
AD.-A2 4 2 070

MoDE: An Object-Oriented 'User

Interface Development Environment
Based on the Concept of Mode

TR90- 028aDTIC July, 1990SC 2L4CT9D

Yen-Ping Shan

OHic bee naPPT ved
nd ;ale it~

91-13529 ,

The University of North Carolina at Chapel Hill
Department of Computer Science
C13#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

A TextLab Report
UNC is an Equal Opport unity/A ffirmat ive Action Institution.

~1 ~ r IA

MoDE: An Object-Oriented User Interface Development
Environment Based on the Concept of Mode

by

Yen-Ping Shan

A Dissertation submitted to the faculty of the University of North Carolina at Chapel

Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in the Department of Computer Science.

Chapel Hill

1990

By

Di-t

Approved by:

:A
.Advisor: John B. Sinith

STATEMENT A PER TELECON /
RALPH UJACHITER ONR/CODE 1133 Reader: Stephen WeissARLINGTON, VA 22217

Nt.ij[10/23/91

Rleader: R ichard Snodgrass

@1990

Yen-Ping Shan

ALL RIGHTS RESERVED

YEN-PING SHAN

MoDE: An Object-Oriented User Interface Development

Environment Based on the Concept of Mode

(Under the direction of John B. Smith)

Abstract

This thesis explores a particular concept of mode that can provide a unified

conceptual framework for user interfaces and can lead to an effective implementation

environment for developing a rich variety of user interfaces.

This research has addressed several important limitations faced by most user

interface management systems (UIMSs). These include:

* Lack of generality.

* Little support for creating and managing the connections between user interfaces

and their underlying applications.

* Lack of support beyond the coding phase.

The major results of the research are the following:

A new user interface development environment, called the Mode Developritnt

Environment (MoDE), was developed. MoDE accommodates an orthogonal design

that decouples the user interface components from each other. thereby increasing

their reusability and overall system generality.

A new connection model was developed that allows strong separation between

the user interface and the application without limiting the communication between

them. MoDE supports the creation and management of both components and con-

nections through direct manipulation.

New concepts and UIMS capabilities were developed to provide support beyond

the coding stage. To support design. a particular concept of mode was developed to

help decompose *h,2 interface into components. To support testing and maintenrla,-.

MIoDE enables the user to run an interface. suspend it at any point. and ins1 ,rt tili

change it.

Acknowledgements

I am deeply grateful to my advisor, Professor John B. Smith. for his guidance.

support and encouragement throughout my years as a graduate student. ie made

me believe I could finish, and helped me do it. I also want to thank the other rnem-

bers of my thesis committee, Professor Frederick Brooks, Professor James Coagins.

Professor Rick Snodgrass, and Professor Stephen Weiss for their valuable comments

and suggestions.

The members of the textlab research group at UNC were all helpful. Particular

thanks to Murray Anderegg, Matt Barkley, Gordon Ferguson, Barry Elledge. Rick

Hawkes, Jieh-Shan Lin, and Don Stone.

I gratefully acknowledge the financial support provided by the National Sci-

ence Foundation (Grant #IRI-85-19517) and the Army Research Institute (Contract

#MDA903-86-C-0345).

I would like to thank my parents who let me know all my life that I could

achieve anything that I aspired to. Finally, I thank my wife Ke-.Jen for her patience.

understanding, and hard work to ensure that I had the time I needed to complete

this work.

i v

Contents

1 Introduction 1

1.1 Problems and Solutions.

1.2 Major Results 3

1.3 MoDE in Use. 4

1.4 Organization of the Thesis......

1.5 A Note to the Reader.....

2 Background 8

2.1 Window Management Svstems.....

2.2 Object-Oriented Programming....

2.3 User Interface Management Systems (IUIMS). 10

2.3.1 Interactive Technique Builders. 10

2.3.2 "'Glue" Support. 11

2.3.3 Graphical Layout. 1:3

2.3.4 Application Semantics First...... 13

2.4 Problems with UIMNSs. 14

V

2.4.1 Strong Separation 14

2.4.2 Poor Support for Linking User Interface and Application . . . 15

2.4.3 Limited Capability 15

2.4.4 Little Support Beyond Coding 15

2.5 Research Goals 16

3 Concepts 17

3.1 MVC and Its Problems 17

3.2 The Concept of a Mode-Based User Interface 19

3.2.1 What is a Mode? 19

3.2.2 Direct-manipulation Interfaces are Modal 20

3.3 The Mode User Interface Framework 21

3.4 A User Interface Component Space and Its Axes 23

3.5 Connection Model 26

3.35.1 A Historical View of Connection Models

3.5.2 The MoDE Connection Model 2S

3.6 Summary 30

4 MoDE: Kernel 31

4.1 The MoDE Event-Driven Mechanism 32

4.2 Basic Classes..... 2

4.2.1 Mode :33

vi

4.2.2 MController :35

4.2.3 SemanticObject :37

4.2.4 MDisplayObject :37

4.2.5 Interactions Among the Four Kernel Classes 38

4.2.6 Designing An Interface with MoDE 41

4.3 A Comparison to MVC framework 41

4.4 Summary 4,5

5 MoDE: Mode Composer 46

.. 1 Mode Composer in Action 46

.5.2 Mode Editing 32

5.3 Connection Editing 5:3

5.4 Library Management 54

5 .5 Discussion 54

5. .I Self-Croation 54

5.3.2 Classes Do Not Make Good Types 5.5

.5.6 Summary 56

6 Experience With MoDE 57

6.1 Generality

6.1.1 \Vhat MoDE (an Create

6.1.2 What MoDE Can Be Extended To Create

Vii

6.1.3 Inappropriate Applications 60

6.2 Productivity 0

6.2.1 Subjects. 60

6.2.2 The Assignment 61

6.2.3 Results 62

6.2.4 Discussion. 64

6.3 Performance. 64

6.4 Summary 66

7 Conclusion 67

7.1 Summary 67

7.2 Future Research 68

A An Event-Driven Mechanism for MoDE 81

A.1I Background. S 2

A.2 Why Event-Driven? . S3

A.3 An Event-Driven Mlec hanism. S 3

A.3.1 Event Generator S4

A.3.2 Event Queue. S4

A.3.3 Event Dispatching and the NIVC framework..

A.4.1 Definition of the Problem........

A.4.2 When to Switch S6

A.4.3 Sandwiching. 6

A.4.4 How to Switch: Case EHP

A.4.5 How to Switch: Case PHE 7

A.5 Discussion 9

B Description of the Kernel Classes 90

B.1 Mode Class. 93

B. 1.1 displayObject. 94

B.1.2 displaying 94

B.1.3 drag support....... 5

B.1.4 scroll support.. 9 6

B.1.5 subMode access 96

B. 1.6 superMode access.. 97T

B. 1.7 layer manipulation. I.. 7

B.1.S layering..................... ...

B.1.9 initialize-release.....

Bib1.1 display box access.....

B.L 1.1 controller access................. 99

B. 1.12 event handling......................99

B. 1 . 1:3 en. .eve .e t .rc s . lii 1

B. 1. 1 .1 sub.%lode insert 'delete......

.x

B.1.15 visibility. 101

B.l.16 bordering . '. 1

B.1.17 buffering.................. 102

13.1.18 sharedStvle-highlight. 10:3

B.1.19 indicating 103

B.1.20 sizing................... 104

B. 1.21 semObj access 10.5

B.1.22 copying 10.5

B.1.23 class methods for: initialization 105

B.1.24 class methods for: instance creation. 10.5

B .2 MController Class 10.5

B.2.1 access. 106

B. 2.2 event handling.......................0

B. 2.3 sharedBeh avior- resize 10T,

B.2.4 sharedBehavior- move.

B. 2.5 sharedBehavisr-indicating. 109

B.2.6 shared. Behav ior- link..... 110

B. 2.7 -haredBehavior- menu. 110

B.2.8 Interrupt handling............ 1

B. 2.!) copying...................... TIL

.. 10 class methods for: instance creation . 112

x

B.2.11 class methods for: access 112

B.2.12 class methods for: Initialize..

B.3 MIDisplay~bJect Class

B. 3.1 transforming......................11)

B. 3.2 initialize- release. 11:3

P. 3.3 accessing 11

B. 3.4 inversion. 114

B.3.5 displaying 115

B. 3.6 buffering. 11.5

B.3.7 testing

B.3.8 display box access I

B.3.9 copying. 116

B.3. 10 class methods for: instance creation 16

B.4 SemanticObject Class. 11(6

B.4.1 access. 117

B. 4.2 initialize- release..... 1

B .4.3 mode attaching........... ,.. 1

B. 4. - drag support.....

B-4.5 Mode-initializations.....

B.-4. 7 connection model support . -.. .

xi

B.4.8 attribute editor..... 1

B. 4.9 class methods for: instance creation...... 1,9

C Videotape 120

C.1 Sample interfaces Built with MoDE. 120f

C.2 MoDE in Use. 12 1

Xl 1

List of Figures

1.1 U sing M oD E 4

1.2 Interactive technique librar,.. 5

1.3 Sample user interfaces created with MoDE 6

3.1 The Model-View-Controller framework IS

3.2 A dialogue box can be v'ewed as a mode with two submodes21

3.3 The structure of a mode 22

3.4 The three space for mode types. Two sample points are shown. On,

for the "ves" button. the other for the --no" button. They share the

same interaction attribute 24

3.5 The button example 25

3.6 Possible inheritance structures for the button example 25

3.7 Reusing the components in a three-dimensional design, as in MoDE. 26i

3.8 Derivations of connection model. 27

.3.!) A decentralized connection model 2

.I Correspondence between the axes and the implementation 3

xiii

4.2 Clipping capability is essential to the interaction in a mode that is

partially obscured by other modes 34

4.3 A simple eventResponses table :3.5

4.4 The relationships among the four kernel classes :39

4.5 A simple example 40

4.6 The responsibilities are partitioned differently in the Mode framework

than in the MVC framework 44

5.1 Editing the appearance of a mode 47

5.2 Showing the semantic object for the display window 47

5.3 System requests permission to create new instance variable for the

connection 48

5.4 Inspect the semantic object 49

5.5 The default action message is buttonPushed: 49

.5.6 The system shows a list of the messages understood by the semantic

object of the display window. 49

5.7 The interface and the application are fully connected 50

5.8 The binary desk calculator is promoted into the interaction technique

library ... 51

.5.9 The calculator is put into a window 51

.- 10 The Mode Composer is used to edit itself

6.1 The three axes span the space of mode-t-pes

6.2 A picture of the window to be built ,2

xiv

7.1 Mlake MoDE a production system 69

A.1 An EHP sandwich

A.2 Loop merging

xv

Chapter 1

Introduction

Creating a good user interface for a system is a difficult task. User interface software
is often large, complex, and difficult to debug and modify. It often represents a
significant fraction of the code, frequently ranging from 40 to 60 percent iFolS8S.

Good interfaces that are easy to use frequently require several cycles of designing.
development, testing, and refining. Consequently, better tools are needed for all

aspects of user interface development, ranging from support of complex. programs to
rapid prototyping.

This thesis explores a particular concept of mode that can provide a unified
conceptual framework for user interfaces and can lead to an effective implementation
environment for developing a rich variety of user interfaces. In this section. the

concept of mode is introduced: it will be defined rigorously and discussed in detail ill

Chapter 3.

Interfaces customarily have states that govern the interpretation of user ac-
tions. These are commonly called modes. Some user interface developers have at-
tributed user confusion to the very presence of modes in interfaces and have defined
the ideal interface as one which has no modes [SIKV82, Tes81]. This dissertation
undertakes to show that modeless interfaces are not desirable and may be impossible.

If one embraces and formalizes the concept of mode, it serves as a unifying,
general, and powerful concept with which to define interfaces. In this dissertation, a
mode is still a state. It is the building block of user interfaces. A mode is defined by
its three attributes: appearance, interaction, and semantics. It is distinguished by an
area on the screen in which at least one of its attributes is different from those of the

modes in its surrounding areas. Modes can be composed to form more cimh,,,

Modes.

From this perspective, everything on the screen is a mode. Thus. mode is the
only building block necessary for building a user interface. The task of designing and
implementing an interface is simplified into identifying the modes in the interface and
composing them together.

To demonstrate that this concept of mode can be used as the conceptual basis
for an effective user interface management system (UINIS), the Mode Derteopmnt
Environment (MoDE) was developed. In addition to this demonstration. MODE also
addresses several limitations found in most UIMSs. In the section that follows, these
limitations are discussed br*. l and MoDE's attempt to address them outlined.

1.1 Problems and Solutions

MoDE addresses several important problems faced by most user interface management
systems (UIMSs). These include:

* generality,

* the connection between user interface and application.

* and support for development activities beyond coding.

Generality
Many UIMSs are limited in the look and feel of the interfaces they can be used tu
create. It is very hard to generate user interfaces not in the style provided. There
are two major reasons for this. First, many UIMSs have a fixed library of interface_
components. The interfaces that can be built with these systems are limited to those
that can be composed from components in the fixed library. Second, most UIMSs are
not orthogonal in design with respect to components: some components can be used
with other components from the library while others cannot be combined (discussed

in Section 3.4).

To address the first limitation, MoDE makes no distinction between system-
provided components and user-created components. Consequently, new interface com-
ponents can easily be included into the library. To address the second limitation.
MoDE provides orthogonality with respect to interface components. Since %1,,D1:
separates appearance. interaction, andt the semantics of a component into t1r,,,, !:I-
dependent objects, new interface components can easily be created hy cnu riic!I[,_,
new combinations of these objects. Thus. the number of possible coniptu,,et> tliht

can be built is greatly increased. Experience with MoDE suggests that it is this or-
thogonal design that contributes most to reuse of interface components. rather than
object-oriented inheritance alone.

Connection between user interface and application
Separating the user interface from the application produces a cleaner and more modu-
lar system architecture. Current methods of separation often limit the communication
between the two and, as a consequence, do not support direct-manipulation interfaces
very well.

MloDE provides an intermediate layer of semantic objects that connects the user
interface and the application. Each interface component is connected to a semantic
object which, in tern, can be connected to the application or to other semantic objects.
Objects in this domain have knowledge of both the user interface and the application.
They form a layer that insulates the effects of changes from both sides.

Support beyond coding
Most UIMSs only focus on the implementation phase of user interface development
and provide very few, if any, tools that can be used in other phases. such as design.
testing and maintenance (discussed in Sections 4.2.6 and 5.2).

The mode concept provides an informal framework in which the user inter-
face developer can specify the interface conceptually from the end user's point of
view. This framework also provides guidelines to help decompose an interface into
components during the design phase.

During debugging and maintenance, the MoDE user can interrupt a running
interface at any point and inspect it. This capability together with the cl-tfarinv
enforced by the mode concept make it easy for an interface system maintainer to
understand the interface and to locate a specific component for modification.

1.2 Major Results

MoDE can be used to produce a wide variety of interfaces. MoDE was used to generate
test interfaces that simulate the major components of the interactions implemented
in Macintosh, NeXT, and SunView (discussed in Section 6.1.1). MoDE was also used
to generated its own interface. Because of its self-creating nature, the MoDE interface
can be edited with itself. Thus, it provides high degree of freedom to user interfa,',,
developers.

MoDE can be used by interface designers, system programmers. and system

3

aflac kqgound, .,i n I I II I I I I I M i

Show Connection~o

Plan Wo Coneti Moo

Frol SiZe Lai

Roam Boo

Figure 1.1: Using MODE.

maintainers. Interface designers can use it to rapidly create interfaces and to test
the designs against end users to collect feedback. System programmers can use its

programming interface to develop applications that support various user interfaces
and to connect them together. System maintainers can use MoDE to understand

a system and to navigate through the relevant portions of the interface and the
application. Sections 3.2 and 35.3 provide more details.

An informal experiment suggests that MoDE increases the productivity of its
users. Two groups of subjects were asked to produce the same interface. On group

uied M0vDE exciusiveiy while the other group used whatever tools they liked ex'ept

MoDE. The group using MoDE completed the assignment significantly faster than
the other group. Section 6.2 reports this experiment.

1.3 MoDE in Use

Since the UIMS issues examined by this research were addressed in the proof-of-

concept system, MoDE, this section gives a taste of how MoDE is used and the kinds

of interfaces it can be used to create 1. It is included here to provide an intuitive frame
of reference for the more general discussion of issues that follows.

Tbe user of M\oDE begins the process of building an interface, Lv ,lra~jii~a

A more complete example is shown in the videotape appendix.

!4

Impacti t m m = .- ,

i a I T | aar

Tet Bu tton
Vanilla MOde

~~~My windc up~c

P lan W lndow co iC Mode Renam e
Remove

rIxed Size LAOGt

Roam Box

Figure 1.2: Interactive technique library.

objects out of the interactive technique library (the right-hand window of Figure 1.1)
and pasting them together. Interface objects are then connected to their respective
semantic objects. Semantic object are then connected to application objects that
provide functional support for the selected interface object or operation. Semantic
objects can also be connected to one another to provide feedback or response without
engaging the application, such as highlighting an object when touched by the mouse-
controlled cursor.

Visual representation of interface, semantic, and application objects can all be
created and manipulated directly. In Figure 1.1, the user has finished the layout and
connection of the interface (which is an upside-down window labeled My window) and
is asking the system to create a subclass of the aBackground semantic object. Since all
interfaces created with MoDE are immediately testable at any stage of development.
there is no need for a separate test state.

After the interface is created and tested, it can be promoted into the library
for future use. or it can be reused as a component in a more complex construction. In
Figure 1.2, the My window interface has been promoted into the interactive technique
library and is represented by an icon. The user can then store it in a file and share
it with other user interface developers.

Figure 1.3 shows several sample interfaces created with MoDE that illustrate
some of its more unusual capabilities. The scroll bar in the top left window (Roam
demo) scrolls the picture continuously. The top right window (Menu demo) has three
types of menus: title-bar menu, tear-off menu. and pop-up menu (not disp!ayed,.
Menu items can be text. foreign characters. bitmap or animated pictures. lit l,)wr
left window ( For Barry) demonstrates the system's capability to incorporgate -,',

rinages and text e(litors. The largest window (OddShape Window) contain> Tw,) 1!1-

windows. both allow the user to create networks of nodes.



C Level at OM

OddShape Windo,.

Figure1.3: Smple ser inerfacshp reaoih oE

Enf~r Le



One particularly unusual feature of MoDE is its capability of supporting arbi-
trarily shaped objects. The oddly shaped subwindow has three nodes in it. The user
is dragging one of the nodes over the trash icon in another window (Level of DM!.
The trash icon opens to provide semantic feedback. Rubber-band lines are drawn
from the dragged node to both node Oddl and node Odd3 to show the connection.
Notice, also, that the oddly shaped subwindov has a hole in it through which the
user can see and work with objects (for example, the node Belowl) underneath the
window. MoDE also supports semi-transparent windows as shown in the right-half

of the oddly shaped subwindow, through which node Below3 is visible.

Thus, MoDE provides an effective environment for user interface development.
It addresses the issues of generality, the connection between user interface and appli-
cation, and support for development activities beyond coding.

1.4 Organization of the Thesis

The next chapter reviews research relevant to this thesis and identifies problems cur-
rently found in UIMS research. Chapter 3 describes the mode concept. Chapter 4
describes the realization of the MoDE system and discusses the orthogonalitv ex-
hibited in its design. Chapter 5 discusses the use of MoDE as an interface building
tool. Chapter 6 evaluates the generality and productivity of MoDE. Conclusions.
contributions and future directions for research are discussed in Chapter 7.

1.5 A Note to the Reader

The videotape discussed in the Appendix C is an integral part of this dissertation.
The reader is encouraged to view the tape before reading further.



Chapter 2

Background

User interface development is currently a very active area of research. Work relevant
to the project described here include the following:

* window management systems,

* object-oriented programming,

o and user interface management systems.

2.1 Window Management Systems

Window management systems (or Window Managers) provide the bases on which
modern user interfaces are built [FoIS6]. They allocate regions of display to client
programs and confine the clients' output to the allocated regions. They also allo-
cate input devices (e.g., keyboard, mouse) to clients and route input events to the
appropriate client program. While different systems address different programming
problems and provide varying capabilities, they all provide an indispensable layer
between user interface software and their hardware platforms. This section provides
a historical perspective of window management systems.

Serious research interest in window management systems began with the Model-
View-Controller (MVC) paradigm [KP88] for Smalltalk [GR83. TeiS6]. The M1VC
paradigm divides a user interface into three parts. The rnodd provides tli se ICnt
of the underlying application, the t'iew is responsible for the visual aspects. a:,i it,
controller interacts with the user. In the Smalltalk implementation. View provides
many of the characteristics of a window. Systems like Sun View [SunS6J and licrosoft

s



Windows [Mic85] provide a variety of useful abstractions (windows, menus. scrollbars)
in the graphical domain. The Andrew system [NISC+86] introduced an asynchronous
communication protocol to su-pport distributed environments. The X Window Svs-
tem [SGS6] addresses the need for network transparency and high portability and
is becoming the most popular window system. Not only is X supported by most of
the hardware vendors, it is also accessible from many programming languages. For
example, CLUE [KOSS] provides a connection between X and the Lisp world. X is
also accessible from C, Ada, Fortran, and C++.

Instead of a set of procedures. NeWS [SunS7] provides a programming language
(PostScript) that serves n iterface between client programs and servers. ( lients
of NeWS can send PostScript programs to the servers and ask the servers to execute
the programs. This improves the flexibility of the system and removes the need for
high volume communication between server and clients. With PostScript. NeWS also
discards the concept of pixel by using a mathematical model to describe displayable
objects. Many believe that NeWS is technically superior to X [RSD+87].

Although diverse, window management systems provide a firm foundation for
user interface development. More and more user interfaces will be built on top of
specific window management systems and will rely on them to provide portability to
different hardware platforms.

Many window management systems are accompanied by toolkits that provide
libraries of interaction techniques. (For example. the X Toolkit [MASS] of the X
Window System.) A programmer uses an interface toolkit by writing code to invoke
and organize the interaction techniques. The disadvantages of using toolkits are that
they provide limited interaction styles and are often expensive to create and difficult
to use.

2.2 Object-Oriented Programming

Object oriented programming is important for interface developing since it provides a
paradigm that helps control the complexity of software through encapsulation. It not
only supports "data-type independent algorithms" [SchSSb] but also promotes reuse
of existing software by inheritance [MeyS7].

Objects provide the user interface developer with a natural unit with which to
organize and manage the display. The ability to modify and reuse existing components
provided by object-oriented programming makes it possible to generate plwoyps

to ovaluate user interface designs without, extensive programmi ng Fr,.' 7'. Nln.%
user interface toolkits/environments have been built using object oriented technie1,-s.



Some of the more important ones include GROW [Bar86], GARDEN [Rei87], CLAM
[CCM87], Glazier [Ale87], TICS [GES7], ThinkerToy [Gut87], Coral [SM88], ET++
[WCMSj8, and InterViews [LVC89].

Due to inheritance, these systems all have higher reusability than traditional
non-object-oriented systems. Still, with the orthogonality concept introduced in Sec-
tion 3.4, reusability can be increased further.

2.3 User Interface Management Systems (UIMS)

Built on top of window management systems and programming facilities (such as
object-oriented programming languages), user interface management systems [OBE+84]
provide support beyond the graphics domain to further facilitate user interface de-
velopment.

UIMSs have been characterized as analogous to database management systems
(DBMS) [KasS2]. Database management systems abstract away the low level details
of physical I/O and present a uniform abstract programming interface to data man-
agement facilities. In the same way, UIMSs abstract away the low level details of the
user interface and provide a uniform programming interface to them. In doing so,
they also provide consistency in the resulting user interfaces.

Because of the large amount of work being done in UIMSs, this comparative
discussion is divided into the four sections. Section 2.3.1 describes LrIMSs for building
interactive techniques. In Section 2.3.2, UIMSs that 'glue" the interactive techniques
together are discussed. Section 2.3.3 provides an overview of UIMSs that use visual

representations for input. Section 2.3.4 intrcduces a. new approach to UIMS that
builds the interface from the semantics of the application.

2.3.1 Interactive Technique Builders

An interaction technique is a way of using a physical input device (such as mouse.
keyboard, tablet, or rotary knob) to input a value (such as a command, number, loca-
tion, or name) and, subsequently, to provide some form of feedback to the user. Sev-
eral UIMSs have been built to help developers create interaction techniques. Squcak
[CP851, a textual language for programming mouse interfaces, exploits concurrent, in-
put from different. inplut dovices. Panther [1IelS7 supports menus. forms and sliders
through tabular specification. Peridot [IyeSS] lets the designer directly manipulate
primitives (rectangles. circles, text, and lines) to construct menus, scroll bars, sliders

10



(graphical potentiometers), and buttons. It also infers parameterized procedures from
the designer's actioi.s to provide run-time behaviors of the interaction technique.

2.3.2 "Glue" Support

Most UIMSs concentrate on combining and sequencing interactive techniques after
they have been created: this is called "gluing." However, they differ widely in how they

approach the task. Green originally identified three principal approaches: transition

networks, context-free grammars, and event languages [Gre86]. More recently, four
additional methods have been suggested. They are object-oriented languages, special
purpose languages, data flow models, and constraint based systems. Distinguishing
characteristics of each of these seven groups are discussed below.

Transition networks (Also called finite state machines) The transition network

model is based on transition diagrams A transition diagram consists of a set of
states and a set of arcs. The states represent the states in the dialogue between
the user and the computer system. Th -LLo in thu diagram determine how the

dialogue moves from one stat- to, another. The dialogue will move from state A
to state B if there is an arc between the two states labeled by the action the user
performed. Different forms of transition networks, including recursive transition
networks (RTN) and augmented trdhiisi.ion networks (ATN), have been used or
proposed as bases for dialogue control [EdmSI, KP83, SBK85, Was85, YH85,
Jac86, MVS88, WeI89, LIBY89]. EDGE [KC88] and State Trees [RumS8] both
use tree-like structures, rather than general graphs, to manage the complexity
of the state diagram.

Systems that support menu hierarchies and networks [KasS2, AMYS7, Con87]
can also be thought as a form of the transition networks, where each menu is
a state and the selection of a menu item moves the system to the next state

(another menu).

Context free grammars The motivation for this model is the view that human-

computer interaction is a dialogue, as in human-human communication. In
the case of natural languages, a grammar describes the language used by the
participants in the dialogue. The natural extension of this idea is to use a
grammar to describe the dialogue between the user and the computer. Systems
that have used context-free grammars include Syngraph [OD83] and Dialogue
Cells [tD85]. As Myers has noted. grammar-based systems are good for textual
command langiiags. but are generally inadequate for graphics-based direct ma-
nipulation interfaces [NlyeS9a].

11



Event languages In this model, input devices are viewed as sources of events. Each
input device generates one or more events when the user interacts with it. The
events are placed on a queue when they are generated. Event handlers remove
the events one at a time from the queue and process the event by generating
as output other events, by changing the state of the dialogue component, or by
calling the application's semantic routines. One of the main advantages of the
event model is its capability to describe multithreaded dialogue s in which the
user can be involved in several separate or communicating dialogues at the same
time, such as, editing two files. The user is free to switch from one dialogue to
another at any point in the interaction. Several UIMSs have been built that
exploit this approach [Gre85, Hi186, TaMSW86, FB87].

Object-oriented languages Systems based on object-oriented languages can han-
dle highly interactive, direct-manipulation interfaces because there is a com-
putational link (via message sending) between the input and the output that
the application can modify to provide semantic processing. GWUIMS [SHB86].,
MacApp [Sch86b, SchS6a], the NeXT Application Kit [NeX88], and ICpak 201
[Ste88] are typical systems. Various forms of object dependency can also provide
consistency among different views of the same data in the interface.

Special purpose languages Several systems have developed new special-purpose
languages for dialogue specification [ApoSS, HSL85, KasS5, KLRS9, ABB89,
Bin88, Gia88, SH89, Ols89, WR82]. Since they are intended for user interface
construction and do not have the additional complexity required for general
purpose programming languages, they are somewhat easier to use. On the
other hand, they require the interface developers to learn a new programming
language. Also, their textual nature is not convenient for describing graphical
user interfaces. Several of them have developed graphical aids on top of their
textural languages to cope with this problem.

Data flow Several visual programming systems based on the concept of data flow
[Smi88, IWC+88] have been used to develop user interfaces. The data flow
model is also used to connect the user interface with the application [DLS89].
Thus, constructing a data flow diagram is equivalent to constructing a user
interface program. Since the data flow diagram is a two-dimensional graphical
notation, it is well-suited for visual programming.

Constraint based Constraints can be used to map between application objects and
graphical objects. They can also maintain the consistency among multiple view
of data. Svstpms like ThingLabll [MBFB89], Coral [SM88], CWS [ELS8], and
the Filter Browser [EMB87] use various forms of constraints.

Tie systems introduced in the above seven categories provide a wide variety of
methods to combine software components into user interfaces. The following section

12



discusses systems that are specifically graphics-oriented.

2.3.3 Graphical Layout

Graphical layout UINISs can also be classified as "glue" systems. They are discussed
separately because they allow interaction techniques to be specified directly using a
mouse. This special feature makes them easy to use. However, some properties of
an interface are not easily specified by visual representations. The limited expressive
capability of the mouse either places a serious restriction on the function of these
systems or requires further programming.

Menulay [BLSS83] allows the designer to place text, graphical potentiometers,
iconic pictures, light buttons, etc. on the screen and see exactly what the user will
see when the application is run. Trillium [HC86] supports the design of user interface
panels for copier machines. BLOX [Rub82], DMS [HH86I, GRINS (ODR85I, GUIDE
[Gra86], and LUIS [MBW89] provide graphical editors for specifying the layout of
the interface components. Prototyper [Sme87] allows rapid design, prototyping, and
testing of interfaces specifically for the Macintosh. Cardelli's UIMS uses direct ma-
nipulation [HHN86, Shn83] to specify geometric constraints among screen objects
[Car88]. The NeXT Interface Builder [NeXSS] combines the power of object-oriented
programming and an easy-to-use direct-manipulation front-end to provide fast cre-
ation of direct-manipulation user interfaces.

2.3.4 Application Semantics First

Unlike most other UIMSs which start the construction of the user interface by spec-
ifying the user interface, the UIMSs described in this section attempt to generate
the user interface from the application's semantics. Recognizing that the data model
underlying an interactive system is important in shaping the overall system [AYMS8].
these systems create a prototype interface by transforming a specification of tihc appli-
cation's semantics. The designer then can modify the prototype interface to improve
it. A common difficulty with this approach is that the UIMS used to generate the pro-
totype often has no knowledge about the modification. Once the prototype interface
is modified, the UIMS can no longer be used to work on the interface.

For example. the Control-Panel Interface [F.1S7] creates graphical interfaces for
control Panels and image-processing applications based upon procedure's parameter
tYpes. The sare approach is adopted by Peridot [.MveSSI. MINE [Ols86], Mickey
[Ols89] and UofA [SG89] generate a prototype user interface from the definition of

13



the semantic commands that the interaction supports. The presentation of the pro-

totype interface is then refined using interface editors. Foley [Fol89] developed a
knowledge-based UIMS that accepts description of the interface in terms of objects.
actions, attributes, and pre- and post-conditions associated with the actions. The sys-
tem performs consistency and completeness checks, and suggests alternative design
strategies. It also provides a number of transformations to the interface specification

in order to create new user interface designs which have the same function as the
original design, but which provide a different view of the function for different groups
of users. Higgens [Hud86] generates support for direct manipulation and Undo/Redo
by having the developer define the application data in a special semantic data model
(attributed graphs).

2.4 Problems with UIMSs

Although UIMSs provide substantial help for building user interfaces, none provides
all of the features that developers need or want. This section discusses some of the
more important limitations.

2.4.1 Strong Separation

Most UIMSs are based on the assumption that the user interface can be strongly
separated from the application. This separation is both physical (separate code files)
and logical (knowledge one component has of another). Separation is attractive since
it promises a cleaner and more modular architecture, the possibility of a single user
interface for multiple applications (or vice-versa), and faster interaction with the user.
Unfortunately, these promises have not been kept in practice. Consider the following
dilemma: in direct-manipulation interfaces, semantic information is used extensively
for controlling feedback, generating default values, checking errors, and recovering.
For example, in the Apple Macintosh user interface, an icon may be dragged with the
mouse. When it is dragged over other icons that can contain it, such as a file folder,
t1 ose icons are displayed in reverse video. This requires semantic feedback from the
application (derived from the types of the icons) while the mouse is tracking. Full
separation results in:

e the duplication of large parts of the application code in the user interface, or

* ad hoc programming to provide the necessary communication between the ap-

plication and the user interface, thus, paradoxically eliminating the separation.

14



Both alternatives are undesirable since they reduce program modularity [Mi188).
Thus, new approachs are needed to achieve valid separation.

2.4.2 Poor Support for Linking User Interface and Applica-
tion

Conventional UINISs provide little support for linking the generated user interface
with the application. Most either provide a procedural interface and leave all the
responsibility to the programmer (as in most of the interface technique builders) or.
slightly better, provide callback mechanisms (as in the Xl toolkit and the NeXT
Interface Builder). For the latter, a typical callback mechanism allows the program-
mer to associate callback routines, which the UIMS calls in response to user actions.
with the user interface objects. This approach can be viewed as a way of storing
knowledge about the application (the routines) in the interface. However, callback
mechanisms do not provide a satisfactory solution to the problem of separation since
they require the application to determine which user interface object is generating
the calls. This imposes a large surface area' at the callback point which not only
blurs the module boundary of the system but also makes it expensive to support fine
grain control [MyeS~a].

2.4.3 Limited Capability

UIMSs are limited in the type of the interfaces they can create [MyeS~b]. Most UINISs
promote one specific style of interaction. It is very hard using them to generate user
interfaces that are not in the style provided. For example, with MacApp it is almost
impossible to implement an interface that uses pop-up menus.

2.4.4 Little Support Beyond Coding

When one builds a good interface, one doesn't just build an interface - one first de-
termines how the user will think about and interact with the application domain.
Thus, the semantics of the application strongly affect the design of the user inter-
face. Similarly. the kinds of information and operations needed to support the user's
interaction with the system stronglv affect the implementation of the system. Most

1Surfice area is defined ,a the number of things that must be understood and properly' dealt

with for one programmer's code to functiLC correctly in combination with another's [Cox86].

1.5



UIMSs only focus on the implementation phase of user interface development and
provide few, if any, tools that can be used in other phases (specification, design and
maintenance). As Miller pointed out, the important problems of interface design and
development can only be solved with tools and working styles that address the whole
interface problem, from initial task analysis and design through system maintenance
[Mi18]. And, they must do so in an integrated way.

2.5 Research Goals

While the research project described here does not address all of these issues, it
addresses many of them. The overall approach was to develop a new proof-of-concept
UIMS that includes:

* A decentralized connection model that provides both sufficient communication
between the user interface and the application as well as low complexity for the
developer.

9 Direct manipulation specification and control for the interface developer for
most operations.

* An open system architecture which allows new styles of interaction to be created
easily and incorporated into the system for reuse.

9 A coherent conceptual model of the user interface that facilitates specification.
design, maintenance phases, as well as implementation.

These issues will be discussed throughout the remaining chapters in relation to
the conceptual basis of the Mode Development Environment (MoDE) and its design

and use.

16



Chapter 3

Concepts

In order to achieve the research goals listed at the end of Chapter 2, MoDE employs
several new concepts. This chapter introduces these concepts. The next chapter
describes how these concepts were realized in MoDE.

Since MoDE is based on the MVC paradigm, Section 3.1 gives a brief overview
of the N\VC paradigm and problems associated with it. Section 3.2 provides a novel
perspective on direct-manipulation interfaces and explains the concept of -mode"
that is central to *MoDE. Section 3.3 extends the concepts introduced in Section 3.2
and describes the general framework on which MoDE is based. MVajor components of
a mode and their inter-relationship are also discussed. In Section 3.4, a type-space for
modes is introduced and the orthogonal properties of mode components are discussed.
Section 3.5 describes the MoDE connection model, extending the concept of semantic
object introduced earlier.

3.1 MVC and Its Problems

The MIodel-View-Controller (MVC) [Ada88, KP88] paradigm was developed by the
people who implemented the Smalltalk user interface in order to isolate functional
units in the user interface. It divides the responsibility for a user interface into three
types of objects.

Model: The model represents the data structure of the application. It contains or
has access to information to be displayed in its views.

View: The view hanrdles all graphical tasks: it requests data from the model and

displays the data..A view can contain subviews and be contained within super-

17



Usri tController View Display output

hImplicit links \ /

Figure 3.1: The Model- View-Controller framework.

views. The superview/subview hierarchy provides windowing behavior such as
clipping and transformations.

Controller: The controller provides the interface between its associated model/view
and the user input. The controller also schedules interactions with other con-
trollers.

These three parts of a user interface are interconnected as shown in Figure 3.1.
The standard interaction cycle is this:

1. The user performs some input action and the active controller responds by

invoking the appropriate action in the model.

2. The model carries out the prescribed operation, possibly changing its state, and
broadcasts to all its dependent views (through the implicit links) that it has

changed.

3. Each view can then query the model for its new state and update its display, if

necessary.

Many user interface systems are based on or influenced by the Smalltalk Model-
View-Controller paradigm [Ale87, Bin88, KP88, HarS9, Ste8S, vdM89]. Although the
MVC concept provides a convenient object-oriented division at the abstract level,
the division is rather hard to implement. Most implementations of the MVC con-
cept have view and controller pairs associated with models. In Smalltalk, the MVC
framework is implemented as three abstract superclasses (namely ,odel. I1 ,i,. and
Controller). Numerous subclasses of the three abstract superclasses implement the
interaction techniques used in Smalltalk. Almost every model has a special view and

IS



controller pair associated with it. For example, the FillinTheBlank model has the

FillInTheBlankView and the FilllnTheBlankController. When this is done, the use

of a controller, for instance, is limited to the particular view and modei with which
it is associated. Assigning a different controller to a view does not change the inter-
action but often breaks the code. From the implementer's point of view, it makes

little sense to separate the view and controller into two modules. Consequently, some

implementations lump the two parts together. As explained in Section 3.4, this often
often hinders the reuse of software components and produces awkward inheritance

structures.

Although the MVC concept has its problems, its principle of dividing user
interface components into three parts can still be used to guide the design of orthogo-
nal interface components. While object-oriented inheritance alone does not guarantee
good reuse of user interface components, an orthogonal design of those components,
along with inheritance, can facilitate reusability. In addition, orthogonality results
in a more general and versatile system for building user interfaces. The following

sections will explain why and introduce an orthogonal design adopted by MoDE.

3.2 The Concept of a Mode-Based User Interface

User interfaces that include more than one mode are generally considered less desirable
than modeless ones[Tes81]. This section provides a different point of view and explains
why the term mode was chosen to express our central concept.

3.2.1 What is a Mode?

The campaign to eliminate modes from interfaces was started in 1973 by Larry Tesler.
He defines a mode as follows:

A mode of an interactive computer system is a state of the user interface
that lasts for a period of time, is not associated with any particular object 1 ,
and has no role other than to place an interpretation on operator input.

[SIKVs21

Tesler describes two major types of mode: preemptive mode and command
mode [TesSI1. Running a program puts the user into a preemptive mode during

'The author disagrees. Even though a text editor is opened on an empty file, its modes are still
associated with the empty file object.

19



which the facilities of other programs are unavailable to him. This limitation has
been eliminated in multi-window systems that allow several programs (running in

different windows) to be active at the same time. The user can switch back and

forth between windows to obtain services from different programs. Thus, advances
in display technology have eliminated the problems with preemptive modes; however.

the same is not true for command modes.

Command modes interpret the same user input differently depending on the

state of the system. User interfaces that include several command modes have been

criticized because they make it hard for the user to determine:

* which mode he is in,

@ how he got into the mode,

@ what operations are allowed in the mode,

P and how to get out of the mode.

Since the interpretation of key strokes and other user input depends on the mode or
state of the system, unexpected results can be generated when the user loses track of
the current mode.

3.2.2 Direct-manipulation Interfaces are Modal

Most of the above problems were caused not by the command mode design, itself, but

by its realization in text-based interfaces. More recently, many direct-manipulation

interfaces have actually used command mode designs without causing problems and.
possibly, without their designers realizing it.

In a direct-manipulation interface, moving the cursor to point to a different
object is, in effect, a command to change mode, because once the cursor is moved,
the range of acceptable inputs is reduced and the meaning of each of those inputs is
determined [Jac86]. Thus, direct-manipulation interfaces actually divide the screen
into modes, although they appear to be modeless since these modes are always visible
and their contexts are entered and left by moving the cursor. Users are frequently
unaware that they are in a different mode since all operations allowed in a mode are
presented by menus and dialogue bo.\es that can be invoked with simple, consistent
actions (for example, a button click). Thus, all four disadvantages of modal interfaces
stated above (potentially) disappear in icon-based direct-manipulation interfaces.

20



Do you really want to remove this file?

IYes r No

Figure 3.2: A dialogue box can be viewed as a mode with two submodes.

3.3 The Mode User Interface Framework

In this section, we define the concept of mode as it is used in this research and the
framework in which modes are embedded. The working hypothesis of this research
is that this particular concept of mode can provide a unified conceptual framework
that can be used tr develop a wide variety of user interfaces. The MoDE system was
built to test tii iypothesis.

I- earlier discussions of modes, the emphasis was on the different interpreta-
tion- ,f user's actions with respect to the particular contexts for those actions. In our
di-cussion of mode, we place equal emphasis on appearance, semantics, and interac-
ion. More specifically, the basic building block of user interfaces in our approach is a

mode. A mode is a composite defined by its three attributes: appearance, interaction,
and semantics. It is distinguished by an area on the screen in which most likely
at least one of its attributes is different from those of other modes in surrounding

areas. The .Xlode framework includes the definition of modes and provides rules of
composition. Thus, a user interface might be composed of a group of hierarchically
structured modes. A mode in such a structured interface could contain other modes
as submodes. Any given mode, however, would be a submode of only one mode - its
supermode." The set of modes in a structured interface forms a hierarchy.

To illustrate, the dialogue box shown in Figure 3.2 can be thought of as a mode
with two submodes: a "yes" submode and a "no" submode. The yes and no buttons
(modes) highlight themselves when the left mouse button is pressed within them, and
they dehighlight thermselves when the cursor moves away or the left mouse button is
released. Their behavior is different from that of their super-mode (the containing
dialogue box) which does not respond to a left mouse button press. The text in the
dialogue box is not a mode. It affects the appearance of the dialogue box, but it does

not form an area that provides a different interpretation of the user's input.

As mentioned above, each individual mode is defined by its appearance, its

21



A mode object

ri connect to
input semantic the application

from user interaction component or other
component semantic object

appearance !. t

cm toutput to screen

Figure 3.3: The structure of a mode.

semantics, and the form of interaction it provides. For example, the "yes" submode
has the following definition:

Appearance: White background with black border of width one and a piece of
text ("yes") centered. The highlighted appearance is the inverse of the normal
appearance.

Semantics: Confirm to remove the file.

Interaction: Highlight when the left mouse button is pressed inside the mode: de-

highlight when the cursor leaves or the button is released. When the button is
released, triggers the semantic operation.

Notice that the "no" submode shares exactly the same interaction part with

the "yes" submode. The differences between them come from the appearance and

semantics parts.

In an object-oriented design, a mode is an object. The appearance, semantic.
and interaction components are objects, as well. They can be owned by mode ob-

jects, as shown in Figure 3.3. The mode object defines an internal protocol so that
the component objects can communicate with each other in a standard way. The

appearance component, called the display object, maintains the mode's appearance

and can display itself upon request. The interaction component, called the controller,
responds to the input from the user to interact with the user and triggers the semantic

actions. The semantic component. called the semantic object, supplies the semantics
of a mode. The term -'supply" is used instead of "'generate" because in MoDE. the

actual semantics are "generated" by the application but they are "'supplied" to the

interface by the semantic object. Semantic objects can also connect to each other.

22"



Because the mode object provides a structure in which the three component

objects can be plugged and unplugged, a mode's appearance, interaction, and se-

mantics can be changed by replacing these component objects. 1-,r example, a mode
that highlights can be implemented to have two different display objects: one for

normal state, the other for highlighted state. When the mode highlights, it replaces

the normal display object with the highlight display object. When it dehighlights,
the normal display object is switched back.

The standard interaction cycle of a mode is similar to that of the NIVC
paradigm. The controller detects the user's input and tries to process it locally

(for example, to highlight the mode). When the user's action indicates a semantic
command, the semantic object is activated by the controller to process the command.
The semantic object may pass control to the application or to other semantic objects
to which it is connected, change the appearance and interaction of the mode, or sim-
ply update its own state. Notice that while a view in the MVC paradigm queries
the model and updates the display, a mode in the Mode framework provides only the

structure within which its three components collaborate to perform the interaction.

The MoDE framework can also be related to the finite state machine (FSM)
approach, as discussed in Section 2.3.2, used for many years in describing and imple-
menting user interfaces. At the input level, a user interface created with MoDE can
be modeled with a FSM in which each mode on the screen corresponds to a state in
the FSM. Moving the cursor into a mode is equivalent to entering a state. Different
states (modes) interpret the user's actions differently. MoDE goes beyond the FSM
approach, however, by separating each mode into three orthogonal component objects
and by providing a connection model based on the semantic objects.

3.4 A User Interface Component Space and Its Axes

In the above design, a mode is defined by its three attributes: appearance, interac-
tion, and semantics. By assigning an axis to each attribute, we can define a three-
dimensional type-space for modes, as shown in Figure 3.4. Each point in the space
represents a different mode type. The "yes" and "no" submodes of the dialogue box
example are shown as two points in the space. They have the same interactive be-

havior but different appearance and semantics. This is reflected in their sharing the
same value on the "Interaction" axis.

Orthogonality of the Axes
Axes that span a space are orthogonal if changing the value on one axis does not affect
the values on the other axes. That is to say. the axes are independent of one-another.

2:3



Interaction

"No" submode

"Yes" submode -

......-.... ......... .7-

r/ ." i Appearance

Semantics

Figure 3.4: The three space for mode types. Two sample points are shown. One for
the "yes" button, the other for the "no" button. They share the same interaction
attribute.

Orihogonal design axes, such as those for MoDE, have several important implications
that can be seen when compared with one-dimensional designs.

It is possible to represent the same mode-types with just one axis in which

each type occupies a value on this single axis; however, this approach is less desirable
since creating a new point on the axis defines only one new type. In the case of a
three-space, described above, creating a new point on one of the axes defines a plane

of new types. In user interface construction, the one-dimensional approach would

represent, conceptually, lumping all three attributes of a mode together in a single
object. (Keeping them in three separate but closely coupled objects that can not
be reused individually, like what has been done in MVC framework, is essentially

the same.) In such an architecture, an attribute can only be reused when the whole
object can be reused. In the three-dimensional case, three attributes of a mode are
three independent objects, each of which can be reused independently of the other
two. The number of opportunities for each one of them to be reused are increased.

For example, assume an interaction technique library that contains two but-
tons. Button A is square-shaped and responds to a left mouse button click to perform
operation Opl. Button B is round and responds to a middle mouse button click to

perform operation Op 2 . \Vhat one would like to have is button C which is square-
shaped and responds to a middle mouse button click to perform operation Opl, as

shown in Figure 3.5.

24



Appearance Interaction Semantics

Exist: r-------------------------------------- - --

A leftButtonClick Op I

r-------------------------------------------

B middleButtonClick Op2

-......-.....-...-.-...-.-...-..... -..... -....................

Wanted:

C middleButtonClick Opi ,

Figure 3.5: The button example.

Button A Button B Button A Button B Button A Button B

Button C Button C Button C

Figure 3.6: Possible inheritance structures for the button example.

In a single-dimensional design (such as that of the MVC framework), since
buttons A and B must be reused as a whole, one must create a new class for button
C and inherit from both A and B. Figure 3.6 illustrates three possible inheritance
structures. Starting from left to right, making C a subclass of A requires duplicating
the interaction portion of B in class C. Making C a subclass of B requires duplicating
the appearance and semantics portions of A. On the right, using multiple inheritance
requires one to disambiguate what should and should not be inherited from classes A
and B. None of these approaches is satisfactory.

On the other hand, since a three-dimensional orthogonal design allows the
attributes of the buttons to be reused individually, button C can be obtained simply
by reusing the appearance and semantics parts of button A and the interaction part of
button B, as illustrated in Figure 3.7. No new class is needed. In fact, by permuting
the three components, one can produce 8 different buttons without creating any new
classes.

This is a good example of how inheritance, alone, does not guarantee effective
reuse whereas an orthogonal design does. Notice that the three-dimensional orthogo-
nal design is different from parameterizing the appearance and interaction of a single
object. When a new appearance is invented (say a triangularly shaped display object).
the three-dimensional approach immediately gives four (i.e.. a plane of) additional

2 ip



Appearance

mode A

Interaction

a leftButtonCck mode C

Op2

Figure 3.7 - Reusing the components in a three-dimensional design as in MODE.

new buttons. This is in contrast to the parameterized single dimension approach
where editing the code and recompiling are necessary to incorporate a new shape.

Generality
The generality of the user interface framework depends heavily on the choice of the
axes. The more axes a framework has and the more orthogonal these axes are, the
more mode-types it can span and the more general it is. In reality, it is difficult to
define fully orthogonal axes. One can only strive for axes that are as orthogonal as

possible. The Mode framework is an attempt to find one-such set of orthogonal axes
as a demonstration of the concept. An implementation of this framework is described
in the next section. New axes will evolve as new interaction techniques (for instance.
sound-discussed in Section 7.2) emerge.

3.5 Connection Model

The %MoDE connection model provides solutions to problems of both strong s;eparation
and poor support for linking the user interface and the application, discussed in
Sections 2.-4.1 and 2.4.2, respectively.

26



(a) No separation

User
IntefaceApplication

(b) Strong separation

(c) Callbacks

Figure 3.8S: Derivations of connection model.

27



3.5.1 A Historical View of Connection Models

Figure 3.8 depicts the evolution of user interface connection models. In the early sys-

tems, there was no separation, as shown in (a). Systems were difficult to create and

maintain because the user interface and the application were closely coupled. Each

new application required writing a new user interface. The strong separation model.
as shown in (b), was developed to provide modularity. Communication between the

user interface and the application was achieved by "token passing," where predefined

high level tokens (mostly at the semantic level) were sent across the link between
the two. A typical example would be a database and its front-end linked by a query

language. With strong separation, the interface and the application communicate

rarely and the kinds of information (i.e., the number of different types of semantic
tokens) communicated are few and stable. This is denoted by a thin line in the dia-
gram. Strong separation worked fine until direct-manipulation interfaces came along;
in these this approach provided inadequate support for the frequent communication

between the interface and the application. In direct-manipulation interfaces, the ap-
plication and interface need to communicate frequently (up to 30 times a second), for

example, to determine legal positions for an object being dragged with the mouse.

Also, the types of information communicated are more diverse.

Callback mechanisms were developed to support the communication needs (in-

dicated by a thicker channel in the diagram) of direct-manipulation user interfaces
and to maintain the-physical separation between the user interface and the applica-

tion, as shown in (c). A callback mechanism allows the application to register a set
of routines with the user interface. At run-time, when an interesting event happens.

the interface calls the corresponding routine to. inform the application for semantic
processing. This is basically a way of storing information about the application in the
user interface. However, the callback mechanism is not ideal becaL.se it introduces a

complicated procedural interface (often consists of hundreds of ca'lback routines for
a non-trivial system) at the connection point, which is difficult to comprehend and
maintain.

The MoDE connection model described in the next section supports the com-

munication required by direct-manipulation user interfaces while reducing the com-
plexity at the connection point.

3.5.2 The MoDE Connection Model

Hartson suggests two approaches to --connect" the user interface and the application
with sufficient communication [Har89I. One is to build more semantic power into

28



Interface

A domain for connection

Figure 3.9: A decentralized connection model.

the user interface; the other is to establish closer communication between the two.
The MoDE communication model tries to do both. The goal is to support strong
connection with minimum complexity. Unlike GREASE [Hurley 891 which provides a
single centralized "U I-application interface," MoDE provides a domain for connection
where the semantic components of modes reside, as shown in Figure 3.9.

Since this domain has knowledge of the application, it can be used to build
more semantic power into the user interface. For example, a direct-manipulation
interface might cache some information of the application in this domain to help it
reduce the number of queries to the application (by using the information directly or
by using the information to compute more intelligent queries). Furthermore, this do-
main becomes a layer that insulates the effects of change from both the user interface
and the application.

An advantage the MoDE connection model has over the callback mechanism
is the capability of storing knowledge of the user interface in this middle laver. This
allows the application to remain unchanged when changes are made in the user inter-
face. For example, with callback mechanisms, an application that calls the drawing
routines in the user interface often has to be modified when a new drawing library
is installed. This is because the knowledge of the interface (how to use the drawing
library) is stored in the application. With the MoDE connection model, the same
knowledge can be stored in the connection domain. When a new drawing library
comes, only this middle layer is adjusted and the application can remain unchanged.

Within the domain, the semantic components serve as the basic unit for con-
nection. They and their connections form a directed graph. The nodes in the graph
are the semantic components and the arcs denote the paths over which messages are
sent. This graph defines a decentralized interface between the user interface and the

application.

With this distributed connection model, interface objects no longer deal with

29



a single large application interface. Instead, an interface object sees, through its se-
mantic component residing in the connection domain, a small piece of the application
that implements its semantics. The large application interface, which is hard to re-
duce without limiting the communicatiol, is thus divided into small, independent.
and manageable pieces maintained by the system. Since communication is provided
through general object-oriented message passing (instead of callbacks), the applica-
tion no longer has to determine which user interface object is generating the call.

With a graphical editor to help the developer to make the connections and to

locate the objects that implement the semantics of a mode, the complexity perceived
by a user is even further reduced. This will be illustrated in more detail in Chapter 5.

3.6 Summary

This chapter introduced the conceptual background of MoDE. It included the concept
of mode, the Mode framework, the type-space for modes, the orthogonal properties
of mode components, and the MoDE connection model. The next chapter describes
a realization of the concepts developed in this chapter.

30



Chapter 4

MoDE: Kernel

This chapter introduces the MoDE kernel which realizes the concepts discussed in
the previous chapter. The Mode framework is general within the object-oriented

programming paradigm and could be implemented in a number of object-oriented
languages. However, since the proof-of-concept system was built using Smalltalk
and because Smalltalk terms have been widely used as a vocabulary in which to
discuss object-oriented concepts, architectural details are dis, issed using Smalltalk

terminology.

Most object-oriented systems use an event-driven control mechanism, rather
than the polling control-passing protocol used by Smalltalk. Consequently, to make
the procf-of-concept system more consistent with those systems and to provide better

performance,. an event-driven mechanism was built to replace the Smalltalk polling
control-passing protocol. It is discussed briefly in Section 4.1. and in more detail in
Appendix A. Built on top of this event-driven mechanism are four basic classes that
realize the Mode framework. They are described in Section 4.2. Section 4.3 compares

the classes introduced in Section 4.2 with the Smalltalk NIVC classes to illustrate how
the orthogonality of MoDE is achieved and how it increases component reusability.

MoDE has a rather small kernel, currently consisting of about 3,600 lines of
code. However, this small kernel is capable of creating a wide variety of applications
including its own direct-manipulation user interface - the Mode Composer. The next

chapter will discuss this important application and component of MoDE. Section 7.2
includes a discussion on how the approach of MoDE can be applied to production
user interface needs.

31



4.1 The MoDE Event-Driven Mechanism

This section provides an overview of the MoDE event-driven mechanism. It is de-
scribed in detail in Appendix A. This mechanism not only solves the performance
problem associated with a polling protocol but also allows interface objects built
under both polling and event-driven mechanisms to be used by each other with no
modification and no performance penalty.

The event-driven mechanism consists of three components:

Event generator that generates events according to user's actions. Currently, the
event types generated include: cursorMove, [leftImiddleIright] Button

[UplDownlClickJDoubleClick], and keyboardEvents. New event types can be
added by the user.

Event queue that buffers the events generated by the event generator and allows
different applications running on different processes to have sequential access to
the events.

Event dispatching mechanism that delivers the events to the right modes. The
design of this mechanism is vital for the compatibility between the polling and

event-driven interface objects. Appendix A includes a full description of the
mechanism.

As mentioned in Section 3.3, a user interface might be composed of a group
of hierarchically structured modes. The one mode at the top of the hierarchy is
called the -'rootMode." It is an instance of Root.,ode class where the event-fetching
loop is defined. A typical application would have a single Root.1lode and a hierarchy
of modes. To allow multiple active applications, a built-in mechanism is provided in
RootMode to guarantee that no two RootModes will attempt to access the event queue
at the same time.

4.2 Basic Classes

This section introduces the four basic classes that make up the Mode framework.
Thev are .ode, MController, fDisplayObject, and SemanticObject. The Mode class
is responsible for event dispatching and window management. The other three classes
correspond to the three orthogonal axes discussed in Section 3.4. Figure 4.1 shows the
correspondence between the three classes and the three axes. As mentioned before, it

32



Interaction

(MController)

Appearance

(MDisplayObject)

Semantics

(SemanticObject)

Figure 4.1: Correspondence between the axes and the implementation.

is very hard to define orthogonal axes in reality. The design presented in this section
is the author's attempt to create a design with maximum orthogonality.

4.2.1 Mode

The Mode class implements the basic structure of a mode discussed in Section 3.3.
In the current implementation, each Mode has a MController, a MDisplayObject and
a SemanticObject. Mode coordinates the activities of these three objects to perform
the interaction.

4.2.1.1 Event Handling

A major responsibility of Mode is to handle event dispatching. Two methods provide
this function. The interestedIn: method takes an event as an argument and returns
true when the Mode is active (an inactive mode does not interact with the user) and
the event happened in the area controlled by the Mode. The processEvent: method
asks the controller to process the event when interestedIn: returns true.

4.2.1.2 Windowing

Mode provides window management fiinct;ons. Each instance of Alod can be active
or inactive. When a .Mod( is active, it can interact with the user by rtheivin he
input events and responding to them. An inactive .\lodt does not receive any events.

:33



Figure 4.2: Clipping capability is essential to the interaction in a mode that is partially
obscured by other modes.

and therefore can not interact with the user. Each Mode has its own local coordinate
system and a transformation (both translation and scaling) that maps between ti:e
local coordinates and the screen coordinates.

A simple constraint system provides a convenient way to specify the position
and size of a mode when its super.Mode changes its position and size. An example
of this would be to specify a vertical scroll bar in a window. When the window is
resized, the constraints can be used to stretch the scroll bar vertically so that the
top and the bottom touch the border of the window while maintaining its width as a

constant.

Several methods are provided to support operations that manage the sub/super
mode hierarchy. These operations include adding and removing submodes and re-
ordering the order of the submodes (like bring to top. -. nd to bottom, etc.).

4.2.1.3 Displaying

A Mode displays itself by first asking its display object to display its background
and then asking all contained submodes to display themselves. The built-in clipping
algorithm draws only the portions of the mode that are unobscured. This capability
makes it possible for a partially obscured mode to interact with the user. For example.,
in Figure 4.2, the mode containing an "A" is partially obscured by the gray mode.
Without clipping, one could not highlight the mode without either bringing it and
its super.Modes to the top or redisplaying part, of the gray mode. With the clipping
algorithm, the mode can display only the portion that is unobscured and avoid the
above problems.

:34



EVENT TYPE MESSAGE

enterMode highlight

leaveMode deHighlight

leftButtonDown action:

Figure 4.3: A simple eventResponses table.

4.2.2 MController

The AlController class realizes the interaction component of a mode.

4.2.2.1 The eventResponses Table

The AVController performs interactions by sending out messages according to the type
of events it receives. The instance variable eventResponses of this class holds a table
that stores the mapping between interested event types and messages'. Figure 4.3
shows a simple eventResponses table. The keys of the table (enterMode, leaveMode.
and leftButtonDown) are the event types and the values (highlight, deHighlight,
and action:) are message selectors. When a MlController is asked by its mode to
process an event, it checks whether the event type matches any of the keys in the
eventResponses table. If there is no match, a false is returned immediately and
the event is sent to the next mode for processing. If there is a match, the value
(a message selector) of that key is examined. If the selector ends with a colon (for
example action:), a message is sent to the semantic object using the selector with
that event as the argument. Otherwise, the message is sent to the controller itself and
is handled by the shared-behavior mechanism described below. Since the controller
has access to the event, it does not need the event as a message argument. This is
why the message selectors (for example, highlight and deHighlight) intended for
the controller do not end with a colon.

In Smalltalk syntax., a message selector ending with a colon requires an argu-
ment. A ,lController can query a message selector at run-time to decide whether it
ends with a colon or not. In a more conventional lan'wage that does not support this

'This table is iniplemented as a Smalltalk dictionary.

35



querying capability, such as C++, one can associate tags with function pointers to
implement this feature.

4.2.2.2 Shared Behaviors

The MController class and its subclasses implement a set of shared behaviors as
instance methods. They include common behaviors such as menu invocation, rubber-
band lines and boxes, mode dragging, mode highlighting, and mode resizing. These
behaviors are shared since any instance of the class or the subclass can invoke them.
A shared behavior is invoked by placing the name of its corresponding method into
the controller's eventResponses table as a value.

Local behaviors are promoted into the set of shared behaviors if they are used
frequently and do not require semantic information. That is, it can be handled by
the controller and the mode.

4.2.2.3 Inheritance of Controllers

The sharing of interactive behaviors cannot be supported by a single inheritance
scheme, such as that provided by Smalltalk or Objective-C. For example, suppose
controller A highlights the mode when the cursor moves into its area, and controller
B allows the user to drag the mode with the mouse. If one would like to have a
controller C which behaves like a combination of A and B (both highlight and drag).
what would the inheritance structure be? If C were made a subclass of A, the behavior

of B (dragging) would not be inherited and would have to be duplicated in class C.
Making C a subclass of B requires the behavior of A (highlighting) to be duplicated.
Neither solution is satisfactory.

This kind of problem is not unique to user interface construction - many object
oriented applications have the same problem - but the situation here is particularly
severe. In other application areas, one may be able to treat the problem as a special
case and work around it with ad hoc solutions. Here, it is very common to have
controllers that would like to inherit from two, three, or even more controllers. In-
stead of maintaining a general multiple inheritance mechanism just for this need,
MoDE provides a specific mechanism - the eventResponses table - to solve the
problem. Rather than having a lot of controller classes, all controllers are instances

of the MController class. Inheriting from a controller is achieved by copying the con-
tents of its eventResponses table. Multiple inheritance is simulated by copying the
contents from multiple eventResponses table. Using a table instead of an actual
multiple inheritance mechanism also provides the extra run-time flexibility essential

36



for interactive construction and editing of user interfaces.

Under this scheme, creating a class for a controller is used mainly for grouping
the code of the shared behaviors and limiting assess to them. In some cases, a
frequently used controller can be made a class for ease of reference.

4.2.3 SemanticObject

Semantic objects are programmable in the Mode framework. If an interaction tech-
nique is created by coding (instead of using the Mode Composer introduced in Sec-
tion 1 1), it will have its own class, which is a subclass of the SemanticObject class.
Instances of this interaction technique are created by sending creation messages to
its class. The SemanticObject class defines a set of initialization methods to set
up the parts in the Mode framework. They are setUpMode, setUpControllePr, and
setUpAppearance. Whenever a subclass of SemanticObject is sent a creation mes-
sage, these three methods are invoked automatically to create and initialize the parts
of a mode and to connect them to one another.

Subclasses of SemanticObject implement a "controller-msg" protocol to sup-
port the messages sent from the controller. Recall that, in the eventResponses
table, message selectors that end with a colon are sent to the semantic object. The
"controller-msg" protocol implements those messages.

The subclasses of SemanticObject that use menus to interact with the end
user follow the convention described below. Each class implements two protocols.
The "Menu Access" protocol contains methods that return menus. For example., the
middleButtonMenu method returns the menu for the middle button of the mouse.
The "Menu Support" protocol contains methods that support the menu options.

SemanticObject defines a default instance variable - targeti - to store the

connection to other objects. New instance variables are defined in the subclasses
of SemanticObject as more connections are needed. The connection aspects of the
semantic object will be discussed in more detail in Chapter 5.

4.2.4 MDisplayObject

Instances of the A!DisplayObject class control the "background" of modes. The "back-
ground" includes the inside color, the border, and zero or more displayable objects.
The instance variable contents holds a table that keeps these displayable objects.

:37



All objects that understand the protocols defined in the DisplayObject2 class can be
put into this collection. They can be text, drawings, forms, and animated pictures.

The display method accepts two arguments from U.k, , ze-a display box and
a collection of visible rectangles. The display box defines the size and positior, , the
mode. The visible rectangles define the visible portion of the mode computed by the
clipping algorithm.

The MDisplayObject has the capability to buffer its output as a bitmap. This
speeds up the display of complex objects.

4.2.5 Interactions Among the Four Kernel Classes

This section discusses how the four classes described above relate to one another.
Figure 4.4 illustrates the message-sending relationships among the four kernel classes.
Each class is represented by a box with its important instance variables listed in the
box. An arrow at the end of a line indicates the direction of messages. Message
arguments are omitted; only the message names are shown. The number of colons in
a message name corresponds to the number of arguments. Descriptions of message
groups are in Times-Roman.

The Mode class is responsible for event dispatching. When the user performs
an action that generates an event, the modes on the screen cooperate to find the
receiving mode and send the event to it. (See Section A.3.3 in the Appendix for more
details on how this is done.) The receiving mode then asks its controller to process
the event b,- sending the processEvent: message with the event as an argument.

Upon receiving the message, an MlController checks the event type against the
keys in its eventResponses table. If the value of the key that matches the event
type is a message selector that does not end with a colon, the event is processed
by local methods defined in the controller. These methods, in turn, use methods
defined in the Mode class to perform the interactions. The erase method erases
the mode before it is moved, and the display method displays it after it is moved.
The highlight method switches the mode's dispObj and highlightDispObj and
redisplays it. The deHighlight method does the reverse. The unclippedDispBox
method returns the display box of the mode without being clipped by the the display
box of the supermode. The unclipped display box is used to draw the indication box
when a mode is moved with its frame. The image method returns the image of the
mode that can be used to move the mode with its actual image. All operations that

"2DzsplayObjct is a Smalltalk class. It defines the behavior of all displayable objects. Instances

of this class know how to display themselves given a medium and a location on the medium.

:38



erase

display
highlight/deH ighli ght

uncijIppedDispBox

MController ',rage Mode

mode setUnci!ppedDispBox: controiler

semOb JdspObI

eventResponses processEvent: h-ghightDispCb J

displayOn:withUnclippedDis Bcx:vl sibleRects:
coloned iessages in the

eventR nses table message to reflect

SemanticObject the sem tic action MDisplayObject

Mode contents

target! insideColor

borderColor

borderWidth

messages to other semantic

objects or the application

Figure 4.4: The relationships among the four kernel classes.

change the mode's position use the setUnclippedDispBox: method to set it to its
final position.

If the message selector ends with a colon, the event is processed by the semantic
object. A subclass of the SemanticObject class should be created to implement the

method corresponding to the message. This method, in turn, may send messages to
the mode to reflect the semantic action.

No specific messages are used by the SemanticObject class, but the subclasses
of the SemanticObject class may use all the public messages of the Mode class. An
instance of the subclass of the SemanticObject may use those messages to alter the ap-
pearance of the mode, switch the mode's controller, or activate/inactivate the mode.
The semantic object may also send messages to other semantic objects or the under-
lying application to further propagate the semantic action.

The UDisplayObject does not send messages to other objects. It merely main-
tains the appearance of the mode (inside color, border color, border width, and the dis-
playable objects in its contents collection) and displays itself upon request. The full
message sent from the mode is displayOn: aMedium withUnclippedDispBox: aBox
visibleRects: aRectCltn. a-Medium can be the screen or a bitmap. The latter is
,or buffering the output to speed up the displaying. The aBox and aRectCltn are
i.ecessarv for the display object to follow the clipping algorithm and to display itself

:39



Controller-M ipb-

highlig Sae:

SemObj-M highight

Figure 4.5: A simple example.

efficiently.

The following is a simple example to illustrate how the four classes described
above interact with one another. A more complex example will be shown in Chapter 5.

Figure 4.5 shows the example interface. It has two modes: Master and Slave

(represented by the gray boxes). When the user pushes the left mouse button in
the Master mode, the Slave mode is highlighted. To accomplish this interaction, the

following sequence of actions takes place.

* After the user pushes the button, the event generation mechanism that underlies
MoDE generates a leftButtonDown event.

e The event dispatching mechanism, implemented in the 11ode class, delivers the

event to the Master mode.

* The Master mode asks its controller (Controller-M) to process the event.

e Controller-M matches the event type against the keys in its eventResponses

table (not shown in the figure) and finds that there is a match. The value of the

matched key (a message selector highlightSlave:) ends with a colon. This
indicates that the message should be sent to the semantic object (SemObj-M)

with the event as an argument.

* SemObj-M in turn, sends an highlight message to SemObj-S (the semantic

object of the Slave mode).

* The highlight method defined in SemObj-S highlights the Slave mode by asking
the mode's display object (DispObj-S) to display the inverse of itself. This

completes the interaction.

40



This example shows the basic internal interactions among the kernel objects.
The next section discusses how these objects are used in designing and constructing
an interface.

4.2.6 Designing An Interface with MoDE

The mode concept provides a unified architecture for interfaces. An interface is com-
posed of nothing but modes. Given a specification of a user interface, a developer
using MoDE first identifies the areas on the screen that should have different ap-
pearance, interaction, and semantics relative to the surrounding contexts. Each of
these areas becomes a mode in the Mode framework. This approach decomposes the
interface into modes that can be refined individually. For each mode, the developer
reuses or creates display objects to define the mode's appearance. Often, an existing
controller can be used to define the interactions of a mode. If no controller provides
exactly the interaction wanted, a new controller can be created by editing a copy
of the eventResponses table from an existing controller. The semantic object of a
mode is then programmed to handle the messages from both the controller and the
underlying application. The Mode Composer, described in Chapter 5, supports the
above activities as well as the creation and management of the connections among the
semantic objects and between the semantic objects and the underlying application.

4.3 A Comparison to MVC framework

The IfController, MDisplayObject, and SemanticObject classes define user interface
components that are largely orthogonal to one another. As a consequence, these parts
are more likely to be reused.

Many systems, such as X Toolkit [MA88], come with a set of interaction tech-
niques (widgets); however they do not separate the interaction, appearance, and
semantics components into objects. Consequently, it is impossible to reuse individual
component objects since they do not exist. ICpak 201 [Ste88] does incorporate the
concept of a separate interaction component, but the appearance of an interaction
technique is hard-wired. The NeXT Application Kit [NeX88J allows parameterized
appearance (subject to the limitations discussed in Section 3.4) but does not have a
separate interaction object3 .

3 Graphical user interface specifications, such Ls OpenLook and Motif. are not discussed since
they are independent to the internal architecture of the user interfaces that conform to the specified
styles.

41



The Smalltalk MVC framework comes close to the ideal of orthogonality since
it separates the model, view, and controller into three different objects. Unfortu-
nately, these three objects are closely coupled, resulting in what is, essentially, a
one-dimensional type-space, as discussed in Section 3.4.

MoDE carries the concept of orthogonality further than existing systems. To
examine some of the implications of this design, this section compares the Mode
framework with the MVC framework, the most flexible alternative paradigm. Al-
though the comparison is made only between two specific frameworks, many of the
points are applicable to object-oriented design in general.

Controllers
In the MVC framework, in addition to their defined role as interface objects, con-
trollers are often involved in processing the semantics, as well. For example, many
controllers are responsible for creating menus, invoking them, and executing the se-
lected operations. Many subclasses of Controller are created just to provide different
menus. For example, the IconController and the ProjectIcon Controller are identical
except for their menus. In MoDE, controllers are not involved in semantic processing.
They invoke menus to interact with the user but leave the creation of menus and the
execution of their operations to the semantic objects. Since the controller does not
have deep knowledge of the menus, it is less tightly coupled to the semantics of the
system. This reduces the number of controller classes needed while making the exist-
ing controllers more reusable. For example, a single controller in MoDE can handle
the cases of both IconController and ProjectIconController in the MVC framework.

In the MVC framework, some controllers (BinaryChoiceController, for exam-
ple) query the state of their models to determine what kind of interaction to perform.
This couples the controllers with their models. In MoDE, when the state of a se-
mantic object changes and requires a different interaction, a different controller is
assigned to the mode. No controller has to query the state of its semantic object.
This approach is actually used in MoDE to provide semantic feedback for dragging.
When a mode is dragged by the user, all other modes on the screen switch to their
drag-handling controllers. For example, the trash mode switches to a controller that
highlights the mode when the dragged object is on top of it and responds to the
mouse button release event to discard the dragged mode. The trash mode switches
back to its normal controller after the drag action is finished.

Another limitation on MVC controllers which impedes orthogonality is their
polling protocol. The MVC controllers must constantly query their views for the
information necessary to decide when and where to pass control. The event-driven
mechanism of MoDE takes charge of the control passing. This frees the controller
from q(uerving the mode and makes the two less dependent on each other.

42



Views
Some MVC views also overstep their authority by incorporating semantic informa-
tion. These views often keep information and code that could be decomposed and
distributed more appropriately among semantic objects and subviews. For example,
the SelectionInList View keeps the list of items, remembers which one of them is se-
lected, and highlights or dehighlights the items. The Selection JnL ist View has to do
all this because it is at the bottom of the view hierarchy (it has no subviews). The
list items are not subviews.

With the Mode framework, on the other hand, each list item is a mode and
knows how to highlight and dehighlight itself. The instance variables and the code
to handle the selection are moved to their semantic objects. This arrangement not
only simplifies the interface but also makes it more flexible. For example, one can
use bitmaps, drawings, and animated pictures in the display object of the list item
modes to create a nontext list. One can also freely select the highlight styles for each
individual list item (as opposed to having a single fixed inverse highlight for all of
them). This is very useful for nontext list since inversing a nontext item may not
be the proper way of highlighting it. For example, the trash icon in Section 1 of the
videotape can convey more semantics when it is highlighted with its lid open.

Smalltalk menus, which were not built with the MVC framework, provide a
related example. A Smalltalk menu is a single complicated object. In MoDE, menus
are built with modes: each menu item is a mode; this makes the menus more flexible.
Item modes can also share components with the list mode.

Models
In the MVC framework, models do not have direct access to their views and con-
trollers. When a model changes, a message is broadcast to notify all of its views
and controllers. The views and the controllers then query the model and update
themselves to reflect the change. This has several disadvantages. First, the model
may be a widely shared data object that has a large number of views. Having all the
views query it whenever there is a change is costly. Also, the broadcast mechanism

usually requires smart user interfaces that know how to query the models and update
themselves. The code that supports this intelligence goes to either the view class or
the controller class. Thus, knowledge of the application (model) is inserted into the
user interface. Once this is done, the model, view, and controller are, in fact, coupled.

The Mode framework solves this problem by abstracting this intelligence into
the semantic object. This frees the other objects from the need to be coupled with
each other. Figure 4.6 shows the partition of responsibilities in the Mode framework
and in the NIVC framework. The circles indicate the objects in the Mode framework.
The dashed lines show the correspotiding NIVC objects (their names are in italics).

13



- - -- separates responsibi litLies among MVC framework objects

-separates responsibilities among Mode framework objects

.....separates respons ibilitLies between the user interface and the application

View
MDisplayObject-

Mode SelmanuoO 4ject Application

- - - - - --- -: - - M o-

MController

Controller

User Interface Application

Figure 4.6: The responsibilities are partitioned differently in the Mode framework
than in the NIVC framework.

44



4.4 Summary

This chapter discussed the implementation of .MoDE. An event-driven mechanism was
introduced to provide better utilization of the CPU and a solution to the compatibility
problem between polling and event-driven user interfaces. The four basic classes of
MoDE were also discussed. A comparison between the MVC framework and Mode
framework explained how orthogonality among user interface components is achieved.

45



Chapter 5

MoDE: Mode Composer

The Mode Composer is the direct-manipulation user interface of MoDE. It allows
the user to create an interface, edit it, and connect the interface to the application
through direct manipulation. It also illustrates some of the capabilities of the MoDE

approach to user interface design.

5.1 Mode Composer in Action

The Mode Composer is described, first, in relation to a concrete example. This section

illustrates the use of the Mode Composer to create an interface for a simple binary

desk calculator with one display xvindow and three push buttons-"O," "1." and "'C"
(the clear button). Space limitations require that some details be left out, but further

explanations of the process appear in subsequent sections. To gain a true sense of the
look and feel of the Mode Composer, the reader should view the videotape included
in Appendix C.

With the Mode Composer, interfaces are created by dragging objects (modes)

out of the interaction technique library (the right-hand window in Figure 5.1) and
pasting them together. In Figure 5.1, the user has created a Vanilla Mode, shown in

the left of the figure, that will be used as the background of the calculator, and is
now editing its appearance.

Next, the user creates the three buttons and the display window for the desk
calculator and pastes them onto the background. This process is similar to drawing

a picture with a drawing tool. The result is shown in Figure 5.2.

The Application Creator shown in the lower right corner of Figure .5.2 is used to

46



0 4 T Lbrary-

liii Text Button
Vand a Mod*

insned SColorO
Edit~~~M~e Boaole ode oo

Figure 5.1: Editing the appearance of a mode.

Edit~~ MS Attkbut

Editn~~

Figure 5.2: Showing the semantic object for the display window.

4 7



a T aX x kabtl

Figure 5.3: System requests permission to create new instance variable for the con-
nection.

create the the computing component of the desk calculator and its visual represen-
tative. The computing component is not a visible user interface object, it has to be
represented as an icon so that it can be displayed and manipulated directly. Here, the
user decides to create the computing component from scratch. A new class, named
DeskCal, is defined and an instance of the class is created. The visual representative of
this instance (with the text Ap-aDeskCal) is shown. Recall that the semantic objects
are the points of connection. To establish the connection between the user interface
and the computing component, the semantic objects must be present. In Figure 5.2
the user is requesting the system to show the representative of the semantic object of
the display window.

Figure 5.3 shows the semantic objects (represented by diamond shaped icons
containing an "S") for the display window and the 1 button. The user has created a
link from the semantic object of the 1 button to the computing component, and would
like to create another link from the computing component to the semantic object of
the display window. His plan is for the semantic object of the 1 button to send a
message to the computing component whenever the button is pushed. The computing
component, in response, updates its states and requests the display window to display
the digit 1 by sending a message to the semantic object. Since the DeskCal class is
a new class, it does not have an instance variable in which to store the connection.
The system infers that a new instance variable is needed and suggests to create one,
as shown by the button (USE NEW inst Var) in Figure 5.3. Once the user clicks
on the button, the Mode Composer will prompt the user for the name of the new
instance variable, change the class definition of the DeskCal to insert this new instance
variable, and update all the existing instances of the class.

Next, the user selects the Inspect option in the menu associated with the seman-
tic object to inspect the 1 button (Figure 5.4). The inspector, shown in Figure 5.5.
indicates that the default action message for the button is buttonPushed: The colon
at the end indicates that there is one argument for this message. By default it is the
text string of the button.

48



aTextLall

E - , -~~TotS-ton 
09el

........ Connetonun

dit

Figur5,5 Te defau: Inpcto thesaetic bjt. e:

aTextLabol

0._ ------- puton-- oosned:€

Axedldize

~~~Figure 5 A The defe hosaulit actihn messageis butndersod: hsmni

object f the isplaywindow

49 t~t'u

J Ji! "',I
; ' I

i i 4TextLabel

Figure 5.7: The interface and the application are fully connected.

Since the computing component is created from scratch and does not under-

stand the buttonPushed: message, the user selects the Add Message option in the
menu associated with the link. The system will open a code editor in which the user
can define the buttonPushed: method in the DeskCal class.

In the process of defining the method, the user needs to know what message
can be sent to the display window to display the result of a computation. The system
can help by displaying the messages understood by the semantic object of the display
window. In Figure 5.6, the list of understood messages is shown and the user finds
that the displayText: method is the one he needs.

The other two buttons can be connected in the same manner. Figure 5.7
shows the fully connected desk calculator. Since all interfaces created with MoDE
are immediately testable, there is no need to switch to a test state. Further, the
user can test the partially implemented interface at any point in its development.

In Figure 5.7, for example, the button 1 was pushed and the display window of the
calculator shows the correct result.

To complete the example, the user must define the functions of the clear but-
ton. Two approachs suggest themselves. The first one is to keep the default message
(buttonPushed:). Whenever the button is pushed, the message buttonPushed: will
be sent to the computing component with the string C as an argument. The comput-
ing component then interpret the argument C as a special command. An alternative is
to use a different message selector (for example clear) and define the corresponding
method in the DeshCal class. Both approachs are valid. The Mode Composer allows

the user to choose whichever he prefers.

After the user finishes developing the interface, he hides all the connections
and promotes the calculator into the interaction technique library by dragging the
desk calculator into the library. The library automatically prepares an icon for the

calculator, as shown in Figure .5.8.

50

1 T LUbrary

Vanifa Mode

Plane W fldo iconic Made

Fl. d Size Label i r o ~

Desk Calcula tor

Figure 5.8: The binary desk calculator is promoted into the interaction technique
library.

0C

Figure 5.9: The calculator is put into a window.

Finally, to make the desk calculator a better "citizen" of the windowing envi-
ronment., the user drags a window out of the interaction technique library and places
the calculator in the window, as shown in Figure 3.9. Now the desk calculator can
be moved around and closed into an icon just like other applications.

This example has demonstrated the basic rhythm of use for the Mode Com-
poser. In the sections that follow, additional details are discussed.

5.2 Mode Editing

A mode can be edited not only in the Mode Composer but also when it is in use.
Editing capability is built into every mode and can be turned on and off. When it is on,
all modes respond to a special meta key (Control-E in the current implementation).
When a mode receives the meta key, it stops its normal execution and place itself
into an editable state where various editors can be invoked. This state is indicated
by eight small resize boxes surrounding the mode (see Figure 5.1). From this state,
all parts of the mode can be accessed and modified.

The capability to interrupt a running interface at any point is essential to
providing better support for testing and maintenance. Traditionally, people set break
points in the programs to test and debug them. Often, the most difficult part of
using break points is deciding where to set them. An interface developer often has to
read through and understand many pages of code and make several trials before he
finds a good location for a break point. By allowing its user to interrupt a running
interface at any point, the Mode Composer can help the user to find the locations
for inserting break points quickly. In most cases, a user of the Mode Composer can
rapidly go to the point where he can access the testing and debugging information he
needs without even setting any break points.

The meta-key mechanism is built with MoDE also. When a controller of a
mode receives the meta key event, it instructs the mode to enter the editable state.
The mode does so by putting up a transparent mode that covers the entire screen
to block all existing modes (including itself) from receiving events during the editing
period. On top of the transparent mode, the eight small resize boxes (each one is a
mode) and a transparent proxy mode that covers exactly the area of the edited mode
are attached. The proxy mode provides the edit menu and allows the user to drag
the edited mode. When the user finishes the editing, the big mode (as well as the
nine submodes of it) is removed and the interface goes back to the normal execution
state.

Since in the Mode framework, everything is a mode, the above arrangement

.52

allows all interface objects to be editable. The regularity of the Mode framework
removes the need for special case editors. Since all modes have the same structure,
they can be edited with a single editor. The orthogonal design also helps. Since

the components of a mode are orthogonal to one another, individual editors can be
designed for each one of them without worrying about the dependencies among them.

Finally, since the meta-key mechanism is built with MoDF, it can be edited by the

Mode Composer. This makes its design, development, testing, and maintenance easy.

The capability of MoDE to mix its event-driven interfaces with the original
Smalltalk polling interfaces reduces the effort in creating editors for different parts of a
mode. For example, the Smalltalk dictionary inspector is used to edit the controller's

eventResponses table. The Smalltalk MVC inspector can be used to inspect the
mode, the controller, and the semantic object at once.

5.3 Connection Editing

Connections in MoDE are implemented as object pointers. There are two purposes for
having a pointer to an object: to send messages to the object or to manipulate it as a
whole (for instance, to assign it to a variable or to pass it around). MoDE assumes that

a connection is primarily intended for message sending. Although most of the support
frcm MoDE is for message sending, the connections can still be used to manipulate
objects as a whole. In order for an object to send a message to another object. it
must have the object pointer of the receiving object. Usually this is done by storing
the object pointer in one of the sending object's instance variables. All semantic
objects have a default instance variable, targetl. for this purpose. When more than
one connection are necessary, new instance variables are created automatically by the
system. Object pointers can also be stored in a collection to avoid creating many
instance variables. Only one instance variable is needed to keep the collection.

The semantic object of a mode can be shown when the mode is in the editable
state. (Actually, it is the visual representative of the semantic object that is shown
since the semantic object is invisible.) The --Show Connection" command shows
the connections to and from a semantic object. Connections can be one wav or
bidirectional. They are added and removed with direct manipulation.

After a connection has been established, messages sent across the connection

can be associated with it. If a message is entered that is not understood by the

receiving object, the svstem will automatically invoke a program editor for the user
to create the corresponding method. The user can code the method or simply put
co)mments there. The latter provides a way to specify a skeleton of a system without

5:3

coding. All messages associated with a connection are managed by the system and
can be inspected and modified by invoking program editors through menu selection.

Often in programming a semantic object one would like to create a subclass
and put all the changes there to avoid affecting other semantic objects from the
base class. This requires replacing the original semantic object with a new instance
of the subclass, with all values in the instance variables preserved and all existing
connections, in and out, maintained. The Mode Composer provides this service au-
tomatically when the user selects the "Subclass" option in the menu associated with
the semantic object.

5.4 Library Management

The MoDE library stores the interaction techniques as "prototypes" [Lie86 (live
objects with values in the instance variables retained). Each library object represents
a "prototype," as opposed to the class, of an interaction technique. As a consequence,
when promoting an interaction technique, only a live copy of the technique must be
created and registered; there is no need to recompile the library. Furthermore, once
an interaction technique is promoted into the library, it can be reused immediately
by making copies of it. The above properties allow the library to be dynamically
expanded. Interactive techniques stored in the library can also be written to files.
These files can be read by other interface developers' libraries to share interaction
techniques.

Besides the orthogonal design of the mode framework, the capability to intro-
duce new objects to the library easily is also essential to the generality of the system.
If an interface builder were to have a fixed set of library objects, the kind of interfaces
that it could create would be limited. Since the user of MoDE can freely promote new
objects into the interaction technique library, MoDE is not limited in this respect.

5.5 Discussion

5.5.1 Self-Creation

Not only is the Mode Composer an important component of MoDE, it is also an
important application of MODE. To demonstrate the generality of MoDE, the user

interface of MoDE was created using itself. Consequently, MoDE can be used to edit
itself. For example, in Figure 5.10, MoDE is being used to examine the connection

54

IT Library

&ShIrinkO e xt u on
Vania Made0

&Window Fixed Size Label
(Roam 60.

Figure 5.10: The Mode Composer is used to edit itself.

between the ShrinkBox and the Window of the interaction technique library. The
user has also made several changes to MoDE. The two scroll bars of the interaction
technique library were removed, and a Roam Box (a two-dimensional scrolling device)
has been attached.

Since it is easy for users to customize the user interface of MoDE, other users'
interfaces may look and feel differently than the author's presented here.

5.5.2 Classes Do Not Make Good Types

Recently, there has been a debate in the object-oriented community on whether classes

make good types. Many argued that classes are merely for implementation purposes
since they' do not characterize the "behavior" (type) of objects properly. The inter-
action technique lib-ary provides an interesting example that supports the argument.
Observation of the use of the Mode Composer shows that its users naturally treat
each object in the library as a type. For example, a user might drag a button out
of the library, change its border width, and promote the changed button back to the
library. From then on, he would think he has two types of buttons instead of one.
The same thing happened to changes made to the controller and the semantic object.
Even though the two buttons are composed of parts from the same classes, they are
treated as different types. Classes are not sufficient to differentiate these types. In
the interaction technique library the differences come more from the values of the
instanco variables of the objects than the classes to which they belong. This supports

the choice of tisi ug prototypes which preservet the values of the instance variables.
instead of classes, to represent objects in the interaction technique library.

55.'

5.6 Summary

The Mode Composer provides a direct-manipulation user interface to the users of

MoDE. It supports the editing of modes and their connections as well as the man-
agement of the interaction technique library.

56

Chapter 6

Experience With MoDE

6.1 Generality

It is very difficult to discuss formally the range of user interfaces that MoDE can create

because there are no comprehensive taxonomies of existing interaction techniques.

Additionally, new techniques are being created all the time. In fact, one of MoDE's
goals is to facilitate the creation of new techniques. Furthermore, since MoDE is

integrated with the Smalltalk programming environment, the user can always escape
from MoDE to Smalltalk and code any portion of an interface that MoDE does not

support. This further complicates an analysis of MoDE's generality. Consequently,

this section will discuss the range of applications MoDE can produce with the help

of examples.

6.1.1 What MoDE Can Create

In Section 3.4, three axes were described that span the space of mode-types, as shown
in Figure 6.1. The greater the number of mode-types a framework can span the more

general it is. Theoretically, almost any direct-manipulation interface (with a pointer
as an input device and bitmap display as output device) could be built ',ith the Mode

framework. However, the current implementation of the three classes that realize its
three axes and the Mode class that realizes the event dispatching mechanism limit
the possible interfaces. This section discusses the generality of the Mode framework
with respect to the ranges of these four classes.

NlDisplayObject The lDi.splayObju't class provides ways to define the appearance
of a mode. All objects that understand the Smalltalk DisplayObjecrt protocol

57

Interaction

(MController)

Appearance

(MDisplayObject)

Semantics

(SemanticObject)

Figure 6.1: The three axes span the space of mode-types.

can be used in a VfDisplayObject to define an appearance. This inciudes text.

drawings, bitmaps, and animated pictures.

MController An .Controller performs the interaction by sending out messages
according to the types of input events received. The event types currently
supported by the system are: cursor move, enter/leave mode, button down/up,
button click, button double click, and various keyboard events. This set of

event types is sufficient for the implementation of most interactive techniques

(menus, dialogue boxes, buttons, etc.).

The set of shared behaviors defined in MController currently contains support

for dragging, resizing, linking, and menu processing. New behaviors may be
added into this set in the future.

SemanticObject Subclasses of the SemanticObject class are fully programmable by
the user. A user can program whatever Smalltalk function he wants in these
subclasses.

Mode The Mode class defines the event dispatching mechanism. Currently. it sup-

ports two event dispatching policies: the "hot cursor" policy that delivers events
to the front-most mode containing the cursor, and the "focused mode" policy

that delivers all events to a specific focused mode designated by the user.

With the above implementation, MoDE has been used to generate its own

interface and to generate test interfaces that simulate major components of the in-
teractions implemented in Macintosh. NeXT, and SunView. For the test interfac(,s.

no underlying data structure nor fi.inctions were implemented. The following is a list

of the style features simulated.

5

* Drag screen objects with frame (Mac, SunView), drag screen objects with actual
image (NeXT)

e Feedback (by highlighting) when a screen object is dragged over another one
(Mac. NeXT)

* Hierarchical menus that can be in the form of: pull-down menu(Mac), pop-up
menu (SunView), or tear-off menu (NeXT)

* Inverse highlight (Mac), animation highlight (NeXT black-hole), change ap-
pearance highlight (NeXT folder)

* Screen objects that look 3-D (NeXT)

* Invoke menus from the border of a window (SunView)

o Windowing behaviors such as open and close windows with rubber-band effects.

and resize the windows (Mac, NeXT, SunView)

* Title bars for windows (Mac, NeXT, Sun\"iew)

Section I of the videotape in the appendix shows other sample interfaces cre-
aced with MoDE. These resources could be used to generate many other interfaces
- sing combination and variant form of the components described. Bv adding new
components, in the manner described, the range of possible interfaces could still be
*urther extended.

•..1.2 What MoDE Can Be Extended To Create

'his section discusses interfaces that can not be built with the current implementation
,f MoDE but could be handled by an extended MoDE. Again, the basic classes are
ised to structure the discussion.

'vDisplayObject The ADisplayObject has been designed for color display and has
variables reserved for color handling. The only reason that MoDE does not
run in full color is because the current version of Smalltalk does not support
colors. Once Smalltalk supports color or MoDE is ported to a platform that
does support colors, color images can be created immediately. Video images
can' also be incorporated so long as the output can be clipped by the display
box of a mod".

NIController New event t 'pes can he added to inclllde new inpult devices such as
jovstick and control dials. Programming is necessary to define new event types.

.59

Mode Event dispatching policies, such as a "priority list" policy where events are
sent to the modes according to their priorities, can be implemented by modifying
the event dispatching method defined in the Mode class.

With some additional work, MoDE could also be extended to handle 3-D inter-
action and audio interaction. These possible extensions are discussed in Section 7.2.
In principle, the concept of mode could be used to organize and create user interaction
in 3-D virtual realities in which modes are associated with locations in 3-D volumes
and have shapes and semantics that affect the 3-D virtual world.

6.1.3 Inappropriate Applications

There are some interfaces for which MoDE does not seem appropriate. They include
interfaces that do not use a bitmap display as their output device (such as force
feedback systems) and interfaces that do not use a pointer as the major input devices
(such as treadmill-input systems).

Since MoDE assumes an event-driven input mechanism, it is inappropriate for
user interfaces that use polling mechanisms.. Finally, MoDE is intended for direct-
manipulation interfaces. Although it is possible to create text-based interfaces with
MoDE, the concept of mode would not provide much help.

6.2 Productivity

An informal experiment was conducted to study the productivity gain produced by
MoDE. This section describes the experiment and its results.

6.2.1 Subjects

Four subjects were divided into two groups. Group A was composed of experienced
Smalltalk users (with five years and one-and-a-half years experience, respectively).
Both had extensive experience programming user interfaces in Smalltalk. Group B
consisted of two first year graduate students who started learning Smalltalk three
months before the experiment.

All subjects were asked to ihnplenent the same interface under Smalltalk. -I'he

subjects in group A (the more experienced Smalltalk programmers) chose whatever

60

tools (except MoDE) they wished to use to implement the interface. The subjects in

group B (the less experienced Smalltalk programmers) were required to use MoDE

exclusivelv.

Both groups were given three hours in which to build the interface described
below.

6.2.2 The Assignment

The following text is a verbatim listing of the assignment given to the subjects.

6.2.2.1 Rules

You are to build the interface illustrated in Figure 6.2 and described in more

detail below.

(For group A) Use whatever tools you wish to help you.
(For group B) Use MoDE exclusively.

o You have up to 3 hours to build as much of the interface as you can. The time
you spend in completing the task will be recorded and is important.

o No comments, optimization, or documentation are required.

6.2.2.2 Description of the Interface to Be Built

The interface to be built is the window shown in Figure 6.2. The parts of the window
are described below.

Title bar: The title bar (at the bottom of the window) has a title text in it. When
the user presses the left mouse button in the title bar and drags, the whole
window moves with the mouse.

Contents: three boxes within a field larger than the window that can be used to
demonstrate the function of the scroll bar.

Scroll bar: used to scroll the contents of the window vertically.

Resize corner: When the user presses the left nouse button on top of the resizel
corner (at, the upper right corner of the window), a rubber band outline of the

61

'" : ''' iMy winldOW , ,i

Figure 6.2: A picture of the window to be built.

window is shown, and the upper right corner of the outline moves with the

cursor. When the user releases the button, the size of the window matches the
rubber band outline.

When the window is resized, the following properties should be maintained:

Title bar: height fixed, title text centered, the white background of the title
text remains the same size.

Resize corner: height and width fixed, sticks to the upper right corner of the
window.

Contents: height and width fixed.

Scroll bar: width fixed.

During the experiment, you will also have access to a running implementation
of the interface that you are about to build. It comprises the definitive specification

for the interface.

6.2.3 Results

Both subjects in group B completed the assignment with all features implemented.
Subject B1 used 57 minutes, B2 used 2 hours and 3 minutes. The instability of the
version of MoDE used in the experiment accounts for much of this difference. During
the two hour period for the experiment, subject B2 crashed the system twice and was
thrown out of Smalltalk (not just MODE). Because intermediate results were stored
in main memory and could not be recovered after the crashes. B2 had to start from
scratch after both crashes.

62

Neither subject in group A completed the assignment in the three hour time
limit for the experiment. They completed some features, partially completed others,
and some were not attempted. The following is a summary of their results.

SUBJECT Al

Title bar: partially completed. (title text not centered; the background under the
window is not restored; scroll bar does not redisplay after move)

Contents: completed.

Scroll bar: partially completed. (looks different; has two unnecessary boxes at the
top and the bottom)

Resize corner: completed.

Maintaining proper appearance when the window is resized:

* Title bar: partially completed (title text not centered)

e Resize corner: completed.

* Contents: partially completed (height and width scaled incorrectly)

* Scroll bar: completed.

SUBJECT A2

Title bar: partially completed (no title text: the background along the moving path
is erased by the moving window)

Contents: completed.

Scroll bar: partially completed (looks different; has more function than needed.
basically a standard Smalltalk scroll bar.)

Resize corner: not attempted.

Maintaining proper appearance when the window is resized:

* Title bar: not attempted.

e Resize corner: not attempted.

o (ontenits: not attemptedt.

9 Scroll bar: not attempted.

63

After the experiment, subjects in Group A were asked to estimate the amount
of additional time they would need to finish the assignment. Al indicated 4 to 8 hours,
minimum, with "proper support." (Another two days would be needed to improve his
tool-set to provide the "proper support.") A2 estimated 4 to 8 hours, additional, for

him to complete the assignment.

6.2.4 Discussion

The design of the experiment was purposely biased against MODE. Group A could use
whatever tools they chose, but group B could use only MODE. Group A consisted of
experienced Smalltalk programmers, while group B consisted of inexperienced MoDE
programmers. Furthermore, B1 and B2 had completed only two small assignments
using MoDE prior to the experiment, and they were unfamiliar with the resize func-
tions of MODE. This is reflected in the large proportion of time both spent on the
resizing features of the problem interface. (For example, Bi finished everything else
in about 15 minutes and spent 40 minutes with the resize features.) The instability
of the version of MoDE used in the experiment also worked against MODE. It is esti-
mated that B2 spent at least half an hour recovering from two crashes. If subjects in
group B had had more experience with MoDE and the implementation of MoDE had
been more stable, even greater differences in performance would have been expected'.

The intention of the experiment was to demonstrate informally the productiv-
ity gain provided by MoDE. Since Group A did not finish the assignment, only the
estimated numbers are available for comparison. Nevertheless, this informal experi-
ment suggests a substantial gain in productivity could be achieved for programmers
with modest experience using a stable MoDE system.

6.3 Performance

Performance is an important consideration for any system. However, it must be
placed in context and considered in relation to other criteria and objectives for a
system. MoDE wa , built as a proof-of-concept system and, hence, emphasis was
placed on the generality of its architecture. Since MoDE is intended as a prototyping
tool, flexibility (in addition to generality) is more important than raw speed.

In the current interpretive implementation. MoDE may be considered -slow."

,The author, an expert MoDE user, took 15 minutes to build the running implementation used
as the definitive specification in the experiment. Approximately 4 hours were needed by the author
to build the same interface without MoDE.

64

but its slowness is relative and, in practice, has not detracted from its usefulness.
Several measures of performance will be discussed briefly below, but to get the look
and feel of MoDE in actual use, the reader is referred to the videotape in Appendix C.
This videotape was shot in real-time. It demonstrates the efficiency of the interfaces
built with MoDE. The sample interfaces includes windows that move smoothly with
their actual imagos instead of indication boxes, a star that rotates when dragged, a
scroll bar that scrolls the contents of a window continuously, and a screen object that
clips against its surrounding environment while tracking the cursor.

On a Sun3/75, moving an icon in a MoDE-generated interface has a 70 to 100
ms gap between the time the user pushes the button and the time the icon starts to
move. If the same operation is programmed with a C++ graphics library that has
direct access to the low level SunView routines, the gap decreases to about lms. Al-
though these numbers indicate two orders of magnitude difference in performance, the
human user can hardly notice the difference. With faster machines, the performance
difference becomes even less noticeable.

MoDE has been used to produce functional interfaces for actual applications;
they include the interface for MoDE itself and the interface for a hypertext software
development system currently being built. In most cases, the interfaces created with
MoDE actually ran faster than interfaces created with original Smalltalk tools because
of the caching capability inherited by all modes. For example, the interface for a
hypertext application built with MoDE can refresh a directed graph with 100 nodes
and 150 links 3 to 4 times faster than the same interface implemented directly with
Smalltalk tools.

The major factors affecting MoDE's performance are consequences of its im-
plementation in Smalltalk, rather than the architecture of the system. Smalltalk
drawing routines used by MoDE are implemented with non-optimized algorithms.
They run much slower than ordinary drawing routines such as those of SunView
and X. Second, Smalltalk is an interpreted language2 ; Smalltalk programs, includ-
ing MoDE, execute an order of magnitude slower than compiled programs [JGZSS].
The overhead required to achieve the generality of MoDE is not a significant factor.
By partitioning the interface components orthogonally, MoDE incurs only a constant
overhead cost for its generality. This fixed cost is the constant number of additional
messages needed to support the indirection that, in turn, supports the orthogonal
partitioning.

The fixed overhead incurred between the time aii cvent is generated and the
time it is fully processed typically includes the following:

2There are Smalltalk implementations that are compiled and provide better performance [AtkSil.
JGZ8S1. Unfortunately their compilers strip away much of the run-time flexibility of the interpreted
Smatltalk. which is essential for the implementation of MoDE.

65

* One message sent from the mode to controller to process the event.

@ The cost of the controller eventResponses table look-up.

* One message for the controller to inform the semantic object.

* Two messages that go back and forth between the semantic object and the
application.

* One message sent from the semantic object to the mode to reflect the semantic
action.

e One message from the mode to its display object to display the difference.

The profile data collected from a session similar to that shown in section 1 of the
videotape indicates that these overhead events consumed less than 2% of the overall
CPU time. This suggests that further optimization on this portion of the system
could provide very little gain.

Since MoDE is general with respect to object-oriented programming, the sys-
tem can readily be ported to a non-interpreted object-oriented language that can
interact with a faster drawing library. Such a port would eliminate the two major
performance liabilities mentioned above. Section 7.2 outlines a possible approach for
making such a port.

Thus, while interfaces produced by MoDE are measurably slower than inter-
faces implemented using conventional tools, their differences are insignificant from
the point ei view of the user. The MoDE architecture achieves its flexibility and gen-
eralitv at a small, constant overhead cost. Thus, when MoDE is ported to production
platforms, such as Objective-C and X Window System, the interfaces it produces
should be as efficient as those produced using other user interface building tools.

6.4 Summary

MoDE is sufficiently general to produce a wide variety of interfaces including the
interface styles in SunView, NeXT, Macintosh, and those in the section 1 of the
videotape. The Mode framework is currently limited by the implementation rather
than the con epts that it is based upon, and can be extended to provide further
generality. An informal experiment suggests that, MoDE is capable of increasing the
prodiictivity of its users. MoDE also generates interfaces tlhat provide reasonable
performance suitable for actu~al applications.

66

Chapter 7

Conclusion

7.1 Summary

The MoDE research contributes to the state of the art of user interface development
by achieving the following goals.

Generality
The orthogonal design of the Mode framework not only allows the user interface
components created with MoDE to be highly reusable but also allows the axes to span
more mode types, which results in a more general system. With an open architecture.
the MoDE interaction technique library allows new styles of interaction to be created
and incorporated into the system easily.

Connection between user interface and application
The decentralized connection model allows a strong separation of the user interface
and the application without limiting the communication between them (which is

essential for providing rich semantic feedback).

Support beyond coding
The mode concept provides an informal framework in which the user interface devel-
oper can specify the interface conceptually from the end user's point of view. This
framework also provides guidelines to help decompose an interface into components

during the design phase. The structure regularity imposed by the Mode framework
across all interfaces and the interrupt-gnd--inspection capability MoDE supports helps
the developer in both debugging and maintenance.

Integration between event-driven and polling interfaces
[o the best of the author's knowledge, the MoDE event-driven mechanisl is the first

67

such mechanism to allow polling and event-driven user interfaces running together
without any performance loss and without' altering them. Appendix A.4 discusses

this in details.

7.2 Future Research

The work reported ht-e can be extended in many ways.

Expand the Type-space of Modes

The type-space of modes defined in Section 3.4 can be expanded by creating new
values on the three axes. For example, MoDE currently does not support video on

the appearance axis. Defining a new subclass of VlDTsplayObject ,hat displays video
images would allow the type-space to expand and cover more user interfaces.

Direct-Manipulation Support for Dynamic Interfaces
The Mode Composer currently provides little direct-manipulation support for the cre-
ation of dynamic interfaces. A dynamic interface (for example, a drawing tool that

allows the user to create lines and boxes) changes its configuration at run-time. The
difficulty in creating such interfaces is not in their implementation but rather in their
specification. New input techniques would be needed in order for the interface devel-

oper to specify the dynamic behavior of the interface through direct manipulation.

Make MoDE a Production System
MoDE can be made into a "real" system intended for industrial use. The "real"
MoDE should be able to generate user interfaces that run on the X Window System.
A viable approach would be to implement the basic classes of MoDE in a C-based
object-oriented language (such as C++ or Objective-C) to interact with the X server.
The Mode Composer would have to be modified to generate code that uses the four
basic classes coded in Smalltalk. This would allow interface developers to prototype
and test their interfaces using the Smalltalk Mode Composer. Once they are satisfied
with the prototype interface, they could then ask the system to generate code in

the production language (for example C++) for the real version of the interface that
would provide better performance and portability.

Figure 7 1 depicts a strategy for porting MoDE to C++ running on top of X
Window System. The basic classes would be reimplemented in C++ to use the X
Window System.

Each instance of .lodr would he associated with an \ window.

The Mfode class would implement calls to the X server for event dispatching

68

AppliationcodeApplication codeApplication code - (in C++)

Basic classes Basic ;lasses

(in Smalltalk) (in C++)

Smalltalk X Window System

Figure 7.1: Make MoDE a production system.

and window management. The underlying event-driven mechanism of MoDE is very
similar to the event-driven mechanism of X. In fact, since marv specific functions -
such as clipping, event dispatching, etc. - are handled directly in X, those methods
would not have to be ported. Thus, the size of the Mode class in C++ would be much

smaller than the one in Smalltalk.

The MDisplayObject class would be implemented with the display functions of
X. Since the version of Smalltalk (ParcPlace 2.5) in which MoDE is implemented has
been ported to the X Window System (on DEC3100 machines) successfully, the X dis-
play functions are sufficient to implement all display functions of the MDisplayObject
plus additional ones that might be added in the future.

The MController class would be modified to handle X event types. As men-
tioned in Section 4.2.2.1, the eventResponses table would need to be implemented
by associating tags with function pointers. Also, an V/Event class will be needed to
wrap X events with an object-oriented layer to provide an object-oriented interface to
the I/Controller. However, since the event-driven system of MoDE and X are quite
similar, the tasks would be straight forward.

The SemanticObject is independent of the underlying windowing system: con-
sequently. no special treatment is needed for porting it.

After the basic classes have been ported, MoDE could be used to develop
prototype ;nt,'-f:.ces as an application of the basic classes. Once the interfaces became
satisfactory and fully debugged, the application code can be hand translated into C++
and linked with t:,e basic classes ported to C++ previously. If the target language is
Objective-C instead of C++, a Smalltalk to Objective-C translator, called 'Producer"
[CS87]. could be invoked from the Mode Composer to automatically translate the
application code to Objective-C.

Support 3-D interaction

With some programming. MoDE could be used to create simple 3-D interfaces. The
3-D game shown at the end of the section I of the videotape contained in the ap-

69

pendixes is an example. A set of objects could be added to the library to facilitate

the creation of this kind of user interface. The two-dimensional definition of mote

could be extended to cover true three dimensional interaction. In a two-dimensional

interface, a mode is an area on the screen that interacts with the user differently than

its surrounding area. In a three-dimensional interface, one could define a mode as

the "volume" (or surface) that interacts with the user differently than its surrounding
volume (or surface). Research on 3-D input devices and how to represent and process

the events generated by these devices is also needed.

Tracking Mechanism

With its event-driven mechanism, MoDE could be used to create interfaces that can

record the user's interaction (basically as a sequence of events) into a file and later

replay the interaction from the file. This could be used to provide insights into the

usability of the user interfaces created with MoDE.

It would be desirable to build this tracking mechanism at a system level so

that all application would inherit this capability. The development of the tracking

mechanism could also help in creating shared workspaces. If replay is done on a

different machine at the same time when the interaction is being tracked, the tracking
site and the replay site could share the same visual workspace.

Audio Interaction
To support audio interaction the system would need to accept audio input and gener-

ate audio output. Methods to package audio input and output as events would needed

to be developed. Also, the event dispatching mechanism would need to be extended

to include the priority list policy so that the audio input can be independent to the

cursor position. (With a priority list, an event is first sent to the mode at the top of
the list, then the second, and so on.)

70

Bibliography

[ABB89] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A Two-
View Approach to Constructing User Interfaces. In Computer Graphics:

SIGGRAPH'89, volume 23, :3, pages 137-146, July 1989.

[Ada88] Sam S. Adams. MetaMethods: The MVC Paradigm. HOOPLA!, 1(4).
July 1988.

[Ale871 J. H. Alexander. Painless Panes for Smalltalk Windows. In OOPSLA '87:
Object Oriented Programming, Systems and Applications, pages 287-

294, October 1987.

[AMY87] R. Akscyn, D. McCracken, and E. Yoder. KMS: A Distributed Hyperme-
dia System for Managing Knowledge in Organizations. In Hypertezt '87.
pages 1-20. University of North Carolina, Chapel Hill, NC, November

1987.

[ApoSS] Apollo Computer, Inc. Open Dialogue, 1988.

[AtkS6] Robert G. Atkinson. Hurricane: An Optimizing Compiler for Smalltalk.
In OOPSLA '86: Object Orientd Programming, Systems and Applica-
tions. pages 151-158. October 1986.

[AYM881 R. Akscyn, E. Yoder, and D. McCracken. The Data Model is the Heart of
Interface Design. In SIGCHI'88: Human Factors in Computing Systems.
pages 115-120, April 1988.

[BarS6 P. S. Barth. An Object-Oriented Approach to Graphical Interfaces.

.4CM Transactions on Graphics, 5(2):142-172, April 1986.

tBn,88] Carl Binding. The Architecture of a User Interface Toolkit. In UIST
'88: ACI SIGGR.APH Symposium on User Interface Software, pages

.56-6.5, October 1988.

1LS .LS W. Buxton. M. R. Iamb, D. Sherman. and K. C. Smith. Towards a Com-

prehensive I'ser Interface Management System. In ('omputctr Grap/ i. .:

SIGGRAPH'3, volume 17, pages 35-42. July 1983.

71

[CarS8] Luca Cardelli. Building User Interfaces by Direct Manipulation. In UIST
'88: ACM SIGGRAPH Symposium on User Interface Software, pages
152-166, October 1988.

[CCM87] L. A. Call, D. L. Cohrs, and B. P. Miller. CLAM-an Open System for

Graphical User Interfaces. In OOPSLA'87: Object Oriented Program-
ming, Systems and Applications, volume 17, pages 227-286, October

1987.

[Con87] J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer.

19:17-41, September 1987.

[Cox86] B. J. Cox. Object-Oriented Programming: An Evolutionary Approach.
Addison Wesley, 1986.

[CP85] L. Cardelli and R. Pike. Squeak: A Language for Communicating with
Mice. In Computer Graphics: SIGGRAPH85, volume 19, pages 199-
204, July 1985.

[CS87] Brad J. Cox and Kurt J. Schmucker. Producer: A Tool for Translating
Smalltalk-80 to Objective-C. OOPSLA'87: Object Oriented Program-
ming, Systems and Applications, pages 423-429, October 1987.

[DLS89] John F. DeSoi, William M. Lively, and Sallie V. Sheppard. Graphical
specification of user interfaces with behavior abstraction. In SIGCHI'89:
Human Factors in Computing Systems, pages 139-144, May 1989.

[Edm8l] E. A. Edmonds. Adaptive man-computer interfaces. In M. J. Coombs
and J. L. Alty, editors, Computing Skills and the User Interface. Aca-
demic Press, London, 1981.

[ELSSJ Danny Epstein and Wilf R. LaLonde. A Smalltalk Window System

Based On Constraints. In OOPSLA '88: Object Oriented Programming,

Systems and Applications, pages 83-94, September 1988.

[EMBS7] Raimund K. Ege, David Maier, and Alan Borning. The Filter Browser
Defining Interfaces Graphically. In Europian Conference on Object Ori-
ented Programming, pages 155-165, 1987.

[FB87] M. A. Flecchia and R. D. Bergeron. Specifying complex dialogs in AL-

GAE. In SIGCHI'87: Human Factors in Computing Systems, pages
229-234, April 1987.

[F.J 187] . L. Fisher and K. I. Joy. Control-Panel Interface for Graphics and
Image-Processing Applications. In SIGCHI'87: Human Factors in Corn-
puting Systems. pages 285-290. April 1987.

72

[Fol86] J. D. Foley. Guest Editor's Introduction: Special Issue on User Interface
Software. ACM Transactions on Graphic, 5(2):75-78, April 1986.

[Fo1SS] J. D. Foley. Software Tools for Designing and Implementing User-
Computer Interfaces. In Lecture notes for User Interface Strategies '88.
University of Maryland, Professional Development Center. College Park,
Maryland, October 1988.

[Fol89] J. D. Foley. Defining Interfaces at a High Level of Abstraction. IEEE
Software, pages 25-32, January 1989.

[Fre87] K. Freburger. RAPID: Prototyping Control Panel Interfaces. In
OOPSLA '87: Object Oriented Programming, Systems and Applications.
pages 416-422. October 1987.

[GE87] M. Grossman and R. K. Ege. Logical Composition of Object-Oriented
Interfaces. In OOPSLA '87: Object Oriented Programming, Systems and
Applications, pages 295-306, October 1987.

[Gia88] Alessandro Giacalone. XY-WINS ,tn Integrated Environment for De-
veloping Graphical User Interfaces. In UIST '88: ACM SIGGRAPH
Symposium on User Interface Software, pages 129-143, October 1988.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and its Imple-
mentation. Addison-Wesley, 1983.

[GraSG] F. E. Granor. User Interface Management Systems Generator. PhD
thesis, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia. PA, May 1986.

[GreS51 M. Green. The University of Alberta User Interface Management Sys-
tem. In Computer Graphic: SJGGRAIPH'.5. volume 19. pages 205-21:3.
July 1985.

[Gre86] M. Green. A Survey of Three Dialogue Models. ACM Transactions on
Graphics, 5(3):244-275. July 1986.

[Gut871 S. H. Gutfreund. Maniplicons in ThinkerTov. In OOPSLA'87: Ob-
ject Oriented Programming. Systems and Applications, pages 307-:317.

October 1987.

[Har891 R. Hartson. User-Interface Management Control and Communication.
IEEE Software, pages 62-70, January 1989.

[t[(' 6 i D. A. Jr. Handerson and S. K. Card. Rooms: The Vse of Multiple Virtual

\Vorkspaces to Reduce Space Contention in a Window-Based Graphical
User Interface. ACM Transactions on Graphics. 5(3):211-243. July 1986.

73

[He187] J. Helfman. A Tabular User-Interface Specification System. In

SIGCHI'87: Humaii Factors in Computing Systems, pages 279-284.
April 1987.

[HH861 D. Hix and H. R. Hartson. An interactive environment for dialogue
development: Its design, use, and evaluation. In SIGCHI'86: Human
Factors in Computing Systems, pages 228-234, April 1986.

[HHN861 E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation
interfaces. In D. A. Norman and S. W. Draper, editors, User Centered
System Design, pages 87-124. Lawrence Erlbaum Associates, Hillsdale.
NJ, 1986.

[Hi186] R. D. Hill. Supporting Concurrency, Communication, and Synchroniza-
tion in Human-Computer Interaction-The Sassafras UIMS. ACM Trans-

actions on Graphics, 5(3):179-210, July 1986.

(HSL85] P, J. Hayes, P. A. Szelely, and R. A. Lerner. Design Alternatives for

User-Interface Management Systems Based on Experience with Cousin.
In SIGCHI'85: Human Factors in Computing Systems, pages 169-175,
April 1985.

[Hud861 S. E. Hudson. A User Interface Management System wich Supports
Direct Manipulation. PhD thesis, Department of Computer Science,

Uni,,ersity of Colorado. Boulder, Colorado, 1986.

[IWC+88] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken
Doyle. Fabrik-A Visual Programming Environment. In OOPSLA '$:
Object Oriented Programming, Systems and Applications. pages 176-

190, September 1988.

[JacS6] R. J. K. Jacob. A Specification Language for direct Manipulation User
interfaces. ACM Transactions on Graphics, 3(4):2S3-317, October 1986.

[JGZ88] Ralph E. Johnson, Justin 0. C.aver, and Lawrence W. Zurawski. TS:
An Optimizing Compiler for Smalltalk. In OOPSLA '88: Object Oriented
Programming, Systems and Applications, pages 18-26, October 1988.

[Kas82] D. J. Kasik. User Interface Management System. Computer Graphics"

SIGGRAPH'82, pages 99-106, July 1982.

KtasSS5 David J. IKasik An architecture for graphics application development.
In Proceedings of IEEE International Conference on Robotics and 4u-
tomation, pages 365-371. March 1985.

74

[KC88] Michael F. Kleyn and Indranil Chakravarty. EDGE - A Graph Based

Tool for Specifying Interaction. In UIST '88: ACM SIGGRAPH Sym-

posium on User Interface Software, pages 1-14, October 1988.

[KLR89] David J. Kasik, Michelle A. Lund, and Henry W. Ramsey. Reflections on

Using a UIMS for Complex Applications. IEEE Software, pages 54-61,

January 1989.

[KO881 Kerry Kimbrough and LaMott Oren. CLUE: A Common Lisp User

Interface Environment. In UIST '88: ACM SIGGRAPH Symposium on

User Interface Software, pages 85-94, October 1988.

[KPS3] D. Kieras and P. G. Polson. A generalized transition network repre-

sentation for interactive systems. In SIGCHI'83: Human Factors in

Computing Systems, pages 103-106, December 1983.

[KPS8] G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-

Controller User Interface Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26-49, August/September 1988.

[LIBYS9] T. G. Lewis, Fred Handloser III, Sharada Bose, and Sherry Yang. Pro-
totypes from Standard User Interface Management System. Communi-

cations of the Association of Computing MXfachinery, 22{5):51-60, may

1989.

[Lie86] Henry Liebzrman. Using Prototypical Objects to Implement Shared Be-
havior in Object Oriented Systems. OOPSLA '86: Object Oriented Pro-

gramming. Systems and Applications, pages 214-223, September 1986.

[LVCS9] M. A. Linton. J. M. Vlissides, and P. R. Calder. Composing User Inter-
faces with InterViews. IEEE Computer, pages 8-22. February 1989.

[IASS] Joel McCormack and Paul Asente. An Overview of the X Toolkit. UIST
'88: ACM SIGGRAPH Symposium on User Interface Software, pages

46-55, October 1988.

[NIBFBS9] John Maloney, Alan Borning, and Bjorn Freeman-Benson. Constraint
Technology for User-Interface Construction in ThingLab II. In OOP-

SLA '89: Object Oriented Programming, Systems and Applications.
pages 381-388. October 1989.

[MBW89 Jerry M. Manheimer, Rodney C. Burnett, and Jo Ann Wallers. A case
study of user interface management system development and applica-

tion. In SIGCIII',9: tuman Factors in C'omputing Systrrns. pages 127-
132. May 1989.

75

[Mey871 B. Meyer. Reusability: The Case for Object-Oriented Design. IEEE
Software, pages 50-64, March 1987.

[Mic85] Microsoft Corp., Redmond, Wash. Microsoft Windows: Programmer"

Guide, 1985.

[Mi188] J. Miller. UIMSs: Threat or Menace? In SIGCHI'88: Human Factors

in Computing Systems, pages 199-200, April 1988.

[MRKS89] Hans Muller, John Rose, James Kempf, and Tayloe Stansbury. The Use
of Multimethods and Method Combination in a CLOS Based Window

Interface. In OOPSLA '89: Object Oriented Programming, Systems and

Applications, pages 239-253, October 1989.

[MSC+86] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H.
Rosenthal, and D. F. Smith. Andrew: A distributed personal com-
puting environment. Communications of the Association of Computing
Machinery, 29(3):184-201, March 1986.

[MTS8] Jeff McAffer and Dave Thomas. Eva: An Event Driven Framework for
Building User Interfaces in Smalltalk. In Graphics Interface '88, pages

168-175, June 1988.

[MVS88] James E. McDonald, Paul D. J. Vandenberg, and Melissa J. Smartt. The

MIRAGE Rapid Interface Prototyping System. In UIST '88: ACM SIG-
GRAPH Symposium on User Interface Software, pages 77-84. October
1988.

[Mve87a] B. A. Myers. Creating dynamic interaction techniques by demonstration.

In SIGCHI'87: Human Factors in Computing Systems. pages 271-278.
April 1987.

[Mye87b] B. A. Myers. Gaining General Acceptance for UIMSs. In ACM SIG-

GRAPH Workshop on Software Tools for User Interface Development,
volume 21, pages 130-134, April 1987.

[Mye88] B. A. Myers. Creating User Interfaces by Demonstration. Academic

Press, Boston, 1988.

[Mye89a] B. A. Myers. User-Interface Tools: Introduction and Survey. IEEE
Software. pages 15-23, January 1989.

[MveS9b] Brad A. Myers. Encapsulating Interactive Behaviors. In SIGCI'S9:

Human Factors in Computing Systcrns. pages 319-324, May 19S9.

[NeX88] NeXT, Inc.. Palo Alto, Calif. NEXT System Reference Manual, 1988.

76

[NS79] W. M. Newman and R. F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, Inc., 1979.

[OBE+84] D. R. Olsen, W. Buxton, R. Ehrich, D. Kasik, J. Rhyne, and J. Sibert.
A Context for User Interface Management. IEEE Computer Graphics
and Applications, 4(12):33-42, December 1984.

[OD83] D. R. Olsen and E. P. Dempsey. Syngraph: A Graphical User-Interface
Generator. Computer Graphics: SIGGRAPH'83, pages 43-50, July
1983.

[ODR85] D. R. Olsen, E. P. Dempsey, and R. Rogge. Input-Output Linkage in
a User Interface Management System. In Computer Graphics: SIG-

GRAPH'85, pages 225-234, July 1985.

[O1s86] D. R. Jr. Olsen. MIKE: The Menu Interaction Kontrol Environment.
ACM Transactions on Graphics, 5(4):318-344, October 1986.

[Ols87] D. R. Olsen. Larger Issues in User Interface Management. In A CM SIG-
GRAPH Workshop on Software Tools for User Interface Development,
pages 134-137, April 1987.

[O1s88] Dan R. Jr. Olsen. A Browse/Edit Model for User Interface Management.
In Graphics Interface '88, pages 155-159, June 1988.

[Ols89] Dan R. Jr. Olsen. A Programming Language Basis for User Interface.
In SIGCHI'89: Human Factors in Computing Systems, pages 171-176.
May 1989.

[PfaS.5] G. E. Pfaff. User Interface Management Systems. Springer-Verlag.
Berlin. 1985.

[ReiS7] S. P. Reiss. A Conceptual Programming Environment. In 9th Interna-
tional Conference on Software Engineering, pages 225-235, March 1987.

[RSD+87] W. Roberts, M. Slater, K. Drake., A. Simmins, and A. Davison. First
Impressions of NeWVS. Technical Report 417, Department of Computer
Science and Statistics, Queen Mary College, University of London, Lon-
don, England, August 1987.

[Rub82 A. Rubel. Graphic based applications-Tools to fill the software gap.
Digital Design, pages 17-30, July 1982.

'RumSS .James Rumbaugh. State Trees as Structured Finite State Machines for
User Interfaces. In UIST "S: .4CM SIGGR.4Ptl Symposium on1 J'S(7"

Interface Software, pages 15-29, October 1988.

77

[SBK85] J. Sibert, R. Belliardi, and A. Kamran. Some thoughts on the interface

between user interface management systems and application software. In

G. E. Pfaff, editor, User Interface Management Systems, pages 183-192.

Springer-Verlag, Berlin, 1985.

[Sch86a] Kurt Schmucker. MacApp: An Application Framework. Byte, pages

189-193, August 1986.

[Sch86b] Kurt Schmucker. Object Oriented Programming on the Macintosh, vol-

ume 5. Apple Press, 1986.

(Sch88a] Allan M. Schiffman. Time-Sharing Citizenry for Smalltalk-80 under

Unix. ParcPlace Newsletter, 1(2):9-10, 1988.

[Sch88b] Kurt Schmucker. Using Objects to Package User Interface Functionality.
Journal of Object-Oriented Pro grammzng, 1(1):40-45, April/May 1988.

[SG86] R. W. Scheifler and J. Gettys. The X Window System. ACM Transac-

tions on Graphics, 5(2):79-109, April 1986.

[SG89] Gurminder Singh and Mark Green. A high-level user interface manage-
ment system. In SIGCHI'89: Human Factors in Computing Systems,
pages 133-138, May 1989.

[SH89] Antonio C. Siochi and H. Rex Hartson. Task-Oriented Representation
of Asynchronous User Interfaces. In SIGCHI'89: Human Factors in

Computing Systems, pages 183-188, lay 1989.

[Sha89] Yen-Ping Shan. An Event-Driven Model-View-Controller Framework for
Smalltalk. In OOPSLA '89: Object Oriented Programming, Systems and
Applications, pages 347-352, October 1989.

[Sha90a] Yen-Ping Shan. An Object-Oriented Framework for Direct-Manipulation
User Interfaces. In Eurographics Workshop on Object Oriented Graphics,
June 1990.

[Sha90b] Yen-Ping Shan. Mode offers direct manipulation for Smalltalk. IEEE
Software, 7(3):36, May 1990.

[SHB86 J. L. Sibert. W. D. Hurley, and T. W. Bleser. An Object-Oriented User-

Interface Management System. Computer Graphics: SIGGRAPH'86.
20(0):259-268, August 1986.

[Shn8T] B. Shneiderman. Direct manipulation: a step beyond programming lan-
guages. IEEE Computer. 16(8):57-69, 1983.

78

[SIKV82] D. C. Smith, C. Irby, R. Kimball, and B. Verplank. Designing the Star
User Interface. Byte, pages 242-282, April 1982.

[SM88] P. A. Szekely and B. A. Myers. A User Interface Toolkit Based on
Graphical Objects and Constraints. In OOPSLA '88: Object Oriented
Programming, Systems and Applications, pages 36-45, September 1988.

(Sme87] SmethersBarnes, P.O. Box 639, Portland, Ore. 97207. SmethersBarnes
Prototyper User's Manual, 1987.

[Smi881 David N. Smith. Building Interfaces Interactively. In UIST '88: ACM
SIGGRAPH Symposium on User Interface Software, pages 144-151, Oc-
tober 1988.

[Ste88] Stepstone corp., Sandy Hook, Ct. ICpak 201 Reference Manual, 1988.

[Sun86] Sun Microsystems, Mountain View, Calif. Sun View Programmer's
Guide, 1986.

[Sun87 Sun Microsystems, Mountain View, Calif. Ne WS Manual, 1987.

[Sze89] Pedro Szekely. Standardizing the Interface Between Applications and
UIMSs. UIST '89: ACM SIGGRAPH Symposium on User Interface
Software, pages 34-42, November 1989.

[TaMSW86] P. Tanner, S. a. MacKay, D. A. Stewart, and M. Wein. A multitask-
ing switchboard approach to user interface management. In Computer

Graphics: SIGGRAPH '86, pages 241-248, July 1986.

[tD851 P. J. W. ten Hagen and J. Derksen. Parallel Input and Feedback in Dia-
logue Cells. In G. E. Pfaff, editor, User Interface .Mlanagement Systems,

pages 109-124. Spring-Verlag, Berlin, April 1985.

[Tei86] W. Teitelman. Ten years of window systems-A retrospective view. In
F. R. A. Hopgood, D. Duce, V. C. Fielding, K. Robinson, and A. S.
Williams, editors, Methodology of Window Management, pages 35-46.
Springer-Verlag, New York, 1986.

[TesSi] L. Tesler. The Smalltalk Environment. Byte, pages 90-147, August
1981.

[vdM89] Pieter S. van der Meulen. Development of an interactive Simulator in
Smalltalk. lOOP, pages 28-51, January/February 1989.

[VLS9] John M. Vlissides and Mark A. Linton. Unidraw: A Framework for
Building Doinain-Specific Graphical Editors. LIST "S9: ..AC'.I SIG-
GRAP1 Sympo.sum on User Interface Soft ware, pages 158-167, Novem-

ber 1989.

79

[WasS5] A. L Wasserman. Extending transition diagrams for the specification of
human-computer interaction. IEEE Transactions on Software Engineer-
ing, August 1985.

[WCM88] A. Weinand, E. Camma, and R. Marty. ET++: An Object-Oriented
Application Framework in C++. In OOPSLA '88: Object Oriented Pro-
gramming. Systems and Applications, pages 45-57, September 1988.

[Wel89] Pierre D. Wellner. Statemaster: A UIMS based on Statecharts for Pro-
totyping and Target Implementation. In SJGCHI'89: Human Factors in

Computing Systems, pages 177-182, May 1989.

[WR82] P. C. S. Wong and E. R. Reid. FLAIR-User interface dialog design tool.

Computer Graphics: SIGGRAPH'82, 16(3):591-606, July 1982.

[YH85] T. Yunten and H. R. Hartson. A SUPERvisory Methodology and Vo-
tation (SUPERMAN) for human-computer system development , vol-
ume 1, pages 243-281. Ablex, Norwood, N.J., 1985.

Q0

Appendix A

An Event-Driven Mechanism for
MoDE

In the original Smalltalk MVC implementation, user interface objects interact with
the end user by polling the states of the input devices and responding to the state
changes. The polling loops must always be active in order not to miss any actions
performed by the user. When one is developing systems with multiple processes, this
becomes a serious problem. For example, an application with a polling user interface
may fork an agent process to handle the transactions to a remote database and to
manage the local cache. Since the user interface process must keep polling even when
the user is not interacting with the system (for example, the user is waiting for a
transaction to finish), it consumes the CPU cycles that could have been spent on
the database agent process. Moreover, the existence of the database agent process
could make the interface less responsive. The situation is aggravated if the database
is running on the same machine as the user interface.

This deterioration of performance can be avoided if the user interface is built
on top of an event-driven mechanism that does not poll'. However, one must be
cautious in making such a fundamental change. While switching to an event-driven
mechanism is beneficial, it is impractical to consider discarding existing user interfaces
and rebuilding them under a new mechanism. Since reusability is among the most im-
portant features of object-oriented programming, if the new event-driven mechanism
does not allow reuse of existing interfaces, it would be impractical.

This section presents an event-driven interface framework that not only solves
the performance problem but also allows:

'An alternative is to implement a Time-Sharing Citizenry [SchS~a] mechanism within the

Smalltalk itself.

81

e interfaces built with the polling mechanism to co-exist with ones that are built
with the event-driven mechanism. (For example, an event-driven directory
browser could co-exist with the standard Smalltalk system browsers.)

* interface objects built with both mechanisms to be reused by each other. (For
example, within a polling environment one could use an event-driven spread-
sheet which in turn uses a polling menu.)

Additionally, no modification of existing code is required and no loss in performance
is obtained.

The next section gives a brief overview of both the polling and event-driven
mechanisms. In Section A.2, further motivation for having an event-driven mechanism
is provided. Section A.3 describes the design and implementation of the event-driven
mechanism. Section A.4 discusses the solution to the compatibility problem.

A.1 Background

Polling
A system that supports the polling mechanism often maintains a globally accessible
table of the states of the devices. In Smalltalk, this table is an instance of InputSensor
and is accessible through a global variable called Sensor. A typical interface object
will have loops that poll the relevant table entries. When a state change is sensed, the
case statement in the loop invokes a routine to process the change. This routine can
change the state of the underlying application, give feedback to the user, or transfer
control to another loop to detect further state changes. For example, a Smalltalk
Pop UpMenu is often invoked by a loop that senses mouse button presses. Control
is then passed to the Pop UpMenu polling loop which tracks the cursor position and
highlights the proper portion of the menu when the user drags the cursor.

The control structure of a polling interface is implemented by a tree of loops.
Each loop in the tree keeps control while certain conditions are satisfied (for instance,
the cursor stays within a rectangle area) and polls the children loops to see whether
they want control. A child loop that wants control can grab it when its loop condition
is met and later return control to its parent loop when its looping condition is no longer
satisfied.

Event-Driven
An event-driven mechanism [NS79] usually consists of three major components: a set
of event generators, an event queue that buffis the events in sequence, and an event
dispatching mechanism that removes the events one at a time from the queue and

82

sends them to the appropriate event handler. An event has a name or number that
identifies the nature of the interaction plus several data values that characterize the
interaction.

A typical event-driven interface has a single event-fetching loop. The execution
of the loop is suspended when the event-fetching statement in the loop tries to fetch
from an empty event queue and is resumed when new events arrive.

An event-driven interface program registers a number of event handlers with
the event dispatching mechanism. For each handler, a list of interesting event types is
specified. When an interesting event happens, the dispatching mechanism activates
the corresponding handler to process it.

A.2 Why Event-Driven?

Besides better utilization of the CPU, the event-driven mechanism provides a better
trace of input devices. With the polling mechanism, when a system is heavily loaded,
it can miss a state change (for example, a button click) because the polling loop is
not at the condition statement when the change happened. This problem does not
happen with the event-driven model since all events are buffered. An application has
the freedom to discard events when it cannot process them as fast as they come (this
is seldom the case, though); it can also control when the events should be discarded
and which one to d;scard. This is in contrast to the polling mechanism where state
changes may be overlooked, depending on the system load and the execution timing
of the statements in the polling loop.

The event-driven mechanism also makes possible implementation of some ap-
plications that could not be done within a polling paradigm. For instance, with the
event-driven mechanism described in the next section, the author was able to de-
velop a package that allows users running Smalltalk on different machines to share
visual workspaces. The package is general in that a user can select any event-driven

application and then share both control and the visual display with other users.

A.3 An Event-Driven Mechanism

This section describes the three major components for an event-driven mechanism -

the event genexator. the event queue., and the event dispatching mechanism.

83

A.3.1 Event Generator

An event generator is responsible for generating events and placing them on the event
queue. Beneath the Smalltalk virtual machine, the input devices are handled by an
event-driven (more precisely interrupt-driven) mechanism; consequently, the problem
of creating an event generator is reduced to identifying the place where Smalltalk
changes its state table and inserting code to generate the events. Smalltalk acquires
the primitive input events from the virtual machine by calling the primitiveInputWord
method and updates its state table in the run method defined in the InputState class.
The event-driven mechanism of MoDE modifies the run method to have it interpret
the primitive input events into the events used by MoDE.

Currently, the event types generated include: cursorMove, [left ImiddleIright]
Button [UpIDownIClick[DoubleClicki, and keyboardEvents. New event types can be
added by the user.

A.3.2 Event Queue

The implementation of the event queue is straightforward. The Smalltalk SharedQueue
provides most of the function needed by the event queue, including suspending pro-
cesses that try to fetch from an empty queue. The EventQueue, a subclass of
SharedQueue, implements methods to control the queue and to handle queue overflow.

A.3.3 Event Dispatching and the MVC framework

The event dispatching mechanism is more subtle and the decisions made here affect
compatibility. The goal is not just to produce a mechanism that delivers the events
to the right event handlers, but also to ensure that event-driven interfaces built with
this control mechanism are compatible with polling interfaces.

The "superView-subView" relation in the Smalltalk View class provides the
base for event dispatching. A View in a structured picture can contain other Views
as sub-components. These sub-components are called "subViews." A View can be a
subView of only one View-its "superView." The set of Views in a structured picture
forms a hierarchy. In the Mode framework, all screen objects inherit from a subclass of
View called Mode2 . When a Mode receives an event, it checks to make sure the event
is intended for it (usually by comparing the coordinates of the event with its display
box) and asks all of its "submodes." starting from the topmost one, to process the

2Section 4.2.1 discusses Mode in details.

84

event. (The "submodes" are stored in the instance variable subViews inherited from
View.) If none of the submodes are interested in the event, it then tries to process the
event itself. If it is not interested in the event, it returns the event as un-processed
to its "superMode" (stored in the instance variable superView, also inherited from
View). A Mode delegates responsibility for processing events to its event handler,
which is stored in the instance variable controller, defined by the MVC paradigm.

The one Mode in the hierarchy that has no superMode is called the "root-
Mode." It is an instance of RootMode class where the event-fetching loop is defined.
A typical application would have a single RootMode and a hierarchy of Modes. To
allow multiple active applications, a built-in mechanism is provided in RootMode to
guarantee that no two RootModes will attempt to access the event queue at the same
time.

A.4 Compatibility

The problem of compatibility comes from having two active mechanisms (event-driven
and polling) present at the same time. This can be viewed as a control switching
problem. At any given time, one would like to make sure that the mechanism in
control corresponds to the type of object that the user is interacting with and that
there is no interference from the other mechanism. Knowing when and how to switch
between the two mechanisms is the key to achieving compatibility.

A.4.1 Definition of the Problem

The problem can be described precisely. Let the letter P denotes an objerL built with
the polling mechanism, and the letter E denote an object built with ti , event-driven
mechanism. The string PE represents the situation of an event-drive.i object running
under an environment that is controlled by a polling object. The string PEP would
describe a polling interface object running under an event-drivwn environment which
in turn is running under another polling environment. T!.-e spread-sheet example
used in the Introduction section is modeled by this striiig. A string of PPEPEEPE
represents a highly nested interface with event-driven and polling objects inter-mixed.

Although the compatibility problem may !,uk complicated at first glance, it is
regular. Notice that if the sub-problems PP. EE. PE. and EP can be sol,,d. all of the

more complicated problems are merely concrttenations of these four basic cases. SinceI
the first two sub-problems are trivial, op', the last two need further consideration.

S.5

A pollingAplcto

E

~An event-driven environment

Figure A.1: An EHP sandwich.

A.4.2 When to Switch

For reasons of performance and preventing interference, one must avoid having two

mechanisms running at the same time whenever possible. This precludes the use

of a single mechanism as the master mechanism which determines when to switch
to a slave mechanism. The only choice left is to have the environment mechanism

determine the switches.

A.4.3 Sandwiching

A technique, called "Sandwiching," inserts an invisible layer between a pair of objects
built with different mechanisms; it provides solutions to both the EP and PE cases.

After the invisible laver (named ham) is included in the representation, the structure
becomes EHP or PHE. Figure A.1 shows an EHP sandwich. The purpose of the ham

is to make the environment object feel as if the contained object were built with the

same mechanism as it is and vice versa. If the ham is well designed, no modification
to either environment or contained objects is necessary in order to have both running

together. Therefore, the problem of how to switch reduces to the problem of designing
the ham.

A.4.4 How to Switch: Case EHP

The ham for this case is a Uode with a special event handler (controller) which
suspends event generation and flushes the event queue when certain conditions (for
example. an EnterMode event is received) indicate that, the polling application P

should be in action. The ham then brings itself, and therefore the P. to the front of

86

the display (so that nobody obscures them) and passes control to P. When control is
returned, it resumes event generation.

The choice of making Mode a subclass of View shows another benefit besides
reusing code. It makes the ham easy to use. Since the ham inherits the behavior
of View, P can treat it as an ordinary polling View, and E can treat it as an event-
driven Mode. To construct the sandwich, one simply creates a ham, attaches to it the
polling application as its only subView, and then attaches the ham to che underlying
event-driven environment. No modification of either P or E is required.

A.4.5 How to Switch: Case PHE

There are two types of E, self-contained event-driven applications with their own
event-fetching loops (with RootModes) and those that are without an event-fetching
loop. For both types, the ham must provide the event-fetching loop. It may not
be obvious why an event-fetching loop is needed for self-contained applications that
already have one. The reason comes from an important distinction between event-
driven and polling applications. While a polling application returns control to its
parent when the condition for looping is not satisfied, an event-driven application
does not. The only time an event-driven application breaks its event-fetching loop and
returns is when it terminates. A simple-minded ham that would activate the event
generation, pass control to the event-fetching loop of the event-driven application,
and wait for it to return would not work because control will not come back until the
event-driven application terminates.

Certainly. one can modify the event-driven application so that it returns con-
trol under certain condition (for example, a LeaveMode event is received), but this
breaks the promise of no modification. Another alternative is to let the ham and the
application run as two processes and have the ham suspend and resume the applica-
tion process. This also is unsatisfactory since it introduces both the complexity of
inter-process communication and the performance loss due to the looping nature of
the ham process.

A technique called "loop merging" is employed. The event-fetching loop in
the application is merged with the polling loop in the ham, as shown in Figure A.2.
This is done by copying the code in the event-fetching loop and inserting it into the
ham polling loop. The merged loop, then, serves as the event-fetching loop. The
real event-fetching loop of the application is never executed. The merged loop in the
ham checks the device state changes interesting to the ham (for example. to see if the
cursor is still there). fetches an event from the event queue. and asks the application to

process the event (by sending the event to the "'top.Mode" of E). The ham enables the

87

Parent loop
P

other loops Hmslo event fatching
loop

While cond. strue getNextEvent

H E

Parent loop

other loops
While cond. 7is]tu H

Figure A.2: Loop merging

event generation before it enters the merged loop, and disables the event generation
after it leaves the loop.

The merged loop is suspended when there is no event in the queue. This im-

proves the performance of other processes since no CPU cycles are wasted in unneeded
polling in the ham. The merged loop also transfers control properly. When the user

switches to another application (often by moving the cursor onto that application),
there are always events generated by the user's action to wake up the merged loop

and, then, for it to return the control to its parent (the P). The parent can, then.
assign control to the newly selected application.

One can also insert code into the merged loop to ensure the event-driven ap-
plication conforms to the windowing behavior of the underlying polling environment.

For example, the Smalltalk interface (a P) uses the blue button (the right mouse
button) for window control (e.g., resize, move, collapse). The inserted statements in
the merged loop, as shown in Figure A.2. can check the status of the blue button
and activate the ScheduledBlueButtonMenu when the .button is pressed. The user
can, then, manipulate the window of the event-driven application just as if it were a

Smalltalk StandardSystem View.

A.5 Discussion

The event-driven MVC framework described above not only allows efficient user inter-
faces to be built, but also provides necessary compatibility with the polling interfaces.

Test interfaces built on top of it show better background process performance and
chcaner program structure. Although no formal measurement has been done. the
test interfaces can conserve over 30% of the CPU time for the background processes
under the worst case (when the user is dragging a Mode clipped against the Modes

surrounding it). All of them are as responsive, if not more so, than those built with
the polling mechanism. The "Sandwiching" technique has been successfully applied

to create interfaces that mix Smalltalk user interface objects (text editor, debugger.
menu, binary choice, etc.) with event-driven interface objects.

S9

Appendix B

Description of the Kernel Classes

This appendix provides a more detail description of the four kernel classes of the

Mode framework. For each class, the following information is provided:

* Class definition. (This includes class name, super class, instance variables, and

class variables.)

* Comments on the class.

* All public methods of the class. (Private methods for internal implementation
are not listed.)

The Mode class has 122 public methods grouped in 24 protocols. The MCon-
troller class has 48 public methods grouped in 12 protocols. The MDisplayObject
class has 25 public methods grouped in 10 protocols. The SemanticObject class has

25 public methods grouped in 9 protocols. The following is a list of the classes and

their protocols.

Mode

1. displayObject

2. displaying

3. drag support

4. scroll support

5. sub.Iode access

90

6. superMode access

7. layer manipulation

S. layering

9. initialize-release

10. display box access

11. controller access

12. event handling

13. enter/leaveEvent-process

14. subMode insert/delete

15. visibility

16. bordering

17. buffering

18. sharedStyle-highlight

19. indicating

20. sizing

21. semObj access

22. copying

23. (class protocol) initialization

24. (class protocol) instance creation

NIControiler

1. access

2. event handling

3. sharedBehavior-resize

4. sh are4t lB-h aivior- rnuove

5. shared Berhavior-in~ticating

91

6. sharedBehavior-l:nk

7. sharedBehavior-menu

S. Interrupt handling

9. copying

10. (class protocol) instance creation

11. (class protocol) access

i2. (class protoccl) initialize

MDisplayObject

i. transforming

2. initialize-release

3. accessing

4. inversi, n

5. displaying

6. buffering

7. testing

8. display box access

9. copying

10. (class protocol) instance creation

Q9

SemanticObject

1. access

2. initialize-release

3. mode attaching

4. drag support

5. MMS-initializations

6. copying

7. connection model support

S. attribute editor

9. (class protocol) instance creation

B.1 Mode Class

superclass: View

instanceVariables:

* cursorln - A boolean indicating whether the cursor is in the mode.

* obscuringRects - A collection of rectangles corresponding to the portion
of mode obscured by other modes.

e visible - A boolean indicating whether the mode is visible.

* dispObj - The display object.

* highlightDispObj - The display object used when highlighting the mode.

* resizeStyle - A dictionary storing the constraints that control the size and

position of mode when its environment is resized.

e highlighted - A boolean indicating whether the mode is highlighted.

* savedStates - An object that stores the normal states when the mode is in

a drag-state.

9:3

A major responsibility of Mode is to handle event dispatching. Two methods
provide this functionality. The "interestedIn:" method takes an event as an argument
and returns true when the Mode is active (mapped) and the event happened in the area
controlled by the Mode. False is returned otherwise. The "processEvent:" method
asks the controller to process the event when "interestedIn:" returns true.

Mode implements the functions of a window. Each instance of Mode can be
mapped" or "unmapped." When a Mode is mapped, it can interact with the user

by receiving the input events and responding to them. An unmapped Mode does not
receive any event, and therefore can not interact with the user. Each Mode has its
own local coordinate system and a transformation (both translation and scaling) that
maps between the local coordinates and the screen coordinates.

A Mode displays itself by first asking its display object to display its back-
ground and then asking all contained submodes to display themselves. The built-in
clipping algorithm draws only the portions of the mode that are unobscured.

B.1.1 displayObject

displayObject
Return the display object.

displayObject: aDispObj

Set the display object to aDispObj.

resizeToFitDisplayObject
Change the size of the mode to expose all contents in the display object.

resizeToFitDisplayObjectBy: delta
Change the size of the mode to expose all contents in the display object with a
margin of delta. "delta" can be an integer, a point (specifying the x and the y
offset), or a rectangle (specifying the offset for the origin and the corner).

B.1.2 displaying

display
Display the mode on the screen. This includes its background and submodes.

displayBackgroundln: aRect

Display the background of the mode bounded by aRect.

94

displayBackgroundOn: aMedium in: aRect
Display the background of the mode bounded by aRect on aMedium (can be

the screen or a form).

displayBorder
This is a method used for highlighting the mode. Use with care. A line on top
of the mode can be erased by the border.

displayIn: aRect
Display the mode on the screen. The output is clipped to aRect.

displayOn: aMedium in: aRect

Display the mode on aMedium. The output is clipped to aRect.

displaySubmodesIn: aRect

Display all the submodes of the receiver on the screen. Output is clipped to
aRect.

displaySubmodesOn: aMedium in: aRect

Display all the submodes of the receiver on aMedium. Output is clipped to
aRect.

erase
Erase the mode. The mode is not remove from the hierarchy.

B.1.3 drag support

When a mode is dragged, all other modes on screen change their controllers to provide

the semantic feedback. See Section 4.3 for more details on how dragging is handled
in MoDE. "aSymbol" is a Smalltalk symbol that indicate the characteristics of the

dragging. Modes can switch to different controllers according the "aSymbol" they
receive.

afterDrag: aSymbol
This is sent right after the drag finishes to notify other modes to give them a
chance to switch back to their normal controllers.

beforeDrag: aSymbol
This is sent right before the drag starts. Modes should set up the controller for

the dragging and propagate the message down mode hierarchy.

prepareForDrag: aSymbol
Switch the controller according to aSymbol.

9,5

recoverFromDrag: aSymbol

Switch back to the normal controller.

B.1.4 scroll support

contentsBoundingBox
Return a rectangle that bounds all the submodes.

B.1.5 subMode access

subModeContaining: aPoint

Return the front-most direct submode that contains aPoint.

firstModeAt: aPoint
Return the front-most submode that contains aPoint. This is different than the
"subModeContaining:" method in that it searches the whole mode hierarchy
rooted by the receiver.

firstModeAt: aPoint suchThat: aBlock

Return the front-most submode that contains aPoint and satisfies the conditions
defined in aBlock.

firstModeAt: aPoint suchThat: aBlock cutOff: aCltnOfMode
Return the front-most submode that contains aPoint and satisfies the conditions
defined in aBlock. "aCltnO~lode" provides the root of the subtrees that should

not be searched.

firstModeCovering: aRect
The top submode whose displayBox contains aRect.

firstModeCovering: aRect suchThat: aBlock
The top subMode with the displayBox contains aRect and satisfies aBlock.

firstSubMode

Return the front-most submode.

lastSubMode

Return the back-most submode.

subModes

Return an OrderedCollection of all the submodes.

96

B.1.6 superMode access

isTopMode
Return a boolean indicating whether the receiver is the root of the mode hier-

archy.

superMode
Return the supermode.

topMode

Return the root of the hierarchy of modes that the receiver belongs.

B.1.7 layer manipulation

The methods in this protocol enable and disable a mode and allow a mode to be
moved in the hierarchy.

map
Make the receiver active.

unMap
Make a mode inactive.

eraseAndUnMap
Erase and unmap the mode.

mapAndDisplay
Make the receiver active and display it.

moveBy: aPoint
Move the origin of mode by aPoint.

moveRelativeTo: aPoint
Move the origin of self to the point aPoint in supermode's coordinates.

moveTo: aPoint
Move the origin of self to the absolute point aPoint.

moveToBack
Make the mode the back-most submode of its supermode.

moveToFront

Make the mode the front-most submode of its supermode.

97

toBack
Make the mode the back-most submode of its supermode and display it.

toFront
Make the mode the front-most submode of its supermode and display it.

B.1.8 layering

The methods in this protocol implement the clipping algorithm.

computeLayering
This is a recursive method to update the obscuringRects when the screen layout
is changed.

computeLayering: aRectCltn withIn: aRect
Take a collection of displayBoxes that may obscure self to compute the obscur-
ingRects. This method is recursive.

computeSubLayering
Compute the layering of submodes.

computeSubLayeringBelow: aSubmode
Tell the submodes that are behind aSubmode to compute their obscuringRects.
When a submode moves, only submodes that lie underneath it need to recom-
pute their obscuringRects.

computeSubLayeringBelow: aSubmode within: aRect
Tell the submodes that are behind aSubmode and within aRect to compute
their obscuringRects.

computeSubLayeringWithIn: aRect
Compute the layering of submodes that fall with in aRect.

obscuringRects
Return the collection of rectangles that obscure self.

B.1.9 initialize-release

initialize
Initialize the mode.

release
Inform the semantic object to do the final clean up.

98

B.1.1O display box access

displayBox

The definition of displayBox is identical to that in MVC framework. This
method is overridden because MoDE has a different definition of insetDisplav-
Box. As a consequence, the displayBox computed here needs to be clipped with
the insetDisplayBox of the supermode.

insetDisplayBox

Return the inset display box.

recomputeDisplayBox
This is for the mode to adjust its display box when things change. Used by the
"highlight" methods defined in Mode.

setUnclippedDisplayBox: box

Set the unclipped displayBox to box.

setUnclippedDisplayBoxExtent: ext

Set the extent of the unclipped displayBox to ext.

setUnclippedDisplayBoxOrigin: aPoint
Set the origin of the unclipped displayBox to aPoint. This is for moving the
mode in absolute coordinates.

unclippedDisplayBox

Returns an displayBox that is not clipped by the displayBox of the supermode.

B.I.11 controller access

controller: aController

Set the controller to aController.

semanticObject: aSemObj controller: aController
Set the semantic object to aSemObj and the controller to aController.

B.1.12 event handling

This is part of the event dispatching mechanism.

interestedln: event

Decides whether the mode should process an event.

99

processEvent: event

Take the event and ask the controller to process it.

B.1.13 enter/leaveEvent-process

The methods in this protocol implement he enter/leave event generation algorithm.
Basically simulate the X Window System's enter/leave window protocol.

commonAncestor

This will return the ancestor that contains both the current cursor point and
the previous cursor point. This is optimized by using the following two facts.
First, since the cursorMove event got here, all the ancestors of the mode contain
the origin of the event. Second, the ancestor mode that contains the previous
point must have the instance variable 'cursorln' set to true.

cursorIn
Return whether the cursor is inside the mode.

processEnterLeave: event

Check to see if the mode need to generate enter/leave mode events and process
them. The event is a cursorMove event.

processEnter: enterEvent
Ask all the modes, start from self, entered by the cursor to process enterMode
evcnt.

processLeave: leaveEvent
Ask all the modes left by the cursor, starting from self, to process leaveMode
event.

topSubModeEnteredFrom: offspring

This is an optimization making use of the fact that the submode sought is also
an ancestor mode of the offspring.

topSubModeLeft
This will return the first submode that the cursor left. This submode should
has the cursorIn instance variable set to true.

B.1.14 subMode insert/delete

addSub~lode: aifode
Add aMode as my front-most submode.

100

addSubMode: aMode absAt: aPoint
Add aMode as my front-most submode at aPoint in screen coordinates.

addSubMode: aMode absAt: aPoint extent: ext
Add aMode as my front-most submode at aPoint in screen coordinates and
resize it to have the extent ext.

addSubMode: aMode at: aPoint
Add aMode as my front-most submode at aPoint in locdl coordinates.

addSubMode: aMode at: aPoint extent: ext
Add aMode as my front-most submode at aPoint in local coordinates and resize
it to have the extent ext.

addToBackSubMode: aMode
Add aMode to be the back-most sub.lode of self.

addToBackSubMode: aMode at: aPoint
Add aMode as my back-most submode at aPoint in local coordinates.

addToBackSubMode: aMode at: aPoint extent: ext
Add aMode as my back-most submode at aPoint in local coordinates and resize
it to have the extent ext.

addToBackSubMode: aMode window: aWindow viewport: aViewport
Add aMode as my back-most submode and set its window to aWindow and its
viewport to aViewport.

removeFromSuperMode
Remove self from supermode.

removeSubMode: aMode
Remove aMode from the submode collection.

B.1.15 visibility

isVisible
Return a boolean indicating whether the mode is visible.

B.1.16 bordering

Override the methods in View class so that the display object has CoTtrol of tl'

border.

101

borderColor
Return the border color.

borderColor: aColor
Set the border color to aColor.

borderWidth
Return the border width.

borderWidth: aWidth
Set the border width to aWidth.

insideColor
Return the background color.

insideColor: aColor
Set the background color to aColor. Changing the background color from nil
(transparent) to something else makes the transparent window opaque. In that
case, the layering must be recomputed.

B.1.17 buffering

The methods in this protocol buffer the appearance of a mode to improve the drawing
speed.

image
Returns a form that stores the appearance of me and my submodes.

imageSize: ext
Return a form of size ext that stores the appearance of the mode.

imageSize: ext window: aWindow
Return a form of size ext that stores the appearance of the mode visible from
aWindow. When ext is nil, current unclippedDispBox extent is used as a default.
When aWindow is nil, current window is used.

absoluteBufferSubmodes
Ask each submode to buffer its appearance.

smart B ufferS u bmodes
Ask each submode to buffer its appearance if it has contents that take time to

draw (e.g. curved !ines).

102

B.1.18 sharedStyle-highlight

The protocol defines a few commonly seen highlight styles.

colorBorderHighlight

Highlight by changing the border color.

colorBorderHighlightN

Dehighlight by changing the border color.

inverseHighlight

Highlight by inverting the appearance.

inverseHighlightN

Dehighlight by inverting the appearance.

thickBorderHighlight

Highlight by thickening the border.

thickBorderHighlightN

Dehighlight by reducing the border width.

B.1.19 indicating

Although a special case of changing the appearance, highlight is so common that a
protocol is provided to support it.

highlight
The instance variable 'highlightDispObj' stores two kinds of object. A DispObj
indicates that it is the appearance of the mode when highlighted. A symbol
means that a shared style of highlight (that is accessible to all modes) is used.
Those shared styles are implemented in the this class.

deHighlight

Dehighlight the mode.

highlightDispObj
Return the highlight display object.

highlightDispObj: dObj
Set the highlight display object to dObj.

highlighted
Return a boolean indicating whether the mode is highlighted.

103

B.1.20 sizing

Methods in this protocol handles everything that is relevant to the size and position

of the mode.

edit
This will start an edit session discussed in Section 5.2.

extent
Return the extent of the mode.

extent: extent
Set the extent.

height: h
Set the height to h.

width: w
Set the width of mode to w.

origin
Return the origin of the mode.

origin: origin
Set the origin.

origin: origin extent: extent
Set the origin and the extent of the mode.

resizeStyle
Return the resize constraints.

resizeStyle: aStyle
Set the resize constraints to aStyle.

superModeWindowChangedFrom: oldW to: newW
When the supermode notifies submodes that it has been resized, this method

is executed by each submode to satisfy its resize constraints.

windowChangedFrom: oldW to: newW

This is used by the mode to inform its submodes that it ha& been resized.

104

B.1.21 semObj access

semanticObject

Return the semantic object.

semanticObject: aSemObj

Set the semantic object to aSemObj.

B.1.22 copying

deepCopy

Check self against the OccurrenceDictionary to avoid loops when making du-
plicates. This method is also defined in the SemanticOb.ect, MController, and
MDisplayObject classes.

duplicate
Make a duplicate of self and all objects accessible from self (except the super-
mode).

B.1.23 class methods for: initialization

initialize
Initialize the OccurrenceDictionary.

B.1.24 class methods for: instance creation

extent: extent
Creates a mode with extent set.

origin: origin

Create a mode with origin set,

origin: origin extent: extent

Create a mode with origin and extent set.

B.2 MController Class

superclass: Object

1 U5

instanceVariables:

* semObj - The semantic object.

* mode - The mode.

e event - The current event.

* eventResponses - The eventResponses dictionary stores the interestea event
types and the responses to them.

classVariables:

* MMSControllerlERD - The default event responses dictionary.

Although the MController class has the name "Controller," it is not a subclass
of the Smalltalk Controller class. In fact, the two classes bear little resemblance.

The MController performs interactions by sending out messages according to
the type of events it receives. The instance variable "eventResponses" of this class
holds a dictionary that stores the mapping between interested event types and mes-
sages. The keys of the dictionary are the event types and the values are message
selectors.

The MController class and its subclasses implement a set of shared behaviors as
instance methods. They include common behaviors such as menu invocation, rubber-
band lines and boxes, mode dragging, mode highlighting, and mode resizing. These
bchaviors are shared because any instance of the class or the subclass can invoke
them. To invoke a shared behavior, one places its method name into the controller's
"event Responses" dictionary as a value.

In the eventResponses dictionary there are two types of selectors:

* Selectors that end with a colon imply that the message should be sent to the
semantic object with the current event as the argument.

o Selectors that do not end with a colon have no argument, and they should be
sent to the controller itself.

B.2.1 access

event

Return the current event.

106

eventResponses

Return the event responses dictionary.

eventResponses: newER
Set the event responses dictionary to newER.

semanticObject
Return the semantic object.

semanticObject: aSemObj
Set the semantic object to aSernObj.

B.2.2 event handling

Methods in this protocol process the events.

checkSpecialEvent
Check whether a Control-E is received. This is to handle the user interrupt.

defaultReturnValue
This value distinguishes between an opaque controller which blocks all modes
underneath it from receiving any events (by returning true as default) and a
transparent controller which allows the events that are not processed to go
through (by returning false as default).

processEvent: anEvent
Process the event. Return true when the event is processed. Otherwise, return
false.

B.2.3 sharedBehavior-resize

Method in this protocol defines the shared resize behavior.

bottomCenterMoved
Interact with the user to resize the mode by matching the bottom center of the

mode with the cursor position.

bottomLeftNIoved
Interact with the user to resize the mode bv matching the bottom left of the
mode with the cursor position.

107

bottomRightMoved
Interact with the user to resize the mode by matching the bottom right of the
mode with the cursor position.

leftCenterMoved
Interact with the user to resize the mode by matching the left center of the
mode with the cursor position.

resize: aSymbol outline: aBlock
Resize the mode according to aSymbol (which can be either bottomCenter, bot-
tomLeft, bottomRight, leftCenter, rightCenter, topCenter, topLeft, or topRight).
"aBlock" computes the outline box during the resize action.

resize: aSymbol outline: aBlock width: aWidth halftone: aMask
Resize the mode according to aSymbol. "aBlock" computes the outline box
during the resize action. "aWidth" is the width of the outline and aMask
defines the color of the outline.

rightCenterMoved
Interact with the user to resize the mode by matching the right center of the
mode with the cursor position.

topCenterMoved
Interact with the user to resize the mode by matching the top center of the
mode with the cursor position.

topLeftMoved
Interact with the user to resize the mode by matching the top left of the mode
with the cursor position.

topRightMoved
Interact with the user to resize the mode by matching the top right of the mode
with the cursor position.

B.2.4 sharedBehavior-move

Methods in this protocol support the moving of modes.

moveClippedImage
Let the user move the mode with its image. Clip to the display box of the
mode's supermode.

moveFrame
Let the user move the mode with an indication box.

108

moveFrameConstrained
Let the user move the mode with an indication box. The range of move is

confined within the mode's supermode.

moveFrameWithin: aRect
Let the user move the mode with an indication box. The range of move is
confined within aRect.

moveFrameWithin: aRect linkTo: points

Let the user move the mode with an indication box. The range of move is
confined within aRect. Draw links originated from a set of points to the moved
box.

moveImage
Let the user move the mode with a bitmap showing the image of the mode as
opposed to moveFrame which uses a rubber band box to show the position of
the mode.

movelmageConstrained

Let the user move the mode with its image. The range of move is confined
within the mode's supermode.

moveImageWithin: aRect
Let the user move the mode with its image. The range of move is confined
within aRect.

moveImageWithin: aRect linkTo: points
Let the user move the mode with its image. The range of move is confined
within aRect. Draw links originated from a set of points to the moved box.

B.2.5 sharedBehavior-indicating

Methods in this protocol support highlight of the mode.

highlight

Highlight the mode.

defHighlight

Dehighlight the mode.

dragDeHighlight

Dehighlight when an object is dragged and left the mode.

109

dragDeHighlightOnTop
Dehighlight when an object is dragged and left the mode. Put the mode back
to the level before the highlight.

dragHighlight

Highlight when an object is dragged on top of the mode.

dragHighlightOnTop
Highlight when an object is dragged on top of the mode. Bring the mode to

front (to make it unobscured) when the cursor is in my area.

B.2.6 sharedBehavior-link

Support rubber line feedback.

rubberLineOriginCltn: pts within: aRect

Display a set of rubber lines connecting the cursor and the collection of points
while the user is dragging the cursor. The cursor is restricted within aRect.

Return the final cursor position.

rubberLineOriginCltn: pts within: aRect releaseSelectors: releaseSelectors

Display a set of rubber lines connecting the cursor and the collection of points
while the user is dragging the cursor. The cursor is restricted within aRect.

Interaction terminates when an event with selector that matches one of the
4releaseSelectors" is received. Return the final cursor position.

rubberLineOriginCltn: pts within: aRect releaseSelectors: rSels gridPoint: gpt

Display a set of rubber lines connecting the cursor and the collection of points
while the user is dragging the cursor. The cursor is restricted within aRect.

Interaction terminates when an event with selector that matches one of the
"releaseSelectors" is received. Return the final cursor position. The cursor can
only land on positions defined by gridPoint.

B.2.7 sharedBehavior-menu

Process the menu interaction. Assuming the semantic object would provide the menu.

110

expandLeftMenu
Ask the semantic object for the left button menu and use it to interact with the

user.

expandMiddleMenu
Ask the semantic object for the middle button menu and use it to interact with

the user.

expandRightMenu
Ask the semantic object for the right button menu and use it to interact with

the user.

expandMenu: menu
Start up the menu to interact with the user.

B.2.8 Interrupt handling

The methods in this protocol handle the Control-E command, which is discussed in
Section 5.2.

processInterrupt
Put the mode in the editable state.

shouldProcessInterrupt

This is the key to the Control-E mechanism. If this method returns false, the
mechanism is switched off. This is useful when productizing an interface. If true

is returned, the user can do multiple Control-E's and get to see the implemen-
tation of how the modes for the interrupt mechanism is implemented. This is
dangerous and is only useful for MoDE kernel designer and maintainer. The de-

fault behavior implemented here is to allow only one Control-E in any sequence
(by returning true only for the first time). This allows the user to investigate
the interface and from there, go to the application without the chance of mis-

takingly getting into a strange state where he is viewing the implementation of
the Control-E handling mechanism.

B.2.9 copying

deepCopy
Check self against the OccurrenceDictionary to avoid loops when making diu-
plicates. This method is also defined in the SemanticObject, Mode, and MDis-

playObject classes.

11l

B.2.10 class methods for: instance creation

new
Return a new controller.

view: aView
Return a new controller with view set to aView. This is for the compatibility
with MVC.

B.2.11 class methods for: access

eventResponsesDict

Every class has a dictionary to record the events and their responses that are
shared by all the instances of that class. This dictionary is initialized in the
class initialize method.

B.2.12 class methods for: initialize

ERDinit
Initialize the event responses dictionary.

initAllERDict
This is called every time when a new session is started to allow changes to the
event responses dictionary to propagate to subclasses.

B.3 MDisplayObject Class

superclass: DisplayObject

instanceVariables:

* contents - A OrderedCollection that holds the displayable objects.

* insideColor - Background color.

* borderWidth - Border width of the mode.

9 borderColor Border color.

* form - A bitmap that buffers the appearance,

* boundingBox - A rectangle that defines the boundary of the contents.

112

The MDispla yObject class is a subclass of the Smalltalk DisplayObjectclass. In-
stances of the MDisplay Object class control the "background" of modes. The "back-
ground" includes the inside color, the border, and zero or more displayable objects.
The instance variable "contents" hold an OrderedCollection that keeps these dis-
playable objects. All objects that understand the protocols defined in the Display-
Object class can be put into this collection. They can be text, drawings. forms. and

animated pictures.

The display method accepts two arguments from the mode-a display box and
a collection of visible rectangles. The display box defines the size and position of the
mode. The visible rectangles define the visible portion of the mode computed by the
clipping algorithm.

The IfDisplayObject has the capability to buffer its output as a bitmap. This

speeds up the display of complex objects.

When the "boundingBox" is nil, a display object will not scale the contents
when outputting. When the TboundingBox" is not nil, it will scale the output ac-

cording to the difference of the "unclippedDispBox" from the mode and the "bound-
ingBox."

B.3.1 transforming

translateBy: aPoint
Translate all objects in the contents collection. Special treatment is needed
because some DisplayObject (Path, for example) returns a new instance instead
of changing their offsets when issued a translateBy: message.

B.3.2 initialize-release

initialize
Initialize the contents to an empty OrderedCollection.

B.3.3 accessing

absAdd: aDisplayObject
Add the aDisplavObject (any Smalltalk DisplayObject) into the contents col-
lection. Does not aDisplayObject by the amount of borderWidth. This method
is for the majority of use; "relAdd:" is included for convenience.

113

relAdd: aDisplayObject
Add aDisplayObject to the contents collection. Offset the input object by the
border width so that it will not be obscured by the border.

borderColor
Return the color of the border.

borderColor: aColor

Set the border color to aColor. Disable the buffering since the appearance has
been changed. This is not used in highlighting since rebuffering the image for
every highlight and deHighlight is very slow.

borderColorTemp: aColor
Temporarily set the border color to aColor. This is used by highlights. By pass
the buffering mechanism.

borderWidth
Return the border width.

borderWidth: aWidth
Set the border width to aWidth.

borderWidthTemp: aWidth
Temporarily set the border width to aColor. This is used by highlights. By

pass the buffering mechanism.

clear
Remove all objects in the contents collection.

contents
Return the contents collection.

insideColor
Return the background color.

B.3.4 inversion

inverse
Invert the display object.

inverse: ext
Invert the display object with bounding box extent set to ext.

114

B.3.5 displaying

borderWithUnClippedDispBox: unclippedDispBox visibleRects: visibleRects

Display the border only.

displayContentsOn: aMedium transformation: aTrans clippingBox: aVis-

ibleRect

Display the objects in the contents collection on a Medium.

displayOn: aMedium withUnClippedDispBox: unclippedDispBox visibleRects:
visibleRects

Take the unclipped displayBox and visible rectangles within the box of a
mode, draw self on aMedium. This is the main method used by the mode.

fastDisplayOn: aMedium withUnClippedDispBox: unclippedDispBox vis-

ibleRects: visibleRects

Use the buffered appearance to display.

B.3.6 buffering

Methods in this protocol buffer the output of the display object to speed up the
displaying.

bufferWithExtent: ext

Buffer the output in a form and use the form to draw faster. The "'ext" specifies
the extent of the unclipped display box. It is needed to draw the border.

makeAbsoluteFaster
This one doesn't care what is in the contents collection or whether the back-
ground color is nil. It just buffers. Under normal conditions, the "makeFaster"

method is recommended.

makeFaster
Buffer only when the contents contain display objects other than Form and Text
(both can be displayed fast without any buffering).

unBuffer

Throw awav the buffer and stop buffering.

115

B.3.7 testing

containsPoint: aPoint
Test whether aPoint falls into my image area. This is used by mode to decide
whether an event falls into its area.

B.3.8 display box access

boundingBox
Return the bounding box.

boundingBox: aBox
Set the bounding box to aBox.

computeBoundingBox
Compute the bounding box from the bounding boxes of the objects in the
contents collection.

B.3.9 copying

deepCopy
Override the definition in the super class to avoid copying the "contents" and
the forms.

B.3.10 class methods for: instance creation

new
Create a new instance.

B.4 SemanticObject Class

superclass: Model

instanceVariables:

* mode - The mode.

9 delegate - The visual representative of self.

* targetl - Stores the connection to other objects.

116

Semantic objects are programmable in the Mode framework. If an interaction

technique is created by coding (instead of using the Mode Composer), it will have its

own class which is a subclass of the SemanticObject class. Instances of this interaction

technique are created by sending creation messages to its class. The SemanticObject

class defines a set of initialization methods to set up the parts in the Mode framework.

They are "setUpMode," -'set UpController," and "setUpAppearance." Whenever a

subclass of SemanticObject is sent a creation message, these three methods are invoked

automatically to create and initialize the components of a mode and to connect them

together.

B.4.1 access

mode

Return the mode.

mode: aMode

Set mode to aMode.

targetl

Return the connection stored in targetl.

targeti: aTargetObject

Set the connection to aTargetObject.

B.4.2 initialize-release

initialize
Initialize self, mode, and controller.

release

Release all references outward to facilitate the garbage collection.

B.4.3 mode attaching

Methods in this protocol are defined for the convenience of attaching the mode of a

semantic object to another mode.

attachModeTo: aMode

Attach my mode to aMode as a submode.

117

attachModeTo: aMode absAt: p
Attach my mode to aMode as a submode at screen coordinates p.

attachModeTo: aMode absAt: p extent: e

Attach my mode to aMode as a submode at screen coordinates p and set the
extent of mode to e.

attachModeTo: aMode at: p
Attach my mode to aMode as a submode at a local coordinates p.

attachModeTo: alMode at: p extent: e
Attach my mode to aMode as a submode at a local coordinates p and set the
extent of mode to e.

B.4.4 drag support

dragControllerFor: aSymbol
Return the default drag controller. When an object is dragged, all other objects
on the screen switch to a different controller to perform the interaction.

B.4.5 Mode-initializations

Create the components of a mode and connect them together.

defaultMINISControllerClass
This method is used in setUpController. Returns the default class of the con-
troller.

defaultModeClass
This method is used in setUpMode. Returns the default class of the mode.

setUpAppearance
The default is to do nothing.

setUpController
Create and connection the controller.

setUpMode

Create and connection the mode.

118

B.4.6 copying

deepCopy

Override to prevent copying the delegate, which will loop back to rootMode and
copy a lot of unnecessary objects.

duplicate
Return a copy of my structure.

deepCopy
Check self against the OccurrenceDictionary to avoid loops when making du-
plicates. This method is also defined in the Mode, MController. and MDisplay-
Object class.

B.4.7 connection model support

These methods are used bv the Mode Composer.

clearAllConnections
Remove a" connections to other objects. This is issued when a mode is about
to be removed.

delegate
Return the visual representative. This is used by the Mode Composer.

removeLink: aLink
Remove the link aLink.

B.4.8 attribute editor

editAttributes
Allow the user to edit the attributes of a mode. For example, the text of a text
label. Subclasses often override this method to provide different editors.

B.4.9 class methods for: instance creation

new
Return a new instance of this class.

119

Appendix C

Videotape

Copies of this videotape may be ordered from the Textlab Research Group, Depart-
ment of Computer Science, University of North Carolina, Chapel Hill, NC 27,599-3175.
Inquiries may be e-mailed to textlabhcs.unc.edu.

The videotape consists of two sections described below.

C.1 Sample Interfaces Built with MoDE

Purpose: To demonstrate some of the interfaces that can be created with MoDE.

Length: 11 minutes, 30 seconds.

Contents:

* Network of hypertext nodes.

* Oddly shaped window.

o Enter/leave event test.

o Different highlighting styles and levels of direct manipulation,

o Two types of moving things.

* Scanned images and polling text editor.

o Roam box.

o Three sLyles of menus.

120

C.2 MoDE in Use

Purpose: To demonstrate how MoDE can be used to create interfaces rapidly and
easily.

Length: 15 minutes, 30 seconds.

Contents:

* Binary desk calculator.

e Self editing of MoDE.

* Windows in window.

* Creating an oddly shaped window.

121

