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FOREWORD

The timely distribution to the field of newly procured (300 units) chemical threat agent

protective patient wraps (WRAP) was dependent upon knowing whether th', reduced air

permeability and potential modification of the biophysical parameters affecting heat

exchange during encapsulation in the WRAP would adversely affect the survivability of
the patient. USARIEM was requested by the U. S. Army Medical Materiel Development

Activity, Fort Detrick, Frederick, Maryland 21702-5009 (USAMMDA) to conduct this

research project for First Article Testing. It was coordinated through MAJ D. Danley, U.

S. Army Biomedical Research and Deve'opment Laboratory, Fort Detrick, Frederick,

Maryland 21702-5010 (USABRDL). The research project also provided information to the

contract monitoring agency about future ,pecifications for a scheduled production run for

several thousand units.
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EXECUTIVE SUMMARY

The air permeability of the chemical threat agent protective patient wrap (WRAP) was

reduced by approximately 50% during production (from 8.5 - 12 to 4.8 - 6.1 cubic feet per
min per square meter) compared to the developmental prototype WRAP which was
originally tested to determine human physiologic limits to encapsulation imposed by

environmental extremes. The reduction in air permeability raised questions as to whether

the recommendations about encapsulation time made on the basis of the original testing
were still valid. The current study determined if the reduction of air permeability in the
production WRAP required changes in the recommendations f3r safe encapsulation time.

Because the reduction in air permeability could potentially affect both thermal
properties and the composition of the atmosphere within the WRAP, the study design
included a biophysical evaluation of the production WRAP material and a physiologic

evaluation of respiratory gases and metabolic measures associated with human
volunteers during a 6 h encapsulation. The biophysical ovalu-tion demonstrated very

slight differences in thermal and water vapor resistance between the prototype and
production WRAPS. Based solely on the water vapor permeability index (ia1) calculated

from these evaluations, the capacity for evaporative cooling and the heat strain
experienced by patients during encapsulation should not be significantly different in the

production WRAP compared to the prototype WRAP originally tested.

Physiologic testing in which volunteers were encapsulated for 6 h in the production

WRAP in a comfortable environment (T. = 240C; 20% rh) resulted in decreased mean
oxygen concentration (02) from 20.9 to 20.0(±0.4)% and increased carbon dioxide
concentration (CO2) from C.04 to 1.10(_+0.2)% during the first 15 min of encapsulation.
Both remained stable at those levels throughout the 6 h test. ThA increased CO2 was
associated with an increased respiratory frequency. Additionally, the mean metabolic rate
increased from 3.4(± 0.2) to 3.6(± 0.3) ml 0 2,kg1 .min 1 after two h of encapsulation.

The potential significance of these results for encapsulated patients can only be

estimated from the present data. Breathing 20% 02 should not cause any adverse
physiologic consequences. CO2 accumulation within the WRAP could be exacerbated by
increased respiratory frequency due to activity of the patient or other conditions known
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to affect respiration. Further CO2 accumulation could result in respiratory and metabolic
changes that would adversely affect patients in already compromised medical conditions.

Those patients will require careful monitoring to detect adverse changes.
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INTRODUCTION

The chemical threat agent protective patient wrap (WRAP) is a fabric encapsulation

dciv,;e designed to protect patients from exposure to chemical warfare agents in an

uperational military environment. The WRAP consists of an impermeable sheet upon

which the patient lies and a permeable, carbon impregnated upper sheet through which

all air exchange takes place. The two sheets together are designed to completely

encapsulate a patient, much like a full sleeping bag zipped over the head, to provide

protection from chemical threats. This construction imposes certain functional limitations

to encapsulation of patients. Significant potential problems are imposed by the amount

of air that can be exchanged through the permeable portion of the WRAP. Limitation of

air exchange could impact on the patient's respiratory function and on the insulative

qualities which affect the patient's thermoregulatory capacity.

In 1986 USARIEM tested a developmental prototype WRAP to determine safe

encapsulation time for healthy subjects in four hot environments which included a

simulated solar heat load (1). Air exchange across the tested prototype WRAP was

measured as 8.5 - 12 cubic feet per min (cfm) per square meter (2). During initial

manufacture (1990) of the WRAP for field distribution (300 units), the mean air

permeability was reduced to 4.8 - 6.1 cfm although the materials remained the same as

those in the previously tested (1986) WRAP (3). The substantial decrease in air

permeability raised questions of impact on respiratory function and thermoregulatory

capability that could change the limits to encapsulation time delineated in testing of the

prototype WRAP. The present study was designed to address those questions.

STATEMENT OF PURPOSE

There were two purposes to this research. First, the impact of the reduced air

permeability of the WRAP on patient respiratory function was evaluated by measuring the

oxygen depletion and carbon dioxide accumulation in the WRAP during a 6 h

encapsulation period in a comfortable environment (T. = 24°C; 20% rh). The 6 h

encapsulation time was chosen because that was the time of chemical protection of the

WRAP, as outlined in the original letter requirement for the WRAP (4,5). A comfortable

environment (T, = 240C; 20% rh) was chosen to ensure that encapsulation could be

3



sustained for 6 h without the subjects experiencing heat strain.

The second purpose of this research was to determine whether the heat strain to the

patients and safe encapsulation limits in severe environments as measured in the

previous study (1) were still valid based on the evaluation of biophysical parameters (dry

heat insulative value and the water vapor permeability index) affecting heat exchange

during encapsulation ir. the WRAP.

METHODS

SUBJECTS

Eight young male soldiers (age range 19-22) volunteered to serve as subjects after

they were informed of the purpose, procedures, and known risks of this study. Each

signed a consent form approved by the USARIEM Human Use Review Committee and

the Surgeon General's Human Use Review Office describing the study and its risks.

Each subject was evaluated using a history and medical examination before participating

in the study. Potential subjects with respiratory, metabolic or psychologic

contraindications to encapsulation were excluded from participation. The physical

characteristics of the subjects are described in Table 1.

CHEMICAL THREAT AGENT PROTECTIVE PATIENT WRAP

The WRAP was composed of an impermeable ground sheet made of Loretex and
nylon and an upper blanket of chemicai protective laminated cloth through which

respiratory exchange occurred. The shell of the upper blanket was made of a carbon-

based core of 3M melt-blown polypropylene covered by Nyco Twill, and was treated with

Quarpel. A clear window made of a tri-laminated nylon/saran/polyethylene film was
located in the upper blanket where the patient's head was positioned. A cardboard frame

was placed inside the WRAP to lift the window off the patient's face.

4



The air permeability data of the samples of the WRAP used in this study are shown

in Table 2. The average air permeability was 5.5 cubic feet per min (cfm) per square foot

as determined by the manufacturer (6).

TABLE 1

TEST SUBJECT CHARACTERISTICS

SUBJECT HEIGHT WEIGHT AGE A0
1

# (cm) (kg) (yr) (m2)

1 173 77.8 20 1.9

2 178 61.9 19 2.0

3 191 99.7 21 2.3

4 168 68.3 19 1.8

5 185 76.5 22 2.0

6 183 81.4 22 2.0

7 183 86.5 20 2.1

8 170 64.4 21 1.8

MEAN 179 77 21 2.0

S.D. 8 11 1 0.2

BIOPHYSICAL EVALUATION

To evaluate possible changes in thermal characteristics due to the decreased air

permeability of the current production WRAP compared to the prototype WRAP originally

tested, the thermal and water vapor resistances of both WRAPS were measured using

the Hohenstein Model of Human Skin which was operated in accordance with Deutsches

Institut fjr Normung (DIN) standard 54-101 (7). Samples of test material were manually

1DuP-41s body surface area
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cut from the upper blanket of each WRAP. The sample from the prototype WRAP had

been exposed to actual human physiological test conditions, while the sample of the

current WRAP was not previously used (WRAP # 4; Table 2).

TABLE 2

INDIVIDUAL CHEMICAL THREAT AGENT PROTECTIVE PATIENT WRAP

AIR PERMEABILITY DATA (3)

WRAP AIR PERMEABILITY (MEAN±SD) SAMPLES TESTED
(#) (of m) (#)

1 5.4 ±0.1 9
2 5.7 ± 0.2 6
3 6.1 ± 0.2 6
4 5.6 ± 0.3 6
5 5.6 ± 0.5 6
6 5.5 ± 0,2 6
7 6.0 ± 0.3 9
8 5.8 ± 0.5 9
9 5.8 ± 0.5 6

10 5.6 ± 0.2 6

The thermal resistance (R.), according to the DIN standard represents a quantity

specific to a textile material in a given environment which determines the "dry" heat flux

(composed of conduction, convection and radiation) passing through the material in a

steady-state condition effected by a temperature gradient perpendicular to the materials'

surface area. The water vapor resistance (R,,) is the quantity which determines the

"latent" or evaporative heat flux (composed of diffusion and convection) passing through

the material effected by a partial pressure gradient perpendicular to the materials' surface.

R,, and R., were used to calculate the water vapor permeability index (irm) which the

DIN standard defines as the ratio of thermal to water vapor resistance of a textile layer

according to the following equation:

6



iml = S.(R 1.t"1)

where S = 0.6 millibar*K1

Thu imt index is a unitless value between 0 (for a water vapor impermeable textile layer)

and 1. A value of imt = 1 would theoretically mean that the textile layer had only the

resistance of a layer of air the same thickness as the textile itself. A high imt value is

desired for increasing thermal comfort of soldiers enclosed in chemical protective

garments.

PHYSIOLOGIC EVALUATION

The primary purpose of the physiologic evaluation was to determine the effect of the

reduced air flow on the respiratory function of the subjects as reflected by the

concentrations of oxygen and carbon dioxide within the WRAP during a 6 h

encapsulation. Additionally, heart rate, respiratory frequency, tidal volume and rectal

temperature were measured, and certain metabolic parameters (oxygen uptake, carbon

dioxide production, and respiratory exchange ratio) were calculated.

Test Sublect Familiarization and Requlrements

All subjects were familiarized with the test procedures, including encapsulation in the

WRAP, before they participated in the study. The subjects refrained from drinking

alcoholic beverages the previous 24 h and coffee or soft drinks containing caffeine for 8

h prior to the experiments and fasted overnight.

Experimental Procedures and Environmental Conditions

Experiments began at 0700 h and two subjects were studied during each experiment.

The subjects were dressed in gym shorts and a T-shirt for the experiment rather than the

BDU because medics at a Battalion Aid Station would cut off the contaminated BDU.

After each subject inserted a previously calibrated YSI thermistor to a depth of 10 cm

past the anal sphincter, ECG electrodes were applied for subsequent heart rate

measurenrmnt (Hewlett-Packard telemeiry). Body weight was measured (SECA balance)

7



prior to entering the environmental chamber (TJ 240C; 20% rh). The subjects then lay

on the ground cover of the WRAP which was placed on a standard Army litter inside the

environmental chamber. A small diameter tube was taped between the eyebrows and

oxygen (F102) and carbon dioxide (FICO2) concentrations within the WRAP were

monitored continuously in 250 ml of air sampled per min from the WRAP (Sensormedics

2900). Rectal temperature (Tr,) was monitored frequently until it was stable (30 - 40 min).
After 15 min of rest, resting metabolic rate was measured (Sensormedics 2900).

When TMo stabilized, that time was designated 0 time and the upper blanket was

positioned over the test volunteer in preparation for encapsulation. F102, FICO2, heart

rate, and respiratory frequency (Q,) were measured immediately before the WRAP was

zipped up to complete encapsulation and the 6 h experiment began.

During the first 15 min of encapsulation, oxygen and carbon dioxide concentrations

within the WRAP and heart rate were measured each min. F102 and FIC02 were

measured each min for the next 30 min at which time the frequency of measurement was

decreased to 5 min, although the gas concentrations were monitored continuously. T,.

was measured every five min and respiratory frequency was measured at 15 min intervals

throughout the enc-apsulation. After two hours of encapsulation metabolic rate was

measured again. After 6 h, the encapsulation ended, then the body weight was

measured again.

To help alleviate boredom during the 6 h of encapsulation, subjects were permitted to

watch previously recorded movies through the WRAP window.

Data Analysis

F102, FIC02, heart rate, respiratory frequency and rectal temperature were compared

during the 6 h encapsulation period using a one-way analysis of variance with repeated
measures. Oxygen uptake, carbon dioxide production, respiratory exchange ratio and

tidal volume were compared before and after 2 h of encapsulation using a one-way

analysis of variance with repeated measures.

8



RESULTS AND DISCUSSION

BIOPHYSICAL EVALUATION

Table 3 shows the biophysical parameters for the prototype WRAP sample from the

previous study and the production WRAP sample. The biophysical evaluations of the

prototype WRAP used in the 1986 study (1) and the production WRAP indicate that there

are very slight differences in thermal and water vapor transmission between the two

samples. Note that the water vapor permeability index was approximately 7% less qnd

the thermal resistance was about 10% greater in the production WRAP compared to the

prototype WRAP. This may be due to actual material differences or simply that the

TABLE 3

THERMAL RESISTANCE (Rd), WATER VAPOR RESISTANCE (R,,), AND

WATER VAPOR PERMEABILITY INDEX (id)

R (m2 KW"1) R1 (m2'mbar'W") imo

Prototype WRAP 0.038 (0.245 clo) 0.085 0.27

Production WRAP 0.042 (0.271 clo) 0.102 0.25

Difference (%) 10% 20% -7%

current production WRAP is slightly thicker than the prototype WRAP used in 1986.
Based solely on the resulting water vapor permeability indices (im,) calculated from these

evaluations, the capacty for evaporative cooling should be similar In both WRAPS. The

biophysical data indicate that heat strain experienced by volunteers during encapsulation
should not be different between the two WRAPS. Consequently, the safe encapsulation

time limits determined previously (1) should not be substantially different during

encapsulation in the production WRAP.

9



PHYSIOLOGIC EVALUATION

Fig. 1 shows the mean oxygen and carbon dioxide concentrations for six subjects
during the first 45 min of encapsulation. F102 decreased over the first 15 min of

encapsulation, then stabilized for the rest of the 6 h encapsulation period. Fig. 1 also

shows that FIC02 increased during the initial 15 min of encapsulation before stabilizing

for the remainder of the encapsulation period. FI02 and FICO2 data for the individual

subjects are presented in Figs. 2-5. With the exception of Subject 6, there was very little

variation in these responses. F102 averaged 20.0(±0.4)% and FIC02 averaged

1.1 (±0.2)% during the 6 h encapsulation period. F102, when stabilized to 20%, should
not pose any physiologic consequence to the patient. However, FICO2 stabilized to about
1.1% which may have resulted in the slightly greater respiratory frequency, perhaps

reflecting changing metabolism, at the end of the encapsulation period (see below).

Increases in respiratory frequency due to activity or other conditions related to traumatic

wounds may further raise C02 within the WRAP.

We were concerned that our method of measuring oxygen and carbon dioxide

concentrations within the WRAP (aspirating 250 ml of air per min from the WRAP and
measuring F102 and FIC02) would affect the diffusion of oxygen and carbon dioxide

across the WRAP. In order to determine the effect of aspirating 250 ml of air per min

from the WRAP on F102 and FICO2, a pilot study was conducted on one subject. During
the 1 h encapsulation period, aspiration was stopped for 10 min after 20 min of

encapsulation (Fig. 6). Aspiration was restarted after 30 min of encapsulation so that
F102 and FICO2 could be measured for the next 10 min. Aspiration was ': en interrupted

for about 20 min before F102 and FICO2 was measured again. Fig. 6 shows that F102

and FIC02 were not affected by aspirating 250 ml of air per min out of the WRAP. That

is, oxygen concentration did not decrease more and carbon dioxide did not build up to

a greater extent within the WRAP when aspiration was interrupted for up to 20 min.

Metabolic rate averaged 3.4(± 0.2) ml 0 2,kg*'min 1 before encapsulation and

increased to 3.6(± 0.3) ml 02.kg'omin 1 after two h of encapsulation (Table 4; p = 0.01).

Resting metabolism is generally defined as 3.5 ml 0 2.kg"-min*' for an average young

adult. The present data indicate that the subjects were relaxed while participating in the

experiment. It seems possible that a nonsedated wounded individual could have a higher

10
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metabolic rate. Carbon dioxide production, respiratory exchange ratio and tidal volume

were not significantly different between the two times (Table 4).

TABLE 4

OXYGEN UPTAKE (fto,), CARBON DIOXIDE PRODUCTION (Vco2), RESPIRATORY

EXCHANGE RATIO (R) AND TIDAL VOLUME (VT) BEFORE AND AFTER 2 H OF

ENCAPSULATION IN THE WRAP

SUBJECT V/02 VCO, R VT

(#) (ml 2Okg-'min"1 ) (ml CQ 2.kg"'-min"1)
(I)

BEFORE ENCAPSULATION

1 3.59 3.34 0.93 0.57

2 3.63 3.25 0.90 0.57

3 3.01 2.62 0.88 0.67

4 3.67 3.08 0.84 0.47

5 3.50 2.98 0.85 0.76

6 3.18 2.76 0.87 0.58

7 3.28 2.39 0.73 054

8 3.45 2.97 0.87 0.52

2 h ENCAPSULATION

1 3.78 3.93 1.04 0.58

2 3.73 3.18 0.86 0.54

3 3.18 2.91 0.92 0.83

4 3.95 3.16 0.80 0.52

5 3.56 3.07 0.87 0.69

6 3.21 2.66 0.83 0.56

7 3.28 3.02 0.93 0.72

8 3.79 2.95 0.78 0.46
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The Increased metabolic rate two hours after encapsulation may be explained by the

normal circadian variation in heat production (8) and also might indicate slight subject

discomfort as the encapsulation period proceeded. After 2 h of encapsulation VCO,, tidal

volume and respiratory exchange ratio were not different from pre-encapsulation values.

Apparently, the 1% increase in FICO2 for the 100 min prior to metabolic rate

measurement did not significantly affect carbon dioxide output. Also, the increased FICO2

at 2 h of encapsulation was not associated with any respiratory compensatory

mechanisms to lower the arterial partial pressure of carbon dioxide which would affect

tidal volume or pulmonary ventilation as evidenced by the ventilatory equiva!ent of oxygen

or the respiratory exchange ratio.

We made infrequent metabolic measurements because the technique required that the

exhaled air be exhausted from the WRAP so that the volume, oxygen concentration and

carbon dioxide concentration could be measured. Consequently, F102 and FICO2

approached room air during metabolic rate measurement. We sought to minimize this

artificial condition within the WRAP by only measuring metabolic rate once during the

encapsulation. The technical necessity of continuously aspirating a small volume of air

from the WRAP did not affect FI02 and FICO2 as shown in the pilot study (Fig. 6).

Figs. 7-10 show respiratory frequency, rectal temperature and heart rate for the

individual subjects during 6 h of encapsulation. Respiratory frequency increased after

encapsulation in seven of the eight subjects with the average increase from pre-

encapsulation to 359 min of encapsulation was 3±3 breaths*min 1 . Rectal temperature

increased gradually in five subjects during encapsulation while rectal temperature did not

change consistently in the other three subjects. TIe variation in Tr may be explained by

two factors, circadian periodicity in core temperature (9) and the effect of drowsiness on

core temperature (10). In five of the subjects rectal temperature gradually increased over

the encapsulation period which is the normal circadian response. In the remaining three

subjects, T,, dropped at different times during the encapsulation and may have been

associated with drowsiness of the test subject.

Heart rate did vary during the encapsulation but was not correlated with

encapsulation time. Time of encapsulation did not affect heart rate responses as can be

seen in Figs. 7-10. The large variability in heart rate was most likely due to individual
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subject's reaction to the movies being shown to alleviate boredom during 6 h of

encapsulation.

The change in body weight averaged 0.8(±0.4) g-mln 1 during encapsulation. The

water loss reflected in the measured body weight changes included both insensible

perspiration, sweating and respiratory water loss. The body weight changes observed

indicate that sweating was not substantial during encapsulation in the environment

studied. This observation reinforces the conclusion drawn from the rectal temperature

data that there was no heat strain experienced by the subjects during encapsulation in

such a comfortable environment.

CONCLUSIONS

This evaluation demonstrated that the decrease In air permeability in the current

production WRAP compared to the previously tested prototype WRAP may affect certain

biophysical and physiological parameters, some of which may impact on safe

encapsulation time. Biophysical evaluation showed very slight differences between the

two WRAPS in measured thermal and water vapor resistances. Based solely on the

resulting calculated water vapor permeability indices (I,,), the capacity for evaporative

cooling and heat strain should be similar between the two WRAPS. Consequently, the

safe encapsulation time limits determined in the prototype WR.AP should not be

substantially different during encapsulation in the current WRAP.

Encapsulation in the production WRAP resulted in a decrease in oxygen concentration

of the air within the WRAP from approximately 21 to 20% and an increase in the carbon

dioxide concentration from approximately 0.03 to 1%. These concentrations remained

stable during a 6 h encapsulation in a comfortable thermal environment. The slight

decrease in oxygen concentration would not be expected to have a significant physiologic

effect on patients encapsulated within the WRAP. The increase in carbon dioxide had

little effect in this study which involved healthy soldiers. The accumulation of carbon

dioxide within the WRAP could be exacerbated by increased metabolism or
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hyperventilation due to patient activity or stimulation from pain or altered metabolism.
Further accumulation of carbon dioxide could effect metabolic and/or respiratory
compensation and alter safe encapsulation time.

RECOMMENDATIONS

The volunteers tested in this study were healthy, well-hydrated soldiers and the
experiments were conducted in a comfortable environment. Casualties of war are a
different population in regard to their medical and physiologic status than the soldiers
studied in this laboratory. It must be noted that any condition or drug which affects
patients' thermoregulation or cardiovascular/pulmonary status may decrease safe
encapsulation time compared to the healthy sc!diers tested here. Conditions might
include hyperthermia, pre-treatment and antidotal treatment drugs for chemical poisoning,
dehydration and blood loss.

Six hours of encapsulation was easily tolerated in the comfortable environment in
which this study was conducted. The biophysical evaluation comparing the current
production WRAP with the prototype WRAP used in the previous study (1) indicated that
encapsulation in either of the two WRAPS would result in similar heat strain to the patient.
Therefore, it is recommended that the safe encapsulation limits determined previously (1)
in four hot environments which included simulated solar heat loads be applied to the
current production WRAP. Those limits are listed in the Appendix.

The limits to encapsulation imposed by alteration of respiratory gas exchange through
the current production WRAP are dependent on the respiratory and metabolic status of
the patient. Uncompromised patients should be abie to tolerate a 6 h encapsulation in
the comfortable environmental conditions te;ted here. Patients with increased
metabolism or hyperventilation cannot be expected to tolerate encapsulation for as long

a period of time. Those patients will have to be mnnitored carefully and the length of
encapsulation or the conditions oi encapsulation adjusted according to their response.
Further, careful consideration of the likelihood of threat from chemical agents must be
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made prior to encapsulating patients for whom the encapsulation may have some adverse

effects due to excessive accumulation of carbon dioxide.
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APPENDIX

TABLE 5

MEAN (±SD) CHANGE IN BODY TEMPERATURE OVER TIME
AND ENCAPSULATION TIME FOR EIGHT SOLDIERS ENCAPSULATED IN THE

PROTOTYPE WRAP IN FOUR ENVIRONMENTS WHICH INCLUDED SIMULATED

SOLAR RADIATION. THESE DATA ARE FROM A PREVIOUS STUDY (1).

T,/%rh ATb'At 1  Encapsulation Time

(°C/%) (°C.min') (min)

54.5/17 0.044 38.4

(0.01) (5.0)

43.0/58 0.039 49.3

(0.01) (8.6)

42.0/16 0.030 61.6

(0.01) (14.1)

36/63 0.028 61.8

(0.01) (13.2)
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