
4 V --U44MITED

AD-A242 133

0

ROYAL SIGNALS AND RADAR ESTABLISHMENT,
6 MALVERN
z
0 1I

4 , ,

ON RECURSIVE FREE TYPES IN Z

Author: A Smith

91139

PRCUEEN XEUIVMIITYOFDFEC
RSRE

Ma~~~em- Wocstrhie

Auut19

UNIIE

CONDITIONS OF RELEASE0109644 304797

.. ..I.RIC U

COPYRIGHT (c)1988
CONTROLLER
HMSO LONDON

...... 1DRICY

Reports quoted are not necessarily available to members of the public or to commercial
organifonks.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 91028

Title: On Recursive Free Types in Z

Author: A. Smith

Date: August 1991

ABSTRACT

Inconsistent specifications may give rise to false conclusions in reasoning, thus
destroying the point of having a specification. This report is concerned with
inconsistent specifications which may arise when using the formal specification
language Z. In particular, the report is concerned with the inconsistencies that can
arise when using recursive free types, and recursive functions defined over recursive
free types. The intended audience of the report consists of Z practitioners who wish
to avoid writing meaningless specifications.

Copyright ,b
UnWX0c o,, d U

Controller HMSO London
1991 I

,AgtIlabl i~ty Code

Aun! 1mvo'.rD I . a! e¢.o

I

1 Introduction

In ordinary mathematics, an equation can be written down which is syntactically
correct, but for which no solution exists. For example, consider the equation x = x + I
defined over the real numbers; there is no value of x which satisfies it. Similarly it is
possible to specify objects using the formal specification language Z [3,4], which can not
possibly exist Such specifications are called inconsistent and can arise in a number of
ways.

Example 1

The following Z specification of a function f, from integers to integers

Vx: 7 Lx<O*fx=x+1 (i)

Vx:7Lx>O:fx=x+2 (ii)

is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This
contradicts the fact that f was declared as a function, that is,f must have a unique result
when applied to an argument. Hence no suchf exists. Furthermore, iff 0 = 1 andfO = 2
then I = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the
danger of an inconsistent specification.

A

Note that all examples and proofs start with the word Example or Proof and end with the
symbol A.

1.1 Free types

Another way in which inconsistencies can arise in Z specifications is in the use of
free types. Unlike given sets, a free type has some structure. Strictly, in Z, there is a
difference between a type and its underlying set, but from here on, d type and its
underlying set are regarded as equivalent. Z has a very powerful method for
introducing free types, but this power can lead to inconsistencies. The general form
for a free type definition is

This defines a new type T to be the labelled disjoint union of cl, ... , cm,
E1[1, En [TJ. The El [T, En[T] are set valued expressions which may involve T;
if any of them do involve T then T is a recursive free type. The elements of T are the
ci and anything of the form di x where x is an element of Ei[T]. Expression 1 need not
have any arms ci or it need not have any arms di ((Ei[T])), but obviously it must have
at least one arm.

2

I

If T is a recursive free type, it must have one or more "base elements"; elements to
enable other more complicated elements to be constructed. The following example
illustrates this concept.

Example 2

A particular example of a free type is

T::= a b(D)) I c ((F x T))

where D and F are given sets. T is a recursive free type, and comparing it with (1) gives

cl = a, dl = b, d2 = c, El[T] = D, E2[T] = F x T

The "base elements" of T come from the first two arms. They are a and anything of the
form b d for some element d of D. These can then be used to build up more
complicated elements using the third arm, for example

c (fl, b d)

for some element fl of F. These more complicated elements can then themselves be
used to build up even more complicated elements, for example

c (2, c (fl, b d))

for some element./2 of F, and so on.

A

The general free type definition (1) is simply shorthand for the following Z

I]

cl,..., cm : Td] :"El [7T]> T (2)

dn : En[7] >4 T

disjoint ({cl ... {cm, ran dl,... ran dn) (i)

V W:IPT.
{ cl, ... , cm} I dlu.EI [WJi u ... u dnfEn[W]I r W (ii)

3

The ci are declared as elements of T, while the di are declared as injective functions
(known as the constructors of 7) from Ei[T] to T. Axiom (i) states that the elements of
EI T] ... En[T] are mapped onto different elements of T, which are in turn different
from the elements cl, ... , cm of T. Axiom (ii) is known as the induction principle for the
free type, and can be used to prove statements of the form V t: T. P(t), for some
property P, by structural induction. The expression Ei[W] is obtained from Ei[T] by
replacing every free occir .:nce of T in Ei[T] by W. A consequence of the induction
principle is that T contains only the elements cl, ... , cn and those that can be
constructed using d] ... , dn. It contains no other elements than these. Incidentally, as
W has type PT in axiom (ii), and so W r T, then the sub-predicate T a W of axiom (ii)
may be replaced with T = W if desired.

Example 3

For the free type in example 2, the general form in (2) becomes

[T]

a-T
b:D>-*T
c : (F x T) >-) T

disjoint ({a}, ran b, ran c)

V W: PT.
{a} u bDI u cF x W1 c W

A

For some recursive free types, the objects specified in (2) can not possibly exist. To

see how easily this can happen, consider examples 4, 5 and 6.

Example 4

Consider a programming language whose values are either booleans or functions
involving booleans. To give a semantics for this language, using the specification
language Z, the following free type might be used to express the values of the
language

Value ::= bool({T, F} I fiun 6 Value --. Value)

It states that values are either booleans or functions from values to values. From (2),
one of the declarations is

fiun: (Value -- Value) >-+ Value

4

But no such fis can exist, because for any set Value, the size of the set Value -+ Value

is always greater than the size of Value. Thus there is no total injective function from
Value - Value to Value. So the free type Value can not possibly exist, and any
semantics based on this free type will be invalid.

A

Example 5

For a more rigorous argument of why a certain free type does not exist, consider a
slightly simpler version of example 4, namely

Value ::=fun ((Value -4 {T, F}))

Here, the "base element" of Value is fun {} since {} is an element of Value -+ {T,F}.
But again, this free type does not exist because no function

fun : (Value -- {T, F}) >-+ Value

exists. The reason is as follows. The size of Value --- {TF} is 2#Value , since each
element of Value can be mapped to one of two values. By Cantor's theorem

#Value < 2 #value, for any set Value (even infinite). Thus no total injective functionfun
from Value - {TF} to Value can possibly exist, and hence the free type Value does not
exist.

A

Example 6

In Spivey [51, a rigorous argument is given which can be used to explain why the free type

T ::= c ((PT))

does not exist. The argument is as follows. Define the subset U of T, where

U={V:IPTIcV* V.cV}

Now for any set S : FT

CSG U
* 3V:PTIcV V.cV=cS [definitionofU]
4* 3V:IFTIcVE VoV=S [cisaninjection]
* 3V:PT*(cVf V) A (V=S) [first order predicate calculus]
* 3V:PT.(cS* S)A(V=S) "]
0 (cSE S)A3V:PT.V=S ["]
* c S * S [an existential witness for V is S]

5

So the following theorem has been derived

I VS:IPT.(cSe U) 4 (cSe S) (3)

Specializing theorem (3) with S = U, the following contradictary theorem is obtained

.(cUe U) 4(cUe U)

and so the free type T does not exist (an alternative argument for why T does not exist

would be similar to that in example 5, since the size of PT is 2 #T).

A

Example 7

Now consider the free type

T::= c ((IFT)) (4)

where IFT is the set of all finite subsets of T. This time T exists, so it interesting to see
where the contradiction in example 6 breaks down. If the reasoning of example 6 is
followed, but with F replacing every occurrence of IP, then a theorem similar to (3) is
obtained, namely

. VS : IFT. (c S e U) 0 (c S e S) (5)

But this time, there is no guarantee that the set

U= {V:FTIcVE VecV}

has type FT and so specializing theorem (5) with S = U is not valid. The reason why
U could be infinite, that is, not of type FT, is as follows. Clearly, any set T which
satisfies (4) is infinite. As T is infinite, U could be infinite, since there will be an
infinite number of sets V : FT (remember if T is infinite then the set IFT is infinite; it is
just the elements of IFT, themselves sets, that are finite). Thus U could consist of an
infinite number of c V.

A

1.2 Recursive functions

Having specified a recursive free type, the Z user will more than likely want to
specify a recursive function over the free type. This use of recursive functions is
another way inconsistencies can arise in Z specifications. Even if the recursive free
type exists, the recursive function may not.

6

Example 8

The natural numbers can be considered as a free type, namely

nat ::= 0 1 suc (nat))

Thus nat = {0, suc 0, suc(suc 0), ...). The factorial function ! below exists (where the
abbreviation I has been used for suc 0)

! : nat 4 nat

0! = 1
V n : nat - (suc n)! = (suc n) x n!

But the function f below does not exist

f: nat --* nat

fO=O
V n : nat • suc(f(suc n)) = (f n)

since the second axiom gives suc(f 1) = f 0 (when n = 0). This together with the first
axiom gives suc(f 1) = 0. Now f I can not possibly be an element of nat, for if it was
then the equation suc(f 1) = 0 would contradict one of the axioms of the free type nat,
namely

disjoint ({0}, ran suc)

Even if the result of a function on the argument 1 is specified directly, for example

g : nat -4 nat

gO=O
gl=O

V n nat - g(suc n) = suc(g n)

then this could lead to problems as well, since g does not exist either. The reason is
that the third axiom gives g 1 = suc(g 0) (when n = 0). This together with the first
axiom gives g I = 1, which together with the second axiom gives 0 = 1.

A

7

1.3 Content of the report

Two ways of proving that a Z recursive free type exists, are discussed. The first
method is to prove the finitary condition for the free type. This is discussed in section
2.1, which also contains a strategy for proving the finitary condition. From this
stategy it can be seen that a recursive free type T will exist provided that each arm
d (E[T) that contains T is such that each element of E[T] is formed from a finite
number of elements of T. In particular, recursive free types containing only the
constructions x, F, -* and seq will exist.

The second method for proving that a recursive free type exists, discussed in section
2.2, is to use a definitional extension. The idea here is to construct a representation of
the free type; the representation being a non-empty subset of an already existing
type. The free type is then made isomorphic to its representation. The free type must
then exist since it is isomorphic to a non-empty subset of an already existing type.
The particular representation discussed is to use a set of labelled trees to represent
the free type.

A technique for proving that a recursive function defined over a recursive free type
exists, is also discussed. A theorem called the primitive recursion theorem (PRT) for the
free type, is used to derive another theorem stating the existence of the function.
Using the definitional extension method, the PRT can be proved from the
representation; otherwise, having proved the finitary condition, the PRT may be
stated as an axiom. The PRT is discussed in section 3. Section 4 contains a section
on rules of thumb for the Z practitioner, on how to avoid writing inconsistent free
types and recursive functions, as well as a summary and the conclusions of the
report.

8

2 Proving recursive free types exist

The Z practitioner who is interested in some handy rules of thumb for avoiding
inconsistent free types, rather than the details presented in this section, should go to
section 4. 1.

2.1 The finitary condition

In Spivey [3], a proof obligation is given which, if satisfied, means that the recursive
free type exists. This condition is called the finitary condition, and is a sufficient, but
not a necessary condition. The general form of a free type definition is

T::= cl I... I cm I d] (E][1D]))I ... I dn (En[]))

where E[T], En[TI are expressions which might involve T. If any of them do
involve T, then of course T is a recursive free type. T then exists provided that each
Ei[T] that does involve T, is a finitary construction of T. Roughly speaking, a
construction is finitary if each element of it is built from a finite number of
elements of T. In such cases, as an element of T is built from a finite number of other
elements of T, each element of T can be "listed" in order (with respect to some
ordering). The fact that the elements of T can be "listed" means that T must exist.

Example 9

The free type

T::= a lb ((L)) Ic ((M x T)) I d{(N -0 T))

where L, M and N are given sets, will exist provided that the two constructions
M x T and N -*) T are finitary. Now, each element of the construction M x T has the
form (m, r) for some m in M and t in T, and so is built from one element of T. Thus
M x T is finitary. Similarly N -+ T is finitary because each element of N -+-> T has the
form

{n! t], n2 + Q,... nk R> tk}

for some number k and n], n2, ... nk in N and t1, 2, tk in T, and so consists of a
finite number of elements of T; in this case k elements.

A

9

Formally, from Spivey [3], a construction E[T] is a finitary construction of T, if for any

countably infinite sequence of subsets

X1 9 X2 Q X3 . .

of a set X, the following condition is satisfied

U(E[X]) = E[U(X)] (6)

This condition must be proved for any set X. The generalized unions U, are summing
terms from 1 to infinity. Thus the left hand side (LHS) of (6), means

E[X1] u E[X 2] u E[X 3] u

and the right hand side (RHS) of (6) means

E[X1 u X2 u X3 u...]

For any set S, the expression E[S] is obtained from E[T] by replacing all free
occurrences of T in E[T] by S. In Spivey [3], the finitary condition is stated slightly
differently to (6). It is equivalent but also requires a construction E[T] to be monotonic,
that is, if A g B then E[A] g E[B]. Condition (6) is the same as that stated in Arthan [6].
Arthan points out that any construction E[T] satisfying (6) is also monotonic, and the
proof of this is as follows.

Proof

Suppose E[T] satisfies (6) and A C B. From this it must be shown that E[A] Q E[B]. As
(6) is true for any countably infinite sequence of subsets, then in particular it must be
true for

A CB aB aB a ... (one A, the rest B)

In this case (6) gives

E[A] u E[B] u E[B] u E[B] u ... = E[AuBuBBu ...]

which can be simplified to

E[A] u E[B] = E[A u B] (7)

10

But A C B and so A u B = B, hence from (7)

E[A] u E[B] = E[B]

From this, it must be the case that E[A] a E[B] as required.

A

It is now instructive to see the finitary condition (6) proved for a particular construction.

Example 10

Consider the construction E[7] = T x T. From (6), the following condition must be proved

U(Xj x Xj) = U(X1) x U(Xj) (8)

for any countably infinite sequence of subsets X, Q X2 Q X3 Q ... of any set X. Notice
that (8) is an equality between two sets. It can therefore be proved from the two
statements

U(Xj X Xi) Q U(Xj) X U(Xi) (9)

U(X i X X) z U(Xj) X U(X,) (10)

Statement (9) is the most straightforward and will be proved first. Let a be an element of
the LHS. It must be shown that a is an element of the RHS. From the definition of U, if a
is an element of the LHS then for some number n

a e XXX n

Therefore

(fst(a) e X n) A (snd(a) E X n)

Using the definition of U

(fst(a) 1E U(Xi)) A (snd(a) E U(Xi))

and so

a e U(X5) x U(X1)

as required.

11

The proof of (10) is as follows. This time if a is an element of the RHS then it must be
shown that a is an element of the LHS. If a is an element of the RHS then

(fsta) e U(Xi)) A (srn4a) e U(X1))

From the definition of U, then for some m and n

(fst(a) E X M) A (snd(a) e X,) (11)

Let mar be the larger of the two numbers m and n. Then certainly

(m 5 max) A (n! <max) (12)

Now X 1 C X 2 X ... and so from (12)

(Xm Q XMa) A (Xn C Xmax) (13)

From (11) and (13)

(fst(a) e Xmar) A (snd(a) E XMa)

Thus

a e Xma x X Xmax

and so from the definition of U

a U O(X i x Xi)

as required.

A

The proof of the finitary condition for other constructions is similar to above. Recall
that the finitary condition is U(E[X,]) = [u(X)], and this can be proved by proving
the two conditions

U(E[Xi]) E[U(Xi)] (i)U(E[Xi]) Q E[U(Xi)] (ii)

12

The proof of (i) is fairly straightforward, and the proof of (ii) involves constructing a

number max as in the above proof of the finitary condition for E[T] = T x T. The
intuition behind max is as follows. The proof of (ii) is achieved by showing that if a is in
the RHS then it is also in the LHS. Now if a is in the RHS then it is formed from
elements of U(X1) (which shall, for the rest of this paragraph, be called the
components of a). So each of these components must be in X. for some number n. If
E[T] is finitary then there will only be a finite number of such n. The number max is the
largest of these numbers n. Having obtained max, the proof of (ii) can then be
completed, since all the components of a will be in Xwx (as the Xj form an infinite
sequence of subsets). Thus a can be constructed from elements of X, that is a is in
E[X,.] and so is in the LHS of (ii). A few examples of constructing max for various
constructions E[T] will now be given.

Example 11

Consider E[T] = FT. (ii) above becomes

U(IF(x) F(U(Xd)

To prove this, it has to be shown that if a is an element of the RHS, then a is also an
element of the LHS. If a is an element of the RHS, then from the definition of IF, a is a
subset of U(Xi). So every element x of a is also an element of U(Xi), and by the
definition of U, is also an element of Xnw, for some number n(x). This number is
written as n(x) to show its dependence on x. The number max is then the largest of the
numbers n(x), that is, the largest of the set of numbers

{x : a • n(x)}

A

Example 12

Consider E[TJ = B -" T, where B is a given set. This time (ii) above is

U(B * X5) z B -4- U(X i)

Once again it has to be shown that if a is an element of the RHS, then it is also an
element of the LHS. If a is an element of the RHS, then ran(a) is a subset of U(X5). So
every element x of ran(a) is also an element of U(X1), and by the definition of U, is also
an element of X,(,), for some number n(x). The number max is then the largest of the
numbers n(x), that is, the largest of the set of numbers

13

Ix : ran(a) - n(x)}

Example 13

As a final example of finding max, consider E[T = T x FT which contains both x and F.
This time (ii) above is

U(Xi x F(Xd)) U(X5) x F(U(X5))

Once again it has to be shown that if a is an element of the RHS, then it is also an
element of the LHS. If a is an element of the RHS, then fst(a) is an element
of U(X) and snd(a) is an element of F(U(Xi)). So by the definition of U, fst(a) is an
element of Xm for some number m, and from the definition of F, snd(a) is a subset of
U(X5). So every element x of snd(a) is also an element of U(Xd), and by the definition of
U, is also an element of X,(,), for some number n(x). The number max is then the
largest of the set of numbers

{m} u {x: snd(a) - n(x)}

A

So it can be seen that a construction E[TI is finitary if each element of ETI is made
from a finite number of elements of T. In particular, constructions of T just involving x,
F, -" and seq will be finitary, for example

(A x T) -41- (seq T)

where A is a given set. From examples 10, 11, 12 and 13 it can be seen that the
formation of max in such cases could be automated. Thus some, if not all, of the proof
of the finitary condition for a recursive free type involving only x, F, -* and seq could
be automated.

2.1.1 The finitary condition and the world of sets

In Spivey[4], a semantics of the Z language is given. This semantics is in terms of a
world of sets, W, in which everything is a set. The idea is that the meaning of each
piece of Z can be explained by giving it a representation in W. The relationship between
a piece of Z and its representation is known as a model for the piece of Z. The axioms
of W are those of Zermelo-Fraenkel set theory, but with the axioms of replacement and
choice omitted. But there has been some discussion recently as to whether all
finitary free types have a model in W, and hence whether a semantics can be given for
them. It is not obvious that every finitary free type has a model in W. But Arthan [6] has
shown that if the axiom of choice is added to the axioms of W then it is certain that
every finitary free type has a model in W.

14

2.2 Definitional extension

Another way to be sure that a recursive free type exists is to use a defimional etension.
A definitional extension is where a new object is defined in terms of existing
objects, in a way that ensures the existence of the new object. In the case of free
types, this means defining a free type in terms of a subset of an existing type. The
subset is identified by supplying a predicate over the existing type. The subset
consists of all those elements of the existing type which satisfy the predicate. There
is a proof obligation that the subset is non-empty. The free type is then simply
defined to be isomorphic to the subseLt The constructors of the free type are then
defined.

The subset described above is thus a representation of the free type, and the trick is
to find the right representation that truly captures the semantics of the free type. It
will soon become obvious this is not the case, if the usual properties of the free type
can not be proved from the representation (for example that the constructors are
injective). The work presented here is based on Melham [2], but has been extended to
deal with more complicated free types. Melham's work can only be used to show how a
free type T involving existing types, x and simple occurrences of T, for example

T::= c (A x T)I I d(B x TxT))

where A and B are given sets, can be represented. It can not be used for example, to
show how the free type

T ::= c ((A -+-) T))

can be represented. The reason why Melham did not consider more complicated free
types is so that the work could be easily automated in the HOL theorem proving
system [1]. Both the representation of the free type and the proof of the primitive
recursion theorem (used to prove the existence of recursive functions over recursive
free types, see section 3) has been automated in HOL. The ML function in HOL
which does this is called define _type. This section first describes Melham's work and
then shows how it can be extended.

In Melham's work, a set of labelled finite trees is used to represent a free type. The
actual labels used and the shape of the trees depends on the particular free type.
Labelled trees can themselves be defined using a definitional extension. The type
used to represent labelled trees can also be defined using a definitional extension,
and so on. In fact, any new type in HOL can be built up from existing types using a
definitional extension. Melham's work for free types is best expained by an example.
The following example is explained using 7., but the annex shows how definetype in
HOL automatically constructs the representation. The annex also shows how
difineype automatically proves the primitive recursion theorem for the free type.

15

Example 14

Consider the free type

T::= c (A I I d IB xTxT P

where A and B are given sets. An element of T can be represented by a tree labelled
with elements of T/abels where

Tlabels ::= 1(A I r 4{ I

Note that the free type Tlabels exists as it is simply the labelled disjoint union of A and
B, and is not recursive. In general, Tlabels will have the same number of arms as T. Let
Tlabelsitree denote the type of tees of any shape whose nodes are labelled with
elements of Tlabels. The free type T is to be represented by a subset of Tlabels_ltree. An
element c a of T, can be represented by the tree

la

An element d(b,tl,t2) of T, where b is an element B and t], t2 are elements of T can be
represented by the tree

rb
0

/ \
/ \

/\
/ \

REP tI REP t2

where REP tl and REP t2 are the tree representations of t] and t2. Let
Node label subtreeseq denote the tree with top node labelled with label, and sequence
of subtrees subtreeseq from that node. Then basically, a tree will represent an
element of T provided that

(3 a A • label = La) A (# subtree-seq = 0)
v (3 b B • label = r b) A (# subtree.seq = 2)

16

Actually, as it stands, the above predicate only describes the top of such a tree. For
example, there will be trees satisfying the above predicate which contain a node
(lower down the tree) with three or more subtrees branching from it. But such trees
do not represent elements of T. For this reason, the above predicate is strengthened by
applying a function TRP (see annex). This function makes sure that the above
predicate holds all the way down the tree. The resulting predicate then characterises
the subset of Tlabels..tree which is to represent T. Next, the free type T is simply
defined to be isomorphic to the subset, giving the isomorphisms REP of type
T -4 Tlabelsiree and ABS of type Tlabels itree - T. The constructors, c and d of
T can now be defined:

V a : A • c a = ABS(Node (1 a) 0)
V b : B; t], t2 : T - d(b,t1,t2) = ABS(Node (r b) (REP t], REP t2))

~A

The next three examples show how Melham's technique can be extended. To keep
some uniformity, labelled trees will be used throughout to represent the following
three free types. All three examples are explained using Z.

Example 15

Consider the free type

T::= c ((seq T))

This time let Tlabels be a type consisting of a single value, say unit, and Tlabelsitree be
the type of trees, of any shape, whose nodes are labelled with unit. An element c s of
T where s is an element of seq T can be represented by the tree whose top node is
labelled with unit and with a subtree for each element of s; the subtree being the
representation of the element of s. For example, the element c (t], Q, 3) of T is
represented by

unit

/I\
I/I\

I I \
/ I \

/ I \

REP tI REP t2 REP t3

17

In fact, every element of Tlabelslree will represent some element of T. Thus T is
represented by the whole of Tlabels-kree. So the predicate which characterises the
required subset of Tlabels-frree is simply true. The free type T is then defined to be
isomorphic to the whole of Tlabelsltree and the constructor c is then defined as

V s : seq T • c s = ABS(Node unit (map REP s))

where map REP s is the sequence consisting of the representations of the elements of s.

A

Example 16

Consider the free type

T::= c ((FT))

Let Tlabels and Tlabels_Itree be those of the last example. This time, only a subset of
Tiabels Itree will represent T. This is because distinct elements such as c (t], t2) and
c (2, t1) in the last example, collapse down to the single element c it], t2} in this
example. Hence, loosely speaking, the free type in this example does not have so
many elements as the free type in the last example, and so its representation will
not have so many elements. Consider an element c {t,t2} of T. As
c {tIj,2} - c {t2,j1 then which one of the two trees

unit unit
0 0

A A

/ \ / \
/ \/ \

/ \/\
/ \I

REP t) REP t2 REP t2 REP t)

should be used as the representation? The problem is overcome by defining a function

set seq : FX -- seq X

18

which converts a set into a sequence; it orders the elements of the set. The
particular ordering produced by setseq is not important, only the fact that that they
are ordered. The function set_ eq is a polymorphic function and so can be applied to a
set of anything. This function can be used to determine which of the two trees above
should be used as the representation of c Itl,2}. Suppose
set.seq (REP t, REP t2} = (REP t2, REP t), then the right hand tree above will be
used as the r -iresentation of c (t1,t2 1. Basically, a tree Node label subtree-seq will
represent an ele-ent of T provided that the following predicate holds

subtreeseq e (ran setseq)

Once again, as explained in example 14, the function TRP must be applied to the above
predicate, to give the actual predicate which characterises the required subset of
Tiabels-itree. Once again, T is then defined to be isomorphic to this subset. The
constructor c is then defined as

V s F T • c s = ABS(Node unit (set seq(REP Isl)))

A

Example 17

Consider the free type

T::= c ((A -4 T))

where A is a given set. This time let Tlabels = FFA, and as usual Tlabelsjitree be the
type of trees, of any shape, labelled with elements of Tlabels. An element cfof T can be
represented by the tree whose top node is labelled dom f and which has a subtree
representing each f a, where a is in dom f The order of these subtrees can again be
determined by the function setseq which appeared in the last example. For example,
consider the element c {a) * t], a2 H t2, a3 H t3} of T. Suppose
setseq {a], a2, a3} = (a3, a], a2). Then this element of T can be represented by

{al,a2,a3)

I1\

/ I \
I I \

/ I \

REP L? REP ti REP t2

19

An element of Tlabels_ltree will represent an element of T provided that, at every node,
the cardinality of the label is equal to the number of subtrees from that node. So,
basically an element Node label subtree seq of Tlabelslree is a representation if

#label = #subtree seq

Once again, as explained in example 14, the function TRP must be applied to the above
predicate. After defining T to be isomorphic to the required subset of Tlabelslrree, the
constructor c can be defined as

V f: A -- T • cf = ABS(Node (domj) (map (REPoa) (set.seq(domJ))))

A

2.2.1 Problems with using definitional extensions

Recall that using definitional extensions to define free types involves a proof
obligation that the subset of the existing type is non-empty. The free type is then
made isomorphic to this subset. This proof obligation only ensures that the free type
is non-empty. It does not ensure that the free type has the intended semantics. For
example, consider the free type T::= c O(FT)) in example 16. Suppose the mistake
was made, that the predicate characterising the subset of TlabelsItree was too strong, so
that only the tree

unit

satisfied it. Then this subset of one tree certainly satisfies the proof obligation, but
the free type would then only have one element, since the free type is made
isomorphic to this subset. The free type would then not have the semantics of T, since
T has an infinite number of elements.

Another problem with using definitional extensions is when the free type is
complicated. For example, what representation should be used for the free type
T::= c 4(F F T V? If labelled trees are used as the representation of such free types,
then the representation certainly will not be as neat as those discussed so far.

20

3 Proving recursive functions exist

This section discusses a way of proving that a recursive function, defined over a
recursive free type, exists. The Z practitioner who is interested in some handy rules
of thumb for avoiding inconsistent recursive functions, rather than the details
presented here, should go to section 4.2. The technique described in this section is to
use the primive recursion theorem (PR) for the free type, to prove another theorem
which states the existence of the function. The PRT captures the semantics of the
free type, but in a way that allows the existence of recursive functions to be proved.
The PRT can be used to prove the existence of a function f specified by
primitve recursion on a free type T. That is, for any arm d (E[T]I) of T which contains
T, then fid x) where x is an element of E[T], is specified in terms of an expression
involving f and x. The following examples will make this clear. The PRTs in the
following examples can all be proved from a representation of the particular free
type; this representation coming from the definitional extension method described in
section 2.2. The annex gives an example of this, showing how the construction of the
representation and the proof of the PRT is carried out in the HOL system. Also, as
the PRT captures the semantics of the free type, then not surprisingly all the usual
properties of a free type can be proved from it. For example, the PRT can be used to
prove that the elements of a free type T that can be generated from the arms of T are the
only elements of T; that is they exhaust T. The next example, which proves the
existence of the factorial function, !, over the natural numbers, also gives some
intuition into the PRT.

Example 18

The natural numbers can be considered as a free type, namely

nat::= 0 suc ((nat)

The PRT for nat is

V e "X;f: (X x nat) -4 X•
31 h : nat-4 X

hO=e
A Vn:nat.h(sucn)=f(hn,n)

The theorem is gerteric in X. The PRT looks a bit strange at first, but it is simply
saying that each e and f define a recursive function h (for example h could be the
factorial function); e is the base case and f is the body of h. The PRT captures the fact,
for example, that the elements of nat generated by its two arms, exhaust nat. The reason
is as follows. Notice that the function h in the PRT is unique once defined on each arm
of nat. If nat contained any more elements than those generated by its two arms, then
these extra elements could be mapped by h in a number of different ways, yielding a
different function in each case. This would contradict h being unique.

21

The PRT can be used, for example, to prove that the factorial function

nat -- nat (14)

0!= 1
V n : nat • (suc n)! = (suc n) x n!

which is recursive, actually exists. The abbreviation 1 has been used for the element
suc 0 of nat. The existence theorem for ! is proved as follows. The idea is to
instantiate the generic set X, and specialize e and f in the PRT, so that the function h in
the PRT becomes the factorial function. So instantiating X to be nat, and then
specializing e to be 1 and f to be

X x, y : nat . (suc y) x x

the PRT gives

F 31 h : nat -4 nat*
hO= 1

A Vn:nath(sucn)= (x,y:nat(sucy)xx)(hn,n)

The RHS of the second equality can be simplified by P-reduction (function application)
to give

31 h : nat -4 nat
hO--J

A V n :nat • h(suc n) = (suc n) x (h n)

This theorem says that the factorial function specified in (14) above, exists. It is
interesting to note that this theorem also says that the factorial function is unique,
and so could have been specified as

nat --) nat

0! = I
V n : nat • (suc n)! = (suc n) x n!

A

22

Example 19

Consider the free type

T::= c CIA)) I d((B x T))

where A and B are given sets. The PRT for T is

Vf : A -4 X; g : (X x B x T) - X. (15)
31 h :T -4 X

V a :A • h(ca) =f a
A Vb'B;t:T.h(d(b,t))=g(htb,t)

The PRT can be used to prove that the following function base exists (which computes
the base element of a member of 7).

base: T -4 T

Va : A * base(c a) = c a

Vb : B; t : T . base(d(b,t)) = base t

If the PRT (15) is first instantiated with the generic set X taking the value T, and then

specialized with the function f taking the value

ka:A ca

and the function g taking the value

t :• T; b : B; L2 : T * tl

the theorem

I3 1 h:T--.T.
V a : A . h(c a) = a : A * c a) a

A Vb:B;t:T*h(d(b,t))= (X tT;•b:B;t2 :T*tl)(ht,b,t)

is obtained. This theorem can then be simplified by P-reduction to give

F 3, h : T -4 T
V a : A *h(c a) = c a

A V b:B; t: T- h(d(b,t)) = h t

23

Hence the function base certainly exists. Once again it is unique, and so could be
specified as

base: T -4 T

Va : A - base(c a) = c a
Vb : B; t : T • base(d(b,t)) = base t

A

Example 20

The PRT can also be used to prove the existence of a recursive function that has
only been specified on some of the arms of the free type (that is, underspecified). For
example, the function

y: nat -+ nat

V n : nat • y(suc n) = 2 x (yn)

defined over the free type of natural numbers in example 18, has only been specified
on the second arm of nat. The abbreviation 2 has been used for the element suc(suc 0) of
nat. There are many functions which satisfy the above specification, each giving a
different value for y 0. So any existence theorem for y will state simple existence,
rather than unique existence. To obtain the existence theorem, the PRT for nat, which
appears in example 18 is first instantiated with X taking the value nat, and then
specialized with e taking the value 0 (in fact, this could be any value of nat), andf taking
the value

)Lx,y:nat.2 xx

followed by P-reduction to obtain

I 3, h : nat -- nat •

hO=O
A V n: nat - h(suc n) = 2 x (h n)

24

This theorem can be weakened to give

i 3 h: nat -4 nat.
hO=O

A Vn:nat•h(sucn)=2x(hn)

(the 31 has been replaced by 3), which in turn can be used to derive
I. hO=O

A Vn:nat.h(sucn)=2x(hn)

for some h : nat -4 nat. From this latest theorem, it follows that

I V n : nat - h(suc n) = 2 x (h n)

and so

I 3 h : nat --- nat '
V n : nat' h(suc n) = 2 x (h n)

which is the required existence theorem.

A

Example 21

Consider the function

8: nat - nat

V n :nat. &sucn)e {m :nat•mx (8n)}

defined over the free type of natural numbers in example 18. The function 8 is even
more underspecified than y in example 20. This time, not only has 8 just been specified
on the second arm of nat, but it is underspecified on this arm. The specification of 8 can
be strengthened to

81 : nat -4 nat

V n • nat * 81(suc n) = 2 x (81 n)

25

Any 81 which satisfies this new specification will also satisfy the specification of 8. The
specification of 8, is the same as the specification of yin example 20, where it was
shown that y existed. Hence 81 exists and thus so does 8.

A

Example 22

Another example of a PRT, is that for the free type T ::= c ((seq T)), which is

IVf : (seq X x seq T) -- X •
31h:T-4X.

V s : seq T * h(c s) =f(map h s, s)

where map h s is the new sequence formed from s by applying the function h to each
element of s. For example, if square is the function which squares a number, then
map square (2, 1, 5) = (4, 1, 25). The reason why the expression map h s is required in
the PRT above, is as follows. The function h is defined by primitive recursion. Thus,
h(c s) will be defined in terms of an expression involving h applied to every element of T
that directly makes up the element c s of T. These elements of T that make c s are the
elements of s. Hence h must be applied to every element of s; hence the expression
map h s.

A

Example 23

Another example is the PRT for the free type T ::= c ((FT)) which is

I Vf: (FX x IFT) -X
31 h :T--X

V set : FT • h(c set) =f(hiseti, set)

A

As mentioned at the start of this section, the PRTs shown so far can all be proved
from a representation of the particular free type; this representation coming from the
definitional extension method as described in section 2.2. The proof of the PRT
depends on the particular representation, but the author conjectures that the PRT for
a general free type

26

T::=cl I...IcmIdlI 4El[T]I...Idn eEn[T]J (16)

is

IV el, ... em : X; (17)
fl : (E][X] x El[T]) - X;...fn : (En[X] x En[T])- X

31 h :T - X
h cl = el A

h cm= em A

V x El [T] - h(dl x) = fl (x',x) A

V x : En[T] -h(dnx) =fn (x', x)

where x' is obtained from x by replacing any t e T appearing in x, by h t.

To see how the PRT for a particular free type can be derived from (17), consider the
next example.

Example 24

Consider the free type in example 19, namely

T::= c ((A)) I d((B x T))

Comparing T with the general form for a free type (16) yields

m = 0, n = 2, dl = c, d2 = d, El[T] = A, E2[T] = B x T

Therefore El[X] = A and E2[X] = B x X. The general form for the PRT (17) therefore
gives

IVfl :(AxA)-X;f2:((BxX)x(BxT))-4X. (18)
31h:T-Xo

Vx:A h(cx) =fl (x',x) A

V x: (B x T) . h(dx) =J 2(x',x)

Next, the x'are eliminated as described above. For any x : A, there are no elements of
T present in x, and so x' = x. For x :(B x T), x = (b,t) for some b :B and t :T, and so
X"= (b, h). Thus (18) may be rewritten

IVfl :(A xA)-+X;J2 :((BxX) x(B xT))---)X. (19)
3h :T-X.

V x : A - h(c x) = f" (x, x) A
V b : B; t : T • h(d(b,t)) = J2 ((b, h t), (b,t))

27

Theorem (19) can be made exactly the same as theorem (15) (the PRT for T in example

19) by specializing it with the functionfl taking the value

x,y:A .fx

and J2 taking the value

.X: (B xX);y: (B x T) * g (sndx,fsty, sndy)

followed by P-reduction to give

13 1 h : T--X• (20)
Vx :A .h(cx) =fx A
V b : B; t : T o h(d(b,t)) = g (h t, b, t)

The functions f and g in theorem (20) can then be generalized, followed by renaming
the bound variable x to be a, to yield theorem (15).

A

3.1 Proving a primitive recursion theorem

Recall that in section 2, two methods were given to prove that a recursive free type
existed. The first was to prove the finitary condition; the second was to use a
definitional extension and construct a representation for the free type. Proving the
finitary condition just means that the free type exists; the condition itself contains
no semantics of the free type (for example that the constructors are injective). The
PRT for the free type can therefore not be proved directly from the finitary
condition. Using a definitional extension, the PRT can be proved using the
representation of the free type; an example of this can be found in the annex.

28

4. Summary and conclusions

Sections 4.1 and 4.2 contain some rules of thumb for Z practitioners, on how to avoid
writing inconsistent free types and recursive functions. Section 4.3 contains the
general summary and conclusions of the report.

4.1 Free types

The following method can be used to see if a recursive free type T exists. Firstly
identify each arm of the free type that involves T. Then, for each such arm, check that
every element of the expression inside the angled brackets 0, is made from a finite
number of elements of T. Also, recall from the introduction that T must have one or
more "base elements"; elements to allow other more complicated elements to be
built up.

Example 25

Consider the free type

T::= a I b ((A))c ((B x T)) d ((C -4 T)) I e ((seq T))

where A, B and C are given sets. There are three arms of this free type that contain T,
namely

c((B x T)) (i)
d((C "- T)) (ii)
e ((seq T)) (iii)

Each element of the expression B x T in (i) has the form (b, t) for some b in B and t in T,
and is thus made from a finite number of elements of T; namely one. Each element of
the expression C -" T in (ii) has the form

(cl t], 02 Q, ck 4 tk}

for some number k and cl, c2, ... ck in C and t], 2, ... ,tk in T. Each element is thus
made from a finite number of elements of T; in this case k. Finally, each element of the
expression seq T in (iii) has the form

(, t2 ..., tn)

for some number n and t], t2 ... , tn in T. Each element is thus made from a finite
number of elements of T; in this case n. Also the "base elements" come from the first
two arms of T. The free type T therefore exists.

A

29

Example 26

Consider the free type

T ::= c I d(S)

where S is the schema

a:A
t:T

with A a given set. So just the arm d ((S)) of T contains T. If the following notation is
used to denote an element of S

('a'" a, "t') t)

which states that the strings 'a' and t' are bound to particular values of A and T, then
each element of S is made from exactly one element of T. Also, the first arm of
T contains the "base element" c. The free type T therefore exists.

A

4.2 Recursive functions

Given a recursive free type T that exists, the primitive recursion theorem (PRT) for T
can be used to see if a recursive function f, defined over T, exists. This is fully
explained in section 3. Basically, the PRT is used to try and produce a theorem
stating the existence off. If the following two simple rules for specifyingf are followed,
then the attempt to produce an existence theorem is more likely to be successful.
First, specify f on each arm of T separately. The function f does not have to be specified
on every arm of T. Secondly, for any arm d d E[T])) ofT that contains T, specify f(d x),
where x is an element of E[T], by primitive recursion. That is, specify f(d x) in terms of
an expression involving f and x. The following examples will make these two rules
clear.

Example 27

The natural numbers can be considered as a free type, namely

nat ::= 0 1 suc 4 nat P

30

Li

Now consider the factorial function !. There are two arms in the free type definition of
nat, namely 0 and suc (nat P, and so a recursive function over nat could be specified
on each arm separately, or just the second arm. The function ! is specified on each arm
as below. The abbreviation 1 has been used for suc 0. As the second arm of nat contains
nat, then (suc n)! is specified in terms of n!.

a! nt-) nat

0! = I
V n nat •(suc n)! = (suc n) x n!

A

Example 28

Consider the free type

T ::=c ((L I d ((M x T)) I e ((T x N))

where L, M and N are given sets. Now consider the function f as specified below. The
function is specified on just the first two arms, but separately. Also, as the second
arm of T contains T, then f(d(m,t)) is specified in terms of f t.

f:T---L

V I:L.f(cl) = I
V m :M; t : T .f(d(m,t)) =ft

A

31

4.3 General summary and condusions

One method of proving that a recursive free type exists, is to prove the finitary
condition for that free type, as discussed in section 2.1. This section describes a
strategy for proving the finitary condition From this strategy it can be seen that a
recursive free type will exist provided that each arm d (E[T D of T that contains T, is
such that every element of EM7"] consists of a finite number of elements of T. So for
example, a recursive free type made from just x, IF, - * and seq will exist. So by simply
inspecting a free type definition by eye, its existence can, in some cases, be
asserted. Some examples of this are given in section 4.1. In other cases, the
existence of the free type will not be so obvious, and the finitary condition will have
to be proved. The finitary proof obligation can be automatically produced. It is not
obvious how much of the proof can be automated, but following the strategy in
section 2.1 will lead to a proof. From the strategy, it can be seen that if the free type
contains only x, F, -"4 and seq, then most, if not all of the proof (if a proof was
required), could be automated. Having established the existence of the free type, by
proving the finitary condition, the primitive recursion theorem (PRT) for the free
type can then be asserted as an axiom. The PRT can then be used to prove that a
recursive function defined over the free type exists, as discussed in section 3.

Another method for proving that a recursive free type exists is to use a definitional
extension, as discussed in section 2.2. The idea here is to construct a representation
for the free type. The particular representation discussed, is to use a set of labelled
trees to represent the free type. The free type is then made isomorphic to its
representation. The PRT for this free type can then be proved using its
representation. The PRT can then be used to prove that a recursive function defined

over the free type exists, just as before. It is not obvious whether the construction of
the representation can be automated. Also, the representation itself could get a bit
complicated. For example, what representation should be used for T::= c 4(F IF T))?
Also it is not obvious how much of the proof of the PRT using the representation can
be automated. Certainly the construction of the representation, and proof of the PRT
for a free type definition, T, consisting only of existing types, x and simple occurrences
of T, for example

T::= c 4 A x T)) d((B x T x T))

where A and B are given sets, can be fully automated. The automation of such free
types would be analagous to the automation in Melham's type definition package [2] in
HOL.

The process of trying to obtain an existence theorem for a recursive function f from a
PRT for a free type T, is more likely to succeed if the two simple rules described in
section 4.2 are followed. The first rule is that f should be defined on each arm of T
separately, but f does not have to be defined on every arm of T. The second rule is that
for any arm d I E[TJ S of T that contains T, specify f(d x), where x is an element of E[7],
by primitive recursion. That is, specify f(dx) in terms of an expression involving f and x.
The examples in section 4.2 clarify these two rules.

32

References

1. The HOL System (Description), SRI International, Cambridge Research Centre,
December 1989.

2. T. F. Melham, "Automating Recursive Type Definitions in Higher Order Logic", in
Current Trends in Hardware Verification and Automated Theorem Proving, edited by
G. Birtwistle and P.A. Subrahmanyam (Springer-Verlag, 1989), pp. 341-386.

3. J. M. Spivey, The ZNotation, Prentice Hall International, 1989.

4. J. M. Spivey, Understanding Z, Cambridge University Press, 1988.

5. JM. Spivey, "Free Type Definitions", in
Proceedings of the Third Annual Z Users Meeting, Oxford University Computing
Laboratory, Programming Research group, December 1988.

6. R. D. Arthan, On Free Type Definitions in Z, Issue 1.7, ICL Defence Systems,
ref DS/FMU/EDIWRK/016, April 1991.

Acknowledgements

The author would like to thank all his colleagues who gave help and advice in
writing this report.

33

Annex

This annex shows how Melham's definetype function in HOL (version 1.11) defines
the following free type

T::= c CA) I d 4B x T x T D

where A and B are given sets, by definitional extension. The annex shows how the
representation of the free type, as a set of labelled trees, is performed (pan 1),
together with the proof of the primitive recursion theorem (PRT) for the free type
(part 2). This annex is equivalent to one call of define _type for T. The HOL commands
are in italics, but the HOL syntax has not been fully adhered to. The syntax that
define type expects means that T would actually have to be input as

T=cAIdBTT

which means that the constructor d will have type B - T -4 T - T, rather than
(B x T x T) -+ T as in the Z, Also, it is assumed that A and B already exist before
defineype is called. This can be achieved by the two commands

newtype 0 'A';;

new-type 0 'B';;

1. Defining the free type T

The function define ype first defines a predicate IS_T_REP below, which is true only
of those labelled trees which represent elements of T. The predicate IS_T_REP will
characterise the subset of (A + B)ltree which is to represent the free type T. For any type
, ()ltree is the type of trees, of any shape, labelled with elements of *. The type
A + B is the labelled disjoint union of A and B. HOL contains the built-in functions
INL and INR to form elements of A + B from elements of A and B respectively. The
tree with top node labelled with v and list of subtrees tl is written in HOL as Node v t.
The type of labelled trees has itself been defined using a definitional extension in
HOL. The function LENGTH gives the length of a list.

let ISTREP = new definition('IS.TREP',
"IS TREP (tree : (A + B)lree) =

RP
(k v (A + B)

t ((A + B)ltree)ist.
(3 a: A • v = INL a) A (LENGTH t = 0)

v (3 b : B * v = INR b) A (LENGTH 11 = 2)
)

wee");;

The function TRP in ISTREP is now explained. In ISTREP, the basic predicate
which defines those trees which are representations is

34

(3 a: A - v= INLa) A (LENGTH l = O) (21)

v (3 b: B - v = INR b) A (LENGTH i = 2)

But unfortunately, this is not quite good enough, since for example, the tree

INR b

A

/ \

/\

INR b INR b

satisfies (21). But the above tree does not represent any element of the free type T. The
trouble is, predicate (21) only states what form the top node should have and the
number of subtrees from the top node. Predicate (21) says nothing about the form of the
subtrees. To rule out such trees as above, the function TRP is required, which basically
makes sure that predicate (21) is ,)beyed all the way down the tree. The function TRP is
defined in HOL as followF

TRP i V P v U - TRP P (Node v tI) = (P v tl) A (EVERY (TRP P) t)

where the function EVERY is defined as

EVERYDEF 1 (V P - EVERY P =) A

(V P h t * EVERY P (CONS h t) = (P h) A (EVERY P t)

The function CONS adds an element to the front of a list. The names TRP and
EVERY DEF that appear to the left of the two turnstiles, 1 above, are simply the names
of the definitions, so that they can be used in theorem proving. For example, it must
be shown that IS_T_REP characterises a non-empty subset of (A + B)ltree, that is the
following goal must be proved.

3 tree :(A + B)Itree • IS_TREP tree

An existential witness that can be used for this goal is the tree

INL a
0

for some a in A. This tree is written in HOL as Node (INL a) []. The tactic which
proves the goal is

35

EXISTS TA C "Node (INL a) [1: (A + B)ltree" THEN
RE WRITE TAC [IS_TREP; TRP; EVERY DEF] THEN
BETA TA THEN
REWRITETAC [LENGTH]

where LENGTH is the definition

LENGTH I (LENGTH " =0) A

(V h t . LENGTH (CONS h) = SUC (LENGTH t))

The function SUC is the successor function; it adds 1 to its argument. Let NONEMPTY
denote the existence theorem just proved.

NONEMPTY , 3 tree. ISTREP tree

The free type T is made isomorphic to its representation, that is the subset of
(A + B)ltree characterised by IST_REP. Notice that this step requires the theorem
just proved.

let T_ISO = new type definition('T', "IS T REP: (A + B)ltree - bool", NON_EMPTY);;

Next, the names REPT and ABS T are given to the isomorphisms. Thus REPT has
type T -+ (A + B)ltree and ABS_T has type (A + B)ltree - T.

definenew type isomorp hiss(EXPANDTYDEE T_ISO)

The function EXPAND TY DEF above, is built in to HOL. This step also produces
some theorems involving REPT and ABST which are needed in step 2 (proving the
PRT), for example

V a • ABS_T(REPT a) = a

V r • IS_TREP r = (REP_T(ABS_T r) = r)

Finally, the constructors c and d of T are defined.

new definition('cDEF', "c a = ABS_T(Node (INL a) U)");;
new definition('dDEF', "db ti t2 = ABST(Node (INR b) [REPT tl; REP_T t2])");;

which state what the tree representations of c a and d b t, t2 are.

36

2. Proving the primitive recursion theorem

The following theorem has been proved in HOL

TY DEFTHM I V P ABS REP.
antecedents #
Vf.

3 1fn•
V v ti

P v (MAP REP t))
fn(ABS(Node v (MAP REP td))) -f(MAP fn i) v tl

This is a general theorem which define type uses to obtain the PRT for T. It can be used
to obtain the PRT for any free type defined in terms of labelled trees; it simply has
to be instantiated for T, and then simplified. The antecedents in the above theorem are
theorems obtained from part 1; and can thus soon be removed by modus ponens. So
definetype instantiates TYDEFTHM for T and then specializes P to be predicate (21)
(see part 1), ABS to be ABST and REP to be REPT. After modus ponens with the
antecedents this produces the new theorem

I. Vf.
3 1fn •

V vtl.
(a v = INL a) A (LENGTH(MAP REPT tl) = O)

v (3 b • v = INR b) A (LENGTH(MAP REPT di) = 2)

fn(ABS_T(Node v (MAP REP_T tl))) = f(MAP fn t1) v tl

Already it can be seen that this theorem has the basic shape of a PRT. By certain
simplifications of the theorem, the details of which are given in [2], the PRT

SVf 1 f 2 .
31 fn•

V a efn(c a) =f a
A V b tI t2 efn(d b t t2) =f 2 (fn t) (fn t2) b tI t2

is obtained

37

REPORT DOCUMENTATION PAGE ORIC Reference Nurnber (if known)

(As tar a possible this uheet should oontin only unociamlfled lnformtllon. Nf It is necessary to enter clasified inornation. the field concerned
must be markd to f~dc ft t o cassificaon eg (R), (C) or (S). -o t

RSRE, St Andrews Road
Malvem, Worcs WR14 3PS

Monitoring Agency Namne and Location

Tide

ON RECURSIVE FREE TYPES IN Z

haing securt lsification. ThTrpr scnendwt nossetseiiton~sshich ay aU , ris whe

usrignLnguhe forml sptecifcaoftionlatngugs) I atclr h eotiscnendwt h nossece

he iteder uden ce ofterpr ossso rConrc whobe wnisoaodwrtnmeigls

Atosecifications.e

Abstractlleto (.RCorS

Inco~n siteent speifiaytions ony gie risetio ofe ocusiont)nraoighsdetoigtepito

havnga peifcaion TisreoriUcnIMITedwihicnsttspifaioshchmyrsehn

