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Technical Objectives and Issues

The goals of StarLitc project are twofold. First, we investigate new technologics associated with the
construction of rcal-time, distributed operating systems, database systems, and communication networks.
Secondly, the rescarch will produce tools and experimental systems, using the StarLite software prototyp-
ing environment. The issucs being addressed arc priority-based scheduling, methodology for developing
prototyping tools, systcm integration, operating systcm support and interface issues, and fault-tolerance in
real-time computing.

Approach

Our research is directed towards discovering a sct of design principles and developing efficient
algorithms for distributed real-time operating systems and database systems. In addition to theorctical
study, we arc also devcloping experimental systems and prototyping tools for performance evaluation of
new technology.

Accomplishments and Significance

One of the most important achicvements in FY91 is the development of new scheduling algorithms
bascd on the idca of adjusting the serialization order of active transactions dynamically. This is the first
successful attempt to integrate benefits of pessimistic and optimistic approaches for transac..on schedul-
ing. When compared with conventional transaction scheduling algorithms (e.g., two-phase locking), our
algorithms significantly improve the percentage of high priority transactions that mect ¢ deadline. We
also have developed priority-ordered deadlock avoidance algorithms for real-time re o urce management,
and replication control algorithms for distributed rcal-time databases. These al-orithms will be very
efficient for distributed real-time systems, in which replicated resources should be managed to support
consistency, while satisfying timing constraints. Using StarLite prototyping environment, we have imple-
mented those algorithms and demonstrated that they provide higher level of concurrency and greater
flexibility in meeting timing requirements.

We have developed a new paradigm for multiprocessor real-time xystems, and implemented a paral-
lel programming interface based on our paradigm. OQur new paradigm has created new research opportuni-
tics for operating systems and databases for parallel computin: systems with timing constraints. For
example, using the new programming interface, we have devetoped PRDB, an experimental real-time
databasc system that runs on an emulated tightly-coupled, shared-memory multiprocessor system in the
StarLitc cnvironment. It provides a gencral paradigm for exlipoiting parallclism and different real-time
scheduling policies. This cxperimental system has been used for investigating implementation techniques
for parallcl database systems and the impact of muliiprocessor technology on operating systems design.

[ |




We have developed a suite of databasc systems on several platforms, such as StarLite, ARTS, and
UNIX, and utilized them as systcm integration testbeds. §° cc a real-time system must operate in the con-
text of operating system services, correct functioning and timing behavior of the system depends heavily
on the operating system interfaces. We have developed a multi-thread database server, called RTDB, for
ARTS real-time operating system kemcl. The RTDB now supports application programmatic interface
and graphic uscr interface. Our experimental systems achicve other goal of this project—to transfer tech-
nology developed under the StarLite project to Navy, DoD, and other research organizations. Currently,
Naval Occan Systems Ceiuter in San Dicgo, Califomia, is using RTDB for their distributed real-time
experiments.

Plans for FY92

Wc will continue to expand the module hierarchy of the StarLite environment by including modules
for optimistic scheduling and system recovery, and graphic user interface. We will also investigate sys-
tem support requirements for real-lime applications, and then evaluate the StarLite from that perspective.
In addition, we will refine the current single processor and multiprocessor implementation. Furthermore,
we will begin work on a distributed version SterLite operating system that will be integrated with our dis-
tributed databasc kemel.

We will investigate scheduling and concurrency control algorithms, and perform cxperiments for
their evaluation. We will also implement replication control algorithms and recovery algorithms in the
StarLite for their performance evaluation. With respect to experimental database systems, we will add
real-time transaction fcaturcs and evaluate them for realistic applications. Our findings and new technol-
ogy developed in this project will continue 1o be transfered to other Navy organizations,
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Concurrency Control in Real-Time Databases
by Dynamic Adjustment of Serialization Order

Yi Lin and Sang H. Son
Department of Computer Science

University of Virginia
Chariottesville, Virginia 22903

ABSTRACT

Time-critical scheduling in real-time database
systems has two components: real-ume transaction
scheduling, which is related to task scheduling in real-
time operating systems, and concurrency control,
which can be considered as operation level scheduling.
Most current research in this area only focuses on the
transaction scheduling aspact while the concurrency
control part remains untouched. In the paper, a new
concurrency control algorithm for real-time database
systems is proposed, by which real-time scheduling and
concurrency control can be integrated. The algorithm
is hased on a priority-based locking mechanism to sup-
port ime-critical scheduling by adjusting the serializa-
tion order dynamically in favor of high priority transac-
tions. Furthermore, it does not assume any knowledge
about the data requirements or execution time of each
transaction. This makes the algorithm very practical.

1. Introduction

Compared with traditional databases, the ability
to meet the deadlines of transactions is vital to a real-
time database. In other words, the timeliness of results
can be as important as their correctness in real-time
database systems. Deadlines consttute the timing con-
straints of transactions. A deadline is said to be hard if
it cannot be missed or else the result is useless. If a
deadline can be missed, it is a soft deadline. With soft
deadlines, the usefulness of a result may decrease after
the deadline is missed. Another important characteris-
tic of real-ume transacuons is criticality, which
represents the importance of a transaction. Deadline
and criticality are two orthogonal factors that play
important roles 1n real-ume database systems [Song8).

This work was supported 1n part by ONR under contract #
NO014.48-K 0235, by DOE  under womract # DE.FGOS5-84-
ER25063, by IBM FSD. zad by CIT under contract # CIT-INF-90.
on
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The goal of scheduling in real-time database sys-
tems is twofold: to meet uming constraints and to
enforce data consistency. In real-time operating sys-
tems, scheduling is usually at the task level subject only
to uming constraints. Data consistency constraints are
not involved. In conventional database systems, meet-
ing the deadline is typically not addressed. Scheduling
is at operation leve! in that the basic unit of a schedule
is operation. The only goal of such scheduling is w
guarantee data consistency. Scheduling in the real-time
database systems is a combination of the two schedul-
ing mechanisms [Son90c].

Real-time task scheduling methods can be
extended for real-ume transaction scheduling while
concurrency control protocols are still needed for
operation scheduling to maintain data consistency.
However, the integration of the two mechanisms in
real-time database systems is not trivial. The general
approach is to uulize existing concurrency control pro-
tocols, especially 2PL, and to apply time-critical tran-
saction scheduling methods that favor more urgent
transactions [Abb88, Sha90, Son89b]. Such
approaches have the inherent disadvantage of being
limited by the concurrency control method upon which
they are based, since all existing concurrency control
methods synchronize concurrent data access of transac-
tions by the combination of two measures: blocking
and roll-backs of transactions. Both are barriers o
time-critical scheduling. The conservative two-phase
locking (2PL) protocol [Bem87] and the optimistic
methods (Bok87, Kung81] are examples of the two
extremes. In real-time database systems, blocking may
cause priority inversion when a high prnionty transac-
ton is blocked by lower prionty transactions {Shas8].
The alternative is to abort the low prionty transactions
if they block a high prionty transaction.  This wastes
the work done by the aborted transacuons and in tum
also has a negative effect on time-cntical schedubling.

Concurrency control protocols induce a senaliza-
tion order among contlicting transactions. [n non-real-
ume concurrency control protocols, uminyg constraints
arc not a factor in the construction of this order. This s
obviously a drawback for real-ume database systems,
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For example, with the 2PL method, the serialization
order is dynamically constructed and corresponds to
the order in which the conflicting transactions access
the shared data objects. In other words, the serialization
order is bound to the past execution history with no
flexibility. When a iransaction T with a higher prior-
ity requests an exclusive lock which is being held by
another transaction, Ty, with a lower priority, the only
choices are either aborting T, or letting Ty wait for T.
Neither choice is satisfactory and thus the performance
is degraded.

Based on the argument thal timing constaints
may be more important than data consistency in real-
ime database systems, attempts have been made 10
satisfy the timing constraints by sacrificing database
consistency temporarily to some degree {Kor90, Lin89,
vrb88]. It is based on a new consistency model of
real-ime databases, in which maintaining external datq

consistency has priority over maintaining internal da:a.

consistency. Although in some applications weaker
consistency is acceptable [Gar83], a general-purpose
consistency criterion that is less stringent than serializa-
bility has not yet been proposed. The problem is that
temporary inconsistencies may affect active transac-
tons and so the commitment of these transactions may
still need 1o be delayed untl the inconsistencies are
removed; otherwise even committed transactions may
need to be rolled back. However, in real-time systems,
some actions are not reversible. In addition, incorrect
data may spread within the database. This makes
inconsistency removal a very difficult task. Before any
breakthrough is made in this direction, serializability
seems 10 be the only correctness criterion for us to live
with,

Satisfying the timing constraints while preserv-
ing data consistency requires the concurrency control
algorithms to accommodate timeliness of transactions
as well as to maintain daw consistency. This is the
very goal of our work. In real-time database systems,
timeliness of a transaction is usually combined with its
cnticality to take the form of the priority of that tran-
saction. Various ways of assigning priority and their
effects have been discussed in [Stan88, Hua89,
Buch89].

For a concurrency control algoriti.m to accom-
modate the timeliness of transactions, the seralization
order 1t produces should reflect the prionty of transac-
uons [Son90b]. However, this is often hindercd by the
past execution history of wansacuons. For example, a
higher priority transaction may have no way to precede
a lower pnionty transacuon in the serialization order
due to previous conflicts. The result is that cither the
lower priority transaction has to be aborted or the high
prionty transaction suffers blocking. If the information
about data requirements and execution ume of each
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ransaction is available beforehand, off-line preanalysis
can be performed to avoid conflicts {Sha90]. This is
exactly what is done in many real-ume task scheduling
protocois. However, such approach may have to delay
the starting of some transactions, even if they have high
priorities, and may reduce the concurrency level in the
system. This, in return, may lead to the violation of the
timing constraints and degrade the system performance
{Son9%0].

What we need is a concurrency control algonthm
that alows transacuons to meet the uming constraints
as much as possible without reducing the concurrency
l2vel of the system in the absence of any a priort infor-
mation [Son89]. The algorithm presented in this paper
features such ability. It has the flavor of both locking
and opumistic methods. Transactions wnte into the
database only afier they are commitied. By using a
priority-dependent locking protocol, the senalizauon
order of active transactions 1s adjusted dynamically,
making it possible for transactons with higher prion-
ties o be executed first so that higher prionty transac-
tions are never blocked by uncommutted lower prionity
transactions, while lower prionity transactions may not
have to be aborted even in face of contlicung opera-
tions. The adjustment of the sc.1alization order can be
viewed as a mechanism to support ume-criucal
scheduling. For example, T, and T, are two uansac-
tions with T having a higher priority. T, wntes a data
object x before 1. reads it. In 2PL, even in the absence
of any other contlicting operations between these two
transactions, T, has to either abort T, or be blocked
until T, releases the write lock. That 1s because the
senalization order T,—T, is already determined by the
past execution history. T can never precede T 1n the
serialization order. In our method, when such contlict
sccurs, the senalization order of the two ransacuons
will be adjusted in favor of Ty, 1.e. T —>T., and nei-
ther is T, blocked nor is T, aborted. In addition, the
locking protocol in the algonthm is free from
deadlocks.

The remainder of this paper is organ.zed as fol-
lows. Tha details of the proposed algomihm are
described in the next section. The transaction <chedul-
ing aspect of the algonthm 1s discussed i Secton 3.
Section 4 presents an informal argument on the Coroct-
ness of the method. Sectuon 3 presents an example o
show how the algornithm works. Finally concluamg

remarks appear in Section 6.

2. The Proposed Algorithm

The environment we assume tor the amyon oo
ton is a single processor with randemly arris:ne - one
sactions. Each transaction 1s assigned an tnunas orora
and a start-timestamp when at1s submutted to the svs-
tem. The initial pnonty can be based on the doadhne
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and the criticality of the wansaction. The start-
timestamp is appended to the initial priority to form the
actual priority that is used in scheduling. When we
refer to the priority of a transaction, we always mean
the acwal prionty with the start-timestamp appended.
Since the start-timestamp is unique, so is the priority of
each transaction. The priority of transactions with the
same initial priority is distnguished by their start-
umestamps.

All transactions that can be scheduled are place
in a ready queue, R_(Q. Only transactions in R_Q are
scheduled for execution. When a transaction is
blocked, it is removed from R_Q. When a transaction
1s unblocked, it is inserted into R_Q again, but may sull
be waiting to be assigned the CPU. A transaction is
said 1o be suspended when it is not executing, but sull
in R_Q. When a transaction is doing [/O operation, it is
blocked. Once 1t completes, it is usually unblocked.
We will discuss the CPU scheduling policy in the next
section.

The execution of cach transaction 1s divided into
three phases: the read phase, the wait phase and the
write phase. This 1s similar to the opumistic methods.
Duning the read phase, a transaction reads from the
database and writes o its local workspace. After it
completes, it waits for its chance to commit in the wait
phase. If it is committed, it switches into the write
phase during which all its updates are made permanent
in the database. A transaction in any of the three phases
is called active. If an active transaction is in the write
phase, then it is committed and writing into the data-
base. The proposed algorithm takes an approach of
integrated schedulers in that it uses 2PL for read-write
conflicts and the Thomas’ Write Rule (TWR) for
write-write conflicts. The following is the outine of a
transaction:

transaction = { thegin(),
read phase;
twait( ),
twrite();

}.
All the procedures will be defined later in this section.

In our algorithm, there are varous data structures
that nced to be read and updated in a consistent
manner. Therefore we use critical sections of various
classes to group the vanious data structures to allow
maximum concurrency.  We also assume that each
assignment statement of global data 1s executed atomi-
cally. The tollowiny are some usetul notauons:

id: id ot this transaction

read_irset:  set of ids of transactions in the read phase

wait_trser.  setot wds of transactions in the wait phase

write trset: sct of 1ds of transactions n the write
phase
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tscnt: final-umestamp count of the system
Is: final-timestamp of this transaction

ts(T): final-umestamp value of transacuon T

priority(T): prionity value of transaction T

rlx]: transaction ¢ reads data object x.

w, [x]: transaction i wntes data object x.

pw; [x]: ransacuon ; prewrites data object x,

rlock(T x): transacton T holds a read lock on data
object x

wiock(Tx): transacuon T holds a wrnite lock on daua
object x

<;: begin cnitical section of class i

> end criucal secuon of class

2.1. Read Phase

The read phase is the normal execution of the
ransaction except that wnite operations are performed
on the private data copies in the local workspace of the
transaction instead of on the data objects in the dawa-
base. We call such write operations prewrite. One
advantage of this prewnte operanon 1s that when a
ransaction is aborted, all that has 1o be done for
recovery is to simply discard the daia in its local
workspace. No rollback is needed because no changes
have been made in the database.

The read-prewrite or prewrite-read conflicts
between active transactions are synchronized during
this phase by a prionty-based locking protocol. Before
a transaction can perform a read (resp. prewrite) opera-
tion on a data object, it must obtain the read (resp.
write) lock on that data object first. If a ransacuon
reads a data object that has been wntten by iself, it
gets the private copy in its own workspace immediately
and no read lock is needed. In the rest of the paper,
when we refer 1o read operations, we exclude such read
operations because they do not incur any dependency
among transactions.

Each lock contains the prionty of the transaction
holding the lock as well as other usual information such
as the lock holder id and the lock type, etc. The lock-
ing protocol is based on the principle that higher prior-
ity transactions should complete before lower prionty
ransactions. That means if two transactions contlict,
the higher priority ransacuon should precede the lower
prionty transaction 1n the senalizauon order. With our
CPU scheduling policy, which will be descnibed in the
next section, a high prionty transacton s scheduled to
commit before a low prionty ransacuon most of the
ume. If a low prionty tansaction does complete betore
a high priority transaction, 1t s required w0 wnt unul it
is sure that its commitment wall not cause the abortion
of a higher prionty transacuon. Since transacuons do
not write into the database dunng the rcad phase,
write-write conflicts need not be considered here.




Suppose active transaction T, has higher priority
than active transaction T,. We have the following four
possibilities of conflict and the transaction dependen-
cies they set in the serialization order:

(1) rrlxl.pwrix] => T,-5T;

T‘ e T2

(delayed reading)
or

rz - T:

(immediate reading)

@) pwrlx].rrlx] =>

(3) rrlx).pwrlx] => T,->T,

T1 g T2

(immediate reading)
or

T: - T{

(delayed reading)

& pwrlx], rrix]  =>

Case (1) meets the principle of completing high priority
transactions before low priority ones. In case (2), fol-
lowing our principle, we should choose delayed read-
ing, i.e. T, should not read x unul T, has committed
and written x in the database. Case (3) violates our
principle. In this case, unless it is already committed,
T, is usually aborted because otherwise T, must com-
mit before T, and thus will block T,. However, if T,
has already finished its work, i.. in the wait phase, we
should avoid aborting it because aborting a transaction
which has completed its work imposes a considerable
penalty on the the system performance. In the mean-
time, we still do not want T, to be blocked by T5.
Therefore when such contlict occurs and T, is in the
wait phase, we do not abort T, until T is committed,
hoping that T, may get a chance to commit before T
commits. In case (4), if T, is already committed and in
the write phase, we should delay T, so that it reads x
after T, writes it. This blocking is not a serious prob-
lem for T, because T, is already in the write phase and
is expected to finish wnting x soon. 7| can read x as
soon as T, finishes writing x in the database, not neces-
sarily after T, completes the whole write phase. There-
fore T, will not be blocked for a long time. Otherwise,
if T, is not committed yet, i.c. cither in the read phase
or in the wait phase, T should read x immediately
because that is in accordance with the principle.

As transactions are  being  executed and
conflicting operations occur, all the information about
the induced dependencies in the scrialization order
needs o be retuned. To do this, we associate with cach
transaction (wo sets, before trset and after_trset, and a
count, before_cnt. The sct before_trset (resp.
after_trset) contains all the active lower priorily Lran-
sactions that must preccde (resp. follow) this transac-
tion in the seralizauon order. hefore_cnt is the number

of the higher priority transactions that precede this tran-
saction in the seralizaton order. When a conflict
occurs between two transactions, their dependency is
set and their values of before_trset, after trsei, and
before_cnt will be changed correspondingly.

By summarizing what we discussed above, we
define the locking protocol as follows:

LP1.  Transaction T requests a read lock on data
object x.

<o< for te (T, \wlock(T,,x) A TizT} do
if (priority (1) > priority (T)
viewrite_trset) /* Case2.4*/
then deny the lock and exit;
endif
enddo
for te (T, |wlock(T, .x) A Ti=T} do
i* Cuse 4 */
if (t € before trsetr) then abort i,
else if (teafter_trsetr)
then
after trsetr ;= after_trsetrw {1};
before_cnt, := before_cnt, + 1,
endif
endif
enddo
grant the lock:
12 0>

LP2.  Transacton T requests a wnle lock on data
object x.

<9<2<3 for te (T, 1rlock(T,.x) AT, 2T} do
if (priority (1) > priority (T) )
then /* Case I */
if (Te after_trset,)
then
after _trset, := after_trset,u (T},
before cnty ;= before cntr + 1;

endif
2> 13>
else
if (te wait_trser) > Cuse3*
then
if (t e ufter _trsetr) then chore:,
else
before trsety .= before ir - _
endif
else if (teread trset)
then abor:t .
endif
endif
endif
grant the lock.
0>
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The critical sections of class 0 guarantee that
lock requests are processed sequentially, probabl by a
lock manager. LP! and LP2 are actually two pro-
cedures of the lock manager that are executed when a
lock i1s requested. When a lock is denied due to a
conflicting lock, the request is suspended untl that
conflicung lock is released. Then the locking protocol
is invoked once again from the very beginning to
decided whether the lock can be granted now. Fig. 1
shows the lock compaubility tables in which the com-
paublities are expressed by possible actions taken when
contlicts occur. The compaubulity depends on the prior-
wes of the transacuons holding and requesting the lock
and the phase of the lock holder as well as the lock
types. Even with the same lock types, different actions
may be taken, depending on the priorities of the lock
holder and the lock requester. Theretfore a table entry
may have more than one blocks retlecung the different
possible acuons.

fock ockheld | lock
requested read aTile

lock heid

requested read umte

read read

wTie WYt

lock requester has lower priority jock requester has higher priority

D lock granted lock requester abored

T3 lock requester blocked B ook nolder aborted

Fig. 1 Lock Compatibility Tuable

Note that a data object may be both read locked
and write locked by several transactions simultancously
with our locking protocol. Unlike 2PL, locks are not
classified simply as sharcd tocks and exclusive locks.
Fig. 2 summanzes the lock compatbility of 2PL with
the High Priority scheme in which high priority tran-
sactions never block for a fock held by a low prionty
transaction {Abb8S8]. By compuring Fig. 1 with Fig. 2,
it is obvious that our locking protocol is much more
flexible, thus tncurs less blocking and abort. Note that
in Fig. 1, the abort of lower prionty transactions in the
wait phase s also included. In our locking protocol, a
high priority transaction 15 never blocked or aborted
due to contlict with un uncommutied lower priority
transacuion. The probability of sberting a lower priority
ransaction should be less than that in 2PL under the
same condiuons. An anaby ucal mode! may be used o
esumate the exact probabihity, but that v heyond the
seope of this paper.

Transactions are released for execution as soon
as they amve. The following procedure 1s executed
when a transaction is started:

tbegin = (
before_trset := &
after_trset := Q&;
before_cnt := 0;
read _trset .= read_trset  (id);
R Q=R Qu(id}:
).

Then the transaction is in the read phase. When it tnes
o read or prewrite 3 data object, it requests the lock.
The lock may be granted or not according o the lock-
ing protocol. Transacuons may be aborted when lock
requests are processed. To abort a transaction, the fol-
lowing procedure is called:

tabort = (
release all locks;
<,for t € after_trset do
before cnt, := before cnt,—1:
if (before_cnt, = 0 At e wart_trset)
then wunblock t.
endif
enddo
2)
if (id € read_trset)
then read_tr<ct := read _trset - {id};
else if (id € write_trset)
then wrire trset ;= write trset - {1d}.
else if ::f € wait trset)
then wait_trset = wait_rset - {id};

endif
endif
endif
).

tock lock held l lock s )
requested requested read wrira

read read

wWhie white

lock requester has lower priority oCk reguester has ugher prioriy

D 'k granted
m ok requester Pl ked
- FOCK Tateler aborted

Fig. 2 Lock Compaubility Tuble ot ZPL




The critical section of class 2 in the procedure also
appears in LP2. This ensures the mutual exclusion on
after_trset. To be precise, mutual exclusion is only
needed between LP2 and the procedure. Transactions
can be in the critical section of the procedure simul-
taneously, because each transaction in the procedure
tabori only access its own after trset.

2.2. Wait Phase

The wait phase allows a transaction to wait until
it can commit. A transaction T can commit only if all
transactions with higher priorities that must precede it
in the serialization order are either committed or
aborted. Since before cnt is the number of such tran-
sactions, 7 can commit only if ils before_cnt becomes
zero. A transaction in the wait phase may be aborted
due to two reasons. The first one is that since T is not
committed vet and still holding all the locks, by the
locking protocol it may be aborted due to a conflicting
lock request by a higher prionty transaction. The
second reason is the commitment of a higher priority
transaction that must follow 7 in the serialization order.
When such a transaction commits, it finds T in
before trset and aborts T. Once a transaction in the
wail phase gets its chance to commit, i.e. its before_cnt
goes o zero, it switches into the write phase and
release all its read locks. A final-umestamp is assigned
to it, which 1s the absolute senalization order. The pro-
cedure is as follows:

twait = (
wait_trset = wait_trset U {id};
read trset :=read trset - {id};
waiting ;= TRUE;
while(waiting) do
< if(before_cnt = 1)  /*if can commit *!
then /* switching into write phase */
wait_trset ;= wait_trset - {id};
write_trset := write_trset U {id};
s ;= tscnt;
tscnt :=tscnt + 1,
for t € before_trset do
if (teread _trset v te wait_trset )
then abort !,

endif
enddo
>
waiting = FALSE
else block:
endif
enddo

release all read locks.
<y for t € dfter_trset do
if (teread trset v tewaut_trset)
then before cnt, .= before_cnt-1:
if ihefore cnt, =0 At e waut _trset)
then unblock t:
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endif
endif
enddo

After a transaction commits, all the transactions
in its before_trset need to be aborted because they must
commit, if they can, before this transaction. The cniti-
cal section of class 1 in the procedure guarantees that
transactions cannot switch into the wnte phase con-
currently, and once a transacuon is committed and
assigned a final-timestamp, no transaction in its
before_trset can commit. Note that LP1 is also in the
critical section of the same class. This achieves mutwal
exclusion on before_cnt and write_trset. The cnitical
section of class 3 in the procedure has the same effect
as that of the cnitical section in the procedure (abort.

2.3. Write Phase

Once a transaction is in the write phase, it is con-
sidered to be committed. All committed wansactions
can be serialized by the final-umestamp order. In the
write phase, the only work of a transaction 1s making
all its updates permanent in the database. Dauw items
are copied from the local workspace into the database.
After each write operation, the cormresponding write
lock is released. The Thomas' Write Rule (TWR) is
applied here. The write requests of each transaction are
sent to the data manager, which carries out the write
operations in the database. Transactions submit write
requests along with their final-timestamps. The write
procedure is as follows:

twrite = (
<4 for xe { x,Iwlock (id.x,) } do
for Te write_irset do
if { wlock(Tx) A ts(T) < tstid) )
then release T s write lock on x;
endif
enddo
send write request on x and wait for
acknowledgement;
4>
if (acknowledgement is vk)
then release the write lock on x.
else abort:
endif
enddo
RQ:=R_Q-(id):
).

The purpose of the cntical section s 1o achieve
mutual exclusion on write locks. For cach data object,
write requests are sent to the data manager only n
ascending timestamp order. After a wnte reguest on
data object x with timestamp 2 15 issued to the Jaw
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manager, no other write request on x with a umestamp
smaller that n will be sent. The write requests are buf-
fered by the data manager. The data manager can work
with the first-come-first-serve policy or always select
the write request with the highest priority to process.
When a new request arrives, if there is another buffered
write request on the same data object, the request with
the smaller imestamp is discarded. Therefore for each
data object there is at most one write request in the
buffer. This, in conjunction with the procedure rwrite,
guarantees TWR.

3. CPU Scheduling

Although the focal point of this paper is on con-
currency control, i.e. operation level scheduling, we
still need to discuss a little about the transaction
scheduling, or CPU scheduling, aspect of our aigo-
rnithm. In non-real-ime dawbase systems, CPU
scheduling is usually done by the underlying operating
systems, because there are no timing constraints. Data
consistency is the only concern. [n real-time database
systems, however, CPU scheduling should tke into
account the umeliness of transactions.

In our protocol, R_Q contains all transactions
that can be scheduled. These transactions can be in any
phase. We need a policy to determine the CPU schedul-
ing priority for transacuons in different phases. Tran-
sactions in their wait phase are those that have finished
their work and are waiting for their chances to commit.
We would like to avoid aborting such transactions as
much as possible. Therefore transactions in this phase
are given higher CPU scheduling priority than those in
the read phase so that they can commit as soon as they
get the chance. Transactions in the read phase are
scheduled according to their assigned priority. If there
are several read phase transactions in the R_Q, the one
with the highest priority is always selected to execute.

For transactions in the wait phase, the lower the
priority is, the higher the CPU scheduling prionty is.
Since low priority transactions are more vulnerable to
conflicts, if there is a chance, they should be commitied
as soon as possible to avoid being aborted later. More-
over, when a high priority transaction Ty 1s committed,
it may have to abort a low priority transaction T, 1if Ty
is in Ty's before_trset. If T, is also ready to commit
and we allow it to commit betore 7y, both T and [y,
can be committed.

4. Correctness of the Algorithm

In tus section, we wive anintormal argument on
the correctness of the algonthm. We will also show
that the algonthm s free trom deadlocks. First, we
give the simple defimtions ot fustorv and serialization
graph (SG). For the tormal detimtions, see [BernB87]. A
history 1s a partual order of opcrations that represents

the execution of a set of transactions. Any two
conflicting operations must be comparable. Let H be a
history. The serialization graph for H, denoted by
SG(H), is a directed graph whose nodes are committed
transactions in A and whose edges are all T, — T, (i=))
such that one of T,’s operations precedes and conflicts
with one of T,’s operations in 4. To prove a history H
serializable, we only have to prove that SG(H) is acy-
clic (Bern87].

Let T, and T, be two committed transacuons in
a history H produced by the algorithm. We argue that
if there is an edge T, =T, in SG(H), then
ts(T) <ts(T,). Since T, - T,, The two must have
conflicting operations. There are three cases.

Case 1: w,[x] - w,[x]

Suppose ts(T;) <ts(T). Therefore T, enters
into the write phase before T'|. If w,[x] is sent
10 the dawa manager first, T3's wnte lock on x
must be released before w, [x] is sent o the daa
manager in twrite(). If wy[x] is sent o the data
manager first, it will either be processed before
w,[x] is sent to the data manager, or be dis-
carded when the data manager receives w,[x],
because w,[x] has a smaller umestamp. There-
fore w,[x] is never processed before wi[x].
Such conflict is impossible. A contradiction.

Case 2:ry[x] — wa[x]

If T, holds write lock on x when T, requests the
read lock, we must have
priority (T} > priority(T,) and T, is not in the
write phase, because otherwise T would have
been  blocked by LPL By LPI,
T, € after_trset(T ). T, will not switch into the
write phase before T does, because before cntr,
cannot be zero with T sull in the read or wait
phase. Therefore ts(T)) <ts(T,). If T, holds
read lock on x when T, requests the wnite lock,
by LP2, we have cither T, € after_trsety, or
T, € before_trsety , depending on the pnontics
of the two wransacuons. In erther case, T. must
commit before I';. Hence we also have
ts(Ty)y<us(Ta).

Case 3w [x] = rax]
Since T, s already in the wnte phase before 1,
reads xowe musthave oIy < istl o,

Suppose there 18 d awle
I >T,—5 - 5T, 5T nSGUN. By the above
argumcnt, we have is(T )y <uselsrv< oo
<ts(T,) <s(T.). This is impossible. Theretore no
cycle can exist in SG(/) and thus the algonthm only
produces senalizable histories.




In the algorithm, a high priority transaction can
be blocked by a low priority transaction only if the low
priority transaction is in the write phase. Suppose there
is a cycle in the waitfor graph (WFG),
T\—o9T;—> -+ »T,>T, ForanyedgeT, - T, in
the cycle, if priority(T,) > priority(T,), T, must be in
the write phase, thus it cannot be blocked by any other
transactions and cannot appear in the cycle. Therefore
we must have prioritv(T,) < priority (T,) and thus
priority(Ty) < priority(T;) < - -+ < priority(T,) <
priority (T1). This i1s impossible. Hence a deadlock can-
not exist

The strictness of the histories preduced by the
algorithm follows obviously trom the fact that a tran-
saction applies the results of uts write operations from
its local workspace into the database only after it com-
mits. This property makes transaction recovery pro-
cedure simpler than non-strict concurrency control
algonthms.

5. An Example

In this section, we give a simple example to
show how the algonthm works. The example is dep-
icted in Fig. 3. A solid line at a low level indicates that
the corresponding transaction is doing I/O operation
due to a page fault or in the write phase. A dotted line
at a low level indicates that the corresponding transac-
tion is either suspended or blocked, and not doing any
I/O operation either. A line raised to a higher level
indicates that the transaction is executing. The absence
of a line indicates that the transaction has not yet
amrived or has already completed.

Ty

14} 1d) pwid| pwid]
71 I l—J [ ................... I I_
fe]  pwid] fd) | 4]
, LT M M
LO S LY U] e} peiel

fy ty LPIRYY

Fig. 3 An Example

There are three transactions in the example. T,
has the highest priority and Iy has the lowest. T,
amives at ime ¢, and reads data object a. This causes a
page fault. After the [/O operation, 1t pre-writes b. Then
T, comes in at ume ¢, and preempts I'3. At ume ¢, it
reads ¢ and causes another page fault. So it is blocked
for the I/O operauon and Ty exccutes. After Ty pre-
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writes d, T, finishes I/O and preempts T again. [t pre-
writes d which is only write locked by T'y. At time ¢4,
T, arrives and preempts T,. T, first reads d. which is
write locked by both T, and T,. Therefore,
before_trsetr, becomes (T,, T3} and both before _cnir,
and before cnitr, become 1. Then T reads b, which is
write locked by T,. Since T; is already 1w
before_trsetr , nothing is changed. Then T, pre-writes
b and pre-writes d. Since these two data objects are not
read locked by any other transactions, the wnte locks
are granted to T direcly. At ume ¢4, T switches into
the write phase. Both before _cntr, and before_cnir, go
back to 0. Now T, should be executed, but it needs 10
read b, which is being write locked by T,; hence T, is
executed instead. It reads ¢, which is read locked by
T,. At ume 5, T, finishes wnting b and releases the
write lock so that T, can preempt T3 10 continue its
work. It reads b, which is wnte locked by T3. Now
before_trsety, becomes (T3} and before_cnir,
becomes 1. After T, pre-writes b, it switches into the
write phase and before_cnir, becomes O again. Then
T3 executes and also switches into wnte phase after
pre-writing c.

In the above example, T, which is supposed to
be the most urgent transaction, finishes first although it
is the last to arrive. 73, which is supposed to be the
least urgent one, is the last one 1o commit. None of the
three transactions need to be aborted. Assume we use
2PL in the above example. When a high priority tran-
saction requests a lock which is held by a low prionty
transaction, we either let the high prionity transaction to
wait or abort the low priority transaction. Suppose we
choose the first altemnative, both T, and T, would be
blocked by T4 because T3 holds a write lock on d. If
we choose the second alternative, Ty will be aborted by
T, when T, pre-writes d and then T, will be aborted
by T, when T, reads d. This example illustrates the
advantage of the proposed method over 2PL.

6. Conclusions

Time-criical scheduling in real-time database
systems consists of two scheduling mechanisms: tan-
saction scheduling and operation scheduling. To find
new concurrency control methods in which uming con-
straints of transactions are taken into account, we have
investigatcd solutions to the operation scheduling
aspect of time-cntical scheduling.

In this paper, a prionty-based concurrency con-
wrol method for real-time database systems 15 presented
which employs a prionity-dependent locking mechan-
ism. It works under the condition that no intormation
about data requirements or execution ume of each tran-
saction is available. By delaying the wnte operauons
of transactions, the restraint of past ransacuon cxecy-
tion on the senalizaton order is relaxed, allowing the
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serizlization order among transactions to be adjusted
dynamically in compliance with transaction timeliness
and criticality. The new algorithm feamres the ability
that allows transactions to meet the timing constraints
as much as possible without reducing the concurrency
level of the system or increasing the restart rate
significantly. In the algorithm, high priority transac-
tions are never blocked by an uncommitted lower prior-
ity transaction, while low priority tansacuons may not
have to be aborted evea in face of conflict with high
priroity transactions. In conjunction with a time-
critical transaction scheduling policy {CPU scheduling
policy) discussed in Section 3, the proposed algonthm
is expected t improve the system performance
significantly.
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1. Introduction

Real-time database systems (RTDBS) are database systems where transactions have timing con-
straints such as deadlines. The correctness of the system depends not only on the logical results but also
on the time within which the results are produced. In RTDBS, transactions must be scheduled in such a
way that they can be completed before their corresponding deadlines expire. For example, both the update
and query in the tracking data for a mission must be processed within given deadlines.

Conventonal database systems are typically not used in real-time applications due 1o poor perfor-
mance and lack of predictability. In other words, paradigms used in conventional database systems are
not suitable in real-time database systems (Son90]. To address this problem. we have been investigating
new database technology and paradigms for real-time systems using both theoretical as well as expen-
mental approaches. They can be grouped into the following research tasks: (1) investigaung new proto-
cols for transaction scheduling, concurrency control, and checkpointing, and (2) developing experimental
database systems that can provide real-time features over conventional relational databases. New schedul-
ing and concurrency control protocols developed in the first task are being implemented in the experimen-
tal database systems and the prototyping environment for performance evaluation.

Our research effort in the area of real-time transaction scheduling has resulted in two new protocols:
one based on locking [Lin90] and the other on timestamp ordering. In the area of experimental database
systems, we have been developing a suile of database systems on several platforms. Currendy, our
research utilizes the UNIX, StarLite {Cook90], and ARTS operating systems [Tok89]. Experimental data-
base systems we have developed on these platforms are the Multi-user Real-time Database (MRDB),
Parallel Real-time Database (PRDB), and Real Time Database (RTDB), respectively [Son91]. All three
systems are based on the relational paradigm. Much of our development consists of implementing new
functionality on the most appropriate platform, and where applicable, porting the result to one of the oth-

ers. In this paper, we outline the scheduling protocol based on timestamp ordering and our experience
with PRDB development.

2. An Optimistic Concurrency Control for Real-Time Transaction Scheduling

In real-time transaction scheduling, the actual execution order of operations is determined by two
factors: prionity order and serialization order among transactions in system. The difficulties in real-time
transaction scheduling arise from the fact that these two factors have different natures and are constructed
in different wavs. While serializable execution order is stricdy bound to the past executon history, the
priority order does not reflect the past execution history and may dynamically destroy the order set up in
the past execution, hence serializability. By identifying the effects of the interactions between senaliza-

tion order and priority order in scheduling real-time transactions, we can build more intelligent conflict
resolution schedulers.

One approach to real-time transaction scheduling is to make the priority order and serialization
order compatible as much as possible in order to increase the probability of satisfying both timing and

This work was supported in part by ONR contract # NOOO14-88-K 0245, by NOSC, and by IBM FSD.
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consistency constraints. One way (0 make the two orders compatible is to adjust serialization order
dynamically to priority order. This approach can be jusufied because serialization order is not subject to
timing constraints as long as it enforces seralizability, while we assume that the prionty order of a tran-
saction is statically determined when it arrives in the system.

Integrating a concurrency control protocol with priority-based scheduling methods has the inherent
disadvantage of being limited by the concurrency control protocol on which it depends. Two-phase lock-
ing and timestamp ordering depend on the immediate validation of operations, and do not provide a facil-
ity to adjust serialization order dynamically to prionty order. To adjust the senalizadon order, we need to
delay determining the serialization order of conilicling operations, because once the serializabon order is
determined, the orders of operations from wansactions cannot be adjusted dynamically.

In optimistic concurrency control in which the senalizability test (called the validasion test) is made
only at the end of a transaction, the senalization order can be constructed dynamically in compliance with
transaction timeliness and criticality. Furthermore, owing to its potenual for a high degree of parallelism,
optimisiic concurrency control is expected to perform better than two-phase locking or timestamp order-
ing in real-time transaction scheduling.

We have developed an optimistic concurrency conuol protocol based on the notion of dynamic
umestamp allocation (Bok87]. In this protocol, the senalizauon order is dynamically constructed by
using intervals of timestamps. The protocol uses a backward validation scheme, in which validaung a
transaction is performed against committed transactions. It also updates the timestamp intervals of active
transactions to adjust their serialization order. As in other optimistic protocols, the execution of a transac-
tion in our protocol is divided into three phases: rcad. validation, and wnte. However, unlike other
optimistic protocols, conflicts and nonserializable executions are detected during the read phase of tran-
saction execution, minimizing wasted work due to later restarts of transactions.

The goal of this protocol is to enforce seralizability by satisfying the following two conditions (C1)
and (C2) through every read. prewrite, and validation. As long as (C1) and (C2) are satisfied, senaliza-
tion order can be adjusted in favor of priority order without violating data consistency.

(C1) Each timestamp interval constructed when a transaction accesses a data object should preserve the

order induced by the umestamps of all committed transactions which have accessed that data
object.

(C1) The order induced by timestamp values of a validating transaction should not destroy the senaliza-
tion order constructed by the past execution, i.e., by committed transactions.

Before describing the algorithms for the read and validation phases, we summarize the information
used to keep track of the dependencies among transactions:

e foreach active transaction 7, its readset, RS (T), and wniteset, WS(T);
e for each committed transaction 7, a timestamp (s (T) assigned in its validation phase:

e foreach active transaction T and for each data object x it has read or written in its read phase. an wnter-
val of timestamps /(T,x); and

e for each dawa object x, RTS(x) and WTS (x), which denote the largest timestamps of the commitied
transacuons having read or wntten x, respectvely.

In order to decide whether a transaction T is involved in a nonsenalizable ¢xecution, all the umes-
tamp intervals of T are grouped as /(T) = ~/(T.x) for X being the set of data objects accessed by T.

e X
1(T) preserves the order between T and committed transactions. Any operation of an active transacuon T
which introduces a nonserializable execution can be detected by checking whether the execution of the
operation results in /(T) = Q.
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In the implementation, with each transaction T is associated its current interval I (T) instead of
{(T.x)'s and { (1. Atthe start of T, [.(T) is initialized as [0, =) (the whole set of allowable umestamps).
For each read or prewrite made by T, /.(T) is adjusted according to dependencies induced by the opera-
tion to satisfy (C1). A transaction T must be restarted when /(T) =Q. The gradual construction of a
serialization order by using /.(T) makes it possible o detect nonserializable executions even before the
transaction reaches its validation phase. Furthermore, every transaction that reaches its validation phase
is guaranteed to commit in this protocol.

We present the protocol via the following pseudo code. We bracket a cntical section by "<” and
*>", and assume that timestamp intervals contain only integers.

Read phase

< for every data object x in RS(T,) do
1AT) = [ (TH)AIWTS (x)+1, o) >
if 1.(T = then restar(T,)

< for every data object x in WS(T,) do
1.(T) = 1 (T)AIWTS (x 1, 00) N[RTS (x)+1, 00) >
if 1.(T,)=O then restar(T,)

Validation and Write phase

< choose &5 (T,) in ! .(T,)
update RTS (x) and WTS (x) forevery x in RS(T,) and WS(T))
adjust [.(T)) >
make its updates permanent in the database

The validation of a transaction means that the execution of the operations from the transaction is
serializable, and the execution should be reflected in the serialization order of committed transactions.
Thus we should choose a timestamp for the transaction to satisfy (C2), update RTS and WTS for data
objects it accessed. if necessary, and adjust the timestamp intervals of all active transactions which

conflict with it to satisfy (C1). Any timestamp tse /.(T,) satisfies the condition (C2). The adjustment pro-
cedure is as the following:

Interval Adjustment Operation

< for every data object x in RS(T,) do
for every transaction T; which has written x do
[.(T) = (T)A\[ts (T, =) >
if 1.(T )= then restan(T))

< for every data object x in WS(7,) do
for every transaction 7, which has read x do
IE(T)) = IC(T])m{O'tS(Tl)-—l)
for every transaction T, which has written x do
1(T)) =1 (T)\ts (T y+1, =) >
if (T, = then restaruT))

The Adjust procedure given above can be modified in several ways to integrate priority scheduling
with this protocol. As a simple approach, we can adjust the size of /.(T,) of an active transaction 7.
Because the size is correlated with the probability of restarting of the transaction, for priority scheduling,
a transaction with higher priority needs to have a larger timestamp interval than a transaction with lower
priority. When adjusting the timestamp intervals of active transactions, if we give larger umestamp
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intervals to transactions with higher priority over transactions with lower priority, then we can decrease
the risk of restarting higher priority transactions. The choice of a imestamp of the validating transaction
also has a definite effect on the active transactions which conflict with it, because the timestamp intervals
of those transactions are adjusted according to the timestamp chosen.

As another approach, the priority wait strategy [Har90] in which the validating transaction waits for
the conflicting transactions with higher priority to complete, can also be used in this protocol. The advan-
tage of this strategy is that a higher priority transaction is not restarted due to the validation of a lower
prionity transaction. While a lower priority transaction is waiting, it is possible that it will be restarted
due to the validaton of one of the conflicting higher priority transactions.

3. A New Parallel Paradigm for Real-Time Database System

One important advance in computing technology is the emergence of parallel computers. In a data-
base system, there are at least two levels in which parallelism can be exploited. The first level contains
the basic database operations. The basic idea behind these algorithms is to partition a single database
operation into multiple sub-operations, perform those sub-operations simultaneously and then combine
the separate results into one. For example, the join operation can be performed in parallel by dividing one
of the two relations into several blocks and joining each block with the other relation simultaneously. As
a large amount of data are usually involved in each database operation, it is essential from a performance

standpoint that accessing the data should be done efficiently. New techniques to organize indices and to
structure data files are needed.

The second level is the query processing level in which different queries can be executed simultane-
ously if they do not conflict. For example, two CREATE operations can be executed in parallel on dif-
ferent processors or the interpretaton of two expressions can be done simultaneously. Here we are only
concemed with parallelism at the second level.

PRDB is an experimentai. real-time database system that runs on an emulated tighty-coupled,
shared-memory multiprocessor system in the StarLite software development environment, running on
UNIX under SunView/X Windows. The overall design goal of PRDB is to provide a general paradigm
for exploring parallelism and implementing different real-time scheduling policies in database systems.
The paradigm has evolved from the WorkCrew model {[Rob89]. The major advantage of the WorkCrew
paradigm is its efficient mechanisms to control and manage parallelism by creating the minimum number
of processes in the system and the employment of a lazy evaluation technique for posted work. The syn-
chronization of concurrent tasks and the overhead of task decomposition are minimized.

In the WorkCrew paradigm, tasks are assigned 1o a finite set of workers. A task may consist of
several subtasks. If some of the subtasks can be executed in parallel, they are put into a "request_help”
queue of the worker. Any idle worker can take over the subtasks and execute them. The WorkCrew para-
digm has two advantages. First, much of the work associated with task division can be deferred unul a
new worker actually undertakes the subtask, and avoided altogether if the original worker ends up execut-

ing the subtask serially. Second, the number of active workers in the system is always equal to the
number of processors.

However, the WorkCrew paradigm has two limitations that prevent it from becoming a general
framework for parallel computing. The first limitation is that there is no general mechanism to retrieve
results. In the WorkCrew model, the results of operations are reflected in the preallocated space. If opera-
tions produce some new results apart from the results stored in preallocated space, which is usually the
case for most of the applications, there is no way to retrieve those results. The second limitation is that
there is no way to specify different operations to be performed on data, i.e., the procedure to manipulate a
set of data cannot be explicitly passed to each worker so that the worker can perform different operations.
Further, the WorkCrew model does not address the real-time requirements of the application.

In our paradigm, the first limitation is addressed by providing a result queue for the crew. The
second limitation is dealt with by passing the handler for operations as a parameter to each worker. These
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improvements require the extension of the concept of work. The concept of work in the WorkCrew para-
digm is a passive entity and consists only of the data items to be manipulated. In the PRDB paradigm, the
concept of work is still a passive entity, however, the contents of work not only consist of data items to be
manipulated, but also the operation to be performed on the data items and the timing-constraint informa-
tion for the work 1o be performed.

The real-time transaction scheduler and the CPU schedulers (called dispaichers) are separated. The
real-time transaction scheduler is implemented by the crew, while the dispatcher is implemented within
each worker. The real-time transaction scheduler schedules tasks according to its own policies and puts
them onto two work queues residing on the crew. One of these two queues is for hard deadline tasks and
the other is for soft deadline tasks. Since each worker has also its own “request_help” queue, the search
path of work to do by an idle worker begins with the hard-deadline queue of the crew, then the
"request_help” queues of the workers, and finally the soft deadline queue of the crew. If the deadline has
passed. the workers immediately write the result into the result queue indicating the missing of a dead-
line. Otherwise, the work is performed and results are retumed through the result queue. In the case where
a worker has to synchronize with other workers in performing a task, the worker blocks and a new worker
is created to help the other workers’ work. Thus, the number of the active workers is always equal to that
of the processors in the system, if the work load is high.

The data structures of a unit of work and a unit of result are as follows:

WORK = RECORD
critical : CARDINAL,; (* hard vs soft deadline *)
deadline : Time; (* the deadline is checked before executing the operation *)
operation : PROCEDURE; (* specifying the operation *)
paramAddr: ADDRESS: (* pointer (0 the work to be done *)
size : CARDINAL; (* the size of the work dafa structure *)
END;
RESULT = RECORD
missDeadline : BOOLEAN; (* missed deadline? *)
finishTime : Time: (* the finished time of a unit of work *)
resultAddr : ADDRESS; (* pointer to the result data structure *)

size : CARDINAL; (* the size of the result data structure *)
END;

The major functions provided by the paradigm are starting a crew of workers, destroying a crew of
workers, modifying the number of workers in a crew, assigning work 10 a crew, requesting help by a
worker, testing whether the requested work has been done by other workers, and waiung for some work to
be finished.

Each basic database operation is written by using the functions provided above if some pant of the
basic database operation can be done in parallel. [nitial results have indicated the soundness of the para-
digm for parallel real-time database computing. More thorough experiments are being carmed out. We
believe that this new paradigm will scale well to large number of processors in the system and will be
efficient in scheduling real-time transactions.

The data given below are the relative speedups of PRDB over the RDB system. The workload for
the experiments is the same for the uniprocessor which runs the RDB system and the multiprocessor sys-
tem which runs PRDB. The first experiment (Testi) consists of 26 "Create” operations and 22 "Insert”
operations. Each "Insent” operation inserts 15 tuples in a different refation with three attnbutes each.
Other experiments (Tests 2 and 3) consist of the same operations as Testl, however, each "Insen” opera-
tion in Test2 inserts 25 tuples, while each "Insent” operation in Test3 consists of 50 Tuples. The results
show that PRDB favors coarse-grained parallelism in the computation.
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‘ 1 > | 3 | 4 5 i
Testl Time Units 4613 3704 3074 | 2593 | 2515 | 2447
Speedup 1.24 1.50 1.77 1.83 1.88
Test2 Time Units 9046 5761 4170 | 3471 3120 | 2904
Speedup 1.57 2.16 2.60 2.39 311
Test3 Time Units 26198 14276 | 3878 | 7813 | 6752 | 5841
Speedup 1.83 2.65 335 | 387 4.48

4. Concluding Remarks

A real-time database manager is one of the critical components of a real-time system. To satisfy
timing requirement, transactions must be scheduled considering not only the consistency constraints but
also their timing constraints. In addition, the system should support a predictable behavior such that the
possibility of missing deadlines of critical tasks could be informed ahead of time. before their deadlines
expire. In this paper, we have presented new paradigms that exploit the ideas of dynamic adjustment of
serialization order and parallel computing. We are currently working on the performance evaluation of
new paradigms using the prototyping environment as well as experimental database systems.
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Abstract

Compared with traditional databases, database
systems for time-critical applications have the distinct
feature that they must satisfy timing constraints associ-
ated with transactions. Transactions in real-time data-
base systems should be scheduled considering both
data consistency and timing constraints. Since a data-
base system must operate in the context of available
operating system services, an environment for database
systems development must provide facilities to support
operating system functions and integrate them with
database systems for experimentation. We chose the
ARTS real-time operating system kemel. In this paper,
we present our experience in integrating a relational
database manager with a real-time operating system
kemel, and our attempts at providing flexible control
for concumrent transaction management. Current
research issues involving the development of a pro-
gramming interface and our efforts in using these tech-
niques in implementing a specific experimental appli-
cation are also discussed.

1. Introduction

Real-time computing is an open research area
[Stan88]. The growing importance of real-time com-
puting in a large number of anplications, such as
aerospace and defense systems, industrial automation
and robotics, and nuclear power plants, has resulted in
an increased research cffort in this arca. Recent
workshops have pointed to the nced for basic rescarch
in database systems that satisfy timing constraints in
collecting, updating, and retrieving shared data, since
traditional data models and databases are not adequate
for real-time systems [IEEES0, ONR90]. Very few

This work was supponied in part by ONR under contract
NOOO14 88-K-0245, by the Naval Ocean Systems Center, and by
IBM Federal Systems Division.

conventional database systems allow users to specify
timing constraints or ensure that the system meets those
set by the user. Interest in this new application domain
is also growing in the database community. Recently, a
number of research results have appeared in the litera-
ture [Abb89, BucB9, Kor9(, Lin90, Sha88, Shadl,
Son88, Son89, Son90].

Time is the key factor to be considered in real-
time database systems, and the correctness of the sys-
tem depends not only on the logical results but also on
the time within which the results are produced. Tran-
sactions must be scheduled in such a way that they can
be completed before their corresponding deadlines
expire. For example, both the update and query on the
tracking data for a missile must be processed within
given deadlines, satisfying not only database con-
sistency constraints but also timing constraints.

Conventional database systems are typically not
used in real-time applications due to the inadequacies
of poor performance and lack of predictability. Current
database systems do not schedule their transactions to
meet response requirements and they commonly lock
data tables to assure only the consistency of the data-
base. Locks and time-driven scheduling are basically
incompatible, resulting in response requirement failures
when low priority transactions block higher priority
transactions. New techniques are required to manage
the consistency of real- ime databases, and they should
be compatible with time-driven scheduling and meet
both the required system response predictability and
temporal consistency.

To address the inadequacics of current database
systems, the transaction scheduler needs to be able to
take advantage of the semantic and timing information
associated with data objects and wansactions. A model
of real-time transactions necds to be developed which
characterizes distinctive features of rcal-ime databases
that can contribuie to the improved responsivencss of
the system, The semantic information of the transac-
tions investigated in the modcling study can be used to
develop efficient  transaction  schedulers  [Son90b,




Son91].

A database system must operate in the context of
available operating system services, because correct
unctioning and timing behavior of database control
algorithms depend on the services of the underlying
operating system. As pointed out by Stonebraker,
operating system services in many sysltems are not
appropriate for support of database functions [Ston81].
In many areas, such as buffer management, recovery,
and consistency control, operating system facilities
have to b+ duplicated by database systems because they
are too slow or inappropriate. An environment for
database systems development must, therefore, provide
facilities to support operating system functions and
integrate them with database systems for experimenta-
tion.

The ARTS real-time operating system kemel,
under development at Camegie-Mellon University,
auempts to provide a "predictable, analyzable, and reli-
able distributed real-time computing environment"
which is an excellent foundation for a real-time data-
base system [Tok89]. The ARTS system, which pro-
vides support for programs written in C and C++,
implements different prioritized and non-prioritized
scheduling algorithms and prioritized message passing
as well as supporting lightweight tasks. All of these
features are important when considering a real-time
database.

Our research effort resulted in a new relational
database manager for distributed real-time systems.
We have used the relational database technology since
it provides the most flexible means of accessing distri-
buted data. In this paper, we present our experience in
integrating a relational database manager with a real-
time operating system kernel, and our attempts at pro-
viding flexible control for concurrent transaction
management using a technique called workload media-
tion. Current research issues involving the develop-
ment of a programming interface, associated issues of
client/server object development which can be
simplified through the use of templates, and our efforts
in using these techniques in implementing a specific
experimental application are also discussed.

2. The ARTS Real-Time OS Kernel

Research in the area of distributed, real-time
operating systems indicates that most are designed for a
specific need, and as such arc difficult to build, main-
tain, and modify; in addition, they do not afford the
capability of predicting runtime bchavior during appli-
cation design. In fact, few non-real-time operating sys-
tems provide a functionally complete set of general
purpose, rcal-time task and time management func-
tions, despite the fact that the user community is
expressing the desire for increasingly complex

applications of this type. Since the success of applica-
tions in real-time computing is primarily contingent on
a system’s temporal functionality, what is needed is an
environment in which the system engineer can analyze
and predict, during the design stage, whether the given
real-time tasks having various types of system and task
interactions (i.e. memory allocation/deallocation, mes-
sage communications, I/O interactions, etc.) can meet
their timing requirements.

In an attempt to provide such functionality,
ARTS provides the process and data encapsulation that
other distributed, object-oriented operating systems do,
while at the same time including elements of temporal
significance to the services it provides. This integration
of data, thread and concurrency controi greatly facili-
tates real-time schedulability analysis. The ARTS can
support both hard and soft rcal-time tasks as well as
periodic and sporadic ones [Tok89].

To support time-critical operations, the ARTS
programming language interface allows designers to
specify timing requirements and the chosen communi-
cation structure so that they are visible at both the
language and system level; this allows the system-wide
ARTS environment to make scheduling decisions
based on both temporal constraints and priority. The
Integrated Time-Driven Scheduler (ITDS) model of the
ARTS is more effective than the common priority-
based preemptive scheduling of many real-time sys-
tems. Such simple schedulers become confused during
heavy system loads when they cannot decide which
tasks are important and should be completed and which
tasks should be aborted, causing unpredictability in the
applications. The ITDS model however, employs a
time-varying "value function” which specifies both a
task’s time criticality and semantic importance simul-
taneously. A hard real-time task can be characterized
by a step function where the discontinuity occurs at the
deadline, while soft real-time tasks are described by
continuous (lincar or non-linear) decreasing function
after its critical time. In addition, ARTS’ designers
have separated the policy and mechanism layers, so
that users can implement new scheduling policies with
a minimum of effort, even dynamically changing the
policy during runtime.

The issue of priority inversion is crucial to pro-
viding semantically correct system behavior in addition
to addressing temporal concems. Priority inversion
occurs when a high priority activity waits for a lower
priority activity to complcte. Resource sharing and
communication among the exccuting tasks can lcad to
priority inversion if the operating system does not
manage the available resource set properly. Significant
rescarch in the construction of ARTS was done to
avoid priority inversion among concurrently executing
tasks; in the processor scheduling domain. low prionity




servers which provide service 1o clients of all priorities
are susceptible to inversion. For example, when a low
priority request is being serviced, a high priority task
requests the same service; since the server’s computa-
tion is non-preemptable, the high priority request waits.
Any task of higher priority than the server may
preempt the server itself, however, so if a medium
priority task arrives it preempts the server indefinitely,
causing the high priority job to be lost in the shuffle.
The ARTS employs a priority inheritance mechanism
to propagate information about a single computation
which crosses task boundarics. That is, if a server task
accepts the request of a client, the server inherits the
prionity of the client. Furthermore, the server should
also inherit the priority of the highest priority task wait-
ing for the service.

The notion of time encapsulation cannot be
divorced from the basic structure of ARTS, in which
every computational entity is represented as an object,
called an artobject. An artobject is defined as either a
passive or an active object. In a passive object, there is
no explicit declaration of a thread which accepts
incoming invocation requests while an active object
contains one or more threads defined by the user. In an
active object, its designer is responsible for providing
concurrency control among coexecuting operations.
When a new instance of an active object is created, its
root thread will be created and run immediately. A
thread can create threads within its object.

The ARTS kemel supports the notion of real-
time objects and real-time threads. A real-time object
is defined with a "time fence," a timer associated with
the thread which ensures that the remaining slack time
is larger than the worst case execution time for the
operation. A real-time thread can have a value function
and timing constraints related to its execution period,
worst case execution time, phase, and delay value.
When an operation with a time fence is invoked, the
operation will be executed (or accepted) if there is
enough remaining computation time against the
specified worst case execution time of the operation for
the caller. Otherwise, it will be aborted as a time fence
crror. The objective of this extension 10 a normal object
paradigm is to prevent timing errors from crossing task
or module boundarics (as often happens in traditional
rcal-time systems which use a cyclic executive) and
bind the timing error at every object invocation.

On top of the ARTS foundation we have built a
rclational databasc manager using message passing
primitives and cmploying the client/server paradigm.
The result, RTDB, currently consists of a muli-
threaded server which accepts requests of scveral
clients. Based on the temporal urgency of the request,
the server determines whether it can commit the tran-
saction or it has to rcject it.

3. Comparison with Existing Systems

One of the principal goals of the ARTS project is
to provide a more casily extensible real-time environ-
ment than is currently enjoyed by programmers
developing on other kemels. To that end, ARTS
requires better data management facilitics than many
other kernels offecr. The RTDB on ARTS represents a
combination of desirable aspects of database technol-
ogy and development flexibility. In comparing the
RTDB with other existing systems, we note some
differences between it and both rescarch and commer-
cial products. For example, the CASE-DB is
developed as a single-user, disk-based, real-time rela-
tional DBMS, which uses the relational algebra as its
query language (Ozs090]. RTDB diverges from this
design philosophy in many ways, being a mulu-user,
distributed real-ume DBMS.

Supported media types also differ among real-
time environments. The HP-RTDB, one of Hewleut
Packard’s Industrial Precision Tools, provides software
application developers with a tool to structure and
access memory-resident data [Fate89]. Essentially,
HP-RTDB is a library of routines used to define and
manipulate a database schema, build the database in
memory, as well as load and unload, and write or read
data to and from it. They also provide mechanisms for
archiving schema and data, and storing timestamp
information. The ARTS-RTDB provides a three tiered
approach for supported media types, offering memory-
resident data options, RAM-based disk storage, and
access to the UNIX file system for disk storage. Each
media has its own advantage. and drawbacks in terms
of compatibility, performance, and rccoverability.
Naturally, access times decrease along this continuum.
This support of various media types provides develop-
ers the flexibility to choose appropriatcly those that
best suit their needs. Also, we provide the ability to
cross the boundaries between these media, and to util-
ize several media types in an individual query for both
the source and resultant relations.

4. The RTDB Real-Time Database Manager

The RTDB is a rclational database manager wnit-
ten in C designed to run on ARTS. It offers not only a
functionally complete set of relational operators— such
as join, projection, selection, union. and  set
difference— but also other necessary operators as
create, insert, update, delete, rename, cempress, sort,
extract, import, export, and pant. These operators give
the user a good amount of relattonal power and con-
venience in managing the database.

We have developed two different kinds of clicnts
for the RTDB. Onc is an interacive command
parser/request generator that makes requests 10 the
server on behalf of the user. This client looks and
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Figure 1. Mediator object model

behaves similarly to a single-user database manager. It
is possible to run the client without knowing that any
interaction between server and client is occurring. The
other client is a transaction-generating "batch” client,
representing a real-time process that needs to make
database access requests.

The RTDB server object is the heart of the data-
base management system., It is responsible for creating
and storing the relations, receiving and acting on
requests from multiple clients, and returning desired
information to the clients.

The server object defines three threads. The root
thread is automatically executed by ARTS upon invo-
cation of the server. The server activates one or more
worker threads, and activates a backup thread which is
responsible for periodically backing up the relations
that reside only in main memory.

The root thread of the server is responsible for
binding the server’s name in the ARTS name scrver so
that the clients can find it and send requests. It is also
responsible for reading the relations into memory, ini-
tializing the lock table, initializing the blocked request

queue, instantiating the backup thread, and instantiating
the server worker threads. There is at least one server
worker created for each thread priority. After complet-
ing these tasks, the root thread enters an infinite loop
that accepts database requests from any client. The
requests come in as packets. The RTDB provides two
different types of packets: call packets and return pack-
ets. The call packet, created by a client, contains all the
information that the server needs to carry out the
desired database access operation. Since different com-
mands require different information, the call packet has
a variant ficld containing different information for cach
command. When the server completes the processing
of the request, it returns a packet to the client with the
information requested. This packet is called a return
packet. The retumn packet is created by the server and
also has a variant ficld that carmes command specific
information.

The communication between the server and
clients is performed by the ARTS communication
primitives: Request, Accept, and Reply. The commun-
ication is synchronous; when a client issues a Request,
it is blocked unuil the server Accepts and Replics 1o the




message. This may cause some problems, especially in
a real-time environment, for two reasons: priority
inversion and data sharing.

The ARTS kemel (and thus the RTDB system)
supports eight message priorities. When the root thread
Accepts a message, it extracts priority information
from the message packet. The root thread then
enqucues the request on the message queue (i.e. pend-
ing request queue) of the worker thread designated to
service requests of that priority level. If inactive, the
server worker will be polling its queue; if active, the
requests will be processed in FIFO order. Note that in
this way we can easily exploit the scheduling merits of
the underlying ARTS kemnel without circumventing its
priority-bascd scheduling mechanisms. Since the
worker thread’s priority matches that of the messages it
services, it will only be scheduled for the CPU in an
interval where its priority is currently the highest in the
system. This is for a general case. For those instances
where the scheduling technique is not priority based, or
ARTS priority inheritance mechanism is employed,
these decisions will naturally be reflected in the work-
ers.

This technique of distributing requests among a
pool of workers based on information contained in the
request packet is called workload mediation. It is
intrinsic in implementing various algorithms which
deal with semantic information provided by the clients
and/or the task requests (i.e. temporal issues, priorities,
etc.). Determining the proper balance of control
between ARTS primitives and RTDB explicit media-
tion will help us achieve the most beneficial symbiosis
of the system’s resources, which is one of the goals of
our research. Figure 1 illustrates the mediator mechan-
ism incorporated within the server object.

The worker thread of the RTDB server performs
the client’s request to access the database. It checks its
request message queue, carries out the work that is
requested, and replies back to the client. The worker
Replies to a client without completing a request when it
nceds to return more information than can fit in a single
packet. In such a case, the client must make continua-
tion requests to the server until it gets all the informa-
tion requested.

To maintain the consistency of the database, the
RTDB server needs to handle conflicting requests prop-
crly. For example, a problem occurs when some
request or part of a request (as in a multi-relational
query) has to be blocked since it needs to lock a rela-
tion that is already locked. Our solution to this prob-
lem is to use a lock table that keeps track of which rela-
tions arc in usc at any given time. If a request for file A
comes in while file A is being used by another active
worker, then the new request must be put on an intemnal
qucuc until A and any other files it needs are available.

Whenever the worker becomes free, it first
checks its queue of blocked requests. If there are any
requests in the block queue that can be unblocked, it
dequeues the request and processes it. If no request in
the block queue is ready to be processed, the worker
looks to its incoming request queue.

5. Programming Interfaces

Conventional database systems often provide
some interface through which they export functionality
to application developers. Such programming inter-
faces simplify storage and retrieval tasks and provide a
scheme for the creation, manipulation and destruction
of database files. For systems utilizing the client-server
paradigm, communication primitives can also be
accessed through such an interface, achieving further
hiding of the implementation details.

To facilitate the construction of application
clients, we seck to provide a programming interface for
the database command set which hides the implementa-
tion details of the system as much as possible. In this
way, developers who are more familiar with function-
call interfaces (e.g. SQL) can quickly adjust to the task
of constructing custom application clients rather than
application programs. Programming interfaces in real-
time databases differ greatly in terms of application-
developer friendliness. Some DBMS interfaces are
tightly coupled to theoretical techniques such as the
relational algebra. CASE-DB [Ozs090] s an cxample
of this type of interface. While this interface satisfies
the desired functionality requirements for a database, it
can be awkward to use when developing large, com-
plex applications. For these applications, it is more
appropriate to use an interface similar to those already
in use in non-real-time systems. These application pro-
gram interfaces consist of library functions.

In designing the programming interface for
RTDB, in addition to providing routines as in other
relational databases, we seck to hide the details of
ARTS' Request/Accept/Reply  message  passing
sequence. This allows interaction between client and
server 10 appear as if the application client were the
only one intcracting with the server. This goal is only
partially attainable, since the physical code provided by
the application developer must coexist in the same
source code file as code which specities constants and
declarations necessary to construct the complete chient
image. To expedite the development process, we pro-
vide a thoroughly commented, standardized client tem-
plate with which developers necd only combine their
source and compile.

6. DOSE: An Application of the RTDB

Onc of the applications of the RTDB is the Dis-
tributed Operating System Experiment (DOSE), as




presented in {Butt90]. The goal of DOSE is to evaluate
the feasibility of using a database kemel in embedded
systems with requirements for high performance and
real-time priority and predictability guarantees.

The DOSE application consists of data input,
storage, display, and retrieval functions. These func-
tions are implemented by four components: parser
manager (PM), track report manager (TRM), graphics
map client (GMC), and database monitor client (DMC).
Figure 2 illustrates the information flow among objects
in the DOSE experiment.

The PM receives tracking data from data termi-
nals or communication links and converts them into a
useful format such as floating point and signed integer
numbers. The PM does not retain any incoming or out-
going information. The parsed data coming out from
the PM are stored by the TRM. For each new incoming
tracking data, a new data object is created. For high
reliability, TRM maintains replicated data objects. The
GMC enables the data to be mapped out and visualized
on screen. It periodically checks with the TRM for the
latest updates to be displayed. The DMC monitors the
data objects in each replicated TRM database. Using
frequent updates, it guarantees that data would remain
consistent across the replicated TRM databases.

Without DMC, the survivability and consistency of the
system would be weakened.

The scenario used with the DOSE application is
an outer air battle scenario generated by IBGTT, the
Interim Battle Group Tactical Trainer. The data gen-
erated by IBGTT consists of coordinate and motion
data as well as general military classifications of
tracked objects, called platforms. This data can be
used to plot tactical information for a variety of situa-
tions, including personnel training programs, strategic
simulations, and real-time military surveillance. Table
1 shows the attributes of data objects used in the DOSE
application.

Since some of the fields above are basically used
as categorical designators, or flags, they can be used in
simple boolean subqueries (¢.g., "where clauses” in the
RTDB syntax). For example, an "H" value for attribute
cat indicates a hostile platform; an "F", a friendly plat-
form. A "Y" value for attribute nuclear indicates a
confirmed nuclear platform; a "N” value is a confirmed
non-nuclear platform, and "U" is unknown. For exam-
ple, a query which seeks to determine all the attributes
of the friendly nuclear platforms may look as follows:

binary parsed
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Figure 2. Information flow among objects in the DOSE experiment

IR BER SN NN W 0% S N BN S S Sy N g Un W N SN e




-

L Attribute Name Type Meaning
rk_num integer track number
lat_track real latitude of track
long_track real longitude of track
bearing real bearing from data link reference point
dep_high real depth or height of platform
lat_dlrp srai latitude of data link reference point
long_dirp real longitude of data link reference point
platform_type char type of platfcim
cat char category of platform
ime integer greenwich mean time
rkqa integer confidence of measurements
lat_tdir char latitude direction
long_wdir char longitude direction
course real bearing minus data link reference point
speed real speed of platform
range real range from data link reference point in nautical miles
nuclear char nuclear classification of platform

Table 1. Data object attributes in the DOSE application

RTDB ==> print * from trackfile
where cat = "F" and nuclear = "Y";

A query to display information on all platforms
in a certain track might look like this:

RTDB ==> print lattrk, longtrk, bearing,
nuclear from trktablel where wrk =4741;

In implementing the TRM and DMC using the
RTDB, the original DOSE tracking data has been
decomposed into several track files of similar data. Al
commands currently supported by the RTDB have been
tested on the trackfile data.

Modifications to carlier versions of RTDB have
been made to support attribute type REAL which is
identical to the floating point type of DOSE applica-
tion, and to support aggregate operators such as SUM,
COUNT, MIN, MAX, and AVG. Although not
specifically delincated in the queries proposed in the
DOSE application, the addition of aggregaies scems
important for the type of querics expected for the appli-
cation. For example, the system may be called to repont
a COUNT of all hostile, nuclear, air platforms, or the
bearing and speed of the hostile platform with MIN
range.

Temporal database components are being inves-
tigated for inclusion in the RTDB for DOSE applica-
tion. They will address the desired timestamping of sur-
veillance updates generated by radar, sonar, or similar
equipments, and temporal consistency requirements of

real-time transactions. Other potential improvements
in efficient implementation are being examined to
determine their overall value to the RTDB system.
Indices and views are two of them. Since such features
not only alter the speed and predictability of the system
but also the basic file structure, they need to be exam-
ined closely on their own, and then as new elements
within the existing system.

7. Conclusions

A real-time database manager is one of the criti-
cal components of real-time systems, in which tasks are
associated with deadlines and a significant portion of
data is highly perishable in the sense that it has value to
the mission only if used quickly. To satisfy the timing
requirements, transactions must be scheduled consider-
ing not only the consistency constraints but also their
timing constraints. In addition, the system should sup-
port a predictable behavior such that the possibility of
missing deadlines of critical tasks could be informed
ahead of time, before their deadlines expire.

In this paper, we have presented an expenmental
relational database manager developed for distnbuted
rcal-time systems. Since the charactensucs of a real-
time database manager are distinct from convenuonal
database managers, there are different kinds of issues
1o be considered in developing a real-ume database
manager. For cxample, priority-based scheduling and
memory resident data have been invesugated in the
development of the RTDB.




The foundation now exists for a real-time rela-
tional database manager. However, as with any active
research project, there are many technical issues asso-
ciated with real-time database systems that need further
investigation. It is our goal to facilitate further develop-
ment in this area, as well as with our RTDB. To that
end, we have discussed our work toward providing a
flexible programming interface and standard client tem-
plate to allow quick prototyping and faster modeling.
The RTDB described in this paper with its mulu-
threaded server model, is an appropnate research vehi-
cle for investigating new technmiques and scheduling
algorithms for distributed real-time database systems.
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ABSTRACT

Real-time database systems must maintain consistency whilc minimizing the number of transactions
that miss the deadline. To satisfy both the consistency and real-time constraints, there is the need to
integrate synchronization protocols with real-time priority scheduling protocols. One of the reasons for
the difficulty in developing and evaluating database synchronization techniques is that it takes a long time
to develop a system, and evaluation is complicated because it involves a large number of system parame-
ters that may change dynamically. This paper describes an environment for investigating distributed real-
time database systems. The environment is based on concurrent programming kernel which supports the
creation, blocking, and termination of processes, as well as scheduling and inter-process communication.
The contribution of the paper is the introduction of a new approach 10 system development that utilizes a
module library of reusable components to satisfy three major goals: modularity, flexibility, and extensi-
bility. In addition, experiments of real-time concurrency control techniques are presented to illustrate the

effectiveness of the environment.

Index Terms - distributed database, prototyping, synchronization, transaction, rcal-time
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1. Introduction

In this paper, we report our experiences with a new approach to integrated development and evalua-
tion of real-time distributed database systems, and present experimental results of various real-time syn-
chronization techniques. The goal of the project is to test the hypothesis that a host environment can be
used 10 significantly accelerate the rate at which we can perform experiments in the areas of operating
systems, databases, and network protocols for real-time systems. A tool for developing components of
real-time distributed systems and integrating them to evaluate design altematives is essential for the
advance of real-time computing technology. To the best of our knowledge, this is the first successful
attempt to develop such a tool as an environment consisting of a hybrid of actual implementation and

simulation.

As computers are becoining essential part of real-time systems, real-time computing is emerging as
an important discipline in computer science and engineering {Shin87]. The growing importance of real-
time computing in a large number of applications, such as aerospace and defense systems, industrial auto-
mation, and nuclear reactor control, has resulted in an increased research effort in this area. Researchers
working on developing real-time systems based on distributed system architecture have found out that
database managers are assuming much greater importance in real-time systems. In the recent workshops
developers of "real" real-time systems pointed to the need for basic research in database systems that
satisfy timing constraint requirements in collecting, updating, and retrieving shared data {IEEE9Q,
ONR90]. Further evidence of its importance is the recent growth of research in this field and the
announcements by some vendors of database products that include features achieving high availability

and predictability {Son88).

In addition to providing relational access capabilities, distnibuted real-time database systems offer a
mcans of loosely coupling software processcs; therefore, making it easier to rapidly update software, at
least from a functional perspective. However, with respect to time-driven scheduling and system timing

predictability, they present new problems. One of the characteristics of current database managers is that




they do not schedule their transactions to meet response requirements and they commonly lock data tables
indiscriminately to assure database consistency. Locks and time-driven scheduling are basically incompa-
tible. Low priority transactions can and will block higher priority transactions leading to response require-
ment failures. New techniques are required to manage database consistency which are compatible with
time-driven scheduling and the essential system response predictability/analyzability it brings. One of the
primary reasons for the difficulty in successfully developing and evaluating new database techniques is
that it takes a long time to develop a system, and evaluation is complicated because it involves a large

number of system parameters that may change dynamicaily.

A prototyping technique can be applied effectively to the evaluation of database techniques for dis-
tributed real-time systems. In this paper. we report our experiences with a new database prototyping
environment. It is constructed to support rescarch in distributed database and operating system technol-
ogy for real-time applications. A database prototyping environment is a software package that supports
the investigation of the propertics of database techniques in an environment other than that of the target
database system. The advantages of an cnvironment that provides prototyping capability are obvious.
First, it is cost effective. If experiments for a twenty-node distributed database system can be executed in
a software environment, it is not nccessary to purchase a twenty-node distributed system, reducing the
cost of evaluating design alternatives. Second, design alternatives can be evaluated in a uniform environ-
ment with the same system parameters, making a fair comparison. Finally, as technology changes, the

environment need only be updated to provide researchers with the ability to perform new experiments.

A prototyping environment can reduce the time of evaluating new technologies and design altema-
tives. From our past experience, we assume that a relatively small portion of a typical database system's
code is affected by changes in specific control mechanisms, while the majority of code dcals with intnin-
sic problems, such as file management. Thus, by properly isolating technology-dependent portions of a
database system using modular programming techniques, we can implement and evaluate design alterna-
tives very rapidly. In addition, a prototyping environment provides a friendlier development environment

than a target hardware system. The bare machine cnvironment is the worst possible place ir which to
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explore new software concepts. For example, even the recovery of the event history leading up to an
error in a distributed system can be a difficult and, in some cases, an impossible task. Debugging is
greatly facilitated in a prototyping environment. The symbolic debugger of our environment supports the
examination of an arbitrary number of execution threads. As a result, the state of a distributed computa-

tion can be examined as a whole.

Although there exist tools for system development and analysis, few prototyping tools exist for dis-
tributed database experimentation, especially for distributed real-time database systems. Recently, simu-
lators have been developed for investigating performance of several concurrency control algorithms for
real-time applications [Abb88, Abb89, Raj89). However, they do not provide a module hierarchy com-
posed from reusable components as in our prototyping environment. Software developed in our prototyp-
ing environment will execute in a given target machine without modification of any layer except the
hardware interface. In addition, since our environment is a hybrid of prototyping and simulation (i.e.,
partially implemented and partially simulated), we can capture important timing features of the system,

while it is very hard using simulation only.

A database system must operate in the context of available operating system services. In other
words, database operations need to be coherent with the operating system, because correct functioning
and timing behavior of database control algorithms depend on the services of the underlying operating
system. Unless you have a control over the operating system, investigating timing behavior of a database
system does not provide much information. An environment for database systems development must,
therefore, provide facilities to support operating system functions and integrate them with database sys-

tems for experimentation.

Another important use of a prototyping cnvironment is to analyze the reliability of database control
mechanisms and techniques. Since distributed systems are expected to work correctly under various
failure situations, the behavior of distributed database systems in degraded circumstances needs to be well

understood. Although new approaches for synchronization and checkpointing for distributed databases
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have been developed recently [Liu87, Kor90, Lin90, Son89, Son90], experimentation to verify their pro-

perties and to evaluate their performance has not been performed due to the lack of appropriate test tools.

When developing a database system, functional completeness and performance of the system are of
primary concem. The resulting systems are often not layered or modular in their implementation. How-
ever, for experimentation, a layered implementation approach facilitates the rapid evaluation of new tech-
niques. Such a facility improves significantdy the capability of the system designer in comparing design
altematives in a uniform environment. In this regard, the concept of developing a methodology for lay-
ercd implementation of the system and building a library of modules with different
performance/reliability characteristics for operating system and database system functions seems promis-

ing. The prototyping environment we have developed follows this approach [Cook87, Son88b].

The rest of the paper is organized as follows. Section 2 presents an informal description of a
message-based simulation. Section 3 describes the design principles and the current implementation of
the prototyping environment. Scction 4 presents experimentations of priority-based synchronization algo-

rithms and multiversion data objects using the prototyping environment. Section 5 concludes the paper.

2. Message-Based Simulation

When prototyping distributed database systems, there are two possible approaches: sequential pro-
gramming and distributed programming based on message-passing. Message-based simulations, in which
events are message-communications, do not provide additional expressive power over standard simula-
tion languages; message-passing can be simulated in many discrete-event simulation languages including
SIMSCRIPT [Kiv69] and GPSS [Sch74]. However, a message-based simulation can be used as an effec-
tive tool for developing a distributed system because the simulation "looks" like a distributed program,
while a simulation program written in a traditional simulation language is inherently a scquential pro-
gram. Furthermore, if a simulation program is developed in a systematic way such that the pranciples of
modularity and information hiding arc observed, most of the simulation code can be used in the actual

system, resulting in a reduced cost for system development and evaluation.
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To prototype a distributed database system on a single host machine, it is necessary to provide vir-
tual machines for each node of the system being simulated. For that, the process view of a system has
been adopted. A distributed system being simulated consists of a number of processes which interact
with others at discrete instants of time. Processes are basic building blocks of a simulation program. A
process is an independent, dynamic entity which manipulate resources 10 achieve its objectives. A
resource is a passive object and may be represented by a simple variable or a complex data structure. A
simulation program models the dynamic behavior of processes, resources, and their interactions as thoy
evolve in time. Each physical operation of the system is simulated by a process, and the process interac-

tions are called events.

In the literature, the notion of a process has been given numerous definitions. The definition used in
our model is much the same as that given in [Bri78]: A process is the execution of an interruptible
sequential program and represents the unit of resource allocation, such as the allocation of CPU time,

main memory and /O devices.

We use the client/server paradigm for process interaction in the prototyping environment. The sys-
tem consists of a set of clients and servers, which are processes that cooperate for the purpose of transac-
tion processing. Each server provides a service to its clients, where a client can request a service by send-
ing a request message (a message of type request) to the corresponding server. The computation structure
of the system to be modeled can be characterized by the way clients and servers arc mapped into
processes. For example, a server might consist of a fixed number of processes, each of which may exccute
requests from every transaction, or it might consists of varying number of processes, each of which exe-

cutes on behalf of exactly one transaction.

Intemnal actions of a process, i.c., actions that do not involve interactions with other processes in the
system, are modeled cither by the passage of simulation time or by the ¢xccution of sequential statements
within the process. We use a simulator clock to represent the passage of time in a simulation. The simula-

tor clock advances in discrete steps, where cach step simulates the passage of time between two events in




the system.

In a physical system, each process makes independent progress in time  the resources they need
are available, and many processes execute in parallel. In its simulation, the multiple processes of a physi-
cal system must be exccuted simultancously on onc processor. This simultaneity is achieved in the proto-
typing environment by supporting a simultancous exccution of multiple processes in a single address

space.

A message-based prototyping cnvironment can be of enommous benefit in designing and testing
emerging systems, such as real-time systems, and in comparing and improving algorithms that are appli-
cable to many different systems. One such benefit is that the software to be used in an actual system can
be developed using the environment. The prototyping environment can support a simulated environment,
actual hardware, or a “*hybrid"” mode in which some of the modules are implemented in hardware and
some arc simulated. In this way, it is irrelevant to the software developer using the environment whether
or not all or part of the software is running on hardware. When the system is running in a hybrid mode,
the virtual clock used for performance measurement is updated by the actual time used for direct execu-

tion, making performance measurements correct.

3. Structure of the Prototyping Environment

The prototyping environment is designed to facilitate casy extensions and modifications. Server
processes can be created, relocated, and new implementations of scrver processes can be dynamically
substituted. It efficiently supports a spectrum of real-time database functions at the operating system
level, and facilitates the construction of multiple database systems with different charactenstics. For
cxperimentation, system functionality ¢an be adjusted according to application-dependent requirements
without much overhead for new system sctup. Since one of the design goals of the prototyping environ-
ment is to conduct an empirical evaluation of the design and implementation of real-time distributed data-
base systems, it has built-in support for performance mcasurement of both clapsed time and blocked time

for cach transaction.




The prototyping environment provides support for transaction processing, including transparency to
concurrent access, data distribution, and atomicity. An instance of the prototyping environment can
manage any number of virtual sites specified by the user. Modules that implement transaction processing
arc decomposed into several server processes, and they communicate among themselves through ports.
The clean interface between server processes simplifies incorporating new algorithms and facilitiz< into
the prototyping cnvironment, or testing alternate implementations of algorithms. To permit concurrent
transactions on a single site, there is a scparate process for each transaction that coordinates with other

SCIver proCesses.

Figure 1 illustrates the structure of the prototyping environment. The prototyping environment is
bascd on a concurrent programming kernel, called the StarLite kernel. The StarLite kemel supports pro-
cess control 1o create, ready, block, and terminate processes. It also supports the secmaphore abstraction to
be used by higher level modules in resource control, critical section implementation, and synchronous
message-passing. The internal structure of the kemel follows the well-known client-server model
(Tan87], in which most of the operating system operates as server processes in the same address space as
client processes, with the kernel merely handling message communication between various processes.
Figure 2 shows an instance of this model. This structure is particularly useful for extensible systems such
as our prototyping environment, since additional or alternative functionality can easily be provided by

creating a new server, instead of changing and recompiling the kernel.

Scheduler in the kernel maintains a virtual clock and provides the hold primitive to control the pas-
sage of time. The benefit of a virtual clock is that any number of performance monitoring operations may
be performed at an instant of virtual time. If a physical clock were embedded, the monitoring activitics
themselves would interfere with other system activities and add to the exccution time, resulting in

incorrect performance measurcs.

The kemel alce provides the capability of isolating overhead imposed by cach system component.

For instance, total time at each node can be divided into CPU time and [/O time, to determine the




computation-intensive and I[/O-intensive functions and investigate the distribution of tasks around the sys-

tem so as (o maximize parallelism.

The User Interface (UI) is a front-cnd invoked when the prototyping environment begins. Ul is
menu-driven, and designed to be flexible in allowing users to experiment various configurations with dif-

ferent system parameters. A user can specify the folloviing;:
e system configuration: number of sites and the number of server processes at cach site, topology and
communication costs.

e database configuration: database at cach site with uscr defined structure, size, granularity, and levels of

replication.

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers Transaction Manager

Resource Manager DB

Message Server

StarLite Kemel

Fig. 1. Structurc of the prototyping cnvironment
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e load characteristics: number of transactions to be executed, size of their read-scts and write-sets, tran-

saction types (read-only or update) and their priorities, and the mean interarrival time of transactions.
e concurrency control: locking, timestamp ordering, and priority-based.

The Ul initiates the Configuration Manager (CM) which initializes necessary data structures for
transaction processing based on user specification. The database at each site consists of different number
of files, and each file consists of different number of records. The database structure can be made compli-
cated if necessary. However, we use a simple file access, since investigating synchronization problems

doces not require complex database structures.

The CM invokes the Transaction Generator at an appropriate time interval to generate the next tran-
saction to form a Poisson process of transaction arrival. The environment is flexible enough to generate
any number of transactions with different characteristics. The user can specify his own procedure for tran-
sactions. At initialization time, the user-specified proccdure is converted into a transaction process.
Furthermore, the prototyping environment supports the facility that allows mixing system generated tran-
sactions with user-specificd ones. It is very desirable to have such a capability, since the user can setup
any workload that represents the situation to be simulated, with or without system generated background

workload.

A transaction is distinguished from the other processes in the system by its behavior. To the system,
the only distinction between transactions and server processes is the PortTags on which each receives
messages. When a transaction is generated, it is assigned an identifier that is unique among all transac-
tions in the system. Each transaction is also assigned a globally unique timestamp which is hidden within
a single module. The advantage of cxtracting the definition and assignment of the timestamp from its use
is that it provides a means of uniquely assigning timestamps which is independent from any specific

implementation.

The timestamp assignment is closely related to the clocks in the system. In a scquential simulation,

a single clock suffices to order cvents in the system. An event is taken off the event queue, and the global




Machine 1 Machine 2 Machine 3
Client < File server Process scrver
Kemel Kemel Kemel
ﬁ/lessage from Communication medium

client to server

Fig. 2. Client-server model
clock is advanced to the time required for the event to occur. Events are related in time by their relaiion to
the global clock. In prototyping distributed environments, no such global clock is available. Time is
referred to by iocal clocks, which is maintained at each site and visible only to processes at that site. Ord-
cring of events in terms of the global time, thercfore, depends on the proper synchronization of local
clocks. In our environment, clocks are synchronized by intersite communication. An intersite message
includes the clock value of the sender site at the time the message is sent. If the sum of this clock value
and the propagation delay between the sites is greater than the clock value at the receiver site, the receiver
increments its clock by the difference between the sum and its clock value. In this way, all succeeding
events at the receiver site can be said to occur after the sending of the message. This satisfies our intuitive

notion of "happens before" relationship [Lam78].

Transaction execution consists of read and write operations. Each read or write operation is pre-
ceded by an access request sent to the Resource Manager, which maintains the local database at each site.
Each transaction is assigned to the Transaction Manager (TM). The TM issucs service requests on behalf
of the transaction and rcacts appropriately to the request replics. For instance, if & transiaction requests
access to a file and that file is locked, TM exccutes either blocking operation to wait untl the data object
can be accessed, or aborting procedure, depending on the situation. If granting access 10 a resource will

produce deadlock, TM receives an abort response and aborts the transaction. Transactions commit in two
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phases. The first commit phase consists of at lcast one round of messages to dctermine if the transaction
can be globally committed. Additional rounds may be used to handle potential failures. The second com-
mit phase causes the data objects to be written to the database for successful transactions. TM exccutes
the two commit phases to ensure that a transaction commits or aborts globally. Figure 3 illustrates a

queueing model adopted for transaction processing.

Transactions are generated and put into the start-up queue. When a transaction is started, it leaves
the start-up queue and enters the ready queue. The transaction at the top of the qucue is selected to run.
The current running transaction sends requests t0 the concurrency controller (CC) implemented in the
resource manager. The transaction may be blocked and placed in the block queue. It may also be abornted
and restarted. In such a case, it is first delayed for a certain amount of time and then put in the rcady
queuc again. When a transaction in the block queue is unblocked, it leaves the block queue and is placed

in the ready queue again.

Startup Queue

!

RESTART

Y .

1 | CC COMMIT

Ready Queue
3 — BLOCK
Block Qucue
<___©~ ACCESS
data access -

Fig. 3 Simulation Modcl
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In prototyping distributed database systems, a communication network is an important component
to be simulated, since the system performance depends heavily on the topology and communication pro-
tocols used. However, in many database simulators, the communication subsystem is either ignored or
simplificd by adding communication cost to the transaction processing time. Our prototyping environ-
ment uses a different approach by providing a virtual communication network that actually runs a layered
communication protocol on a network topology specificd by the user. Since the communication module
is a scparate building block in the prototyping cnvironment, the user can change it to simulate diffcrent

requirements of the application.

The Message Server (MS) is a process listening on a well-known port for messages from remote
sites. When a message is sent to a remote site, it is placed on the message queue of the destination site
and the sender blocks itself on a private semaphore until the message is retricved by MS. If the receiving
site is not operational, a time-out mechanism will unblock the sender process. When MS retrieves a mes-
sage, it wakes the sender proccess and forwards the message to the proper servers or TM. The prototyping
environment supports both Ada-style rendezvous (synchronous) as well as asynchronous message pass-
ing. Inter-process communication within a site does not go through the Message Scrver; processes send

and receive messages directly through their associated porte

The inter-process communication structure is designed to provide a simple and flexible interface to
the client processes of the application software, independent from the low-level hardware configurations.

It is split into three levels of hierarchy: transport, network, and physical layers.

The Transport layer is the interface to the application software, thus it is designed to be as abstract
as possible in order to support different port structures and various message types. In addition, application
level processes need not know the details of the destination device. The invariant built into the design of
the inter-process communication interface is that the application level sender allocates the space for a
message, and the receiver deallocates it. Thus, it is irrelevant whether or not the sender and receiver share

memory space, i.e., whether or not the Physical layer on the sender’s side copics the message into a buffer




and deallocates it at the sender’s site, and the Physical layer at the receiver’s site allocates space for the
message. This enables prototyping distributed systems or multiprocessors with no shared memory, as
well as multiprocessors with shared memory space. When prototyping the latter, only addresses need to

be passed in messages without intermediate allocation and deallocation.

The Physical layer of message passing simulates the physical sending and receiving of bits over a
communication medium, i.e., it is for intersite message passing. The device number in the interface is
simply a cardinal number; this enables the implementation to be simple and extensible enough to support
any application. To simulate sending or to actually send over an Ethemet in the target system, for exam-
ple. a module could map network addresses onto cardinals. To send from one processor to another in a

multiprocessor or in a distributed system, the cardinals can represeni processol umbers.

Messages are passed to specific processes at specific sites in the Network layer of the communica-
tions interface. This layer scrves to separate the Transport and the Physical layers, so that the Transport
layer interface can be processor- and process-independent and the Physical layer interface need be con-
cemed only with the sending of bits from one site to another. The Transport layer interface of the com-
munication subsystem is implemented in the Transport module. A Transport-level Send is made 10 an
abstraction called a PortTag. This abstraction is advantageous because the implementation (i.e., what a
PontTag represents) is hidden in the Ports module. Thus the PortTag can be mapped onto any port struc-
ture or the reception points of any other message passing system. The Transport-level Send operation
builds a packet consisting of the sender’s PortTag, used for replies, the destination PontTag, and the
address of the message. It then retrieves from the destination PortTag the destination device number. If
this number is the same as the sender’s, the Send is an intra-site message communication, and hence the
Network-level Send is performed. Otherwise the send requires the Physical module for intersite commun-
ication.

Note that accesses 1o the implementation details of the PontTag are restricted to the module that

actually implements it; this cnables changing the implementation without recompiling the rest of the sys-

-13-




SN T T T . = T s W e

wem.

The Performance Monitor interacts with the transaction managers to record, priority/timestamp and
rcad/write data set for cach transaction, time when cach event occurred, statistics tor cach transaction and
cpu hold interval in each node. The statistics for a transaction includes arrival time, start time, total pro-

cessing time, blocked interval, whether deadline was missed or not, and the number of aborts.

Since each TM is a separate process, cach has its own data area in which 10 keep track of the time
when a service request is sent out and the time the response arrives, as well as the time when a transaction
begins blocking, waiting for a resource, and the time the resource is granted. When a wransaction com-
mits, it calls a procedure that records the above measures; when the simulation clock has expired, these

measures are printed out for all transactions.

4. Prototyping Real-Time Database Systems

The previous scction described the structure of the prototyping environment, with some of its
advanced features. In this section, we present real-time database systems implemented using the prototyp-
ing environment. The objectives of our study using the prototyping environment are 1) to evaluate the
prototyping environment itself in terms of correctness, functionality, and modularity, and 2) performance
comparison between two-phase locking and priority-based synchronization algorithms, and between a
multiversion database and its corresponding single-version database, through the sensitivity study of key

parameters that affect performance.

Compared with traditional databases. rcal-time database systems have a distinct feature: they must
satisfy the timing constraints associated with transactions. In other words, “time” is one of the key factors
to be considered in real-time database sysiecms. The timing constraints of a transaction typrcally include
its ready time and deadline, as well as temporal consistency of the data accessed by it Transactions must
be scheduled in such a way that they can be completed before their corresponding deadlines expire. For
cxample, both the update and query on a tracking data of a missile must be processed within the given

deadlines: otherwise, the information provided could be of little value. In such a system, transaction
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processing must satisfy not only the database consistency constraints but also the timing constraints.

The prototyping environment we have developed is especially useful for investigating timing
behavior of real-time transactions, since we can control all the system components. An altemnative to the
prototyping approach is to develop a system on a bare machine, based on a specialized real-time kemel.
The ARTS [Tok89] and the RT-CARAT (Hua90] take this approach. Difficulties with such an approach
are 1) it takes much more effort to develop, 2) the system is strongly coupled with its hardware and hence
hard to change its timing characteristics when needed, and 3) the system is not portable since it is imple-

mented in the target environment.

In addition to providing shared data access capabilities, distributed real-time database systems offer
a means of loosely coupling communicating processes, making it casier to rapidly update software, at
least from a functional perspective. However, with respect to time-driven scheduling and system timing
predictability, they present new problems. One of the characteristics of current database managers is that
they do not schedule their transactions o meet response time requirements and they commonly lock data
tables to assure database consistency. Locks and time-driven scheduling are basically incompatible. Low
priority transactions holding locks required by higher priority transactions can and will block the higher
priority transactions, leading to response requirement failures. New techniques are required to manage

data consistency which arc compatible with time-driven scheduling.

4.1. Steady State Estimation

In order to show that the results we get from experiments represent the performance of the system in
steady states, we have performed experiments to check if the system were allowed to run for any length of
timc greaicr than certam dueshoid value, the variation in results would be within some tolerable interval.
We have implemented a well-known synchronization protocol, two-phase locking (2PL), for the follow-
ing system and workload configuration:

8 sites with fully interconnected network
multiprogramming level of 10
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75% read-only and 25% update transactions

read-only transactions access 3% of the database

update transactions access 1% of the database

database consists of 500 unreplicated objects

Poisson distribution of transaction arrivals
Figure 4 shows the average response time of transactions using the 2PL. It shows that the average
response time begins to stabilize at 3000 simulation time units, and varies only slightly from then on. The
lower response time up to 3000 time units are due to the first set of transactions that benefits from a lower
initial multiprogramming level and potential conflicts. In addition, since transactions requiring longer
execution time will increase the average response time when they complete, they do not contribute to the

average response time during the carly stage of transaction exccution if they were in the initial group of

transaction. These initial characteristics are gradually erased from the average performance.

In addition. as we increase the time for experiments, the average response time is determined from
an increasing number of transactions. For example, at 100 time units, the number of transactions contri-
buting to the mean is approximately 12. At 4000, it is approximately 60. Thus the overall behavior of the
system becomes less and less subject to the behavior of individual transactions. From the graph and

charactenistics of our environment, we concluded that an experiment must run at least 3500 time units

400
—a— 2PL \
300
Avcrage
Response 200
Time
100
0 T T T l
-0 1000 2000 3000 4000

Simulation length

Fig. 4. Response time stability
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before it starts to capture the steady state behavior of the system.

4.2, Priority-Based Synchronization

Real-time databases are often used by applications such as tracking. Tasks in such applications con-
sist of both computing (signal processing) and database accessing (transactions). A task can have multi-
ple transactions, which consists of a sequence of read and write operations operating on the database.
Each transaction will follow the two-phase locking protocol, which requires a transaction to acquire all
the locks before it releases any lock. Once a transaction rcleases a lock, it cannot acquire any new lock. A
high priority task will preempt the execution of lower priority tasks unless it is blocked by the locking

protocol at the database.

In a real-ime database system, synchronization protocols must not only maintain the consistency
constraints of the database but also satisfy the timing requirements of the transactions accessing the data-
base. To satisfy both the consistency and real-time constraints, there is the need 10 integrate synchroniza-
tion protocols with real-time priority scheduling protocols. A major source of problems in integrating the
two protocols is the lack of coordination in the development of synchronization protocols and real-time
priority scheduling protocols. Due to the cffect of blocking in lock-based synchronization protocols, a
direct application of a real-time scheduling algorithm to transactions may result in a condition known as
priority inversion {Raj89]. Priority inversion is said to occur when a higher priority process is forced to
wait for the execution of a lower priority process for an indefinite period of time. When the transactions
of two processes attempt to access the same data object, the access must be serialized to maintain con-
sistency. If the transaction of the higher priority process gains access first, then the proper priority order is
maintained: however, if the transaction of the lower priority gains access first and then the higher prionty
transaction requests access to the data object, this higher priority process will be blocked until the lower
priority transaction complctes its access to the data object. Priority inversion is incvitable in transaction
systems. However, to achicve a high degree of schedulability in real-time applications, priority inversion

must be minimized. This is illustrated by the following example.
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Example: Suppose Ty, T, and Tj are three transactions arranged in descending order of priority
with T; having the highest priority. Assume that T; and T3 access the same data object O;. Suppose that
at time t; transaction T3 obtains a lock on O;. During the exccution of T3, the high priority transaction T,
arrives, preempts T; and later attempts to access the object O;. Transaction T will be blocked, since O, is
already locked. We would expect that T, being the highest priority transaction, will be blocked no longer
than the time for transaction T3 to complete and unlock O;. However, the duration of blocking may, in
fact, be unpredictable. This is because transaction T3 can be blocked by the intermediate priority transac-
tion T that does not need to access O;. The blocking of T3, and hence that of Ty, will continue until T,

and any other pending intermediate priority level transactions are completed.

The blocking duration in the example above can be arbitrarily long. This situation can be partially
remedied if transactions are not allowed to be preempted; however, this solution is only appropriate for
very short transactions, because it creates unnecessary blocking. For instance, once a long low priority
transaction starts execution, a high priority transaction not requiring access to the same set of data objects

may be necdlessly blocked.

An approach to this problem, based on the notion of priority inheritance, has been proposed
(Sha87]. The basic idea of priority inheritance is that when a transaction T of a process blocks higher
priority processes, it executes at the highest priority of all the transactions blocked by T. This simple idea
of priority inheritance reduces the blocking time of a higher priority transaction. However, this is inade-
quate because the blocking duration for a transaction, though bounded, can still be substantial due to the
potential chain of blocking. For instance, suppose that transaction T, needs to sequentially access objects
O, and O,. Also suppose that T, preempts T3 which has already locked O;. Then, T» locks O,. Transac-
tion Ty arrives at this instant and finds that the objects O and O, have been respectively locked by the
lower priority transactions T, and T3. As a result, Ty would be blocked for the duration of two transac-
tions, once to wait for T, to rclease O; and again to wait for T3 to release O,. Thus a chain of blocking

can be formed.




One idea for dealing with this inadequacy is to use a total priority ordering of active transactions
[Sha88]. A transaction is said to be active if it has started but not yet completed its execution. A transac-
tion can be active in one of two states: executing or being preempted in the middle of its execution. The
idea of total priority ordering is that the real-time locking protocol ensures that each active transaction is

cxecuted at some priority level, taking priority inheritance and read/write semantics into consideration.

4.3. Total Ordering by Priority Ceiling

To ensure the total priority ordering of active transactions, three priority ceilings are defined for
each data object in the database: the write-priority ceiling, the absolute-priority ceiling, and the rw-
priority ceiling. The write-priority ceiling of a data object is defined as the priority of the highest priority
transaction that may write into this object, and absolute-priority ceiling is defined as the priority of the
highest priority transaction that may read or write the data object. The rw-priority ceiling is set dynami-
cally. When a data object is write-locked, the rw-priority ceiling of this data object is defined to be equal
to the absolute priority ceiling. When it is read-locked, the rw-priority ceiling of this data object is

defined to be equal to the write-priority ceiling.

The priority ceiling protocol is premised on systems with a fixed priority scheme. The protocol
consists of two mechanisms: priority inheritance and priority ceiling. With the combination of these two
mechanisms, we get the properties of freedon: irom deadlock and a worst case blocking of ai most a sin-

gle lower priority transaction.

When a transaction attempts to lock a data object, the transaction’s priority is compared with the
highest rw-priority ceiling of all data objccts currently locked by other transactions. If the prionity of the
transaction is not higher than the rw-priority cciling, the access request will be deniced, and the transaction
will be blocked. In this case, the transaction is said 1o be blocked by the transaction which holds the lock
on the data object of the highest rw-priority cciling. Otherwise, it is granted the lock. In the denied case,
the priority inheritance is performed in order to overcome the problem of uncontrolled priority inversion.

For example, if transaction T blocks higher transactions, T inherits Py, the highest priority of the
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transactions blocked by T.

Under this protocol, it is not necessary 1o check for the possibility of read-write conflicts. For
instance, when a data object is write-locked by a transaction, the rw-priority ceiling is equal to the highest
priority transaction that can access it. Hence, the protocol will block a higher priority transaction that may
write or read it. On the other hand, when the data object is read-locked, the rw-priority ceiling is equal to
the highest priority transaction that may write it. Hence, a transaction that attempts to write it will have a
priority no higher than the rw-priority cciling and will be blocked. Only the transaction that read it and
have priority higher than the rw-priority ceiling will be allowed to read-lock it, since read-locks are com-
patible. Using the priority ceiling protocol, mutual deadlock of transactions cannot occur and each tran-
saction can be blocked by at most by one lower priority transactions until it completes or suspends itself.

The next example shows how transactions are scheduled under the priority ceiling protocol.

Example: Consider the same situation as in the previous example. According to the protocol, the
priority ceiling of O; is the priority of T;. When T, tries to access a data object, it is blocked because its
priority is not higher than the priority ceiling of O;. Therefore T, will be blocked only once by T; to

access O;, regardless of the number of data objects it may access.

The total priority ordering of active transactions leads to some interesting behavior. As shown in the
example above, the priority ceiling protecol may forbid a transaction from locking an unlocked data
object. At first sight, this scems to introduce unnecessary blocking. However, this can be considered as

the "insurance premium” for preventing deadlock and achieving block-at-most-once property.

Using the pmtotyping environment, we have investigated issues associated with this idea of total
ordering in priority-based scheduling protocols. One of the critical issues related to the total ordering
approach is its performance compared with other design alternatives. In other words, it is imponant to

figure out what is the actual cost for the "insurance premium” of the total priority ordering approach.




4.4, Performance Evaluation

Various statistics have been collccted for comparing the performance of the priority-ceiling protocol
with other synchronization control algorithms. Transaction are generated with exponentially distributed
interarrival times, and the data objects updated by a transaction are chosen uniformly from the database.
A transaction has an execution profile which altemates data access requests with equal computation
requests, and some processing requirement for termination (either commit or abort). Thus the total pro-
cessing time of a transaction is directly related to the number of data objects accessed. Due to space con-
siderations, we do not present all our results but have selected the graphs which best illustrate the differ-
ence and performance of the algorithms. For example, we have omitted the results of an experiment that
varied the size of the database, and thus the number of conflicts, because they only confirm and not

increase the knowledge yielded by other experiments.

For cach experiment and for each algorithm tested, we collected performance statistics and averaged
over the 10 runs. The percentage of deadline-missing transactions is calculated with the following equa-
tion: %omissed = 100 * (number of deadline-missing transactions / number of transactions processed). A
transaction is processed if either it cxecutes completely or it is aborted. We assume that all the transac-
tions are hard in the sense that there will be no value for completing the transaction after its deadline.
Transactions that miss the deadline are aborted, and disappeared from the system immediately with some
abort cost. We have used the transaction size (the number of data objects a transaction needs to access) as
one of the key variables in the experiments. It varies from a small fraction up to a relatively large portion
(10%) of the database so that conflict would occur frequently. The high conflict rate allows synchroniza-
tion protocols to play a significant role in the system performance. We chcose the amval rate so that pro-
tocols are tested in a heavily loaded rather than lightly loaded system. It is because for designing real-
time systems, one must consider high load situations. Even though thcy may not arisc frequenty, one
would like to have a system that misses as few deadlines as possible when such peaks occur. In other
words, when a crisis occurs and the database system is under pressure is preciscly when making a few

cxtra deadlines could be most important [Abb88].
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We normalize the transaction throughput in records accessed per sccond for successful transactions,
not in transactions per second, in order .0 account for the fact that bigger transactions need more database
processing. The normalization rate is obtained by multiplying the transaction completion rate

(transactions/second) by the transaction size (database records accessed/transaction).

In Figure S, the throughput of the priority-ceiling protocol (C), the two-phase locking protocol with
priority mode (P), and the two-phase locking protocol without priority mode (L), is shown for transac-
tions of different sizes with balanced workload and I/O bound workload. The two impornant factors
affecting the performance of locking protocols are their abilities to resolve the locking conflicts and to
perform I/O and transactions in parallel. When the transaction size is small, there is little locking conflict
and the problem such as deadlock and priority inversion has little effect on the overall performance of a
locking protocol. On the other hand, when transaction size becomes large, the probability of locking
conflicts rises rapidly. In fact, the probability of deadlocks goes up with the fourth power of the transac-
tion size [Gray81). Hence, we would expect that the performance of protocols will be dominated by their

abilities to handle locking conflicts when transaction size is large.

As illustrated in Figure S, the performance of the two-phase locking protocol, with or without prior-
ity assignments to transactions, degrades very fast when transaction size incrcases. This can be attributed
to the inability of this protocol to prevent deadlock and priority inversions. On the other hand, the priority
ceiling protocol handles locking conflicts very well. The protocol performs much better than the two-
phase locking protocol when the transaction size is large. The main weakness of the priority ceiling proto-
col is its inability to perform I/O and transactions in parallel. For example, suppose that transaction T has
lock on O, and it now wants to lock data object O,. Unfortunately, O is not in the main memory. As a
result, T is suspended. However, neither are transactions with prioritics lower than the rw-priority cciling
of O, allowed to exccute. This could lead to the idling of the processor until either Oz is transterred to the
main memory or a transaction whose priority is higher than the rw-priority ceiling armives. We refer this
type of blocking as I/O blocking. When transaction size is small, the locking conflict rate is small. Hence,

the two-phase locking protocol performs well. However, due to 1/0 blocking the throughput of the
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priority ceiling protocol is not as good as that of the two-phase locking protocol, especially when the

workload is I/O bounded.

Since 1/O cost is one of the key parameters in determining perforrnance, we have investigated an
approach to improve system performance by performing I/O operation before locking. This is called the
intention 1/0. In the intention mode of I/O operation, the system pre-fetches data objects that are in the
access lists of transactions submitted, without locking them. This approach will reduce the locking time
of data objects, resulting in higher throughput. As shown in Figure 6, intention /O improves throughput
of both the two-phase locking and the ceiling protocol. However, improvement in the ceiling protocol is
much more significant. This is because intention I/O effectively solves the I/O blocking problem of the

priority ceiling protocol.

Another important performance statistics is the percentage of deadline missing transactions, since
the synchronization protocol in real-time database systems must satisfy the timing constraint of individual
transaction. In our experiments, each transaction’s deadline is set to proportional 1o its size and system
workload (number of transactions), and the transaction with the earliest deadline is assigned the highest
priority. As shown in Figure 7, the percentage of deadline missing transactions increases sharply for the
two-phase locking protocol as the transaction size increases due to its inability to deal with deadlock and
to give preference to transactions with shorter deadlines. Two-phase locking with priority assignment per-
forms somewhat better, because the timing constraints of transactions are considered, although the
deadlock and priority inversion problems still handicap its performance. The priority ceiling protocol has

the best relative performance because it addresses both the deadlock and priority inversion problem.

A drawback of the priority ceiling protocol from the practical viewpoint is that it nceds knowledge
of all transactions that will be cxecuted in the future. This may be a very strong requirement 10 satisty in

some applications.

The priority ceiling protocol takes a conservative approach. It is based on two-phase locking and

employs only blocking, but not roll-back, to solve conflicts. For conventional database systems, it has
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been shown that optimal performance may be achieved by compromising blocking and roll-back {Yu90].
For real-time database systems, we may expect similar results. Aborting a few low priority transactions
and restarting them later may allow high priority transactions to meet their deadlines, resulting in
improved system performance. Several concurrency control protocols based on optimistic approach have
been proposed [Har90, Lin90, Son90]. They incorporate priority-based conflict resolution mechanisms,
such as priority wait, that makes low priority transactions wait for conflicting high prionty transactions to
complete. However, this approach of detecting conflicts during validation phase degrades system predic-
tability. A transaction is detected as being late when it actually misses its deadline, since the transaction is

only aborted in the validation phase.

4.5. A Multiversion Database System

To illustrate the cffctiveness of the prototyping environment, we have investigated the performance
of a multiversion database system. There is no correlation between the priority ceiling protocol study and

multiversion database study.

In a multiversion database system, each data object consists of a number of consccutive versions.
The objective of using multiple versions in rcal-time database systems is to increase the degree of con-
currency and to reduce the possibility of rejecting user requests by providing a succession of views of
data objects. One of the reasons for rejecting a user request is that its operations cannot be serviced by the
system. For example, a read operation has to be rejected if the value of data object it was supposcd 1o read
has already been overwritten by some other user request. Such rejections can be avoided by keeping old
versions of cach data object so that an appropriate old value can be given to a tardy read operation. In a
system with multiple versions of data, cach write operation on a data object produces a new version
instead of overwriting it. Hence, for cach rcad operation, the system selects an appropnate version (o
rcad, enjoying the flexibility in controlling the order of read and write operations. When a new version is
crcated, it is uncertified. Uncenificd versions arc prohibited from being rcad by other transactions to

guarantce cascaded-abort free [Bem87). A version is certified at the commit time of the transaction that




generated the version.

The multiversion database system we have implemented is based on timestamp ordering. Each data
object is represented as a list of versions, and each version is associated with timestamps for its creation
and the latest read, and a valid bit to specify whether the version is certified. The multiversion con-
currency control scheme we have implemented is called "multiversion timestamp ordering method”, and

is proved to satisfy the scrializability (Bem87].

Each transaction consists of read and write requests for data objects. Read requests are never
rejected in a multi-version database system if all the versions are retained. A read operation does not
necessarily read the latest committed version of a data object. A read request is transformed to a version-
read operation by selecting an appropriate version to read. The timestamp of a read request is compared
with the write-timestamp of the highest available version. When a read request with timestamp T is sent
to the Resource Manager, the version of a data object with the largest timestamp less than T is selected as

the value 1o be retumed. Figure 8 shows an example of a read operation with the timestamp "11".

The timestamp of a write request is compared with the read timestamp of the highest version of the
data object. A new version with the timestamp greater than the read-timestamp of the highest certified
version is built on the upper level, with the valid bit reset to indicate that the new version is not certified
yet. In order to simplify the concurrency control mechanism, we allow only one temporary version for

each data object. Inserting a new version in the middle of existing valid versions is not allowed.

L]

o

Fig. 8. A rcad opcration with two centified versions of a data object.

.28.




The experiment was conducted to measure the average response time and the number of aborts for a
group of transactions running on a multiversion database system and its corresponding single-version sys-
tem. Two groups of transactions with different characteristics (e.g., type and number of access to data
objccts) were executed concurrently. The objective was to study the sensitivity of key parameters on

those two performance measures. Here we present our findings briefly.

Performance is highly dependent on the set size of transactions. As shown in Figure 9, 2 multiver-
sion database system outperforms the corresponding single-version system for the type of workload under
which they are expected to be beneficial: a mix of small update transactions and larger read-only transac-
tions. The reason for this is that, in a multiversion database system, a read requests have higher prionty
than the write requests; whereas the priority for read requests is not provided in a single-version system.
Thercfore, in a single-version system, the probability of rejecting a read request is equal to that of a write
request. The cxperiment shows that a single-version database system outperforms its multiversion coun-

terparnt for a different transaction mix.

It was observed that the performance of a multiversion system in terms of the number of aborts is
better than its single-version counterpart for a mix of small update transactions and larger read-only tran-
sactions. Similar experiments have been performed by changing the database size and the mean interar-
rival time of transactions. It was found, however, that the main result remains the same. From these
experiments, it becomes clear that among the four variables we studicd, the set-size of transactions is the
most sensitive parameter for determining the performance of a multiversion database system. This experi-
ment demonstrates the expressive power and performance evaluation capability of the prototyping

environment.

5. Canclusions

Prototyping large software systems is not a new approach. However, methodologies for developing
a prototyping cnvirorment for real-time database systems have not been investigated in depth in spite of

its potential benefits. In this paper, we have presented a prototyping cnvironment that has been developed
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based on the StarLite concurrent programming kernel and message-based approach with modular building
blocks. Although the complexity of a distributed database system makes prototyping difficult, the imple-
mentation has proven satisfactory for experimentation of design choices, different database control tech-

niques, and even an integrated evaluation of database systems.

There are three main goals to be achicved in devcloping a prototyping environment for real-time
databasc systems: modularity, flexibility, and extensibility. Modularity enables the environment 1o be
casily reconfigured, since any subset of the available modules can be combined to produce a new testing

cnvironment.

An additional benefit of the "right” modularity is that actual system software can be developed in
the prototyping environment and then ported to the target machine. This is enabled by the use of
technology-independent interfaces which are general enough to support any target system architecture. In
addition to the portability, programs may be run in 2 "hybrid” mode, that is, not all service calls need be
simulated. For example, file system calls in the application program can be intercepicd by the interpreter
and directed to the existing host file system. Then, as a file system is developed, the file system calls can
be directed to it. If the file system is not necessary or is not the focus of the current research, it need not
be developed. This feature of the prototyping environment allows the developer to focus on only pertinent

design issues.

Flexibility enables the prototyping environment to be applicable over a wide range of configurations
and system parameters. One of the keys to achieving this goal is to design interfaces whose operations
are independent both of the implementation technclogy and the context in which they are used. For
cxample, the user-level Send operation sends an array of bytes to an abstract data type, the PortTag. Thus

this operation can be used to send any packet type to any destination, be it local or distant.

The third goal is that the prototyping environment be extensible enough to model additional featurcs
of particular systems by adding modules without affecting the operation of or requiring the recompilation

of existing modules. For instance, the implcmentation can be extended to model the operation of dif-
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ferent types of 1/O devices of different speeds by modifying the implementation module that performs the
rcad and write operations. One way to modify the implementation would be to delay for a period depend-
ing on the address passed to the rcad or write operation. Reading from a disk might be indicated by one
range of addresses and take some time, while reading from a tape drive might be indicated by another
range and presumably take longer. However, because the interface of this module is device-independent,
changing the implementation to process 1/O requests at different speed will not affect any of the modules

that request 1/O operations. Therefore, time and effort for system reconfiguration can be reduced.

Expressive power and performance evaluation capability of our prototyping environment has been
demonstrated by implementing real-time database systems and investigating the performance characteris-

tics of the priority-ceiling protocol and multiversion databases.

In rcal-time database systems, transactions must be scheduled to meet their timing constraints. In
addition, the system should support a predictable behavior such that the possibility of missing deadlines
of critical tasks could be informed ahead of time, before their deadlines expire. Prority ceiling protocol
is one approach to achieve a high degree of schedulability and system predictability. In this paper, we
have investigated this approach and compared its performance with other techniques and design choices.
It is shown that this technique might be appropriate for real-time transaction scheduling since it is very
stable over the wide range of transaction sizes, and compared with two-phase locking protocols, it reduces

the number of dcadline-missing transactions.

Using the prototyping environment, we have shown that in general, a database system with a mul-
tiversion concurrency control algorithm performs better while processing read requests. Read requests
that would be aborted in a single-version database system duc to conflicts may be successfully processed
in a multiversion system using older versions. Therefore, when the read requests dominate the transuaction
load, and there is a high probability for abort of read-only transactions due to contlicts, a multiversion
system outperforms its corresponding single-version system. The relative sizes of the read and write sets

of transactions is an important factor affecting the performance. Although the actual performance figures
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will vary depending on workload and implementation details, we believe that our results provide a good

picture of the costs and benefits associated with the multiversion approach to concurrency control.

Real-time distributed database systems need further investigation. In priority ceiling protocol and
many other database scheduling algorithms, preemption is usually not allowed. To reduce the number of
deadlinc-missing transactions, however, preemption may need to be considered. The preemption decision
in a real-time database system must be made very carefully, and as pointed out in [Stan88], it should not
necessarily based only on relative deadlines. Since preemption implies not only that the work done by
the preempted transaction must be undone, but also that later on, if restarted, must redo the work. The
resultant delay and the wasted execution may cause one or both of these transactions, as well as other
transaction to miss the deadlines. Several approaches to designing scheduling algorithms for real-time
transactions have been proposed [Liu87, Stan88, Abb88], but their performance in distributed environ-
ments is not studied. The prototyping environment described in this paper is an appropriate research

vehicle for investigating such new techniques and scheduling algorithms for real-time database systems.
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