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FOREWORD

The timely distribution to the field of newly procured (300 units) chemical threat agant
protective patient wraps (WRAP) was dependent upon knowing whether th~ reduced air
permeability and potential modification of the biophysical parameters affecting heat
exchange during encapsulation in the WRAP would adversely affect the survivability of
the patient. USARIEM was requested by the U. S. Army Medical Materiel Development
Activity, Fort Detrick, Frederick, Maryland 21702-5009 (USAMMDA) to conduct this
research project for First Article Testing. It was coordinated through MAJ D. Danley, U.
S. Army Biomedical Research and Deva'opment Laboratory, Fort Detrick, Frederick,
Maryland 21702-5010 (USABRDL). The research project also provided information to the
contract monitoring agency about future specifications for a scheduled production run for
several thousand units.
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EXECUTIVE SUMMARY

The air permeability of the chemical threat agent protective patient wrap (WRAP) was
reduced by approximately 50% during production (from 8.5 - 12 t0 4.8 - 6.1 cubic feet per
min per square meter) compared to the developmental prototype WRAP which was
originally tested to determine human physiologic limits to encapsulation imposed by
environmental extremes. The reduction in air permeability raised questions as to whether
the recommendations about encapsulation time made on the basis of the original testing
were still valid. The current study determined if the reduction of air permeability in the
production WRAP required changes in the recommendations for safe encapsulation time.

Because the reduction in air permeability could potentially affect both thermal
properties and the composition of the atmosphere within the WRAP, the study design
included a biophysical evaluation of the production WRAP material and a physiologic
evaluation of respiratory gases and metabolic measures associated with human
volunteers during a 6 h encapsulation. The biophysical evaluation demonstrated very
slight differences in thermal and water vapor resistance between the prototype and
production WRAPS. Based solely on the water vapor permeability index (i) calculated
from these evaluations, the capacity for evaporative cooling and the heat strain
experienced by patients during encapsulation should not be significantly different in the
production WRAP compared to the prototype WRAP originally tested.

Physiologic testing in which volunteers were encapsulated for 6 h in the production
WRAP in a comfortable environment (T, = 24°C; 20% rh) resulted in decreased rnean
oxygen concentration (O,) {rom 209 to 20.0(x0.4)% and increased carbon dioxide
concentration (CO,) from C.04 to 1.10(x0.2)% during the first 15 min of encapsulation.
Both remained stable at those ievels throughout the 6 h test. Tha increased CO, was
associated with anincreased respiratory frequency. Additionally, the mean metabolic rate
increased from 3.4(t 0.2) to 3.6(x 0.3) m! O,*kg”'*min" after two h of encapsulation.

The potential significance of these results for encapsulated patients can only be
estimated from the present data. Breathing 20% O, should not cause any adverse
physiologic consequences. CO,accumulation within the WRAP could be exacerbated by
increased respiratory frequency due to activity of the patient or other conditions known

1




to aftect respiration. Further CO, accumulation could result in respiratory and metabolic
changes that would adversely affect patients in already compromised medical conditions.
Those patients will require careful monitoring to detect adverse changes.




INTRODUCTION

The chemical threat agent protective patient wrap (WRAP) is a fabric encapsulation
davice designed to protect patients from exposure to chemical wartare agents in an
vperational military environment. The WRAP consists of an impermeable sheet upon
which the patient lies and a permeable, carbon impregnated upper shest through which
all air exchange takes place. The two sheets together are designed to completely
ancapsulate a patient, much like a full sleeping bag zipped over the head, to provide
protection from chemical threats. This construction imposes certain functional limitations
to encapsulation of patients. Significant potential problems are imposed by the amount
of air that can be exchanged through the permeable portion of the WRAP. Limitation of
air exchange could impact on the patient's respiratory function and on the insulative
qualities which affect the patient’s thermoregulatory capacity.

In 1986 USARIEM tested a developmental prototype WRAP to determing safe
encapsulation time for healthy subjects in four hot environments which included a
simulated solar heat load (1). Air exchange across the tested prototype WRAP was
measured as 8.5 - 12 cubic feet per min (ctm) per square meter (2). During initial
manufacture (1990) of the WRAP for field distribution (300 units), the mean air
permeability was reduced to 4.8 - 6.1 cfm although the materials remained the same as
those in the previously tested (1986) WRAP (3). The substantial decrease in air
permeability raised questions of impact on respiratory function and thermoregulatory
capability that could change the limits to encapsulation time delineated in testing ot the
prototype WRAP. The present study was designed to address those questions.

STATEMENT OF PURPOSE

There were two purposes to this research. First, the impact of the reduced air
permaability of the WRAP on patient respiratory function was evaluated by measuring the
oxygen depletion and carbon dioxide accumulation in the WRAP during a 6 h
encapsulation period in a comfortable envircnment (T, = 24°C; 20% rh). The 6 h
encapsulation time was chosen because that was the time of chemical protection of the
WRAP, as outlined in the original letter requirement for the WRAP (4,5). A comfortable
environment (T, = 24°C; 20% rh) was chosen to ensure that encapsulation could be
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sustained for 6 h without the subjects experiencing heat strain.

The second purpose of this research was to determine whether the heat strain to the
patients and safe encapsulation limits in severe environments as measured in the
previous study (1) were still valid based on the evaluation of biophysical parameters (dry
heat insulative valus and the water vapor permeability index) affecting heat exchange
during encapsulation ir the WRAP.

METHODS

SUBJECTS

Eight young male soldiers (age range 19-22) volunteered to serve as subjects after
they were informed of the purpose, procedures, and known risks of this study. Each
signed a consent form approved by the USARIEM Human Use Review Committee and
the Surgeon General's Human Use Review Office describing the study and its risks.
Each subject was evaluated using a history and medical examination before participating
in the study. Potential subjects with respiratory, metabolic or psychologic
contraindications to encapsulation were excluded from participation. The physical
characteristics of the subjects are described in Table 1.

CHEMICAL THREAT AGENT PROTECTIVE PATIENT WRAP

The WRAP was composed of an impermeable ground sheet made of Loretex and
nylon and an upper blanket of chemicai protective iaminated cloth through which
respiratory exchange occurred. The shell of the upper blanket was made of a carbon-
based core of 3M meit-blown polypropylene covered by Nyco Twill, and was treated with
Quarpsel. A clear window made of a tri-laminated nylon/saran/polyethylene fiim was
located in the upper blanket where the patient’s head was positioned. A cardboard frame
was placed inside the WRAP to lift the window off the patient's face.



The air permeability data of the samples of the WRAP used in this study are shown
in Table 2. The average air permeability was 5.5 cubic feet per min (cfm) per square foot
as determined by the manufacturer (6).

TABLE 1
TEST SUBJECT CHARACTERISTICS

SUBJECT HEIGHT WEIGHT AGE Ag'
# (cm) (kg) (yr) (m?)
1 173 77.8 20 1.9
2 178 61.9 19 2.0
3 191 99.7 21 2.3
4 168 68.3 19 1.8
5 185 76.5 22 2.0
6 183 81.4 22 2.0
7 183 86.5 20 2.1
8 170 64.4 21 1.8

MEAN 179 77 21 2.0

S.D. 8 11 1 0.2

BIOPHYSICAL EVALUATION

To evaluate possible changes in thermal characteristics due to the decreased air
permeability of the current production WRAP compared to the prototype WRAP originally
tested, the thermal and water vapor resistances of both WRAPS were measured using
the Hohenstein Mode! of Human Skin which was operated in accordance with Deutsches
Institut fir Normung (DIN) standard 54-101 (7). Samples of test material were manually

'DuRsis body surface area
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cut from the upper blanket of each WRAP. The sample from the prototype WRAP had
been exposed to actual human physiological test conditions, while the sample of the
current WRAP was not previously used (WRAP # 4; Table 2).

TABLE 2
INDIVIDUAL CHEMICAL THREAT AGENT PROTECTIVE PATIENT WRAP
AIR PERMEABILITY DATA (3)

WRAP AIR PERMEABILITY (MEAN1SD) SAMPLES TESTED
(cfm)
5.4 0.1
5702
6.1£02
5603
5605
55102
6.0+03
58105
58 +05
56 £0.2

C
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The thermal resistance (R,), according to the DIN standard represents a quantity
specific to a textile material in a given environment which determines the "dry" heat flux
(composed of conduction, convection and radiation) passing through the material in a
steady-state condition effected by a temperature gradient perpendicular to the materials’
surface area. The water vapor resistance (R,) is the quantity which determines the
"latent” or evaporative heat flux (composed of diffusion and convection) passing through
the material effected by a pantial pressure gradient perpendicular to the materials’ surface.

R, and R, were used to calculate the water vapor permeability index (i,) which the
DIN standard defines as the ratio of thermal to water vapor resistance of a textile layer
according to the following equation:




iml = S.(Rd.Rel.‘)
where S = 0.6 millibarsK

Thu i, index is a unitless value between 0 (for a water vapor impermeabie textile layer)
and 1. A value of i, = 1 would theoretically mean that the textile layer had only the
resistance of a layer of air the same thickness as the textile itself. A high i, value is

desired for increasing thermal comfort of soldiers enclosed in chemical protective
garments.

PHYSIOLOGIC EVALUATION

The primary purpose of the ph'ysiologic evaluation was to determine the effect of the
reduced air flow on the respiratory function of the subjects as reflected by the
concentrations of oxygen and carbon dioxide within the WRAP during a 6 h
encapsulation. Additionally, hean rate, respiratory frequency, tidal volume and rectal
temperature were measured, and certain metabolic parameters (oxygen uptake, carbon
dioxide production, and respiratory exchange ratio) were calculated.

Tost Subject Famitiarization and Requirements

All subjects were familiarized with the test procedures, including encapsulation in the
WRAP, before they participated in the study. The subjects refrained from drinking
alcoholic beverages the previous 24 h and coffee or soft drinks containing caffeine for 8
h prior to the experiments and fasted overnight.

Experimental Procedures and Environmental Conditions

Experiments began at 0700 h and two subjects were studied during each experimant.
The subjects were dressed in gym shorts and a T-shirt for the experiment rather than the
BDU because medics at a Battalion Aid Station would cut off the contaminated BDU.
After each subject inserted a previously calibrated YSI thermistor to a depth of 10 cm
past the anal sphincter, ECG alectrodes were applied for subsequent heart rate
measurenient (Hewlett-Packard telemesiry). Body weight was measured (SECA balance)




prior to entering the anvironmental chamber (T, = 24°C; 20% rh). The subjects then lay
on the ground cover of the WRAP which was placed on a standard Army litter inside the
environmental chamber. A small diameter tube was taped between ths eyebrows and
oxygen (FIO2) and carbon dioxide (FICO2) concentrations within the WRAP were
monitored continuously in 250 ml of air sampled per min from the WRAP (Sensormedics
2900). Rectaltempsrature (T,,) was monitored frequently until it was stable (30 - 40 min).
After 15 min of rest, resting metabolic rate was measured (Sensormedics 2900).

When T, stabilized, that {ime was designated 0 time and the upper blanket was
positioned over the test volunteer in preparation for encapsulation. FiO2, FICO2, heart
rate, and respiratory frequency (f.) were measured immediately before the WRAP was
zipped up to complete encapsulation and the 6 h experiment began.

During the first 15 min of encapsulation, oxygen and carbon dioxide concentrations
within the WRAP and heart rate were measured each min. FIO2 and FICO2 were
measured each niin for the next 30 min at which time the frequency of measurement was
decreased to 5 min, although the gas concentrations were monitored continuously. T,
was measured every five min and respiratory frequency was measured at 15 min intervals
throughout the encapsulation. After two hours of encapsulation metabolic rate was

measured again. After 6 h, the encapsulation ended, then the body weight was
measured again.

To help alleviate boredom during the 6 h of encapsuiation, subjects were permitted to
watch previously recorded movies through the WRAP window.

Data Analyslis

Fi02, FICO2, heart rate, respiratory fraquency and rectal temperature were compared
during the 6 h encapsulation period using a one-way analysis of variance with repeated
measures. Oxygen uptake, carbon dioxide production, respiratory exchange ratio and
tidal volume were compared before and after 2 h of encapsulation using a one-way
analysis of variance with repeated measures.




RESULTS AND DISCUSSION

" BIOPHYSICAL EVALUATION

Table 3 shows the biophysical parameters for the prototype WRAP sample from the
previous study and the production WRAP sample. The biophysical evaluations of the
prototype WRAP used in the 1986 study (1) and the production WRAP indicate that there
are very slight differences in thermal and water vapor transmission between the two
samples. Note that the water vapor permeability index was approximately 7% less and
the thermal resistance was about 10% greater in the production WRAP compared to the
prototype WRAP. This may be due to actual material differences or simply that the

TABLE 3
THERMAL RESISTANCE (R,). WATER VAPOR RESISTANCE (R,), AND
WATER VAPOR PERMEABILITY INDEX (i)

R, (M*KW™") R, (m*mbarW") i
Prototype WRAP 0.038 (0.245 clo) 0.085 0.27
Production WRAP 0.042 (0.271 clo) 0.102 0.25
Difterence (%) 10% 20% 7%

current production WRAP is slightly thicker than the prototype WRAP used in 1986.
Based solely on the resulting water vapor permeability indices (i) calculated from these
evaluations, the capac'ty for evaporative cooling should be similar in both WRAPS. The
biophysical data indicate that heat strain experienced by volunteers during encapsulation
should not be different between the two WRAPS. Consequently, the safe encapsulation
time limits determined previously (1) should not be substantially different during
encapsulation in the production WRAP.



PHYSIOLOGIC EVALUATION

Fig. 1 shows the mean oxygen and carbon dioxide concentrations for six subjects
during the first 45 min of encapsulation. FiO2 decreased over the first 15 min of
encapsulation, then stabilized for the rest of the 6 h encapsulation period. Fig. 1 also
shows that FICOz2 increased during the initial 15 min of encapsulation before stabilizing
for the remainder of the encapsulation period. FIO2 and FICO2 data for the individual
subjects are presented in Figs. 2-5. With the exception of Subject 6, there was very little
variation in these responses. FiO2 averaged 20.0(x0.4)% and FICO2 averaged
1.1(£0.2)% during the 6 h encapsulation period. F102, when stabilized to 20%, should
not pose any physiologic consequencs to the patient. However, FICO2 stabilized to about
1.1% which may have resulted in the slightly greater respiratory frequency, perhaps
reflecting changing metabolism, at the end of the encapsulation period (see below).
Increases in respiratory frequency due to activity or other conditions related 1o traumatic
wounds may further raise CO, within the WRAP.

We were concerned that our method of measuring oxygen and carbon dioxide
concentrations within the WRAP (aspirating 250 m! of air per min from the WRAP and
measuring FIO2 and FICO2) would affect the diffusion of oxygen and carbon dioxide
across the WRAP. In order to determine the effect of aspirating 250 mi of air per min
from the WRAP on F102 and FICOz, a pilot study was conducted on one subject. During
the 1 h encapsulation period, aspiration was stopped for 10 min after 20 min of
encapsulation (Fig. 6). Aspiration was restarted after 30 min of encapsulation so that
FiO2 and FICO2 could be measured for the next 10 min. Aspiration was .. en interrupted
for about 20 min before FIO2 and FICO2 was measured again. Fig. 6 shows that FIO2
and F1CO2 were not affected by aspirating 250 ml of air per min out of the WRAP. That
is, oxygen concentration did not decrease more and carbon dioxide did not build up to
a greater extent within the WRAP when aspiration was interrupted for up to 20 min.

Metabolic rate averaged 3.4(x 0.2) ml O,kg'.min' before encapsulation and
increased to 3.6(x 0.3) mi O,kg'smin™' after two h of encapsulation (Table 4; p = 0.01).
Resting metabolism is generally dsfined as 3.5 mi O,+kg'*min™ for an average young
adult. The present data indicate that the subjects were relaxed while participating in the
experiment. It seems possible that a nonsedated wounded individual could have a higher

10
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| metabolic rate. Carbon dioxide production, respiratory exchange ratio and tidal volume
were not significantly different betwean the two times (Table 4).

TABLE 4
OXYGEN UPTAKE (Vo,), CARBON DIOXIDE PRODUCTION (Vco,), RESPIRATORY
EXCHANGE RATIO (R) AND TIDAL VOLUME (V;) BEFORE AND AFTER 2 H OF
ENCAPSULATION IN THE WRAP

SUBJECT Vo, vco, R Vv,
(#) (ml Oykg'*min’") (ml CO,okg '*min™)
()

BEFORE ENCAPSULATION

1 3.59 3.34 0.93 057
2 3.63 3.25 0.90 057
3 3.01 2.62 0.88 067
4 3.67 3.08 0.84 047
5 3.50 2.98 0.85 076
6 3.18 2.76 0.87 058
7 3.28 2.39 0.73 054
8 3.45 2.97 0.87 052
2 h ENCAPSULATION
1 3.78 3.93 1.04 058
2 3.73 3.18 0.86 054
3 3.18 2.91 0.92 083
4 3.95 3.16 0.80 052
5 3.56 3.07 0.87 069
6 3.21 2.66 0.83 056
7 3.28 3.02 0.93 072
8 3.79 2.95 0.78 046
17




The increased metabolic rate two hours after encapsulation may be explained by the
normal circadian variation in heat production (8) and also might indicate slight subject
discomfort as the encapsulation period procesded. After 2 h of encapsulation V¢o,, tidal
volume and respiratory exchange ratio were not ditferent from pre-encapsulation values.
Apparently, the 1% increase in FiCO2 for the 100 min prior to metabolic rate
measurement did not significantly affect carbon dioxide output. Also, the increased FICO2
at 2 h of encapsulation was not associated with any respiratory compensatory
mechanisms to lower the arterial partial pressure of carbon dioxide which would affect

tidal volume or puimonary ventilation as evidenced by the ventilatory equivalent of oxygen
or the respiratory exchange ratio.

We made infrequent metabolic measurements because the technique required that the
exhaled air be exhausted from the WRAP so that the volume, oxygen concentration and
carbon dioxide concentration could be measured. Consequently, FIO2 and FICO2
approached room air during metabolic rate measurement. We sought to minimize this
artificial condition within the WRAP by only measuring metabolic rate once during the
encapsulation. The technical necessity of continuously aspirating a small volume of air
from the WRAP did not affect FIO2 and FICO2 as shown in the pilot study (Fig. 6).

Figs. 7-10 show respiratory frequency, rectal temperature and heart rate for the
individual subjects during 6 h of encapsulation. Respiratory frequency increased after
encapsulation in seven of the eight subjects with the average increase from pre-
encapsulation to 359 min of encapsulation was 3+3 breathsmin”. Rectal temperature
increased gradually in five subjects during encapsulation while rectal temperature did not
change consistently in the other three subjects. Tl.e variation in T,, may be explained by
two factors, circadian periodicity in core temperature (9) and the effect of drowsiness on
core temperature (10). In five of the subjects rectal temperature gradually increased over
the encapsulation period which is the normal circadian response. In the remaining three
subjects, T, dropped at different times during the encapsulation and may have been
associated with drowsiness of the test subject.

Heart rate did vary during the encapsulation but was not correlated with
encapsulation time. Time of encapsulation did not affect heart rate responses as can be
seen in Figs. 7-10. The large variability in hear rate was most likely due to individual

18
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Figure 8 Heart Rate (HR), Respir *ory Frequency (f;) and Rectal Temperature (T,,) For
Subjects 3 and 4 During 6 h Encapsulation.
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Figure 9 Heart Rate (HR), Respiratory Frequency (fg) and Rectal Temperature (T,,) For
Subjects 5 and 6 During 6 h Encapsulation.
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Figure 10 Heart Rate (HR), Respiratory Frequency (fs) and Rectal Temperature (T,,) For
Subjects 7 and 8 During 6 h Encapsulation.

22




subject’s reaction to the movies being shown to alleviate boredom during 6 h of
encapsulation. :

The change in body weight averaged 0.8(+0.4) g'min™ during encapsulation. The
water loss roflected in the measured body weight changes included both insensible
perspiration, sweating and respiratory water loss. The body weight changes observed
indicate that sweating was not substantial during encapsulation in the environment
studied. This observation reinforces the conclusion drawn from the rectal temperature
data that there was no heat strain experienced by the subjects during encapsulation in
such a comfortable environment.

CONCLUSIONS

This evaluation demonstrated that the decrease in air permeability in the current
production WRAP compared to the previously tested prototype WRAP may affect certain
biophysical and physiological parameters, some of which may Iimpact on safe
encapsulation time. Biophysical evaluation showed very slight differences between the
two WRAPS in measured thermal and water vapor resistances. Based soiely on the
resuiting calculated water vapor permeability indices (i), the capacity for evaporative
cooling and heat strain should be similar between the two WRAPS. Consequently, the
safe encapsulation time limits determined in the prototype WRAP should not be
substantially different during encapsulation in the current WRAP.

Encapsulation in the production WRAP resulted in a decrease in oxygen concentration
of the air within the WRAP from approximately 21 10 20% and an increase in the carbon
dioxide concentration from approximately 0.03 to 1%. These concentrations remained
stable during a 6 h encapsulation in a comfortable thermal environment. The slight
decrease in oxygen concentration would not be expected to hiave a significant physiologic
effect on patients encapsulated within the WRAP. The increase in carbon dioxide had
little effect in this study which involved healthy soldiers. The accumulation of carbon
dioxide within the WRAP could be exacerbated by increased metabolism or
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hyperventilation due to patient activity or stimulation from pain or altered metabolism.
Further accumulation of carbon dioxide could effect metabolic and/or respiratory
compensation and alter safa encapsulation time.

RECOMMENDATIONS

The volunteers tested in this study were healthy, weil-hydrated soldiers and the
‘experiments were conducted in a comfortable environment. Casualties of war are a
different population in regard to their medical and physiologic status than the soldiers
studied in this laboratory. It must be noted that any condition or drug which affects
patients’ thermoregulation or cardiovascular/pulmonary status may decrease safe
encapsulation time compared to the healthy sc!diers tested here. Conditions might
include hyperthermia, pre-treatment and antidotal treatment drugs for chemical poisoning,
dehydration and blood loss.

Six hours of encapsulation was easily tolerated in the comfortable environment in
which this study was conducted. The biophysical evaluation comparing the current
production WRAP with the prototype WRAP used in the previous study (1) indicated that
encapsulation in either of the two WRAPS would result in similar heat strain to the patient.
Therefore, it is recommended that the safe encapsulation limits determined previously (1)
in four hot environments which included simulated solar heat loads be applied to the
current production WRAP. Those limits are listed in the Appendix.

The limits to encapsulation imposed by alteration of respiratory gas exchange through
the currant production WRAP are dependent on the respiratory and metabolic status of
the patient. Uncompromised patients should be abie to tolerate a 6 h encagsulation in
the comfortable environmental conditions tested here. Patients with increased
metabolism or hyperventiiatiori carinot be expected to tolerate encapsulation for as long
a period of time. Those patients will have to be monitored carefully and the length of
encapsulation or the conditions o1 encapsulation adjusted according to their response.
Further, careful consideration of the likelihood of threat from chemical agents must be
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made prior to encapsulating patients for whom the encapsulation may have some adverse
effects due to excessive accumulation of carbon dioxide.
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APPENDIX

TABLE 5

MEAN (+SD) CHANGE IN BODY TEMPERATURE OVER TIME
AND ENCAPSULATION TIME FOR EIGHT SOLDIERS ENCAPSULATED IN THE :

PROTOTYPE WRAP IN FOUR ENVIRONMENTS WHICH INCLUDED SIMULATED
SOLAR RADIATION. THESE DATA ARE FROM A PREVIOUS STUDY (1). '

T,/%rh AT At . Encapsulation Time
(°C/%) (°Cemin™) (min)
54.5/17 0.044 38.4
(0.01) (5.0)
43.0/58 0.039 49.3
(0.01) (8.6)
42.0/16 0.030 61.6
(0.01) (14.1)
36/63 0.028 61.8

(0.01) (13.2)
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