Report No. 90009

. . <
I
ST IREACH
ISRV LS

m—

UNLIM!TED - | @ |

VL

Yt

] AD-A242 147
AR

ROYAL SIGNALS AND RADAR ESTABLiSHMENT |
MALVERN |

Report No. 90009

—
pam—

sv;‘) ! "

lllmm

»I

M w,‘-‘.. !
' P -) i M
&5 £« RN Jol-SURL GV SRR et
T A
T y A 4 x“&
Wl Muldv oo v 3 3

 FORMAL SPECIFICATION OF THE l
VIPER MICROPROCESSOR IN HOI.

Author: C H Pygott

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE

Malvern, Worcestersire.

Sy miATENE A | |
e
4 ot public rolease: |

June 1980

~ UNLIMITED

37-152
uy,{mwummmmmaaf

P——
CONDITIONS OF RELEASE
0108583 304494
RARAS TS A aNARAR IR RN RRRRAR G DRIC U
COPYRIGHT (c)
1988
) CONTROLLER
HMSO LONDON
fERARRCTEsNR TR AR RO RN AR PN DRIC Y

Reports quoted are not necessarily available to members of the nublic or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Report 90009

TITLE: FORMAL SPECIFICATION OF THE VIPER MICROPROCESSOR IN HOL
AUTHOR: C B Pygott
DATE: June 1990

SUMMARY

This report provides a mathematically rigorous specification of the
required behaviour of the VIPER microprocessor in the HOL notation (Higher Order
Logic) of Cambridge University. This specification has been used as the starting
point for a chain of proofs, in an attempt to shov that a number of
implementations of this specification are indeed correct.

This report replaces the early RSRE report 85013, vhich describes VIPER in
the language LCP-LSM (a precursor to HOL).

A-ewasiiva For

R LRENTT Y Y
DT Tat
Copyright DUAmTes vived
(c) Taotiliratton . __
Controller HMSO London e
1990 a3y |

™ - o ‘—
Pl 10w Tuie/ |
. e

~ Avellarliity Codes
Avnil utdiorw"
\ Dist | speeial
% ‘R ’
! ‘\ AR 3

I |

FORMAL SPECIFICATION OF THE VIPER MICROPROCESSOR
C H Pygott
June 1990

CONTENTS
Section

1) Introduction

2) Informal description of architecture
3) Formal specification in HOL

4) Conclusions

5) Acknovledgements

6) References

Annex A) Short introduction to HOL
Annex B) VIPER arithmetic

IN BOL

Page

21
21
21

A-1
B-1

1. INTRODUCTION

The VIPER (1, 2) microprocessor vas invented at RSRE to satisfy the need for
a highly trusted 32-bit computer vhich can be used in safety critical
applications. The need for such a chip, has arisen in areas such as the arming
and fuzing of veapons, "fly by wire” control systeas in high performance
military and civil aircraft and in the instrumentation of nuclear reactors. The
majority of videly available microprocessors are regarded as unsatisfactory
for safety critical applications because they have instruction sets that are
too rich and that lead to programmer confusion and problems vith formal
verification of the softvare to run on them. Also, they are documented in
natural language (vith its inherent ambiguities) and their designs are
validated by simulation (a process that cannot give a 100X guarantee of
correctness). The aim of the VIPER project has therefore been to design a
processor architecture vell matched to critical applications, to define it
rigorously (this document) and to attempt to prove by mathematical means (5,6)
the correctness of circuits designed to meet this specification (in addition to
their conventional validation by simulation).

This Report specifies the VIPER architecture in two ways:-
a) Informally, using a conventional description of the instruction set

b) Formally, using the notation of the BOL system (Higher Order Logic),(3)
developed at the University of Cambridge

The purpose of this Report is to provide an unambiguous description of the
functional behaviour of VIPER. This is usually referred to as the top-level
specification and corresponds to the programmer’s viev of the processor. This
viev excludes such considerations as electrical properties and detailed
timings, wvhich can be found in reference 2. A number of VLSI technologies have
been used to realise machines vhich respect the specification given in this
document, using in the region of 4000-5000 logic array cells (vhich illustrates
tie inherent simplicity of the architecture).

This report replaces the earlier RSRE report 85013 (9) vhich provided the
formal description of VIPER in the LCF-LSM language (4). This vas the precursor
of BOL, but as the proofs of correctness to shov the validity of VIPER’s major
state and block level implementations (5,6) vere done in HOL, this new
specification should be regarded as the definitive description. There are only
minor syntactic differences betwveen LCF-LSM and the sub-set of the BOL logic
used here, so this description and the previous report are almost identical.
Hovever, there is one substantive change in the function NEXT. This will be
described in the appropriate section. This HOL description wvas derived from the
earlier LCP-LSM description by Dr Avra Cohn of Cambridge University.

VN

e

<t

[ki

TRy

2. INPORMAL DESCRIPTION OF ARCHITECTURE

The -ationale for the VIPER architecture is given in reference 1. As shown
in Pig 1, the conceptual machine has an accumulator, A, of 32-bits, tvo index
registers, X and Y also of 32-bits and a register for the program counter P, of
vidth 20-bits. VIPER’s main memory is 1 Mega-vord. This is used as the source
of all instructions and the source and destination of most data operations.
Bovever VIPER has a separa’. 1 Mega-vord memory space available for peripheral
devices, vhich is only accessed by the INPUT and OUTPUT instructions. In both
cases the data path is 32-bits vide. Selection betveen the domain of the main
memory and the input/output space is achieved by a 1-bit signal. PFrom the
point of viev of this specification, all of the main memory and the
input/output space can be vieved as Random Access Memory (RAM) addressed by
21-bits in total, i.e. a memory/io control bit concatenated with a 20-bit
address generated by the rest of the machine.

In addition to the above registers, the architecture has a single 1-bit flag
register, B, vhich holds the results of comparison instructions and carry bits
from arithmetic or shift operations. The final key feature is a single Boolean,
STOP, wvhich becomes true if any logical error occurs in the execution of a
prograr in VIPER, such as arithmetic overflov or generation of an offset
address larger than 20-bits. In such circumstances the machine must halt. If
the real time application requires continued operation, this must be achieved
by external means, such as redundant processing capability or by switching to
an alternative progras.

From the twvo paragraphs above it will be seen that a ’'state’ in vhich the
machine rests momentarily between instructions can be wvritten down as the
vector:-

(RAM, P, A, X, Y, B, STOP)

vhere P, A, X, Y, B imply the current contents of these registers and STOP the
current setting of the stop condition. The element RAM implies the current
contents of both address spaces. The essence of the specification given in this
document is to define rigorously all transitions from one such state to another
for all possible instructions stored in the main memory.

Instructions are stored as groups of fields occupying the highest 12-bits of
each vord. The remasining 20-bits represent either an address or a constant.

Throughout this specification the bits of a vord are numbered from O at the
least significant end. For the purposes of definition the machine is assumed
to have an Arithwetic and Logic Unit (ALU) with tvo 32-bit inputs, denoted by
convention as R and M, but these values are not directly accessible to the user
and are not part of the primary atate of the VIPER machine.

It should be noted that events such as reset vhich are caused by the
renvironment’ in vhich VIPER is operating are regarded as being outside the
programmer’s viev of normal operation, and so are not formally defined in this
document. Informally, a reset may occur at any time and causes all the
registers (A, X, Y, P, B and STOP) to be cleared. The other similar event that
may occur is a forced error, vhen for example hardvare external to the
processor detects a parity fault in the memory and forces the processor into
the stopped state. The effect of a forced error is to set the STOP flag, thus
preventing further instructions being executed, until cleared by reset.

The fields formed from the 32-bits of each VIPER instruction can be defined as
shovn in Table 1:-

TABLE 1. INSTRUCTION DECODING

[Fleld Ident- igh | Lov | Length | Deflning T
| ifier Bit Bit Bits |

e
-+

Register select rsf k)| 30 2 READ: source of
R input to ALU
VRITE: register
to be vritten

-+

< e &
ng T ¥

+
+
+

b

Memory select msf 29 28 2 RRAD: source of
M input to ALU
VRITE: memory
or io address
SHIFT: shift op

" & " & &
* * * - v

Destination select| dsf 27 25 3 Destination of
result
Comparison select i csf ' 24 | 24 i 1 | l=compare

O=arithmetic op

L 3
4
+

<
<+

Function select fsf 23 20 4 Comparison
or ALU function

+

+
+

Address addr 19 [0 20 Address or 20
bit constant

The next level of decoding is illustrated in the following tables, which
indicate the coding of each field. The R input of the ALU or the register to be
vritten into RAM is selected by the Register Select Field as showvn in Table 2:-

TABLE 2. REGISTERR SELECT FIELD

TValue of rsf | R Input to ALU or T

value to be vritten to memory |
I o A I
| 1 X I
| 2 Y |
| 3 P, padded to 32-bits |
| I

vith leading zeros

The memory select field has several roles, dependihg on the values of the
other fields of the instruction, these are illustrated in Table 3:-

Case 1: (csf = 0) AND (dsf > 5) is a VRITRE operation, msf indicates the address

Case 2: (csf = 1) OR ((dsf <= 5) AND (fsf /= 12)) is a comparison or
arithmetic operation, vith either an operand being read from memory or
the 20-bit tail of the instruction being allocated as a constant to the
M input of the ALU

Case 3: (csf = 0) AND ((dsf <= 5) AND (fsf = 12)) is a shift operation, wvith
msf defining vhich of the four possible shift instructions is to be

performed
TABLE 3. MEMORY SELECT FIELD
(csf = 0) (csF = 1) OR (csF = 0) AND |
msf AND ((dsf <= 5) AND | (dsf <= 5) AND
(dsf > 5) (fsf /= 12)) (fsf = 12)
0 | Illegal | Assign constant i No WRITE or
stop = TRUBR Padded to 32 READ. Defines
bits to M one of four
+ + shift inst-
1 Vrite source Read from addr ructions, as
(rsf) to addr | and assign listed in
result to M Table 6
2 | IF (addr + X) | IF (addr + X)

is <= 20-bits | is <= 20 bits
vrite to this | read from this
location location and
ELSE stop assign result
to M, ELSE stop

+
+

3 IF (addr + Y) | IF (addr + Y)
is <= 20-bits | is <= 20 bits
wvrite to this | read from this
location location and
RLSE stop assign result
to M, ELSE stop

As indicated above, the destination select field controls the read/vrite
operations, subject to conditionals such as indexed addresses being vithin the
20-bit range of the machine. The definition of the coding of dsf is given in
Tables 4A & 4B, in vhich the values of the predicates are indicated by 1, 0 or
X (for either value). BRach column in such a table defines a combination of
conditions and the actions vhich must be performed if these circumstances are
encountered in the execution of a program. The ’actions’ in this specification
of VIPER are assignments to the elements of the state vector (RANM, A, X, Y, P,

B, STOP).

TABLE 4A. DRSTINATION SELECT FIELD LOGIC

Column number T I [| 2 [3 | & | 5 T & 7T 71
SToP 1 ¥] o] o	0	0	0] O			
iovalid address or	X	1	0	©	0	o	
illegal operation,		[{					
excluding illegal { { {							
calls (see col 16)] i]			
compare (caf = 1)	X	X	1] 0	0	O] O		
} value of dsf i any i any i any i 7,6 i 5 i 5 i 5 |
Ib i x | x | x | x | 1 | o} 0|

call (fsf = 1) 1 x | x | 1 X | £ | 1] o
CHANGES VALUE OF:-

RAM (memory + 1/0) - - - regval - - -
A - - - - - - -
X - - - - - - -
Y - - - - - P+l -
P - P+1 P+1 P+1 P+1 RES RES
B - - compar- - - BVAL | BVAL

ison
STOP - TRUE - - - SVAL | SVAL

Note: The ALU is specified (table 6) to deliver a triple (RES, BVAL, SVAL),

vhere RES is a 32-bit ansver, Boolean BVAL is the nev assignment to
register B and Boolean SVAL is the nev value of the STOP flag.

Notes on each column, with (RES, BVAL, SVAL) delivered by ALU:-

1.
2.
3.
4.

5.
6.

7.

Processor has halted

Invalid address or illegal operation, vhich must cause processor to halt.
Comparison functions, see Table 5 for vhich function is required.

Vrite to memory (dsf=7) or io (dsf=6)

* regval is the contents of the register defined by rsf written into the RAM
No operation, (dsf=5) AND B

Conditional CALL,

* P loaded with bottom 20-bits of RES and Y loaded vith P+1 padded to 32-bits
Conditional GOTO,

* P loaded vith bottom 20-bits of RES

Pt B

TABLE 4B. DESTINATION SELECT FIELD LOGIC

Colusn number | 8| 9| 10| 11| 12| 13| 14| 15| 16 |
| STOP | of o of 0| 0| 0| 0| 0} o]}
| invalid address or i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0|
| 11legal operation, |] | | | I]] []
| excluding illegal | | | | | | | | | |
| calls (see col 16) | I I I I | | I | |
| compare (csf = 1) | of of of o] 0| 0| o] o0 O]
| value of dsf | 41 4| &1 3] 3] 2] 1] o] <3|
Ib l o 1| 1] x| X| X} X| X| X|
call (fsf = 1) | x| 1] 0] 1] 0} 0] 0] O] 1
CHANGES VALUE OF:-
RAM (memory + 1/0) - - - - - - - - -
A -l -0 -1-1-1 - RES | -
X -1 -1-1-1-1-|®s]| - | -
Y - P+l - P+l - RES - - P+1
P P+1 | RES | RES | RES | RES | P+1 | P+1 | P+l | Psl
B —" |BVAL |BVAL |BVAL [BVAL [BVAL |BVAL (BVAL | -
STOP — |SVAL |SVAL |SVAL [SVAL |[SVAL |SVAL |SVAL |TRUE

Notes on columns.

8. No operation, (dsf=4) AND (NOT B)

9. Conditional CALL

* P loaded vith bottom 20-bits of RES, Y loaded with P+1 padded to 32-bits
* P loaded with bottom 20-bits of RES

1). Conditional GOTO:

1i. Unconditional CALL
* P loaded with bottom 20-bits of RBS, Y loaded with P+1 padded to 32-bits
12. Unconditional GOTO: * P loaded vith bottom 20-bits of RES
13..15 Assignments to Y, X or A
16. Illegal CALL instructions

TABLE 5. COMPARISON FUNCTIONS
| fst | comparator

o | R< M

1 R > M

2 R =M

3 R/= N

4 R<= M

5 R> M

6 unsigned R < M

7 unsigned R >= M

8 1 As above, but wvith the
to the result ORed vith B
15 eg: 8 => (R<N)ORB

The description of the arithmetic and logic functions of the ALU calls for
tvo further definitions to describe the error conditionms:-

pvrite a Boolean vhich is TRUE if the destination of the result of the
operation is the P register i.e. value of dsf = 3, 4 or 5. Many
of the ALU operations csnnot be used for manipulating the program
counter, since potentially dangerous effects could be produced.
Hence pvrite is the error condition for "barred on P register”
(note that the CALL instruction can only be used with destination P).

INVALID An operator applied to the 32-bit result of an ALU operation which
delivers TRUE if this value has any one of the top 12-bits set
i.e. represents an impossible address or value of the program counter

The folloving tables also contain the values ‘carry’, ’‘borrov’ and
‘overflov’, vhich are defined later.

TABLR 6A. ALU FUNCTIONS O - 11

fsf | mst | function | output
| | |
| | | RBS | BVAL i SVAL
0 | any | NEGATE = | NOT M | B | pvrite
1 i any i CALL m i M | B | NOT pwrite
]] | | OR INVALID M
2 | any |RRAD from peripheral| M | B | pwrite
3 any 'RBAD from memory M B pvrite AND
INVALID M
4 any ADD, no overflow R+ N carry pvrite
detected
5 any i ADD, stop on R+ M | B | overflow OR
overflow (pvrite AND
INVALID(R+M))
6 I any SUB, no overflow R-M borrow I pvrite
detected
7 1 any | SUB, stop on R-M B | overflov OR
overflow (pvrite AND
INVALID(R-M))
8 | any | XOR | RXOR M | B | pvrite
9 | any | AND | RANDM | B | pvrite
10 E any | NOR | RNOR M | B | pvrite
11 | any | AND NOT IR AND NOT M| B | pvrite

TABLE 6B. ALU FUNCTIONS 12 - 15

! ifsf usf function output
RES | BVAL | SVAL
12 | O | SHIPT RIGHT |R31.R31..R1| B | pvrite
copy sign bit
12 1 SHIFT RIGHT | B.R31..R1 | RO | pvrite
through B
12 | 2 | SHIFT LEPT | R+R | B | pvrite OR
stop on overflow overflow
12 | 3 | SHIFT LEFT | R30..RO.B | R31 | pvrite
through B
13 | any | Illegal | R | B | TRUE
14 | any | Illegal I R i B | TRUE
15 i any i Illegal i R i B i TRUE
Note:-

In the notation used for the shifts, Rm..Rn denotes a slice of the bits in
the R input to the ALU and . (full stop) denotes concatenation.

3. FORMAL SPECIFICATION IN HOL

The HOL system has been devised by the Computing Laboratory of the
University of Cambridge, using the interactive programming language ML (Meta
Language), and is a development of LCF-LSM. The origins of this work are
described in a book by Gordon, Milner and Wadsworth (7).

In this Section VIPER is specified in the style proposed by Gordon (8), using
the primitive functions defined in the present Cambridge HOL system. Annex A
gives a very brief introduction to the BOL constructs used and the reader
should turn to those pages next to gain an initial understanding.

The formal specification is presented on the following pairs of pages, each
page of HOL text having a facing page of commentary. Inevitably any such
specification needs a number of auxiliary functions, to enable the primary
axiom for the next state of the machine to be defined in a concise manner.

F—v

The specification of VIPER begins vith tvo declarations, .o create types for
vords of fixed numbers of bits and to create a hypothetical address space:-

declare_vord widths[1;2;3;4;20;21;32;33;34]
declare_memories[(21,32)]

This introduces the types wordl, vord2,vord34 and the standard functions
forlconvertinz these types to positive integers (of type num) and to lists of
booleans:-

VALI » vm [vm LI -vm‘ 'Otdn -) nllll
VORDI 9 'mz '] 'm3 ®ev o e o'ORDS‘ num "> Votdn
NOT1, NOT2, NOT3NOT34 wvordn -> vordn

Vriting to and reading from the address space created by declare_memories is
achieved using the pair of functions:-

STORE21: word2l -> word32 -> mem2l 32 -> mem21 32
FETCH21: mem2l_32 -> vord2l -> vord32

The first functions VALUE, CARRY, OFLO, BVAL and SVAL exist solely to extract
a single field from a structured value.

A number of conversions betveen vords of differing lengths are required and
this is the role of the three functions TRIM32T020, TRIM34T032 and PAD20TO32.
The trim functions make use of the concept of lists and HOL functions such as
SEG, EL, V and TL (see Annex A). As defined, trimming is ’blind’ in the sense
that no checks are performed to see if significant bits are lost in the
trimming.

SIGNEXT performs sign extension, ie increases the length of a vord by
duplicating the most significant bit. Much use of this will be made in the later

definition of arithmetic operations.

RIGHT and LEFT shift a vord V in the appropriate direction, losing the
right/left most bit and adding B as the left/right most bit.

RIGHTARITH provides a divide by twvo operation for a 2’s complement value.
That is, the value is shifted one place right vith the most significant bit
being duplicated.

declare_vord wvidths[1;2;3;4;20;21;32;33;34]
declare _memories[(21,32)]

VALUE: word32£boolfbool -> wvord32
|- VALUB (result,carry,overflov) = result

CARRY: word32£boolfbool -> bool
|- CARRY (result,carry,overflov) = carry

OFLO: vwvord32£boolfbool ~> bool
|- OFLO (result,carry,overflov) = overflow

BVAL: vord32£boolfbool -> bool
|- BVAL (result, b, abort) = b

SVAL: word32f£boolfbool -> bool
|- SVAL (result, b, abort) = abort

TRIM32T020: vord32 -> word20
|- TRIM32T020 v = WORD20(V(SEG (0,19) (BITS3? w)))

TRIM34T032: word34 -> wvord32
|- TRIM34T032 w = WORD32(V(TL(TL(BITS34 wv))))

PAD20T032: word20 -> word32
|- PAD20T032 w = WORD32(VAL20 w)

SIGNEXT: word32 -> word3i3
|- SIGNEXT V¥ =
(let bitlist = BITS32 v in WORD33(V(CONS(EL 31 bitlist) bitlist)))

RIGHT: boolfvord32 -> word32
|- RIGHT (b,r) « WORD32(V(CONS b (SBG (1,31) (BITS32 r))))

LEBFT: wvord32fbool -> vord32
|- LRFT (r,b) = (let tvice = V(TL(BITS32 r)) in
(b => WORD32(tvice + tvice) + 1 | WVORD32(tvice + twice))

RIGHTARITH: wvord32 -> word32
|- RIGETARITH r = (let sign = EL 31 (BITS32 r) in
WORD32(V(CONS sign (SBG (1,31) (BITS32 r)))))

10

e e —— -

NEG provides a negate function for a 33-bit 2’s complement value. It uses
the usual invert and add 1 algorithm. Note that O is treated as a special case.
If this vere not removed by the initial test, O inverted and incremented vould
deliver a 34-bit result, but the use of NEG in SUB32 and COMPARE is such that
only a 33-bit value is required.

ADD32 and SUB32 are the addition and subtraction operations for 32-bit
values. Both deliver triples, a 32-bit result, a carry (or borrov) value and an
overflov condition. The 32-bit result is the bottom 32-bits of the result of
adding/subtracting the tvo operands regardless of vhether they are 2’'s
complement or unsigned values. The carry (or borrov for subtraction) value is
used during unsigned operations only, vhilst the overflov value is only
significant during 2’s complement arithmetic. An informal definition of
overflov is that it is true if and only if the sum (or difference) of the two
operands cannot be represented by a 32-bit 2’s complemeut value. Similarly,
carry or borrov are defined to be true if the sum (or difference) of the twvo
operands cannot be represented by a 32-bit unsigned value. The relationship
betveen these informal definitions of overflov and carry and their formal BOL
descriptions is investigated in Annex B.

Given a definition of ADD32, the function to increment the program counter
P, INCP32 is as shovn opposite. A 32-bit value is delivered to cope with the
situation vhen the last instruction vas fetched from the top vord in memory,
leading to P overfloving into the 21st bit. By delivering a 32-bit value and
checking that the top 12-bits are zero, it is possible to detect this unusual,
but fatal condition. This check is done using the function INVALID, defined
later.

The COMPARE function follows from Table 5. The values of ’dif’ and ’borrow’
are the same as delivered by SUB32 (although borrow is expressed slightly
differently). ’Less’ examines the most significant bit of the difference of the
(sign extended) operands R and K. This is the sign of the result of R-M, and it
is set if R is less than M. Again, this informal definition and its formal
counterpart are investigated in Annex B.

11

NEG: word33 -> num
|- NEG m = ((VAL33 m = 0) «> O | (VAL33(NOT33 m) + 1)

ADD32: word32fvord32 -> vord32£boolfbool
|- ADD32 (r,m) =
(let sum = WORD34((VAL33(SIGNEXT r)) + (VAL33(SIGNEXT m))) in
let opposite = (EL 31 (BITS32 r)) XOR (EL 31 (BITS32 m)) in
TRIM34T032 sum, (BL 32 (BITS34 sum)) XOR opposite,
(BL 32 (BITS34 sum)) XOR (EL 31 (BITS34 sum)))

SUB32: word32fword32 -> vord32£boolfbool
|- SUB32 (r,m) =
(let dif = WORD34((VAL33(SIGNEXT r)) + (NEG(SIGNEXT m))) in
let opposite = (EL 31 (BITS32 r)) XOR (EL 31 (BITS32 m)) in
TRIM34T032 dif, (BL 32 (BITS34 dif)) XOR opposite,
(BEL 32 (BITS34 dif)) XOR (EL 31 (BITS34 dif)))

INCP32: word20 -> word32
|- INCP32 p = VALUE(ADD32(PAD20T032 p, WORD32 1))

COMPARE: wvordéfvord32fwvord32fbool -> bool
(let op = VALA fsf in
let dif = WORD34((VAL33(SIGNEXT r)) + (NEG(SIGNEXT m))) in
let equal « r = m in
let less = BL 32 (BITS34 dif) in
let borrov = (BL 32 (BITS34 dif)) XOR
((BL 31 (BITS32 r)) XOR (EL 31(BITS32 m))) in

((op = 0) => less

(op = 1) => NOT less

((op = 2) => equal

((op = 3) => NOT equal

((op = 4) => less OR equal

((op = 5) => NOT(less OR equal)
((op = 6) => borrov

((op = 7) => NOT borrow]
((op = 8) => less OR b

((op = 9) => (NOT less) OR b

((op = 10) => equal OR b

((op = 11) => (NOT equal) OR b
((op = 12) => (less OR equal) OR b
((op = 13) => (NOT(less OR equal)) OR b
((op = 14) => borrov OR b

(NOT borrov) OR b)))))))))))))))

12

B B

* ““ii“'

-, ———

The next group of auxiliary functions is concerned vith the VIPER
architecture itself, rather than vith manipulation of vords and rovs of
booleans. Prom Table 2 it is clesr that the R input to the ALU can be defined
by the BOL function REG given opposite.

Generation of addresses for vriting and reading is performed using the fumction
OFFSET, to generate a 32-bit value vhich is checked by the predicate INVALID to
make sure that none of the top 12-bits are set. If INVALID delivers PALSE it
is certain that the value in question can be trimmed safely back to 20 bits and
then used as a semory or input/output address. The expression:-

INVALID(OFFSET (nsf,addr,x,y))

is used in the rest of the description for checking addresses in the VIPER
high-level specification. Note that addition of a positive offset to a negative
value in X or Y, generating a non-negative result, is perfectly legal.

Fetching instructions from main memory involves padding the 20-bit value of P
vith a leading zero and using the resulting 21-bit argument in the function
INSTFRTCH. This concatenation is achieved readily using the list constructor
CONS.

Vriting to and reading from the tvo contiguous address spaces involves the
introduction of the boolean variable “io", vhich models the one-bit signal
controlling the division betveen main memory and the input/output space. As
vill be seen from both MRMREAD and MEMVRITE this is regarded as an extra bit to
be concatenated vith the 20-bit address generated by the rest of the machine,
to perform accesses to a 21-bit regime. These functions MREMREAD and MEMURITE
assume that the address generated by OFFSET(msf, addr, x, y) is valid, i.e.
that INVALID delivers FALSE. The validity of this assumption is guaranteed by
the use of INVALID to trap illegal addresses before MEMRRAD and MEMVRITE are
invoked (see NEXT). The generation of the M input to the ALU using MEMREAD
involves one extra factor. If a shift instruction is invoked, (dsf <= 5 and
fsf = 12), there is no read required, since the operation is on the R imput
only. In these circumstances, vith the boolean variable "nil" set to TRUE, the
M input is defined to be a 32-bit representation of zero. Also notice if msf=0
in MEMREAD, the value of the M input of the ALU is the addr field of the
instruction padded to 32-bits. In MEMVRITE, msf«0 is illegal (and wvill actually
be trapped in NEXIT), so doesn’t change the contents of RANM.

13

REG: word2fword32fvord32fword32fword20 -> word32
|- RBG (rsf,a,x,y,p) =
(lel r = VAL2 ysf in
((r=0) =>a| ((r=1) =>x | ((r = 2) => y | PAD20T032 p))))

OPPSET: wvord2fvord20fvord32fvord32 -> word32
|- OFPSET (msf,addr,x,y)

(let nf = VAL2 asf in

let addr32 = PAD20T032 addr in

((uf = 0) > addr32 |

((nf = 1) => addr32 |

((af = 2) => VALUE(ADD32(addr32, x)) |

VALUE(ADD32(addr32, y))))))

INVALID: vord32 -> bool
|- INVALID value = NOT(value = PAD20T032(TRIM32T020 value))

INSTFETCH: mem2l1 32fwvord20 -> word32
|- INSTFETCE (ram,p) = FETCH21 ram (WORD21(V(CONS F (BITS20 p))))

MEMREAD: mem21 32fvord2fwvord20fvord32fvord32fboolfbool -> word32
|- MEMRRAD (ram,msf,addr,x,y,io,nil) =
(let m = VAL2 msf in
(nil => WORD32 0
((m = 0) => PAD20T032 addr |
FETCH2]1 ram
(VORD21(V(CONS io (BITS20(TRIM32T020(OFFSET(msf,addr,x,y))))))))))

MEMVRITE: mem21 32fvord32fvord2fvord20fword32fvord32fbool -> mem21 32
|- MEMVRITE (ram,source,asf,addr,x,y,io) =
(let m =« VAL2 msf in
((m = 0) => ram |
STORE21
(VORD21(V(CONS io (BITS20(TRIM32T020(OFFSET(masf,addr,x,¥)))))))
source ram))

14

- ~——— -

The function for the ALU remains to be declared before moving to the
definition of the permissible state transitions for VIPER. The ALU delivers a
triple consisting of a 32-bit result, the next state of the B flag and a value
for the STOP condition flag. As can be seen from the facing page, the ALU is
very simple in concept, the most obvious feature being that most operstions are
barred on the P register. Only addition and subtraction vith overflow
protection, CALL instructions and reads froam memory or manifest constants can

be used to define the nev contents of the P register. The definition of the ALU
follovs Table 6 in a natural manner.

15

ALU: wordéfvord2fvord3fvord3i2fvord32£bool -> word32f£boolfbool
" ALU (i’f,.’t,d'f.r’-,b) =
(let ff = VALA f£3f in
let uf = VAL2 msf in
let df = VAL3 dsf in
let pvrite = (df = 3) OR ((df =« 4) OR (df = 5)) in

((ff = 0) => (NOT32 m, b, pvrite) |

((ff = 1) =«> (m, b, (NOT pvrite) OR (INRVALID m)) |
((ff = 2) => (m, b, pvrite) |

((f£f = 3) => (m, b, pvrite AND (INVALID m)) |
((f£f = 4) => let sum = ADD32(r,n) in

VALUE sum, CARRY sum, pvrite |
((ff = 35) > let sum « ADD32(xr,m) in

VALUE sum,b, (OFLO sum) OR (pvrite AND (INVALID(VALUE sum)))|
((f£ = 6) => let dif = SUB32(r,m) in

VALUR dif, CARRY dif, pvrite |
(CEf = 7) => let dif = SUB32(r,m) in

VALUE dif,b, (OFLO dif) OR (pvrite AND (INVALID(VALUE dif)))|

((ff = 8) => ((r OR32 m) AND32 (NOT32(r AND32 m)), b, pvrite) |
((ff « 9) => (r AND32 m, b, pvrite) |
((ff = 10) «> (ROT32(r OR32 m), b, pvrite) |
((ff = 11) «> (r AND32 (NOT32 m), b, pvrite) |
((ff = 12) => ((mf = 0) => (RIGHTARITH r, b, pvrite) |
((mf = 1) => (RIGHT(b,r), EL O (BITS32 r), pvrite) |
((mf = 2) => let double = ADD32(r,r) in
VALUE double, b, (OFLO double) OR pvrite |
(LEFT(r,b), BL 31(BITS32 r), pvrite)))) |
((ff = 13) => (r,b,T) |
((ff = 14) -> (!‘,b,T) l\

(r,b,T)2)))))))))NN

16

To wvrite a concise statemsent of all permissible transitions in VIPER, it is
convenient in the HOL text to define a number of primary predicates derived
from the fields of the current instruction and the current value of B:-

VRITE vhich is TRUR if the instruction involves writing to the main memory or
the peripheral space

NILM which is TRUE if no M input is required to the ALU
NOOP which is TR'E if no operation is to be performed, ie SKIP

SPAREFUNC vhicg becomes TRUE if any attempt is made to use ALU functions 13, 14
or 1

ILLEGALCALL which becomes TRUE if an illegal CALL instruction is attempted
(vith the destination defined as the A, X or Y registers)

ILLEGALPDEST which becomes TRUE if the destination is given as P but the
specified function is an illegal way of deriving a new value of the
program counter

ILLEGALWVRITE vwhich is TRUE if a VRITE instruction is attempted with the memory
select field equal to O

OUTPUT which is TRUE if data is to be wvritten to an address in the IO space,
ie NOT a comparison and df = 6

INPUT wvhich is TRUE if data is being read from an address in the I0 space,
ie NOT a comparison, df <=5 and ff = 2.

17

T

WRITE: vord3fvordl -> bool
|- VRITE (dsf,csf) =
(let df « VAL3 dsf in
let cf = VALl csf in
(cf = 0) AND ((df = 7) OR (df = 6)))

NILM: vord3fvordlfvord4é -> bool
|- NILM (dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf = VALl csf in
let £ff = VALA fsf in
(cf = 0) AND ((NOT((df = 7) OR (df = 6))) AND (ff = 12)))

NOOP: wvord3fvordlfbool -> bool
(let df = VAL3 dsf in
let cf = VALl csf in
(cf = 0) AND (((df =« 5) AND b) OR ((df = 4) AND (NOT b))))

SPAREFUNC: vord3fvordlfvord4 -> bool
|- SPARERFUNC (dsf,csf,fsf) =
(let df = VAL3 dsf in
let ¢f = VALl esf in
let ff = VALA fsf in
(cf=0) AND ((NOT((df=6) OR (df=7))) AND ((ff=13) OR ((ff«14) OR (£ff=15)))))

JLLEGALCALL: word3fwordlfword4 -> bool
|- ILLRGALCALL (dsf,csf,fsf) =
(let éf = VAL3 dsf in
let cf = VALl csf +n
let £ff = VALA fsf in
(cf = 0) AND ((ff = 1) AND ((df = 0) OR ((df = 1) OR (df = 2)))))

ILLEGALPDEST: word3fvordlfvord4 -> bool
| - ILLEGALPDRST (dsf,csf,fsf) =
(let df « VAL3 dsf in
let cf = VALl csf in
let ££f = VALA fsf in
(cf = 0) AND (((df = 3) OR ((df = 4) OR (df = 5))) AND
(NOT((ff = 1) OR ((ff = 3) OR ((ff = 5) OR (ff = 7)))))))

ILLEGALVRITE: vord3fvordlfvord2 -> bool
|- ILLEGALVRITRE (dsf,csf,msf) =
(let nf = VAL2 asf in (VRITE(dsf,csf)) AND (mf = 0))

OUTPUT: word3fvordl -> bool
|- OUTPUT (dsf,csf) =
(let df = VAL3 dsf in
let cf = VALl csf in (cf = 0) AND (df = 6))

INPUT: vord3fvordlfvord4 -> bool
|- INPUT (dsf,csf,fsf) =
(let df = VAL3 dsf in
let cf =« VALl csf in
let ff = VALA fsf in
(cf = 0) AND ((NOT((df = 7) OR (df = 6))) AND (ff = 2)))

18

VIPER must obey the transitions defined in the function NEXT on the opposite
page. Table 4 gives the details of the nev states to be achieved. As can be
seen from the definition of NEXT, precise descriptions of the conditions in
vhich the "io"™ signal is TRUE and for detection of invalid addresses are found
in t:e BgL text and provide a rigorous definition of the looser statesments in
Section 2.

One issue vhich vas not dealt wvith at all in the informal description of
Section 2 is the problem of overflov of the progras counter. If an ingtruction
has been fetched from the top vord of the main memory, it follows that the next
increment of the prograa counter vill cause an illegal value to be generated
for P unless this last instruction is GOTO. Notice that if the instruction
fetched from the top wvord is CALL, difficulties may be encountered later in the
execution of the program, because an illegal return link vill have been stored
in the Y register. In viev of the complexity this could introduce, any
instruction in the top vord of memory is illegal in VIPER and if encountered
stops the processor.

The function NEXT contains the one substantive change between this report
and Report 85013 (9). The expression "AND (NOT skip)" has been added to the
definition of "illegaladdr®. The reason for this is that, vhen the previous
top-level specification (9) wvas compared vith the first level of decomposition
(the microprogram model described in reference 5), it vas discovered that they
differed vhen a conditional call or goto instruction delivered an illegal new
value for the program counter. In the original description (9), the illegal
result vas detected before the B flag vas examined to see if the instruction
vas to be performed. This led to the processor alvays stopping. The
implementation (5) examined the B flag first and only generated the new value of
the program counter (and hence only stopped if it was illegal) if the
conditional operation vas to be performed. The latter more closely reflected
the designers’ intended response to these circumstances and so the top-level
specification has been changed to reflect this new requirement.

19

- ———

NEXT: mem2]1 32fvord20fvord32fvord32fword32£boolfbool ->
men2]l 32fvord20fvord32£fvord32£vord32£boolfbool

|- ¥EXT (ram,p,a,x,y,b,stop) =

(let instbits = BITS32(INSTPETCH(ram,p)) in

let newp = TRIM32T020(INCP32 p) in

let rsf = WORD2(V(SBG (30,31) instbits)) in
let msf = WORD2(V(SEG (28,29) instbits)) in
let dsf = WORD3(V(SBG (25,27) instbits)) in
let csf = WORD1(V(SBG (24,24) instbits)) in
let fsf = WORD4(V(SEG (20,23) instbits)) in
let addr = WORD20(V(SEG (0,19) instbits)) in
let df = VAL3 dsf in

let cf = VALl csf in

let £f = VALA fsf in

let comp wcfaelin

let call = (cf =« 0) AND (ff = 1) in

let output = OUTPUT(dsf,csf) in

let input = INPUT(dsf,caf,fsf) in

let 1o = output OR imput in

let vriteop = WRITE(dsf,csf) in

let skip = NOOP(dsf,csf,b) in

let noinc = INVALID(INCP32 p) in

let illegaladdr = (NOT(NILM(dsf,csf,fsf))) AND

((INVALID(OFFSET(msf ,addr,x,y))) AND (NOT skip)) in
let illegalcl = ILLRGALCALL(dsf,csf,fsf) in

let illegalsp = SPARRFUNC(dsf,csf,fsf) in

let illegalonp = ILLRGALPDBST(dsf,csf,fsf) in

let illegalvr = ILLRGALVRITE(dsf,csf,msf) in

let source = REG(rsf,a,x,y,nevp) in

(stop => (ram, p, a8, X, ¥, b, T) |

((noinc OR illegaladdr) OR ((illegalcl OR illegalsp) OR
(illegalonp OR illegalwr)) => (ram, newp, a, x, y, b, T) |

(comp => (ram, newp, a, x, y,
COMPARR(fsf,source,MRMREAD(ram,msf,addr,x,y,i0,F), b), F) |

(vriteop => (MEMVRITE(ram,source,msf,addr,x,y,io), nevp, a, x, y, b, F) |
(skip => (ram, nevp, a, X, y, b, F) |

let m = MEMRRAD(ram,msf,addr,x,y,io,NILM(dsf,csf,fsf)) in
let aluout = ALU(fsf,msf,dsf,source,m,b) in
((df = 0) => (ram, newvp, VALUE aluout, x, y, BVAL aluout, SVAL aluout) |
((df = 1) => (ram, nevp, a, VALUE aluout, y, BVAL aluout, SVAL aluout) |
((df = 2) => (ram, nevp, a, x, VALUE aluout, BVAL aluout, SVAL aluout) |
(call => (ram, TRIM32TO020(VALUE aluout), a, x, INCP32 p,
BVAL aluout, SVAL aluout) |
(ram, TRIM32TO20(VALUE aluout), a, x, y
BVAL aluout, SVAL aluout)))))))))))

20

Y

4. CONCLUSIONS

This document demonstrates that it is possible to write a specification for
the functions of a poverful microprocessor, using simple concepts in first
order logic. Experience has showvn that HOL is a firm basis for the formal
specification of VIPER.

5. ACKNOVLEDGEMENTS

VIPER has been developed by the High Integrity Systems Section of the
Computing Divisions, by a team comprising Dr J Kershav, Dr C B Pygott and
Dr ¥V J Cullyer. All members of the Section have contributed to this
specification. Mr I F Currie and Dr J M Foster have made important contributions
in suggesting formal methods for use in this environment of safety critical
computing.

The author would also like to thank Dr A Cohn of Cambridge University, for
her vork on the VIPER proofs, and in particular for providing the BOL
translation of the original LCP-LSM description.

| 6. RBFERENCES.

1. KERSHAW, J. "The VIPER microprocessor”™
RSRE REPORT 87014. November 1987

2. PYGOTT, C.H. "Electrical, environmental and timing specification of VIPER
microprocessor (issue 2)" RSRE REPORT 86006, June 1986

3. GORDON, M.J. "HOL: a machine orientated formulation of higher-order logic"
University of Cambridge Computing Laboratory
Technical Report 68

4. GORDON, M.J. "LCP-LSM"
University of Cambridge Computing Laboratory
Technical Report 41

5. COBN, A. "A proof of correctness of the VIPER microprocessor: The
first level”
VLSI specification, verification and synthesis
BIRTVISTLE G. & SABRAHMANYAM P.A.(ed), Kluwver 1987

6. COBN, A. "Correctness properties of the VIPER block model: The
second level”
Current trends in hardvare verification & automated deduction
BIRTVISTLE G. & SABRAHMANYAM P.A.(ed), Springer-Verlag 1988

7. GORDON, M.J., MILNER, R. A., VADSVORTH, P.
*Edinburgh LCP"
Lecture Notes in Computer Science, Springer-Verlag, 1979

8. GORDON, M.J. "Proving a computer correct”
University of Cambridge Computing Laboratory,
Technical Report 42

9. CULLYER, V.J. “*"Formal specification of the VIPER microprocessor”
RSRE REPORT 85013, October 1985

21

Annex A: Short introduction to HOL
The material in this annex is a very brief, informal, digest of that

presented by Gordon in reference 3. Hopefully it contains enough detail to
enable the text of section 3 to be understood.

The description in section 3 assumes the existence of the following types:-
bool the boolean type vith members T and F

num the non-negative integers

vord<n> a vord of <n> bits (eg wordl, word32 etc)

* list a list of any other type "*" (eg bool list), the empty list is []

The description in section 3 also assumes the existence of certain operators
and functions:-

= equality between values *Ek -> bool
+ addition numfnum -> num
NOT logical inversion bool -> bool
OR disjunction boolfbool -> bool
AND conjunction boolfbool -> bool
XOR exclusive OR boolfbool -> bool
CONS 1list constructor * > * 1list -> * list

This appends a value to the head of a list. Note that the form of the
signature denotes a partially applied function (see 3), but for most
purposes it can be regarded as being *£* list -> * list.

Note hovever that CONS is applied to two values ’a’ and ’b’ as

"CONS a b", wvhilst a normal function ’C’ would be applied as "C(a,b)"

HD head of list * list -> *
TL tail of list * list -> * list
EL <n>th element of list num -> * list -> *

(0 = first member, for a list of N elements EL (M-1) list = HD list)
SEG select a slice from a list (numfnum) -> * list -> * list

V the integer equivalent of a bool list (ie a list with M members
delivers a value in the range 0 to 2**M -1) bool list -> num
YORD{n> converts an integer to a vord<n> nua -> word<n>

VAL<n> converts a vord<n> to an integer vord<n> -> num
BITS<n> converts a vord<n> to a bool li.t word<n> -> bool list

The main ’control’ structure is the conditional expression:-
(a =>b | ¢), vhich is read as "if a then b else c".

A-1

Annex B: VIPER arithmetic

This annex describes the arithmetic operations ADD32 and SUB32, and
informally justifies the relationship betveen the informal descriptions of
overflov, carry etc. given on page 11 and their formal ccunterparts on page 12.

Before these are considered some basic definitions are required. VIPER’s (or
any other computer’s) integers are not the same as a mathematician’s integers,
in that any computer has a fixed wvord length whilst conceptual integers have an
infinite range (actually a double infinite range, from -infinity to +infinity).
In this annex, all ‘computer vords’ of <n> bits will be regarded as positive
values in the range 0 to tvo to the pover <n> - 1. VIPER’s 32-bit vords can be
interpreted as either a 2’s complement signed value or an unsigned value. If
‘povén>’ is defined to be 2 to the pover <n> (ie: pové = 16 etc), then an
unsigned VIPER 32-bit vord ¥V has the equivalent integer range I as follows:-

Por:~- O <=V <pow32 then I =V
or:- O <=I<pov3i2 then VI

A 32-bit 2’s complement VIPER vord V, maps to an integer I as:-

For:- 0<=V< pow3l then I =V

and:-~ povw3l <= W < pow32 then I = V - pow32
or:~ 04 I < pow3l then V=1

and:~ -pow3l <= I <= -1 then ¥V = I + pow32

To avoid confusion, bit-<n> of a word will be said to correspond to the HOL
statement "EL n". This mseans that the least significant bit is bit-0O,
rather than bit-1, but means that if a value is regarded as the sum of a series
of povers of tvo, then bit-<n> corresponds to pow<n>.

Two theorems will be used frequently in the fo’loving discussions. If ¥
1epresents a VIPER vord, such that:- 0 <~ ¥V { pow<n>, then all the bits that are
set in the vord must be in the first <n> bits (ie bit-0 to bit-<n-1>), all other
bits being clear. For example, if:- 0 <= ¥V < 4 (pov2), then only the first two
bits of the vord may be set, all subsequent bits are known to be clear.

Also if:- pow<n> <= ¥ < powv<n+1>, then bit-<n> of the vord is set.
For example, if:- 4 <= W < 8, then the third bit (bit-2) of the wvord is set.

Note that:- pow<n> + pov<n> = pov<n+ld.

1) The effect of SIGNEXT

SIGNEXT: vord32 -> wordll
|- SIGNEXT v =
(let bitlist = BITS32 v in WORD33(V(CONS(EL 31 bitlist) bitlist)))

All the arithmetic operations vork with ’sign extended’ vords. The effect of
this function, in the realm of integers, depends upon whether the value being
extended is considered as a signed or unsigned value.

1.a) Signed values: If the notional integer value is I, the VIPER vord is ¥,
and SXV is the effect of sign extension on V.

0<I<povil then V=1 and SXV = I
~-pow3l <= I < 0 then ¥V = I + pow32 and SXV = I + pov32 + pow32

B-1

1.b) Unsigned values: If the notional integer value is I, the VIPER wvord is ¥,
and SXV is the effect of ’‘sign extension’ on V.

O<=X<povil then V=1 and SXVW = I
pov3l <= I < pow3d2 then U =1 and SI¥ « I + pov32

2) The addition function, ADD32

ADD32: word32£word32 -> vord32£boolfbool
|- ADD32 (r,m) =
(let sum = WORD34((VAL33(SIGNEXT r)) + (VAL33(SIGNEXT m))) in
let opposite = (BL 31 (BITS32 r)) XOR (RL 31 (BITS32 m)) in
TRIM34T032 sum, (EBL 32 (BITS34 sum)) XOR opposite,
(EL 32 (BITS34 sum)) XOR (EL 31 (BITS34 sum)))

As gshowvn above, ADD32 delivers three values, the 32-bit sum, a carry
condition and an overflov condition. The overflov condition is only of
interest during 2’s complement addition, vhilst carry is only used by unsigned
addition. These tvo signals vill therefore be considered separately.

2.1) Overflov during addition

If I1 and I2 are tvo 32-bit signed integer values to be added, then the
natural definition of overflov is any result of I1+I2 that cannot be represented
as a 32-bit value. That is:-

overflov = ((I14I2) < -povw3l) OR ((I1+I2) >= pow3l)

Unfortunately, vhen the VIPER specification wvas written, BOL did not support
negative integers, so an alternative description in the regime of positive
values was required. If I1 and I2 are represented by the two 32-bit 2’'s
complement vords R and M (as defined above), the definition of overflov given
in the ADD32 function is such that an overflov is said to have occurred if
bit-31 and bit-32 of the result of adding the twvo sign extended words together
are different. This statement is to be justified in the next three sections.

Also it shoulld be noted that the 32-bit value delivered from ADD32 is meant
to be equal to the 2’s complement sum of Il and I2 in the absence of overflov.
If an overflov has occurred this value has no significance.

2.1.a) Addition overflov wvhen Il and I2 both positive

Bere R = I1, and M = 12, and the sign extension process doesn’t change
these values. So the sum of the sign extended vords is:- SUMN = Il 4+ I2.

Note that:- O <= I1 4+ 12 <= pow3l + pow3l - 2

There are tvo regions in the result space, if (I1+I2) < pow3l, then no
overflov has occurred, and SUM is also less than pow3l, so bit-31 and bit-32 of
the result are both clear. So no overflov and bit-31 and bit-32 of SUM are
the same also the 32-bit result delivered = SUM.

An overflov can only occur if (I14I2) >= pov3l. This corresponds to SUM also
being greater than pov3l. Hovever the maximum value of (I1+12) is
pov3i-1 + pov3l-1 = pov32-2. So if an overflov bhas occurred:-
pov3l <= SUM < pow32-1
This means that bit-31 is set but bit-32 is clear. So bit-31 and bit-32 of
SUM are different vhen an ‘overflov’ has occurred.

B-2

. ’iii‘_ o -

2.1.b) Addition overflow vhen Il and I2 both negative

Here R = I1 + pov32, and M = 12 + pov32. The sign extension process adds
a further pov32 to both these values. The sum of the sign extended vords is
therefore:- SUM = I1 + I2 + pow32 + pov32 + pow32 + pow32.

Note that:- -pow32 <= Il + I2 <= -2

There are twvo regions in the result space, if -pow3l <= (I1+I2) <= -2, then no

overflov has occurred, and SUM is:-
SUM = pov33d + pow32 + (pow32 + Il + I2)

Vhere (pov32 + Il + 12) is in the range pov3l to pov32-2, that is the 32nd bit
of the result is set, and as pov32 occurs in the definition of SUM, the 33rd is
also set. So no overflov and the 32nd and 33rd bits of SUM are the same.
Trimming SUM to 32-bits effectively subtracts pow33 and pov32 from SUM, so the
32-bit result delivered is (pov32 - 1 + I2), vhich is the 2’s complement
equivalent of the result.

An overflov can only occur if -povw32 <= (I1412) < -pow3l, but SUM is:-
SUM = povw33 + pow32 + (pow32 + Il + I2)
Vhere (pow32 + I1 + I2) is in the range 0 to pow3l-1, that is bit-31 of the
result is clear, and as pov32 occurs in the definition of SUM, bit-32 is set.
So bit-31 and bit-32 of SUM are different and an ’‘overflov’ has occurred.

2.1.c) Addition overflov vhen the signs of the operands are different

Under these circumstances the result of the addition can never overflow, as
the range of the result is:-
-pov3l <= I14I2 < pow3l-1

The sign extension process adds a further pov32 to one value, so the sum of
the sign extended vords is therefore:- SUM = I1 + I2 + pow32 + pow32.

If I1+I2 is positive, its maximum value is pov3l-2, so bit-31 and bit-32 of
SUM are both clear. So bit-31 and bit-32 of SUM are the same and no overflovw
has occurred. Also trimming the result to 32-bits will deliver I1 + I12.

If 11412 is pegative, it is in the range -pow3l to -1, so SUM is:- SUM =
pow32 + pow3l + (pow3l + Il + 1I2), vhere (pov3l + I1 + I2) is in the range O to
pov3l-1. This doesn’t effect bit-31 and bit-32 of SUM vhich are both set. So
bit-31 and bit-32 of SUM are the same and no overflov has occurred. Trimming to
32-bits vill subtract the pov32 term, so the result is pow3l+pow31+I1+I2, or
pov32+11+1I2, the 2’8 complement form of the result.

So under all circumstances it has been (informally) shown that if an
overflov has occurred bit-31 and bit-32 of the sign extended sum differ, but if
the result is legal they are the same. Also if no overflow has occurred the
result of the addition is the 2’s complement form of the sum I1+I2.

2.2) Carry during unsigned addition:-

There is a natural definition of carry that could be used in HOL. That
is:- CARRY = (I1+12) >= pow32

vhere:- 0 <= I1 < pov32, and O <= I2 < pow32

Perversely, the VIPER specification doesn’t use this definition, but as
the proofs (5,6) vere performed against a more complex definition, this will be
Justified here. The definition of carry in ADD32 is such that if the most
significant bits of the operands are the same, then carry is the bit-32 of the
’gign extended’ sum, othervise it is the inverse of this bit. As in the case of
overflov, the justification will be given in three parts.

It should be noted that the 32-bit result of ADD32 for unsigned addition
is alvays (I1+12) modulo pov32.
2.2.a) Addition carry vhen both operands are less than pow3l

If X1 and I2 are the operands, SUM = Il + I2, vhere O <= I1+I2 < pow32-1.
So no carry can ever occur, and bit-32 of SUM is alvays clear.

The most significant bits of the operands are the same and carry is the
same as bit-32 of SUM.
2.2.b) Addition carry vhen both operands are >= povw3l

SUM = I1 + I2 + pov32 + pow32 = I1 + I2 + pow33
vhere:- pow32 <= I1+4I2 < pow33-1.

So there is alvays a carry, and the bit-32 of SUM is alvays set.

The most significant bits of the operands are the same and carry is the
same as bit-32 of SUM.
2.2.c) Addition carry vhen one operand < pov3l and the other >= pow3l

SUM = I1 + I2 + pov32
vhere:- pov3l <= I1+12 < pov32 + pov3l -1

Vhen pov3l <= 11+I2 < pov32, there is no carry, the I1+4I2 term doesn’t
affect bit-32 of SUM, but the pov32 term means that this bit is set.

Vhen pov32 <= I1+4I2 < pov32 + pov3l -1, there is a carry.
SUM can be revritten as:- SUM = pov32 + pov32 + (I1 + I2 - povw32) or
= pow33 + (I1 + I2 - povw32).
The range of (I1 + I2 - pov32) is O to pov3l-1, so doesn’t affect the
bit-32 of SUM, vhich is therefore clear.

Bence vhen the most significant bits of the operands are different, bit-32 of
SUM is the inverse of carry.

B-4

3) The subtraction operator SUB32

NEG: word33 -> num
|- NBG m o ((VAL33 m = 0) «> 0 | (VAL33(NOT33 m) + 1)

! SUB32: word32£wvord32 -> word32f£boolfbool
: |- SUB32 (r,m) =
! (let dif = WORD34((VAL33(SIGNEXT r)) + (NRG(SIGNEXT m))) in
let opposite = (EL 31 (BITS32 r)) XOR (EL 31 (BITS32 am)) in
TRIM34T032 dif, (BL 32 (BITS34 dif)) XOR opposite,
(BL 32 (BITS34 dif)) XOR (EL 31 (BITS34 dif)))

As can be seen the subtraction operator is very similar to ADD32, but vith
NEG used to invert one of the operands. The effect of NEG is:-

Por unsigned values:-
I=0, NEG(SIGNEXT(V)) = 0
0 < I <pov3il, NEG(SIGNEXT(V)) = pow33
pov3l <= I < pov32, NRG(SIGNEXT(V)) = pow33

For signed values:-
-pov3l <= I <= -1, NEG(SIGNBXT(V)) = pov33
I-0, NBG(SIGNEXT(V)) = O
0 < I <pow3ll, NEG(SIGNEXT(V)) = pow33

I
(I + pov32) = pow32 -1

(I + pov32 + pov32) = -1
I

Vhere V is I mapped onto a VIPER 32-bit word as discussed above.

3.1) Overflowv during subtraction

If I1 and I2 are tvo 32-bit signed integer values to be subtracted, then the
natural definition of overflow is any result of I1-12 that cannot be represented
as a 32-bit value. That is:-

overflov = ((I1-I2) < -pow3dl) OR ((I1-I2) >= pow3l)

The definition of overflov given in the SUB32 function is such that an overflow
is said to have occurred if bit-31 and bit-32 of the result of adding the

sign extended and negated vords together are different. This statement is to be
justified in the next four sections.

The 32-bit value delivered from SUB32 is meant to be equal to the
2’s complement representation of I1-I2 in the absence of overflow. If an
overflov has occurred this value has no significance.

It should also be noted that in the COMPARE function, bit-32 of DIF is
used as the LESS than condition (ie I1 < I2, or I1-1I2 < 0). This wvill also be
Justified.
3.1.a) Subtraction overflov vhen Il is positive and 12 negative or zero

DIF = I1 + (- 1I2)

Note that:- O <= I1 - I2 < pov32

There are tvo regions in the result space. If (I1-I2) < pov3l, then no
overflov has occurred, and DIF is also less than pow3l, so bit-31 and bit-32 of
the result are both clear. So bit-31 and bit-32 of DIF are the same and no
overflov has occurred, and the 32-bit result delivered = DIF.

B-5

g

LT R AR

e

An overflov can only occur if (I1-I2) >= powv3l. This corresponds to DIF also
being greater than pow3l. Hovever the maximum value of (I1-12) is
pov3l-1 - (-pow3l) = pow32-1. So if an overflov has occurred:-
pov3l <« DIF < pov32
This means that bit-31 is set but bit-32 is clear. So bit-31 and bit-32 of
DIF are different and an overflov has occurred.

Note that in both cases, LEBSS is alvays false and bit-32 of DIF is clear.

3.1.b) Subtraction overflov vhen I1 is negative and I2 is greater than zero
DIF = (I1 + pov32 + pow32) + (pov33 - I12)
Note that:- -(pow32-1) <= I1 - I2 <= -2

There are tvo regions in the result space. If -pov3l <= (I1-I2) <= -2, then no

overflov has occurred, and DIF is:-
DIF = pov33 + pov32 + (pow32 + I1 - 12)

Vhere (pov32 + I1 - I2) is in the range pov3l to pov32-2, that is bit-31 of the
result is set, and as pov32 occurs in the definition of DIF, bit-32 is also
set. So bit-31 and bit-32 of DIF are the same and no overflov has occurred.
Trimming DIP to 32-bits effectively subtracts pow33 and pov32 from DIF, so the
32-bit result delivered is (pow32 + I1 - I2), vhich is the 2’s complement
equivalent of the result.

An overflov can only occur if -(pow32-1) <= (I1-I2) < -pow3l, but DIF is:-
DIF = povw33 + pow32 + (pov32 + I1 - I2)
vhere (pow32 + Il - I2) is in the range 1 to pow3l-1, that is bit-31 of the
result is clear, and as pov32 occurs in the definition of DIF, bit-32 is set.
So bit-31 and bit-32 of DIF are different and an overflov has occurred.

Note that in both cases LRSS is true, and bit-32 of DIF is set.

3.1.c) Subtraction overflov vhen I1 is negative and 12 is negative or zero

Under these circumstances the result of the subtraction can never overflow,
as the range of the result is:-
-povw3l <= I1-I2 < pov3l

DIF = (I1 + pow32 + pov32) + (-I2) = pow3ld + 11 - 12

If I1-I2 is positive, its maximum value is pow3l-1, so bit-31 and bit-32 of
DIF are both clear. So bit-31 and bit-32 of DIF are the same and no overflovw
has occurred. Trimming the result to 32-bits will deliver Il1 - 12. LRSS is
false and bit-32 of DIF is clear.

If I1-1I2 is negative, it is in the range -pov3l to -1, so DIF is:- DIF =
pov32 + pow3l + (povw3l + Il - I2), vhere (pov3l + Il - I2) is in the range O to
pov3l-1. This doesn’t affect bit-31 and bit-32 of DIF vhich are both set. So
bit-31 and bit-32 of DIF are the same and no overfiov has occurred. Trimming to
32-bits vill subtract the pov32 term, so the result is pov3l+pov3l+Il-12, or
pov32+I1-I2, the 2's complement form of the result. LESS is true and bit-32 of

DIF is set.

B-6

3.1.d) Subtraction overflov vhen Il1 is positive and 12 is greater than zero

Under these circumstances the result of the subtraction can never overflow,
as the range of the result is:-

-(pov3l-1) <= I1-I2 < pow3l-1

DIF = I1 + (pov33 - 1I2) = povw33 + I1 - I2

The arguments used in 3.1.c then follow.

So under all circumstances it has been (informally) shown that if an
overflov has occurred bit-31 and bit-32 of the sign extended difference differ,
but if the result is legal they are the same. Also if no overflov has occurred
the result of the subtraction is the 2’s complement form of the sum I1-I2, and
bit-32 of DIF corresponds to the value LESS.

3.2) Borrov during unsigned subtraction:-

The natural definition of borrov (the subtraction’s analogy to addition’s
carry) is:- BORROV = (I1-I2) < O

vhere:- O <= I1 < pov32, and 0 <= I2 < pow32
The definition of borrov in SUB32 is such that if the most significant bits
of the operands are the same, then borrov is bit-32 of the ’'sign extended’
difference, othervise it is the inverse of this bit.
It should be noted that the 32-bit result of SUB32 for unsigned subtraction
is alvays (I1-I2) modulo pow32.
3.2.a) Subtraction borrov vhen I1 < povw3l and 12 = 0

DIF = I1, vhere 0 <= I1-I2 < pow3l
So no borrov can ever occur, and bit-32 of DIF is always clear.

The most significant bits of the operands are the same and borrov is
the same as bit-32 of DIF.
3.2.b) Subtraction borrov vhen I1 >= pow3l and I2 = O
DIF = I1 + powv32, vhere pov3l <= I1-12 < pow32
or:~ DIF = pov32 + pov3l + (I1 - I2 - pov3l), vhere O <= I1-I2-pow31l < pow3l
So no borrov can ever occur, and bit-32 of DIF is alvays set.

The most significant bits of the operands are different and borrov is
the inverse of bit-32 of DIF.

B-7

3.2.c) Subtraction borrov vhen Il < pov3l and I2 >= pow3l

DIF = I1 + (pov32 - 12)

vhere:- -(pov3i2-1) <= I1-I2 <= -1

and:- 1 <= DIF < pow32

So there is alvays a borrov, but bit-32 of DIF is alvays clear.

The most significant bits of the operands are different and borrowv is
the inverse of bit-32 of DIF.

3.2.d) Subtraction borrov vhen I1 >= pov3l and 1 <= I2 < pov3l

DIF = (I1 + pov32) + (pov33 - I2) = pov33 + povw32 + (I1-12)
vhere:- 1 <= I1-I2 <= pov32-2
So there is never a borrow, and bit-32 of DIF is alwvays set.

The most significant bits of the operands are different and borrov is
the inverse of bit-32 of DIF.

3.2.e) Subtraction borrov vhen I1 < pow3l and 1 <= I2 < pov3l
DIF = Il + (pow33 - 12), vhere:- -(povw3l-1) <= I1-I2 <= pow3l-2

vhen:- -(pov3l-1) <= I1-I2 <= -1, there has been a borrov and
DIF = pow32 + pow3l + (pov3il + I1 - I2)
The range of (pov3l + Il - I2) is O to pov3l-1, so it cannot affect
bit-32 of DIF, vhich can be seen to be set.

vhen:- 0 <= I1-I2 <= pow3l-2, there has not been a borrov and
DIF = pow33 + (I1 - I2)
The range of (Il - I2) is 0 to pow3l-2, so it cannot affect bit-32
of DIF, vhich can be seen to be clear.

The most significant bits of the operands are the same and borrov is
the same as bit-32 of DIF.
3.2.f) Subtraction borrov vhen I1 >= pow3l and 12 >= pow3l

DIF = (I1 + pow32) + (povw33 - (I2 + povw32)) = pow3d3 + Il - I2
vhere:- -(pov3l-1) <= I1-I2 <= pow3l-1

The arguments used in 3.2.e still apply (noting that pow31-2 is replaced by
pov3l-1, vhich doesn’t change any of the subsequent reasoning)

&)«,"&"ﬁj

REPORT DOCUMENTATION PAGE

Overall security CIassification of Sheeteeemreene UNCLASSIFIED

DRIC Reference Number (if known)

(As tar a8 possible this sheet should contain only unciassified information. Iif it is necessary to enter classified information, the field concemned

must be marked to indicate the classification eg (R), (C) or (S).

RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Originators Reference/Report No. Month Year
REPORT 90009 JUNE 1990
Name and Location

Monitoring Agency Name and Location

FORMAL SPECIFICATION OF THE VIPER MICROPROCESSOR IN HOL

Report Security Classification
UNCLASSIFIED

Title Classification (U, R, C or S)
u

Foreign Language Title (in the case of ranslations)

Conference Details

Agency Reference

Contract Number and Period

Project Number

Other References

Authors
PYGOTT,CH

Pagination and Ret
vp

Abstract

(a precursor to HOL).

This report provides a mathematically rigorous specification of the required behaviour of the VIPER
microprocessorin the HOL notation (Higher Order Logic) of Cambridge University. This specification has
been used as the starling point for a chain of proofs, in an attempt to show that a number of
implementations of this specification are indeed correct.

This report replaces the early RSRE Report 85013, which describes VIPER in the language LCF-LSM

Abstract Classification (U,R,C or 8)
U

e

Descriptors

UNLIMITED

Distribution Statement (Enter any imitations on the distribution of the document)

