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1 Introduction

This is the second in a series of three papers dealing with the time rates of
generalized strain tensors. The main results of Part I (Scheidler [6]) may be
summarized as follows. Let U = I Aiu 10u, and V = E3= Aiv,®v. denote
the right and left stretch tensors, respectively, corresponding to a C2 motion.
Here {A.} are the principal stretches, {ui} is any principal basis of U, and
{v,} is the corresponding principal basis of V. Let R+ denote the positive
reals. Then for any C' function f : R+ --+ R, the material time derivative of
f(U) - Z3I f(A1 )u 0 u, and the Jaumann rate of f(V) = _ f(A1 )v, ® vi
are given by the component formulas

3

f(U). = P(A,A)D,.,u, CU 1 . (1.1)
t'3=1

3

f(V). = F(Aj.Aj)D,v, v,. (1.2)

where

F(A,. A,) F(A,. A,) = A, .f'(A,) if A, = Aj , (1.3)

2(A, A f(A,)- f(A,) if.A A.,7 (1.4)F/X,.X -A, + .7j A, - Alj

A+A' f (A) -f (A)

F (A,,A ) - f-A, A, - A, (1.5)
A, + Al A, - A) ifA A7

and {D,,} are the components of the stretching tensor D relative to {v,}.
Recall that the Jaumann rate f(V) ° is related to the material time derivative
f(V) by

f(V)= f(V) ° + Wf(V) - f(V)W, (1.6)

where W denotes the spin tensor. When f(1) = 0, f'(1) = 1 and f' > 0.
f is called a strain measure, and f(U) and f(V) are called the generalized
Lagrangian and Eulerian strain tensors, respectively, corresponding to the
strain measure f.

Because of their simplicity these formulas are useful in theoretical analy-
ses, as demonstrated for the formula (1.1) by Hill [3,4]. On the other hand,
to actually compute f(V) ° , say, for a given motion from the formulas above
requires the calculation of the eigenvalues and eigenvectors of V at each place
and time. Hence it would also be useful to have a simple expression for the
tensor f(V) ° directly in terms of the tensors V and D, or in terms of the left
Caichv-Green tensor B and D. Unfortunately, as we will show in Part Ill.
the coefficients in such basis-free formulas are extremely complicated when



the principal stretches are distinct. Thus we are led to seek simple approx-
imations to the basis-free formulas for f(U)" and f(V) ° . In principle, these
approximate formulas could be derived from the exact basis-free formulas
obtained in Part III. However, the complexity of the exact basis-free formu-
las makes this approach impractical. Instead, we will derive the approximate
basis-free formulas from the exact component formulas above. Our approxi-
mate formulas involve an arbitrary parameter A which can always be chosen
in such a way that the formulas provide good estimates when the shear strains
are small, regardless of the volumetric strain and the strain rates.

In Section 2 we introduce some notation and state the assumptions used
in deriving the approximate formulas. In Section 3 we present the main
results of this paper, namely the approximate basis-free formulas for f(U)"
and f(V) ° , together with explicit bounds for the error in these formulas.
In Section 4 we list some approximate formulas involving the spin fl of the
rotation tensor, as well as some approximate formulas for the tensors f(U)
and f(V). The derivation of the results in Sections 3 and 4 is sketched in
Section 5. In Section 6 we apply the general results of the preceding sections
to the logarithmic strain tensors. We give a rigorous proof of an approximate
formula for (In U)' due to Hill [4], and we obtain an improved version of an
approximate formula for (ln V)° due to Gurtin and Spear [2].

2 Notation and basic assumptions

The derivation of the approximate formulas involves the use of Taylor's The-
orem to express f(A,) and f'(A.) (i = 1.2,3) in terms of f and its derivatives
evaluated at some number A. Our results take the general form

r = rU(A) + n(2.1)

where n is a positive integer (usually 1 or 2), r(A) is the basis-free approx-
imation to some tensor r such as f(U)* or f(V)', and

C = max A,- Al. (2.2)
i=1,2,3

We determine explicit bounds on the norm of the term A,,. This allows us to
bound the error in approximating r by F,,(A). Roughly speaking, I%(A) is a
good approximation to r when e is sufficiently small, i.e., when all principal
stretches are sufficiently close to A. Thus for a given set of principal stretches
a reasonable choice for A is the one which minimizes e. However, in view of
the dependence of 17,, on A, the most useful choice for A will generally depend
on the intended applications of the approximate formula: some examples are
given at the end of this section. Unless stated otherwise, we regard A as
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arbitrary. Note that since the principal stretches are time-dependent scalar
fields, in general A, e and the other scalars introduced below are also time-
dependent scalar fields.

Let
Amin _min{ A,, A2 3}, Ama =_ max{A,A 2,AA3 . (2.3)

Then
e = max{A,,,.a - A, A - Amin 1 (2.4)

For any symmetric tensor A let s(A) denote the maximum orthogonal shear
component of A:

s(A) = max(a . Ab), (2.5)
a,b

where a and b range over all pairs of orthogonal unit vectors. Then (Erick-
sen [1, §46])

s(U) = s(V) = (Am.a - Am,n)/2 -- s. (2.6)

Thus s is the largest shear strain corresponding to the stretch tensors U and
V. From (2.4) it follows that

s < (2.7)

for all choices of A, and

< 2s, if A,,,,, < A < A,.,,., (2.8)

Hence. if s is small then the shear strains are small. Conversely, if A satisfies
Am_ < A < A,, and if the shear strains are small, then E is small. Also
note that

_ i - AIII = IV - Ail! _ v'3. (2.9)

Here I" II denotes the norm of a tensor; i.e., for any tensor H,

IIaI- -[tr(HTH)] / 2  , 11/2 (2.10)

where {H,,} are the components of H relative to any orthonormal basis. The
inequality (2.9) implies that e is small iff U and V are close to the dilatation
Al. All the results in this paper are valid under the following conditions:

1. E < A; in view of (2.4) this is equivalent to A > Am.,/2.

2. The motion is C2.

3. The function f : ---, R is C3 .1

'The one exception is equation (4.6), which involves the first k derivatives of f for

arbitrary k. However, only the cases k < 3 will be utilized in the derivation of other
formulaS.
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In particular, we do not require that f be a strain measure, although this is
the case of most interest. The condition E < A is imposed solely to obtain
simple error bounds. For some choices of A this condition is automatically
satisfied, while for other choices of A it imposes a constraint on the principal
stretches (see the examples below).

The condition E < A is equivalent to the existence of a scalar field r such
that

< r A, 0 < r <1. (2.11)

This, together wit, the definition of e, implies that

A, E Ir(A) - [(1 - r)A, (1 + r)A] C R + , i = 1,2,3. (2.12)

The factor 1/(1 - r) will appear in some of the error bounds; hence these
bounds are useful only for those motions for which r is bounded away from
1. Some of our results take a simpler form when expressed in terms of the
scalar

max -- 1 . (2.13)
a=1,2,3 A

By definition (2.2) we have
= Ac. (2.14)

so that (2.11) is equivalent to the condition

< < 1. (2.15)

In the remainder of this section we discuss some appropriate choices for A.
Example I. By (2.4) we see that the value of A which minimizes e and

is
A = (A.,. + Amo.)/2., (2.16)

in which case -A= (A...-A, ,)/2 = s. Thus E is small iff the shear strains are
small. Note that the condition e < A is satisfied for all motions. Equivalently.
(2.11) holds for .- A , , a x - A , m i nr - - (2.17)

r Anmax + Amin
in which case

11 - [ ±_, )' (.

1-r- 2 \Am, +

Thus 1/(1 - r) is bounded iff the motion is such that Amaz/A,,n is bounded.
Example II. At the other extreme, we may simply choose A = 1. When

f is a strain measure this choice yields the simplest expressions for the co-
effcients in the approximate formulas. As we will see in §6. this choice is
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sometimes useful for comparison with other approximate formulas in the lit-
erature. Note that the bounds A,,, < A < A,,. need not hold in this case,
and that the condition e < A reduces to e < 1, which would usually be
imposed anyway. Also note that e is small iff all principal stretches are suffi-
ciently close to 1 iff all principal strains are sufficiently close to zero. Hence
for this choice of A not only the shear strains but also the volumetric strain
must small be to obtain good approximations.

Example III. A natural choice for A is the geometric mean of the prin-
cipal stretches:

A = (A, A2A3 ) 1 / 3 . (2.19)

Then

A = (det U) 1/ 3 = (det V) 1/ 3 = (det F)'!3 = ) = ( , (2.20)

where F denotes the deformation gradient. p and v denote the mass density
and the specific volume. respectively, in the deformed configuration, and PO
and v0 denote the corresponding quantities in the reference configuration.
Thus A may also be interpreted as the volumetric stretch. Unlike (2.16). this
choice of A does not require knowledge of the principal stretches since A can
be determined directly from (2.20). In particular, A = 1 for any isochoric
motion. Since (2.19) implies A,,_ _K A < Ara, it follows from (2.7) and
(2.S) that s < E < 2s. Thus - is small iff the shear strains are small. Note
that the condition 6 < A does not hold in general; e.g., if A, = A2/2 and
A3 = 2A 2. then c = A = A2. However, since a small E is required for good
approximations. for many applications the constraint E < A, or equivalently.
the condition (2.11), is fairly mild. For example, in many solids elastic shear
strains cannot exceed 1%, and density increases by a factor greater than 2
are extremely difficult to achieve. Hence, for elastic deformations of these
solids we may take s < 0.01 and p/p0 -< 2, in which case E < 2s < 0.02 and.
by (2.20), A > 0.79. so that (2.11) is satisfied for r = 0.03.

For A given by (2.19) it is useful to introduce the right and left distortional
strctch tensors U and V, respectively:

11
U, =_- V. (2.21)

By (2.20) it follows that U) and V are unaffected by the dilatational part
of the deformation in the sense that the deformation gradients F and aF
have the same distortional stretch tensors for any a > 0; in particular,
det UJ = det V = 1. The eigenvalues {A,/A} of U and V, and the eigen-
values {A,/A - I) of U - I and V - I. are the principal distortional stretche s
anld strairi.s. respectively. These scalars, and hence f, are also unaffected by
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the dilatational part of the deformation. The condition e < A, or equiv-
alentlv, the condition (2.15), is simply the requirement that the principal
distortional strains have magnitude less than 1.

Example IV. There are other choices for A which retain the interpreta-
tion of a mean stretch. Examples are

A !(A,+A 2 +A 3) =trU trV (2.22)

3 3 3

and
1 , 1/2 1 (tC1/2 _1

A = [A2 + A2 + A 2J (tr C)1 1 (tr B)/2, (9.23)

where C = FTF = U 2 and B FFT = V 2 are the right and left Cauchy-
Green tensors.

3 Main results

Let R denote the rotation tensor and let D denote the rotated stretching
tensor: D = RTDR. Let

a(A) = [f'(A) + Af"(A)] = -[Af(A)]. (3.1)

In particular, a(A) = (1 + f"(1))/2 when A 1 and f is a strain measure.
We will show that

f(U)' = Af'(A) f + E

- - 2f"(A) D + a (A)(DU + UD) + 624 (3.2)

and

f (V) ° =Af'(A)D + EI3

S-A 2 f"(A) D + a(A)(DV + VD) + E2 4P4 (3.3)

Here and below, tk (k = 1,2. ... ,8) is a symmet:ic tensor satisfying

11'd! _< 00 ) IID II (3.4)

for some continuous function Ok. When the terms of order e or 2 are ne-
glected, equations (3.1)-(3.3) yield approximate basis-free formulas for f(U),
and f(V) ° .

For any' tensor field H, we have

Hf(V)-f(V)H = e *

= f'(A)(HV - VH) + E2 412- (3.5)
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Here and below, %Fk (k = 1,2, 3) is a tensor satisfying

1k _ V)k(A) IIHI (3.6)

for some continuous function 10k. Then (3.5) with H = W, together with
(3.3) and (1.6), yield approximate basis-free formulas for f(V)'.

Let 0 denote a tensor-valued function of a nonnegative real variable such
that I!O(h)JI -< Mh for some constant M and all sufficiently smal h > 0.
Then (3.3), and (3.4) imply that f(V)' = Af'(A)D + O(E). Similarly, we
could replace the term 6

2 
4 in (3.3)2 by O(E 2). This is typically the way

that approximate formulas are stated in the literature; cf. the examples in
§6. While such results are of theoretical interest, they are of little practical
use. If we know only that f(V) ° = r, + o(E'), then we may conclude that
IIf(V) ° - r.ii/en- , 0 as E --+ 0, but for a given value of E we cannot
determine the error in approximating f(V) ° by r.. To do this we need
explicit bounds for the remainder terms. These bounds can be obtained from
(3.4) and (3.6) provided that we have explicit for formulas for the functions

',k and Vk- Such formulas are given below.
The stretch tensors U and V are irrational functions of the deformation

gradient F. For computational purposes it would be useful to have formulas
analogous to (3.2)2. (3.3)2 and (3.5)2. but involving the Cauchy-Green tensors
C and B instead. Let

A ,
3(A) - [.f(A) - A.f"(A)]. (3.7)

I(A) E + -f "(A) = A (3.8)

In particular, 3(A) - (1 - f"(1))/2 and I(A) (1 + f"(1))/4 when A 1
and f is a strain measure. The analogs of (3.2)2, (3.3)2 and (3.5)2 are

f(V)" = /3(A) D +- (A)(DC + CD) + 62.5, (3.9)
f(V)° = /(A) D + j(A)(DB + BD) + E2 

6 , (3.10)

and f'(A)
H f(V) - f(V)H_ 2A (HB - BH) + E2 '3  (3.11)

for any tensor field H.
Now suppose that f'(A) 0, as is the case when f is a strain measure.

Let

/(A)- [ + 1-f , ( v(A) =Af'(A) - 2p(A)f(A). (3.12)



In particular. p(A) = (1 + f"(1))/2 and v(A) = 1 when A = 1 and f is a
strain measure. We will show that

f(U)" = v(A) D + p(A)[D f(U) + f(U))] + e247 (3.13)

and

f(V)" v(A) D+[j(A)D+WIf(V)+f(V)[b(A)D-

+E24)8 .  (3.14)

When the terms of order E2 are neglected, (3.13) and (3.14) yield approxi-
mate linear ordinary differential equations for f(U) and f(V). For a given
material point X, integration of (3.14) (with E2

4 8 neglected) requires only
the time histories of A and the stretching and spin tensors corresponding to

X. together with the value of f(V(X, to)) at some initial time to. Note that if
A is taken to be the volumetric stretch (cf. 2.20), then A satisfies the ordinary
differential equatiol

1
A = -(tr D)A. (3.15)

3
To obtain bounds for the error when the remainder terms are neglected

in the formulas above, we need explicit expressions for the functions k and
t;'k in (3.4) and (3.6). Recall the definition (2.12) of the interval 1,(A). Let
f(k) denote the kth derivative of f, and let

fk(A) max Jf(')(x)1. (3.16)

Then we may take

,l(A) = 2f,(A), i 2(A) = f 2(A), (3.17)

If'(A)I
3(A) = 2A + f 2(A), (3.1S)

P I (A) 3(A) = If'(A)l + 2Af 2(A) (3.19)
1 -r

P2(A) = p4 (A) = I A + If"(A)I + ( (3.20)
1 - r A1

'1-5 () = V6 (A) = 3 o2(A)/2, (3.21)

V 7(A) = 8(A) = V2(A) + 2jp(A)jf 2(A). (3.22)

If f" has constant sign. then f 2 (A) may be replaced by f 2(A)/2 in (3.17)2,
(3.18) and (3.19). If f.' has constant sign, then f3 (A) may be replaced by
f 3 (A)/2 in (3.20). In view of (2.14), we may replace c by e in the remainder
term.. provided that the right-hand side of (3.17), and (3.19) is multiplied by
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A, and the right-hand side of (3.17)2, (3.18) and (3.20)-(3.22) is multiplied
by A2 .

For the special case f(x) = x we have f(V) = V, and the results in this
section reduce to

V °  AD + E

= -(DV + VD) + E 2442
A 1

= -D + -(DB + BD) + 2@6, (3.23)
2 4A

and

V = V°+WV-VW

V0 + -(WB - BW) + E2 3, (J.24)
2 A

where11'311 1 1 (3.25)

2A II
114311. A1I@4 1I. -11161! <l1r (3.26)

4 Some additional formulas

Let Q denote the spin of the rotation tensor: Q? = RRT = -2T . In additien
to the Jaumann rate of f(V), the corotational rate f(V)" is also of interest.
Recall (Part I, §5) that f(V)" is defined in terms of fQ and the material time
derivative of f(V) by

f(V)" = f(V)* + Of(V) - f(V)O. (4.1)

Approximate formulas for the term fO f(V) - f(V)O, as well as bounds for
the error in these formulas, are obtained by setting H = 0 in (3.5), (3.6) and
(3.11). Moreover, we will show that f(V) ° may be replaced by f(V)* in (3.3)
and (3.10). Of course, the tensors 44 and 46 in the remainder terms will
generally be different, but they satisfy the same bounds as before. It follows
that f(V)* and f(V) ° agree to within terms of order e2. In fact, we have

f(V)" = f(V) ° + e g4. (4.2)

Here and below. k (k = 1,2, 3, 4) is a symmetric tensor satisfying

I1 lkl <_ k(A)IlDil (4.3)

9



for some continuous function ;k-
Since equations (3.2), (3.9) and (3.13) for f(U)" involve the rotation tensor

R through the rotated stretching tensor D, and since R = f2R, approximate
formulas for Q in terms of W are also of interest. We have

nT = W+Z4 2

= W+ -(DV- VD) +e 2 C
2A1 B

= W+ 1-(D - BD) +e24. (4.4)

For the functions ;k in the above formulas we ma' take

2Af 1 (A) 4 1
- , 2 3 - (4.5)
(I-r) 5 1-r

Finally. we consider some approximate formulas for f(V) and f(U). If f
is C k (k > 1) then

k-i f(1 A
f(V) = Z n! (V - AI) + ekA k  (4.6)

where Ak is a symmetric tensor satisfying

2
[lA d[ -5 2 fk (A) . (4.7)

Recall that fk is defined by (3.16). Let

(A) = f"(A) - (4.8)

A

Then we also have
f'(A) '

f(V) = f(A) I+ -(B - A2 1) + 2 A2 ,
2Af'(A) 'n (A),.

= f(A) I + -f(A - A 2I)+ !( - A2I)2 + A3
3 , (4.9)

where A2 and A3 are symmetric tensors satisfying

3 If'(A)l 1 "4177(A)I 1
IIA211 2 A + f 2(A), IIA311 :S 3 A + f3(A)J (4.10)

To obtain formulas for f(U), simply replace V by U and B by C in (4.6) and
(4.9). Note that ,(A) = f"(1) - 1 when A = 1 and f is a strain measure.

10



5 Derivation of the results

Equations (3.1)-(3.3). (3.4) for k < 4, (3.19) and (3.20) follow from (1.1)-
(1.5) and Taylor's Theorem for f and f' with Lagrange's formula for the
remainder. In deriving (3.2) we have used the fact that {D,.} are also the

components of D relative to {u,}. In deriving (3.20) we have also used the
following result due to Hummel and Seebeck [5]:

f(y) - f() f'(y) + Pf(x) f'(0),

y - x 2 12 (5.1)

for some 9 between x and y.
We illustrate the method by deriving (3.3)2. We must show that

1F(A,.AJ} = A2f" (A) + -[f'(A) + Af"(A)](A, + A J) + 6,3 2 .  (5.2)
(52

where
16',1 _< Y (0 ) (5.3)

for 4 4(A) satisfying (3.20)2. Then substitution of (5.2) into (1.2) yields (3.3)2
with o(A) given by (3.1) and

3

4 6 ,JD,jv, C, v.. (5.4)

Then (3.4) with k = 4 follows from (5.4) and (5.3). Thus it remains to
establish (5.2) and (5.3). We will use the following inequalities, which are
consequences of (2.2), (2.11) and (2.12):

IA, - A7I < 2 , (5.5)

2(1 - r)A < A, + Aj < 2A + 2E < 2(1 + r)A, (5.6)

52 K r/r 2A 2 . (5.7)

Suppose that A, # A7. Then F(A,,A,) is given by (1.5). By (5.5) and (5.6),,

A2 + A2  A +AS j A_ +
A, + Aj 2 +Pl

2A + 1(A, + A, - 2A) + p,,, (5.8)
(A, - A,)2  £2(A, - < (5.9)
2(A, + A,) - (1 - r)A

11



By applying the Taylor-Lagrange formula to f' we obtain

f'(A,) = f'(A) + f"(A)(A, - A) + 1f"'(z)(A, - A)2  (5.10)
2

for some number z, between A, and A. By setting y = A, and r = A., in (5.1),
and using (5.10) and an analogous formula for f'(A,j, we obtain

f (A,) -f (A) f,(A) + i f"(A).(A, + Aj, - 2A) + q,7, (5.11)
A, - A, 2

q, f = if"'(z,)(X- A)2 + 1f"(z 3 )(A,- _A) 2 - - .f'()(A, - A)) 2 . (5.12)
4 4 12

Since z,, z. and 9 all lie in the interval I(A), by (5.12), (5.5), (3.16) and (2.2)
we have

Iq,,t - f 3(A)E2 . (5.13)

From (1.5), (5.8) and (5.11) we obtain (5.2) with

bI = p,,f'(A) + [_(A 5 + A, - 2A) + p.j f"(A)(A, + A, 2A)

+ [(A 1 + A,) + p.,] q,2 (5.14)

Then (5.3). with Y 4(A) given by (3.20)2, follows from (5.14), (5.13). (5.9).
(5.7) and (5.6). A similar analysis shows that (5.2) and (5 3) also hold when
A, = A.. This completes the proof of (3.3)2.

Equations (3.5), (3.6) for k < 2, and (3.17) follow from

3

Hf(V) - f(V)H = Z[f(A,) - f(A,)]H,,v, ® v,, (5.15)

and the Taylor-Lagrange formula for f.
Equations (3.7)-(3.11), (3.4) for k = 5 and 6, (3.6) for k = 3, (3.18)

and (3.21) follew from the corresponding results in terms of U and V, the
identity

V = AI + I - - 1-(V _ AI)2, (5.16)
2 2A 2A (.6

and an analogous identity involving U and C. Equations (3.9) and (3.10) can
also be derived without recourse to (3.2) and (3.3). For example, (3.10) can
be obtained directly from the component formula 1-(5.20)2 with h(x 2 ) = f(x).

2An equation number prefixed by "I" denotes an equation in Part 1.
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Equations (4.6) and (4.7) follow from f(V) = E3=1 f(A,)v, C v, and the
Taylor-Lagrange formula for f. Equations (4.8)-(4.10) follow from (4.6)
and (4.7) (with k = 2, 3), the identity (5.16), and (2.9).

By solving (4.6) with k = 2 for V, substituting the result into (3.3)2, and
using (3.4), (4.7) and (1.6), we obtain (3.14), (3.12), (3.4) for k = 8, and
(3.22)2. Equations (3.13) and (3.22), are derived similarly.

To see that f(V) ° may be replaced by f(V)" in (3.3) and (3.10), use
f(V)" = Rf(U)'RT (cf. I-(5.9)), (3.2). (3.9) and IIR44RTII = 114k1. Equa-
tions (4.2), (4.3) for k = 1, and (4.5), follow from the component formula
I-(5.16). Equations (4.4), (4.5) and (4.3) for k > 2 follow from the component
formula 1-(5.14) and the identity (5.16).

6 The logarithmic strain tensors

Approximate basis-free formulas for (In U)'. (In V)° and (In V)" are obtained
from (3.1). (3.2)2. (3.3)2, (3.4). (3.20). the comments following (3.22). and
the comments preceding (4.2). The results are

(ln U" = fD + z2O, (6.1)

and
(InV) ° = D + E2. (lnV)* = D 23. (6.2)

where the symmetric tensors EOk satisfy

3
11-r _, _ JID [, k = 1.2.3. (6.3)(i- r)4

From (3.5), (3.6), (3.11). (3.17), (3.18) and the comments following (3.22).
we obtain the following results. For any tensor field H,

H(InV)-(InV)H = aqf
1

1
- 2A2(HB - BH) + e'3, (6.4)

where the tensors %P k satisfy

I14 'kd < k IlHII, k = 1,2,3, (6.5)

for
2 1

- ' 2 = t '3 =- • (6.6)
r ( r)

13



Since

(InV)' = (InV)0 +W(InV)- (InV)W

= (lnV)" + 1(InV) - (lnV)n, (6.7)

approximate basis-free formulas for (In V)" follow from (6.2) and (6.4) with

H=WorH=ft.
The approximate formula (6.1) is essentially due to Hill [3,41, although

his derivation is generally valid only for the case of distinct principal stretches.
Hill noted that for f = In, the coefficient F(A,, A,) in (1.1) satisfies F(A,, A1 ) =

1 if i= j and F(Aj, A3 ) = 1 - (A,/Aj- 1)2/6 +... if I #J; cf. I-(6.6) through

I-(6.9). He concluded that (In U)' = D + o(If(U)112) for any strain measure
f, and that the remainder term is unaffected by the dilatational part of the

deformation. Hill did not derive a bound for the remainder term.

Gurtin and Spear [2] proved that

F- I = O(h) & F = O(h) = (lnV) ° = D + 0(h 3 ): (6.S)

they did not derive a bound for the remainder term. Their proof is valid for

any C2 motion satisfying the conditions on the left-hand side of (6.8). We
can easilh recover their result from ours. Indeed, by setting A =- 1 and using

(6.2), (6.3), (2.9) and (2.14). we find that

V - I = O(h) k D = O(h) (In V)0 = D + 0(h3 ) (6.9)

V-I0()& =0() 1(In V)= D±+0(h 3 ).

Then Gurtin and Spear's result follows since, as shown in the course of their

proof, the conditions on the left-hand side of (6.8) imply that V - I = O(h),
D = O(h) and W = O(h). Note that our result (6.9) places no restrictions
on the rotation tensor R or the spin tensor W.

Now assume that A is defined by (2.16), (2.19), (2.22) or (2.23); then given
any x > 0 there is some motion for which A = '. Equations (6.2), and (6.3)

imply that (In V) ° = D + 0(1 2). We claim that this condition characterizes
the logarithmic strain measure in the sense that if f is a strain measure and

f(V)* = D + 0( 2 ) for any motion, then f = In. For by (2.14), (3.1), (3.3)2
and (3.4), we see that this condition can be satisfied iff -A 2f"(A) = 1 and

f'(A) + Af"(A) = 0 for all A > 0. Since f is a strain measure it follows

that f = In. There are a number of weaker conditions which also suffice to
characterize the logarithmic strain measure. By using (2.9) and arguing as

above, we see that if a strain measure f satisfies any one of the following
conditions then f = In:

f(V) ° = D + O(V - A1i1),
f(V) ° = a(A) D + O(i!V - AlI! 2) for some function a,

f(V) ° = D + b(A)(DV + VD) + O(IIV- All! 2 ) for some function b.
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In view of (4.2), we arrive at the same conclusion if f(V) ° is replaced by
f(V)" in the above.
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