
"2V-"" C '" •UNLIMITED

AD-A242 147
II~IJI III 111 IIIflJjl~II " Report No. 90009

o
00
C.) ROYAL SIGNALS AND RADAR ESTABLISHMENT,
6 MALVERN
z

Authr:11H11got

t!

CLC

FORMAL SPECIFICATION OF THE
VIPER MICROPROCESSOR IN HOI.

Author: C H Pygott

~) 3t~UtXf nIltod __

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

RSRE
Malvem, Worcmstemilre.

June IO

!lil5260 UNLIMITED

CONDITIONS OF RELEASE
0108583 304494

..................... DRIC UI COPYRIGHT (c)
1988
CONTROLLER
IMSO LONDON

..................... DRIC Y

Reports quoted are not necessarily available to members of the rnsmb~ic or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 90009

TITLE: FORMAL SPECIFICATION OF THE VIPER MICROPROCESSOR IN HOL

AUTHOR: C H Pygott

DATE: June 1990

SUMMARY

This report provides a mathematically rigorous specification of the
required behaviour of the VIPER microprocessor in the HOL notation (Higher Order
Logic) of Cambridge University. This specification has been used as the starting
point for a chain of proofs, in an attempt to shov that a number of
implementations of this specification are indeed correct.

This report replaces the early RSRE report 85013, vhich describes VIPER in

the language LCF-LSM (a precursor to ROL).

Copyright -. i

(c)
Controller ENSO London . --

1990 -

3- to.H ui4

... D' 31 i P .1 . 1

FORMAL SPECIFICATION4 OF THE VIPER MIICROPRIOCESSOR IN ROL

C a Pygott

June 1990

COTNS

Section Page

1) Introduction 1
2) Informal description of architecture 2
3) Formal specification in SOL 8
4) Conclusions 21
5) Acknovledgents 21
6) References 21

Annex A) Short introduction to HOL A-1
Annex B) VIPER arithmetic B-1

1. INTRODUCTION

The VIPER (1, 2) microprocessor yes invented at RSRE to satisfy the need for
a highly trusted 32-bit computer which can be used in safety critical
applications. The need for such a chip, has arisen in areas such as the arming
and fuzing of weapons, *fly by vire* control systems in high performance
military and civil aircraft and in the instrumentation of nuclear reactors. The
majority of videly available microprocessors are regarded as unsatisfactory
for safety critical applications because they have instruction sets that are
too rich and that lead to programmer confusion and problems vith formal
verification of the software to run on them. Also, they are documented in
natural language (vith its inherent ambiguities) and their designs are
validated by simulation (a process that cannot give a 10OZ guarantee of
correctness). The aim of the VIPER project has therefore been to design a
processor architecture well matched to critical applications, to define it
rigorously (this document) and to attempt to prove by mathematical means (5,6)
the correctness of circuits designed to met this specification (in addition to
their conventional validation by simulation).

This Report specifies the VIPER architecture in two ways:-

a) Informally, using a conventional description of the instruction set

b) Formally, using the notation of the ROL system (Higher Order Logic),(3)
developed at the University of Cambridge

The purpose of this Report is to provide an unambiguous description of the
functional behaviour of VIPER. This is usually referred to as the top-level
specification and corresponds to the programer's viev of the processor. This
view excludes such considerations as electrical properties and detailed
timings, which can be found in reference 2. A number of VLSI technologies have
been used to realise machines vhich respect the specification given in this
document, using in the region of 4000-5000 logic array cells (vhich illustrates
tie inherent simplicity of the architecture).

This report replaces the earlier RSRE report 85013 (9) which provided the
formal description of VIPER in the LCF-LSN language (4). This yes the precursor
of HOL, but as the proofs of correctness to show the validity of VIPER's major
state and block level Implementations (5,6) were done in HOL, this new
specification should be regarded as the definitive description. There are only
minor syntactic differences between LCF-LSN and the sub-set of the ROL logic
used here, so this description and the previous report are almost identical.
However, there is one substantive change in the function NEXT. This will be
described in the appropriate section. This ROL description yes derived from the
earlier LCF-LSM description by Dr Avra Cohn of Cambridge University.

Li.

2. INFORMA L A SCfPrIoi OF ARCHITECTURE

The iationale for the VIPER architecture is given in reference 1. As shownIn FIX 1, the conceptual machine has an accumulator, A, of 32-bits, tvo index

'egisters, I and T also of 32-bits and a register for the program counter P, of
idth 20-bits. VP 's memory in iega-ord. This in used as the source

of all Instructeons and the source and destination of most data operations.
over VInM has a separa e I a-vord memory space hvalable for peripheral

devices, vhch in only accessed by the INPUT and instructions. In both
cases the data path in 32-bits vride. Selection between the doain of the main

meory and the Input/output space is achieved by a 1-bit signal. iro the
point of vie of this specification, all of the main mteory and theInput/output apace can be vieved as Rando Access Memory (RAK) addressed by

21-bts in total, I.e. a meory/io control bit concateated vth a 20-bt
address generated by the rest of the machine.

In addition to the above registers, the architecture has a sngle 1-bit fl
register, B, vhsch holds the results of comparison instructions and carry bits
from arithmetic or shift operations. The final key feature In a single Boolean,
STOP, vhlch becomes true If any logical error occurs in the execution of a
progam in VIPER, such as arithmetic overflov or generation of an offset
address larger than 20-bits. In such circumstances the -,achine must halt. If
the real tim application requires continued operation, this mst be achieved
by external means, such as redundant processing capability or by wvitching to

an alternative program.

From the tvo paragraphs above it vill be seen that a 'state' in vhich the
machine rests momentarily between instructions can be vritten dovn as the
vector:-

(RAN, P, A, X, Y, B, STOP)

vhere P, A, I, Y, B imply the current contents of these registers and STOP the
current setting of the stop condition. The element RAN implies the current
contents of both address spaces. The essence of the specification given in this
document is to define rigorously all transitions from one such state to another
for all possible instructions stored in the main memory.

Instructions are stored as groups of fields occupying the highest 12-bits of
each vord. The remaining 20-bits represent either an address or a constant.

Throughout this specification the bits of a vord are numbered from 0 at the
least significant end. For the purposes of definition the machine is assumed
to have an Arithmetic and Logic Unit (ALU) vith tvo 32-bit inputs, denoted by
convention as R and M, but these values are not directly accessible to the user
and are not part of the primary state of the VIPER machine.

It should be noted that events such as reset vhich are caused by the
,environment' in vhich VIPER is operating are regarded as being outside the
programer's viev of normal operation, and so are not formally defined in this
document. Informally, a reset may occur at any time and causes all the
registers (A, 1, Y, P, 5 and STOP) to be cleared. The other similar event that
my occur is a forced error, vhen for example hardvare external to the
processor detects a parity fault in the memory and forces the processor into
the stopped state. The effect of a forced error is to set the STOP flag, thus
preventing further instructions being executed, until cleared by reset.

2

The field. formed from the 32-bits of each VIPER instruction can be defined as
shovn In Table 1:-

TABLE 1. INSTRUCTION DECODING

Field I dent- j ij Lov JLength IDefiningI
I ifier Bit B~it IBits I

IRegister select Irsf I31 30I 2 READ: source ofI
I~~~ II I IInput to ALAI
I I I I VRITE: registerj
I I I I I to be vritten I

Memory select wmf I29 28 I 2 IREAD: source ofI
I I I I Iinput to ALUI
I I I I I VRITE:inemory I
I I I Ioriloaddress I
I I I I I ISHIFT.- shift opI

Destination select I dsf I27 1 25 I 3 IDestination ofI
I I I I I result

Comparison select I csf 1 24 1 24 j 1 1-imompareI
II I I I I uarithmtic opl

-- ----- +----------+-----+-------+----------- -

IFunction select Ifsf I23 I20 I 4 IComparison I
I I I I I orALU functioni

------ - +--------------------------------- -

IAddress Iaddr I19 I0 I 20 IAddress or 20 I
I I I I I bit constant

The next level of decoding is illustrated In the folloving tables, vhich
indicate the coding of each field. The R input of the ALU or the register to be
vritten into RAM Is selected by the Register Select Field as shovn In Table 2:-

TABLE 2. REGISTER SELECT FIELD

lValue of rsf I R input to ALU orI
I Ivalue to be vritten to memory

0 IAI
I 1 II
I 2 Y
I 3 P , padded to 32-bitsI
I I vith leading zerosI

3

The memory select field has several roles, depending on the values of the

other fields of the instruction, these are illustrated in Table 3:-

Case 1: (cuf - 0) AND (duf > 5) is a WRITE operation, maf indicates the address

Case 2: (csf - 1) OR ((dsf <. 5) AND (fif /- 12)) is a comparison or
arithmetic operation, vith either an operand being read from memory or
the 20-bit tail of the instruction being allocated as a constant to the
K input of the ALU

Case 3: (csf - 0) AND ((dsf <- 5) AND (fsf - 12)) is a shift operation, vith
maf defining vhich of the four possible shift instructions is to be
performed

TABLE 3. HRMOR! SELECT FIELD

I (csf -0) (csf - 1) OR (csf -0) AND i
m sf AND ((dsf <. 5) AND (dsf <- 5) AND I

I (dsf > 5) (fsf /. 12)) (fsf - 12) I
------------ ----- - -------------------- -

0 Illegal Assign constant No WRITE or
stop - TRUE Padded to 32 READ. Defines

bits to M one of four
---------------------- ------- I shift inst-

I Write source Read from addr ructions, as
(rsf) to addr and assign listed in

result to M Table 6
----------------------- ------- I

2 IF (addr + X) IF (addr + X)
is <. 20-bits is <= 20 bits
vrite to this read from this
location location and
ELSE stop assign result

to N, ELSE stop
------------------------ -------- I

3 IF (addr + Y) IF (addr + Y)
Iis < 20-bits I is <- 20 bits

,Ivrite to this read from this
location location and

IELSE stop assign result
to N, ELSE stop

As indicated above, the destination select field controls the read/rite
operations, subject to conditionals such as indexed addresses being vithin the
20-bit range of the machine. The definition of the coding of dsf is given in
Tables 4A & 4B, in vhich the values of the predicates are indicated by 1, 0 or
X (for either value). Each column in such a table defines a combination of
conditions and the actions vhich must be performed if these circumstances are
encountered in the execution of a program. The 'actions, in this specification
of VIPER are assignments to the elements of the state vector (RAN, A, X, Y, P,
B, STOP).

4

TABLE 4A. DESTINATION SELECT FIELD LOGIC

Colum numberl 1 1 2 1 3 1 4 1 5 I 61 7

------ - -- ---------- ------- ----------- ----- ------ -

ISTOP 1 0 0 0 1 0 1 0 1 0 1

linvalid address or X 1 1 0 0 0 1 0 0
I illegal operation, i I I I I I I
excluding illegal i I I 1 I I I I
calls (see col 16) I I I I I I I I

Icompare(caf-l) I 1 l • l 1 l 0 0 l 0 1 0 1
- -+ ! 4 -

value of dsf Iany any any 7,6 5 5 1 5

lb X • I 1 0 0

call (fsf - 1) 1 • I I ••I I 1 0

CRANGES VALUE OF:-
RM (memory + i/o) - - - regvall - - -

Y P+1I
P P + I P + I P + 1I P + I RES RES

I - - compar - I - BVAL IBVALI
ison I I I

STOP TRUEI - I - - SVAL ISVALI

Note: The ALU is specified (table 6) to deliver a triple (RES, BVAL, SVAL),
where RES is a 32-bit answer, Boolean BVAL is the new assignment to
register B and Boolean SVAL is the new value of the STOP flag.

Notes on each column, with (RES, BVAL, SVAL) delivered by ALU:-
1. Processor has halted
2. Invalid address or illegal operation, which must cause processor to halt.
3. Comparison functions, see Table 5 for which function is required.
4. Vrite to memory (dsf.7) or io (dsf=6)

* regval is the contents of the register defined by rsf written into the RAM

5. No operation, (dsf-5) AND B
6. Conditional CALL,

* P loaded with bottom 20-bits of RES and Y loaded with P+1 padded to 32-bits

7. Conditional GOTO,
* P loaded with bottom 20-bits of RES

5

TABLE 4B. DESTINATION SELECT FIELD LOGIC

Column numberl 8I 9 10 1 11 12 1 13 1 141 151 16

STOP o 0 0 1 0 0 0 1 0 I 0o
- ---- - ---------. - - -- ... --- -" ------- -----

linvalid address or 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
lillegal operation, I I I I I I I I I
excluding Illegal I I I I I I I I I

Icalls (see col 16) I I I I I I I I I
----- '4" N --. --- --' -- -o-'-"4" N -- -- -- . .. ----------

Icompare (caf - 1) 0 0 o1 0 1 o 0 1 0 1 0 1 01 01

Ivalue of dsf 4 1 4 1 4 1 3 1 3 1 2 1 1 I 01 <3 1

lb 01 1l i1 xl Xl xl Xl xl XI
+---- --- -- ---- ---- +--------------- .--- ------ -

call (fsf- 1) x I I I I I I 0I I 1

RAN(memory+ i/o) I I I I I - I- I - - -

ASI-IR --X I --
Y - P+1 - P+l - IRESI - I - IP+1
P P+1 RES RES RES RES IP+1 IP+1 IP+ P1 I

I B I - IBVAL IBVAL IBVAL IBVAL IBVAL iBVAL IBVAL I -

I STOP I - ISVAL ISVAL ISVAL ISVAL ISVAL ISVAL ISVAL ITRUE I

Notes on columns.
8. No operation, (dsf=4) AND (NOT B)
9. Conditional CALL

* P loaded vith bottom 20-bits of RES, Y loaded with P+I padded to 32-bits
1). Conditional GOTO: * P loaded vith bottom 20-bits of RES
11. Unconditional CALL

* P loaded vith bottom 20-bits of RES, Y loaded with P+1 padded to 32-bits
12. Unconditional GOTO: * P loaded vith bottom 20-bits of RES
13..15 Assignments to Y, X or A
16. Illegal CALL instructions

TABLE 5. COMPARISON FUNCTIONS

I fsf comparator I

0 R< I
1 R>-N
2 R =M
3 R =N
4 R<KI
5 R> M
6 unsigned R < M
7 unsigned R >. I

I 8 As above, but vith the
to the result ORed with B

I 15 Ie: 8=> (R<HM) ORB I

6

I.

The description of the arithmetic and logic functions of the ALU calls for
two further definitions to describe the error conditions:-

pvrite a Boolean vhich is TRUE if the destination of the result of the
operation is the P register i.e. value of dsf - 3, 4 or 5. Many
of the ALU operations cannot be used for manipulating the program
counter, since potentially dangerous effects could be produced.
Hence pvrite is the error condition for 'barred on P register"
(note that the CALL instruction can only be used vith destination P).

INVALID An operator applied to the 32-bit result of an ALU operation which
delivers TRUE if this value has any one of the top 12-bits set
i.e. represents an impossible address or value of the program counter

The folloving tables also contain the values 'carry', 'borrow' and
'overflow', which are defined later.

TABLE 6A. ALU FUNCTIONS 0 - 11

fsf J nsf J function J output
-------------------------------- I

RE II S I BVAL I SVAL
--------------- I------------------------------ ------ I

0 1 any I NEGATE m I NOT M I B I pvrite

----------------------------------- ---------------------------
1 any ICALL I N I B I NOT prite

i i I I IORWINVALIDMN
-- ------ I
1 2 i any IRRAD from peripherall M I B I pyrite
I -------------------------- ------- ------ I
1 3 1 any IREAD from mefory I M I B I prite AND

I I I I I INVALID X
-- -------------

4 I any IADD, no overflow I R + M carry I prite
I I I detected I I I

I---+------+-------------------------+------------------4--------------------+---------------------
5 I any IADD, stop on R+ B Ioverflov OR

I I I overflow I I (pwrite AND
I I I i IfL'WNAL1D(R+M))J

--- ------ -------

6 any [SUB, no overflow R - N I borrow I pyrite
I I I detected I I I

- ------- -------- - ----- I ------------

7 I any ISUB, stop on I R - M B Ioverflow OR
I I I overflow I l I (pvrite AND
I I I l 1 I INVALID(R-M))I

----------- -------------------------

8 1 any I XOR I R XOR M j B I pvrite

-- -- -- ----------------------------- ------ -------

9 lany I AND I R AND M I B I pyrite
----------- - - ------------- +-----------------I

10 1 any I NOR RORM I B I pvrite
-- - - - - ----- -------

11 I any AND NOT IR AND NOT NI B I pyrite

7

TABLE 6B. ALU FUNCTIONS 12 - 15

faf msf I function 1 output
I I-------- - -
I I Us I VAL SVAL

I --- +---- -------- --- ,------------4----

12 I 0 I SHIFT RIGHT IR31.R31..R1l B I pvrite
I copy sign bit I I I

- --- i------ -- -- -------- ---

12 I 1 I sHIFT EIGH I .31..R I 10 I pvrite
I I throughB I I I

12 I 2 ISHIFT LE T j R + R B pvrite OR
I I stop on overflov I I I overflov

12 I 3 SHIFT LEFT R30..RO.BI R31 I pvrite
I IthroughB I I I

-- - -+------- ----------- - - - ---

13 1 any I llegal I R I a ITRUB
--- -- --------- - --------- 4----- -- --

14 1 any I llegal I R I B ITRUE
-- ------ -------

15 1 any Illegal I R I B I TRUE

Note:-
In the notation used for the shifts, Rm..Rn denotes a slice of the bits in
the R input to the ALU and . (full stop) denotes concatenation.

3. FORMAL SPECIFICATION IN HOL

The HOL system has been devised by the Computing Laboratory of the
University of Cambridge, using the interactive programming language ML (Meta
Language), and is a development of LCF-LSM. The origins of this york are
described in a book by Gordon, Milner and Wadsvorth (7).

In this Section VIPER is specified in the style proposed by Gordon (8), using
the primitive functions defined in the present Cambridge HOL system. Annex A
gives a very brief introduction to the HOL constructs used and the reader
should turn to those pages next to gain an initial understanding.

The formal specification is presented on the folloving pairs of pages, each
page of HOL text having a facing page of commentary. Inevitably any such
specification needs a number of auxiliary functions, to enable the primary
axiom for the next state of the machine to be defined in a concise manner.

8

The specification of VIPER begins vith two declarations, o create types for
vords of fixed numbers of bits and to create a hypothetical address space:-

declare vord vidths[1;2;3;4;20;21;32;33;341
declare-memoiries[(21,32)]

This introduces the types vordl, vord2,vord34 and the standard functions
for converting these types to positive integers (of type nun) and to lists of
booleans :-

VAL1, VAL2, VAL3 VAL34 vordn ->nu
VORDI, VORD2, VORD3 VORD34 nun -> vordn
BITS1, BITS2, BITS3 BITS34 wordn -> bool list
NOT1, NOT2, NOT3 OT34 vordn -> vordin

Vriting to and reading from the address space created by declare memories is
achieved using the pair of functions:-

STORB21: vord2l -> vord32 -> mea21 32 -> aem2W132
FETCH21: mm21 32 -> vord2l -> vora32

The first functions VALUE, CARRY, OFLO, BVAL and SVAL exist solely to extract
a single field from a structured value.

A number of conversions betveen vords of differing lengths are required and
this is the role of the three functions TRIM32TO20, TRIM34T032 and PAD20TO32.
The trim functions sake use of the concept of lists and HOL functions such as
SEG, EL, V and TL (see Annex A). As defined, trimming is 'blind' in the sense
that no checks are performed to see if significant bits are lost in the
trimming.

SIGNEXT performs sign extension, ie increases the length of a vord by
duplicating the most significant bit. Much use of this vill be made in the later
definition of arithmetic operations.

RIGHT and LEFT shift a vord V in the appropriate direction, losing the
right/left most bit and adding B as the left/right most bit.

RIGHTARITH provides a divide by tvo operation for a 2's complement value.
That is, the value is shifted one place right vith the most significant bit
being duplicated.

9

declare word vidths[1;2;3;4;20;21;32;33;341
declare memories[(21,32)]

VALUE: vord321~boolfbool -> vord32
IVALUE (result,carry,overflov) - result

CARRY: vord321~booli~bool -> bool
jCARRY (reat,carry,overflov) - carry

07WO: vord32fEboolibool -> bool
O- 0O (result,carry,overflov) - overflow

DVAL: vord321booli~bool -> bool
D- VAL (result, b, abort) *b

SVAL: vord32fEbooibool ->bool

I- TAL (result, b, abort) abort

TRIM32TO20: vord32 -> vord20
~TRIM32TO20 v - VORD2O(V(SEG (0,19) (BITS3? v)))

TRIM34T032: vord34 -> vord32
jTRIK34TO32 v - V01D32(V(TL(TL(51TS34 v))))

PAD20T032: vord20 -> vord32
IPAD20T032 v - VORD32(VAL2O v)

SIQIKIT: vord32 -> vord33
ISIGNEIT v -
(let bitlist - BITS32 v In V01D33(V(CONS(RL 31 bitlist) bitlist)))

RIGHT: boolivord32 -> vord32
I- RIGHT Mbr) - V0RD32(V(CONS b (SEC (1,31) (BITS32 r))))

LEMT: vord321bool -> vord32
ILEFT (r,b) -(let twice a V(TL(BITS32 r)) in

(b .> VORD32(tvice + twice) + 1 I VORD32(tvice + twice))

RIGHTAR ITH: vord32 -> vord32
~RIGHTARITH r - (let sign - EL 31 (BITS32 r) in

V01D32(V(COIS sign (SEG (1,31) (BITS32 r)))))

10

IEG provides a negate function for a 33-bit 2's complement value. It uses
the usual invert and add 1 algorithm. Note that 0 is treated as a special case.
If this vere not removed by the Initial test, 0 inverted and incremented would
deliver a 34-bit result, but the use of NEG in SUB32 and COMPARE is such that
only a 33-bit value is required.

ADD32 and SUB32 are the addition and subtraction operations for 32-bit
values. Both deliver triples, a 32-bit result, a carry (or borrow) value and an
overflow condition. The 32-bit result is the bottom 32-bits of the result of
adding/subtracting the two operands regardless of whether they are 2's
complement or unsigned values. The carry (or borrow for subtraction) value is
used during unsigned operations only, vhilst the overflov value is only
significant during 2"s complement arithmetic. An informal definition of
overflow is that it is true if and only if the sum (or difference) of the two
operands cannot be represented by a 32-bit 2's complemeut value. Similarly,
carry or borrow are defined to be true if the sun (or difference) of the two
operands cannot be represented by a 32-bit unsigned value. The relationship
between these informal definitions of overflow and carry and their formal ROL
descriptions is investigated in Annex B.

Given a definition of ADD32, the function to increment the program counter
P, INCP32 is as shown opposite. A 32-bit value is delivered to cope with the
situation when the last instruction was fetched from the top word in memory,
leading to P overflowing into the 21st bit. By delivering a 32-bit value and
checking that the top 12-bits are zero, it is possible to detect this unusual,
but fatal condition. This check is done using the function INVALID, defined
later.

The COMPARE function follows from Table 5. The values of 'dif' and 'borrow'
are the same as delivered by SUB32 (although borrow is expressed slightly
differently). 'Less' examines the most significant bit of the difference of the
(sign extended) operands R and H. This is the sign of the result of R-H, and it
is set if R is less than M. Again, this informal definition and its formal
counterpart are investigated in Annex B.

11

NG: vord33 -> nun
- aG -=((VAL33 a = 0) -> 0 I (VAL33(NOT33 a) + 1)

ADD32: vord32£vord32 -> vord32£boolibool
j- ADD32 (r,m) -
(let sum - VORD34((VAL33(SIGNEXT r)) + (VAL33(SIGNEXT a))) in
let opposite - (IL 31 (BITS32 r)) OR (EL 31 (BITS32 a)) in
TRIN34T032 sun, (EL 32 (BITS34 sum)) ZOR opposite,

(EL 32 (BITS34 sum)) X0R (L 31 (BITS34 sun)))

SUB32: vord32£vord32 -> vord321boolfbool
I- SUB32 (r,m) =
(let dif - VORD34((VAL33(SIQNE1T r)) + (NEG(SIGNIIT a))) in
let opposite - (EL 31 (BITS32 r)) XOR (EL 31 (BITS32 n)) in
TRIN34T032 dif, (EL 32 (BTTS34 dif)) OR opposite,

(EL 32 (BITS34 dif)) XOR (EL 31 (BITS34 dif)))

INCP32: vord20 -> vord32
I- INCP32 p - VALUE(ADD32(PAD20T032 p, VORD32 1))

CONPARE: vord4£vord32£vord32£bool -> bool
- COMPARE (fsf,r,m,b) =
(let op - VAL4 f9f in
let dif - VORD34((VAL33(SIGN(KT r)) + (NKG(SIGNEXT mi))) in
let equal a r - m in
let less - EL 32 (BITS34 dif) in
let borrov - (EL 32 (BITS34 dif)) XOR

((L 31 (BITS32 r)) XOR (EL 31(BITS32 v))) in
((op - 0) => less
((op -) =>NOT less
((op - 2) => equal
((op - 3) => NOT equal
((op - 4) => less OR equal
((op - 5) -> NOT(less OR equal)
((op - 6) => borrov
((op- 7) >NOT borrov I
((op- 8) >less OR b
((op- 9)> (NOT less) OR b
((op -10) >equal OR b
((op -11) >(NOT equal) OR b
((op - 12) -> (less OR equal) OR b
((op - 13) => (NOT(less OR equal)) OR b
((op - 14) => borrov OR b

(NOT borrov) OR b))))))))))))))))

12

The next group of auxiliary functions is concerned vith the VIPER
architecture itself, rather than vith manipulation of vords and rove of
booleans. From Table 2 It Is clear that the R input to the ALU can be defined
by the IOL function RIG given opposite.

Generation of addresses for vriting and reading is performed using the function
OFFSET, to generate a 32-bit value vhich is checked by the predicate INVALID to
make sure that none of the top 12-bits are set. If INVALID delivers FALSE it
is certain that the value in question can be trimmed safely back to 20 bits and
then used as a memory or input/output address. The expression:-

INVALID(OFFS~R(msf,addr,x,y))

Is used In the rest of the description for checking addresses in the VIPER
high-level specification. Note that addition of a positive offset to a negative
value in X or Y, generating a non-negative result, is perfectly legal.

Fetching instructions from main memory involves padding the 20-bit value of P
vith a leading zero and using the resulting 21-bit argument in the function
INSITITC. This concatenation is achieved readily using the list constructor
CONS.

Uriting to and reading from the tvo contiguous address spaces involves the
introduction of the boolean variable wio", vhich models the one-bit signal
controlling the division betveen main memory and the input/output space. As
vill be seen from both KEHREAD and HNVEITE this is regarded as an extra bit to
be concatenated vith the 20-bit address generated by the rest of the machine,
to perform accesses to a 21-bit regime. These functions KEMAD and KENRI
assume that the address generated by OFFSET(usf, addr, x, y) is valid, i.e.
that INVALID delivers FALSE. The validity of this assumption is guaranteed by
the use of INVALID to trap illegal addresses before KEKEEAD and KENVRITE are
invoked (see NEXT). The generation of the K input to the ALU using KENREAD
involves one extra factor. If a shift instruction is invoked, (dsf <- 5 and
fsf - 12), there is no read required, since the operation is on the R input
only. In these circumstances, vith the boolean variable "nil* set to TRUE, the
N input is defined to be a 32-bit representation of zero. Also notice if msf-O
in KE)READ, the value of the N input of the ALU is the addr field of the
instruction padded to 32-bits. In REWRITE, msfuO is illegal (and vill actually
be trapped in NEXT), so doesn't change the contents of RAN.

13

ENG: word21vord32ivord32ivord32vord2O -> vord32
IREG (rsf,az,yp) -
(let r - VAL2 raf in
((r a 0) a> a I((r = 1) -> z ((r -2) .> y PAD20T032 p))))

OFFSRT: vord2fvord2O~vord32fEvord32 4vord32
IOFF=E (sfaddr,x,y)
(let of - VAL2 mef in
let addr32 - PAD20T032 addr In
((af - 0) m> addr32
((af m 1) a>eddr32
((uf - 2) m>VALU(hD32(addr32, x))

VALUE(hDD32(addr32, y))))))

INVALID: vord32 -> bool
IINVALID value - NOT(value - ?D20T032(TRIK32TO2O value))

INSTFRTCH: mem2l 32fvord20 - vord32
~INSTFETCH (ram,pT - FRTCH21 ran (WORD21(V(COtIS F (BITS2O p))))

KENRRAD: .e&21 321vord2ivord2Otvord32ivord32iboolibool -> vord32
~KENREAD (raa,mif,addr,x,y,io,nil)
(let a - VAL2 usf in

(nil ->VORD32 0
((an - 0) u>PAD20T032 addr

FRTCH21 ran
(VORD21(V(CONS io (BITS2O(TRIM32T020(OFFSET(msf,addr,x,y))))))))))

KEMVRITE: sm2l _32fvord32fvord2[vord2O~vord32fvord32Lboo1 -> inem2l_32
~NEMVRITE (rau,source,msf,addr,x,y,io)-
(let . - VAL2 msf in

((an 0) .>ram I
STORE21
(V0ED21(V(C0NS lo (BITS2O(TRIH32T020(OFFSRT(nsf,addr,x,y)))))))
source rani))

14

The function for the AIAl remains to be declared before moving to the
definition of the permissible state transitions for VIPER. The ALU delivers a
triple consisting of a 32-bit result, the next state of the 3 flog and a value
for the STOP condition flag. As can be seen from the facing page, the ALU is
very simple in concept, the most obvious feature being that most operations are
barred on the P register. Only addition and subtraction vith overflov
protection, CALL instructions and reads froa memory or manifest constants can
be used to define the new contents of the P register. The definition of the LW
follovs Table 6 in a natural manner.

15

ALU: word41vord2vord3vord32ivord32ibool -> vord321~bool~bool
IALU (fsf,.af,dsf,r,m,b) -

(let ff m VAL4 faf In
lotm of aVAL2inmfin
let di a- VAL3 dsi In
let pvrite a (df - 3) OR ((di - 4) OR (df - 5)) in
((if w 0) ->(N0T32 a, b, pvrite)
((ff - 1) ->(a, b, (NOT pvrite) OR (INALID 2))
((ff - 2) i>(a, b, Wvrite) I
((ff a 3) ->(a, b, pvrite AND (INALID a))
((ff - 4) => let aum w ADD32(r,a) In

VALUE am, CARRY sum, pvrite
((ff w 5) ->let sum = AD032(r,a) in

VALUE usm,b, (OFLO sun) OR (Wvrite AND (MNALID(VALUE u)))l
((ff - 6) .>let dif - 5UB32(r,m) in

VALUE dif, CARRY dii, pvrite
((ff - 7) -)let dii - SUB32(r,a) In

VALUE dii,b, (OFLO dif) OR (Wvrite AND (INVALID(VALUK dif)))I
((if - 8) => ((r CR32 a) AND32 (N0T32(r AND32 in)), b, pWrite)
((ff - 9) =m> (r AND32 m, b, pWrite) I
((ff - 10) -> (N0T32(r 0R32 m), b, Write)I
((ff - 11) mm> (r AND32 (NOT32 an), b, pvrite)
Mfi - 12) .> ((mf - 0) ->(RIGHTAB.IT r, b, pvrite)

((of - 1) ->(RIGHT(b,r), EL 0 (BITS32 r), pvrite)
((of - 2) ->let double - ADD32(r,r) in

VALUE double, b, (07WO double) OR pvrite
(LMF(r,b), EL 31(B1TS32 r), pvrite))))

((if - 13) ->(r,b,T)
((f - 14) ->(r,b,T) -

16

To vrite a concise statement of all permissible transitions in VIPER, it is
convenient in the SOL text to define a number of primary predicates derived
from the fields of the current instruction and the current value of B:-

VITZ which is TRUE if the instruction involves vriting to the main memory or
the peripheral space

NILK vhich is TRUE if no H input is required to the ALU

HOOP vhich is TRIM if no operation is to be performed, le SKIP

SPARhEUNC vhich becomes TRUE if any attempt i made to use ALU functions 13, 14
or 15

ILLEGALCALL vhich becomes TRUE if an illegal CALL instruction is attempted
(with the destination defined as the A, X or Y registers)

ILLEGALPDB vhich becomes TRUE if the destination is given as P but the
specified function is an illegal way of deriving a nev value of the
program counter

IL-LEGALVRIT vhich is TRUE if a WITE instruction is attempted vith the memory
select field equal to 0

OUTPUT vhich is TRUE if data is to be vritten to an address in the 10 space,
le NOT a comparison and df - 6

INPUT vhich is TRUE if data is being read from an address in the 10 space,
le NOT a comparison, df <-5 and ff - 2.

17

URITE: vord31vordl -> bool
jVRITS (dsf,caf) .
(let df - VAL3 dat in
let cf - VALl caf In
(ct a 0) AND ((df - 7) OR (df -6)))

KILN: vord31vordlvord4 -> bool
IMIL (dafcat,fsf) -
(let df - VAL3 dat In
let ef w VALl cat in
let ft - VAIA tat In
(ef a-0) AND ((NOYT((dt - 7) OR (dt a-6))) AND (ft 12)))

H00P: vord31vordlibool -> bool
HOO300 (daf,caf,b) w
(let df - VAL3 dat In
let et - VALl cat In
(et - 0) AND (((df - 5) AND b) OR ((df - 4) AND (NOT b))))

SPARBFUNC: vord3fvordlivord4 -> bool
ISPABBFUNC (daf,caf,faf)
(let dt - VAL3 dat In
let ef - VALl caf In
let ft - VAIA taf in
(cf-O) AND ((NOYT((df-6) OR (df-7))) AND ((tf-13) OR ((tf-14) OR (ff-15)))))

ILLBGALCALL: vord3fvordltvord4 -> bool
IILLEGALCALL (daf,caf,fat)-
(let df - VAL3 dat in
let cf - VALl cat 4n
let ft - VAL4 fat in
(ct - 0) AND ((fft-i) AND ((df -0) OR ((df - 1) OR (dt - 2)))))

ILLRGALPDRST: vord31vordli~vord4 -,boo.
~ILLEGALPDRST (dsf,cat,tat)-
(let df - VAL3 dat in
let cf - VALI cat in
let ft - VAIA fat in
(ct - 0) AND (((dt - 3) OR ((df 4) OR (dt -5))) AND

(NOT((tf - 1) OR ((ft - 3) OR ((ft - 5) OR (ft 7)))))))

ILLEGALVRITE: vord31vordlivord2 -> boo.
IILLBGALVRITR (dat,cst,.at) -
(let at - VAL2 mat in (VRITE(dat,cat)) AND (at 0))

OUTPUJT: vord31vordl -> bool
IOUTPUT (dat,cst) -
(let dt - VAL3 dat in
let et - VALI cat in (ct -0) AND (dt - 6))

INPUT: vord3fvordll~vord4 ->bool
IINPUT (dxt,cst,tat) -
(let dt a VAL3 dst in
let et - VALl cat In
let ft - YAMA tat In
(ef - 0) AND ((NOT((df 7) OR (dt 6))) AND (ft - 2)))

18

VIPER must obey the transitions defined in the function NET on the opposite
page. Table 4 gives the details of the nev states to be achieved. As can be
seen from the definition of NETT, precise descriptions of the conditions in
vhlch the "low signal Is TRUE and for detection of invalid addresses are found
in the DOL text and provide a rigorous definition of the looser statements in
Section 2.

One issue vhich vas not dealt vith at all in the informal description of
Section 2 is the problem of overflov of the program counter. If an instruction
has been fetched from the top vord of the main memory, it follovs that the next
increment of the program counter vill cause an illegal value to be generated
for P unless this last instruction is GOTO. Notice that if the instruction
fetched from the top vord is CALL, difficulties may be encountered later in the
execution of the program, because an illegal return link vill have been stored
in the Y register. In viev of the complexity this could introduce, any
instruction in the top vord of memory is illegal in VIPER and if encountered
stops the processor.

The function NEXT contains the one substantive change betveen this report
and Report 85013 (9). The expression 'AND (NOT skip)" has been added to the
definition of "illegaladdrO. The reason for this is that, when the previous
top-level specification (9) was compared vith the first level of decomposition
(the microprogram model described in reference 5), it vas discovered that they
differed vhen a conditional call or goto instruction delivered an illegal nev
value for the program counter. In the original description (9), the illegal
result vas detected before the B flag vas examined to see if the instruction
vas to be performed. This led to the processor alvays stopping. The
implementation (5) examined the B flag first and only generated the nev value of
the program counter (and hence only stopped if it vas illegal) if the
conditional operation vas to be performed. The latter more closely reflected
the designers' intended response to these circumstances and so the top-level
specification has been changed to reflect this nev requirement.

19

NEMT: mem2l 32vord2Ovord32ivord32Evord32Eboolibool -
mei21321vord20tvord32ivord32Evord32iboolibooI

MW EI (raa~pTa~zyjbtstop)
(let Instbits a 11TS32(INSTFETCH(raa,p)) in
let nevp -TR1t32T020(ICP32 p) in
let rf-V 2VSG(03)instbits)) in
let uU ORD2(V(SBG (28,29) instbits)) In
let dsf - VORD3(V(SEG (25,27) instbits)) in
let csf - VORDI(V(SEG (24,24) instbits)) in
let fif = VORD4(V(SBG (20,23) Instbits)) In
let addr -VORD2O(V(SEG (0,19) instbits)) In
let df m1hL3dsf in
let ef -VALI caf In
let ff - AMA fsf in
letCORP -cf 1 n
let call m(cf 0)AND (ff -) In
let output - OUTPUT(dof,caf) in
let Input - IPUT(dsf,csf,fsf) in
let io w output ORl Input in
let vriteop - VRITE(dsf,caf) in
let skip w NOOP(def,caf,b) in
let noinc - INVALID(INCP32 p) in
let illegaladdr - (NOT(NILX(dsf,csf,fsf))) AND

((INVALID(OFFSET(msf,addr,x,y))) AND (NOT skip)) in
let illegalci - ILLEGALCALL(dsf,csf,fsf) in
let illegalsp - SPARRFUNC(dsf,csf,fsf) in
let illegalonp - ILLEGALFDEST(dsf,csf,fsf) in
let Illegalvr - ILLEGALVRITE(dsf,csf,zsf) In
let source - RG(rsf,a,z,y,nevp) in

(stop ua(ra, pa, x, y.bpT) I

((noinc OR illegaladdr) OR ((illegalcl OR illegalsp) OR
(illegalonp OR illegalvr)) -> (ran, nevp, a, x, yp b, T)

(coup ->(ran, nevp, a, x, y,
CONPhBE(fsf,source,NENEBAD(raamf,addr,x,y,io,F), b), F)

(vriteop a> (NENVRITE(raa,source,.sf,addr,x,y,io), nevp, a, x, y, b, F)

(skip m>(ran, nevp, a, xt yo b, F) I

let a K OREA(ru,mf,eddr,z,y,io,NIIX(dsf,csf,fsf)) in
let aluout -ALU(fsf,msf,dsf,source,u,b) in
((df - 0) ->(ram, nevp, VALUE aluout, x, y, BVAL aluout, SVAL aluout)
((df - 1) ->(ram, nevp, a, VALUE aluout, y, BVAL aluout, SVAL aluout)
((df - 2) ->(ran, aemp, a, x, VALUE aluout, IVAL aluout, SVAL aluout)
(call ->(ram, TRWK2TO20(VALUZ aluout), a, a, INCP32 p,

DVAL aluout, SVAL aluout)I
(ran, TRIM 2T020(VALUR aluout), a, x, y,
BVAL aluout, SVAL aluout)))))))))))

20

4. CONCLUSIONS

This document demonstrates that it is possible to vrite a specification for
the functions of a poverful microprocessor, using simple concepts in first
order logic. Experience has shown that HOL is a firm basis for the formal
specification of VIPER.

5. A(CNOVLEDGENENTS

VIPER has been developed by the High Integrity Systems Section of the
Computing Divisions, by a team comprising Dr J Kershaw, Dr C H Pygott and
Dr V J Cullyer. All members of the Section have contributed to this
specification. Kr I F Currie and Dr J N Foster have made important contributions
in suggesting formal methods for use in this environment of safety critical
computing.

The author vould also like to thank Dr A Cohn of Cambridge University, for
her york on the VIPER proofs, and in particular for providing the HOL
translation of the original LCF-LSM description.

6. REFERENCES.

1. KERSHAV, J. "The VIPER microprocessor"
RSRE REPORT 87014. November 1987

2. PTGOTT, C.H. "Electrical, environmental and timing specification of VIPER
microprocessor (issue 2)" RSRE REPORT 86006, June 1986

3. GORDON, N.J. "HOL: a machine orientated formulation of higher-order logic"
University of Cambridge Computing Laboratory
Technical Report 68

4. GORDON, N.J. "LCF-LSM"
University of Cambridge Computing Laboratory
Technical Report 41

5. COHN, A. "A proof of correctness of the VIPER microprocessor: The
first level"
VLSI specification, verification and synthesis
BIRTUISTLE G. & SABRABMANYAM P.A.(ed), Kluver 1987

6. COHN, A. OCorrectness properties of the VIPER block model: The
second level"
Current trends in hardvare verification & automated deduction
BIRTVISTLE G. & SBRAHNA K P.A.(ed), Springer-Verlag 1988

7. GORDON, N.J., MILNER, R. A., VADSVORTH, P.
"Edinburgh LCF"
Lecture Notes in Computer Science, Springer-Verlag, 1979

8. GORDON, N.J. "Proving a computer correct"
University of Cambridge Computing Laboratory,
Technical Report 42

9. CULLYUR, V.J. 'Formal specification of the VIPER microprocessor"
RSRE REPORT 85013, October 1985

21

Annex A: Short introduction to BOL

The material in this annex is a very brief, informal, digest of that
presented by Gordon in reference 3. Hopefully it contains enough detail to
enable the text of section 3 to be understood.

The description in section 3 assumes the existence of the following types:-

bool the boolean type with members T and F

nun the non-negative integers

vord<n> a word of <a> bits (eg vordl, vord32 etc)

* list a list of any other type "*" (eg bool list), the empty list is 11

The description in section 3 also assumes the existence of certain operators
and functions:-

equality between values *f* -> bool
+ addition num~num -> nun

NOT logical inversion bool -> bool
OR disjunction booltbool -> bool
AND conjunction boolibool -> bool
IOR exclusive OR boolibool -> bool

CONS list constructor * -> * list -> * list
This appends a value to the head of a list. Note that the form of the
signature denotes a partially applied function (see 3), but for most
purposes it can be regarded as being *W* list -> * list.
Note however that CONS is applied to two values 'a' and 'b' as
"CONS a b", vhilst a normal function 'C' would be applied as "C(a,b)"

HD head of list * list -> *
TL tail of list * list -> * list
EL <nth element of list num -> * list -> *

(0 - first member, for a list of N elements EL (K-1) list - ED list)
SSC select a slice from a list (numinum) -> * list -> * list

V the integer equivalent of a bool list (ie a list with M members
delivers a value in the range 0 to 2**N -1) bool list -> num

VORD<n> converts an integer to a vord<n> nun -> vord<n>
VAL<n> converts a vord<n> to an integer vord<n> -> nun

BITS<n> converts a vord<n> to a bool li.t vord<n> -> bool list

The main 'control' structure is the conditional expression:-
(a -> b I c), which is read as "if a then b else c".

A-1

Annex B: VIPER arithmetic

This annex describes the arithmetic operations ADD32 and SUB32, and
Informally justifies the relationship between the informal descriptions of
overflov, carry etc. given on page 11 and their formal ccunterparts on page 12.

Before these are considered some basic definitions are required. VIPER's (or
any other computer's) integers are not the sane as a mathematician's integers,
in that any computer has a fixed vord length whilst conceptual integers have an
infinite range (actually a double infinite range, from -infinity to +infinity).
In this annex, all 'computer vords' of <n> bits will be regarded as positive
values in the range 0 to two to the paver <n> - 1. VIPER's 32-bit words can be
interpreted as either a 2's complement signed value or an unsigned value. If
'povwn>' is defined to be 2 to the pover Wn (ie: pov4 - 16 etc), then an
unsigned VIPER 32,-bit vord V has the equivalent integer range I as follows:-

For:- 0 <- V < po32 then I - V

or:- 0 <- I < pov32 then V w I

A 32-bit 2's complement VIPER word V, maps to an integer I as:-

For:- 0 <= V < pov31 then I . V
and:- pov3l <- V < pov32 then I - V - pov32

or:- 0 <= I < pov31 then V I I
and:- -pov3l <- I <- -1 then V - I + pov32

To avoid confusion, bit-<n> of a word will be said to correspond to the HOL
statement *EL n ". This means that the least significant bit is bit-O,
rather than bit-i, but mans that if a value is regarded as the sun of a series
of powers of two, then bit-<n> corresponds to pow<n>.

Two theorems will be used frequently in the fo'loving discussions. If V
represents a VIPER word, such that:- 0 <- V - pov<n>, then all the bits that are
iet in the vord must be in the first <n bits (ie bit-O to bit-<n-1>), all other
bits being clear. For example, if:- 0 <- V < 4 (pov2), then only the first tvo
bits of the word may be set, all subsequent bits are known to be clear.

Also if:- pov<n> <. V < pov<n+l>, then bit-<n> of the word is set.
For example, if:- 4 <. V < 8, then the third bit (bit-2) of the word is set.

Note that:- pov<n> + pov<n> - pov<n+l>.

1) The effect of SIGN MT

SIGNRIT: word32 -> word33
I- SIQIEXT v -

(let bitlist - BITS32 v in VORD33(V(CONS(EL 31 bitlist) bitlist)))

All the arithmetic operations work with 'sign extended' words. The effect of
this function, in the realm of integers, depends upon whether the value being
extended is considered as a signed or unsigned value.

1.a) Signed values: If the notional integer value is I, the VIPER word is V,
and SM is the effect of sign extension on V.

0 <. I < pov31 then V - I and M - I

-pov3l <- I < 0 then V w I + pov32 and SV= I + pov32 + pov32

B-1

1.b) Unsigned values: If the notional integer value is I, the VIPER vord is V,
and SXV is the effect of 'sign extension' on V.

0 <. I < pov31 then V - I and SK - I
pov31 <- I < pa32 then V- I nd SZW - I + pov32

2) The addition function, ADD32

ADD32: vord32£vord32 -> vord321boolibool
I- ADD32 (r,.) -
(let sum - V01D34((VAL33(SIGMQIT r)) + (VAL33(SI(GIIIT a))) in
let opposite - (IL 31 (BITS32 r)) OR (IL 31 (BITS32 a)) in
TR134T032 sum, (IL 32 (BITS34 sun)) ZOR opposite,

(EL 32 (nlTS34 mim)) KOR (EL 31 (BTS34 sum)))

As shown above, ADD32 delivers three values, the 32-bit sum, a carry
condition and an overflow condition. The overflow condition is only of
interest during 2's complement addition, vhilst carry is only used by unsigned
addition. These tvo signals will therefore be considered separately.

2.1) Overflow during addition

If 11 and 12 are tvo 32-bit signed integer values to be added, then the
natural definition of overflow is any result of 11+12 that cannot be represented
as a 32-bit value. That is:-

overflow - ((11+12) < -pov3l) OR ((I1+I2) >- pov3l)

Unfortunately, when the VIPER specification vas written, HOL did not support
negative integers, so an alternative description in the regime of positive
values vas required. If I1 and 12 are represented by the tvo 32-bit 2's
complement words I and M (as defined above), the definition of overflov given
in the ADD32 function is such that an overflow is said to have occurred if
bit-31 and bit-32 of the result of adding the tvo sign extended vords together
are different. This statement is to be Justified in the next three sections.

Also it shot!-- be noted that the 32-bit value delivered from ADD32 is meant
to be equal to the 2's complement sum of 11 and 12 in the absence of overflov.
If an overflow has occurred this value has no significance.

2.1.a) Addition overflov when I and 12 both positive

Here R - II, and M - 12, and the sign extension process doesn't change
these values. So the sum of the sign extended words is:- SUM - I + 12.

Note that:- 0 <- Il + 12 <- pov31 + pow3l - 2

There are two regions in the result space, if (I1+I2) < poy3l, then no
overflow has occurred, and SUM is also less than pov31, so bit-31 and bit-32 of
the result are both clear. So no overflow and bit-31 and bit-32 of SUm are
the same also the 32-bit result delivered - SUM.

An overflow can only occur if (11+I2) >- po3l. This corresponds to SUK also
being greater than poy3l. However the maximum value of (I+12) is
pov31-1 + pov31-1 - pov32-2. So if an overflov has occurred:-

pov3l <- SUM < pow32-1
This means that bit-31 Is set but bit-32 is clear. So bit-31 and bit-32 of
SUM are different when an 'overflow' has occurred.

B-2

2.1.b) Addition overflov vhen I1 and 12 both negative

Here R - II + pov32, and K - 12 + pov32. The sign extension process adds
a further pov32 to both these values. The sum of the sign extended vords is
therefore:- SUM - Il + 12 + pov32 + pov32 + pov32 + pov32.

Note that:- -pov32 <- I1 + 12 <= -2

There are two regions in the result space, if -pov3l <- (I1+T2) <- -2, then no
overflov has occurred, and SUM Is:-

SUM - pov33 + pow32 + (pao32 + Il + 12)
Where (pov32 + I1 + 12) is in the range pov31 to pov32-2, that is the 32nd bit
of the result is set, and as pov32 occurs in the definition of SUM, the 33rd is
also set. So no overflov and the 32nd and 33rd bits of SUM are the same.
Trimming SUM to 32-bits effectively subtracts pow33 and pov32 from SUM, so the
32-bit result delivered is (pov32 1 + 12), vhich is the 2's complement
equivalent of the result.

An overflov can only occur if -pov32 <- (11+I2) < -pov3l, but SUM is:-
SUM - pov33 + pov32 + (pov32 + I1 + 12)

Where (pov32 + I1 + 12) is in the range 0 to pov3l-1, that is bit-31 of the
result is clear, and as pov32 occurs in the definition of SUM, bit-32 is set.
So bit-31 and bit-32 of SUM are different and an 'overflov has occurred.

2.1.c) Addition overflov vhen the signs of the operands are different

Under these circumstances the result of the addition can never overflov, as
the range of the result is:-

-pov3l <- I1+I2 < pov31-1

The sign extension process adds a further pov32 to one value, so the sum of
the sign extended vords is therefore:- SUM - I1 + 12 + pov32 + pov32.

If 11+12 is positive, its maximum value is pov3l-2, so bit-31 and bit-32 of
SUM are both clear. So bit-31 and bit-32 of SUN are the same and no overflov
has occurred. Also trimming the result to 32-bits vill deliver I1 + 12.

If 11+12 is negative, it is in the range -pov3l to -1, so SUM is:- SUM =
pov32 + pov3l + (pov31 + I1 + 12), vbere (pov31 + I1 + 12) is in the range 0 to
pov31-1. This doesn't effect bit-31 and bit-32 of SUN vhich are both set. So
bit-31 and bit-32 of SUM are the same and no overflov has occurred. Trimming to
32-bits vill subtract the pov32 term, so the result is pov3l+pov3l+I1+T2, or
pov32+I1+I2, the 2's complement form of the result.

So under all circumstances it has been (informally) shovn that if an
overflov has occurred bit-31 and bit-32 of the sign extended sum differ, but if
the result is legal they are the same. Also if no overflov has occurred the
result of the addition is the 2's complement form of the sun 11+12.

B-3

2.2) Carry during unsigned addition:-

There is a natural definition of carry that could be used In HOL. That
is:- CARRY - (11+12) >- pov32

where:- 0 <- I1 < pov32, and 0 <- 12 < pov32

Perversely, the VIPER specification doesn't use this definition, but as
the proofs (5,6) were performed against a more complex definition, this vill be
justified here. The definition of carry in ADD32 is such that If the most
significant bits of the operands are the same, then carry is the bit-32 of the
'sign exteded' mum, otherwise it is the inverse of this bit. As in the case of
overflov, the justification will be given in three parts.

It should be noted that the 32-bit result of ADD32 for unsigned addition
is always (11+12) modulo pov32.

2.2.a) Addition carry when both operands are less than pov3l

If I1 and 12 are the operands, SUN - I1 + 12, where 0 <- I1+I2 < pov32-1.
So no carry can ever occur, and bit-32 of SUN is always clear.

The most significant bits of the operands are the same and carry is the
same as bit-32 of SUM.

2.2.b) Addition carry vhen both operands are >= pov3l

SUM - 11 + 12 + pov32 + pov32 - I + 12 + pov33

where:- pov32 <- 11+12 < pov33-1.

So there is alvays a carry, and the bit-32 of SUN is alvays set.

The most significant bits of the operands are the same and carry is the
same as bit-32 of SUM.

2.2.c) Addition carry when one operand < pov3l and the other >. pov3l

SUN - II + 12 + pov32
where:- pov3l <- 11+12 < pov32 + pov3l - 1

Then pov3l <- 11+12 < pov32, there is no carry, the 11+12 term doesn't
affect bit-32 of SUM, but the pov32 term means that this bit is set.

Then pov32 <= 11+12 < pov32 + pov3l -1, there is a carry.
SUM can be revritten as:- SUN - pov32 + pov32 + (I1 + 12 - pov32) or

- pov33 + (I1 + 12 - pov32).
The range of (11 + 12 - pov32) Is 0 to pov3l-1, so doesn't affect the

bit-32 of SUM, which is therefore clear.

ence when the most significant bits of the operands are different, bit-32 of
SUM is the inverse of carry.

B-4

3) The subtraction operator SUB32

NBCG: vord33 -> nun
I-KNEG a*m((VAL33 0 =O)=>O 0I (VAL33(T33 a) +1)

SUB32: vord32Cvord32 -> vord321boolibool
IM U32 (rua) -
(let dif - V0R34((VAL33(SIGNKI r)) + (NEG(SIcIIECT an))) in
let opposite - (EL 31 (BITS32 r)) 101 (EL 31 (11TS32 a)) in
TRIK34T032 dif, (EL 32 (B1TS34 dif)) 101 opposite,

(EL 32 (IITS34 dif)) ZR (IL 31 (BITS34 dif)))

As can be seen the subtraction operator In very similar to ADD32, buit vith
MEG used to invert one of the operands. The effect of KEG is:-

For unsigned values: -
I = 0, NEG(SIGIEIT(V)) - 0
0 < I < pov3l, NEG(SIGNIEXT(V)) - pov33 - I

pov31 <. I < pov32, KEG(SIGNEIT(V)) - pov33 - (I + pov32) - pov32 -1

For signed values:-
-pov3l <- I <- -1, KEG(SI(GIE1T(V)) - pov33 - (I + pow32 + pov32) - -I

I = 0, NBG(SIGH(BMT(V)) - 0
0 < I < pov3l, PEG(SIGNEI(V)) -pov33 - I

Where V is I mapped onto a VIPER 32-bit vord as discussed above.

3.1) Overflow during subtraction

If Il and 12 are tvo 32-bit signed integer values to be subtracted, then the
natural definition of overflov is any result of 11-12 that cannot be represented
as a 32-bit value. That is:-

overflov - ((11-12) < -pov3l) OR ((11-12) >. pov3l)

The definition of overflov given in the SUB32 function Is such that an overflov
is said to have occurred if bit-31 and bit-32 of the result of adding the
sign extended and negated vords together are different. This statement Is to be
justified in the next four sections.

The 32-bit value delivered from SU332 is meant to be equal to the
2's complement representation of 11-12 in the absence of overflow. If an
overflov has occurred this value has no significance.

It should also be noted that In the COMPARE function, bit-32 of DIF is
used as the LESS than condition (ie 11 < 12, or 11-12 < 0). This vill also be
justified.

3.1.a) Subtraction overflov vhen Il is positive and 12 negative or zero

DIF - Il + (- 12)

note that:- 0<_I1- 12 <pov32

There are tvo regions In the result space. If (11-I2) < pov3l, then no
overflov has occurred, and DIF Is also less than pov3l, so bit-31 and bit-32 of
the result are both clear. So bit-31 and bit-32 of DIF are the same and no
overflov has occurred, and the 32-bit result delivered -DIP.

B-5

An overflov can only occur if (11-12) >- pov31. This corresponds to DIP also
being greater than pov3l. Hovever the maximum value of (I1-12) is
pov31-1 - (-pov3l) - pov32-1. So If an overflow has occurred:-

pov3l <ai DIP < pov32
This means that bit-31 is set but bit-32 is clear. So bit-31 arnd bit-32 of
DIP are different and an overflow has occurred.

Note that in both cases, LESS Is always false and bit-32 of DIP in clear.

3.1.b) Subtraction overflov when 11 is negative and 12 Is greater than zero

DIP - (11 + pov32 + pov32) + (pov33 - 12)

Note that:- -(pov32-1) <-. 11 - 12 <- -2

There are tvo regions in the result space. If -pov3l <-. (11-12) <-. -2, then no
overflow haa occurred, and DIP Is:-

DIP - pow33 + pow32 + (pow32 + 11 - 12)
Where (pov32 + 11 - 12) In in the range pov31 to pov32-2, that Is bit-31 of the
result Is set, and an pow32 occurs in the definition of DIP, bit-32 is also
set. So bit-31 and bit-32 of DIP are the same and no overflow has occurred.
Trimming DIP to 32-bits effectively subtracts pow33 and pov32 from DIP, so the
32-bit result delivered Is (pow32 + Il - 12), which is the 21s complement
equivalent of the result.

An overflow can only occur if -(pow32-1) <-. (11-12) < -pov3l, but DIP is:-
DIP -pow33 + pow32 + (pov32 + Il - 12)

where (pov32 + 11 12) is In the range 1 to pov3l-1, that is bit-31 of the
result is clear, and as pow32 occurs in the definition of DIP, bit-32 is set.
So bit-31 and bit-32 of DIP are different and an overflow has occurred.

Note that In both cases LESS Is true, and bit-32 of DIP Is set.

3.1.c) Subtraction overflow when 11 is negative and 12 is negative or zero

Under these circumstances the result of the subtraction can never overflow,
as the range of the result is:-

-pow31 <- 11-12 < pow3l

DIP - (11 + pow32 + pow32) +. (-12) - pow33 + 11 - 12

If 11-12 Is positive, its seximum value Is pov3l-1, so bit-31 and bit-32 of
DIP are both clear. So bit-31 and bit-32 of DIP are the am and no overflow
has occurred. Triming the result to 32-bits will deliver Il - 12. LESS is
false and bit-32 of DIP is clear.

If 11-12 is negative, It Is in the range -pow3l to -1, so DIP is:- DIP
pow32 + pow3l + (pow3l + I1- 12), where (pov3l + I1- 12) Is in the range 0 to
pow3l-1. This doesn't affect bit-31 and bit-32 of DIP which are both set. So
bit-31 and bit-32 of DIP are the same and no overflow has occurred. Trimming to
32-bits will subtract the pow32 term, so the result Is pov3l+pov3l.I1-I2, or
pov32+I1-12, the 2's complement form of the result. LESS is true and bit-32 of
DIP Is set.

5-6

3.1.d) Subtraction overflov vhen I is positive and 12 is greater than zero

Under these circumstances the result of the subtraction can never overflov,
as the range of the result is:-

-(pov3l-l) <- 11-12 < pov31-1

DIF - I1 + (pov33 - 12) - pov33 + I1 - 12

The arguments used in 3.1.c then follov.

So under all circumstances it has been (informally) shown that if an
overflov has occurred bit-31 and bit-32 of the sign extended difference differ,
but if the result Is legal they are the same. Also if no overflov has occurred
the result of the subtraction is the 2's complement form of the sun 11-12, and
bit-32 of DIF corresponds to the value LESS.

3.2) Dorrov during unsigned subtraction:-

The natural definition of borrov (the subtraction's analogy to addition's
carry) is:- BORROV - (11-12) < 0

vhere:- 0 <- I1 < pov32, and 0 <- 12 < pov32

The definition of borrov in SUB32 is such that if the most significant bits
of the operands are the same, then borrov is bit-32 of the 'sign extended,
difference, othervise it is the inverse of this bit.

It should be noted that the 32-bit result of SUB32 for unsigned subtraction
is alvays (I1-12) modulo pov32.

3.2.a) Subtraction borrov vhen I < pov3l and 12 - 0

DIP - I1, vhere 0 <- 11-12 < pov31
So no borrov can ever occur, and bit-32 of DIF is alvays clear.

The most significant bits of the operands are the same and borrov is
the same as bit-32 of DIF.

3.2.b) Subtraction borrov vhen 11 >- pov3l and 12 - 0

DIF - I1 + pov32, vhere pov3l <- I1-12 < pov32

or:- DIF - pov32 + pov31 + (11 - 12 - pov3l), vhere 0 <- 11-12-pov3l < pov3l

So no borrov can ever occur, and bit-32 of DIF is alvays set.

The most significant bits of the operands are different and borrov is
the inverse of bit-32 of DIF.

B-7

L i_':._ mmmmmmm mm mmnnmmmJmm ull

3.2.c) Subtraction borrov when Il < pov3l and 12 >-. poV31

DIP - 11 + (pov32 - 12)
vhere:- -(pov32-1) <- 11-12 <- -1
and:- 1 <-. DIP < pov32
So there is alvays a borrov, but bit-32 of DIP is alvays clear.

The most significant bits of the operands are different and borrov is
the inverse of bit-32 of DIP.

3.2.d) Subtraction borrov when Il >3- pov3l and 1 <-. 12 < pov3l

DIP w (11 + pov32) + (pov33 - 12) w pov33 + pov32 + (11-12)
where:- 1 <-. 11-12 <a. pov32-2
So there is never a borrow, and bit-32 of DIP in always set.

The most significant bits of the operands are different and borrov is
the Inverse of bit-32 of DIP.

3.2.e) Subtraction borrov when 11 < pov3l and 1 <-. 12 < pov3l

DIP - Il + (pov33 - 12), where:- -(pow3l-1) <-. 11-12 <-. pov3l-2

when:- -(pov3l-1) <-. 11-12 <-. -1, there has been a borrov and
DIP - pov32 + pov3l + (pov3l + 11 - 12)
The range of (pov3l + Il - 12) Is 0 to pov3l-1, so It cannot affect
bit-32 of DIP, vhich can be seen to be set.

vhen:- 0 <a. 11-12 <- pov3l-2, there has not been a borrov and
DIP - pov33 + (11 12)
The range of (Il 12) is 0 to pov3l-2, so It cannot affect bit-32
of DIP, which can be seen to be clear.

The most significant bits of the operands are the same and borrov is
the same as bit-32 of DIP.

3.2.f) Subtraction borrov vhen Il >- pov3l and 12 >-. pov3l

DIP - (Il + pov32) + (pov33 - (12 + pov32)) - pov33 + Il - 12
where:- -(pow3l-1) <-. 11-12 <-. poV3l-1

The arguments used in 3.2.. still apply (noting that pov3l-2 is replaced by
pow31l, which doesn't change any of the subsequent reasoning)

B-8

REPORT DOCUMENTATION PAGE DRIC Reference Nurniber (if known)............................

Overall esaity, daffication of shieot........................ UNCLASSIFIED..
(As tw = possbe lis sheet should otain only unclsfied Infornation. If It Is necsessary to enter dauafed Intaorrmon, lie field conrned
imust be fwke to Irbilote lie classification eg (R), (C) or (S).

RSRE, St Andrews Road
Malvem, Worcs; WR14 3PS

Montoqn Agency Nam and Location

Twe

FORMAL SPECIFICATION OF THE VIPER MICROPROCESSOR IN HOL

Thiseprt prvsamtemaialyugruityifctino thellclo reqire b~aeaior (Uf the VIPr

boeig enguse ase(i the sen oi nltiforsh) fpof, na tep oshwta ubro

impleeetainsoftispcctoarinedorc.

This reotrelcsthmalyRbepor 8513twihe ReesciesVIEintelgueLC-M

Au prursrs toiato HndL).

Abfac laafison(.RCorS

Thbi report pIroe a mrathmatn ially o rioos lpciaie onftherqie)eaioro h IE

mico LoceMo inteD Lntto Hge re oi)o abrdeUiest.Ti pcfcto a
eenuestesaln on o hi fpofi natmtt hwta ubro

