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Abstract

We consider a characterization of a real-time system consisting as a set of sporadic tasks
that share a set of serially reusable, single unit resources. Sporadic tasks are a
generalization of periodic tasks and are well-suited for representing event driven processes.
Resources are shared software objects, such as data structures. Tasks are composed of a
sequence of phases. Each phase is a contiguous sequence of statements that require
exclusive access to a resource. For an arbitrary instance of the model the goal is to
determine if it is possible to schedule the tasks on a single processor such that:

each invocation of each task completes execution at or before a well-
defined deadline, and
a resource is never accessed by more than one task simultaneously.

Our work makes two contributions to the theory of real-time scheduling and resource
allocation. The first is the development of an on-line algorithm for sequencing a set of
sporadic tasks on a uniprocessor such that the above criteria are met. The algorithm results
from the integration of a synchronization scheme for access to shared resources with the
earliest deadline first (EDF) algorithm of Liu and Layland. The result is deadline based
scheduling algorithm in which phases of tasks that require exclusive access to resources
have two types of deadlines: a contending deadline for the initial acquisition of the
processor, and an execution deadline for subsequent execution. The algorithm is optimal
with respect to the class of scheduling policies that do not use inserted idle time. The
algorithm is optimal in the sense that it can schedule a set of tasks, without inserted idle
time, whenever it will be possible to do so. The second contribution is a derivation of a set
of relations on task parameters that are necessary and sufficient for a set of tasks to be
schedulable. With these conditions one can efficiently decide whether it will be possible to
schedule a set of tasks without executing or simulating the execution of the tasks. Our
model for the analysis of processor scheduling policies is novel in that it incorporates
minimum as well as maximum processing time requirements of tasks.

Index Terms: Analysis of algorithms, theory of deterministic processor and resource
allocation, operating systems, real-time systems, scheduling theory.
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1. Introduction

Real-time computer systems are loosely defined as the class of computer systems that must

perform computations and I/O operations in a time frame defined by processes in the
environment external to the computer. Real-time systems differ from more traditional

multiprogrammed systems in that real-time systems have a dual notion of correctness. In

addition to being logically correct, i.e., producing the correct outputs, real-time systems

must also be temporally correct, i.e., produce the correct output at the correct time. In this

paper we examine a processor and resource allocation problem for hard-real-time systems.

Hard-real-time systems are real-time systems that require deterministic guarantees of
temporal correctness. These are systems in which the cost of failing to be temporally

correct is high. This high cost can be measured in monetary terms (e.g., an inefficient use

of raw materials in a process control system), aesthetic terms (e.g., unrealistic output from
a computer music or computer animation system), or possibly in human or environmental
terms (e.g., an accident due to untimely control in a nuclear power plant or fly-by-wire

avionics system).

Hard-real-time systems are commonly structured as a set of tasks that are invoked
repetitively. Two frequently studied classes of repetitive tasks are periodic tasks, i.e.,
tasks that are invoked at constant intervals, and sporadic tasks, i.e., tasks that are invoked
at random but with a minimum inter-invocation interval [Mok 83]. In both cases, each ..........
invocation of a task must complete execution before a well-defined deadline. Our
contribution to the study of repetitive, real-time workloads is the consideration of tasks that .......-....
share a set of serially reusable resources. Our notion of a resource is a software object, Cooes

STATEMENT A PER TELECON -_ ___1 A ,I orRALPH WACHTER ONR/CODE 1133 T,

ARLINGTON, VA 22217 1N.P1 'nTJ I)

NWW 10/23/91



2

e.g., a data structure, that is shared among a group of tasks and must be accessed in a
mutually exclusive manner. Operations on a shared resource therefore constitute a critical

section. For example, within the context of a concurrent programming language in which

shared data is encapsulated within a monitor [Hoare 74], a resource would be an individual
monitor. We consider a characterization of a hard-real-time system as a set of sporadic
tasks that share a set of serially reusable software resources. An invocation of a task will
require exclusive access to a set of software resources. This paper examines the problem

of scheduling sporadic tasks that share a set of software resources. The problem is to
sequence a set of sporadic tasks on a uniprocessor such that in all cases - and in particular

in the worst case - it is guaranteed that:

" each invocation of each task completes execution at or before its deadline,
and

" a resource is never accessed by more than one task simultaneously.

Our work makes two contributions to the theory of real-time scheduling and resource
allocation. The first is the development of an on-line algorithm for sequencing a set of

sporadic tasks on a uniprocessor such that the above criteria are met. The algorithm results
from the integration of a synchronization scheme for access to shared resources with the
earliest deadline first (EDF) algorithm of Liu and Layland; a preemptive, priority-driven

scheduling algorithm with dynamic priority assignment [Liu & Layland 73]. The algorithm

is optimal with respect to the class of scheduling policies that do not use inserted idle time.I
The algorithm is optimal in the sense that it can schedule a set of tasks, without inserted idle

timne, whenever it will be possible to do so. The second contribution is a derivation of a set
of relations on task parameters that are necessary and sufficient for a set of tasks to be

schedulable. With these conditions one can efficiently decide whether it will be possible to
schedule a set of tasks without executing or simulating the execution of the tasks. Our
model for the analysis of processor scheduling policies is novel in that it incorporates

minimum as well as maximum processing time requirements of tasks. This work is part of

a larger design system for hard-real-time systems [Jeffay 89a]. 2

If tasks are scheduled by a discipline that allows itself to idle the processor when there exists a task with
an outstanding request for execution, then that discipline is said to use inserted idle time [Conway et al. 67].
2 For the remainder of this paper, we will use the terms real-time and hard-real-time interchangcably where
it causes no confusion.
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Several approaches to scheduling real-time tasks that share resources have been described

in the literature [Leinbaugh 80, Mok 83, Mok et al. 87, Zhao et al. 87a,b, Jeffay 89b, Sha

et al. 90, Chen & Lin 90]. Most consider the case where tasks are periodic and develop

heuristic algorithms for scheduling the tasks. When tasks are periodic, Mok has shown

that the problem of deciding whether or not it is possible to execute a set of tasks that use

semaphores to enforce mutual exclusion is NP-hard [Mok 83]. In [Jeffay et al. 90] the

more general problem of deciding whether or not it is possible to schedule a set of periodic

tasks in a non-preemptive manner was also shown to be NP-hard in the strong sense.

Moreover, it was shown that if an optimal non-preemptive scheduling algorithm exists for

periodic tasks, then P = NP. If the times of all task invocations are known in advance, one

can compute a schedule off-line and then apply the schedule at run-time [Xu & Pamas 90].

The following section presents our model of a real-time system in greater detail and detfines

the objective of our study. Section 3 examines the problem of scheduling tasks that use

only a single resource. An optimal algorithm is developed for this special case. Section 4

generalizes this algorithm for tasks that share a set of resources. Section 5 discusses our

results and revisits the assumptions and restrictions in our model.

2. System Model

We define a hard-real-time system as a set of sporadic tasks that share a set of serially

reusable, single unit software resources. A sporadic task is a sequential program that is

invoked in response to the occurrence of an event. An event is a stimulus that may be

generated by processes external to the system (e.g., an interrupt from a device) or by

processes internal to the system (e.g., the arrival of a message). We assume events are

generated repeatedly with a (non-zero) lower bound on the duration between consecutive

occurrences of the same event. Therefore, each sporadic task will be i,-, ked repeatedly
with a lower bound on the interval between consecutive invocations. Once invoked a task

will execute to completion. Sporadic tasks are well-suited for implementing computational

processes that are required to execute periodically (with a constant interval between

activations) or in response to recurring asynchronous events. During the course of

execution, a task may perform operations on shared datr, resources. Resources are serially

reusable and must be accessed in a mutually exclucive manner. This model of software

resources is motivated by the use of monitors for regulating access to shared data in

process oriented concurrent programming languages such as Modula, Mesa. or Real-Time

Euclid [Wirth 77, Lampson & Redell 80, Kiigerman & Stoyenko 86].
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Formally, we consider a real-time system that consists of a set of n sporadic tasks {TI, 7.,

.... T,} and a set of m serially reusable, single anit resources {RI, R 2, ..., Rm). A task is

described by a 3-tuple

Ti = (s, {(cij, Cij, rij) 1 <j 5 i}, pi)

where:

si - the release time of task Ti: the time of the first invocation of task Ti,

(cij, Cij, rij) I - a set of ni phases where for each phase:

cij - the minimum computational cost: the minimum amount of
processor time required to execute the jph phase of task Ti to
completion on a dedicated uniprocessor,

-Cj - the maximum computational cost: the maximum amount of
processor time required to execute the /th phase of task Ti to
completion on a dedicated uniprocessor,

rij - the resource requirement: the resource (if any) that is required
during the jth phase of task Ti, and

pi- the period of the task: the minimum time interval between invocations of
task Ti.

Each task Ti is partitioned into a sequence of ni disjoint phases. A phase is a contiguous
sequence of statements that together require exclusive access to a resource. A task may
have multiple phases that require the same resource. The resource required by task Ti

during the jth phase of its computation is represented by an integer rij, 0 < rij < m. If
rij = k, k # 0, then the jth phase of Ti's computation requires exclusive access to resource

Rk. For a given invocation of task Ti, in the interval between the time phase j commences

execution and the time it completes execution, no other phase of a task that requires

resource Rk may execute. If rij = 0, then the j th phase of task Ti's computation requires no
resources. In this case the jth phase of task Ti imposes no mutual exclusion constraints on

the execution of other tasks. Within the context of a concurrent programming language
with monitors, if rij # 0, then the jth phase of task Ti would consist of a call to an entry

procedure of a monitor that encapsulates resource rij. If rij = 0, then the jph phase of task Ti

would consist of either code in the main body of the task or reentrant procedure code called

by the main body of the task. Note that since different tasks may perform different
operations on a resource (e.g., call different monitor entry procedures), it is reasonable to
assume that phases of tasks that access the same resource have varying computational



5

costs. A fundamental restriction is that each phase of each task will require access to at
most one resource at a time. Other paradigms of resource usage and task decomposition
will be discussed briefly in Section 5.

Throughout this paper we assume a discrete time model. In this domain all task parameters
as well as all values of time are expressed as integer multiples of some indivisible time unit.
Without loss of generality, assume these quantities are integers. Moreover, we assume
throughout that tasks are sorted in non-decreasing order by period. For any pair of tasks T,
and Tj, if i > j, then pi > Pj. The index of a task refers to its position in this sorted list.

I

The behavior of a sporadic task T is given by the following rules. Let tk be the time of the
/ h invocation of task Ti.

i) The initial invocation of task Ti occurs at time tj = si.

ii) If task Ti has period pi, then for all k _ 1, the (k+l)st invocation of T,
occurs at time tk+1 > tk + pi -si + kpi.

iii) Each invocation of task T, consists of the execution of ni phases in
sequence. The execution of an invocation of Ti commences in phase 1.
The jth phase of each execution of Ti does not commence until the (j - 1)st
phase has terminated.

iv) Execution of the jth phase of task Ti requires at least ci units of processor
time and at most Ci units of processor time, Cij > cij > 0.

v) The kth invocation of Ti must be completed no later than time tk + pi. This
time is commonly referred to as the deadline of the kth invocation of task
Ti.

If a phase of a task requires a resource then the computational cost of the phase represents
only the cost of using the required resource and not the cost (if any) of acquiring or
releasing the resource. A minimum cost of zero indicates that a phase of a task is possibly
optional. (For example, the execution of a phase of a task may be dependent on the
outcome of the evaluation of a boolean expression.)

The "period" of a sporadic task is simply the minimum time between any two successiVe
invocations of the task. In general an arbitrary amount of time may lapse between
successive invocations of a task. A sporadic task is a generalization of the more commonly
studied periodic task [Liu & Layland 73]. We assume sporadic tasks are independent in the
sense that the time of a task's invocation is dependent only upon the time of its l1ast
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invocation and not upon those of any other task. Once released, a sporadic task will be

invoked an unbounded number of times.

If the kth invocation of task Tj occurs at time t, then the closed interval [t, t+pj] is called the

kth invocation interval, or simply an invocation interval, of task Ti. If task T is invoked at

time t and does not complete execution at or before time t + pi, then we say that T, has

failed. A set of sporadic tasks T is said to be feasible on a uniprocessor if it is possible to

schedule r on a uniprocessor such that:

" no task fail;, i.e., every invocation of every task completes execution at or
before the end of its invocation interval, and

" for each task Ti, and for all phases j, 1 < j n hi, if rij # 0, then the flh phase
of each invocation of Ti has exclusive access to the resource RrV from the
time the phase commences execution until the phase terminates execution.

A scheduling algorithm succeeds in scheduling a set of tasks if it can sequence the tasks

such that both criteria above will be met. A scheduling algorithm is said to be optimal for a

uniprocessor if it can succeed for any task set that is feasible on a uniprocessor. Our goal

is to develop an algorithm that can sequence all feasible sets of tasks on a uniprocessor.

The characteristics of our real-time workload model motivate the consideration of on-line

scheduling algorithms for sequencing the tasks. This is because it will not be possible to

generate a schedule off-line if all invocation times of tasks are unknown. Given the

possibly non-deterministic manner in which a sporadic task may be invoked, it is possible

for this to be the case. In developing a scheduling algorithm, we assume that in principle

tasks are preemptable at arbitrary points. However, the requirement of exclusive access to

resources places two restrictions on the preemption and execution of tasks. For all tasks i

and k, if rij = rki and rij, rkj #0, then (1) thej th phase of task Ti may neither preempt the 11h

phase of task Tk, nor (2) execute while the lh phase of task Tk is preempted.

Lastly, in the following sections it will be useful to distinguish between tasks, and phases

of tasks, that share resources with other tasks and those that do not. If a task (phase) never

requires a resource then that task (phase) is called a non-resource requesting task (phase).

If a task (phase) ever requires a resource it is called a resource requesting task (phase).
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3. Single Phase Task Systems

We first consider the problem of scheduling sporadic tasks that consist of only a single
phase. As will be shown in Section 4, the general problem of scheduling tasks with
multiple phases can largely be reduced to the problem of scheduling tasks with only a
single phase.

The following sub-section establishes conditions that are necessary for a set of single phase
sporadic tasks to be feasible in the absence of inserted idle time. (In Section 5 we will
briefly comment on the problem of scheduling sporadic tasks with inserted idle time.)
Section 3.2 then develops an algorithm for scheduling such tasks and demonstrates its
optimality.

3. 1 Feasibility Conditions for Single Phase Task Systems

Consider a set of single phase sporadic tasks (TI, T2, ..., T,}, where Ti = (si, (ci, Ci, r;).

pi), 3 that share a set of m serially reusable, single unit resources {RI, R2, ..., Rm). It will
be useful to refer to the period of the "shortest" task that uses resource Ri. For resource
Ri, let Pi represent this period. That is,

Pi = MIN (pj I r, = i).
J j:!n

We first demonstrate that the feasibility of a set of sporadic tasks is not a function of their

release times. The following Lemma demonstrates that if a set of tasks is feasible, then the
tasks will be feasible for any combination of release times.

Lemma 3.1: Let r be a set of sporadic tasks. If r is feasible then the set of sporadic tasks
r" obtained from r by replacing the release times of tasks with arbitrary values will also be

feasible.

Proof: By the definition of a sporadic task, an arbitrary amount of time may elapse
between the end of one invocation and the start of the next. Therefore, after all tasks in r
have been released, there can exist a time t such that a task, or group of tasks, in r are
invoked at time t, and such that all task invocations that occur prior to time t with deadlines

3 Since tasks consist of only a single phase, the second subscript on the parameters C, c. and r will le
omitted.
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after t, have completed execution at or before time t. That is, if the task invocation(s)

occurring at time t did not exist then the processor would have been idle for some non-zero

length interval starting at c. At time t, r is effectively "starting over" with a set of "release

times" that are unrelated to the initial release times. Therefore, if r is feasible then any set

of tasks derived from r by replacing the release times with arbitrary values must also be

feasible. -

The following theorem establishes necessary conditions for a set of single phase tasks to be

feasible.

Theorem 3.2: Let r be a set of single phase sporadic tasks {TI, T2, ..., T,}, sorted in

non-decreasing order by period, that share a set of m serially reusable, single unit

resources R1 , R 2 ... , R, If r can be scheduled on a uniprocessor without inserted idle

time, then:

1) Ci <1
Pi

2) Vi, I < i < n and ri # 0; VL, Pr, < L < pi:
i-1

L tCi +~~~ L 1c, xILPi c,.-

Informally, condition (1) can be thought of as a requirement that the processor not be

overloaded. If a task T has maximum cost C and period p, then C/p is the least upper

bound on the fraction of processor time consumed by T over the lifetime of the system

(i.e., the worst case utilization of the processor by 7). The first condition simply stipulates

that the cumulative processor utilization cannot exceed unity. The right hand side of the

inequality in condition (2) is a least upper bound on the processor demand that can be

realized in an interval of length L starting at the time an invocation of a resource requesting

task Ti is scheduled, and ending sometime before the end of the invocation interval. This

interval is illustrated in Figure 3.1. Figure 3.1 shows an invocation interval of task Ti.

Task T, is invoked at time t and is scheduled at time t' The striped rectangle in the

invocation interval represents the execution of task Ti. This invocation must complete

execution at or before time t + pi.

For a set of tasks to be feasible, the processor demand in this interval must always be less

than or equal to the length of the interval. If this is not the case then a task can fail.

Although condition (2) is semantically similar to the requirement that the processor not be
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Time ! i
t t t + pi

L

Figure 3.1

over-utilized, we will later demonstrate that conditions (1) and (2) are in fact not related.I

The intuition behind conditions (1) and (2) will be developed further in the proof of
Theorem 3.2.

Proof: By Lemma 3.1, to show that conditions (1) and (2) are necessary for feasibility, it
suffices to demonstrate that there exist release times for which these conditions are
necessary for r to be feasible. We first show that condition (1) is necessary.

For a set of tasks r, the achievable processor demand in the time interval [a, b], written

d*, is defined as the maximum amount of processing time required by r in the interval
[a, b] to complete all invocations of tasks with deadlines in the interval [a, b]. That is, da,b
is the processing time required, in the worst case, by r in the interval [a, b] to ensure that
no task fails in the interval [a, b]. The worst case occurs when tasks are periodic from
point a onward. If a set of tasks r is feasible, then for all a and b, a < b, it follows, that

da.b < b - a.

tFor all i, 1 < i < n, let si = 0 and let t = PjP2...P,. In the interval [0, t], t Ci is the
pi

maximum amount of processor time that must be allocated to task T" to ensure that T, does
not fail in the interval [0, t. In the interval [0, t] the achievable processor demand, dot, is

therefore

d_ td o ,t = P i

i=1

If ris feasible then it must be the case that d0,j < t, hence

1Ytc i <t,pi
i=l
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Ci-- < 1.
pi

i= 1

For condition (2) choose a task Ti, 1 < i < n, such that ri # 0 and pi > P,,. Let si = 0 arid

s = I for all j, 1 j 5 n,j - i. This gives rise to the pattern of initial task invocations

shown in Figure 3.2. Initially only task Ti is eligible for execution. Since inserted idle

time is not allowed, task Ti must execute in the interval [0,1]. For all L, L > P,, the

interval [0, L] contains at least one invocation of some task Tk with rk = ri. Since task Tk

shares a resource with task Ti and since this resowrze is in use by task Ti at time 1, the

initial invocation of task Tk may not be scheduled until after the invocation of T made at

time 0 has completed execution. Therefore, to ensure that the initial invocation of task Tk

does not fail, the initial invocation of task T" must be completed before time Pk + 1 = Pr, +

1. Hence for this choice of release times, for all L, P,, < L < pi, in the interval [0. L] the

achievable processor demand, d5L, is

i- 1

j- I

The demand consists of the maximum cost of executing the initial invocation of task Ti plus

the achievable processor demand due to tasks 1 - i-I in the interval [1, L]. (Note that tasks

with periods greater than or equal to pi have no invoc-tion intervals contained in tie interval

[1, LI and hence can not fail in the interval [1, L]. Therefore these tasks do not contribute

to the achievable processor demand in the interval [1, L].) For r to be feasible it must be

Tim I

T".,

T,

Time

0 1 P,.+I L Pi- 1 Pi

Figure 3.2
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the case that L >_ d5L, hence

L !Ci + LL Ij
j]Cj

Although seemingly arbitrary, the constructions used in the proof of Theorem 3.2 precisely

characterize the worst case interleavings of task invocations for a set of sporadic tasks. In

essence, it will be shown in Section 3.2 that if a set of tasks can be scheduled when

interleaved as shown above, then the tasks are indeed feasible. The notion of a worst case
interleaving is important as Lemma 3.1 indicates that such an interleaving can always occur

during the execution of any task set.

Note that a set of single phase sporadic tasks r in which ri = 0, for 1 < i < n, corresponds
to a set of tasks with no resources and hence no mutual exclusion constraints. In such a

system a task would, in principle, be preemptable at any time during its execution by any

other task. If ri = 0, for 1 < i < n, then condition (2) is void (the quantification of i is
empty) and only condition (1) is necessary for feasibility. This agrees with the results

reported in [Jeffay 89a, Liu & Layland 73] for the preemptive scheduling of periodic and

sporadic tasks. Similarly, if tasks require resources but the resources are not shared (i.e.,

there is only a single task that requests each resource) then condition (2) is again void (the
quantification of L in condition (2) is empty for all tasks i). At the other extreme, a set of

single phase sporadic tasks in which for all i, I < i < n, ri = k, for some k # 0, corresponds
to a set of tasks that all share a single resource. Such single phase tasks must be scheduled

non-preemptively. In this case condition (2) applies to all tasks and the feasibility
conditions agree with those reported in [Jeffay et al. 90] for the non-preemptive scheduling

of sporadic tasks.

3.2 Scheduling Single Phase Task Systems

Our goal is to develop an algorithm that will sequence a set of single phase sporadic tasks

on a singit processor whenever it is possible to do so. Such an algorithm must ensure that

(1) all task invocations complete execution before the end of their respective invocation
intervals and that (2) the mutual exclusion constraints on the execution of resource

requesting tasks are respected. It is the latter requirement that motivates the development of
a new scheduling policy. Our approach is to incorporate a synchronization protocol for

mutual exclusion into an existing real-time scheduling policy.
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The basis of the new scheduling policy is the preemptive earliest deadline first (EDF)

algorithm [Liu & Layland 73]. The EDF scheduling algorithm works as follows. When a

task is invoked, if the resource the task requires is in use by another task, then the

requesting task is said to be blocked; otherwise the task is said to be ready. When an

invocation of a task is executing on a processor, the task is executing. If a task is

preempted while executing then it returns to the ready state. After completion of an

invocation, and prior to the first invocation, a task is terminated. If task Ti is invoked at

time t, then a scheduler must ensure that T, completes execution at or before its deadline at

time t + pi. The EDF scheduling discipline dictates that at all points in time, the ready task

with the nearest deadline should be executing. An EDF scheduler makes scheduling

decisions (dispatches tasks) whenever a task is invoked or completes an invocation. At

each of these scheduling points, an EDF scheduler dispatches the ready task with the

nearest deadline; preempting the previously executing task if necessary. Ties between tasks

with identical deadlines are broken arbitrarily. Both the task selection process and the

process of dispatching a task are assumed to take no time in our discrete time system. Our

consideration of an EDF policy is motivated by the fact that it has been shown to be an

optimal policy both when tasks have no preemption or execution constraints [Liu &

Layland 73] and when preemption is completely disallowed [Jeffay et al. 90]. The problem

currently under consideration lies between these two extremes.

The EDF scheduling discipline can be extended to ensure exclusive access to shared

resources by re-examining the concept of an execution deadline. If tasks share resources

then when a resource requesting task T, is invoked, it is no longer sufficient for the

invocation to complete execution within pi time units. It can be the case that a resource

requesting task must complete execution before the end of its current invocation interval.

This situation can occur when an invocation of a task with a deadline becomes blocked.

For example, consider the problem of scheduling the following task set according to a

naive application of the traditional preemptive EDF discipline: (recall T = (release time,

(minimum cost, maximum cost, resource), period))

r = { T1 = (1, (1, 1, 1),4)
T2 = (2, (1, 2, 0),10)
T3 = (0, (1, 3, 1),20) }.

r consists of three single phase tasks and I shared resource (RI). The initial interleaving of

invocations is illustrated in Figure 3.3.
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Tim e I I I I I I I I I I i I I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.3

S,,,,initl invocation of task T3 occurs at time 0. Since inserted idle time is not allowed,
task T3 will be scheduled at time 0 as shown in Figure 3.4. (In Figure 3.4 striped
rectangles denote execution with resource R1. Unfilled rectangles represent execution with
resource Ro (i.e., execution with no resource). An execution rectangle open on the right

side indicates that the execution was preempted. An execution rectangle open on the left
side indicates that a previously preempted execution is resumed.) At time 1 task T, has the
nearest deadline. However, since T1 requires the resource that, in the worst case, is in use

by task T3 at time 1, task T1 is blocked by task T3. Therefore, task T3 continues execution
at time 1. At time 2, task T2 has a nearer deadline than the executing task T3. Since
r2 # r3, one might be tempted to allow task T2 to preempt task T3. However, as illustrated
in Figure 3.4, such a decision can cause task T to fail at time 5. At time 1, it is no longer

sufficient for the invocation of task T3 occurring at time 0 to be completed by its nominal
deadline at time 20. Since tasks T1 and T3 share a resource, when task T1 is invoked at
time 1, the invocation of task T3 occurring at time 0 must now be completed no later than

time 5: the initial deadline of task T1. (Of course the initial invocation of task T- must
actually be completed by time 5 - C1 = 4. It will turn out, however, that this is not a useful

observation.)

The challenge is to quantify precisely when a task invocation must be completed. We claim
that an invocation of a resource requesting task should have two notions of a deadline: one

for the initial acquisition of the processor, and one for subsequent execution. Specifically,

T3 2

T, r/-l

Time I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.4



14

when a resource requesting task Ti is invoked at time tr, the invocation should have an

initial deadline equal to tr + pi as in traditional EDF scheduling. This deadline will be

referred to as the initial or contending deadline. Let t, be the time that the invocation of task

Ti occurring at time tr is first scheduled (commences execution). After time ts, the
invocation of task Ti should have a deadline at time MIN(tr +pi, (t, + 1) + Pr). Thus,

when a scheduler first dispatches an invocation of task Ti, the scheduler will potentially

assign Ti a nearer deadline. This deadline will be referred to as the execution deadline.

Since we assume a discrete time domain, a resource requesting task Ti has a contending

deadline at all points in time in the closed interval [t,, ts] and, assuming Ci > ;, has an

execution deadline at all points in the closed interval [ts+l, tc-1], where tc is the time that

the execution of the invocation terminates. (In the interval between the completion of one
invocation and the start of the next, a task logically has a deadline of infinity.) This is
illustrated in Figure 3.5 which plots the deadline of an invocation of a task Ti that has an
execution deadline of (t, + 1) + Prt as a function of time. If a resource consuming task has

a maximum computational cost of 1, then it will never have an execution deadline. Non-

resource requesting tasks require no special treatment. If a non-resource requesting task T

is invoked at time tr, the invocation will have a deadline at time tr + pj for the duration of its

execution. We will refer to our scheme of dynamically altering the deadlines of resource
requesting tasks as the dynamic deadline modification (DDM) strategy.

The application of the dynamic deadline modification strategy to the tasks in the previous

example results in the non-preemptive schedule illustrated in Figure 3.6. Under this policy

the initial invocation of task T3 has a contending deadline at time 20 as before. However,
once task T3 is scheduled it will execute with a deadline equal to MLN(0 + pi, (0 + 1) + Pr,)

1" I 711111111111... J
Time 1 ' " " ' ' ' ' ' 'T're : I i I I I I I I I i I I I I I

tr ts tc tr + Pi

tr+Pi @ 0

ts+Pri+l 1 * * * 0 0 ... * * 0

Ti's
Deadline

I I I I I I II i I I I I I I I!I
tr ts ts + I tc - 1 tc  tr + P i

Time

Figure 3.5
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T2 r-

Time I I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.6

= MIN(20, I + 4) = 5. That is, at times 1 and 2, task T3 has a deadline at time 5. When
task T2 is invoked at time 2, its invocation will have an initial deadline at time 2 + p = 12.
At time 2, task T3 now has a nearer deadline than task T2 and hence an EDF scheduler will
not allow T2 to preempt T3 at time 2.

The imposition of separate deadlines for execution and initial acquisition of the processor
ensures that blocked tasks become unblocked (ready) as soon as possible. Although an
invocation of a resource requesting task may now execute with a deadline that occurs
before the end of the invocation interval, this "deadline" is indeed a deadline. We will
eventually show that the task system can fail if an invocation of a resource requesting task
does not complete execution by its execution deadline. That is, there can exist an
invocation of a task that is not completed at or before the end of its invocation interval.
Note that the deadline modification rule in the proposed algorithm is pessimistic in the
sense that it requires all invocations of resource requesting tasks to execute with a modified
deadline as soon as any blocking can possibly occur (i.e., immediately after they are
scheduled). In particular, resource requesting tasks execute with a modified deadline
independently of whether or not any blocking can actually occur. A more optimistic
approach, for example, would be to modify the deadline of a resource requesting task only
when the execution of the task actually blocks some other task. In Section 5 we show that
such an optimistic scheduling strategy is inferior to the pessimistic strategy we are
proposing.

A final point to address concerns the mutual exclusion constraints on access to resources.
As we will soon demonstrate, the combination of EDF scheduling with the dynamic
deadline modification strategy is sufficient for ensuring tasks access resources in a mutually
exclusive manner. There is, however, one subtlety in the case that there exist multiple
outstanding invocations with the earliest deadline. To guarantee that the mutual exclusion
constraints are respected, when there exist multiple tasks with outstanding invocations with
the earliest deadline, a scheduler must:
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" allow the currently executing task to continue execution if it has the earliest
deadline,

" select a task with an outstanding invocation that has been preempted before
selecting any task whose outstanding invocation has not commenced
execution.

4

We will refer to the combination of an EDF task selection policy with our dynamic deadline

modification strategy and tie breaking rules as earliest deadline first scheduling with

dynamic deadline modification (EDF/DDM). We validate the design of the EDF/DDM

scheduling policy by demonstrating that it is an optimal discipline (with respect to the class

of disciplines that do not use inserted idle time) for scheduling a set of single phase tasks
that share a set of resources. To prove optimality it suffices to show that the satisfaction of
conditions (1) and (2) from Theorem 3.2 is sufficient for ensuring that the EDF/DDM
discipline will succeed in scheduling a set of tasks with shared resources. To demonstrate
that the discipline succeeds in scheduling a set of tasks it must be shown that (1) all
invocations of all tasks complete execution before the end of their respective invocation
intervals and that (2) the mutual exclusion constraints on the execution of resource
requesting tasks are respected. The following lemma demonstrates that the EDF/DDM

scheduling discipline enforces the mutual exclusion constraints on the execution of resource

requesting tasks.

Lemma 3.3: The EDF/DDM scheduling discipline ensures that resources are accessed in
a mutually exclusive manner.

Proof: It suffices to show that a task that requires resource Rj can neither preempt another

task that requires resource Rj nor execute while such a task is preempted when scheduled

by the EDF/DDM scheduling discipline.

Let task T be a resource Rj requesting task. Let t, be a point in time at which an invocation
of task Ti commences execution. Let t > ts be a point in time at which this invocation is

either executing or is preempted. Let Tk be a resource Rj requesting task with an
invocation that is contending for the processor at time t. Let tr be the time at which this

invocation by task Tk was made. Note that under the EDF/DDM scheduling discipline, in

order for task Tk to preempt task Ti or to execute while Ti is preempted, it must be the case
that t, < t,. 5 t (and that t, + Pk < ts + pi) as shown in Figure 3.7.

- Note that the first tie breaking rule ensures that at any point in time there can exist only one preempted
task with the earliest deadline.
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Figure 3.7

The invocation of task T, occurring at time tr will have an initial deadline at time
dk = t r + Pk. Since task Ti is scheduled at time ts, its invocation must have a deadline no
later than at time di = t, + Pj + 1 _ t, + Pk + 1. Since t, < t, it follows that di dk. If
di < dk, then the invocation of task Tk occurring at time t, will not be scheduled until after
the invocation of task Ti occurring at time t, has completed execution. If di = dk, then since
the EDF/DDM scheduling discipline gives priority to the currently executing task and then
to preempted tasks, task Tk will again not be scheduled until after the outstanding
invocation of task Ti has completed execution. Therefore, a task that requires resource R,
can neither preempt another resource Rj requesting task nor execute while such a task is
preempted.

Theorem 3.4: Let r be a set of single phase sporadic tasks (TI, T2, ..., T ,}, sorted in

non-decreasing order by period, that share a set of m serially reusable, single unit
resources R 1, R 2, ..., R,,,. The EDF/DDM discipline will succeed in scheduling -if

conditions (1) and (2) from Theorem 3.2 hold.

Proof: Lemma 3.3 has shown that independently of the conditions necessary' for
feasibility, the EDF/DDM scheduling discipline maintains the mutual exclusion constraints
on the execution of resource requesting tasks. It remains to show that the use of the
EDF/DDM scheduling discipline guarantees that tasks will not fail if conditions (1) and (2)

of Theorem 3.2 hold. This will be shown by contradiction.

Assume the contrary, i.e., that conditions (1) and (2) of Theorem 3.2 hold and yet a task
fails at some point in time when r is scheduled by the EDF/DDM algorithm.

For a set of tasks r, the actual processor demand, or simply the processor demand, in the
interval [a, b], written dab, is defined as the least upper bound on the amount of processing
time actually required by r in the time interval [a, b] to ensure that no task fails in the
interval [a, b]. If a set of tasks r is feasible, then for all a and b, a < b, it follows that
da.b - da.b !- b - a. The proof proceeds by deriving upper bounds on the actual processor
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demand (i.e., the achievable processor demand) for an interval ending at the time at which a

task fails.

Let td be the earliest point in time at which a task fails. r can be partitioned into three

disjoint subsets Al, A2, and A 3, where

A, = the set of tasks that have an invocation with an initial deadline at time td,

A2 = the set of tasks that have an invocation occurning prior to time td with
initial deadline after td, and

A3 = the set of tasks not in A, or A 2.

Tasks in A3 either have a release time greater than td, or are not invoked immediately prior

to time td. As will soon become apparent, to bound the actual processor demand prior to td,

it suffices to concentrate on the tasks in A 2 . Let bl, b 2, ..., bk be the invocation times

immediately prior to td of the tasks in A2. There are two main cases to consider.

Case 1: None of the invocations of tasks in A 2 occurring at times b1 , b2 ... , bk are

scheduled prior to time td.

Let to be the end of the last period in which the processor was idle. If the processor has

never been idle let to = 0. In the interval [to, td], the actual processor demand is the total

processing requirement of tasks that are invoked at or after time to, with deadlines at or

before time td. This gives

d -d~o~ = td tOj(.

Since there is no idle period in the interval [to, td] and since a task fails at td, it must be the
case that dtot d > td - to. Therefore

n n

td- to < td -tO ____1_d t

P11 j=1L d~ 1

and hence
$n

< C
j= IP
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However, Lhi is a contradiction of condition (1). Therefore, it conditions (1) and (2) hold
and the EDF/DDM scheduling discipline fails to schedule r, then an invocation of at least
one task in A2 must have been scheduled prior to td.

Case 2: Some of the invocations of tasks in A 2 occurring at times bl, b- ... , bk are
scheduled prior to time td.

Let T be the last task in A2 to execute prior to td. Let ti be the point in time at which the
invocation of Ti containing the point td commences execution (is scheduled for the first
time). Note that because of deadline-based scheduling, if a task Tk fails at time ta then it
must be the case that ti < td - Pk. That is, the invocation that fails at time td is contained
within the interval [ti, td] as shown in Figure 3.8.

We will show that if the invocation interval of task T containing the point td is scheduled
prior to time Cd, then there must have existed enough processor time in the interval [ti, tCd to
schedule all invocations of tasks occurring after time ti with deadlines at or before time Ci.

There are two sub-cases to consider depending on whether or not the invocation of task T,
scheduled at time ti has an execution deadline less than or equal to time td. If this is the case
then the invocation of task Ti scheduled at time ti must be completed at or before time rj.

Case 2a: The invocation of task Ti scheduled at time ti has an execution deadline less than
or equal to time td.

For this case to hold, since T is in A2, task Ti must be a resource requesting task. We
proceed by deriving the achievable processor demand for the interval [ti, td]. If a task fails

at time td then the following facts hold for Case 2a:

i) Other than task Ti, no task with period greater than or equal to td - t, executes in
the interval [ti, td].

Since an invocation of task Ti is scheduled at time t and has an execution
deadline less than or equal to td, every other task scheduled in [t,, t,] must have
had an initial deadline at or before Cd. Therefore, if an invocation of a task T,.
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with period greater than or equal to td - ti, executes in the interval [ti, td], then
this invocation of Tj must have been available for execution at time ti.
Consequently, since the invocation in question of task Ti had an initial deadline
greater than time td, the EDF/DDM algorithm would have chosen task T before
T in the interval [ti, td]. Therefore, no task with period greater than or equal to
td - ti executes in the interval [ti, td].

ii) Other than task Ti, no task which executes in [ti, td] could have been invoked at
time ti.

Again, other than Ti, every task that executes in [ti, td] has an initial deadline at
or before td. Therefore, if a task Ti, that executes in [ti, td] had been invoked at
ri, the EDF/DDM algorithm would have scheduled task Ti. instead of task T, at
time ti.

iii) The processor is fully utilized during the interval [ti, td].

If the processor is ever idle in the interval [ti, td], then the analysis of Case 1 can
be applied directly to the interval [to, td] - where to > ti + Ci is the end of the
last idle period prior to time td - to reach a contradiction of condition (1).

Since Pi > td - ti, fact (i) indicates that only tasks T1 - Ti need be considered when
computing dt,. Since the invocation of task Ti that is scheduled at time ri has an initial

deadline after time td, all task invocations occurring prior to time ti with deadlines at or
before td must have completed execution by time ti and hence do not contribute to dt,,,.

Similarly, since Ti has the last task invocation with initial deadline after td that executes
prior to td, all invocations of tasks T, - Ti-. occurring prior to time td with deadlines after
td, need not be considered. Lastly, since none of the invocations of tasks T, - Ti-I that are

scheduled in the interval [ti, td] occurred at time ti, the achievable demand due to tasks T, -
Ti-I in the interval [ti, td] is the same as in the interval [ti+l, td]. These observations, plus
the fact the invocation of task Ti scheduled at time ti must be completed before time td,
indicate that the actual processor demand in [ti, td] is bounded by

i-1

dt, < d:5 t= Ci + Ld - (ti+l)] c.

j= 1

Let L = td - ti. Substituting L into the above inequality yields
i-1

dJ,d < Ci + LL ljCj .
j=l1

Since (iii) indicates that there is no idle time in [ti, td], and since a task failed at time rj. it
follows that dt,,td > td - t, and hence dt ,td > L. Combining this with the inequality above

yields
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i-1

L < Ci+ [L - lj (3. 1)
j=1

Since the invocation of task Ti scheduled at time ti has an execution deadline less than or
equal to time td, it must be the case that (ti + 1) + Pr, < td. Hence:

td- (ti + 1) > Pri

td -ti > Pr i,,

Pi > td-ti > Pr, I

pi > L > P..

Therefore inequality (3.1) above contradicts the assumption that condition (2) was true.

Case 2b: The invocation of task Ti scheduled at time ti has an execution deadline greater
than time td.

This will be the case if task Ti is either a non-resource requesting task (ri = 0), or if
(ti + 1) + Pr. > td. The implication of this case is that the invocation of task T scheduled at

time ti need not be completed before time td. That is, since the invocation of task Ti
scheduled at time ti has a deadline after rd, it follows that Ti may be preempted by any task
with an invocation interval contained within the interval [ri, td]. This is possible because.
since td - t, ! P,,, task T can not share a resource with any task that can possibly have an

invocation interval contained within the interval [ti, td].

Let to > ti be the later of the end of the last idle period in [ti, td] or the time task T, last stops

execution prior to td. Since the invocation of task Ti scheduled at time ti has a deadline
greater than t d and since Ti is preemptable by any task that executes in [ti, td], all
invocations of tasks occurring prior to time to with deadlines less than or equal to td must
have completed execution by to. The analysis of Case 1 can be applied directly to the

interval [to, td] to reach a contradiction of condition (1).

This concludes Case 2. We have shown that in all cases, if the EDF/DDM scheduling
discipline fails, then either condition (1) or condition (2) from Theorem 3.2 must have been
violated. This proves the theorem.

Corollary 3.5: With respect to the class of scheduling algorithms that do not use
inserted idle time, the EDF/DDM discipline is an optimal discipline for scheduling a set of

sporadic tasks that share a set of serially reusable, single unit resources.
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Proof: The proof follows immediately from Theorems 3.2 and 3.4.

4. Multiple Phase Task Systems

In this section we demonstrate how the EDF/DDM scheduling algorithm developed for

scheduling single phase sporadic tasks can be extended to successfully schedule multiple

phase sporadic tasks that share a set of resources. The extension is straightforward and

preserves the optimality of the EDF/DDM discipline.

4.1 Feasibility Conditions for Multiple Phase Task Systems

The following theorem gives the appropriate necessity conditions for the feasibility of a set

of multiple phase tasks.

Theorem 4.1: Let r be a set of multiple phase sporadic tasks

(Ti = (si, ((c,, Cij, rij) 1 1 j < ni, pj) I 1 < i < n},

sorted in non-decreasing order by period, that share a set of m serially reusable, single unit

resources R1 , R 2 , ... R,. If r can be scheduled on a uniprocessor without inserted idle

time, then:

PEi < 1

Pi

2) Vi, I < i < n; Vk, 1 < k < ni and rik # 0; VL, P,, < L < Pi Sik:

i-1

L ? Cik + ~ L 1 'j ,
J= 1

where:
"Ej =2Cjj'

1= 1

" Prk = MIN (pJ I rl = rik for some 1, 1 l:_ n,), and

0  if k =1,
Sik kl_ c'i if I < k < nhi.
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The feasibility conditions are similar to those for single phase tasks. The parameter E
represents the maximum computational cost of an invocation of task Ti and replaces ihe C
term in condition (1). Condition (2) now applies to only a resource requesting phase of
task T rather than to the task as a whole. Because of this, the range of L in condition (2) is
more restricted than in the single phase case. The range of L is more restricted because of
the precedence constraints imposed on the execution of phases in multiple phase tasks.
Since the kth phase of a task Ti cannot start until all previous phases have terminated, the
earliest time phase k can be scheduled is Sik time units after the start of an invocation of Ti.

Therefore, for the kth phase of a task, the range of interals of length L in which one must
compute the achievable processor demand will be shorter than in the single phase case by
the sum of the minimum costs of phases 1 through k-1. Also note that no demand due to
phases of Ti other than k appear in (2). In the event that each task in r consists of only a
single phase, conditions (1) and (2) reduce to the conditions of Theorem 3.2.

Proof: To demonstrate the necessity of conditions (1) and (2) for arbitrary release times.
by Lemma 3.1, it suffices to demonstrate the existence of release times for which

conditions (1) and (2) are necessary for feasibility.

The construction for the necessity of condition (1) is identical to the one used in the proof

of Theorem 3.2 and will not be repeated here. For condition (2) choose a task T,.
1 < i 5 n, and choose a phase k of Ti, 1 < k:5 ni, such that rik * O, and P,.,, < pi. Let s, = 0

and sj = Sik + 1 for all j, 1 j n,j # i. This gives rise to the pattern of initial task
invocations shown in Figure 4.1.

For all L, L > Pri,, the interval [Sik, Sik+L] contains at least one entire invocation of a task

that will require resource rik. Therefore, if r is to be feasible then, in the worst case, the

TI

Phase I Phasek

Time . i i i i 0

0 Sik Sik+ I Sik+Prk+l Sik+L P;
Figure 4.1
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computation of task Ti started at time 0 must have its kth phase completed in the interval

[Sii, Sjk+L]. Hence for all L, P, k < L < Pi - Sik, in the interval [Sik, Sik+Lj, the

achievable processor demand, ds*,s,+L, is
i-I

d*sik,SikL = Cik + XL L iJEj.

For all L, L > P,, the interval [Sik, Sik+L] contains at least one entire invocation of a task

that will require resource rik. Therefore, if r is to be feasible then, in the worst case, the

computation of task Ti started at time 0 must haive its kth phase completed in the interval

[Sik, Sik+L]. Hence fur all L, P k < L < pi - Sik, in the interval [Sik, Sik+L], the

achievable processor demand, ds*skS,k -L, is
i-I

d*L-I
d~k,Sik+L =Cik + XLL ljjEj .

j= I

Note that it is not necessary for phases of task Ti beyond phase k to execute in [0, L] in

order to ensure that a task does not fail in the interval [0, L]. For r to be feasible it must be

case that L >_ d*,,sk+L, hence
i-1

j= 1

4.2 Scheduling Multiple Phase Task Systems

The EDF/DDM scheduling discipline was originally formulated for single phase sporadic

tasks. To see how it can be extended to handle tasks with multiple phases, it will be

instructive to view a multiple phase sporadic task

Ti = (si, {(cij, Ci), rij) 1 1j ni}, pi),

as set of ni single phase sporadic tasks

(Tii = (si, (cij, Cij, ri), pi) I1 <j < ni}.

For a given value of i, all tasks in {Tij I 1 <j < ni) conceptually are invoked simultaneously

and are scheduled such that the kth invocation of task Tij, 1 <j < ni, is not scheduled until

the klh invocation of task Ti1 has completed execution. (Note that for a given value of i.

since all tasks in (Tj 1 :j < ni} are invoked simultaneously, outstanding invocations of

tasks T,, will always have the same deadline. Therefore, the EDF/DDM scheduling

discipline can be made to enforce the precedence constraints on the execution of these
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single phase tasks by further biasing its algorithm for selecting a task for execution when

there exist more than one ready task with the earliest deadline.) It should be clear that the

execution of the set of single phase tasks (TijI defined above will be equivalent to the

execution of a multiple phase task Ti. This motivates the treatment of each phase of a

multiple phase task as a logical single phase task. Specifically, each resource requesting

phase of a multiple phase task should have both a contending and an execution deadline.

Let tr be a point in time at which a task Ti is invoked. Let tsk be the time that the kth phase

of the invocation of task Ti made at time tr is first scheduled (commences execution) and let

1ck be the time that this phase terminates. In the interval [t,, ts5 ], task Ti will have a

contending deadline equal to t, + pi as in traditional EDF scheduling. For all k, 1 _< k - n,

if rik 0 and Cik > 1, then in the interval [tk+l, tck-1], task Ti will have an execation

deadline equal to MIN(tr + pi, (tsk + 1) + Prk). Between phases task T i will be considered

to be conceptually contending for the processor. At the time of the completion of each

phase, tck, 1 < k < ni, the deadline of task Tk will revert to the initial deadline for this

invocation. Hence for all k, 1 _< k < ni, in the interval [tck, ts(k+t)], task Ti will have a

deadline at time t, + pi. Figure 4.2 illustrates how a multiple phase task's deadline can

change dynamically throughout an invocation interval. It shows an execution of a multiple

phase task Ti = (si, (( 3 ,3 ,ril), (3,3,ri2), (10,10,ri3 )), Pi) where each phase has an

execution deadline that differs from its contending deadline.

We will refer to the extended version of the EDF/DDM scheduling discipline as the

T Ihe I Phase 3

tr tsl tcI ts2 tc2,ts3 tc3 tr+ P,

tr+pL 00 0 • • 0 0

t,+ Pi~ 1 000 ... 0

ts3 + P13 +1 * 0 9 0

tslI + Pr 1 + I

ts2 + Pr 2 + 1

TI's
Deadlie , , , , , , , , , , , I I I

tr TietsI tel ts2 Wc, ts3 tc3, tr+ P1Time

Figure 4.2
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generalized EDF/DDM discipline. We again validate the design of this discipline by

demonstrating that it is an optimal policy for scheduling a set of multiple phase tasks that

share a set of resources. To prove optimality it suffices to show that the satisfaction of

conditions (1) and (2) from Theorem 4.1 is sufficient for ensuring that the generalized

EDF/DDM discipline will succeed in scheduling a set of multiple phase tasks with shared

resources. To demonstrate that the discipline succeeds in scheduling a set of tasks it must

be shown that (1) all invocations of all tasks complete execution before the end of their
respective invocation intervals and that (2) the mutual exclusion constraints on the

execution of resource requesting phases of tasks are respected. The following lemma

demonstrates that the EDF/DDM scheduling discipline enforces the mutual exclusion

constraints on the execution of resource requesting phases.

Lemma 4.2: The generalized EDF/DDM scheduling discipline ensures that resources are

accessed in a mutually exclusive manner.

Proof: The proof is largely identical to the proof of Lemma 3.3 and will not be repeated
here.

Theorem 4.3: Let r be a set of multiple phase sporadic tasks (TI, T2, ..., T,}, sorted in

non-decreasing order by period, that share a set of rn serially reusable, single unit

resources R1 , R 2, ..., Rm. The generalized EDF/DDM discipline will succeed in

scheduling rif conditions (1) and (2) of Theorem 4.1 hold.

Proof: It suffices to show that the use of the generalized EDF/DDM scheduling discipline

guarantees that tasks will not fail if conditions (1) and (2) of Theorem 4.1 hold. The proof

is quite similar to the proof of Theorem 3.4 and will be presented in an abbreviated manner.

Assume the contrary, i.e., that conditions (1) and (2) hold and yet a task fails at some point

in time when r is scheduled by the generalized EDF/DDM algorithm. Let td be the earliest

point in time at which a task fails. r can be partitioned into three disjoint subsets A1, A2 ,

A3 as in the proof of Theorem 3.4. To bound the actual processor demand prior to td, it

suffices to concentrate on the tasks in A2 . Let bl, b 2, ..., bk be the invocation times
immediately prior to td of the tasks in A2. There are two main cases to consider.

Case I: None of the invocations of tasks in A 2 occurring at times bl, b2 ..... bk are

scheduled prior to time td.
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This is identical to Case I in the proof of Theorem 3.2. If none of the invocations of tasks

in A 2 occurring at times bl, b2, ..., bk are scheduled prior to td, then condition (1) could

not have been true.

Case 2: Some of the invocations of tasks in A 2 occurring at times bl, b2 ..., bk are

scheduled prior to time td.

Let Ti be the last task in A2 to execute prior to td. Let h be the last phase of task T to
execute prior to time td. Let ti be the point in time at which phase h of task T commences

execution (is scheduled for the first time). There are two sub-cases to consider depenfling
on whether or not the phase of task Ti scheduled at time ti has an execution deadline less

than or equal to time td.

Case 2a: The phase of task T scheduled at time ti has an execution deadline less than or
equal to time td.

If a task fails at time td then facts (i) - (iii) from the proof of Theorem 3.4 hold for the
present case. The actual processor demand in [ti, td] is bounded by

i-1

dri,td Cih + Ltd - (ti+
. J= PJ PJ

(Note that since phase h of task Ti is the last phase of Ti to execute prior to td, T;
contributes only Cih to dti,td.)

Let L = td - ti. Since there can be no idle time in [ti, td], and since a task failed at td. it

follows that dt,,td > td - ti, and hence dttI > L. Therefore,

i-1

L< ,Cih+ XL-jEj
j= 1

The earliest phase h of task Ti can be scheduled is Sih time units after Ti is invoked.
Therefore, since Ti was in A 2, it follows that pi - Sih > td - ti. Moreover, since phase h of

task Ti had an execution deadline less than or equal to td, we have td - ti > P,,. and hence
Pi - Sih > L > Pr,. Therefore the above inequality contradicts the fact that condition (2) was

assumed to be true.

Case 2b: The phase of task Ti scheduled at time ti has an execution deadline greater than

time td.
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Let to > ti be the later of the end of the last idle period in [ti, td] or the time the hth phase of
task Ti last stops execution prior to td. The analysis of Case 1 can be applied directly to the

interval [to, td] to reach a contradiction of condition (1).

This concludes Case 2. We have shown that in all cases, if the generalized EDF/DDM

scheduling algorithm fails, then either condition (1) or condition (2) of Theorem 4.1 must
have been violated. This proves the theorem. Z

Theorem 4.4: With respect to the class of scheduling algorithms that do not use inserted
idle time, the generalized EDF/DDM discipline is an optimal discipline for scheduling a set
of multiple phase sporadic tasks that share a set of serially reusable, single unit resources.

Proof: The proof follows immediately from Theorems 4.1 and 4.3. 7-

5. Discussion

In this section we present an O(mpn) algorithm for deciding if a set of tasks is feasible
where p, is the period of the "largest" task and m is the number of shared resources in the
system. In addition we revisit some of the assumptions and restrictions present in the
system model of Section 2. Having proved necessary and sufficient conditions for
feasibility, we can provide additional motivation for our specific choice of tasking and

resource model, our emphasis on scheduling without inserted idle time, and the necessity
of a pessimistic scheduling discipline. Lastly, we discuss some issues concerning the
implementation of our system model.

5. 1 The Complexity of Deciding Feasibility

Conditions (1) and (2) of Theorem 4.1 can be used as the basis of a decision procedure for
deciding the feasibility of a set of sporadic tasks that share a set of serially reusable, single

unit resources. By Theorems 4.3 and 4.4, a set of tasks will be feasible if and only if they
satisfy conditions 'i) and (2). A set of tasks can be described with O(XYUini) inputs.

Deciding if condition (1) holds is straightforward and can be performed in time linear in the
number of inputs. As described next, we can determine if a set of sporadic tasks satisfy

condition (2) in time O(mp,). Note that for all tasks Ti, the maximum computational cost
of the task is at least as big as the number of phases in the task, i.e., E 2! n,. Therefore.

for task sets of size n that satisfy condition (1)
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A set of sporadic tasks can be tested against condition (2) in time O(mp,), as follows. Let

n

f (L) = LL 1 j

Intuitively, f(L) is the achievable processor demand in the interval [0, L--i] when all tasks

are released at time zero. To test condition (2) we restrict our attention to values of L

between p, and Pn. To compute f(L) for all L, p, < L < p,, initialize an array of integers A

of size p, to zero. For each task Tk, 1 _5 k _ n, add Ek to location j of array A for all j that
are multiples of Pk. At the completion of this process the sum of the first I - I locations of
A will be f(l).5 Using this method, the total time required for the computation of f L) for
all L, pl < L < Pn, is O(pn) plus the time required to compute the Ei plus the maximum
number of task invocations that must complete execution before time p, - 1 when all tasks
are released at time zero. If a set of tasks satisfies condition (1) then the second and third
terms can be at most p,,. Therefore the time required to compute f(L) for all L. pI < L <
pn, is O(p,). Note that if I < pi, for some task Ti, then

j=1

For each shared resource R, let

MR(P) = MWN ( L- f(L)).
PR <L <p

Intuitively, MR(p) is the minimum amount of time the processor will have been idle in the
interval [0, L-l], for all L < p, if all tasks with periods less than p are released at time zero
(and all tasks with period greater than or equal to p are released at or after time p). For a
resource R, the time required for computing MR(p) for all p, PR < p < p,, is O(p,). If there

are m resources in the system then the total time required to compute MR(p) for all
resources in the system is O(mpn). A set of tasks will satisfy condition (2) if and only if
for each task i, 1 < i < n, and each phase k, 1 5 k 5 ni, M,,(Pi - Sik) >- Ck. Given MR(P)

for all R and for all p, PR <P <P,, this final determination can be made in time O( -jrn,> .

5 Note that the array A need only be of size p, -p, since for all1, 0 1< pl, fij) = 0. HoCvcr. this
optimization does not effect the time complexity of the computation.
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Therefore, the time required to the decide feasibility of a set of sporadic tasks is dominated

by the time required to compute MR(P) for all resources R; namely O(mp,). Variations of

this algorithm are discussed in [Jeffay et al. 90].

Note that the time complexity depends on the value of one of the inputs. Since the size of

an input cannot be expressed as a polynomial in the length of the input, our decision

procedure is a pseudo-polynomial time algorithm [Garey & Johnson 791. However, this

does not necessarily imply intractability in practice. For any bound on the size of the

inputs, our algorithm is polynomial in this bound. Therefore, if we impose an upper

bound on the size of the inputs, say 216, then the decision procedure is polynomial for

these restricted problems. For descriptions of task sets that are most likely to be

encountered in practice, one can efficiently determine the feasibility of the tasks.

Parameters for the decision procedure such as task periods are typically specified as part of

the system design or are derivable from an examination of the execution environment.

Minimum and maximum phase execution times can be computed by hand or by automated

tools. For example, a compiler that emits minimum and maximum execution times for

source language level constructs (e.g., procedures, statements, expressions) has been

reported by Park and Shaw [Park & Shaw 90].

5.2 Optimistic Versus Pessimistic Scheduling

In Section 2 we derived the DDM rule for dynamically modifying the deadline for an

invocation of a resource requesting task. This rule was introduced to ensure that blocked

tasks become unblocked (ready) as soon as possible. The DDM rule is pessimistic in the

sense that it requires all invocations of resource requesting tasks to execute with a
potentially modified deadline independently of whether or not any blocking has, or will,

actually occur. Furthermore, if an invocation of a resource requesting task is assigned a

new deadline after commencing execution, the DDM rule is pessimistic in the choice of the

new deadline. By assigning a new deadline that is a function of Pj, for the appropriate

value of j, the DDM rule is in effect assuming that if a task will become blocked it will be

the smallest task that shares a resource with the blocking task. Although it was

demonstrated that the DDM rule lead to an optimal scheduling discipline, it is instructive to

examine some of the pitfalls of a more optimistic scheduling strategy.

A more optimistic approach to scheduling would be to modify the deadline of a resource

requesting task only when an invocation of the task actually blocks some other task and in



31

addition have the new deadline be a function of the period of the blocked task (e.g.. see
[Jeffay 89b]). For example, in the single phase case, when a resource requesting task T, is

invoked at time tr,, the invocation should have an initial deadline equal to t + p, as before.

Let t, be the time this invocation of task Tj commences execution and let t, be the time it

terminates. If at time t', t, < t' < t, an invocation of some other task T, becomes blocked
by Ti, then at time t' the deadline of Ti should be advanced to time MIN(t, + pi, t' + pj).

For example, consider the following (feasible) set of single phase tasks: (recall T = (release

time, (minimum cost, maximum cost, resource), period))

r:- { T1 = (2, (1, 1, 1),3)
T2 = (1, (2, 2, 0), 7)
T3 = (0, (3, 3, 1),10) }.

Figure 5.1 shows the execution of these tasks under the optimistic scheduling policy

outlined above. (For comparison, Figure 5.2 shows the execution of the tasks under the
EDF/DDM scheduling discipline.) Initially task T3 is scheduled. At time 1 the EDF/DD.I

policy would assign task T3 an execution deadline of time 1 + P, = 4. Under the proposed

optimistic policy, since no task is actually blocked at time 1, task T3 would retain its
original deadline of time 10. Therefore, since task T2 is initially invoked at time 1 and has
a deadline at time 8, the optimistic policy would allow task T2 to preempt task T3 at time 1
since T2 has the earliest deadline at time 1. Task T, is immediately blocked when it is
invoked at time 2 since it requires the resource held by task T3. At this point the optimistic

policy would assign task T3 a deadline of time 2 + p, = 5; enabling T3 to preempt the
currently executing task. This results in the initial invocations of all tasks to complete

execution before their deadlines.

This example suggests that the optimistic policy we have proposed is at least as good as the

pessimistic EDF/DDM policy. It turns out that this is not the case. To see that the
pessimistic deadline modification rule is indeed warranted, consider the following set of

T-,~
T 3 =77 //////M/

Time i i ; : i i i
0 1 2 3 4 5 6 7 8 9 10

Figure 5.1
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Figure 5.2

single phase tasks that share resource RI and R2:

r= T1 = (3, (1, 1, 1),4)
T2 = (2, (2, 2, 2), 6)
T3 = (1, (3, 3, 1),15)
T4 = (0, (3, 3, 2),17)).

Figure 5.3 depicts a simulation of an EDF scheduling discipline with the optimistic deadline
modification strategy. When tasks T4 and T3 are invoked they will have deadlines at time
17 and 16 respectively. Task T4 will execute until time one at which point it will be
preempted and task T3 will be scheduled. At time 2 an invocation of task T2 has the nearest
deadline but is blocked by the uncompleted invocation of task T4 . Therefore, at time 2 task
T4 is assigned a new deadline of time 2 + P2 = 8. This causes task T4 to resume execution
at time 2. Similarly, since task T1 becomes blocked by task T3 at time 3, at time 3 the
invocation of task T3 made at time 1 is assigned a new deadline of time 3 + p,= 7 at time
3. This causes task T3 to resume execution at time 3. Eventually task T'2 misses a deadline

at time 8.

However, this task set is feasible as it satisfies both conditions (1) and (2) of Theorem 3.2.
Figure 5.4 shows the effect of scheduling this task set according to the EDF/DDM

T3[I

I- - I
Timell i i I 1 11111 11111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5.3
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Figure 5.4

discipline. Note that the execution of these tasks is non-preemptive. The reason for the
failure of the more optimistic policy can be seen by revisiting the construction used in the
proof of Theorem 3.2 to demonstrate the necessity of condition (2) for the feasibility of a
set of single phase tasks. Condition (2) describes a least upper bound on the achievable
processor demand for an interval I of length L that is contained within the invocation
interval of a resource requesting task Ti. The key observation is that this bound contains
the computational cost of only a single invocation of a single task (namely task Ti) that can
not be wholly contained within the interval I (see Figure 3.2). That is, in the worst case
there exists only one task invocation not contained within the interval I that must be
completed within I. Theorem 3.4 has shown that this scenario is indeed the worst case one
need consider.

The optimistic deadline modification strategy outlined above is inferior because it admits the
computational cost of more than one task with an invocation interval not wholly contained
within the interval I into the processor demand for this interval. In the example above.

consider the interval I = [0,8] contained within an invocation interval of the resource
requesting task T4. Under an optimistic deadline modification strategy, invocations of both
tasks T3 and T4 must be completed within the interval I. Under the pessimistic deadline
modification strategy only an invocation of task T4 must be completed within the interval I.
For this interval of length L = 8, the processor demand is higher under the optimistic

deadline modification strategy than under the pessimistic strategy. Any scheduling policy
that allows the processor demand within the invocation interval of a task, to exceed the
bound given by condition (2) will necessarily be non-optimal. The optimistic deadline
modification strategy fails in the second example for precisely this reason. Therefore.
although the EDF/DDM discipline always schedules resource requesting tasks as if the
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smallest competing task becomes blocked immediately after any resource requesting task

commences execution, such an approach is indeed necessary.

5.3 Feasibility Versus Processor Utilization

Condition (1) of Theorems 3.2 and 4.1 requires that the cumulative utilization of a set of

tasks not overload the processor. It is important to note that this is the only feasibility

condition that constrains the achievable utilization of a real-time task set. Although

condition (2) of these theorems constrains the achievable utilization over a relatively short

and well-defined set of intervals, it does not constrain the overall processor utilization. The

feasibility of a set of sporadic tasks that share a set of resources is not a function of

processor utilization (to the extent that the tasks do not overload the processor). It is

possible to conceive of both feasible task sets that have a processor utilization of 1.0. and

infeasible task sets that have arbitrarily small processor utilization.

The implication of this is that manipulating infeasible task sets according to such "'rules-of-

thumb" as lowering the overall processor utilization will not necessarily yield a feasible task

set. For example, one approach to scheduling tasks that share resources has been to reduce

the analysis of a set of periodic tasks with preemption or mutual exclusion constraints to the

analysis of a set of periodic tasks without such constraints [Mok et al. 87, Sha et al. 90].

In this manner, the results developed for independent periodic tasks can be applied. For

periodic tasks with no preemption constraints, the conditions that are necessary and

sufficient for guaranteeing response times are stated in terms of the processor utilization of

the system. Tasks with no preemption constraints can be scheduled if

U fi < a,
i= 1

where the value of a, 0 < a S 1, varies according to the problem statement [Liu & Layland

73J. For our purposes we can consider a to be a constant. (In our analysis we had ct = 1.)

The reductions from the constrained task system to the independent task system typically
impose further restrictions on the utilization of the system. A common form for the

schedulability conditions for task sets with preemption constraints is U 5 a - B, where B

is a function of the durations for which tasks in the system can be blocked [Leinbaugh 80,

Stoyenko 87, Mok et al. 87, Sha et al. 90]. The reduction process results in conditions that

are sufficient for ensuring the correctness of a set of tasks but that are not necessary. In
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effect, these methods are sacrificing processor utilization to gain schedulability. Our work

demonstrates that, in principle, one need not make such a trade-off.

5.4 Scheduling Periodic Tasks and Scheduling With Inserted Idle Time

Although we have focused on modeling a real-time systems as a set of sporadic tasks, a

more common approach is to view a real-time systems as a set of periodic tasks [Mok 83].

A periodic task is the special case of a sporadic task obtained when a sporadic task is

invoked every p time units after it is released (where p is the period of the sporadic task).

The conditions sufficient for a set of sporadic tasks to be feasible will therefore be

sufficient conditions for ensuring the feasibility of a set of periodic tasks. Indeed the

generalized EDF/DDM scheduling discipline will correctly schedule a set of periodic tasks

that share a set of serially reusable, single unit resources if the conditions of Theorem 4. 1

hold. These conditions are, however, not necessary for the feasibility of a set of periodic

tasks. That is, the generalized EDF/DDM scheduling discipline is not an optimal algorithm

for scheduling periodic tasks that share resources. For the simplest form of mutual

exclusion constraints (i.e., a non-preemptive system), the problem of determining

necessary conditions for the feasibility of a set of periodic tasks with arbitrary release times

is known to be NP-hard in the strong sense [Jeffay at al. 901. Moreover, if an optimal

algorithm exists for the non-preemptive scheduling of periodic tasks then P = NP [Jeffay et

al. 90]. It is for these reasons that we have limited our attention to sporadic tasks.

The intractability of deciding feasibility for a set of periodic tasks arises from our inability

to efficiently determine if the processor demand given in condition (2) can ever actually

occur. That is, for a set of periodic tasks, one cannot efficiently determine if there can exist

an interleaving of task invocations such that there exists an interval of length L in which the

processor demand is given by condition (2). The optimality of the results in this paper are

primarily due to the non-determinism allowed in the behavior of a sporadic task. Since

there may exist an arbitrarily long delay between invocations of sporadic tasks, one can

argue that there can always exist an interval of length L in which a set of sporadic tasks will

realize the processor demand given in condition (2).

The non-determinism in the behavior of sporadic tasks is also responsible for consideration

of on-line scheduling policies. It will not be possible to generate a schedule off-line if the

invocation times of all tasks are unknown. For similar reasons, we have largely ignored

the investigation of scheduling policies that use inserted idle time. In order for inserted idle
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time to function correctly, it would seem to require that the scheduler know when tasks will

next be invoked. In general, this will not be possible for sporadic tasks.

5.5 Implementation Considerations

The tasking model considered in this paper can be efficiently implemented if the EDF/DDM

scheduling discipline is employed. This is primarily due to a property of priority driven
schedulers. If there are no shared resources in a system then tasks may, in principle,
preempt one another at arbitrary points. In particular, when such a set of tasks are
scheduled by an EDF scheduling discipline, the schedule produced has the property that if
an invocation of a task is preempted at some time t and resumed at some later time tr, all
tasks that execute in the interval [ta, tr] execute to completion.6 When EDF scheduling is
used, this suggests a possible implementation strategy wherein all tasks share a single run-
time stack. 7 This implementation strategy for a real-time tasking model has been called
featherweight tasks [Baker 90a]. The use of a single stack can greatly improve memory

utilization as well as lower the cost of dispatching and preempting tasks. Although the
EDF/DDM scheduling discipline dynamically changes the deadline of resource requesting
tasks, it preserves the ability of a set of tasks to be implemented using a single stack.

In order to apply the feasibility conditions of Theorem 4.1 in practice, one must account for
the o-verhead of an implementation of an EDF/DDM scheduler. Throughout this paper we
have ignored the cost of selecting, dispatching, and preempting a task. If the scheduling
priority of tasks changes over time, as is the case in EDF/DDM scheduling, one of the most
difficult implementation costs to appropriately quantify is the cost of preempting a task. It
would therefore be useful to determine, for a given set, if allowing preemption between

tasks is indeed necessary for feasibility. By combining individual resources into resource
classes, one can represent a task system with m shared resources, as a system with k

shared resources, for 1 < k < m. (In the context of a concurrent program this amounts to
using a single monitor for accessing a set of resources.) In this manner we can, roughly
speaking, identify the "minimum" number of logical resources necessary for ensuring the
schedulability of a set of tasks. For example, when using an EDF/DDM scheduler, if there
exist two resources Ri and R,, i # j, such that Pi = Pj, then a resource Ri requesting task

6 Assume the EDF scheduler breaks ties according to a static priority assignment to tasks.

7 This assumes a "lightweight" task implementation wherein all tasks execute within the same address
space.
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will never preempt a resource Rj task (nor execute while such a task is preempted) and vice

versa. Therefore, if Pi = Pi, one can always treat resources Ri and Rj as a single logical

resource.

For a given set of resources, there is an exponential number of possible resource classes to

consider. However in practice the number of resources in a system is likely to be small and

the process of enumerating and testing the feasibility of the various modified problem

statements may be performed off-line.

Even if the number of logical resources required for feasibility is close to the number of

actual tesources in the system, we believe that in practice the number of tasks that are al-le
to preempt other tasks will be small. For example, note that in each (admittedly contrived)

example in this paper, the schedules produced by the EDF/DDM scheduling discipline have

been non-preemptive. This is not by accident. In the case of single phase tasks, if P. <P
then no resource Rj requesting task can ever preempt a resource Ri requesting task. This

implies that there will always exist a group of tasks that may never preempt any resource

requesting task. Furthermore, since a task Tk may preempt a resource Ri requesting task

only if Pk < Pi, Tk can either preempt every resource Ri requesting task or it cannot
preempt any such task. Based on these observations and our experience with applying the

EDF/DDM discipline to actual task sets, we conjecture that if preemption among tasks is
required for feasibility, it will be limited to a few tasks. For these tasks one may account

for the cost of preemption by inflating their cost parameter c to include the cost of

preempting a task. Further experience with constructing systems according to the model of

Section 2 is clearly needed.

5.6 Other Paradigms of Resource Usage

Throughout this work we have assumed that tasks require at most one resource per phase

and that phases are statically ordered. The latter restriction can be mitigated to a limited

extent by judicious use of minimum phase execution time cost parameter c. A zero value

for the minimum cost can be used to model simple branching logic that controls the order of
phase execution. An alternate approach described by Stoyenko is to explicitly test the

feasibility of all possible interleavings of task invocations for all possible phase orderings
[Stoyenko 87]. We have chosen to restrict the programming model in order to ensure a

simple test for feasibility.

The restriction that phases require at most one resource is certainly unrealistic for real-time

systems such as in transaction systems where phases may require multiple resources
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simultaneously. Recall that the initial motivation for our consideration of a single resource

per phase arose from the use uf monitors in concurrent programming languages. In this

context we have operationally defined a resource as a monitor. The use of multiple

resources simultaneously by a task corresponds to the "nested monitor problem" in the

concurrent programming literature [Haddon 77, Lister 77]. Largely because of the

problems associated with deadlock, many popular concurrent programming languages such

as Modula 8, Mesa, and Concurrent Euclid do not allow nested monitor calls [Wirth 77,

Lampson & Redell 80, Holt 83]. We have therefore not been motivated to consider phases

that require multiple resources simultaneously. From a pragmatic standpoint, if in practice

it is the case that the number of tasks that can preempt one another is indeed small, as

conjectured in Section 5.3, then we would argue that there is little to be gained by

investigating more complex models of shared resources. It would be better to simply

consider the resources that a phase requires simultaneously as a single logical resource.

This reduces the problem to the one considered in this paper.

From our perspective, a more interesting model to study is one that relaxes the mutual

exclusion constraints on the access to resources. In this work resources have been required

to be accessed in a mutually exclusive manner. Other models of models of exclusion, such

as readers/writers, warrant consideration. We plan to investigate such problems in the

future.

6. Summary and Conclusions

We have presented a model of a real-time system consisting of a set of sporadic tasks that

share a set of serially reusable, single unit resources. Sporadic tasks are a generalization of

periodic tasks and are well-suited for representing event driven processes. Tasks are

composed of a sequence of phases. Each phase is a contiguous sequence of statements that

possibly require exclusive access to a resource. Resources are shared software objects,

such as data structures. Our treatment of resources has been motivated by the use of

monitors in contemporary concurrent programming languages.

For an arbitrary instance of the model the goal is to determine if it is possible to schedule

the tasks on a single processor such that:

8 Modula allows lexically nested monitors, however, this is compatible with our one resource per phase

paradigm.
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" no task fails (every invocation of every task completes execution at or
before the end of its invocation interval) and

" each instance of each resource requesting phase has exclusive access to the
resource it requires for the duration of the phase.

We have identified conditions that are both necessary and sufficient for scheduhng a set of

tasks without the use of inserted idle time. Moreover, with respect tz, the class of

algorithms that do not use inserted idle time, we have developed an optimal algorithm for

scheduling sporadic tasks that share resources. This algorithm, called the earliest deadline

first with dynamic deadline modification (EDF/DDM) algorithm, is an extension to the

well-known EDF algorithm. Under an EDF/DDM scheduler, tasks that require exclusive

access to resources have two types of deadlines: a contending deadline for the initial

acquisition of the processor, and an execution deadline for subsequent execution. The

EDF/DDM policy ensure that tasks that become blocked due to mutual exclusion constraints

are resumed as soon as possible. This policy is pessimistic in the sense that it always

assumes the act of scheduling a resource requesting task will result in a competing task

becoming blocked. Our analysis has demonstrated that this pessimistic approach is
warranted.
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