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potential targets in cluttered FLIR images. The advantage of such a scheme is
speed, i.e., the speed of light. Such a design is critical to achieve real-time
segmentation and classification for machine vision applications. The segmentation
scheme used was based on texture discrimination and employed biologically based
orientation specific filters (wavelet filters) as its main component. These filters
are the well understood impulse response functions of mammalian vision systems from
input to striate cortex. By using the proper choice of aperture pair separation,
dilation, and orientation, targets in FLIR imagery were optically segmented. Wave-
let filtering is illustrated for glass template slides, as well as segmentation for
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ABSTRACT

This paper presents a neural based oprical image segmentation scheme for locating potential targets in
clutiered FLIR images. The advantage of such a scheme is speed, 1. €., the speed of lighh. Such a design is
critical to achieve real-time segmentation and classification for machine vision applications. The segmentation
scheme used was based on texture discrimination and employec biologically based orientation specific filters
(wavelet filters) as its main component. These nlters are the well understood impulse response functions of
mammalian vision systems from input to striate cortex. By using the proper choice of aperture pair separation,
dilation, and orientation, iargets in FLIR imagery wers optically segmented. Wavelet filtering is illustrated for
glass template slides, as well as segmentation for static and real-time FLIR imagery displayed on a liquid crystal

television.



Subject Terms: Gabor Transforms, Segmentation, Optical Neural Networks, Texture Discrimination, Image

Processing, FLIR Images, Optical Pattern Recognition.

1. INTRODUCTION

Segmentation of potential targets from cinttered images is a ~utical step before classificaticn of the target can
begin. Over the past 25 years, several segmentation algorithms have been developed at the Air Force Institute

1.2,3.4, 56,7 . . .
, however, they are hicuristic in nature and use non-lingar mathematical

of Technology (AFIT)
manipulation of data—algorithms not readily implemented optically and computationally intense for real-time
use. In a recent rescarch effort at AFIT, Gabor filtering techniques were applied in a digital algorithm that
successfully scgmented Forwarded-Looking Infra Red (FLIR) imagery anc provided a linear algoriti:m that could
be applied optically 8. Gabor functions have bsen shown to be a good model fo: *he impulse response function
of mammalian visual systems o 10. The optical image sepmentor presented . this paper adopted a sunilar
linear algorithm as in the digital approach, but also tested a different type of waveict filter other than the Gabor.

The optical implementation aliows for instantaneous and automatic segmeniution of real-time FLIR imagery for

machine vision proccssing.

Neural network classification schemes at AFIT have incorporated the optical segmentor as & front end piu-
cessor L. Such a scheme is shown iv Figure 1. Essentially, the optical segmentor limits the field-of-view
of the classification neural network to potential targets in the scene and feeds the classification neural network
the wavelet conelation values as discriminant features to process. The neural network shown is a collection of
specific neural networks each trained te recognize only one class of objects based on an optimized set of wavelet

correlation values. The output of the neural network is then used as feedback to the optical segmentor to generate a




customnized wavelet filter based on the network’s detesmination of the most probable class of the segmented object.
The loop is iteratively processed until a desired threshold is reached or the classification network is no longer able
to improve classification capability, Once the classification has been raade, the process can be repeated for other

items of interest in the correlation plane.

The optical architecture presented uses a liquid crystal television (LCTV) spatial light modulator (SLM) as a
grey-scale amplitude modulator for displaying static and real-time FLIR imagery as inputs into the optical setup.
Over the past five years, LCTVs have been demonstrated as capable amplitude and phase SLMs in optical image

. . . . 12,13, 14, 15,16, 17, 18, 19,20. 21
processing setups in various resecarch projects

. The main advantage of LCTVs is
low cost (approximately $100 to $1200), and their main disadvantage is low resolution (pixel sizes on the order
of 370 um). The low resolution of the LCTV posed some optimization problems in this research effort, but the
requirement for grey-scale capability made the LCTV the most suitable choice over other SLMs. The limitations
of using an LCTV for this application are discussed. Also rote that many of the digitized camera images presented

were reversed imaced, i.e., light areas are presented dark and dark areas are presented light. This was done to

highlight th:e areas of 1aters"i better.

The design of the segmentation filiers usud is based on 2-dimensional Gabor wavelet filtering techniques

2.23.9 24, The 2-D Gabor wavelet can be

employed as a digital image processing tool for texture segmentation
described as a modulated Gaussian “window” which possesses the distinct property of maintaining the theoretical

- o .9 .
lower bound of joint uncertainty in the space/frequency domain ~. Joint uncertainty refers to the space and

frequency resolution of the function. An example of a 2-D cosine Gabor function (space domai~) and its 2-D




Fourier transform (frequency domain) is given in Figure 2. In addition, Gabor wavelets have been propased as

. . . 9 .
good models for the 2-D receptive fields of mammalian visual cortex simple cells (neurons) “. In this sense, the

optical segmentor presented in this article can truly be called an optical neurocomputer.

One way to understand the segmentation process employed is to think of the filters as “orientation specific,
bandpass spatial filters”. Orientation specific, bandpass spatial filtering implies frequency discrimination or
“textural” discrimination at a specific orientation of the texture. Similar biological processing has been known to
exist since 1962 . Opticaily segmenting distinct textures requires passing their dominant spatial frequencics

through symmetric apertures at appropriate separations and orientations and blocking out the rest of the spectrum.

Thus, orientation specific, bandpass spatial filters are nothing more than symmetrically located apertures. The
apertures of choice would be symmetrical gaussians, as shown in Figure 2b, in order to take advantage of the lower
bound of the joint uncertainty relationship. To this end, gaussian apertures were fabricated during the course of
this research using detour-phase computer generated holography (CGH), an example: of which is shown in Figure 3
along with its 3-D transmission profile. However, these filters were not easy tho fabricate and transmitted too much

undesired image spectrum.

A much simpler solution to employing wavelet filtering was to use circular apertures instead of gaussian
apertures. In the space domain, one could think of them as Airy disc wavelets. In other words, if we model the
circular apertures as having constant intensity across them, then the transmictance function of a symmetric aperture

pair can be expressed mathematically in the frequency domain as:

p

T, n) = circ(m)_

)  [5(€ = S0, = 10) + 8(& +Eaum 4 10)]

—_—
~—
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Figure 1: Neural Network Based Automatic Targe! Recognizer

Gabor Function Frequency Response

Figure 2: (a) Example of a 2-D cosine Gabor function (b) 2-D Fourier transform of (a)




Figure 3: (a) Cosine CGH Gabo filter image; (b) lts 3-D intensity profile

Figure 4: Digital representation of the transmission function of symmetric circular apertures




where;

circ(—£—> = besi (2)

0 otherwise

‘“*” represents a convolution, § represents a delta function, p = /2 + 52, £, represents a distance along the £
direction, g represents a distance aiong the 7 direction, and [ represents the circular dilation (diameter). A 2-D

digital representation of the transmission function of symmetric circular apertures is shown in Figure 4.

The “inverse” Fourier transform of the symmetric circular aperture pair can be expressed mathematically in

the space domain as an Airy disc wavelet:

t(z,y) (’)2 Il o (2 £z + oY) (3)
’ =l - (&

y ] (ir]2) o oy

wheie, 7 = 22 + 42 and 31 repiesenis a firsi-urder Bessel funcrion.

Furthermore, Goodman 2 derived the intensity »f an Airy disc which, combined with the square of the

sinusoid, gives the intensity function of the Airy disc wavelet:

2
I(z,y) = |t(z,y)I* = [2‘]—1(-7%%%% [cos (2m(&ox + now))]* (4)

A 2-D digital representation of the intensity function of an Airy disc wavelet is shown in Figure 5. The figure
shows both a side view and a view looking straight down. The middle lobe was clipped at the top in order to
emphasize the side lobe oscillations more, however, at full scale the first side lobe of an Airy disc function is less

than 2% of the amplitude of the middle lobe.

Using Equation 4, the number of cycles in the middle lobe of the Airy disc can be predicted. If 7y is the




distance from the origin to the first zero crossing of the Airy disc, then

222
ro= 221 9

Additionally, the spatial frequency of the wave.et can be given in terms of

2
250—:\1. (6)

Thus, the number of cycles over the total lobe can be calculated from Equations 5 and 6 as:

#cycles 4.£8p

centerlobe T2

(7)

Bt I SIS SO P ST Y I ¢ N AU B a B L IO A BT TONES A B -
ol c;&aluplc, Huc upcx’tmc BCPALANLVILID & LU P = 1 [1111) alld e apcl WIC ALlduUOIL, ¢, 1S L 11, UISh HE 1UioeL Ol
cycles per middle Airy disc lobe should be 4.88 cycles/lobe. Note that this result is independent of the wavelength

of the laser or the focal length of the lens.

Recall that the Gabor wavelet (modulated gaussian) was the best choice of filter for mathematical reasons;

approximated a Gabor wavelet well. The central lobe of a gaussian function and an Airy pattern (the envelopes of
the wavelets in the space domain) have similar shapes, and although the Airy pattern possesses sidelobes which
comprise about 16% of its intensity 27, the inteusity is well distributed between them resulting in their having

little or no effect in the correlation output.

The implementation of the symmetric circular aperture filters was trivial and only required that some medium

be placed in the filter plane that could be impressed with small circular apertures (pinholes) to pass the desired




spectral coefficients and block the rest of the image spectrum. The medium of choice was heavy, black aluminum
foil, since it was readily available, required no special tools or software to manipulate (i.e., drill press or computer),
and retained its shape fairly well (some slight microscopic tearing was unavoidable). The filters were made by
cutting and smoothing 5 cm x 5 cm pieces of foil, then impressing circular aperture pairs into them using a pin.
The apertures were placed along a common axic symmetrical to an origin (middle of the foil). Separations of
apertures varied from 2 mm to 12 mm. Diameters of apertures varied from about 0.5 mm to 3 mm. Qrientations
were not limited since the filters were placed in a rotating mount with a 360° range. Figure 6 shows four different
wavelet spectral images recorded from an optical bench from four different pinhole pair filters and demonstrates
the effect of changing aperture separation, dilation, and orientation, An alternative tc a fixed filter approach is
to use an electronically addressed binary magneto-optic SLM which would allow for real-time filter selection, as

implied by Figure 1.

3. SETUP FOR OPTICAL SEGMENTATION

The basic setup used to perform optical segmentation is given in Figure 7. Input images were placed at P,, and
spatial filters were placed at F;. The only difference between this setup and a general spatial filtering 4- f setup
1s two extra lenses which increase the size of the input image spectrum ingident on the spatial filter at P;. Hence,
this setup could be called an 8- f setup. An increase in the spectrum size allows the individual spatial frequencies
(diffraction orders) to be identified and segmented more easily. For example, the relationship between input image

spatial frequency and spectrum location is

fz::zf/)‘f (8)

where f; is the z-component of the spatial frequency, z is the z-component of the spectrum location, A is the



Figure 5: Digital representation the intensity function cf an Airy disc wavelet at given at two viewpoints: {a)
sideview; (b) topview

Figure 6: Wavelet spectral images of pinhole filters: (a) separation=2 mm dilation=.5 mm, orientation=0°; (b)
2,.5,90°; (c) 2,1,0%; (d) 4,.5,0°
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wavelength of the source, and f is the focal length of the lens. Thus, if fr = 10 cycles/cm, A = 485.0 nm, and
f =300 mm, then 2y = 0.146 mm, which is physically too small to segment easily. However, if we magnify z g,

say 7.5z, it has a dimension of 1.01 mm, which is more easily segmented.

An argon-ion laser (A = 488.0 nm) was used for the coherent light source. The beam was collimated to a 3 172
inch diameter with a 10z microscope objective, a 15 um pinhole, and a 150 mm focal length, 5 1/2 inch diameer
lens in order to use as much of the LCTV screen as possible (the LCTV was a modified Sony Video Walkman and
had a 4 inch diagonal screen). The final setup configuration had 300 mm compound lenses for L, L3. and L4, and
a simple 40 mm convex lens for L,. Thus, the magnification of the spectrum was 7.5z. An ins placed in tront of
L, served as an aperture stop and cut down on the high frequency interference between pixels when the LCTV
was used as an input device. A Sony CCD camera was placed at P; to record the output images. The camera was

connected to an AT&T TARGA framegrabber in a Zenith 286 computer.

4. SEGMENTATION RESULTS

Wavelet correlation results for template slides and segmentation results for static and real-time FLIR imagery
dispiayed on the LCTV are presented. The template slides of trucks, tanks, and jeeps are essentially “pre-
segmented”, since they consist of constant intensity silhouettes with no background clutter. However, they provide
a good transition to understanding the segmentation of the FLIR images by observing how aperture separations
and dilations control the resulting wavelet correlation. Template slide correlation was accomplished with pinhole

pair filters implemented on heavy, black aluminum foil and detour-phase computer generated holograms.

Proper aperture dilation which corresponds to wavelet localization was found to be of utmost impertance to

obtain highly detailed edge enhanced images. If the aperture dilation was chosen too small, its correspon.ing

11 E

_




wavelet overshadowed any detail in the input image. For example, a first try at correlating a “small” truck shown
in Figure 8a was to use a pinhole pair filter with 2 mm separations, 0.5 mm dilations, and different orientations
of 0°, 90°, and a combination of both resulting in the wavelet projection shown in Figures 8b—d, respectively.
Figures 8b and c show wavelets correlating on edges in the truck image; however, the wavelets are so large that
they overshadow any detail within the correlated image and interfere with one another. Hence, the correlation that

resulted from the combined filter shown in Figure 8d had hardly any resemblance to the input image.

The best combination filter for wavelet decomposition of the small truck template was found to be a pinhole
pair filter with 6 mm separations, 3 mm dilations, and orientations of 30, 90, and 150°. The orientaticus were
chosen in order to optimize the space available on the filter. Once the optimal filter was determined, a permanent
filter was fabricated by drilling the circular apertures into 1/16 inch aluminum squares. A highly detailed edge
enhancement of the smail tuck templaic slide was achicved using this filier. This resuit is shown in Figure 91,
Note the fine detail along the edges due to the more localized wavelet produced by the filter. Also note that the

back edge of the truck was not enhanced. This was due to the filter not having a 0° odentation and illustrates the

high degree of sensitivity the filter has to orientation.

The other pictures in Fi
the small truck (Figure 9a) using different filter corfigurations of aperture separation and dilation. Figure 9b is
the same image as Figure 8b. It came from correlating the image with a pinhole pair having 2 mun separations,
0.5 mm dilations, and orientations of 0 and 90°. Figure 9¢c came from correlating the image with a pinhole pair
having 2 mm separations, 1 mm dilations, and orientations of 0 and 90°. Figure 9d came from correlating the
image with a pinhole pair having 4 mm separations, 2 mm dilations, and orientations of 0 and 90°. Figure 9¢

came from correlating the image with a pinhole pair having 6 mm separations, 1 mm dilations, and orientations

of 0, 45, 135, and 90°. Note that the detail in Figure 9d is better than that in Figure 9¢. Hence, it appears that




INPUT FILTEA
L L1 & L4

OUTPUT
CGD CAMERA

~T

INSET FRAMEGRABBER

Figure 7: Experimental setup for optical segmentation. The inset is an orientation specific, bandpass spatial filter
with circular apertures.

o

Figure 8: Example of a template slide correlated with a poorly chosen wavelet using a pinhole filter with apertures
chosen too small. (a) image of template slide; (b) Correlation result using pinhole filter at 0° orientation; (c)
Correlation result using pinhole filter at 90° orentation; (d) Correlation result using pinhole filter at both ¢ and
90° orientations
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dilation is more important than frequency for achieving highly detailed correlations.

As a final example of wavelet correlation with template slides using circular apertures, Figure 10 shows a
finely detailed projection of a multiple object template slide consisting of a truck, a jeep, and two tanks using the
6 mm separation, 3 mm dilation, multiple orientation pinhole pair filter described for the correlation in Figure 9f

above.

An example of static FLIR segmentation using a FLIR image displaves onto the LCTV and a permanent pinhole
filter on an aluminum square with 4 mm aperture separations, 2 mm aperture dilations, and two orientations of 0

and 90° is shown in Figure 11.

The segmented images are not as detailed as the ones obtained in the temglate tesiing because pinhole
separations were limited to 4 mm and pinhole dilations were limited to 2 mm due to the low resolution of the
LCTV. This is the same filter that was used for segmentation in Figure 9d. In other words, the pinhole dilations
could not have been made any wider without passing the higher order periodic spectrums of the-LCT V and prevent

. 2
th. segmentation 8

The real-time FLIR imagery was segmented using the same permanent circular aperture filter as was used for
stat:c FLIR segmentation. A split-screen video tape was made showing the unsegmented FLIR tape on the upper
left-hand comer of the screen and the segmented image on the upper right-hand corner of the screen. Figure 12
shows the optical configuration used to observe both the segmented and unsegmented real time FLIR images
synchronously, using a beamsplitter placed just before the filter, a second lens, a second CCD camera, and a quad
input video processor. The second lens, Ls, had a focal length of 250 mm, which was smaller than the 300 mm

focal length of L4. Hence, the unsegmented FLIR image scene is shown slightly smaller than the segmented FLIR

14




Figure 9: Wavelet correlation of a truck template slide using five different pinhole filters. (a) image of template
slide; (b) separations = 2 mm, dilations = .5 mm, orientations = 0 and 90°; (c)s=2mm, d =1 mm, o =0 and
0% (D) s=4mm,d=2mm,0=0and 90°;\e)s=6mm,d=1mm, 0=0, 45,90, and 135 (f)s=6mm,d=3
mm, o =30, 90, and 150°

Figure 10: Wavelet correlation of a multiple object template slide using a multiple orientation pinhole filter. (a)
image of template slide; (b) correlation result
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Figure 11: Segmentation of static FLIR image REFJ16 using a pinhole filter. (s) original FLIR image; (b)
segmentec image

INPUT FILTER
CcTVv) L1 L3 L4

CCD CAMERA

VCR CCD CAMERA

Figure 12: Optical setup used for observing segmentéd and unsegmented real time FLIR images synchrononsly

16




image.

In this forum, the real power of optical segmentation can be observed and appreciated, because of its ability
to perform instantaneous two-dimensional Fourier transforms. A similar digital segmentation algorithm would be
bogged down very quickly trying to calculate Fast Fourier transforms (FFT's) and inverse FFT's at 30 frames/sce.
Two digitized frames of the video (not consecutive) are shown in Figure 13. Noise around the edges of the circular
window was inherent noise from the lenses and the LCTV screen. When seen in real time, these noisy brighi
spots are constant and don’t change (compare noise around edge in segmented FLIR image, frame 1 to noise
around edge in segmented FLIR image, frame 2). Further post-processing of the segmented FLIR imagery could

be accomplished to remove this constant noise factor.

In this paper we have presented an automatic, optically based image segmentation scheme for static and real-
time FLIR imagery displayed on an LCTV. The segmentation scheme used was based on texture discrimination
and employed neural based orientation specific, bandpass spatial filters (wavelet filters) as its main component. By
using the proper choice of aperture pair separation, dilation, and orientation, potential targets in FLIR imagery were
optic‘ally segmented using spatial filtering techniques. The output of the system is a correlation of the input image
with the wavelet filter. Neural network classifiers at AFIT are incorporating the optical neural based segmentor
as a front end processor which can determine the locations of potential targets and feed the classification neural

network with the correlation peaks for their input data.
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Figure 13: Segmentation of two frames of real-time FLIR imagery using a circular aperture pair filter with two
orientations, G and 90°. (a) original FLIR image, frame 1; (b) segmented FLIR image, frame 1; (c) original FLIR
image, (d) bottom right: segmented FLIR image, frame 2
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