
Technical Report (
AD-A242 129 CMU/SEI-91-TR-26

' I III II I IISD-91-TR-26

An Application-Level
Implementation of the
Sporadic Server

'K, Michael Gonztlez Harbour
Lu! Sha

X
September 1991

XX

XX

91-14019iiii II! iII Il i i 111.

r: o rU n statemenf of assuranco is more than a statement required to comply with the federal Ila. This is a sincere statement by the university to assure that all
t)OO ire ncluded in tho diverdly which makes Carnegie Melton an ecitirrg place Carnegre Mellon wishes to include people without regard to race, color, national

;ur. hand;cap, reltUion, creed, ancctrfy, belief, age. veteran status or seyual orlentaion

Jarr r~e Mellon University does not discri rate and Carnegie Mellon University is required not to discriminate in admissions and employment on the bass of race.
cs,!or. national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the

,q.abl,ftafton Arrt of 1973 or other federal, state, or local laws or executive orders In addition. Carnegie Mellon does not discriminate in admissions and employment on
the brizs of religion, creed, ancestry, belief, age, veteran status or sexual orientation In violation of any federal, state, or local laws or executive orders. tnquires concern.
,r1 application of this poicy should be diiected to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pitburgh, PA 15213, telephone (412) 2688684 ir the
V,.,i) P,'crdent for Enrotlment, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh PA 15213 telephone (412) 268-2056

Technical Report
CMU/SEI-91-TR-26

ESD-91-TR-26
September 1991

An Application-Level Implementation
of the Sporadic Server

Michael Gonzalez Harbour
Lui Sha

Rate Monotonic Analysis for Real-Time Systems Project

-- _.

.. Approved for public release.
Distribution unlimited.

?-ftware Engineering Institute
ICarnegie Mellon University

Pittsburgh, Pennsylvania 15213

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

aes .1n, M or, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the Department of Defense.

Copyright © 1991 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center. Attn: FDRA, Cano,. Sation, Alexandria, VA 22304-6145.

Copies o this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, US. Department of Commerce,
Springfield. VA 22161.
Use o any trademarks in this document is not intended in any way to intringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1
1.1 Background 1
1.2 The Application-Level Sporadic Server 4

2 The Sporadic Server Algorithm 7
2.1 The Runtime Sporadic Server 7
2.2 The Application-Level Sporadic Server 9
2.3 Schedulability of the Application-Level Sporadic Server 14

3 Ada Task Implementation 17
3.1 Interface and Use of the Sporadic Server Package 17
3.2 Implementation of the Sporadic Server 19

3.2.1 External Requirements 19
3.2.2 General Structure 21
3.2.3 Interface Procedures 22
3.2.4 Sporadic Server Manager Task 24
3.2.5 Processing of an Aperiodic Request 26
3.2.6 Replenishment Procedure 27

3.3 Optimization of the Sporadic Server 28
3.3.1 Passive Task Optimization 28
3.3.2 Semaphore Optimization 31
3.3.3 Static Memory Allocation 32

3.4 Sporadic Server Code 33

4 Library-Level Sporadic Server in POSIX 35
4.1 Real-Time and Threads Extensions to POSIX 35

4.1.1 POSIX and RMS 36
4.2 Using the Library-Level Sporadic Server 37

4.2.1 Data Structures 37
4.2.2 Initializing and Detaching Sporadic Servers 37
4.2.3 Arming and Requesting the Sporadic Server 38
4.2.4 User Code for an Aperiodic Thread 39

4.3 Library-Level Implementation of the Sporadic Server 39

References 47

Appendix A POSIX Sporadic Server Interface 49
A.1. Sporadic Server Initialization and Detaching 49

A.1.1. Synopsis 49

CMU/SEI-91-TR-26

A.1.2. Description 49
A.1.3. Returns 50
A.1.4. Errors 50
A.1.5. References 50

A.2. Arm Sporadic Server 50
A.2.1. Synopsis 50
A.2.2. Description 51
A.2.3. Returns 51
A.2.4. Errors 51
A.2.5. References 51

A.3. Sporadic Server Processing 51
A.3.1. Synopsis 51
A.3.2. Description 52
A.3.3. Returns 52
A.3.4. Errors 52
A.3.5. References 52

A.4. Performance Metrics 52

CMU/SEI-91-TR-26

List of Figures

Figure 1 Comparison Between a Sporadic Server and a
Polling Task 3

Figure 2 Example of a Sporadic Server-Controlled Task 8
Figure 3 Priority Level Replenishment Policy 10
Figure 4 Replenishments of Earlier Requests 10
Figure 5 Service Initiation Replenishment Policy 11
Figure 6 Request Arrival Replenishment Policy 13
Figure 7 Comparison Between the Different Replenishment

Policies 16
Figure 8 General Structure of the Sporadic Server Package 21
Figure 9 Structure of the Optimized Sporadic Server Package 29
Figure 10 Structure of the Library-Level Sporadic Server 41

CMU/SEI-91-TR-26 iii

IV CMU/SEI-91 -TR-26

List of Tables

Table 1 Sporadic Server Specification 17
Table 2 Application Aperiodic Task 19
Table 3 Application Aperiodic Task With ISR 20
Table 4 Dynamic Priority Utilities 20
Table 5 Error Handler Specification 21
Table 6 Interface Procedures 23
Table 7 Sporadic Server Parameters 24
Table 8 Sporadic Server Manager Task 26
Table 9 Consumption of Execution Time 27
Table 10 Replenishment Action 27
Table 11 Time Manager Task 30
Table 12 Request Procedure in the Optimized Sporadic Server 31
Table 13 Optimizable Sporadic Server Manager 32
Table 14 Static Storage Sporadic Server 33
Table 15 Pseudocode of an Aperiodic Thread 39
Table 16 Pseudocode of the Library-Level Sporadic Server (Global Variables) 41

CMU/SEI-91 -TR-26 v

vi CMU/SEI-91 -TR-26

Acknowledgments

The stay of Michael GonzAlez Harbour, first author, at the Software Engineering Institute has
been funded in part by the university to which he belongs, the University of Cantabria, Spain,
and by the "Direcci6n General de Investigaci6n Cientifica y Tdcnica" of the Spanish govern-
ment.

The authors would like to thank John Goodenough for his thorough review of this paper and
his many insightful comments.

CMU/SEI-91 -TR-26

CMU/SEI-91 -TR-26

An Application-Level Implementation of the Sporadic
Server

Abstract:The purpose of this paper is to introduce a sporadic server algorithm
that can be implemented as an application-level task, and that can be used
when no runtime or operating system level implementation of the sporadic
server is available. The sporadic server is a simple mechanism that both limits
and guarantees a certain amount of execution power dedicated to servicing
aperiodic requests with soft or hard deadlines in a hard real-time system. The
sporadic server is event-driven from an application viewpoint, but appears as a
periodic task for the purpose of analysis and, consequently, allows the use of
analysis methods such as rate monotonic analysis [1] to predict the behavior of
the real-time system.

When the sporadic server is implemented at the application-level, without mod-
ification to the runtime executive or the operating system, some of its require-
ments cannot be met strictly and, therefore, some simplifications need to be as-
sumed. We show that even with these simplifications, the application-level
sporadic server proposed in this paper has the same worst-case performance
as the full-featured runtime sporadic server algorithm, although the average
case performance is slightly worse. The implementation r3quirements are a
runtime prioritized preemptive scheduler and system calls to change a task's or
thread's priority. Two implementations are introduced in this paper, one for Ada
and the other for POSIX 1003.4a, Threads Extension to Portable Operating
Systems.

1 Introduction

1.1 Background

Hard real-time systems have been defined as those systems in which system failure occurs if
the timing constraints of the system are not met. Real-time systems are usually composed of
a set of tasks that can be classified according to their criticalness and the nature of their timing
requirements. Some typical timing requirements in real-time systems are periodic tasks with
deadlines and aperiodic tasks with deadlines or with average response requirements.

The rate monotonic scheduling (RMS) algorithm was originally introduced by Liu and Layland
[6] for scheduling independent periodic tasks with hard deadlines at the end of their period.
Rate monotonic theory [1] has been extended to the design and analysis of task sets with 3yn-
chronization [7], mode changes [8], input/output [9], aperiodic tasks [2] [3], and synchroniza-
tion in multiprocessors [121. Also, an exact schedulability analysis for a given set of tasks with
deadlines at the end of their period has been developed [10], and this analysis has recently
been extended to a schedulability analysis of tasks with deadlines before or after the end of
the period [11]. RMS supports analysis for sets of tasks with rcritical and non-critical deadlines,
allowing an analytical guarantee of the scheduling feasibility of the set of tasks considered crit-

CMU/SEI-91-TR-26 1

ical, even in situations of transient overload. This, along with the simplicity of the analysis is
one of the major issues that distinguishes RMS from the earliest deadline scheduling algorithm
[6]. Typically, a system running under RMS can achieve 100% utilization of the processor by
allocating 90% of the processor to tasks with hard deadlines (with an analytical guarantee of
meeting each deadline), and the other 10% to background tasks (i.e., tasks with no deadlines).

The mechanism provided by rate monotonic theory for the scheduling and analysis of aperi-
odic tasks is the sporadic server; this mechanism preserves and limits a certain amount of high
priority execution for the processing of aperiodic events, while guaranteeing the deadlines of
all the other tasks in the system, even under burst conditions in the arrival of aperiodic pro-
cessing rrquests (i.e., large number r f requests in a short time interval). The sporadic server
is casi;y incorporated into rate monotonic analysis, because aperiodic tasks can be analyzed
as if they were periodic.

The key concept cl the sporadic server is to provide a limited amount of computation budget,
C, for processing aperiodic events at their assigned priority during a time interval called the
budget replenishment period, T. Once the sporadic server is initialized with its budget and pe-
riod, it reserves its execution time until an aperiodic request arrives. The request will be ser-
viced (whenever there are no higher priority activities pending) as long as the execution bud-
get has not been exhausted. If the request is completed within the available budget, the actual
execution time used is subtracted from the budget, and a replenishment of this amount of ex-
ecution time is scheduled for one replenishment period after the arrival of the aperiodic re-
quest. If the request is not completed before the execution budget is exhausted, the aperiodic
task is assigned a background priority. When the replenishment period expires, the execution
time is replenished and, if the sporadic server was executing at a background priority, its pri-
ority is elevated to its normal level. Since the amount of execution time is limited, a sporadic
server can be designed so it does not cause lower priority tasks to miss their deadlines, even
when a burst of requests arrive.

The sporadic server represents a better approach to scheduling aperiodic events than tradi-
tional methods. Two common approaches for servicing aperiodic requests are background
processing (using the processor's idle time) and polling. Polling consists of creating a periodic
task for servicing aperiodic requests. At regular intervals, the polling task is started and it ser-
vices any pending aperiodic requests. However, if no aperiodic requests are pending, the poll-
ing task suspends itself until its next period. If a request arrives just when the polling task has
suspended, it has to wait until the start of the next period. In the next example we show that
the sporadic server can improve the worst-case response time to an aperiodic event by a fac-
tor of 100, compared to polling.

Example 1. Consider a system with one periodic task with execution time of 99 units
and period of 100 units. This system has to service an aperiodic request which arrives
randomly once in a period of 100. Figure 1 shows the performance of the polling and
sporadic server solutions.

2 CMU/SEI-91-TR-26

Polling

Average response
-L time = 50 unitst tt

Sporadic Server

IIj I Average response
L- time = 1 unitt t t

Periodic Task U Polling Task

0 Sporadic server Aperiodic Req

Figure 1 Comparison Between a Sporadic Server and a Polling Task

In the polling solution, if the request arrives just when the polling task has suspended,
the servicing start time will be 99 units, and therefore the worst-case response time will
be 100 units. If a sporadic server is used with a priority higher than the periodic task,
the worst-case response time is precisely one unit and the deadlines of the periodic
task are still guaranteed. Moreover, if an unexpected burst of requests occurs, the spo-
radic server algorithm will limit the amount of high priority processing, thus ensuring
that the timing requirements of all lower priority tasks are not endangered. It will also
process the excess of work at a background priority level, giving it the opportunity to
"catch up" with the following normal arrivals.

The sporadic server can be applied to scheduling aperiodic tasks with different kinds of timing
requirements, such as individual deadlines, average response times, etc. It also has many oth-
er interesting applications [31, such as scheduling producer/consumer tasks, implementing the
period transformation technique in a transparent way [1], or detecting and limiting the effects
of faults on the estimation of task execution time requirements. Also, the sporadic server can
be used to guarantee the periodic behavior of tasks which, because of deferred execution1 or
jitter, have a negative impact in the schedulability of lower priority tasks [12]. This feature can

The deferred execution effect appears when instances of periodic tasks (jobs) are activated irregularly,
with different intervals between activations. Under these circumstances if a particular job of a given task
is activated late and the next job is activated early, two task activations occur during a time window equal
to the task's period, and this may have a negative impact on the schedulability of lower priority tasks [12].

CMU/SEI-91-TR-26 3

also be applied to scheduling of networks in distributed systems with periodic messages show-
ing deferred activation.

1.2 The Application-Level Sporadic Server

In order to implement a sporadic server at the application-level, some of the requirements of
the sporadic server algorithm must be relaxed. In particular, there are some functions in the
sporadic server algorithm that can only be performed by the runtime executive, such as mea-
suring the actual execution time of a task. Sprunt and Sha [3] developed an application-level
sporadic server implemented with an Ada task, in which the full-featured sporadic server algo-
rithm was subjected to some restrictions. The main restrictions were: no measurement of ex-
ecution time (worst-case execution time is always assumed), no background execution, and a
suboptimal replenishment policy. Although these restrictions may significantly decrease both
the average and worst-case performance of the sporadic server, they provide the benefit of a
full stanaard Ada compatibility.

In this paper, a new implementation of the sporadic server at the application-level is proposed,
in which background execution is allowed and a better replenishment policy is used. Both fac-
tors contribute to a sporadic server that performs much better, both for average and worst-
case. In fact, the worst-case performance is the same as in the full-featured runtime sporadic
server (except for additional overhead) and the average case can be almost the same when
the actual task execution time approaches the worst-case estimations.

To implement this enhanced application-level sporadic server in the environment of a multi-
task or multi-thread preemptive runtime executive or operating system (O.S.), the server must
have access to a mechanism for dynamically changing the priorities of the tasks executing in
the system. Most of the usual real-time kernels provide this functionality (threads extensions
to POSIX [16], VRTX [171, Orkid [181, etc.). Therefore, the proposed sporadic server can be
implemented under these kernels; in this paper we provide the guidelines for such implemen-
tation under the current Threads Extensions to the POSIX standard.

The Ada implementation has a particular difficulty. The language explicitly specifies a priority
system that is static.1 However, the Ada language reference manual [21] specifies that if all
tasks in a program have no assigned priority, then the runtime system is free to use any con-
venient algorithm for deciding which eligible task to run. Sha and Goodenough [1] have shown
that priorities may be changed dynamically at runtime when there are no Ada priorities at all.
In fact, an increasing number of vendors are providing mechanisms in their runtime systems
for dynamically changing the priorities of the tasks. The "Catalogue of Interface and Features
and Options" (CIFO) [191 from the Ada Runtime Environment Working Group (ARTEWG),
which is being implemented by most Ada vendors, includes this functionality. Furthermore, the
Ada 9X Requirements Document [20] includes user-controlled scheduling under its require-

Except for a limited change of priority during the rendezvous operation

4 CMU/SEI-91-TR-26

ments and, although it does not explicitly mention dynamic priorities, this feature is very likely
to appear, or at least not to be precluded, in the new standard.

Consequently, the dynamic priorities functionality will become very common in most Ada runt-
ime systems, and is becoming more portable through the CIFO interface and, possibly, the
new Ada 9X standard. Therefore the risk of using such a feature today is very low, and the
enhanced application-level implementation of the sporadic server is a good choice when there
is no runtime implementation available. In this paper, we also present the guidelines for imple-
menting this algorithm in Ada.

CMU/SEI-91 -TR-26 5

6 CMU/SEI-91 -TR-26

2 The Sporadic Server Algorithm

2.1 The Runtime Sporadic Server

The sporadic server is a simple function providing control of event-driven processing. If a se-
quence of a particular type of events arrives faster than a program is ready to handle it, some
mechanism must allow their processing to be controlled. This functionality can be achieved
through the sporadic server, which simply limits the thread's maximum execution time in a giv-
en elapsed time window (i.e., the replenishment period). When this execution limit is exceed-
ed, the thread's priority is temporarily lowered to a background level, allowing other time-criti-
cal tasks to be executed.

The sporadic server algorithm controls the scheduling of one or more tasks that service ape-
riodic events at a particular priority level; it has two important attributes that determine its be-
havior: the maximum execution capacityor execution budget, Ci, and the replenishmentperi-
od or time interval used for replenishing the consumed execution capacity, Ti.The sporadic
server algorithm preserves its execution budget complete until an aperiodic request occurs; at
this point, an aperiodic task will be scheduled to run at its assigned priority level, consuming
part or all of the available execution capacity. When all the available execution time has been
consumed, the aperiodic task is not permitted to continue running at this priority level, although
it can be assigned a lower background priority. The sporadic server replenishes each portion
of consumed server execution capacity at some time RT i, after it has been consumed. At time
RT that portion of execution time becomes available again for consumption. Each portion of
execution capacity that is replenished must be tagged with its replenishment time because it
is not allowed to be replenished until at least one period later. The replenishment of the exe-
cution capacity consumed by the aperiodic task execution is determined according to the spo-
radic server replenishment policy, described next.

The following terms are used to explain the method of replenishing server execution time in
the sporadic server algorithm:

Active A priority level, Pi, is considered to be active if the priority at which
the syste-i is currently executing is equal to or greater than the pri-
ority Pi.

Idle A priority level Pi is considered idle if the priority at which the system
is currently executing is less than the priority of Pi.

Recall that the sporadic server's capacity is comprised of a number of replenished portions of
execution capacity tagged with their availability times (initially, the sporadic server has all its
execution capacity available). We sometimes refer to the available execution capacity as avail-
able tickets, in the remainder of this document. Assume a sporadic server that controls the ex-
ecution of one or more aperiodic tasks with priority level Pi. When an aperiodic request arrives
and one of the aperiodic tasks becomes eligible to run, it is permitted to consume the sporadic

CMU/SEI-91-TR-26 7

server's capacity from the oldest available portion until it completes execution or until that por-
tion of execution capacity is exhausted. At that time, the amount of consumed execution ca-
pacity has to be scheduled to be replenished at some instant RT later; RT i is set to the maxi-
mum of the time at which priority level Pi became active and the time at which that portion of
execution capacity became available, plus the replenishment period of the sporadic server
(see Figure 2). If the aperiodic task has not yet completed execution and there is more execu-
tion capacity currently available, it is permitted to consume more capacity in the same way.
Each portion of consumed execution capacity generates a replenishment operation, but those
replenishments scheduled to occur at the same time can be grouped together. Also, consump-
tion and replenishment of very small portions of execution capacity can be grouped into the
next available portion, because the overhead of considering such small portions can be great-
er than the actual execution capacity they represent.

Example 2. In the next example (Figure 2), we want to allocate 10 msec. with a replen-
ishment period of 18 msec. for handling a particular type of events:

l Replenishment

A r.Request

Sporadic
4 1 4

,, = 1

18

Periodic T . T T25

, , I

R9cround

10 1 7 21 23 2 6 3 0

Figure 2 Example of a Sporadic Server-Controlled Task

In this example, each event takes 5 msec. to be serviced. The first two aperiodic re-
quests arrive at times 5 and 12 msec. and are serviced immediately. After this, the ex-
ecution budget is exhausted and when the next aperiodic request arrives at t=1 8
msec., the sporadic server is assigned a background priority. In this way, the periodic
task is able to complete its execution on time. Additional execution budget for 5 msec.
is replenished at times t=23 and t=30 msec. (one replenishment period after each re-
quest) respectively for the first two requests.

8 CMU/SEI-91-TR-26

2.2 The Application-Level Sporadic Server
To make possible an application-level implementation of the sporadic server, we have to take
a look at ti. main reasons that make it necessary to implement the full-featured sporadic serv-
er in the runlime system:

1. Measuring the actual execution time. The sporadic server algorithm has to
measure the actual execution time of an associated aperiodic task, in order
to determine how much execution time has been consumed and also to defer
further service when the execution budget is exhausted. This function cannot
be implemented at the application-level, since a task cannot determine in ad-
vance when it will be preempted by higher priority tasks and for how long.

2. Tracking of Priority Level. The replenishment policy of the sporadic server
makes it possible to establish the replenishment origin (the time instant
which, when added to the replenishment period, gives the replenishment
time) before the instant at which the aperiodic event arrives. The algorithm
specifies the replenishment origin to be set to the maximum of the instant at
which the priority level of the sporadic server became active, and the instant
at which the portion of consumed execution capacity became available.
Tracking of the priority level can only be done at the runtime system level,
where there is knowledge of the time instants at which each task is ready to
execute (recall that the activation of priority level Pi is defined as the earliest
instant from which activity of priority greater than or equal to Pi is being con-
tinuously executed).

Figure 3 shows the replenishment algorithm applied to a set of tasks. The
highest priority task is a periodic task, "., with period T=6 and execution time
C=3. The next priority level corresponds to an aperiodic task under the control
of a sporadic server with replenishment period T=8 and execution budget
C=2. Lower priority tasks execute whenever the sporadic server priority level
is idle. There are three aperiodic requests arriving, each with a computation
requirement of 2 units of time; their arrival times and replenishment origins
are:

" Arrival time = 1; the replenishment origin is set to t=O, when the sporadic
server priority level became active. The replenishment time will be t=8.

* Arrival time = 8.5; this time the replenishment origin is set to t=8. Although
the priority level was activated at t=6, the execution capacity became
available from the previous replenishment only at t=8. The replenishment
time will be t=16.

" Arrival time = 13; the replenishment origin is set to t= 16, because until that
time there is no execution capacity available. The replenishment time will
be t=24.

CMU/SEI-91-TR-26 9

Task set:tl:T=6C=3Prio=High Replenishment

Aper. Request
_n n=amount

36 8 2 1 1215 16 is time
+ 2 2

Figure 3 Priority Level Replenishment Policy

Intuitively, the reason for this early replenishment is that if the request had ar-
rived earlier, for example at the activation of the priority level in the first re-
quest, the execution pattern would have been the same, provided that there
was available execution capacity at this point. Notice that with this earlier re-
quest the aperiodic task could not have started to execute before, due to pre-
emption by higher priority tasks. We can take advantage of this fact and make
the replenishment earlier because in this way we will have execution capacity
available earlier for the next aperiodic requests. In Figure 4 we can see that
the execution patterns for aperiodic requests which arrive exactly at the re-
plenishment origins of the first two requests from Figure 3, are exactly the
same (the third request was before its replenishment origin, so there is no ad-
vantage to moving it back). Moreover, the behavior is also the same as that
of an equivalent periodic task with period equal to the replenishment time and
execution time equal to the execution requirement of the aperiodic requests.

T16

3 6 9 11 12 + 5682

Figure 4 Replenishments of Earlier Requests

10 CMUISEI-91-TR-26

3. Background processing. The sporadic server task alternates between normal
and background priority, depending one the requests and the availability of
execution time. The runtime system must be called to change the task priori-
ties and reschedule the CPU. Some systems provide such calls, so they can
be issued from an application-level task, but other systems, like standard
Ada, do not provide this mechanism.

Sprunt and Sha [4] developed an application-level sporadic server implemented with an Ada
task, in which each of these difficulties was solved by making the following restrictions:

1. Measurement of execution time. Instead of the actual execution time, the
worst-case execution time of each request is used for budget consumption
and replenishment. In this way, there is no need to measure the execution
time. With this restriction there is no loss of worst-case performance; only the
average case performance is decreased, since it is not possible to take ad-
vantage of an actual execution time smaller than the worst-case. Under this
restriction, a sporadic server is not allowed to service an aperiodic request un-
less it has available execution time greater than or equal to the worst-case ex-
ecution time of that request. This restriction is imposed because there is no
measurement of the execution time, so there is no way to stop a task at the
instant at which its budget becomes exhausted.

2. Replenishment Policy. Since it is not possible to keep track of the active/idle
status of the priority levels in the system (which can only be done by the
scheduler), a simpler replenishment policy is used: the consumed execution
time is replenished one replenishment period after the sporadic service is ini-
tiated. This decreases the performance of the sporadic server because it may
delay the time at which the sporadic service is initiated from the request arriv-
al, and certainly from the instant at which the priority level was active. Figure
5 shows the behavior of this replenishment policy for the same example that
appeared in Figure 3. It can be seen how this replenishment policy introduces
more latency into the processing of aperiodic events.

8 2Ss

Figure 5 Service Initiation Replenishment Policy

3. Background processing. Since standard Ada does not provide any means of
dynamically changing the priority of a task (except in a limited manner during
a rendezvous operation), the task must always operate at its assigned priori-
ty; therefore, it is not possible to take advantage of background execution.

CMU/SEI-91-TR-26 11

This may drastically reduce the average case performance of the sporadic

server, but not its worst case.

In this paper, a new application-level sporadic server algorithm will be introduced, which takes
advantage of the dynamic priorities mechanism available in most real-time kernels and in
many Ada runtime systems. The restrictions that apply under this new sporadic server are:

1. Measurement of execution time. The execution time cannot be measured, so
the approach taken in [4] is also applied. This means that the worst-case ex-
ecution time is always assumed, and the aperiodic task cannot be initiated un-
less there is enough available execution time to guarantee its completion un-
der the worst case.

2. Replenishment policy. An intermediate replenishment policy is used, in which
it is not necessary to keep track of the priority levels; it has the same worst-
case performance as the best replenishment policy, used under the runtime
sporadic server. In the new replenishment policy, if an aperiodic event arrives
at time t and an execution budget quantum of 0 is available to service the
aperiodic task at the sporadic server's priority, this budget quantum has to be
replenished at time t+T, where Tis the replenishment period. Figure 6 shows
the behavior of this replenishment policy when applied to the example of Fig-
ure 3, where the priority level policy was used. The replenishment time in the
runtime sporadic server can be set earlier than t+T[4], depending on the pri-
ority-level activation instant, but the worst-case performance of the sporadic
server is the same under both policies. On the other hand, under the replen-
ishment policy used in the application-level sporadic server in [4], it is neces-
sary to wait until the sporadic server service is initiated and then set the re-
plenishment time a period later; this may increase the worst-case response
time of the sporadic server by as much as 100%.

3. Background processing. The dynamic priorities mechanism is used, and,
therefore, this application-level sporadic server can change the aperiodic
task's priority from normal to background, and back, whenever necessary.
This improves the average case performance of the sporadic server over the
previous application-level implementation.

In order to implement the replenishment policy, the sporadic server is able to compute the re-
plenishment origin only if the server is activated precisely at the instant of the arrival of the ape-
riodic request. This is accomplished by the use of the dynamic priorities mechanism. The ape-
riodic task is forced to wait for the aperiodic event at the highest priority in the system. Since
the task is waiting, this imposes no burden on other tasks (except for a slight overhead that
may be computed as blocking time for the rest of the tasks). As soon as the aperiodic request
arrives, the aperiodic task is activated, the replenishment is scheduled, and the task's priority

12 CMU/SEI-91-TR-26

22

sS
12 15 17 time

+2 22

Figure 6 Request Arrival Replenishment Policy

is immediately lowered to its normal priority level if sufficient execution capacity is available;
otherwise, it is lowered to background priority.

The restrictions have an associated cost:

" Decreased average case performance. The average case performance is
decreased over the runtime sporadic server because the replenishment pol-
icy is less favorable and because the worst-case execution time is always as-
sumed, even when the actual execution time may be smaller.

" Some sporadic server applications are not supported. Since the actual exe-
cution time is not measured, applications of the sporadic server that rely on
this feature, such as implementing the period transformation technique, or
debugging the timing requirements [4), are not supported. In any case, the
rest of the applications, such as preserving soft and hard deadlines, sched-
uling producer/consumer tasks, eliminating the effects of deferred execution
or message transmission, etc., are fully supported.

" There is more overhead for sporadic server tasks. The application-level im-
plementation requires more context switches and, therefore, incurs more
overhead for sporadic server tasks.

Despite this associated cost, this implementation provides a highly efficient version of the spo-
radic server, with worst-case performance similar to that of the runtime sporadic server. Its
main advantages are:

" Availability and simplicity. Usually the application developer cannot modify
the runtime kernel.The application-level sporadic server can be used right
now if no sporadic server ;mplementation is available. It is also very simple
to implement.

" Worst-case performance. Except for the effects of additional context switch-
es, the worst-case response time is the same as for the runtime sporadic
server.

CMU/SEI-91-TR-26 13

" Compatibility. Runtime and application-level sporadic servers may be imple-
mented using exactly the same interface. In this way, the application code will
not need to be changed, even if the actual implementation chosen supports
the sporadic server in the runtime.

" Lack of overhead when no sporadic server is used. The runtime sporadic
server introduces a small overhead for every task, even if no sporadic serv-
ers are used. At each scheduling point, the runtime system must at least
check if sporadic servers are being used. In the application-level sporadic
server, if a particular application does not want to use sporadic servers, this
overhead disappears.

2.3 Schedulability of the Application-Level Sporadic Server
Sprunt, Sha, and Lehoczky proved in [3] that a sporadic server can be treated as a standard
periodic task with period and execution time equal to the sporadic server replenishment period
and execution budget, respectively. In their proof, they use the sporadic server algorithm that
corresponds to the runtime sporadic server. This algorithm does the replenishments one pe-
riod after the activation of the sporadic server's priority level. We will call this replenishment
policy the PL (Priority Level) Policy.

The same result applies to the proposed application-level sporadic server, which replenishes
one period after the arrival of the aperiodic request (AR Policy). Under this policy the replen-
ishments are always done at the same time or after the replenishments under the PL policy.
This means that under the AR policy the execution of the next request is never started before
it would have been started under the PL replenishment policy. This execution pattern can only
introduce a smaller amount of preemption for lower priority tasks and, therefore, has no detri-
mental schedulability effect. Consequently, the new replenishment policy has no effects on the
schedulability of the rest of the tasks.

The new replenishment policy shows the same worst-case response as the runtime sporadic
server, for aperiodic tasks with hard deadlines having a minimum interarrival time. If an aperi-
odic request arrives when the execution budget is fully available, there will be enough execu-
tion time for the request to be fully serviced; the replenishment policy will not influence the ex-
ecution pattern in this case. Under the AR policy, the consumed execution time will be replen-
ished one replenishment period after the arrival of the aperiodic request. If the PL policy is
being used, the worst-case replenishment interval will occur when the priority level becomes
active, just when the request arrives. Consequently, the worst-case replenishment interval will
be the same for both policies. The next request will not arrive before the specified minimum
interarrival time has elapsed, that is, when all the consumed execution time has been replen-
ished and the execution budget is again complete.

Consequently, the application-level sporadic server has no detrimental effects on the sched-
ulability of lower priority tasks (i.e., on their ability to meet their deadlines) and, although the
server has an average case response time that is worse than for the runtime sporadic server,
the worst-case response for hard deadline aperiodic tasks is the same for both. The next ex-

14 CMU/SEI-91-TR-26

ample shows a comparison between the three sporadic server implementations that have
been discussed.

Example 3. In the next example (Figure 7), a comparison is made between the three
replenishment policies that have been considered. In all cases there is a sporadic serv-
er with period T=20 and budget C=5. There is also a higher priority periodic task, with
period T=1 5 and execution time C=6. No background processing is available (it is sup-
posed to be consumed by other low priority tasks). All examples are shown for the
same set of two different request patterns.

Figure 7(a) shows the behavior when the priority level policy is used. The first request
arrives at t=3 and t=O respectively, for both cases shown. In both cases the replenish-
ment of the consumed tickets is scheduled to occur at t=20, because the priority level
was active since t=0. The second request is finished at t=26.

When the request arrival policy is used (Figure 7[b]) the replenishment time for the
case where the first request arrives at t=O is still t=20. However, when the first request
arrives at t=3, the associated replenishment occurs at t=23, thus increasing the latency
for the second request.

Finally, Figure 7(c) s'.ows the behavior for the s-r,,!nc i;ftjation policy. Under this policy
service for the first request starts at - .3 ir, both cases; therefore, the replenishment oc-
curs at t=26 and this extends the finalization time for the second request to t=37. This
policy leads to the largest latei ,cies fo, -nerindir tasks.

CMU/SEI-91 -TR-26 15

I - _ ___I

* 6 il 15i 21 26 ii 3 4 is 21 26 1

a) Priority Level Policy

P=

* 6 1 1 15 21 23 2s t 3 11 1S 21 26 t

b) Request Arrival Policy

=== .. .:i=

t6 14 15 21 26 0 37 3 fis 21 26 20 37

c) Service Initiation Policy

Legend:
[]Periodic Task I Replenishment I

.. Aperiodic Server # Aperiodic Req.

Figure 7 Comparison Between the Different Replenishment Policies

16 CMU/SEI-91-TR-26

3 Ada Task Implementation

3.1 Interface and Use of the Sporadic Server Package

The Ada implementation of the proposed sporadic server is contained in a package with the

following specification:

Table 1 Sporadic Server Specification

with TASKIDs; -- Used in private part

with DYNAMICPRIORITIES;

package Sporadic-Server is

type parameters is limited private;

procedure initialize

(ThisSporadicServer out parameters;

Period, Budget in DURATION;

Normal_Priority,

BackgroundPriority in DYNAMICPRIORITIES.PRIORITY);

procedure detach (ThisSporadic_Server: in out parameters);

procedure arm (ThisSporadicServer: in parameters;

Using HighPriority : in BOOLEAN :- TRUE);

procedure request (This_SporadicServer : in parameters;

WithRequestDuration : in DURATION;

WithRequestTime : in CALENDAR.TIME

CALENDAR.CLOCK);

procedure finish;

RequestDurationError : exception;

NotEnoughSSResources : exception;

Invalid-Argument : exception;

private

MAXNUMOFREPLENISHMENTS : constant INTEGER

:-implementationdetaned;

type parameters is implementation defined;

end Sporadic_Server;

This specification provides the user with a standard interface to the sporadic server mecha-
nism, which can be used independently of the kind of implementation (runtime or application-
level) used.

CMU/SEI-91-TR-26 17

The functionality of the interface procedures is the following:

1. INITIALIZE. This procedure allows the user to declare a sporelfadic server
with the desired attributes, such as period, budget, normal (assigned) priority
level, and background priority level. The procedure will return a variable with
the sporadic server's parameters (the sporadic server control block), which
must be provided in the other calls to the sporadic server procedures. Usually,
this procedu:3 ;s called once by each aperiodic task that wishes to execute
under the control of a sporadic server.

2. DETACH. This call is made when an aperiodic task no longer needs to con-
tinue under the control of a sporadic server (for example, when it finishes). It
deallocates the storage and pending operations of the sporadic server spec-
ified. This call can be used followed by one to initialize to change the at-
tributes of a particular sporadic server.

3. ARM. This call must be issued just before waiting for an aperiodic request, in
order to prepare the sporadic server specified by This SporadicServerto re-
ceive this request. The argument UsingHighPriority is a boolean input ar-
gument that, when set true, forces the sporadic server to wait at a high priority
level, to ensure that when the aperiodic request arrives, the aperiodic task is
activated immediately, and so, the replenishment is scheduled at the right
time. When the aperiodic request is processed by an Interrupt Service Rou-
tine (ISR) instead, this high priority waiting is not necessary and this argument
should be set to false.

4. REQUEST This call must be issued immediately after the arrival of the ape-
riodic request. The user must provide the request duration and request time
arguments:

WithRequestDuration: This is the worst-case execution time of the
aperiodic task for the kind of request that has arrived. Different re-
quest durations are allowed and can be determined by the application
according to the type of aperiodic request that has arrived.

WithRequest Time: The arrival time of the request.

Depending on the available sporadic server execution time, the call will deter-
mine the availability of execution capacity, schedule the replenishment, and
drop the aperiodic task's priority to its normal or background priority.

5. FINISH. This call tells the sporadic server manager that no more sporadic
server functions will be requested from now on, thus enabling it to deallocate
any storage space held, and terminate any internal task.

The typical application code for an aperiodic task under the control of a sporadic server is
shown in Table 2.

Another possibility for the application task is that the aperiodic request may be serviced by an
interrupt service routine, which in turn signals the aperiodic task through a semaphore or an
asynchronous message (mailbox mechanism). In this case, the high-priority processing of the
aperiodic request is guaranteed by the priority of the hardware interrupt (highe than all other
software priorities, in Ada). The user code, then, will be slightly different (Table 3). In the call

18 CMU/SEI-91-TR-26

to arm it is possible to set the argument UsingHigh Priority to false, provided that the ISR
reads and stores the time at which the request was made. In this way, the sporadic server's
overhead is reduced, because some context switches are avoided.

Table 2 Application Aperiodic Task

task body Aperiodic is

ThisSporadicServer : Sporadic_Server.parameters;

begin

User initialization;

SporadicServer. initialize (ThisSporadicServer, Period,

Budget, NormalPriority, BackgrPriority);

loop

SporadicServer.arm(This_SporadicServer);

Wait for the aperiodic event;

SporadicServer. request

(This_SporadicServer, RequestDuration);

Process aperiodic event;

end loop;

3.2 Implementation of the Sporadic Server

3.2.1 External Requirements

To implement the proposed application-level sporadic server, it is necessary to have access
to a mechanism fC, dynamically changing the task priorities. To change the task priorities, it is
also necessary to have a mechanism for identifying tasks. Both mechanisms appear in the
CIFO Release 2.0 [19], and their interface is shown in Table 4. If the available dynamic prior-
ities mechanism does not conform to the specification of these packages, it is still possible to
map them through this interface. The sporadic server's code need not be changed.

Also, an error handler (Table 5) must be supplied for handling unexpected fatal errors that may
occur inside the sporadic server implementation (similar to a panic error that would be gener-
ated by a runtime implementation). This handler and the dynamic priorities package make the
sporadic server code completely independent from the environment in which it is executed.

CMU/SEI-91-TR-26 19

Table 3 Application Aperiodic Task With ISR

procedure ISR is -- Called by hardware interrupt.

begin

Read clock into Request-Time, and process interrupt;

Signal semaphore or mailbox, storing RequestTime;

end ISR;

task body Aperiodic is

ThisSporadic_Server : SporadicServer.parameters;

begin

User initialization;

Sporadic-Server.initialize(This_Sporadic_Server, Period, Budget,

Normal_Priority, Backgr_Priority);

loop

Sporadic_Server.arm(ThisSporadicServer,

Usinghigh_Priority->FALSE);

wait for semaphore or mailbox and read RequestTime;

SporadicServer.request(ThisSporadicServer,

RequestDuration, Request-Time);

Process aperiodic event;

end loop;

Table 4 Dynamic Priority Utilities

package TASK IDs is

type TASKID is private;

function SELF return TASKID;

private

end TASKIDs;

with TASK IDs;

package DYNAMICPRIORITIES is

type PRIORITY is range implementation-defined;

procedure SETPRIORITY (OFTASK in TASKIDS.TASKID;

TO in PRIORITY);

function PRIORITYOF (THETASK : in TASKIDS.TASKID)

return PRIORITY;

end DYNAMICPRIORIrIES;

20 CMU/SEI-91-TR-26

Table 5 Error Handler Specification

package Handler is

procedure error (s : in STRING);

3.2.2 General Structure

The body of the sporadic server package includes the code for each of the procedures of the
interface, which are very simple. The body also includes the sporadic server manager task, in
which the sporadic server algorithm is implemented. The general structure of this package can
be seen in Figure 8.

The sporadic server manager task is the only task allowed to modify the contents of the spo-
radic server control blocks; it keeps track of all the available execution capacity and replenish-
ments of all the aperiodic tasks controlled by sporadic servers that are present in the system.
Only one sporadic server manager task is used for all the sporadic servers in the system. The

i !!iiiiii~i~s orat S ~ iiiiii! iii~i: . SS.initialize

Inltllize SS.armn...

accept requeat "Request talize

or accept purge
or accept finish Dtc
or delay: ...

end loop; Finish

l askt iiask Ni:!i::i:l

ISS~nitialize

Figure 8 General Structure of the Sporadic Server Package

CMUISEI-91-TR-26 21

main data structures of the sporadic server manager are the sporadic server parameters or
control blocks, and the replenishment queue:

" There is one sporadic server control block per sporadic server, and it is cre-
ated during the initialization (through initialize). It stores all the attributes of
the sporadic server, such as period, budget, available tickets, priority levels,
etc.

" The replenishment queue is a single priority queue; the priority is the replen-
ishment time and the order of extraction is the earliest replenishment time.
The replenishment queue stores all the replenishment operations that are
pending at each instant.

The basic structure of the sporadic server manager is an endless loop with a timed wait (se-
lective wait with delay alternative). When an aperiodic request arrives, the task's entries are
called by the aperiodic tasks through the interface procedures request, detach, and finish. The
delay alternative is set to the earliest replenishment to be performed (except when the replen-
ishment queue is empty). The sporadic server manager task will be described with more detail
in Section 3.2.4

3.2.3 Interface Procedures

The interface procedures provide an implementation-independent way for the application to
make use of all the sporadic server functions. Implementing these procedures is very simple,
because the main part of the sporadic server algorithm is performed by the sporadic server
manager task.

1. INITIALIZE. This procedure creates a sporadic server parameter variable, or
control block, and initializes it with the attributes provided through the proce-
dure arguments. The sporadic server is initialized with its complete execution
budget. An identification of the calling task is stored in the control block, so its
priority can be changed later on. Also, its priority is set to its normal level. The
procedure returns an implementation-dependent pointer to the sporadic serv-
er control block (access type for dynamic storage, index to an array element
for static storage, etc.). This pointer will be used further by the aperiodic tasks
when calling other sporadic server procedures.

2. DETACH. In order to eliminate all references to the specified control block
stored in the replenishment queue, this procedure makes a call to the sporad-
ic server manager task. After ensuring that this sporadic server control block
will no longer be used by the manager task, it deallocates its storage space.

3. ARM. This procedure changes the priority of the calling task, to prepare it for
receiving an aperiodic request. If the task itself is receiving the aperiodic re-
quest it must wait at the highest priority in the system, in order to correctly im-
plement the desired replenishment policy (a period after the arrival of the re-
quest). Otherwise, if the aperiodic request is handled by a high-priority

22 CMU/SEI-91-TR-26

Table 6 Interface Procedures

package body Sporadic_Server is

task SporadicServerManager is

entry request (sscb : in parameters;

request duration: in DURATION;

requesttime : in CALENDAR.TIME);

entry purge (ss_cb : in parameters);

entry finish;

end Sporadic_ServerManager;

procedure initialize (ThisSporadic Server, Period, Budget,

NormalPriority, BackgroundPriority) is

begin

Create and initialize ThisSporadicServer;

end initialize;

procedure detach (ThisSporadicServer) is

begin
Sporadic_ServerManager.purge (This_SporadicServer)

Deallocate ThisSporadicServer;

end detach;

procedure arm (ThisSporadic_Server,Using High Priority) is

begin

Set task's priority to high or normal,

according to UsingHigh Priority;

end arm;

procedure request (ThisSporadicServer, WithRequestDuration,

With_RequestTime) is

begin
SporadicServer_Manager.request

(ThisSporadicServer, Request-Duration, RequestTime);

end request;

procedure finish is

begin

Sporadic_ServerManagerfinish;

end finish;

interrupt service routine, the argument Using HighPriority can be set to
false; in this case, the calling task will be set to its assigned priority level.

4. REQUEST This procedure is a just a gateway to the entry call request at the
sporadic server manager task.

CMU/SEI-91-TR-26 23

5. FINISH. This procedure makes a call to the sporadic server manager task,
which then terminates itself. Another implementation of this procedure could
be an abort statement for the sporadic server manager task. However, this is
not recommended, because some compilers can optimize the tasking opera-
tions if there are no abort statements in the program.

The pseudocode of these procedures is shown in Table 6.

3.2.4 Sporadic Server Manager Task

The purpose of this task is to manage all the ticket consumption and replenishment operations
of all sporadic servers in the system. Basically, its code is an endless loop in which a timed
wait is performed until either an aperiodic request requires processing or a replenishment ac-
tion is due. Each time the delay expires, the replenishment queue is checked to see it there
are any replenishment actions pending.

The basic data structures managed by this task are the sporadic server parameter variables,
or control blocks, and the replenishment queue:

1. There is a sporadic server parameter variable, or control block, for each ape-
riodic task that has issued a call to initialize. This control block is a record con-
taining the attributes of the sporadic server. Its description is given in Table 7:

Table 7 SporadIc Server Parameters

type parameters is record

period, budget,

availabletickets,

lastrequestsize DURATION;

normalpri, background_pri Dynamicypriorities.priority;
mytask Dynamicypriorities.taskid;

last-replenishment CALENDAR.TIME;

* The period, budget, normal pri, and background pri are initial attributes
set by the application when the parameter variable is created.

* Available tickets is the amount of sporadic server execution time left, and
is changed with each consumption or replenishment operation.

" Last requestsize allows the worst-case execution size of an aperiodic
request to be stored. This size will then be used when a sporadic server
task is awakened from the background state to the assigned priority state
and a ticket consumption must be made.

* My task is the identification of the aperiodic task used by the sporadic
server manager task to change the task's priority.

" Last replenishment stores the last time at which the sporadic server was
replenished. This time is used to make sure that no replenishment is

24 CMU/SEI-91-TR-26

scheduled to occur before one period after the last replenishment has
been carried out. This prevents too early replenishments that could arise
when a request time less than the last replenishment is specified as an
argument to request.

2. The replenishment queue is a priority queue in which the highest priority ele-
ment is the one with the earliest replenishment time. It can be implemented
with a standard generic package which must include at least the following
functionality:

Empty function, to determine if the queue is empty.
Insert in priority order.
Extract the highest priority element.
Read the highest priority element.
Delete an element from any position in the queue.

Such a queue can be implemented through a heapform heap data structure
[13], which is stored in a fixed size array (and hence does not need dynamic
memory), and has the following characteristics, related to n, the number of el-
ements present in the queue:

Insertion: OIr g n)
Highe.., .jrity extraction: O(log n)
Re-.J ',.jhest priority: 0(1)
Cdietion: O(n) (Change is Deletion + Insertion = O(n)).

Unc4r normal operation of the sporadic server, all operations on the queue
are either 0(1) or O(Iog n), thus very efficient. Only the detach operation uses
deletion (O(n)), but this is a rather infrequent operation. Although this imple-
mentation of a priority queue does not preserve the order of arrival for ele-
ments of the same priority, this feature is not needed for the replenishment
queue.

The sporadic server manager task has three entries. The most important entry is named re-
quest, and is called by aperiodic tasks (through the request procedure) each time an aperiodic
request has to be processed. The second entry, named purge is only used when an aperiodic
task no longer wants to operate under the control of its sporadic server, and issues a call to
detach; in this case, all references to the corresponding sporadic server control block, which
are in the form of pending replenishment operations, must be eliminated from the replenish-
ment queue to avoid erroneous behavior when the replenishment time is due. The third entry,
finish, is used to make the sporadic server manager task complete its execution.

The sporadic server manager task waits for these entries inside a select statement which also
has a delay alternative. The delay alternative is set to the first replenishment time due, which
is obtained by reading the highest priority element from the replenishment queue (unless it is
empty, in which case the manager task only waits for one of the entries to be called). When
this delay has expired, a call to the replenish procedure is issued to replenish all due tickets.
The select statement is executed inside an endless loop. The basic structure of the sporadic

CMU/SEI-91-TR-26 25

server manager task is shown in Table 8. The request process and replenishment actions will
be discussed with more detail in the next sections.

Table 8 Sporadic Server Manager Task

task body SporadicServerManager is

replenishmentqueue : Priority-queue; -- Priority is time

procedure Replenish;

procedure ConsumeTickets (...);

begin

loop

select

accept request (...) do

if tickets available then

obtain Replenishment-Origin;

ConsumeTickets (ReplenishmentOrigin, ...);

set to normal priority;

else
set to background priority;

end if;

end request;

or

accept purge (ThisSS) do

eliminate ThisSS from replenishment queue;

end purge;

or

accept finish;

exit;
or

when replenishmentqueue not empty ->

delay until next replenishment time;
Replenish;

end select;

end loop;

3.2.5 Processing of an Aperiodic Request

Each time an aperiodic request needs to be processed, the aperiodic task makes a call to re-
quest this call leads to the execution of the request accept statement. If enough execution
tickets are available, the replenishment origin is obtained as the maximum of the requesttime
and the time at which this sporadic server was last replenished; then, the appropriate amount
of execution capacity is consumed by calling the procedure ConsumeTickets, which per-
forms the actions shown in Table 9. When tickets are consumed, a replenishment must be in-

26 CMU/SEI-91-TR-26

Table 9 Consumption of Execution Time

procedure Consume-tickets (Thisss, amount, ReplenishmentOrigin) is

begin
decrease This ss.available tickets by amount;

schedule replenishment at Replenishment-Origin + This_ss.period;

serted in the replenishment queue for some time later. The replenishment time, according to

the policy being used, is set one period after the supplied replenishment origin.

3.2.6 Replenishment Procedure

This procedure checks which of the replenishments found in the replenishment queue are due
at the present time and performs a replenishment action for each of them. The replenishment
action (Table 10) consists of extracting the first element from the replenishment queue and in-
creasing the available sporadic server execution time by the amount that was consumed when
the replenishment was scheduled. Once the available_tickets variable has been updated, it is
necessary to check if the sporadic server is in the background state, with an aperiodic request
pending or incomplete. If so, and if there are enough tickets, the sporadic server state must be
switched back to normal priority so that the aperiodic task can proceed at its assigned priority
level; also, the corresponding number of tickets must be consumed and a replenishment must
be scheduled for the consumed tickets.

Table 10 Replenishment Action

procedure Replenish is

begin

while tickets to replenish loop

dequeue from replenishmentqueue;

increase available tickets;

if task's priority - background and then

enough tickets are available then

Consume tickets (...);

increase task's priority to normal level;

end if;

end loop;

CMU/SEI-91-TR-26 27

3.3 Optimization of the Sporadic Server
The only external requirement for the sporadic server implementation previously presented is
that it must have access to the mechanism for dynamically changing the task priorities. How-
ever, there are Ada implementations that provide optimized mechanisms for task synchroni-
zation. These implementations could be used to implement the sporadic server, significantly
improving the performance by avoiding unnecessary context switches among tasks. Two of
these optimizations are passive tasks and semaphores.

3.3.1 Passive Task Optimization

The passive task is a compiler optimization provided by some Ada vendors. A passive task
behaves exactly like a normal Ada task but it may dramatically improve performance for all
tasking operations. The basic idea of the passive task is that the compiler will not generate a
"real" task for it, but rather a set of procedures whose execution is protected by a semaphore.
In this way, a rendezvous with such a task is in practice implemented through a pair of sema-
phore lock and unlock operations and a procedure call. Semaphores can be implemented ef-
ficiently, for example by only requiring a kernel call when they are locked. There will be a con-
text switch cost only when a calling task fails to lock the semaphore, and in most cases this
will not be the case; therefore, the semaphore mechanism allows a very fast operation.

Of course, this optimization can only be applied to tasks exhibiting a special structure; in par-
ticular, no operations are allowed that require the existence of a real task, such as delay state-
ments, entry calls, etc. The most suitable structure for this optimization is a task that is built for
protecting access to a shared resource and executes only while rendezvoused with another
task. This task is usually written as a select statement inside an endless loop, with different
accept entries.

Unfortunately, the sporadic server manager structure that was presented in the previous sec-
tion does not conform to this restriction. It does not always execute inside a rendezvous, as
there is a delay alternative in its select statement that enables the task to execute on its own.
Therefore, the passive task optimization cannot be done directly on this task, and each call to
it must be a full Ada rendezvous, which is generally a high-cost synchronization primitive.

The only independent operation that this task has to perform is to wake up a sporadic server
task that is executing at background priority, when new tickets become available. All the rest
of the operations could be done inside the accept statements, while in rendezvous with other
tasks (i.e., the aperiodic tasks calling the sporadic server utilities). In fact, if aperiodic events
arrive at a low rate and there are tickets available almost always, the number of times that this
wake-up operation must be performed, and consequently the number of unavoidable full con-
text switches, is very small. Furthermore, for sporadic tasks with a minimum interarrival time
and under the control of the appropriate sporadic server, no wake-up operations are needed:
if the replenishment period is set to be less than or equal to the minimum interarrival time, there
is guarantee that when a request arrives the execution capacity as already been replenished.

28 CMU/SEI-91-TR-26

Consequently, the sporadic server manager task can be written as two separate tasks. The
first task manages the ticket consumption and replenishment and is only executed while in ren-
dezvous with other tasks, and therefore can be optimized or made passive. The second task
is a non-optimizable task that keeps track of the time instants at which sporadic server tasks
must be awakened, to be switched from background to assigned priority. Notice that this non-
optimizable task needs to carry out only those replenishments that are capable of waking up
a task. The rest of the replenishments are performed by the optimized task, not at the time
when they are due, but at the time when they are needed: the instant at wnich the requestentry
is called by each sporadic server task.

The basic structure of the optimized sporadic server package is shown in Figure 9. There is a
new task, called the TimeManager; which is non-optimizable and keeps track of all the wake-
up operations that need to be done. The sporadic server manager task has now one more en-
try, wakeup, which is called by the time manager task when a wake-up operation is needed.

The time manager task must have the highest application priority in the system. The basic data
structure tnat it handles is the wakeup queue, which stores the sporadic server tasks that
must be awakened and the wake-up times. Just like the replenishment queue in the non-opti-
mized sporadic server package, it is a priority queue.

Initialize SSintili

loop

selectRequest
accept request

or accept wakeup
or accept purge Detach SS.initializ
or accept finish

end loop; Finlsh

[i~~ager 7

aelect \ task N

accept activate task... .. .

or accept purge SS.initializ
or accept finish
or delay; .. .wakeup.

end loop;

Figure 9 Structure of the Optimized Sporadic Server Package

CMU/SEI-91-TR-26 29

The code of the time manager task is basically a select statement inside an endless loop. The
select statement waits for three entries, activatewakeup, purge, and finish, and has a delay

alternative. The delay expiration is set to the time at which the next wakeup operation must be
performed, which is obtained by reading the top of the wake-up queue (if it is not empty). The
activatewakeup accept statement inserts the wake-up operation into the queue. The purge
accept statement has to delete any references to the specified sporadic server control block.
The entry call named finish is used to terminate the task. The pseudocode of the time manager
task is given in Table 11.

Table 11 Time Manager Task

task body TimeManager is

wakeup queue : priority queue; -- Priority is time;

begin

set highest priority;

loop

select

accept activatewakeup (time-due, ThisSS) do

enqueue (time-due, ThisSS) into wakeup_queue;

end activatewakeup;

or

accept purge(This SS) ...

or

accept finish;

exit;
or

when wakeup queue not empty >

delay until next wake up time;

dequeue from wakeup queue;

SporadicServerManager.wakeup;

end select;

end loop;

The time manager is called by the request interface procedure (Table 12), which executes un-

der the environment of the aperiodic task issuing the call. It is only called when the sporadic
server manager has found that there are not enough tickets to process the request. The wake-
up time is supplied by the sporadic server manager. The rest of the interface procedures are
basically the same as in the non-optimized sporadic server.

The sporadic server manager task (Table 13) shows a different structure than the non-opti-

mized version. Instead of using a general replenishment queue, a local replenishment queue
is stored in each sporadic server control block to keep track of the replenishments of that par-
ticular sporadic server. The reason for this is that now tickets are rnly replenished when they

30 CMU/SEI-91-TR-26

Table 12 Request Procedure In the Optimized Sporadic Server

procedure request(This_SporadicServer,RequestDuration,Request_Time) is

new_priority DYNAMICPRIORITIES.PRIORITY;

wakeup-time CALENDAR.TIME;

begin

SporadicServerManager. request (This Sporadic_server,

request-duration, request-time,

newpriority, wakeup time);

if new-priority - background then

TimeManager.activate wakeup (wakeuptime,

ThisSporadicServer);

end if;
Drop task's priority to new_priority;

are needed, i.e., when the aperiodic task makes a call to request or when a wakeup operation

must be performed. In these two circumstances, the particular sporadic server which has to

be replenished is supplied in the call, so only those due tickets that are needed by the partic-

ular sporadic server making the request or involved in the wakeup operation must be replen-

ished. Because the replenishment period of the sporadic server does not change and all the

replenishments are scheduled in order, the local replenishment queues need not be priority

queues, just normal FIFO queues.

When the request accept statement is executed in a particular sporadic server, if there are no

available tickets and the sporadic server is switched to background priority, the wake-up time

must be calculated and returned to the request procedure, which in turn will call the Time M-

anager to schedule the wake-up operation. The wake-up time is obtained from the local re-
plenishment queue, by reading its elements, starting from the earliest replenishments, and

checking when there will be enough tickets available.

The replenishment procedure is almost the same as in the non-optimized sporadic server, ex-

cept that now it only applies to a particular sporadic server.

3.3.2 Semaphore Optimization

There are some Ada compilers that do not offer a mechanism like the passive task optimiza-

tion, but do offer other high-speed synchronization primitives such as semaphores. In this

case, the optimized sporadic server can be ported to this paradigm by just changing the opti-
mized sporadic server manager task to a set of procedures guarded by a semaphore.

Each of the accept statements in the optimized sporadic server manager task must be con-

verted to a procedure, and instructions for locking the sporadic server semaphore at the be-

CMU/SEI-91-TR-26 31

Table 13 Optimizable Sporadic Server Manager

task body SporadicServerManager is

local replenishmentqueue : normal queue in each ss ctrl block;

begin

loop

select

accept request (ss cb, requestduration, requesttime,

new_priority, wakeuptime) do

replenish (sscb);

process the request and obtain

newpriority and wakeuptime;

end request;

or

accept wakeup (sscb) do

replenish (sscb);

end wakeup;

or

accept purge (...)

end select;

end loop;
end Sporadic_ServerManager;

ginning of each procedure and unlocking it at the end, must be inserted. In this way, a common
synchronization paradigm such as the semaphore can be used to achieve the same optimized
behavior of the passive task.

3.3.3 Static Memory Allocation

In the previous implementations, the sporadic server control blocks have been allocated dy-
namically (with the Ada construction new), and a pointer of access type has been used as the
sporadic server parameter pointer. In many real-time programs, the use of dynamic memory
is not recommended, because it shows unbounded time behavior and creates the possibility
of a critical task running out of memory. For this reason, the sporadic server package has also
been implemented using only statically allocated memory. As current Ada does not allow
pointers to static data structures, the static memory sporadic server has been implemented
using an array of sporadic server control blocks, or parameter variables. This array is initially

empty, and when each sporadic server is created one of its elements is allocated. When a spo-
radic server is deallocated, the array element is marked as empty, so that it can be used again
by another sporadic server. The pointer to the sporadic server, which is a private type variable
returned to the aperiodic task by the initialize procedure, is now an index to the array element.

32 CMU/SEI-91-TR-26

The structure of the sporadic server package is basically the same as before, except for the
different references to the sporadic server control blocks and for a new entry that is added to
the sporadic server manager task (Table 14) to manage the creation and deallocation of spo-
radic servers in a coherent way.

Table 14 Static Storage Sporadic Server

package Sporadic-Server is

private

type parameters is an index to an array of ss control blocks;

end Sporadic-Server;

package body Sporadic-Server is

SS : array (parameters) of SScontrolblock;

task Sporadic_S¢ -verManager is

entry init (ss cb : out parameters);

end SporadicServerManager;

task body SporadicServerManager is

begin

loop

select

accept init (ss cb) do

ss cb :- index to free slot in SS array;

end init;
or

end select;

end loop,
end SporadicServerManager;

3.4 Sporadic Server Code

The code for the Ada task sporadic server, in each of its implementations, can be obtained
from the Rate Monotonic Analysis for Real-Time Systems Project (RMARTS) at the Software
Engineering Institute.

CMU/SEI-91-TR-26 33

34 CMU/SEI-91 -TR.26

4 Library-Level Sporadic Server in POSIX

4.1 Real-Time and Threads Extensions to POSIX
The purpose of the IEEE Standard Portable Operating System Interface for Computer Envi-
ronments (POSIX) [14] is to define a standard operating system interface and environment
based on the UNIX 1 Operating System to support application portability at the source level. In
this way, systems implementors and application software developers can work independently,
and portability across a wide range of implementations can be accomplished for both the op-
erating system and the applications.

Since the POSIX interface does not support applications with real-time requirements, exten-
sions to the 1003.1 standard have been proposed and are currently in the standardization pro
cess [15]. The IEEE Standard P1003.4, Realtime Extensions to POSIX, defines in its current
draft a minimum set of the interfaces required to make POSIX usable to real-time applications
on single processor systems. The specific functions covered in this draft of the standard in-
clude:

Priority Scheduling: Several possibilities, among them a preemptive sched-
uler with no fewer than 32 priority levels.

Synchronization: Binary semaphores.

Memory Locking: Processes can make their address space resident in
memory.

Shared Memory: Processes have independent address spaces, but there
are mechanisms defined in the interface to share
memory.

Clocks and Timers: Time-related functions that provide enough resolution
for real-time applications.

Message Passing: An interprocess communications (IPC) interface, allow-
ing asynchronous communication between processes.

Input/Output: Synchronous and asynchronous I/O.

Real-Time Signals: An extension to POSIX signals to improve determinism.

Another interesting extension to POSIX from the real-time point of view, which is also in the
standardization process, is the Threads Extension for Portable Operating Systems (IEEE Std.
P1003.4a) [16]. This standard provides interfaces to support multiple threads of control in each
POSIX process; all threads share the same address space. The scope of this interface is sin-
gle-processor or shared memory multiprocessor systems. Threads extension provides an in-
terface to light-weight mechanisms to support very efficient implementations of logical or phys-

1 UNIX is a registered trademark of AT&T.

CMU/SEI-91-TR-26 35

ical concurrency for real-time systems. In particular, the threads extension is very important
for small embedded systems; an application environment profile (AEP) for such systems is be-
ing designed; the AEP will define which options are needed and not needed.

The interest in the threads extension does not come only from the real-time community. Time-
sharing multiprocessor systems are also interested in this extension because of its scope.
Some data-base management applications or window environments, too, could benefit from
this kind of lightweight threads of control, as opposed to the heavy-weight POSIX (or UNIX)
process model.

Some of the most important functions covered in the current draft of 1003.4a are:

Thread Management: Creation, termination, and cancellation of threads within
a single process.

Priority Scheduling: Preemptive scheduler with several options.

Synchronization: The paradigms defined by the interface are the mutex,
for mutually exclusive access to shared resources, and
condition variables (conditional critical sections), for
waiting and signaling between threads. Priority inherit-
ance protocols have been added as options to the inter-
face.

1003.4 Mechanisms: Also, all the mechanisms availabie for processes under
the real-time extensions, are available for threads (IPC
message passing, binary semaphores, POSIX signals,
etc.).

4.1.1 POSIX and RMS

Some interfaces necessary for the RMS scheduling algorithms already appear in the Standard
1003.4a. In particular, priority scheduling, the processor allocation scope, and some appropri-
ate synchronization protocols already appear in Draft 5 of the standard [16]. The priority inher-
itance protocol and priority ceiling protocol are included as options in the mutually exclusive
synchronization paradigm that has been defined for the POSIX threads.

Unlike the synchronization protocols, the sporadic server is not yet included in the 1003.4a
standard. In order to facilitate its inclusion in this standard, a proposal has been made to define
an interface that is compatible with both a kernel-level implementation and a library-level im-
plementation. The current threads extension defines interfaces for a priority preemptive
scheduler, and also provides an interface for dynamically changing the threads priorities.
Therefore, the application-level sporadic server that has been introduced in this paper can be
directly implemented at the library level. If the interface that is presented in this paper is ap-
proved, it will allow the implementor to decide at which level he or she wants to implement the
sporadic server support, while the application developer can still write portable code that is
functionally independent of the actual implementation. On the other hand, if the sporadic serv-

36 CMU/SEI-91-TR-26

er interface is not included in the standard, the application-level sporadic server presented in
this paper can still be implemented by the application developer.

The library implementation preserves all the important characteristics of the sporadic server
which make it so useful for real-time systems. Its major advantages are its simplicity, and the
fact that there is no penalty for applications that do not need to use the sporadic server; the
main disadvantages are more overhead for the aperiodic thread and a worse average case
performance. For those hard real-time systems with very rigid timing constraints, an imple-
mentation may choose the kernel level, which will provide a more efficient sporadic server
mechanism, at the cost of a more complex kernel and a slight penalty in the overhead of the
rest of the threads.

The library-level sporadic server that is proposed in this paper is quite similar to the Ada im-
plementation. It provides a full version of the sporadic server, with the same worst-case per-
formance as the normal sporadic server, at the affordable cost of losing some average case
performance. Therefore, as we mentioned in Section 2.3, the simplified sporadic server can
manage soft deadlines as well as guarantee the response to aperiodic events with hard dead-
lines.

In the remainder of this section, we briefly present the proposed sporadic server C-language
interface, and the general structure of an aperiodic thread using this interface. We also present
the pseudocode of a library-level implementation of the sporadic server, using the current
1003.4a interface as defined in Draft 5 of the standard [16]. Finally, in Appendix A we present
the proposed POSIX interface for the sporadic server, using the terminology defined in this
standard.

4.2 Using the Library-Level Sporadic Server

4.2.1 Data Structures

Each aperiodic thread that executes under the control of a sporadic server must initialize it and
use it through the function calls that appear next. In all these calls, the user must supply a
pointer to a data structure called the sporadic server control block. This pointer is initialized
during the initialization call and updated in subsequent calls to the sporadic server functions.
The pointer, a variable of the type named pthread ss_t, is a record (struc) whose fields are
implementation dependent, and store the basic sporadic server parameters: period, budget,
priority levels, execution capacity, etc.

4.2.2 Initializing and Detaching Sporadic Servers

The sporadic server is initialized through a call to pthread ss iniO, in which its parameters,
the replenishment period, execution budget, normal priority, and background priority, are set.
The arguments of this function are:

CMU/SEI-91-TR-26 37

int pthreadss_init(pthread ss t*ss,

struc timespec*period,

struc timespec*budget,

int normal_priority,

int backgroundpriority)

where timespec* is a pointer to the POSIX data structure that describes a time value.

When the initialized sporadic server is no longer necessary, a call may be issued to
pthread ss detach(, to eliminate any internal references to the corresponding sporadic
server and to deallocate its storage space. The function header is:

int pthread ssdetach(pthread ss t*ss)

4.2.3 Arming and Requesting the Sporadic Server

While the interface described in the previous section would be enough for a kernel-level im-
plementation of the sporadic server, two other functions are needed to make the library-level
implementation possible. These functions can be chosen to be null in a full kernel-level imple-
mentation.

The first function, pthread ss arm), is necessary to initiate the wait for the aperiodic event.
As the replenishment time must be set to one period after the arrival of the aperiodic request,
the aperiodic thread must wait for this event with a priority level higher than the priorities of any
other threads in a library-level implementation. As the sporadic server thread is in a wait state,
although its priority is high, the blocking effect on the rest of the threads is very low because
as soon as the aperiodic request arrives, the thread's priority is lowered to the appropriate val-
ue. The function header is:

int pthreadss_arm(pthreadsst*ss)

The second function needed in the library-level implementation is the start of the aperiodic pro-
cessing, pthread ss requesk). As soon as the aperiodic request arrives, this call is issued to
determine the aperiodic thread's priority, normal or background, according to the available
tickets, and to manage the replenishment policy.

In this call, the worst-case execution time of the aperiodic processing must be supplied. This
time can be different from one execution to the other, depending on the kind of event being
processed. A kernel-level implementation may choose to use this worst-case execution time
or the actual execution time as the corresponding amount of consumed execution time. In the
latter case, it may also choose to signal an error when the actual execution time exceeds the
given worst-case bound. The arguments of this function are:

int pthread ssrequest (pthread ss t*ss,

struc timespec*request_size)

38 CMU/SEI-91-TR-26

4.2.4 User Code for an Aperiodic Thread

Given these functions, the user code for the aperiodic thread should have the structure shown
in Table 15. The piece of code named "wait for aperiodic event" must be kept very small, ide-

Table 15 Pseudocode of an Aperiodic Thread

/* Begin aperiodic thread */

#include <sys/timers.h>

#include <sporadic-server.h>

declare sporadic server vars. (sserver,period,budget,requestsize);

perform user initialization;

pthreada 8 init (&sserver, period,budget, normalpri, backgroundpri);

while (1) f

pthread_s_arm(&sserver);
wait for aperiodic event;

pthread as8request (&sserver, request size);

process the event;

/* end while */;

ally just a few instructions, because in a Jibrary-level implementation it will execute at a high
priority and, therefore, its duration will be blocking time for the rest of the threads.

4.3 Library-Level Implementation of the Sporadic Server

In this section, we present the pseudocode of a library-level implementation of the sporadic
server as an example of the simplicity of such an implementation. This is not intended as either
a guideline or a requirement for an actual implementation.

In this library-level implementation, a thread with the highest priority in the system manages
all the ticket consumption and replenishment operations of all the sporadic server threads in
the system. This thread is called the sporadicserver manager.

Each sporadic server thread executes the initialization function and then issues a call to
pthread ss arm() each time it has to wait for an aperiodic event. This function assigns the
thread the highest priority in the system, preparing the sporadic server thread to wait for the
event. As a result, the thread waits at a very high priority, but without consuming CPU resourc-
es. Ideally, no other threads should use this priority level.

When the event arrives, the sporadic server thread preempts the current work (because of its
high priority) and issues a call to pthread ss request(). This function activates the sporadic_-
servermanager thread, which takes care of the ticket consumption and replenishment ac-

CMU/SEI-91-TR-26 39

tions, determines and sets the appropriate priority of the thread (normal or background) and
then returns the call. In this way, the sporadic server thread waits at the high priority and, when
the aperiodic request arrives, it sets the replenishment time (if necessary) and immediately
drops the aperiodic thread's priority to the appropriate level, so that the total time spent at the
high priority is very small.

The sporadic servermanager(Figure 10) maintains a queue of replenishment actions and a
list of sporadic server requests waiting to execute. Basically, its structure is a loop in which the
thread waits until a sporadic server requests to execute or a replenishment time has expired.
When it wakes up it determines if there are replenishments to perform and if there are sporadic
server threads waiting. The waiting sporadic server list is protected through a mutex, and each
sporadic server thread is synchronized with the sporadicserver managerthrough condition
signaling. A mutex per sporadic server thread is also used to check and set the thread's priority
in an indivisible way. The pseudocode of the library-level sporadic server appedrs in Tabie 16.
Although this implementation will work on a multiprocessor, it may be better to have one spo-
radic server manager per processor to minimize the contention on such systems.

The optimization presented in the Ada task implementation of the sporadic server can also be
applied here to reduce the number of context switches. In this case, each piece of consumed
execution capacity is replenished not when it expires, but only when it is needed, that is, when
the call to pthread ss request(is issued. Each sporadic server control block will include its
own replenishment queue, which can be a simple FIFO queue. There will also be a wake-up
priority queue, to store all the replenishment operations that imply switching an aperiodic task
from background to assigned priority.

40 CMU/SEI-91-TR-26

1 11at1 tpthreadssreque

while (1.)(

___________________________________pibread ss arm()
wait for event
pthread ss_prc(

pthre -**Inltprocess event

1* pordicSererMangers Goba Vriabls deac

delr h eplenmn queue

/* each elent withreqetie

WaitiagtingMflag,

ss~controlrblockspint

calling thea idm

requst tpe process orvetah

declred te ss list /Litxo/fmuediforesssts /

OMSE-g each2 41mn ihreus~ie

Table 16 (continued) Initialization Functions

/* Function pthread_55 mnit *

int pthroad-sasinit (pthread-st *ss,

atruc timeapec *period,

struc timeapec *budget,

int normalypriority,

mnt backgroundpriority)

static pthroad-once-t ss_manager-pthroad once mnit;
pthread-mutex t *sthread-mutex;

pthread-cond-t *ss-thread-cond;

/* Create the mutex and cond objects to manage the thread*/

pthread -mutex I iit (ss -thread-mutex,pth~read-mutexattr-default);

pthread cond imit (ss-thread-cond, pthread condattr-dofault);

/* Start the sp--radic-server-manager (once) */

pthread-once(&ss_mnanager,&sporadic-server-imit);

initialize private attributes of sporadic server control block

(period, budget, priorities, mutex, condition, owner id ...)

/* End pthread-ss-init *

/* Function spordic server init *

void sporadic-server-imit (

pthread-t *thread;

initialize replenishment queue;

initialize the list of waiting sporadic servers (SS-list);

/* Create the mutex and cond objecis for the sa waiting list*/

pthread -mutex -iit (ss -list -mutex, pthread-mutexattr-default);

pthread-cond create (ss_list_cond,pthzead condattr-default);

/* Start the sporadic-server manager thread *

pthroad-create(thread,pthread-attr-default,

&sporadic server -manager);

pthread -etprio(threadPRIOMAX);

I /* End sporadic server mnit *

42 CMU/SEI-91 -TR-26

Table 16 (continued) Sporadic Server Manager Thread

void sporadic_servermanager ()

while (1)

get next replenishment frci, queue;

/* Wait until replenishment time or ss request */

pthreadcondtimedwait(ss-listcond,sslistmutex,
replenishment-time);

/* Replenish due tickets */

while (there are replenishments due)

replenish tickets;

/* Replenishment Action: Indivisibly

test & increase priority */

pthreadmutax-lock (ssthread mutex);

if (pthrsad gtprio(ssthread)=background p.)

if (availabletickets>-request size) (

decrement availabletickets by request_size;

set replenishment time into queue;

pthreadasetprio(normalypriority, ss-thread);

/* end if */

/* end if */

pthread_ mutox_unicok (ssthreadmutex);

} /* end while */

/* Signal continuation to waiting sporadic servers */

while (there are ssthreads waiting in sslist) f

if (request_type-process) {

/* Determine priority and replenishment actions */
if (available tickets>-request size) {

decrement availabletickets by requestsize;

set replenishment time into queue;
prio:-normalypriority;

} else {

prio:-background priority;

1 /* end if */

else { /*requesttype-detach*/

detach ss from replenishmentqueue;
/*end if*/

/* Lock ss thread mutex, set priority and signal */

pthread mutax-lock (ssthreadmutex);

pthreadagotprio(prio,ssthread);

clear waitingflag;

pthread zmutex unlock(ssthreadmutex);

pthbread__cond.aignal(ss_threadcond);

} /* end while */

1 /* end while */

/* end sporadic server-manager */

CMU/SEI-91-TR-26 43

Table 16 (continued) Sporadic Server Detach Function

/* Function pthread-ss-detach *

int ptl-read &&-detach (pthread es t *ss)

/* Request detach to Sporadic-server-manager *

pthroad-mutax-lock(ss-list-rnutex);

set request type (-detach) and waiting_flag in ss_list;

pthread-mutx unlock(ss-list-mutex);

pthread-cond signa1(ss list cond);

/* Wait for manager continuation signal *

pthroad-mutax-lock (ss-thread.mutex);

if (waiting-flag set) I
pthroad-cond-wait(ss-thread.cond,

ss-thread.mutex);

/* end if */

pthread -mutax -unlock (ss -thread.mutex);

/* end pthread_ss_request *

44 CMU/SEI-91 -TR-26

Table 16 (continued) Sporadic Server Request Function

/* Function pthread ss request *

int pthreadaserequeat (pthread-s t *ss thread

&truc tirnespec *request-size)

1* Request processing by Sporadic server-manager *

pthread-mutex-lock(ss-list-mutex);

set request size and waiting-flag in ss-list;

pthread-mutex-unlock(ss-list-mutex);

pthread-cond signal(ss_list-cond);

/* Wait for manager continuation signal *

pthread-mutex-lock (ss-thread.mutex);

if (waiting-flag set)I

pthread-cond wait (ss-thread.cond,

ss-thread.mutex);

I/* end if */

pthread -mutax -unlock (ss -thread.mutex);

/* end pthread_ss_request *

Table 16 (continued) Sporadic Server Arm Function

/* Function pthread-ssarm ~

int pthread-soarm (pthread-sat *ss-thread)

/* Set priority to high value *

pthroad-mutex-lock (ss-thread.mutex);

pthread -stprio(ss_thread,PRIOMAX);

pthread-mutex-unlock (ss thread.mutex);

/* end pthread-ss-arm

CMU/SEI-91 -TR-26 45

46 CMU/SEI-91 -TR-26

References

[1] L. Sha and J.B. Goodenough. "Real-Time Scheduling Theory and Ada," IEEE Computer, April
1990.

[2] B. Sprunt, L. Sha. and J. Lehoczky. "Aperiodic Task Scheduling for Hard Real-Time Systems."
The Journal of Real-Time Systems, Vol. 1, 1989, pages 27-60.

[31 B. Sprunt, L. Sha.and J. Lehoczky. "Scheduling Sporadic and Aperiodic Events in a Hard Real-
Time System." Technical Report CMU/SEI-89-TR-1 1, DTIC: Ada211344 1989.

[4] B. Sprunt and L. Sha. "Implementing Sporadic Servers in ADA." Technical Report CMU/SEI-
90-TR-6, DTIC: ADA226723, 1990.

[5] B. Sprunt. "Aperiodic Task Scheduling for Real-Time Systems." Ph.D. Thesis, Carnegie-Mellon
University, August 1990.

[6] C.L. Liu and J.W. Layland. "Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment." Journal of the ACM 20 (1), January 1973, pages 46-61.

[7] L. Sha, R. Rajkumar and J.P. Lehoczky. "Priority Inheritance Protocols: An Approach to Real-
Time Synchronization." IEEE Trans. on Computers, Vol. 39, 1990, pages 1175-1185.

[8] L. Sha. "Mode Change Protocols for Priority-Driven Preemptive Scheduling." Journal of Real-
Time Systems, Vol. 1, 1989, pages 243-264.

[91 M.H. Klein and T. Ralya. "An Analysis of Input/Output Paradigms for Real-Time Systems."
Technical report CMU/SEI-90-TR-19, ADA226724, Carnegie Mellon University, July 1990.

[10] J.P. Lehoczky, L. Sha and Y. Ding. 'The Rate-Monotonic Scheduling Algorithm - Exact Char-
acterization and Average Case Behavior." Proc. IEEE Real-Time Systems Symp., CS Press,
Los Alamitos, CA, 1986.

[11] J.P. Lehoczky. "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines." Proc.
IEEE Real-Time Systems Symp., 1990.

[12] R. Rajkumar, L. Sha and J.P. Lehoczky. "Real-Time Synchronization Protocols for Multiproces-
sors." IEEE Real-Time Systems Symp., CS Press, Los Alamitos, CA, 1988.

[13] W. Amsbury. "Data Structures. From Arrays to Priority Queues." Wadsworth, 1985.

114] POSIX 1003.1. "Portable Operating System interface for Computer Environments." IEEE Stan-
dard 1003.1, 1988.

CMU/SEI-91-TR-26 47

[15] POSIX 1003.4. "Realtime Extension for Portable Operating Systems." IEEE Standard P1003.4,
Draft 9, Dec. 1989.

[16] POSIX 1003.4a. "Threads Extension for Portable Operating Systems." IEEE Standard
P1003.4a, Draft 5, Dec. 1990.

[17] J.F. Ready. "VRTX: A Real-Time Operating System for Embedded Microprocessor Applica-
tions." IEEE Micro, Aug 1986, pages 8-17.

[18] ORKID Working Group,. "ORKID Open Real-Time Kernel Interface definition." VITA, Draft 2.1,
Aug. 1990.

[19] Ada Runtime Environment Working Group. "A Catalog of Interface Features and Options for the
Ada Runtime Environment." ACM-SlGAda, Release 2.0, Dec. 1987.

[20] "Ada 9X Requirements." Ada 9X Project Team, Dec. 1990.

[211 "Reference manual for the Ada Programming Language." ANSI/MIL-Std. 1815A, 1983.

48 CMU/SEI-91-TR-26

Appendix A POSIX Sporadic Server Interface
The following functions are defined if symbol _POSIXTHREADS_SPORADIC_SERVER is
defined. They provide the interface to the sporadic server mechanism to be used by any thread
of a process:

pthread ss-init): Initialize a sporadic server to control the calling thread.

pthread ss detacho: Detach all references to the given sporadic server, which is no longer
going to be used.

pthread ss arm(: Arm the sporadic server to wait for an aperiodic request.

pthread ss request(: Initiate the processing of an aperiodic request.

A.1. Sporadic Server Initialization and Detaching

A.1.1. Synopsis

Functions: pthread ss init), pthread ss detach()

#include <sys/timers.h>

#include <pthread.h>

Int pthread ss Init (pthread ss-t *ss,
struc tlmespec *period,
struc tlmespec *budget,
Int normal_priority,
Int background_priority);

Int pthread ss detach(pthread ss t*ss);

A.1.2. Description

The pthread ss init) function initializes a sporadic server with the given budget and period
to control the execution of the calling thread. The calling thread's execution must be limited to
a certain budget during a window determined by the replenishment period. This thread calls
the initialization function at its initialization section. When the execution limit has not been ex-
ceeded in current window, this function, used along with pthread ss arr() and pthread_-
ssrequest), will cause the calling task to be assigned the given normal priority. Otherwise, it
will be assigned the given background priority until new execution time is available for it.

When the calling thread is no longer going to execute under the control of the sporadic server
it can call pthread ss detacho to detach the sporadic server. This call will release all memory
allocated to that sporadic server, eliminate any pending operations with it and then return con-

CMU/SEI-91-TR-26 49

trol to the caller. An implementation may cause pthread ss detach() to set ss to an implemen-

tation-defined illegal value.

A.1.3. Returns

Upon successful completion, pthread ss init) and pthread ss detach() will return 0. Other-
wise a value of -1 is returned, the sporadic server is not initialized, and errno is set to indicate

the error.

A.1.4. Errors

If any of the following conditions occur, the pthread ssinit() function shall return -1 and set

errno to the corresponding value:

EINVAL The value specified by ss is invalid, or one of the specified parame-
ters is invalid. Two of these invalid conditions are: the requested pri-
orities are outside the range of priorities available under the thread's
current scheduling algorithm; the relationship O<Budget<Period is
not true.

EAGAIN The maximum amount of resources needed to manage sporadic
servers has been exceeded.

ENOSYS The implementation does not support the sporadic server.

If any of the following conditions occur, the pthread ss detacho function shall return -1 and

set errno to the corresponding value:

EINVAL The value specified by ss is invalid.

ENOSYS The implementation does not support the sporadic server.

A.1.5. References

pthread ss arm(, pthread ss request()

A.2. Arm Sporadic Server

Function: pthread ss armo

A.2.1. Synopsis

#include <pthread.h>

Int pthread ss arm (pthread_sst *ss);

50 CMU/SEI-91-TR-26

A.2.2. Description

This function arms the sporadic server controlling the calling thread to become ready to accept
an aperiodic request. It returns control to the calling thread, which must then execute the ap-
propriate instructions to suspend the thread waiting until the aperiodic request arrives. This
piece of code, immediately after the call to pthread ss armo and before the call to pthread_-
ssrequest, should be kept very short, ideally just a few instructions, because an implementa-
tion may choose to execute it at the highest priority level and, thereby introducing blocking time
into all the other threads.

A kernel-level implementation of the sporadic server may choose to leave this function null. If
a thread calls this function without a call to pthread ss init having been issued once by this
thread, the behavior is undefined.

A.2.3. Returns

Upon successful completion, pthread ss armo will return 0. Otherwise a value of -1 is re-
turned, the sporadic server is not armed, and errno is set to indicate the error.

A.2.4. Errors

If any of the following conditions occur, the pthread ss arm() function shall return -1 and set
errno to the corresponding value:

EINVAL The specified sporadic server has an invalid value.

ENOSYS The implementation does not support the sporadic server.

A.2.5. References

pthread ss ini), pthread ss request()

A.3. Sporadic Server Processing

Function: pthread ss request()

A.3.1. Synopsis

#include <sys/timers.h>
#include <pthread.h>

Int pthread ss request (pthread ss t *ss,
struc tlmespec *request-size);

CMU/SEI-91-TR-26 51

A.3.2. Description

This function tells the sporadic server controlling the calling thread that an aperiodic request
has arrived, and also provides the worst-case execution time that the processing of the aperi-
odic event may consume, through the argument requestsize. With regard to the ticket con-
sumption and replenishment mechanisms, an implementation may choose to use this value or
the actual execution time. Also, an implementation may choose to check that the actual exe-
cution time is less than or equal to the given worst-case bound.

A kernel-level implementation of the sporadic server may choose to leave this function null. If
a thread calls this function without a call to pthread ss init having been issued once by this
thread, the behavior is u'ndefined.

A.3.3. Returns

Upon successful completion, pthread ss request() will return 0. Otherwise a value of -1 is re-
turned and errno is set to indicate the error.

A.3.4. Errors

EINVAL The specified sporadic server has an invalid value or the request_-
size argument has an invalid value or is greater than the sporadic
server's budget.

ERSIZE The execution time of the processing of the last event by this spo-
radic server exceeded the corresponding request-size argument.

ENOSYS The implementation does not support the sporadic server.

A.3.5. References

pthread ss init, pthread ss arm()

A.4. Performance Metrics

Sporadic Server Arm This is the time interval needed to execute pthread_-
ssarmO. If this function increases the thread's priority,
the new priority must be specified, along with the times
spent by the function at each priority level.

Sporadic server Process This is the time interval needed to execute pthread ss -
request), when no other threads of priority higher than
the background priority of the aperiodic thread are ready
to execute on its processor.

Replenishment Overhead This is the amount of time during which a thread is sus-
pended, counting from the instant at which a single spo-
radic server with lower assigned priority initiates a re-
plenishment action, to the instant it finishes. Metrics

52 CMU/SEI-91-TR-26

shall be provided for both the cases in which the sporad-
ic server was or was not active at its background priority.

CMU/SEI-91-TR-26 53

54 CMU/SEI-91 -TR-26

UNLIMITED, U NCLASSIFIED
SECURrTY OCASSICATION OF TIUS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABI[LITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-91-TR-26 ESD-91 -TR-26

6a. NAME OF PERFORING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONTIORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMEN'I INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F1 962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT

Pittsburgh PA 15213 LEMENT NO NO. NO NO.

11. TITLE (Include Security Cla l;fication)

An Application-Level Implementation of the Sporadic Server

12. PERSONAL ATHOR(S)

Michael GonzAlez Harbour and Lui Sha
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Ma. Day) 15. PAGE COUNT

Final FROM TO September 1991 64
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GRI Sporadic server, rate monotonic scheduling, real-time scheduling

19 ABSTRAJ? (Connue on revee if necessary and identify by block number)

The purpose of this paper is to introduce a sporadic server algorithm that can be implemented as an
application-level task, and that can be used when no runtime or operating system level implementa-
tion of the sporadic server is available. The sporadic server is a simple mechanism that both limits
and guarantees a certain amount of execution power dedicated to servicing aperiodic requests with
soft or hard deadlines in a hard real-time system. The sporadic server is event-driven from an appli-
cation viewpoint, but appears as a periodic task for the purpose of analysis and, consequently, allows
the use of analysis methods such as rate monotonic analysis [1] to predict the behavior of the real-

(please turn over)

20. DISTRIBtTrON!AVAILABUITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASS/91ED/UNEIMIrED E SAME AS RPTf DTIC USERS UW Uclassified, Unlimited Distribution

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22- OFFICE SYMBOL

Charles J. Ryan, Major, USAF (412) 268-7631 ESD!AVS (SEI

DD FORM 1473.83 APR EDITION of I]AN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF T1 IIS

A\BSTRACT --eontnued from page one, block 19

time system.

When the sporadic server is implemented at the application-level, without modification to the
runtime executive or the operating system, some of its requirements cannot be met strictly and,
therefore, some simplifications need to be assumed. We show that even with these simplifica-
tions, the application-level sporadic server proposed in this paper has the same worst-case per-
formance as the full-featured runtime sporadic server algorithm, although the average case
performance is slightly worse. The implementation requirements are a runtime prioritized pre-
emptive scheduler and system calls to change a task's or thread's priority. Two implementations
are introduced in this paper, one for Ada and the other for POSIX 1003.4a, Threads Extension
to Portable Operating Systems.

