Q and vice versa.
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4. Numerical Flux

The semi-discrete scheme (2.11) can be rewritten in the form

___ _ aCkJ-kat f,* (4.1a)
k

where the summation in k corresponds to the partition (2.2b) of the cell boundary OCj,

and

fJ,, _". lac fR (RjR*)dS (4.1b)

Here we use the notation

8aC kI 1 6 dS (4.2)

-k
We refer to the term fj,. in (4.1b) as the numerical flux at Cf; it expresses the

average normal flux across WCk in the solution of the IBVP (2.8). In the following we

propose various approximations to (4.1b) which allow either a simplified or a compu-

tationally more efficient algorithm, or both. To simplify our notation, we shall retain

the notation 7k to the approximate as well as the exact numerical flux.

The most straightforward simplification is to replace the integral in (4.1b) by an

appropriate numerical quadrature,

-k= E am fR (Rj(xm; v"), R*(xm;V v)) (4.3)
m

where xm are the quadrature points on WC , and am are the corresponding quadrature

coefficients. The quadrature formula should be exact for a polynomial of degree (r - 1)

or more. Gaussian quadrature seems to be particularly attractive in this context.

The next level of simplification is to replace the flux of the exact solution to the Rie-

mann problem (2.11c) by a simpler approximate one. We observe that U, (x/f; ui, u 2 ),

the solution to the Riemann problem (2.12), is a Lipschitz continuous function of ul

and u 2. Consequently,
R1

f 11(u1,u 2 ) = [fN(ul) + fN(U2)] + O(1l12 - 111f) . (4.4a)
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Since

IRj(xm; ") - R.(x,.;v) = O(h') (4.4b)

in regions of smoothness, we can replace (2.11c) by

1
fN (Ul,U 2 ) = 9 [fN(ui) + fN(u2) - v(ul,u 2 )(U 2 - u) (4.5a)

where v is bounded, without adversely affecting the formal order of accuracy of the

scheme. Again to simplify notation we retain f R for the approximate fluxes in (4.5a).

The following expressions for v (1 1, U2) are suitable:

v(u1,u 2 ) = IAN(Ul,U 2 )l (4.5b)

where

AN(U,U) = OfN

au

AN (u 1 ,u 2 ) can be taken as AN (fi), where i is some average of u1L and U2.

v (t 1 , U2 ) = IaN(UI,u2) (4.5b')

where aN is the maximal eigenvalue of AN (u 1 , u 2 ).

v(u 1 ,u 2 ) = maxIaN(v') (4.5b")

The last quantity is constant in space during a time-step, and is computed anyway in

order to calculate the permissible time-step under a CFL restriction.

We remark that in the context of first order schemes, (4.5b) corresponds to Roe's

scheme, (4.5b') corresponds to Rusanov's scheme, and (4.5b") is the Lax-Friedrichs

scheme.

The following simplification allows us to compute a single "Riemann solver" per

side, rather than the number required by the quadrature formula in (4.3):

[f. + k vka) (f, k (4.6a)

18



Here

k, RjdS ik R. dS (4.6b)
Ci 3 !k I aCIak (4.6b

OjkIc' fN (R)dS ,~ f ~ fN (R.) dS . (4.6c)

ft a aRj(xn;v") (4.7a)
m

= -am fN (Rj(x,;v)) (4.7b)

^k

We observe that when Rj is given in its Taylor series form (3.2), ui can be computed

analytically by

=i j b kL D, (4.8a)

k=o ItI=k

1 k (x - cj)' ds (4.8b)I oc)k lel! Jcp

which is usually more economical than the computation in (4.7a). The expression for

v (u1, u 2 ) in (4.6a) is the same as in (4.5).

Further simplification is obtained when a Taylor expansion of f (Rj(xjun)) around

cj is available to us in the form

-1 (c)F 0W

f (R (x;u")) = Z - cit F, + O(hr) (4.9a)
k= k!Itl=k

with

Ft = -- f(c,) + 0 (hr - It 1  (4.9b)

Then, as in (4.8),
I-i1

jk = E E b' (F, . Ar) (4.10)

k=O Itl=k
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where Nt is the outward normal to OCf. Note that we have taken only a single value

ot the normal, thus for boundaries with nonzero curvature the RHS of (4.10) has to be

modified accordingly.

We remark that in the constant coefficient case, all the schemes with the same

V(ul,u 2 ) are identical to each other, and the scheme with V(ul,u 2 ) = IAN(Ul,U 2 )I is

identical to the original scheme (2.11).
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5. Algorithmic Considerations

In this section we consider the simplest scheme of the previous section

= - E _ f,-k (5.1a)

Ot OCk

-k [fk ±fk _ 
-,k) lak)] (5.1b)2ff^I,=V(

where

r-1

j EZ b f DI (5.l1c)
k=0 It=k

jk bZ k (Ft Nk) (3.l1d)
k=0 jtl=k

and discuss two versions which differ in the way in which Ft are obtained.

In the first version, we start by selecting a stencil J(i) to the cell Ci, and compute

the reconstruction Ri (x; v) in its Taylor series form (3.2). Once we have calculated

{Dt} we evaluate {Ft} by using analytic expressions for

Ft = a,-f (Ri(x;v")) 1=, (5.2)

Still within the cell Ci, we proceed to calculate iik and fi by (5.1c),(5.1d) respectively

for all sides k.

After doing so for all cells Ci in D, we sweep over all the boundaries OCf to com-te
-k 

a

the numerical flux f* by (5.1b). Finally, we go over all the cells Ci to evaluate '- by

(5.1a).

This version makes computational sense when the expressions in (5.2) are rela-

tively simple, which is the case for the Ealer equations of compressible perfect gas (see

Appendix 2). The main advantage of this algorithm is that most of the computational

work is done within the cell, with minimal communication with other cells. Hence it

seems attractive for unstructured grids, especially for parallel computers.
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We turn now to describe the second version which offers a low operational count

at the cost of a larger storage requirement and more communication between cells. The

main difference from the previous version is that F are computed from interpolation

formula.

We start this algorithm by selecting a stencil J(i) for the cell Ci and compute the

reconstruction Ri (x; vn). From this reconstruction we compute the point-values at the

centroid of the cell
r-1

U'= Ri (ci; 0~) = v'- cD (5.3a)

k=2 Itl=k

and

A, = f (UN) (5.3b)

Next we sweep again over all cells to compute

at
F, = -- I (x;fn) 1.=c, (5.4a)

'9'ID t at
= - I (x; un) L= (5.4b)

19x'

Still within the cell, we calculate &i and f by (5.1c) and (5.1d). From this point

on we proceed exactly as in the previous algorithm to compute the numerical fluxes
-k
f,* by (5.1b) and in another sweep to compute the RHS of (5.1a).

The notation I(x; f n ) stands for the point-value approximation (3.14), and

_5T I (x; ffn) is the appropriate coefficient DI, which is computed from the linear sys-

tem (3.16). We point out that the same set of cells is used for both the reconstruction

step and the interpolation step (see the discussion at the end of Section 3); this is of

particular importance for ENO schemes with adaptive selection of stencils. Another

observation is that can be computed directly from the reconstruction using DI rather

than Dt.

This second scheme has a low operational count, especially for structured grids

where the computation of Dt and F is accomplished by predetermined finite difference
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expressions. The operational count for this scheme is 1 selection of stencil and 1 f(u)

evaluation per cell, and 1 "Riemann solver" per side. We shall come back to this scheme

in Section 9 where we discuss schemes for a rectangular grid.

We note that even in the constant coefficient case, the two versions are not identical

- the second version uses many more cells than the first one.
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6. Fixed-Stencil Schemes

In this section we consider the schemes described in Sections 4 and 5, with a fixed

central stencil J(i). The stencil is assigned to the cell on the basis of geometrical

considerations alone so that it will be as centered around the cell as possible. Thus in

the constant coefficient case

f(u) = au (6.1a)

the scheme is a linear operator (unlike the ENO schemes of the next section where the

stencil assigned to the cell depends on the solution).

We note that although the stencil for the reconstruction step is centered, the

resulting scheme (2.7) is upwind biased: In the constant coefficient case

E(T)R(x;v') = R(x - ar;vn ) (6.1b)

and therefore

vn+1= A(Cj)R(x-aT; 0 )  (6.1c)

Based on analysis of some simple cases and some numerical experiments, we feel

it is safe to conjecture that the scheme (2.7) with a centered stencil J(i) is L 2 -stable

in the constant coefficient case. We also note that the choice of centered stencil results

in the most accurate reconstruction. Therefore such schemes are excellent numerical

solvers for problems with smooth solutions or with weak shocks; in the latter case one

can add some form of high-order numerical dissipation to the scheme, e.g., one can add

dissipation in the form of a filter [12], [10].

Clearly when the stencil J(i) contains a discontinuity of the solution, the recon-

struction Ri has spurious oscillations due to a Gibbs-like phenomenon. In this case we

can either select to use a different stencil which does not include a discontinuity - this

technique will be described in the next section, or to modify the reconstruction within

the same stencil. To do so we go back to the rather old ideas of hybrid schemes ([10],
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[11]) except that here we hybridize the reconstructions rather than numerical fluxes.

Symbolically this can be written as

Ri (x; v') =9v' + (1 - 0?) R' (x; v") (6.2a)

where Rr, r > 2 is the high-order reconstruction (3.2), and v" corresponds to the

piecewise constant reconstruction

ni(x; v ) = v  , x C Ci (6.2b)

which is monotone.

The automatic switch 0i has the properties

0<0i 1 , (6.3a)

0j - 1 when J(i) contains a discontinuity (6.3b)

0i= O (hr-') when the solution is smooth in J(i) (6.3c)

Rewriting (6.2a) as

R, (x; v') = Rr (x; v") + [v!' - R (x; v)] (6.4a)

we see that since

v! - R' (x;v" ) = 0(h) (6.4b)

where the solution is smooth, we get from (6.3c) that the formal order of accuracy is

preserved.

Preliminary analysis for rectangular grids shows that one can construct an auto-

matic switch which satisfies properties (6.3), and that the resulting scheme is essentially

non-oscillatory. We refer the reader to Appendix 1, where we present analysis for the

one-dimensional case.

In this paper we concentrate on deriving ENO schemes by an adaptive stencil

technique which is described in the next section.
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7. Adaptive-Stencil Schemes

In this section we consider an adaptive reconstruction technique of the form (3.2)

r-1 1
R (x; -) =Ri (x; f= E k E (x -ci) D t  x xECi (7.1a)

k=O 111=k

alu (h-, t)
Dt =-t(c2) + 0 (h (7.1b)

r-1

Do = Ri (ci;U) = -- E >j ai,tDt (7.1c)
k=2 111=k

where a;,t = -LA (Ci) (x - ci) t .

The main objective in this adaptive reconstruction is to make sure that if Ci lies

inf the smooth part of the function, then all the approximations to derivatives DI are

computed also from the smooth part of the function. This guarantees that

1R(x;U)- u(x)( =O(hr) for x E Ci (7.2)

for all cells Ci that do not contain a discontinuity and thus a Gibbs-like phenomenon of

spurious oscillations of size 0(1) in the neighborhood of a discontinuity is avoided. We

remark that analysis of the one-dimensional case in [8] shows that the reconstruction

is generically monotone in the cell that contains a discontinuity.

In the following we present two techniques for the selection of appropriate stencils,

which generalize the two algorithms that have been used in the one-dimensional case

in the earlier development of the ENO schemes. The first approach is to consider

several candidate stencils, and to select the one in which the function is smoothest.

The second approach is hierarchical: We begin with the ith cell, and at each step of

the algorithm we add another cell to the existing stencil for the computation of an

additional derivative.

In the first approach we have to specify a set J of candidate stencils. Since the

choice of a central stencil is best from the point of view of accuracy and stability, let us
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agree that J should always include a central stencil Jd(i), which should be selected if

the function to be reconstructed is smooth in it. For reasons of computational efficiency

we would like the number of stencils in J, which we denote by IJI, to be as small as

possible. On the other hand J should include enough directionally biased stencils so

that we can select a stencil in which the function is smooth, no matter where we place

a discontinuity in the vicinity of Ci. It seems to us that for each side OC' of the

cell we need to have a directionally biased stencil which lies in a conical section, the

apex of which is the cell Ci, and its axis of symmetry is the inward normal to W,".

This stencil widens as we go away from the cell Ci, and the cone is truncated once it

contains enough cells to determine all the required derivatives. Let us denote by .Jk(i)

the direftionally biased stencil corresponding to the side &Ci, and let K denote the

number of sides in 3Ci, so the minimal set of candidate stencils seems to be

J = {Jc(i), (i),. , JK (i) (7.3)

Thus for triangles we use four stencils which are shown schematically in Figure 1.

Let us denote by Dt , lel > 1 the approximation to derivatives (7.1b) which is

obtained from the directionally biased stencils, and by D' the values that correspond

to the centered stencil J,(i). Let or

Or= I D1 , (7.4a)
111=r-1

serve as a measure of smoothness of the function in the stencil. Clearly a is large when

the stencil contains a discontinuity; if the function is smooth in the stencil then

Orr Y '(Cu ) (7.4b)

111=r-1II

Therefore we select the stencil in which ar is minimal, giving preference to the central

stencil. Following Shu [14] this can be done by using 0ac , a < 1 for the central

stencil in the comparison.

Next we would like to describe a variant of the above technique, which selects { D}

in (7.1b) term by term, without selecting a single stencil for the reconstruction. This
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Fig. I- Candidate stecils for EN() schetrcS on all C
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"s accomplished by

c 1
Djt=mn,(D',...,D';Dc) 1<1(1:5r-1 , -< a<l1 (7.5a)

r-I

= - E (7.5b)
k=2 ItI=k

r-1

Ri(xU) =bo +ZEhIYE(X -ci)D f (7.5c)
kI~=k=1 111=k

Here rna (xi," , Xk; y) is a modified miinod function which is defined by

MY i if m = IXI (7.5a)
ma(i,...,Xk;y/) = y if m = ajyi

where
me = rain{ fIxi 1,.. .', Xk 1, aJyI

We turn now to describe the hierarchical algorithm which generalizes the one-

dimensional algorithm in [8] to multidimensions and general geometries.

We denote by Jm(i) the stencil of m cells which is assigned to Ci at the mth step

of this algorithm

Jm(i) = {ii, Im} (7.6a)

and by J* the indices of all the side-neighbors of S, = U Cj, i.e., the cells in the
jEJm

exterior of Sm which share a common side with &Sm.

With Jm(i) we associate an invertible system of m linear equations

Q d(m) =-u- m) (7.6b)

rank (Q()) =m (7.6c)

which is obtained from writing the m relations

A(Cj) Ri(x; )= j , jE Jm(i) (7.7)
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in the form (3.7)

Qd =(7.8a)

where Q is an ni x K(r) matrix and d = (d, d.(r))T . We take Q to be tie first

in columns of Q, d( ..) is the first in components of d

d(-) = (d', d.) T (7.8b)

and
(  Ui .. ..=i (7.8c)

We begin the algorithm by setting

i1=i, Ji={i} ; (7.9a)

then for m = 1, K(r) - 1 we define

Jm+(i)= Jm(i)U{im+i} , im+i E J* (7.9b)

In order to select ?,n+] we consider the candidate stencils

J(j)= {i ij} j E J, (7.1Oa)

and the asociated systems of (m + 1) linear equations of the form (7.6b) corresponding

to them

Q 1(m+) = --( rn-) EJ, (7.lOb)

Next we compute d'+' whenever the corresponding system is invertible. We take Cm+i

to be the j for which Id +1 1 is minimal, i.e.,

*d(m+E) Min .d+') (7.10c)

Here I I denotes some weighted norm or seminorm.

After completing this do loop, we get the desired reconstruction (7.1) by setting

d = d(  (7.10d)
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We observe that J,* includes all the side neighbors of J,,(i) and thus span all

possible directions; therefore it is possible to find j in J,*, so that

rank

Furthermore. if Jm(i) is in the smooth part of the function zi(x) and J,, includes a cell

in the smooth part of u(x) which is (lirectionally suitable, then J,,,+ (i) will also be in

the smooth part.

In the following we propose an efficient implementation of this algorithm, which

can be viewed as an ordered Gauss elimination with adaptive row-pivoting.

In this implementation we work with the original form of the equations (7.8a),

which are ordered as follows: In the mth step of the algorithm, the first m equations

correspond to I,,' , i. in Jm(i) (7.6a). These are followed by all the equations corre-

sponding to . We assume that at the beginning of the step the first m equations

are in upper triangular form, and that dj, di-1 have been eliminated from the

rest of the equations. As is customary in Gauss elimination we add the RHS of the

equations as an extra column in an extended matrix. Thus the extended matrix Q(m)

at the beginning of the mth step is as follows

07
=(m 0 .. (7.11)

0 .

We start this algorithm by setting Q(l) to be the 1 x (K + 1) matrix which corresponds

to the equation for the cell C,.

Given Q(m) we show now how to evaluate im+l and Q(m+1). We begin by adding

to Q(m) the equations for all the side-neighbors of C,, thus completing the set of extra
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equations to that of J*. (Note that duplicity of equations is possible, but this does

not interfere with the execution of the algorithm.) We use the diagonal elements in the

first (m - 1) equations to eliminate di, d,,,- from the additional equations. The
^(11) (M + )

next stage of the algorithm is to use q,,,,,, to eliminate d,, from the (m + )th equation

and on. Doing so, we are now in a position to ferm Q m) which is an upper triangular

form of the system (7.10b), by moving any of the equations for j E Jor to the (m + 1 )th

row. d(m+1) in (7.10b) can now be computed by back substitution with the appropriate

RHS which is stored in the (K + I)th column of the matrix.

After selecting imn1 by (7.10c), we form the matrix Q(,,+1) by assigning the equa-

tion of the cell 1,,+1 to the (m + 1)th row. This completes the mth step of the algorithm.

Once we have computed Q("), the required solution d is obtained by back substi-

tution.

We remark that if we take in (7.10c)

Id(r "Il = [dm+1I (7.12)

i.e., the semi-norm which assigns to a vector the absolute value of its last component,

then there is no need to back substitute in every step of the algorithm. Our numerical

experiments seem to indicate that this is a viable practice.

We have termed this procedure as ordered Gauss elimination with adaptive row-

pivoting for the following reasons: "ordered" - because we feed in equations, i.e., cells,

in a particular order; "adaptive" - because the criterion for selecting the clustered cells

is the minimization (7.10c) of the derivatives of the reconstruction at the centroid of

the ith cell. Within the context of adaptive-stencil schemes this is done anew at each

time in each cell and the result depends on the local smoothness of the reconstructed

function.

In the following we show how to use this procedure in order to construct fixed

stencils which minimize the reconstruction (or interpolation) error of a given function.
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This is done by setting the problem so that the vector d in (7.6) and (7.8) is the

reconstruction error of the function and its derivatives at the centroid.

Let us denote by f(x) a given function and denote its derivatives at the centroid

of the ith cell by ff,

f f(ci) 0 < H < - I (7.13a)

and its cell-averages by fi.
fj = A (Cj) f (7.13b)

Let us define the vector T, -=(f), by

r-1

-j = fj - 1: Z aj,tft (7.13c)
k=O t1=k

and consider the application of our adaptive algorithm to the solution of the set of

equations
r-1

S ajE = T) (7.14a)
k=O ItI=k

for the unknowns E, = EI(f).

Let us denote the stencil which the algorithm assigns to Ci by J(i; f), and denote

by {Ftj the solution to the system

aj, Ft=f , jE J(i;f) (7.14b)
k=0oItI=k

clearly { Ft } is an approximation to { ft } and

Et = F -f (7.14c)

Let us denote the value of the norm in (7.10c) by IE(f), and examine the way in which

the algorithm arrives at the stencil J(i; f): We start with the cell Ci, and at each step

of the algorithm we look at the side neighbors of the existing stencil and add to it the

one which minimizes E(f). We observe that several functions f 1 (x),..., f8 (x) can be

considered simultaneously by adding the appropriate terms (7.14a)

(f1) ,...,, (f3)
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as an extended matrix for the Gauss elimination and use in (7.1Oc) IE(ff,...,fs)j

which is some weighted combination of IE(f 1 ) I,-., IE(f ) 1.

This observation provides a very useful tool for the construction of stencils with

special properties. Attempting to minimize the reconstruction error at the centroid t:

of some smooth function will certainly favor a centered stencil; if we use a discontinuous

piecewise-smooth function f(x) the algorithm will select a stencil which is as centered

as possible subject to the constraint that it should not include the discontinuity.

The simplest way to construct a centered stencil of t(r) cells is to apply this

procedure to monomials of degree r

(X) = X , t'l = r (7.15a)

Ivv noLe that e(f) (7.13c) takes a particularly simple form:

r-1 at )

= - a,,, x (X (7.15b)
k== Itl=k [j

In order to construct the directionally biased stencil Jk(i) for (7.4) in an automatic way

we can use this procedure with a piecewise-polynomial function f(x) of degree r which

is discontinuous at the face OCi, or alternatively to use a combination of monomials

of degree r and a step-discontinuity function which is aligned with OC k .

Another way to construct Jkt(i) is by using this procedure with a monomial of

degree r, but restricting the side-neighbors that we feed into the algorithm to those

which are contained in the prescribed conical sections.

We remark that at the end of all these procedures we have an LU decomposition

which is needed for the reconstruction; as is customary in Gauss elimination we store

both L and U in the same matrix.

We observe that this technique can also be used within the adaptive stencil schemes

in order to bias the selection of stencil towards a central one. This can be accomplished
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by adding to the extended matrix (7.11) a column of e(f) (7.13c) for some smooth

function f, and properly weigh Idl with IE(f) in (7.10c).

We remark that the side-neighbors which we feed into the algorithm are restricted

to available ones. Thus near the boundary 09D, the growth of the stencil is along and

away from 0aD.

We would like to point out that the ENO techniques for reconstruction apply as

well to interpolation. To get ENO interpolation all we need is to replace the matrix Q

for the cell-averages (3.7a) by the matrix Q (3.16) for the point values.

Finally we relrark that up to now we have stressed the desirability of biasing the

reconstruction toward a central stencil for reasons of accuracy and stability. Taking

into account the cost of selecting an adaptive stencil, it makes sense to use a fixed

central stencil altogether, unless it contains a discontinuity. In order to decide whether

this is the case, we can use the quantity 9i (6.3) which serves as an automatic switch

in the context of hybrid reconstruction (6.4). 9i is 0(1) when the stencil contains a

discontinuity and 0 (hr) when the function is smooth there. Therefore it seems possible

to determine some threshold c, so that an adaptive stencil is used only if 9i > c. See

Appendix 1 for more details.
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8. Hyperbolic Systems of Conservation Laws

In previous sections we have considered the reconstruction of a piecewise-smooth

function u(x) from its given cell-averages purely as a problem in the ap)roximation

of functions, without actually specifying whether u(x) is scalar or a vector function.

When we are dealing with a vector function u(x) on the level of approximation, it

is up to us whether to consider its components as independent scalar functions or

to treat the whole vector as a single entity. Accordingly we can either apply the

adaptive reconstruction to a vector function in a component-wise fashion, which means

an assignment of independent stencils to each of the components, or treat the vector

as a single entity and assign a single stencil for all components. In the first case we

use I I in the expressions of Section 7 as an absolute value of a scalar quantity; in the

second case we interpret I I as a vector norm.

In this section we discuss the additional aspects that come from the fact that the

reconstructed function u is a solution of a hyperbolic system of conservation laws.

Since u = u(x, t) is not only discontinuous but also time-dependent, it is possible

for discontinuities to come close to each other and interact. Around the time of inter-

action, no smooth stencil is available in the section between the nearby discontinuities

and some spurious oscillations in the numerical solution can be generated. Our nu-

merical experiments seem to indicate that the component-wise reconstruction is more

robust in this case than the vector reconstruction.

Another related problem is the fact that some derived quantities, i.e., functions

of the conserved variable i, are subject to constraints imposed by the physical phe-

nomenon that is being modelled, e.g., density and pressure are nonnegative quantities.

Numerical experiments with the Euler equations of compressible gas show that slight

oscillations in the conserved variables due to interaction can cause much larger oscilla-

tions in derived quantities, probably due to the fact that the conserved variables are out

of alignment. Fortunately we find that this problem is less severe in multidimensional
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calculations than it is in the one-dimensional case, where all interactions are necessarily

frontal.

In the one-dimensional case we can overcome this difficulty by using locally defined

characteristic variables, since this set of variables is smoother than the conserved vari-

ables during interaction of discontinuities. This technique applies in a straightforward

manner to several space dimensions: For the purpose of reconstructing u in the cell Ci

we consider the locally defined linear transformation

u=T(Fi)w , w=T - 1 (8.1a)

and observe that due to the linearity of the transformation

w-j = T - 1 (Ui) dj for all j . (8.1b)
aew

We apply component-wise reconstruction to the values in (8.1b) to compute !L- at the

centroid ci. From these values we get a reconstruction for u by computing derivatives

of u at the centroid by

Ot IC, = T Ix t C

In the one-dimensional case we take T(FI) to be the matrix of eigenvectors of the

Jacobian 2L. To get a smoother set of locally defined characteristic variables in several

space dimensions, we have to identify the normal direction to the discontinuity in u

there, and use the eigenvectors of the Jacobian matrix of the normal flux. We remark

that since (8.1) is completely local, the formal accuracy of the reconstruction does not

depend on the choice of normal direction.

We turn now to describe another technique that works well for solutions of Euler

equations of compressible gas in 1D. In this technique, we use the variables (p, q, p), i.e.,

density, velocity, and pressure in order to reconstruct the conserved variables, which

are density, momentum, and total energy. There are two reasons for the success of this

approach:
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(1) p and p are variables that are constrained by the physics of the problem to be

nonnegative. By selecting a stencil in which these variables are smoothest enables

us to better control the oscillations in these quantitiCs.

(2) q and p are continuous across a contact discontinuity, which is the central wave

in the Riemann problem corresponding to the interaction. Consequently these

variables are smoother than the conserved variables in regions of interaction.

Let us now return to the general case, and assume that there is a preferred set of

variables w(u) which is a nonlinear transformation with a well defined inverse u(w).
Let us also assume that we have analytic expressions for , w(u(x)) and -Tn(w(r)).

The quantities immediately available to us are Wt (Uj), which by (3.13b) satisfy

-(j) = w(u(cj)) + 0 (I 2 ) (8.2a)

The coefficients in the 0 (h 2 ) term above involve the quantities

A(Cj)(x - cj) , l =2 , (8.2b)

WIICI,, in smoothly varying grids, are point-values of some differentiable function.

Hence for grids which vary smoothly enough we can use a component-wise interpolation

I(x; w(U)) in (3.14) to get 0 (h2 ) approximation to derivatives of w(u(x)) at the cen-

troid ci. From these values we can compute

W) If = 1,2 (8.2c)Oxt  
= i I

to 0 (h 2 ) and thus obtain an 0 (h') reconstruction Ri(x; U-) which results in a third-

order accurate scheme.

We observe that unlike (8.1a) the quantities { w (Tj) } are defined globally. Hence

this procedure for third-order schemes is easier to program and less expensive than

that of the locally defined characteristic variables. When we use this technique for

the Euler equations of gasdynamics in 2D and 3D it is advisable to define a local
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normal direction in each cell and represent the velocity vector in normal and tangential

components. This is a line-ar transformation which does not interfere with the formal

order of accuracy of the scheme.

We remark that this technique can be extended to the general case in two ways:

(1) Use the values of {wk (Tij) } for the purpose of selecting a stencil in which wk (0)

is smoothest. Use this stencil for the reconstruction of the whole vector ii, and

compute derivatives of u at the centroid ci. From these derivatives of ii compute

analytically
OeWk(U)

to the desired accuracy. After doing so for all components k, get the derivatives
au (w())

of u at the centroid from the analytic expression for ax

(2) Use local linearization: Define

eOu
T U u(iii) (8.3)

and proceed as in (8.1).
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9. Rectangular Grids

In this section we describe the schemes of previous sections for the case of rectan-

gular grids, and point out some of the simplifications that result from considering this

case. At the end of this section we shall describe in detail the third-order case which

is particularly simple and seems to be of immediate practical importance. To simplify

notations we consider only the two-dimensional case; extension to 3D is immediate. As

is customary we denote the space variables by x and y, and the flux components by f

and g.

We consider the IBVP

ut+fx+gy=O , (x,y) E , t >0 (9.1a)

u(x,y,O) = Uo(x,y) , (x,y) ED (9.1b)

with given boundary conditions on av. Typically the exterior part of D is rectangular.

In many applications V contains holes which correspond to rigid objects, in which case

the interior part of OD is in general not aligned with the grid, and may even be curved.

In the latter case the cells which are side-neighbors of the interior part of &D are

treated by the general formulation of the previous sections. In here we shall consider

only rectangular cells, and to simplify things further let us assume that the grid is

uniform

xi = ihx ,I= l,...,Ix (9.2a)

yj = jhy , j=1,. -,Jy (9.2b)

The cells are identified by the pair (i,j)

Cij = [xi, xi+]x [yj, yj+] ; (9.3a)

c,j, the centroid of Cij*, is

ci,j = (Xi+ 11 2 , Yj+1/2) (9.3b)
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Discarding the multi-index notation., we express the Taylor expansion of u(x) around

cij by

k=O f=O (9.4)
Oku

O0 Oyk _e (Xi+ /2,Yj+1/2) + 0 (h r )

Here we assume that u is sufficiently smooth, .x - .ri+/ 2 = 0 (h,). Y - Yj+1/2 = 0 (hy).

Applying A (Cij) to u(x, y) in (9.4) we get that all the terms with odd f on odd k - f

in the summation above vanish due to anti-symmetry; thus we get

[9]
i,j 2 0 (h2O 0 + +0 2[ (9.5a)

k=O

where [ ] denotes the integer part and

o, = 2 -k/(k + 1)! (9.5b)

For r = 6 we get in (9.5a)

Uij = U + 1 h U)
1 24 x Y(9.5c)

+ 1-(h ux + 2h2hu 1 ,Y, + h4U Y,,Y] + 0(h 6 )
1920 xX Y Y Cij

We turn now to describe the reconstruction R (x, y; Ui), where U = {Uij }. As before

we rewrite R i (x, y;iU), the polynomial of degree (r - 1) for the cell Ci,, in the form

of a Taylor expansion around the centroid. To simplify our notation we translate the

origin of the coordinate system to the centroid and scale it by h- and hy respectively,

i~e.,

X - Xi+l/ 2 -4 Y - Yj+(/2x y ;(9.6)

for simplicity we retain the notation (x, y) for the scaled system.

R (x, y;i U Do '0 + 1 (k) X) xfykfDt,k t , for IxI < 5 , u1 < . (9.7a)ni~xy;) D '° + E e 1) --
k=I 0
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The accuracy requirement (3.5a) can be expressed by

= (h+)O(hv)k-1 OkU + 0(hr) 0<k<r-1, 0<f<k" (9.7b)&xtayk - f (0,0)

the terms Dk - ' correspond to undivided differences.

In an analogous way to (9.5), we get

DO'° = Ui,j - N o -> ( k ) D2,2(k-t) , (9.7c)
k=1 t1-O

which is equivalent to the conservation property (3.1b). For r = 6 we get from (9.7c)

1 (D2,0 + D0 o 2) - 1 (D 4 0 4 2D2, 2 + D0 o 4) (9.7c')

D' ° = - 14 1920

We turn now to describe the simple form that the numerical scheme (5.1) takes

for rectangular grids. To do so we introduce the Taylor expansion of the flux (4.9a) in

the form

r-1 k
f (Rij(x,y; U)) = F°'0 + E 1 E k Xt YkCFek- + 0(W) , (9.8a)

k=1 t=0 f

r- 1 k

g(R (x, y; V)) = G' + E k! (k) xtyk-'Gk-t + 0 (hr) (9.8b)
k=1 t=O

whereforO<k<r-1 , O< <k

P k- 1 = (h.) t (hg)k-, 8xt ,k t f(u) + 0 (hr) (9.8c)
491Yk 1 (0,0)

Gt k- 1 = (h.)t(hy)k- t _,9ktg(u )  + 0(hr) (9.8d)
a~t,9 k-1 (0,0)

The scheme (5.1) takes the form
d 1- - 1
dui, =- - 1 (yi+l,j - fij) - 1 (gij+i - gij) (9.9a)

with the numerical fluxes

fij = 2-i,,j + fij u ) (9.9)4

42



fj= ' -Y 0% ~, 0 1 (9.9c)g 2~ - jtg_1 +i~

where for rn 0, 1

r-1 [k/2]

f = D°,° + (-1)k(m+ k Z 2 + I , (9.9d)
k=1 1=0/

r-1 [k/2]

m= D,O Y'(_)k(n±1+)k E k + 1 )D2~-t(.e313 ±= 1=0 (2 + 1 9.e

r-1 [k/21 k + 1

D°7 F( - 1)k(m + l)ak +) F (9.9f)
k=1 1=0

[k/2/r-1 k2 + 1 Fk-2' (9.9g)

O' O °' Z - ) k ( m + l' 0!k  2f + I1

k=1 t=O

ok is given by (9.5b).

We return now to describe an algorithm for reconstruction, i.e., how to compute

D"k - t in (9.7) to 0 (h r ) from the given cell averages { I,,j}. The most convenient way

to do so in rectangular grids is via a process of deconvolution [9], which is based on the

observation that the sliding-average of u

-g(x,y) =A([x- h./2,x + h./2] x [y- hy/2,y + hy/2]) . u
1 h,/2 ["./2 9,a
I u(x + , y + 77)d d,1  (9.1a)

h-h y f-hy /2 -hg/2

is a smooth function of (x, y) (in fact it is one order smoother than u(x, y)) and that

the given cell averages are its point values at the centroid, i.e.,

Uij = V (xi+ 112,Yj+1/2) (9.10b)

Expanding u(x + , y + 77) in the integral as a Taylor series, we get that the relation

(9.5) holds for every (x, y). Therefore we can differentiate this relation to express

derivatives of the sliding-average U in terms of derivatives of u. As in [9], once we

properly truncate the RHS and write these relations as a system of linear equations,

we get an upper triangular matrix which is easily inverted by back substitution.
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Before deriving this system of equations, we introduce the notation

(h,)'(()kf ak T  + O(hr) 0 < k < r-1 , 0< ( < k (9.11a)
(0,0)

= D i' j (9.11b)

We derive this system of equations by symbolic differentiation of (9.7c), where

differentiation is equivalent to increasing the appropriate index. Doing so we get

2 k k

"p'q-p = DP q-p + O 2k I ( ) D 2 t+p 2 (k-t)+q-p

k= t=O

for 0 < q _ r - 3 0 < p r-3 - q
(9.12)

We remark that this deconvolution procedure applies also to smoothly varying

grids, provided that the corresponding sliding-average function (9.10) is sufficiently

smooth.

Reconstruction is accomplished by substituting an appropriate individual differ-

ence for {- mn} in (9.12) and then inverting this upper triangular system of linear

equations to get {Dm ''} by back-substitution. Thus to get a fixed-stencil scheme with

a centered stencil we use centered undivided differences for Dp'q- these schemes are

naturally of odd-order. For adaptive-stencil schemes we use differences of U which are

computed within the assigned stencil. We observe that we do not have to actually se-

lect a two-dimensional stencil and that the same computational task can be performed

with tensor product of one-dimensional stencils as follows:

Step 1

(i) Using values of {iT+m,,}, m = 0, ±1, ±2,.., apply the one-dimensional algorithm

(see (81) to select a one-dimensional stencil of r cells starting with i(i,j), and use

this stencil to compute

{DPI 0 1 , O<p<r-l (9.13a)
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(ii) Similarly in the y-direction, select a y-stencil of r cells starting with 1(i,j) and

computc
{, , 0<q<r-1 (9.13b)

Step 2

Compute mixed derivatives Dp q as follows:

(i) Apply DP, a pth order finite-difference operator in the x-direction to V 0'P

Dpq= DPD°for Ir- 1] < q <r -1 , 1 <p min[q,r- 1 -q] (9.14a)
X L 2 J -

using values of D0,q in the x-stencil for (i,j), i.e.,

{Dq , 0 < -Z (i,j) _ r - 1 (9.14b)

(ii) Similarly in the y-direction compute

= 2[ 1] <p r-1 , l<q min(p,r-1-p) , (9.14c)

using values of

W,,O , O< -(i,j r -1 (9.14d)

Mixed derivatives D'" that are evaluated both by (9.14a) and (9.14b) can be

either averaged or minmod'ed. The values used in (9.14b) and (9.14c) should be

closest to (i,j) as possible.

We observe that due to averaging over cells and faces, many of the mixed deriva-

tives cancel out in the expressions for the point-value and the numerical flux. As we

have mentioned in Section 5, the quantities { F k, } and { G k,t } in (9.9) can be computed

either by an analytic Taylor expansion (5.2) using values of { D k,t }, or alternatively
by finite difference operators applied to and {g(DOO)We ca computef(ij ) n ,i~j )I " We can compute

these derivatives in exactly the same way as in (9.13)-(9.14) using the same stencil.
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We turn now to consider the case r = 3, whichl corresponds to a particularly simple

scheme: In (9.12) we get

= U , 1 (i ,, --o.2
D = , - 2--4 ± D * (9.15a)

DO= . = D (9.15b)

Do" =P'1, D0 2 = p 0 ,. (9.15c)

in (9.9) we get for m = 0. 1

t,, DO, ° + 1(_1)m+'DlO + 21 (302,o + Do,2 (9.16a)

- m F0+1~,0 2- ' 'F~ (E 20 + 2 )= F0 +- (3F2, + 24 (9.16b)

and symmetric expressions for the y-direction. Note that we do not have to compute the

mixed derivative term D' in (9.15) because it is not used in (9.16) due to cancellation.

Therefore the reconstruction (9.12) is terminated at the end of Step 1 (9.13) for the

one-dimensional derivatives. Once we have D 2'0 and Do'2 we compute D0 '0 by (9.15a),

and

F0'0 =f (D 0 '0 ) , '0 = g (D 0 '0 ) (9.17a)

Now F"'0 , F 2,0, F ,2 and Go' 1 , Go, 2, G2 ,0 can be computed either by an analytic expan-

sion (5.2) or by differencing the values of F' ,0 and G°'0 on the one-dimensional stencils

that were assigned to the interpolation of U in Step 1, i.e.,
2,0 _F2,o 0 0F, ~

L'-. F' - 2F0 '0  F'
i, 1+2,j i+1,j I ,j

F". = F"' 0 ' 0 + -i- 1/2,) 2 (9.17b)
Il +1,j Ili

F°,2 = F 0  2F 0  + F0 '0
, J,+2 ,j+1 ',j

with symmetric expressions for G; here = i(i,j) and j = j(Z,j).

In Appendix 2 we describe the implementation of this third-order accurate scheme

for the solution of the Euler equations of compressible gas.
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We end this section with a brief review of the fourth-order scheme (r = 4). From

(9.12) we get

DOO = 1 ,o - (b2 0 + D0,2) , (9.18a)

D 0  '0 - I (D30 + D,2) D 2,0 = ,D2, D3 ,0 = 3 ,0  (9.18))24 ,

-) 2- + ) 2,1 D 2 = j-0,2 Do3 = o,3 (.

22,1 = D2,1 2 = D 1,2 (9.18d)

in (9.9) we get

U^,, + (3D2'3 + DO,)+ 1 ) [DI' + 24 + 2 , (9.19a)u =D°'° + - (D +D + (-1 "O + 24~ D,

F ° '° + 1 (3F 2' ° + F0 '2) + 1(- 1  FI 'o + 24', + F1 2 (9.19b)

and symmetric expressions for the y-direction. After completing the computation of

the one-dimensional derivatives of D in (9.13), we get D 2'1 by (9.14c), i.e.,

D2,1 (D2 1  D 2,0) (9.20a)i~j = \ i,j± -ij)

depending on which of the points (i,j + 1) is included in the y-stencils; if both are we

can define D 2 " by either

, D 2'°  2'Ij DI' 0+ (9.20b)

or

D2, 1  D 2 )0 (9.20b')ij 2( D j+ 1 - -ij- ;

D1 !2 is computed in a symmetric way.

When we compute derivatives of f and g by differencing, we follow the exact same

procedure that was used for computing derivatives of u.
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10. Time Integration

The semi-discrete formulation (4.1) can be expressed in operator form as

dv = S(v(t)) , v(t) {v,(t)} 10. 1a)
dt

kCk -k

In order to construct an ENO scheme from the semidiscrete formulation, Shu [16i has

designed a class of multistep time integration of the Runge-Kutta (RK) type which has

the property that when applied to a total-variation-bounded (TVB) spatial operator

S, it is also TVB. For a third-order scheme this can be written as

VO =v n I Ko = S (vo) (10.2a)

v1 =V+ K , K 1 = S(vi) (10.2b)

1
V2 = v0 + -(Ko + K) , K 2 = S(v 2 ) (10.2c)

4 1

vn+ 1 =v 3 =v + -(Ko + Ki +4K 2 ) (10.2d)

Since v0 , vj, and v2 in (10.2) correspond to different levels of time, the location of

discontinuities in these functions is different. A discontinuity in the solution which was

located near the boundary of the cell Ci for v0 may very well be located at a neighboring

cell for vj. This observation suggests that the stencil-selection procedure, which is an

expensive part of the algorithm, has to be repeated at each step.

In the following we present a single-step time integration method

7+1 - v 7 2  fJ,* (10.3a)
kJ

k
which is a modification of the algorithm in [8]. The numerical flux fj,* is of the same

form as (4.6a)

48 ) (1 . - , (10 .3 b )
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except that here

f, k". [E(t)Rj]dsdt (10.3c)

and

0Ck I J8C f(E(t). Rj)d.dt (10.3d)

We note that uj(x,t) = E(t)Rj(x;v') is the small-time solution of (2.1) with the

smooth polynomial initial value uo(x) = Rj (x; v'). The approximations that we use

in (10.3) are obtained by replacing the integrands above by their Taylor expansion in

space and time around the centroid of the cell cj and t = 0:
r-1

uj(x,t) = E(t)Rj = f k. (x - ci) It'1D,n) + O(hr) , (10.4a)
k=0 III+m=k

ojej+m

D(em) = u(x, t) +O(h r - 11l- m )  (1O.4b)D~ ~i~x) =O ... 'Ox'Oat- X==C,,=0

r-11
f(E(t)Rj) = Z : E (x - c,)It' F(,,,, r )

k0 O It+mmk

F(t,m) = ±xO, f(u(xt) )  + O(hr - It I- m) (10.5b)
(9XIZ .. at M1 X=Ci,t=O

Again the expressions for and fk take the same form as (4.8a) and (4.10)

kbt,m)D(t,m) , 1O.6a)

k=0 Itl+m=k

k=o ltl+,,=k

except that here

(m I )I (x cj)d- m + lb (10.6c)

and bk is (4.8b); t = f. ,e) is the vector of s indices for the space variables and

(v, m) = (t,... , t, m) is the extended vector of m + 1 indices where the last one, m,

stands for time.
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After computing {D(e,o), F(() I} for 0 < li < r - 1 as in the semidiscrete scheme

we proceed to compute D(t,m) and F(i,,,) for 1 < m < r - 1, 0 < I - r - 1 - m by a

Cauchy-Kowalewski procedure (see [8]) as follows:

DO for m = 1,.r- 1

at, =-div f , 0 < lt r - 1 - m (10.7a)

Oxtatm f Ox um- at Ot 0 <r/-_r--m , (10.7b)

END DO.

Here we have used differentiation of the PDE (2.1a) to get (10.7a) and H m denotes

the functional dependence

tf (u ) z- H Ui Or" 7 am  (10.7c)atm  a~t ) m

In the following we present two algorithms for the implementation of (10.7) which

are a direct extension of the ones described in Section 5 for the semidiscrete case.

Algorithm 1

Compute {D(t,o),F(jo)} , 0 < Itl _5 r- 1 as in (5.2).

DO for m = 1,--.,r-1

D(t,m) = - DIV { F(t,m-l) 0 0 < 5 r - 1 - m (10.7a')

F(t,m) = HIm(D(.,l),'", D(,,m)) , 0 <_ Il r - 1 - m , (10.7b')

END DO.

We have used the notation "DIV" for the analog of "div" in terms of indices; Hi'm

denotes the functional dependence in (10.7b) and * stands for spatial derivatives of

order less or equal iel.
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We observe that once {D(t,o)} are computed, all other calculations in (10.7') are

performed within the cell.

Algorithm 2

Compute {D(eo),F(,)} , 0< Il< r - 1 as in (5.4)

DO for m = 1,-.-,r- 1.

(i) For all j in the computational domain compute

D(o,m) = - DIV{F(o,IM)} (10.8a)

F(O,m) = H m (D(o,o), • ,D(o,m)) (10.8b)

(ii) For all j and 0 < II < r - 1 - m compute

D(t,m) = - DIV{F(t,m_.)} (10.8c)

at
F(tM) at Ij (x; F(o,m) )__ (10.8d)

END DO.

Here Ij(x; .) denotes interpolation on the stencil that is assigned to the cell Cj.

As in Section 5 we observe that Algorithm 1 is particularly suitable for unstruc-

tured grids, provided that the analytic expressions for Ht,m are available and are sim-

ple enough; this is the case for the Euler equation of compressible perfect gas - see

Appendix 2 The second algorithm is most suitable for structured grids where the

differentiation of the interpolation in (10.8d) can be expressed by some differencing

operator. In this case the operational count for Algorithm 2 is rather low.

We would like to point out that the fully discrete schemes described above differ

from the abstract scheme (2.9) in one important feature: They use E(t) - R, (10.3d)

rather than E(t). R in (2.9). The use of the solution to the Riemann problem across the
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boundary element 8C for the whole time-step ignores tle interactions at the vertices

due to the meeting of different states there. Consequently the CFL limitation of these

schemes is , rather than 1 for the abstract scheme (2.9).

Comparing the fully discrete versions with the semidiscrete formulation it seems

clear that the semidiscrete formulation is easier to program but it is more expensive to

use.
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Appendix 1. Hybrid ENO Reconstruction

In this appendix we describe some preliminary results on the hybrid reconstruction

thai was symbolically described in Section 6.

First some notations: We consider a stencil of (r + 1) points with uniform spacing

h

(0 0, il,.- it')! (A 1.1a)

in our application ij are taken to be cell-averages. Let us (lenote by T the translation

operator

Tfij = u2j+j (A1.1b)

and by A the undivided forward-differencing operator

(A1.lc) A=T-I, I=T

and denote
(A1- 1 = (A)kiij.(Al.ld) Ak

Next we express A in terms of {L }, 0 < j < r - k in the following way

r-k

Ar= (A)r-kk (Tk I)r-kAk = r( ek (lkefAk

t--O

Thus
r-k r

0 -1=1kk t ( (A1.2)

t=O

We define 0 k, the automatic switch for the k-th derivative, by

r-k
k-ki

ok= I01 1=o (A1.3)r-k r-k

1=0 1=0

and observe that

0 < o k < 1. (A1.4)
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For computational puiposes we add a tolerance e to the denominator in (A1.3) and

take it to be of the size of the round-off error.

We consider now two important cases

[zkj = 6ete, (Al.5a)(i)
A k = (-1) 1jxkj, (A1.5b)(ii)

where 6 1,k is the Kronicker-6. The first case corresponds to a step-discontinuity in u(k)

the k-th derivative of u; the second case corresponds to a discontinuity in ii(m), m < k.

It is easy to see that in both cases k = 1. Thus

Ok = 1 for a discontinuity in u-(m), k > m > 0. (A1.5c)

Next we consider the product 0kf)k in the case that i(r) is continuous and as in

(9.11)

Dk = hk ij(k) + O(hr) (A1.6a)

Clearly

= hl k") [O(hk Ii(k)) + O(h')] = 0(h'); (A1.6b)
Iekbkl =0 hklI(k) l

note that this remains so even when u(k) and some of its derivatives vanish at a point,

i.e.

u(k) = ... - u(k+p - 1) = 0. (A1.7a)

In this case the denominator in Ok is O(hk+P), but so is bk. Thus

0k = 0(hr-k-P), ODk = 0(h"). (A1.7b)

Next we consider the case of a discontinuity in u(m), k < m < r. In this case

0 = O(hm ) and A, = O(hk), hence

O k = 0(hm-k), 6k = hki(k) + O(h") (A1.8)
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We summarize all these cases by

0 k>m_>O
(I -- Ok)~ k = ) )k + O(h"' ) k < rnt r, 1 < k < r - 1; (A1.9)

bk + O(h') m > r

here m is the-order of first discontinuous derivative of ii.

We turn now to consider the r-th order reconstruction (9.7) in the one-dimensional

case

r-1(1 10a

Rj(x;it) = D o + .Dkxk. 2 (A1.Oa)
k=1

Dk = hku(k)(O) + O(hr), bk = hkii(k)(0) + O(hr), (A1.1Ob)

where {D k } are obtained from {!)k} via deconvolution, i.e. by inverting the system of

linear equations

D Dq D+ E a2kD 2 k+ q , 0 q < r -1. (AI.11)
k=1

Setting 0' = 0 we define the hybrid reconstruction as (A.10) in which {Dk} are obtained

from the system

(1 - q)D q = D q +  S 2kD2k+q for 0_q<r -1. (A1.12)
k=1

The most natural choice of order of accuracy for this hybrid schemes is even r = 2 9

with Dq being the appropriate central differencing for the stencil

0- ,...,io,... ,i), r = 2s. (Al.13)

We observe that if Pi has a discontinuous derivative U(m) in the stencil (A.13), then

from (A1.9) we get that (1 - 0k)D!k = 0 for k > m > 1 and from (Al.12) Dk = 0 for

r - 1 > k > m > 1. Hence the reconstruction (Al.10a) becomes a polynomial of degree

M-1.
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We turn now to examine the case r =2 of a second-order scheme. In this case

Do DO = ii,(A 1.14a)

D' =(1 - 0)D'

with

=IAI ± I'AllI -AI I + IA IA.1b

Taking

-6 l - ii. 1 ) - !(W + Al) (A 1. 14c)
2 2 1 0

we get

(1 910)D 1  - [JAI ~ I + 6L - An]O (A 1. 14d)

Recalling that

min(a, b) ( -a + b - la- bjj
2

we see that

(1 = 5SS. min(IA'I, [AH1 ) if sgn (A') = sgn (A') =S (11e
(1 1.D 0 0 1 otherwise 01( .1e

which is the famous minmod function m(Al, A'). Therefore
0 1 

1
R(x;ifi) = 5io + x mJ~i) xJ <- (A1.15)

which is TVD.

For r = 4 we get in (A1.12)

Do =(1 -6)D = Do+ a 2 D, (1- 01 )b' =D' + 2 D.
(A1.16a)

(I 1). = D 2 , (1 _ 93 )f) 3 D

which is inverted to give

D3 =(I1_ 3 )D3 , D 2 =(1 2 )D 2 , D' =(1 - 0)0- a 2 (1-_&)D 3

Do =DO -a20 02 f)2(Al1. 16b)
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with 01 = IA4,1I(A'_21- 31A'_11 + 31A' 1 + 1A]).
f32 =3L4 A2 11 ± 3IQb

4421 2 2 + _,_ 0 (A1.1Gc)

a  _21/(I - a 21 !A a i

and
D ' = -( 2 - (- 2

3 1
D2  4 1 

- U, + ?I-) Ii- + U-2) -Uo, (A1.16d)

f)3 = (2 - I C12 -
1)/)3 _( _ "-) + ( 2- U-2).

The extension to the two-dimensional reconstruction (9.7) is straightforward:

Rij(x, y; u) = D,0 I+ l -D -

k=+ (=O (A1.17a)
1 1

for IxI < 2, IyI < 2

with DP' q given by inverting the system of linear equations

(1 - OP)(1 - q- p)D"'q- p = DS,q-P+ (k) D 2t+p,2(k-t)+qp

k=I t=0

for O<q:r-1, O<p<r-1-q,
(Al. 1 7b)

where OP and Oq are the maximal value that the corresponding one-dimensional 9 k

(A1.3) takes on the two-dimensional stencil.
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Appendix 2. Euler Equations of Gas Dynamics

In this app)endix we dlescribe a particular implementation of the third-order accu-

rate schumiie (9.15)-(9.16) to the Euler equations of compressible polytropic gas:

ut + f, + gy = 0 (A2. 1a)

(p,pqr~pqY, E)T, f~)=q'u + (0, P,0, qr p), (A2.lb)

g(u) = qlu + (0,0, P, q1P)T.

with the equation of state

P= - - 1) [E - ±pq2); (A2.lc)

here q' (x)? + (qy) 2 , and we denote m' = pq'i my pqy.

In this particular Implementation we use the primitive variables

w=w(u) = (p, qx,q1, p)T (A2.2)

for the purpose of reconstruction (see the discussion in section 8). Given cell-averages

{i~ we compute for all 2',j

ti = w(ii,1 ) =:w(ui,) + 0(h 2 ) (A2.3a)

and apply component-wise selection of stencil to z, i.e. each component 0j is assigned

two one-dimensional stencils ikj,) Jkj2) Usn j z 2k (ij2 J) we compute

for 1 < k < 4

., (h.) -2 +t ' (A2.3h)
k tbk

= ~ =ti)~. tb + (z - z -)~ (A2.3c)

and similar expressions for the y-direction. It follows from (A2.3a) that

=(h.)
2 u,,.(Ut) + 0(h3 ), D = h, w.,(u) + O(h') (A2.3d)
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The next set of computation is executed within the cell itself:

(i) Calculate ur, ux, uy, uY at the center of the cell from the analytic expressionis

of derivatives of v7(w), i.e.

= qxp + q'p x ,

illy qyp + qYp 1 , (A2.4a)

-1) ± [q'rnx + qrnx + qym ' + qymy],

and
rnz = pqxx + 2p.qx + p~xqZ
, .Pq + 2pxqy + pxxq y

E, = Pxx/(- - 1) + 1[m'q', + 2mr + m21 qxl (A2.4b)

1
+ 1lq, + 2myqy -4- my~qy]

and similar expressions in the y-direction. Using the values of (A2.3) in (A2.4) we get

approximations D , D_,, such that

.= hhu, + (h) D.,= h U + O(h') (A2.4c)

and similarly in the y-direction.

(ii) Calculate

U = (D + Dy,), f(u), g(u); (A2.5a)

note that u is accurate to O(h3 ), and therefore also f(u) and g(u).

(iii) Calculate fx, fxx, fyy, gy, gyy, g., from the analytic expressions of derivatives

of f(u) and g(u), i.e.

q'u, + q'u + (0, Px, 0, q7Pz + qzp)T,

f- q ux + 2qru, + qxu + (0, P. + 2 (q-).P + qxp)T (A2.5b)

fy qZuyy + 2qruy + q- u + (0, PuyO, q'Pyy + 2q'Py + q- P)T.

Substituting the values of u (A25a), D, D,, Dy, D!y (A2.3) and DZ, Dzz, Dy, Dy

(A2.4) in the RHS of (A2.5b) we get

F, = (h,) 2f(u), + O(h3), F.. = (h1 )2 f(u)yy +O(h3.), (A2.5c)
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F,, = (h)f(u)vy + O(h 3)1

and similar expressions in the y-direction.

(iv) Calculate (9.16), i.e. for in = 0,1
^m1 1,,+

M. u + 1"'Dr + I-(3Dx7 + D,,
- 2(A2.6)

-= f(ui) + (-1)yn+ F, + 1(aF 7 + ,

and similarly for the y-direction. This ends the calculation within the cell.

Next we compute for all i, j the numerical fluxes by (9.9b), (9.9c). After doing

that we can form the RHS of the semi-discrete formulation (9.9a) and update one of

the RK steps in (10.2).

As we have mentioned in Section 10, it seems rather wasteful to repeat the cal-

culations in (A2.3)-(A2.6) and (9.9) three times for all the steps of the RK algorithm

(10.2), when we can complete the update of the whole time-step by using (10.3) with

algorithm 1 in (10.7') i.e. to compute a modified formula for ft' and fm (10.6) in

which we add time-derivatives to (A2.6)
_ 11 1 1 1

,, u 1 + - 1)m+'(Dx + -Dx:) + Dt + -(3D 1 + DyVy) + -D,
1 21 1 1 (A2.6')

,'= f(u,,) + -1 (F. + - Ft) + Ft + -(3F,, + Fy) + -F,
22 2 24 3'

and similar expressions in the y-direction. After that we compute numerical fluxes by

the same formula (10.6b) using a single Riemann solver, and continue to compute v' +1

by (10.6a). To do so we have to modify the previous algorithm as follows: In (A2.3)

we also compute mixed space derivatives by

jk = , A+Dy, D,, A+D,) (A2.3')

where m is the minmod function and A± are respectively the forward and backward

undivided difference operators.

In (A2.4) we also compute

Dxy = hxhyu1 y + O(h3 ) (A2.4')
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In (A2.5) wve also compute

h.' I, 1 f (u),~ y± 0(h 3) G,y hV~g(ti) , + 0(ht:) (A2.0')

After (A2.5) we compu-te time derivatives and mixed time-slpace dlerivatives byV

Ut = -U.f+ ±g)

Ux -(fxx + 9, ) (A2.7a)

ZUvt =-(f~y + g9YY)

ft qfa +±qx't + (0,POqxP +qxPt )T

frt qxitzi + qf a1 + qxut + qxu--t (A2.7b)

+ (0, P1 ,,0, qxtP + qxPx + qxPt + qrPxt )T

and similarly for g I, g yt;

Utt = -(fhi + gyt),

ft=qx u + 2qxut + qxutt + (0, Pt,O, qxP + 2 qxP, + qxPtt )T, (A2.7c)

and similarly for ytt.

INote that we do not compute fxt and gyt because they cancel out in the flux

integration andl thus do not appear in (A2.6'). The notation that we use 1i (A2.6') for

time and space-time derivatives is

Ft = rf(u)t + 0(h3 ), Ft1 = h17-f(u)1 1 + 0(h3 ), Ftt1  r'f(u)tt + 0(h 3 ) (A2.7d)

and similarly for other terms; we assume -r 0=(h).

We remark that it is convenient to derive the quantities PI, P.,t, P~1 , Pit by differ-

entiating the equation for the pressure

Pt + q'P. + q1P, + -yP(qx + qY) = 0, (A2.8)

and derive q', q't, q' 1. qx by differentiation of the relation

Mx= qx p,

and similarly for q&I (see [8]).

We remark that for purposes of reconstruction in (A2.3) we can use any decom-

position of the velocity vector into normal and tangential components rather than q'

and qY (see Section 8).
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Appendix 3. ENO Schemes in Alternating Dual Grids

In this paper we have considered a set of cells {Cj } which covers the computational

donain with no overlap. We have introduced a reconstruction procedure R(x,it) in

which we assign to each cell a polynomial Rj. Time evolution is done by solving for

small time the IBVP (2.8)
wt + div f = 0

(A3.l)
w(x,0) = R(x; u),

followed by averaging of w(x, r) on the same set of cells.

We observe that for a time step which is limited by half the CFL number the value

at the centroid is defined in terms of the smooth polynomial problem

wt +div f = 0
(A3.2)

w(x,0) = Rj(x; U).

Furthermore, in order to compute the cell-averages we have already prepared the

pointwise space and time derivatives at the centroid, so the evolution of the centroid

point-value can be done at no extra computational cost. Hence, we can easily compute

and store these point-values in order to use them in the beginning of the next time

level for purposes of reconstruction. This would enable us to get pointwise derivatives

at the centroids from interpolation of these point-values, rather than from direct re-

construction of averages of the conserved variables. This is particularly useful if we

want to work with the primitive variables for purposes of selecting smoother data for

the solution of Euler equations of gasdynamics as discussed in Section 8.

Once this is done, these point-values are discarded; the point-values are computed

anew from the reconstruction at each time step. Hence it is a side calculation for

purposes of improved reconstruction and the point-values themselves do not constitute

an independent set of variables.

We observe that the point-values at the centroid do not enhance the reconstruction

in any other way because they differ from the cell-averages only by an 0(h 2 ) term which
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contains second and higher order derivatives. To get a better reconstruction we need

the two sets, point-values and averages, to be separated in their location. Since the

only reasonable place to compute point-values is in the centroid of the cell in which Rj

is defined, we look for the possibility of averaging in a different kind of cell. We observe

that the cell formed by connecting centroids of cells around a vertex is a suitable one.

We refer to this set of cells as vertex-cells and to the original set as centroid cells.

When we deal with one of the sets we refer to the other as the dual one. In Figure

A3 we show the two sets of cells for a rectangular grid and for a triangulated mesh.

We observe that for rectangular grids the dual sets are identical except for a shift; in

triangular grids the two sets are different: the centroid set is made of triangles while

the vertex set is made of polygons (typically hexagons).

W ' use these two sets of cells in an alternating fashion in time. At one time-step we

assign polynomials Rj to one set of cells and in the next one we assign them to the dual

set. At each time-step we compute point-values at the set at which the polynomials

Rj are defined, i.e. at the centroid when the polynomials are defined in the centroid

set and at the vertex for the time-step in which the polynomials Rj are defined in the

vertex cells.

We turn now to consider the computation of the cell-averages. Due to the

divergence-free form of the PDE the averages are given by (2.8)

ICl(v7'+ - V7) + j J [f(w(x,t)) . N]dS = 0 (A3.3)

where w(x, t) is the solution to (A3.1). and N is the outward normal to the boundary

&C,. When we consider the restriction of w(x,O) to the cell in question we see that

the middle of the cell (centroid or vertex) is an apex for a multiple Riemann problem.

However, each side of the cell is intersected by a single discontinuity. Therefore for a

time-step which is limited by half the CFL number, the computation of

I' I [f(w(x, t)) . N]ds, (A3.4)

the flux across the side OC, involves a quasi-one dimensional Riemann problem, which

is formed by a linear segment separating two smooth functions that vary in space.
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Since these are smoothly varying functions, the solution to such a probleln can be

approximated by considering a linearized one-dimensional Riemann problem in the

direction normal to the linear segment (not to be confused with the normal to W ); the

linearization is done with respect to the jump of f(x., 0) at the intersection of the linear

segment with OCk using, say, Roe's technique. We demonstrate this approximation in

the two-dimensional rectangular case. First let us align the coordinate system in such

a way that the discontinuity is along the Ir axis and the side of the cell is along the

y-axis betv.een y = -h/2 to y = h/2. We consider the IVP

wj + div f =0
JW+ (x, Y) Y >0 (A3.5a)

w ( x , 0 ) =O

117_(X, y) < 0

and describe how to approximate the numerical flux ft

1j h/ 2 (A.bf = or f_ f (it(0. y.t))dyd,. (A3.5b)

7--1 h/2

To do so we use Roe's linearization with respect to ,0 =U_(0.,0) and w, =w+(0,),

i.e. we consider the corresponding constant coefficient case with a matrix A defined by

f 0(w ) - fX(w ° ) = A(w ° ., w °)(w° - w ° ) (A3.5c)

and use its structure to approximate the integral above. Let f±(y,t) be respectively

an approximation to the flux of the smooth solution of

wt + div f = 0
(A3.6)

W(Xy,0) = U'±(Xy).

We approximate f(w(O,y,t)) in (A3.5b) by f](y,t)

f_(y, t) - < y < alt

!z(y,t) = f(y,t) akt < Y < ak+lt k ... i. - 1 (A3.7a)
f+ (y, t) amt < y < h

where
k

fk(y,t) = f(y,t) + Z[ij (f4 - fj )]7' (A3.7b)
7=1
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and {aj,lj,rj }= 1 are the eigenvalues, left-eigenvectors and right eigenvectors of A.

respectively. Using fz(y,t) instead of fX(w(O, y, t)) in the integral in (A3.5b) we get

the following numerical flux for this side

fz 1 m+ jr] (A3.8a)
2 j=l

= .- -- - - )dydt (A3.8b)

and
h f±dydt. 

(A3.8b)r h fo -fh/2

To evaluate these integrals we use the Taylor expansion in space and time that is

described in Section 10. We remark that the general case differs from the above only

in the alignment of the side on which we compute the numerical flux, i.e. it may be

skewed and uncentered.

The main advantage of this setting is that we double the number of values that

are available to us for the purpose of reconstruction; this effectively doubles the spa-

tial resolution. The reconstruction procedure uses now a combination of interpolating

equations (3.15) and averaging equations (3.6), but the same technique of adaptive

selection of stencil can be applied to this combined system.

We remark again that the set of point-values is not an independent one and only

plays a role of a side calculation. The method can be viewed as a scheme for cell-

averages in which we alternate the set of cells. The most natural way to consider the

time evolution aspect of it is by going from reconstruction at tn to reconstruction at

tn+l.

More details will be presented in a future paper.
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