
An Annual Report (-A D-A242 032 Grant No. N00014-91-J-1102 t

1III iII I 1IIIII 11111i II' October 1, 1990 - September 30, 1991

THE STARLITE PROJECT 4

PROTOTYPING REAL-TIME SOFTWARE

I Submitted to:

Scientific Officer Code: 1211
Dr. James G. Smith

Office of Naval Research
800 North Quincy Street

Arlington, Virginia 22217-5000

Submitted by:

R. P. Cook
Associate Professor

S. H. Son
Assistant Professor

I
SEAS Report No. UVA/525449/CS92/101

October 1991

I
DEPARTMENT OF COMPUTER SCIENCEI

I
SCHOOL OF

ENGINEERING 6 91-13247
& APPLIED SCIENCE
University of Virginia
Thornton Hall
Charlottesville, VA 22903

I ...

I
I
U
I
I
I

UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate en- 3
rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160

faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These 3
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-
space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-
neering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-
puter Science. Within these disciplines there are well equipped laboratories for conducting highly
specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only
graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student
enrollment of about 17,000), also offers professional degrees under the schools of Architecture, Law,
Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts
and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-
neering research program. The School of Engineering and Applied Science is an integral part of this

University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.

i
i
I

I

I

I

I An Annual Report
Grant No. N00014-91-J-1102

1 October 1, 1990 - September 30, 1991

THE STARLITE PROJECT

PROTOTYPING REAL-TIME SOFTWARE

I Submitted to:

Scientific Officer Code: 1211
Dr. James G. Smith

Office of Naval Research

800 North Quincy Street _ ,.

Arlington, Virginia 22217-5000 ,

Submitted by:U LvA: ,

R. P. Cook
Associate Professor r ,

S. H. Son3 Assistant Professor ,,, C. ,

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA"o,\5 CHARLOTTESVILLE, VIRGINIA ., , J]

|
I

Report No. UVA/525449/CS92/101 Copy No.__
October 1991

I

form Approved
REPORT DOCUMENTATION PAGE JoMB oA.00o08

N i em r M Wt ctboa ot mtO r . ttti tO rY 9 I ro" M ,112Fnc , tMo n te tg..Cwsq ,nlttUt . tOrcnwq exit" G o& W tCOL
gsthennq at trmtan"a wte r.art o flo~dd fwi'otetin and trq'.tr the cofleirtion of mfrwtfOw ion,~dC~.ft eadfqtuOuifistftt tSeOhf.~ a i
ctioof t VtnUUUIt wciraUt tuqg"Utt1% Ior 1 90%rnq thtis buro"fi t0 WiphoVqof HmqueflS~q s-ce. 0'rt~Otef@ for tfatOn.f 0ow~tuOti and stecafl. 1is JetteIoA
0..%, g *V. Saten IJM. At iqton. VA 22202-4302. and to the Otuc of m i ntuwut aW. suqet PWs Wgm~ Aeew or otq d ut I " 0 1064-tiL. Wipou19tAo. OC 2050.

1. AGENCY USE ONLY (Leave Wiank) 2. REPORT DATE i3. REPORT TYPE AND DATES COVERED

4 October 1991 Annual 10/1/90 - 9/30/91
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

The Starlite Project - Prototyping Real-Time Software N00014-91-J-1102

6 6. AUTHOR(S)

R. P. Cook
I S. H. Son

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

University of Virginia
School of Engineering and Applied Science UVA/525449/CS92/1O1
Department of Computer Science

Thornton Hall
Charlottesville, VA 22903-2442

9. SPONSOINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Naval Research

800 North nuincy Street

Arlington, VA 22217-5000

I 11. SUPPLEMENTARY NOTES

1 12a. DLSTROUTIONIAVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

3 . Unlimited

13. ABSTRACT (Max4&num200 won)

NA - Letter Resort

!
I
I

14. SB4JECT TERMS IS. NUMBER OF PAGES

real time systems, orototvping, distributive databases, 64(5 plus j aendfc)

operating systems, scheduling 16. PRICE COD

1) SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THiS PAGE OF ABSTRAC
Unclassified Unclassified Lnc lassi f ied UL

NSN 7540-01-280-5500 StanoarO form 298 i890104)rart)
10.ewr.eid be ANSIt Std J39-19

I
I

Annual Letter Report for FY91

if Contract Information

The StarLite Project - Prototyping Real-Time Software
N00014-91-J- 1102
Robert P. Cook and Sang H. Son
University of Virginia
(804) 982-2205
son@cs.virginia.edu
10/1/90 - 9/30/91
ONR Program Manager: James G. Smith

Technical Objectives and Issues

The goals of StarLite project are twofold. First, we investigate new technologies associated with the
construction of real-time, distributed operating systems, database systems, and communication networks.
Secondly, the research will produce tools and experimental systems, using the StarLite software prototyp-
ing environment. The issues being addressed are priority-based scheduling, methodology for developing
prototyping tools, system integration, operating system support and interface issues, and fault-tolerance in
real-time computing.

Approach
,I Our research is directed towards discovering a set of design principles and developing efficient

algorithms for distributed real-time operating systems and database systems. In addition to theoretical
study, we are also developing experimental systems and prototyping tools for performance evaluation of
new technology.

Accomplishments and Significance

One of the most important achievements in FY91 is the development of new scheduling algorithms
based on the idea of adjusting the serialization order of active transactions dynamically. This is the first
successful attempt to integrate benefits of pessimistic and optimistic approaches for transac.;on schedul-
ing. When compared with conventional transaction scheduling algorithms (e.g., two-phair locking), our
algorithms significantly improve the percentage of high priority transactions that meet il'e deadline. We
also have developed priority-ordered deadlock avoidance algorithms for real-time re ,jrce management,
and replication control algorithms for distributed real-time databases. These alorithms will be very
efficient for distributed real-time systems, in which replicated resources should oe managed to support
consistency, while satisfying timing constraints. Using StarLite prototyping en;ironmcnt, we have imple-gmented those algorithms and demonstrated that they provide higher level of concurrency and greater
flexibility in meeting timing requirements.

We have developed a new paradigm for multiprocessor real-timr systems, and implemented a paral-
lel programming interface based on our paradigm. Our new paradigmi has created new research opportuni-
ties for operating systems and databases for parallel computirg systems with timing constraints. For
example, using the new programming interface, we have devetoped PRDB, an experimental real-time
database system that runs on an emulated tightly-coupled, shared-memory multiprocessor system in the
StarLite environment. It provides a general paradigm foi cxlpoiting parallelism and different real-time
scheduling policies. This experimental system has bcc used for investigating implementation techniques
for parallel database systems and the impact of mulliproccssor technology on operating systems design.

1!

I
U

We have developed a suite of database systems on several platforms, such as StarLite, ARTS, and
UNIX, and utilized them as system integration testbeds. S ,:e a real-time system must operate in the con-
text of operating system services, correct functioning and timing behavior of the system depends heavily
on the operating system interfaces. We have developed a multi-thread database server, called RTDB, for
ARTS real-time operating system kernel. rhe RTDB now supports application programmatic interface
and graphic user interface. Our experimental systems achieve other goal of this project-to transfer tech-
nology developed under the StarLite project to Navy, DoD, and other research organizations. Currently,
Naval Ocean Systems Conter in San Diego, California, is using RTDB for their distributed real-time3 experiments.

Plans for FY92

Wc will continue to expand the module hierarchy of the StarLite environment by including modules
for optimistic scheduling and system recovery, and graphic user interface. We will also investigate sys-
tem support requirements for real-time applications, and then evaluate the StarLite from that perspective.
In addition, we will reline the current single processor and multiprocessor implementation. Furthermore,
we will begin work on a distributed version StirLite operating system that will be integrated with our dis-
tributed database kernel.

We will investigate scheduling and concurrency control algorithms, and perform experiments for
their evaluation. We will also implement replication control algorithms and recovery algorithms in the
StarLite for their performance evaluation. With respect to experimental database systems, we will add
real-time transaction features and evaluate them for realistic applications. Our findings and new technol-
ogy developed in this project will continue to be transfcrcd to other Navy organizations.

Presentations, Publications, and Honors

U Presentations

I e Cook, The StarLite Project, University of North Carolina at Charlotte.

e Cook, The StarLite Project, University of Hawaii.

e Cook, The StarLite Project, Microsoft Corporation.

e Son, Real-Time Database Systems, NOSC Code 413 DC2 Quarterly Review.

I * Son, Real-Time Database Systems, Sogang University.

e Son, Prototyping Approach to Database Research, Electronics and Telecommunications Research
I Institute.

* Son, Scheduling Real-Time Transactions, Seoul National University.

£•*Book Chapters

(1) Cook, R. P., "The StarLite Operating System," Operating Systemsfor Mission-Critical Computing,
K. Gordon, P. llwarg, and A. Agrawala (Editors), ACM Press, 1991.

(2) Cook, R. P., "Nlodula-2," Encyclopedia oJ'Computer Science, (to appear).

(3) R. Cook, L. Hsu, and S. If. Son, "Real-Time, Priority-Ordered, Deadlock Avoidance Algorithms,"
in Foundations of Real-Titne Computing: Scheduling and Resource Managemcnt, A. Van Tilborg

2

and G. M. Koob (Editors), Kluwer Academic Publishers, 1991.

(4) S. H. Son, "On Priority-based Synchronization Protocols for Distributed Real-Time Databa" se
Systems," in Distributed Databases in Real-Time Control, E. Knuth and M. Rodd (Editors), Per-
gamon Press, 1990.

(5) S. H. Son, Y. Lin, and R. Cook, "Concurrency Control in Real-Time Database Systems," in Foun-
dations of Real-Time Computing: Scheduling and Resource Management, A. Van Tilborg and G.
M. Koob (Editors), Kluwer Academic Publishers, 1991.

(6) S. H. Son, R. Cook, J. Lee, and H. Oh, "New Paradigms for Real-Time Database Systems," in
Real-Time Programming, K. Ramamritham and W. Halang (Editors), Pergamon Press, (to appear).

(7) S. H. Son and S. Park, "Scheduling Transactions for Distributed Time-Critical Applications," in
Advances in Distributed Systems, T. Casavant and M. Singhal (Editors), IEEE Computer Society,

I (to appear).

* Refereed Publications

1 (1) S. H. Son, "Reconstruction of Distributed Databases," Computer Systems Science and Engineer-
ing, vol. 5, no. 4, October 1990.

(2) P. Shebalin, S. H. Son, and C. Chang, "An Approach to Software Safety Analysis in Distributed
Systems," Computer Systems Science and Engineering, vol. 6, no. 2, April 1991.

(3) L. Sha, R. Rajkumar, S. H. Son, and C. Chang, "A Real-Time Locking Protocol," IEEE Transac-
tions on Computers, vol. 40, no. 7, July 1991.

(4) S. H. Son, "An Environment for Integrated Development and Evaluation of Real-Time Distri"
buted Database Systems," Journal of Systems Integration, (to appear).

(5) S. H. Son, J. Ratner, S. Chiang, "StarBase: A Simulation Laboratory for Distributed Database
Research," Journal of Computer Simulation, (to appear).

(6) Cook, R. P. and H. Oh, "The StarLite Project," Frontiers 90 Conference on Massively Parallel3 Computation, October 1990.

(7) Y. Lin and S. H. Son, "Concurrency Control in Real-Time Databases by Dynamic Adjustment of
Serializ" ation Order," l1th IEEE Real-Time Systems Symposium, Orlando, Florida, December
1990.

(8) S. H. Son, C. lannacone, and R. Beckingcr, "Integrating Databases with Real-Time Computing£ Systems," IEEE Southeastcon '91. Williamsburg, Virginia, April 1991.

(9) S. tt. Son, M. Poris, and C. lannaconc, "Implementing a Distributed Real-Time Database
Manager,' The Second International Svnpo.sium on Database Systemsi r Advanced Applications
(DASFAA '91), Tokyo, Japan. April 1991.

(10) H. Kang and S. H. Son, "A ilierarchical Export/Impert Scheme for Data Sharing in a Federated
Distnbu" ted Database System." The Second International Svmposium on Database Systems for
Adv..... d Applications (DASFAA '91), Tokyo, Japan. April 1991.

3I

I
I

(11) S. H. Son, P. Wagle, and S. Park, "Real-Time Database Scheduling: Design, Implementation, and
Performance Evalu" ation," The Second International Symposium on Database Systems for
Advanced Applications (DASFAA '91), Tokyo, Japan, April 1991.

(12) R. P. Cook, S. H. Son, H. Y. Oh, and J. Lee, "New Paradigms for Real-Time Database Systems,"
8th IEEE Workshop on Real-Time Operating Systems and Software, Atlanta, Georgia, May 1991.

(13) S. H. Son, C. lannacone, and M. Poris, "RTDB: A Real-Time Database Manager for Time-Criticalj Applications," Euromicro Workshop on Real-Time Systems, Paris, France, June 1991.

(14) S. H. Son and S. Chiang, "Concurrent Checkpointing Algorithms for Distributed Database Sys-
tems," Fourth International Conference on Parallel and Distributed Computing and Systems,3 Washington, DC, October 1991 (to appear).

(15) S. H. Son, S. Park, and Y. Lin, "An Integrated Real-Time Locking Protocol," Eighth IEEE Inter-
national Conference on Data Engineering, Phoenix, Arizona, February 1992 (to appear).

lonors and Recognition

I * Cook, Program Committee, Eighth IEEE Workshop on Real-Time Software and Operating Systems,
Atlanta, Geotgia (1991).

I * Son, ACM Distinguished Lecturer, 1991- 1993.

e Son, Chair, Technical Activities Committee, Korean Computer Scientists and Engineers Association.

I a Son, Program Committee, IEEE Symposium on Reliable Distributed Systems, Huntsville, Alabama
(1990).

i * Son, Program Committee, ACM SIGMOD International Conference on Management of Data, Denver,
Colorado (199 1).

e Son, Program Committee, IEEE Workshop on Real-Time Operating Systems and Software, (1992).

o Son, Program Committee, International Workshop on Transaction and Query Processing, (1992).

g e Son, Program Committee, International Symposium on Database Systems for Advanced Applications,
(1993).

* Son, Panelist, International Conference on Very Large Data Bases (VLDB '91), on the panel "Real-
Time Databases," (1991).

e Son, Session Chair, Ninth IEEE Symposium on Reliable Distributed Systems, (1990).

* Son, Session Chair, 12th IEEE Real-Time Systems Symposium, (1991).

* Son, Invited Paper, "A Prototyping Approach to Distributed Database Research," Database Review,
vol. 6, October 1990.

9 Son, Invited Paper, "Rcal-Time Database Systems: A New Challenge," Data Engineering, Special
Issue on Directions for Future Database Research and Devclopi~icnt, vol. 13, no. 4, December 1990.

1 4

I

e Son, Invited Paper, "Techniques for Database Recover, in Distributed Environments," Management
iand Organization of Automation, Kluwer Bcdrijfswetcnschappen, January 1991.

* Students and Post-Docs

I Seog Park, (Post-Doc), real-time transaction scheduling

Marc Poris (Research Associate), database integration with real-time kernel3Shi-Chin Chiang (Ph.D. student), chcckpointing in distributed systems

Lee Hsu (Ph.D student), priority-based resource management

Yingfeng Oh (Ph.D. student), real-time multiprocessor operating systems

Juhnyoung Lee (Ph.D. student), schedulers for real-time databases

Young-Kuk Kim (Ph.D. student), interface issues for real-time databases

Ambar Sarkar (Ph.D. student), real-time fault-tolerant network protocols

Prasad Wagle (M.S. student), dynamic priority scheduling

Yi Lin (M.S. student), priority-based contention protocols

Carmen lannacone (M.S. student), multi-thread real-timv database server

Robert Beckinger (M.S. student), support for temporal information

Sprios Kouloumbis (M.S. student), replication control5 Savita Shamsunder (M.S. student), optimistic concurrency control protocols

Stavros Yannopolous (M.S. student), experimental database manager3 Fengjie Zhang (M.S. student), majority consensus for real-time databases

David Bake (M.S. student), distributed real-time transaction processing9 Richard McDaniel(B.S. student), prototyping environment

e Number and Types of Degrees Granted

3 M.S. degrees granted to 6 students.

U
I
I
I
I
I

U
.3
I
I
I APPENDIX

I
I
B
I
I
II

I
I
I
I
I
U
I
I

U'i

Concurrency Control in Real-Time Databases
by Dynamic Adjustment of Serialization Order

I!
Yi Lin and Sang H. Son

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

ABSTRACT The goal of scheduling in real-time datibase sys-
tems is twofold: to meet timing constraints and to

Time-critical scheduling in real-time database enforce data consistency. In real-time operating sys-
systems has two components: real-Lime transaction tems, scheduling is usually at the task level subject only

scheduling, which is related to task scheduling in real- to timing constraints. Data consistency constraints are

time operating systems, and concurrency control, not involved. In conventional database systems, meet-
which can be considered as operation level scheduling. ing the deadline is typically not addressed. SchedulingMosth currnt esderch i s aereatonleely focs he . is at operation level in that the basic unit of a schedule
Most current research in this area only focuses on the is operation. The only goal of such scheduling is totransaction scheduling aspact while the concurrency guarantee data consistency. Scheduling in the real-time
control part remains untouched. In the paper, a new dataonsis chingin the rel-
concurrency control algorithm for real-time database databas ms son a oh o i
systems is proposed, by which real-time scheduling and ing mechanisms [Son90c].
concurrency control can be integrated. The algorithm Real-time task scheduling methods can be
is hased on a priority-based locking mechanism to sup- extended for real-time transaction scheduling while
port time-critical scheduling by adjusting the serializa- concurrency control protocols are still needed for
tion order dynamically in favor of high priority transac- operation scheduling to maintain data consistency.
tions. Furthermore, it does not assume any knowledge However, the integration of the two mechanisms in
about the data requirements or execution time of each real-time database systems is not trivial. The general
transaction. This makes the algorithm very practical. approach is to utilize existing concurrency control pro-

tocols, especially 2PL, and to apply time-critical tran-
saction scheduling methods that favor more urgent

1. Introduction transactions [Abb88, Sha90, Son89b]. Such
approaches have the inherent disadvantage of being

Compared with traditional databases, the ability limited by the concurrency control method upon which
to meet the deadlines of transactions is vital to a real- they are based, since all existing concurrency control

time database. In other words, the timeliness of results methods synchronize concurrent data access of transac-
can be as important as their correctness in real-time tions by the combination of two measures: blocking
database systems. Deadlines constitute the timing con- and roll-backs of transactions. Both are barriers tostraints of transactions. A deadline is said to be hard if Lm-rtclshdln.Tecnevtv w-hs
t else the result is useless. If a locking (2PL) protocol [Bern87] and the optimistic

deadline can be missed, it is a soft deadline. With soft methods [Bok87, Kung81] are examples of the two
deadlines, the usefulness of a result may decrease after extremes. In real-time database systems, blocking may
the deadline is missed. Another important characteris- cause priority inversion when a high priority transac-
tic of real-time transactions is criticality, which ton is blocked by lower priority transactions IShaXa].
represents the importance of a transaction. Deadline The alternative is to abort the low priority transactionsand criticality are two onhogonal factors that play if they block a high priority transaction. Fhis via.tes

important roles in real-tirne database systems [SonS8]. the work done by the aborted transctns and in turn

also has a negative effect on time-critical s chcdu'ing.

Concurrency control protocols induce a ,cnaiza-
This ,.,rk %as jpponcd in pat by ONR under contract 0 tion order among conflicting transactions. In non-real-

N()01-.SS K 0245. by DP)E unJer ontract * DE.FG05-.M time concurrency control protocols, timing constraints
OR5063. by IB FSD.,d by CIT under citrlci N CiT[NF-Y0. are not a factor in the construction of this order. This is
O11 obviously a drawback for real-time database systems.

CH2933-0/90/0000/0104$01.00 © 1990 IEEE 104

For example, with the 2PL method, the serialization transaction is available beforehand, off-line preanalysis
order is dynamically constructed and corresponds to can be performed to avoid conflicts [Sha90]. This is
the order in which the conflicting transactions access exactly what is done in many real-time task scheduling
the shared data objects. In other words, the serialization protocols. However, such approach may have to delay
order is bound to the past execution history with no the starting of some transactions, even if they have high

flexibility. When a iransaction TH with a higher prior- priorities, and may reduce the concurrency level in the
ity requests an exclusive lock which is being held by system. This, in return, may lead to the violation of the
another transaction, TL, with a lower priority, the only timing constraints and degrade the system pertormance
choices are either aborting TL or letting TH wait for TL. [Son90].
Neither choice is satisfactory and thus the performance What we need is a concurrency control algorithm
is degraded. that alows transactions to meet the timing constraints

Based on the argument that timing constraints as much as possible without reducing the concurrency
may be more important than data consistency in real- tevel of the system in the absence of any a priori infor-
time database systems, attempts have been made to mation [Son891. The algorithm presented in this paper
satisfy the timing constraints by sacrificing database features such ability. It has the fla,,ir of both locking
consistency temporarily to some degree [Kor9O, Lin89, and optimistic methods. Transactions wnte into the
Vrb881. It is based on a new consistency model of database only after they are committed. By using a
real-time databases, in which maintaining external data priority-dependent locking protocol, the serializauon
consistency has priority over maintaining internal data. order of active transactions is adjusted dynamically,

consistency. Although in some applicotions weaker making it possible for transactions with higher prion-
consistency is acceptable [Gar83], a general-purpose ties to be executed first so that higher priority transac-
consistency critei ion that is less stringent than serializa- tions are never blocked by uncommitted lower prionty
bility has not yet been proposed. The problem is that transactions, while lower priority transactions may not
temporary inconsistencies may affect active transac- have to be aborted even in face of contlicung opera-
tions and so the commitment of these transactions may tions. The adjustment of the s.-ialization order can be
still neei to be delayed until the inconsistencies are viewed as a mechanism to support ume-cnucal
removed; otherwise even committed transactions may scheduling. For example, T, and T2 are two transac-
need to be rolled back. However, in real-time systems, tions with T, having a higher priority. T2 wntes a data
some actions are not reversible. In addition, incorrect object x before T: reads it. In 2PL, even in the absence
data may spread within the database. This makes of any other contlicting operations between these two

inconsistency removal a very difficult task. Before any transactions, T1 has to either abort T, or be blocked
breakthrough is made in this direction, serializability ,ntil T2 releases the write lock. That is because the
seems to be the only correctness criterion for us to live serialization order T 2--JTl is already determined by the
with. past execution history. T, can never precede T, in the

Satisfying the timing constraints while preserv- serialization order. In our method, when such conflict
ing data consistency requires the concurrency control ..ccurs, the serialization order of the two transactions
algorithms to accommodate timeliness of transactions will be adjusted in favor of T1.i.e. Tl--*T2, and nei-

as well as to maintain data consistency. This is the ther is T, blocked nor is T 2 aborted. In addition, the

very goal of our work. In real-time database systems, locking protocol in the algorithm is free from
timeliness of a transaction is usually combined with its deadlocks.

criticality to take the form of the priority of that tran- The remainder of this paper is irganlzed as fol-
saction. Various ways of assigning priority and their lows. T1-, details of the proposed algorithm are
effects have been discussed in [Stan88, Hua89, described in the next section. The transaction chodul-
Buch89]. ing aspect of the algorithm is discussed in Soction 3.

For a concurrency control algoritl.,n to accom- Section 4 presents an informal argument on the c, rcct-

modate the timeliness of transactions, the serialization ness of the method. Section 5 presents an ex:-mpl ,

order it produces should reflect the priority of transac- show how the algorithm works. Final I,

tions [Son90b]. However, this is often hindered by the remarks appear in Section t.

past execution history of tiansactons. For example, a
higher pnority transaction may have no way to precede 2. The Proposed Algorithm
a lower priority transaction in the serialization order The environment w e assume tor the :-.,

due to previous conflicts. The result is that CLher the tion is a single processor with randomly arri.: -,7-
lower priority transaction has to be aborted or the high sactions. Each transaction is assigned an ,n : -r.; , I
priority transaction suffers blocking. If the information and a start-timestamp when it is ,ubmitted to ,I'10 s-
about data requirements and execution ume of each tem. The initial priority can be based on the d.xilkine

I

and the criticality of the transaction. The start- tscnr final-timestamp count of the system
timestamp is appended to the initial priority to form the is: final-timestamp of this transaction
actual priority that is used in scheduling. When we ts(T): final-timestamp value of transaction T
refer to the priority of a transaction, we always mean prioriy(T): priority value of transaction T
the actual priority with the start-timestamp appended. r, [x]: transaction i reads data object x.
Since the start-timestamp is unique, so is the priority of w, [x 1: transaction i writes data object x.
each transaction. The priority of transactions with the pw, I x 1: transaction i prewntes data object x.
same initial priority is distinguished by their start- rlock(Tx): transaction T holds a read lock on data
timestamps. object x

All transactions that can be scheduled are place wiock(Tx): transaction T holds a write lock on data
in a ready queue, RQ. Only transactions in RQ are object x
scheduled for execution. When a transaction is <t: begin critical section of class i
blocked, it is removed from RQ. When a transaction ,>: end critical secion of class i
is unblocked, it is inserted into RQ again, but may still
be waiting to be assigned me CPU. A transaction is 2.1. Read Phase
said to be suspended when it is not executing, but still The read phase is the normal execution of the
in RQ. When a transaction is doing 1/0 operation, it is transaction except that wnte operations are performed
blocked. Once i, completes, it is usually unblocked, on the private data copies in the local workspace of the
We will discuss the CPU scheduling policy in the next transaction instead of on the data objects in the data-
section, base. We call such write operations prewrite. One

The execution of each transaction is divided into advantage of this prewrite operation is that when a
three phases: the read phase, the wait phase and the transaction is aborted, all that has to be done for
write phase. This is similar to the optimistic methods, recovery is to simply discard the data in its local
During the read phase, a transaction reads from the workspace. No rollback is needed because no changes
database and writes to its local workspace. After it have been made in the database.
completes, it waits for its chance to commit in the wait The read-prewrite or prewrite-read conflicts
phase. If it is committed, it switches into the write between active transactions are synchronized during
phase during which all its updates are made permanent this phase by a priority-based locking protocol. Before
in the database. A transaction in any of the three phases a transaction can perform a read (resp. prewnte) opera-
is called active. If an active transaction is in the write tion on a data object, it must obtain the read (resp.
phase, then it is committed and writing into the data- write) lock on that data object first. If a transaction
base. The proposed algorithm takes an approach of reads a data object that has been written by itself, it
integrated schedulers in that it uses 2PL for read-write gets the private copy in its own workspace immediately
conflicts and the Thomas' Write Rule (TWR) for and no read lock is needed. In the rest of the paper,
write-write conflicts. The following is the outline of a when we refer to read operations, we exclude such read
transaction: operations because they do not incur any dependency

transaction = {tbegint)" among transactions.
read phase; Each lock contains the priority of the transaction
twait); holding the lock as well as other usual information such
twriteO; as the lock holder id and the lock type, etc. The lock-

ing protocol is based on the principle that higher prior-
All the procedures will be defined later in this section. ity transactions should complete before lower priority

transactions. That means if txo transactions conflict.
In our algorithm, there are various data structures the higher priority transaction should precede the low, er

that need to be read and updated in a consistent priority transaction in the scrialization order. With our
manner. Therefore we use critical sections of various CPU scheduling policy, %hich idl be descritd in the
classes to group the various data structures to allow next section, a high priority transacuon is scheduled to
maximum concurrency. We also assume that each commit before a low priority transatuon most ,1 the
assignment statement of global data is executed atomi- time. If a low priority transaction does complete K'toreI cally. The follow ing are sonme useful notations: a high priority transaction, it is required to \ait u;iil it

is sure that its commitment will not cause the abortion
id: id o1 this transaction of a higher priority transaction. Since transactions do
read trset: set of ids of transactions in the read phase not write into the database during the read phase,
wait trset: set of ids of transactions in the wait phase write-write conflicts need not be considered here.
write trset: set of ids of transactions in the write

phase

106

I
Suppose active transaction T1 has higher priority of the higher priority transactions that precede this tran-

than active transaction T2. We have the following four saction in the serialization order. When a conflict
possibilities of conflict and the transaction dependen- occurs between two transactions, their dependency is
cies they set in the serialization order: set and their values of beforetrset, after_trset, and
(1) rT, IX I pwT [X I => T , T2 before_cnt will be changed correspondingly.

By summarizing what we discussed above, we
(2) pwr, [x I, rTr [x] => T1 -- T, define the locking protocol as follows:

(delayed reading)
or LPI. Transaction T requests a read lock on data

T, -+ T- object x. I
(immediate reading) <0<I for te (, I(wlock(T,,x) A Ti T) do

(3) rTIX] I pwT,[x XI => T, -4 T if (priority (t) > priority (T)
v tE writetrset) ,* Case 2.4*1

then deny the lock and eit:
(4) pwT[X], rT,[X] => T1 -- T2 endif

(immediate reading) enddo
or for t (T, I wlock(T,.x) A TiAT} do

T - T, , * Case 4 */
(delayed reading) if (t ebefore_trsetr) then abort t:

Case (1) meets the principle of completing high priority else if (tea'tertrsetr)
transactions before low priority ones. In case (2), fol- then I
lowing our principle, we should choose delayed read- after_trseT after_trset2 1t}0"
ing, i.e. T2 should not read x until T, has committed before_cnti = before_cnt + 1;
and written x in the database. Case (3) violates our endif
principle. In this case, unless it is already committed, endif

T2 is usually aborted because otherwise T2 must corn- enddo
mit before T, and thus will block T1. However, if T2 grant the lock:
has already finished its work, i.e. in the wait phase, we i> o> .1
should avoid aborting it because aborting a transaction
which has completed its work imposes a considerable LF2. Transaction T requests a write lock on data
penalty on the the system performance. In the mean- o c
time, we still do not want T, to be blocked by T2. objectx.
Therefore when such conllict occurs and T2 is in the <0<2<3 for tE {T, lrlock(T,.x) A Tr T) do
wait phase, we do not abort T2 until T, is committed, if (priority (t) > priority (T))
hoping that T2 may get a chance to commit before T, then /* Case 1 */
commits. In case (4), if T2 is already committed and in if (Te aftertrset,)
the write phase, we should delay T, so that it reads x then
after T2 writes it. This blocking is not a serious prob- aftertrset = after_trset,_ {T.):
lem for T, because T2 is already in the write phase and before-cntr = beforecntr + 1.
is expected to finish wnting x soon. T, can read x as endif
soon as T2 finishes writing x in the database, not neces- 2> 3>
sarily after T2 completes the whole write phase. There- else

fore T, will not be blocked for a long time. Otherwise, if (t E wait-trset) * Case 3 I
if T2 is not committed yet, i.e. either in the read phase then
or in the wait phase, T, should read x immediately if (t E afer_trsetrj then abor:

because that is in accordance with the principle, else

As transactions are being executed and beforejrse(T = hefcore r
conflicting operations occur, all the information about endif

the induced dependencies n the serialization order then abortt,

needs to be retained. To do this, we associate with each enaot

transaction two sets, before trset and after_trset, and a endif

count, before_cn. The set before_trset (resp. endif
after_trset) contains all the active lower priority tran- gnt oc

sactions that must precede (resp. follow) this transac- grant the lock:

tion in the serialization order. heforecnt is the number 0>

107 l

It

The critical sections of class 0 guarantee that Transactions are released for execution as soon
lock requests are processed sequentially, probabl. by a as they arrive. The following procedure is executed
lock manager. LPI and LP2 are actually two pro- when a transaction is started:
cedures of the lock manager that are executed when a tbegin = (
lock is requested. When a lock is denied due to a before-rrset := 0;
conflicting lock, the request is suspended until that := 0:
conflicting lock is released. Then the locking protocol before-cnt 0=O
is invoked once again from the very beginning to read trset .read trset fid.
decided whether the lock can be granted now. Fig. 1 R_Q-.= RQ (id]
shows the lock compatibility tables in which the com- . _
patiblities are expressed by possible actions taken when
conflicts occur. The compatibility depends on the pnor- Then the transaction is in the read phase. When it tres
ities of the transactions holding and requesting the lock to read or prewrite a data object, it requests the lock.
and the phase of the lock holder as well as the lock The lock may be granted or not according to the lock-
types. Even with the same lock types, different actions ing protocol. Transactions may be aborted when lock
may be taken, depending on the priorities of the lock requests are processed. To abort a transaction, the fol-
holder and the lock requester. Therefore a table entry lowing procedure is called:

may have more than one blocks reflecung the different tabort = (
possible actions. release all locks;

<2 fort E after_trset do
beforecnt, .= beforecnt,- 1:

,' ck eL~ e occkh if (before_cnt, = 0 A E C wait_trset)
requested read 'e eested then unblock t:

endd

if (id E read_trset)
lock re.quester has Jower priority lock requester has higher priority then read tr et := read trset - (id.

else it (id _E ", rite trset)-

lck granted lck r-quester aborted then wrie irset .= write trset -Iid)i,

lock requester blocked lock holder abotd else if nJ E wait_trset)
then waitrset .- wait trset - i)
endif

endif
Fig. I Lock Compatibility Table endif

Note that a data object may be both read locked
and write locked by several transactions simultaneously lock lock

with our locking protocol. Unlike 2PL, locks are not request , ,d e t, ,e

classified simply as shared locks and exclusive locks. rea read

Fig. 2 summarizes the lock compatibility of 2PL with"..

the ttigh Priority scheme in xhich high priority tran-
sactions never block for a lock held by a low priority lock requester has io.er priority :,ck requets has tghet Friormv
transaction (Abb881. By comparing Fig. I with Fig. 2,
it is obvious that our lockini protocol is much more ',-k Rr 'e

flexible, thus incurs less blocking and abort. Note that
in Fig. 1, the abort of lo,er pr onty transactions in the ,k reqacr J,,

'wait phase is also included. In our locking protocol, a ,.a ".r sr.r,.

high priority Lransaction is n.,cr blocked or aborted
due to conllict V, ith dii ui,, iiult.d lower priority
transaction. The probabilat , ibertini! a lower prionty Fig. 2 Lock Compatibility Table ot 2PL
transaction hould be less thin that in 2PL under the
same conditions. An anal.tical model may he used to
estimate the exact probabdilit, but that is Nbyond the
,cope of this paper.

108

The critical section of class 2 in the procedure also endif
appears in LP2. This ensures the mutual exclusion on endif
after_trset. To be precise, mutual exclusion is only enddo
needed between LP2 and the procedure. Transactions 3>
can be in the critical section of the procedure simul-
taneously, because each transaction in the proceduretabort only access its own a fter_trsec. After a transaction commits, all the transactions

in its before trset need to be aborted because they must

2.2. Wait Phase commit, if they can, before this transaction. The criti-
cal section of class 1 in the procedure guarantees that

The wait phase allows a transaction to wait until transactions cannot switch into the write phase con-
it can commiL A transaction T can commit only if all currently, and once a transaction is committed and
transactions with higher priorities that must precede it assigned a final-timestamp, no transaction in its
in the serialization order are either committed or beforetrset can commit. Note that LPI is also in the
aborted. Since before cnt is the number of such ran- critical section of the same class. This achieves mutual
sactions, T can commit only if its before cnt becomes exclusion on before cnt and write trset. The critical
zero. A transaction in the wait phase may be aborted section of class 3 in the procedure has the same effect
due to two reasons. The lirst one is that since T is not as that of the critical section in the procedure tabort.
committed yet and still holding all the locks, by the
locking protocol it may be aborted due to a conflicting 2.3. Write Phase
lock request by a higher priority transaction. The
second reason is the commitment of a higher priority Once a transaction is in the write phase, it is con-
transaction that must follow T in the serialization order. sidered to be committed. All committed transactions
When such a transaction commits, it finds T in can be serialized by the final-timestamp order. In the
before trset and aborts T. Once a transaction in the write phase, the only work of a transaction is making
wait phase gets its chance to commit, i.e. its before cnt all its updates permanent in the database. Data items
goes to zero, it switches into the write phase and are copied from the local workspace into the database.
release all its read locks. A final-timestamp is assigned After each write operation, the corresponding write
to it, which is the absolute serialization order. The pro- lock is released. The Thomas' Write Rule (TWR) is
cedure is as follows: applied here. The write requests of each transaction are

sent to the data manager, which carries out the write
twait = (operations in the database. Transactions submit write

wait trset := waittrset - [id); requests along with their final-timestamps. The write

read trset := read_ rset - {id). ;procedure is as follows:
waiting .= TRUE:
while(waiting) do twrite (

<I if (before cnt = i) * tifcan commit */ <4 for xE (x, I wlock (id,x,) } do

then /* s-witching into write phase */ for TE write trset do
wait-trset = wait trset - (id); if (wlock(Tx) A ts(T) < ts id))

write trset = write-trset u (id); then release T's write lock on x:
tS = tscnt. endif

tscnt .= tscnt + 1" enddo

for t E before trset do send write request on x and wait for
if (tE read trset v tE wait trset) acknowledgement;
then abort t: 4>
endif if (acknowledgement is ok)

enddo then release the write lock on x.
> else abort:"

waiting FALSE endif

else block; enddo
endif R_Q := R_Q -{id}

enddo)
release all read locks. The purpose of the critical section ii me .che'e

<3 for t E after_trset do mutual exclusion on write locks. For each data ebject,
if (t E read-trset . E Vdit1trset write requests are sent to the data manager onlv in
then before :nt, = hefre cnt-I." ascending timestamp order. After a \,nte rcqueyt on

if ihefore_-nt, = 0)A t E wat trset) data object x with timestamp n is issued to ..he a a
then unblock t.

109

manager, no other write request on x with a timestamp the execution of a set of transacions. Any two
smaller that n will be sent. The write requests are buf- conflicting operations must be comparable. Let H be a
fered by the data manager. The data manager can work history. The serialization graph for H, denoted by
with the first-come-first-serve policy or always select SG(H), is a directed graph whose nodes are committed
the write request with the highest priority to process. transactions in H and whose edges are all T, --* T (i 1)
When a new request arrives, if there is another buffered such that one of T,'s operations precedes and conflicts
write request on the samte data object, the request with with one of T 's operations in H. To prove a history H
the smaller timestamp is discarded. Therefore for each serializable, we only have to prove that SG(H) is acy-
data object there is at most one write request in the clic [Bern87].
buffer. This, in conjunction with the procedure twrite, Let T, and T 2 be two committed transactions in
guarantees TWR. a history H produced by the algorithm. We argue that

if there is an edge T1 -* T. in SG(), then
3. CPU Scheduling ts(T 1) < ts(T 2). Since T, -i T2 , The two must have

Although the focal point of this paper is on con- conflicting operations. There are three cases.
currency control, i.e. operation level scheduling, we
still need to discuss a little about the transaction Case 1: wIx] - w2 [x]
scheduling, or CPU scheduling, aspect of our algo-
rithm. In non-real-ume database systems, CPU Suppose ts(T 2)<ts(Tt). Therefore T enters
scheduling is usually done by the underlying operating into the write phase before T1. If w1 [xj is sent

systems, because there are no timing constraints. Data to the data manager first, T2 's write lock on x
consistency is the only concern. In real-time database must be released before wI [x] is sent to the data
systems, however, CPU scheduling should take into manager in twrite). If w2[xI is sent to the data
account the timeliness of transactions, manager first, it will either be processed before

w I[x] is sent to the data manager, or be dis-
In our protcol, R_Q contains all transactions carded when the data manager receives wl [x],

that can be scheduled. These transactions can be in any because w,[x] has a smaller timestamp. There-
phase. We need a policy to determine the CPU schedul- fore w1 [x] is never processed before w2 [x].
ing priority for transactions in different phases. Tran- Such conflict is impossible. A contradiction.
sactions in their wait phase are those that have finished Ca
their work and are waiting for their chances to commit. se 2: r[x] -* w 2 [x]
We would like to avoid aborting such transactions as If T 2 holds write lock on x when T1 requests the
much as possible. Therefore transactions in this phase read lock, we must have
are given higher CPU scheduling priority than those in priority(T) > priority(T2) and T 2 is not in the
the read phase so that they can commit as soon as they write phase, because otherwise T, would have

get the chance. Transactions in the read phase are been blocked by LPI. By LPI,
scheduled according to their assigned priority. If there T2 E after trset(TI). T 2 will not switch into the
are several read phase transactions in the R_Q, the one write phase before T, does, because before_cntT,
with the highest priority is always selected to execute. cannot be zero with T , still in the read or wait

For transactions in the wait phase, the lower the phase. Therefore ts(T 1) < ts(T 2). If T, holds
priority is, the higher the CPU scheduling priority is. read lock on x when T 2 requests the write lock,
Since low priority transactions are more vulnerable to by LP2, we have either T, E aftertrsetr, or

conflicts, if there is a chance, they should be committed T, E before_trsetr,, depending on the priorities
as soon as possible to avoid being aborted later. More- of the two transactions. In either case, T: must
over, when a high priority transaction TH is committed, commit before F,. Hence we also have
it may have to abort a low priority transaction TL if TL ts (T,) < ts J 2).
is in Tif's beforetrset. If TL is also ready to commit Case 3: w.: [z - r-i(r

and we allow it to commit before bn, both ITL and Sfr
can be committed.i s already in the nte phae trreads x, we must have F) .I 11,.

4. Correctness of the Algorithm
In this section, x,e eivc an mtormal argument On Suppose there is a * . Ic

the correctness of the algorithm. We A11l also show 1 -- * " . F, --- , in SGt/D. By the aW)e
that the algorithm is free lrom deadlocks. First, we argument, we have is (T:) < is ,) < .
give the simple definitions of historv and seriah:ation < ts T,) < ts(T). This is impossible. Therefore nograph (SG). For the formal definitions, see [BernX7J. A cycle can exist in SG(If) and thus the algorithm only

history is a parual order of operations that represents produces senalizable histories.

110

r

In the algorithm, a high priority transaction can writes d, T2 finishes I/O and preempts T3 again. It pre-
be blocked by a low priority transaction only if the low writes d which is only write locked by T3. At time t3,
priority transaction is in the write phase. Suppose there T, arrives and preempts T2 . T1 first reads d. which is
is a cycle in the wait-for graph (WFG), write locked by both T2 and T3. Therefore.
T- "- T2 - - -4 T. -4 T 1 . For any edge T, --+ T) in before -rsetT, becomes (T 2 . T 3) and both before_cniT
the cycle, if priority(T,) > priority(T), T must be in and before_cntr, become 1. Then T, reads b. which is
the write phase, thus it cannot be blocked by any other write locked by T3. Since T 3 is already in
transactions and cannot appear in the cycle. Therefore before trsetT, nothing is changed. Then T, pre-writes
we must have priority (T,) < priority (Tj) and thus b and pre-writes d. Since these two data objects are not
priority (T I) < priority T 2) < ... < priority kT,) < read locked by any other transactions, the write locks
prioriy (TI). This is impossible. Hence a deadlock can- are granted to T, directly. At time t4. T, switches into
not exist. the write phase. Both before cntr, and before-cnrT, go

The strictness of the histories produced by the back to 0. Now T2 should be executed, but it needs to
algorithm follows obviously from the fact that a tran- read b. which is being write locked by TI; hence T3 issaction applies the results of its write operations from executed instead. It reads c, which is read locked by
its local workspace into the database only after it com- T2. At time t5, T1 finishes writing b and releases the
mits. This property makes transaction recovery pro- write lock so that T2 can preempt T3 to continue its
cedure simpler than non-strict concurrency control work. It reads b, which is write locked by T 3. Now
algorithms. beforetrsetr, becomes (T3) and beforecntT,

becomes 1. After T2 pre-writes b, it switches into the
5. An Example write phase and before_cnhT, becomes 0 again. Then

In this section, we give a simple example to T3 executes and also switches into write phase after
show how the algorithm works. The example is dep- pre-writing c.
icted in Fig. 3. A solid line at a low level indicates that In the above example, T1 , which is supposed to
the corresponding transaction is doing I/O operation be the most urgent transaction, finishes first although it
due to a page fault or in the write phase. A dotted line is the last to arrive. T 3 , which is supposed to be the
at a low level indicates that the corresponding transac- least urgent one, is the last one to commit. None of the
tion is either suspended or blocked, and not doing any three transactions need to be aborted. Assume we use
1/0 operation either. A line raised to a higher level 2PL in the above example. When a high priority tran-
indicates that the transaction is executing. The absence saction requests a lock which is held by a low priority
of a line indicates that the transaction has not yet transaction, we either let the high priority transaction to
arrived or has already completed. wait or abort the low priority transaction. Suppose we

choose the first alternative, both T1 and T2 would be
blocked by T3 because T3 holds a write lock on d. If

t . we choose the second alternative, T3 will be aborted by
d) , r-rI rl T 2 when T 2 pre-writes d and then T 2 will be aborted

T2 E by T, when T1 reads d. This example illustrates the

,) 71 ij .01 ,, advantage of the proposed method over 2PL.

T .6. Conclusions
I I I Time-critical scheduling in real-time database
, ' '12 t ,, ts systems consists of two scheduling mechanisms: tran-

saction scheduling and operation scheduling. To find
new concurrency control methods in which timing con-

Fig. 3 An Example straints of transactions are taken into account, we have
investigated solutions to the operation scheduling
aspect of time-critical scheduling.

There are three transactions in the example. Ti In this paper, a priority-based concurrency con-
has the highest priority and F3 has the lowest. T3 trol method for real-time database systems is presnted
arrives at time to and reads data object a. This causes a which employs a priority-dependent locking mchan-
page fault. After the I/O operation, it pre-writes b. Then ism. It works under the condition that no inflormation

T2 comes in at time t, and preempts F3. At time t2 it about data requirements or execution time of each tran-

reads c and causes another page fault. So it is blocked saction is available. By delaying the wnte operations

for the I/0 operation and T3 executes. After T3 pre- of transactions, the restraint of past transaction exccu-
tion on the serialization order is relaxed, allowing the

ill

III

serilization order among transactions to be adjusted [Lin89] K. J. Lin, "Consistency issues in real-Lime
dynamically in compliance with transaction timeliness database systems," in Proc. 22nd Hawaii
and criticality. The new algorithm features the ability Intl. Conf. System Sciences, Hawaii, Jan.
that allows tasactons to meet the timing constraints 1989.
as much as possible without reducing the concurrency [Sha88] L. Sha, R. Rajkumar. and J. P. Lehoczky,
level of the system or increasing the restart rate "Concurrency control for distributed real-
significantly. In the algorithm, high priority transac- time databases," ACM SIGMOD Record.
tions are never blocked by an uncommitted lower prior- vol. 17, no. 1, Mar. 1988.
ity transaction, while low priority transactions may not
have to be aborted even in face of conflict with high [Sha9 L. Sha, R. Rajkumar, S. H. Son, and C.
priroity transactions. In conjunction with a time- Chang. "A Real-Time Locking Protocol,"
critical transaction scheduling policy (CPU scheduling IEEE Transactions on Computers. to
policy) discussed in Section 3, the proposed algorithm appear.
is expected to improve the system performance [Son88] S. H. Son, editor, ACM SIGMOD Record
significantly. 17, 1, Special Issue on Real-Time Database

Systems, March 1988.

[Son89] S. H. Son and R. P. Cook, "Scheduling and
consistency in real-time database systems,"

R efere nces in Proc. 6th IEEE Workshop Real-Time
Operating Systems and Software, Pitts-

[Abb88] R. Abbott and H. Garcia-Molina, "Schedul- burgh, Pennsylvania, May 1989, pp 4 2 -4 5 .
ing real-time transactions: a performance [Son89b] S. H. Son, "On Priority-Based Synchrontza-
evaluation," in Proc. 14th VLDB Conf. Los tion Protocols for Distributed Real-Time
Angeles, Aug. 1988. Database Systems," IFAC'IFIP Workshop

[Bern87] P. A. Bernstein, V. Hadzilacos, and N. on Distributed Databases in Real-Time
Goodman, Concurrency Control and Control. Budapest, Hungary, Oct. 1989, pp
Recovery in Database Systems. Reading, 67-72.
MA: Addison-Wesley, 1987. (Son901 S. H. Son and C. Chang, "Performance

[Bok871 C. Boksenbaum et al., "Concurrent evaluauon of real-time locking protocols
Certifications by Intervals of Timestamps in using a distributed software prototyping
Distributed Database Systems," IEEE environment," to appear in Proc. 10th Intl.
Trans. on Software Eng., vol. SE-13, no. 4, Conf. Distributed Computing Syst., Paris.
April 1987, pp 409-419. France, June 1990, pp 124-131.

(Buch891 A. Buchmann et al., "Time-critical database [Son90bl S. H. Son and J. Lee, "Scheduling Real-
scheduling: a framework for integrating Time Transactions in Distributed Database
real-time scheduling and concurrency con- Systems," 7th IEEE Workshop on Real-
trol," in Proc. Data Engineering Conf., Los Time Operating Systems and Software.
Angeles, Feb. 1989. Charlottesville, Virginia, May 1990, pp 39-

(Gar83] H. Garcia-Molina, "Using semantic 43.
knowledge for transaction processing in a [Son90c] S. H. Son, "Real-Time Database Systems: A

distributed database," ACM Trans. Data- New Challenge," Data Engineering. vol. 13,
base Syst., vol. 8, no. 2, pp. 186-213, June no. 4. Special Issue on Future Directions on
1983. Database Research, Dec. 1990.

[Hua891 J. Huang, J. A. Stankovic, D. Towsley, and [Stan88] J. A. Stankovic and W. Zhao. On real-time
K. Ramamriham, "Experimental evaluation transactions," 4CM SIGMIOD Record. %ol.of real-time transaction processing," in 17, no. 1, Mlar. 1988.
Proc. Real-time S ten Smp.. Dec. 1989. [Vrb881 S. V. Vrbsky and K. J. Lin. R,'co'crtmn

[Korg'X0] H. Korth, 'Triggered Rcal-Time Databases imprecise tranSactions xah reai-t;me _,n-
with Cons iqency CcnstrainLs." 16th VLDB straints." in Proc .mp Reliabie L. ;r,-
Conference. Brihane. .\ustralia, Aug. 1990. buted Syst . Oct. I SM. pp. 1'5-1l

[Kung8l1 H. T. Kung and J. T. Robinson, "On
optimistic methods for concurrency con-
trol,'" 4C 'ran., Datahase S 't.. vol. 6,
no. 2, pp. 213-226, June 19M1.

112

JOIE

us

New Paradigms for Real-Time Database Systems

Robert P. Cook. Sang H. Son, Henry Y. Oh, Juhnyoung Lee

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

1. Introduction

Real-time database systems (RTDBS) are database systems where transactions have timing con-
straints such as deadlines. The correcmess of the system depends not only on the logical results but also
on the time within which the results are produced. In RTDBS, transactions must be scheduled in such a
way that they can be completed before their corresponding deadlines expire. For example, both the update
and query in the tracking data for a mission must be processed within given deadlines.

Conventional database systems are typically not used in real-time applications due to poor perfor-
mance and lack of predictability. In other words, paradigms used in conventional database systems are
not suitable in real-time database systems [Son90]. To address this problem. we have been investigating

new database technology and paradigms for real-time systems using both theoretical as well as experi-
mental approaches. They can be grouped into the following research tasks: (1) investigating new proto-
cols for transaction scheduling, concurrency control, and checkpointing, and (2) developing experimental
database systems that can provide real-time features over conventional relational databases. New schedul-
ing and concurrency control protocols developed in the first task are being implemented in the experimen-
tal database systems and the prototyping environment for performance evaluation.

Our research effort in the area of real-time transaction scheduling has resulted in two new protocols:
one based on locking [Lin90] and the other on timestamp ordering. In the area of experimental database
systems, we have been developing a suite of database systems on several platforms. Currently, our
research utilizes the UNIX, StarLite [Cook901, and ARTS operating systems [Tok891. Experimental data-
base systems we have developed on these platforms are the Multi-user Real-time Database (MRDB),
Parallel Real-time Database (PRDB), and Real Time Database (RTDB), respectively [Son9l]. All three
systems are based on the relational paradigm. Much of our development consists of implementing new
functionality on the most appropriate platform, and where applicable, porting the result to one of the oth-
ers. In this paper, we outline the scheduling protocol based on timestamp ordering and our experience
with PRDB development-rn 2. An Optimistic Concurrency Control for Real-Time Transaction Scheduling

In real-time transaction scheduling, the actual execution order of operations is determined by two
factors: priority order and serialization order among transactions in system. The difficulties in real-time
transaction scheduling arise from the fact that these two factors have different natures and are constructed
in different ways. While serializable execution order is strictly bound to the past execution history, the
priority order does not reflect the past execution history and may dynamically destroy the order set up in
the past execution, hence serializability. By identifying the effects of the interactions between senaliza-
tion order and priority order in scheduling real-time transactions, we can build more intelligent conflict
resolution schedulers.

One approach to real-time transaction scheduling is to make the priority order and serialization
order compatible as much as possible in order to increase the probability of satisfying both timing and

This work was supponed i part by ONR conract N00014-88-K-0245, by NOSC. and by IBM FSD.

103

U
IIl

consistency constraints. One way to make the two orders compatible is to adjust serialization order
dynamically to priority order. This approach can be justified because serialization order is not subject to
timing constraints as long as it enforces serializability, while we assume that the priority order of a tran- N J
saction is statically determined when it arrives in the system.

Integrating a concurrency control protocol with priority-based scheduling methods has the inherent
disadvantage of being limited by the concurrency control protocol on which it depends. Two-phase lock- *1
ing and tirnestamp ordering depend on the immediate validation of operations. and do not provide a facil-
ity to adjust serialization order dynamically to priority order. To adjust the serialization order, we need to
delay determining the serialization order of conflicting operations, because once the serialization order is
determined, the orders of operations from transactions cannot be adjusted dynamically,

In optimistic concurrency control in which the serializability test (called the validauon test) is made
only at the end of a transaction. the serialization order can be constructed dynamically in compliance with Pg
transaction timeliness and criticality. Furthermore, owing to its potential for a high degree of parallelism,
optimisac concurrency control is expected to perform better than two-phase locking or timestamp order-
ing in real-time transaction scheduling.

We have developed an optimistic concurrency control protocol based on the notion of dynamic
timestamp allocation (Bok87]. In this protocol, the serialization order is dynamically constructed by
using intervals of timestamps. The protocol uses a backward validation scheme, in which validating a
transaction is performed against committed transactions. It also updates the timestamp intervals of active
transactions to adjust their serialization order. As in other optimistic protocols, the execution of a transac-
tion in our protocol is divided into three phases: read. validation, and write. However, unlike other
optimistic protocols, contlicts and nonserializable executions are detected during the read phase of tran-
saction execution, minimizing wasted work due to later restarts of transactions.

The goal of this protocol is to enforce serializability by satisfying the following two conditions (CI)
and (C2) through every read, prewrite, and validation. As long as (C) and (C2) are satisfied, serializa-
tion order can be adjusted in favor of priority order without violating data consistency.

(C1) Each timestamp interval constructed when a transaction accesses a data object should preserve the
order induced by the timestamps of all committed transactions which have accessed that data
object.

(C1) The order induced by tmestamp values of a validating transaction should not destroy the serializa-
tion order constructed by the past execution, i.e., by committed transactions.

Before describing the algorithms for the read and validation phases, we summarize the information
used to keep track of the dependencies among transactions: P
" for each active transaction T, its readset, RS (T). and writeset, WS (T);

" for each committed transaction T, a timestamp ts(T) assigned in its validation phase;

" for each active transaction T and for each data object x it has read or written in its read phase. an mter-
val of timestamnps lI(Tx); and

" for each data object x, RTS(x) and WTS(x), which denote the largest timestamps of the committed
transactions having read or written x, respectively.

In order to decide whether a transaction T is involved in a nonserializable execution, all the times-tamp intervals of T are grouped as I(T) = n-Il(T.x) for X being the set of data objects accessed by T.

1(T) preserves the order between T and committed transactions. Any operation of an active transaction T
which introduces a nonserializable execution can be detected by checking whether the execution of the
o p e ra tio n re s u lts in I (T) = 0 . 1 0 4

104

In the implementation, with each transaction T is associated its current interval It(T) instead of
I(Tx)'s and 1(T). At the start of T, i(T) is initialized as [0, -,) (the whole set of allowable timestamps).
For each read or prewrite made by T, Ic(T) is adjusted according to dependencies induced by the opera-
tion to satisfy (C 1). A transaction T must be restarted when (T) = 0. The gradual construction of a
serialization order by using I,(T) makes it possible to detect nonserializable executions even before the
transaction reaches its validation phase. Furthermore, every transaction that reaches its validation phase
is guaranteed to commit m this protocol.

We present the protocol via the following pseudo code. We bracket a critical section by "<" and
">. and assume that timestamp intervals contain only integers.

Read phase

< for every data object x in RS (T,) doi tci~1,T,) := 1,(T,)n.[WTS~x)+I.o ,I

if I,(T,)=0 then restart(T,)

< for every data object x in WS(T,) do
I(T,) := l,(T,)n- WTS (x)+1, -c) (){RTS (x)+I, o) >

if 1/4(T,)= then restart(T,)

Validation and Write phase

< choose ts (T,) in I,(T,)

update RTS (x) and WTS (x) for every x in RS (T,) and WS (T,)
adjust 1,(T,) >
make its updates permanent in the database

The validation of a transaction means that the execution of the operations from the transaction is
serializable, and the execution should be reflected in the serialization order of committed transactions.
Thus we should choose a timestamp for the transaction to satisfy (C2), update RTS and WTS for data
objects it accessed, if necessary, and adjust the timestamp intervals of all active transactions which
conflict with it to satisfy (Cl). Any timestamp tU 1,(T,) satisfies the condition (C2). The adjustment pro-
cedure is as the following:

Interval Adjustment Operation

< for every data object x in RS(T,) do
for every transaction T which has written x do

It(TJ) := 1'(TJ)n" ts (T,)+l, -) >

if I,(Tp)=. then restart(T)

< for every data object x in WS(T,) do
for every transaction T, which has read x do

-1 T(T 1 TJ)t[O, ts(T,)-I I
for every transaction T, which has written x do

1, i(Td) := I, (Tj))-) is(T,)+. I -) >

irl(T)=0 then restart(T)

The Adjust procedure given above can be modified in several ways to integrate pnonty scheduling
with this protocol. As a simple approach, we can adjust the size of 1,(T,) of an active transaction T,.
Because the size is correlated with the probability of restarting of the transaction, for priority scheduling,

a transaction with higher priority needs to have a larger timestamp interval than a transaction with lower
priority. When adjusting the timestamp intervals of active transactions, if we give larger timestamnp

3 105

intervals to transactions with higher priority over transactions with lower priority, then we can decrease
the risk of restarting higher priority transactions. The choice of a timestamp of the validating transaction
also has a definite effect on the active transactions which conflict with it, because the timestamp intervals
of those transactions are adjusted according to the timestamp chosen.

As another approach, the priority wait strategy [Har90 in which the validating transaction waits for
the conflicting transactions with higher priority to complete, can also be used in this protocol. The advan-
tage of this strategy is that a higher priority transaction is not restarted due to the validation of a lower
prionty transaction. While a lower prionity transaction is waiting, it is possible that it will be restarted
due to the validation of one of the conflicting higher priority transactions.

3. A New Parallel Paradigm for Real-Time Database System
One important advance in computing technology is the emergence of parallel computers. In a data-

base system. there are at least two levels in which parallelism can be exploited. The first level contains
the basic database operations. The basic idea behind these algorithms is to partition a single database
operation into multiple sub-operations, perform those sub-operations simultaneously and then combine
the separate results into one. For example. the join operation can be performed in parallel by dividing one
of the two relations into several blocks and joining each block with the other relation simultaneously. As
a large amount of data are usually involved in each database operation, it is essential from a performance
standpoint that accessing the data should be done efficiently. New techniques to organize indices and to
structure data files are needed.

The second level is the query processing level in which different queries can be executed simultane-
ously if they do not conflict. For example, two CREATE operations can be executed in parallel on dif-
ferent processors or the interpretation of two expressions can be done simultaneously. Here we are only
concerned with parallelism at the second level.

PRDB is an experimental real-time database system that runs on an emulated tightly-coupled,
shared-memory multiprocessor system in the StarLite software development environment, running on
UNIX under SunView/X Windows. The overall design goal of PRDB is to provide a general paradigm
for exploring parallelism and implementing different real-time scheduling policies in database systems.
The paradigm has evolved from the WorkCrew model [Rob891. The major advantage of the WorkCrew
paradigm is its efficient mechanisms to control and manage parallelism by creating the minimum number
of processes in the system and the employment of a lazy evaluation technique for posted work. The syn-
chronization of concurrent tasks and the overhead of task decomposition are minimized.

In the WorkCrew paradigm, tasks are assigned to a finite set of workers. A task may consist of
several subtasks. If some of the subtasks can be executed in parallel, they are put into a "request_help"
queue of the worker. Any idle worker can take over the subtasks and execute them. The WorkCrew para-
digm has two advantages. First, much of the work associated with task division can be deferred until a
new worker actually undertakes the subtask, and avoided altogether if the original worker ends up execut-
ing the subtask serially. Second, the number of active workers in the system is always equal to the
number of processors.

However. the WorkCrew paradigm has two limitations that prevent it from becoming a general
framework for parallel computing. The first limitation is that there is no general mechanism to retrieve
results. In the WorkCrew model, the results of operations are reflected in the preallocated space. If opera-
tions produce some new results apart from the results stored in preallocated space. which is usually the
case for most of the applications, there is no way to retrieve those results. The second limitation is that
there is no way to specify different operations to be performed on data, i.e.. the procedure to manipulate a
set of data cannot be explicitly passed to each worker so that the worker can perform different operations.
Further, the WorkCrew model does not address the real-time requirements of the application.

In our paradigm, the first limitation is addressed by providing a result queue for the crew. The
second limitation is dealt with by passing the handler for operations as a parameter to each worker. These

106

improvements require the extension of the concept of work. The concept of work in the WorkCrew para-
digm is a passive entity and consists only of the data items to be manipulated. In the PRDB paradigm, the
concept of work is still a passive entity, however, the contents of work not only consist of data items to be
manipulated, but also the operation to be performed on the data items and the timing-constraint informa-
tion for the work to be performed.

The real-time transaction scheduler and the CPU schedulers (called dispatchers) are separated. The
real-time transaction scheduler is implemented by the crew, while the dispatcher is implemented within
each worker. The real-tune transaction scheduler schedules tasks according to its own policies and puts
them onto two work queues residing on the crew. One of these two queues is for hard deadline tasks and
the other is for soft deadline tasks. Since each worker has also its own "request-help" queue. the searchpath of work to do by an idle worker begins with the hard-deadline queue of the crew, then the

"request-help" queues of the workers, and finally the soft deadline queue of the crew. If the deadline has
passed. the workers immediately write the result into the result queue indicating the missing of a dead-
line. Otherwise, the work is performed and results are returned through the result queue. In the case where
a worker has to synchronize with other workers in performing a task, the worker blocks and a new worker
is created to help the other workers' work. Thus, the number of the active workers is always equal to that
of the processors in the system, if the work load is high.

The data structures of a unit of work and a unit of result are as follows:
WORK = RECORD

critical : CARDINAL; (* hard vs soft deadline *)

deadline : Time; (* the deadline is checked before executing the operation *)
operation : PROCEDURE; (* specifying the operation *)
paramAddr: ADDRESS; (* pointer to the work to be done *)
size : CARDINAL; (* the size of the work data structure *)

END;
- RESULT RECORD

missDeadline - BOOLEAN; (* missed deadline? *)
finishTime : Time: (* the finished time of a unit of work *)
resultAddr: ADDRESS; (* pointer to the result data structure *)
size : CARDINAL; (* the size of the result data structure *)

END;

The major functions provided by the paradigm are starting a crew of workers, destroying a crew of
workers, modifying the number of workers in a crew, assigning work to a crew, requesting help by a
worker, testing whether the requested work has been done by other workers, and waiting for some work to
be finished.

Each basic database operation is written by using the functions provided above if some part of theI basic database operation can be done in parallel. Initial results have indicated the soundness of the para-
digm for parallel real-time database computing. More thorough experiments are being carned out. We
believe that this new paradigm will scale well to large number of processors in the system and will be
efficient in scheduling real-time transactions.

The data given below are the relative speedups of PRDB over the RDB system. The workload for
the experiments is the same for the uniprocessor which runs the RDB system and the multiprocessor sys-i tem which runs PRDB. The first experiment (Testl) consists of 26 "Create" operations and 22 "insert"
operations. Each "Insert" operation inserts 15 tuples in a different relation with three attributes each.
Other expenments (Tests 2 and 3) consist of the same operations as Testl, however, each "Inser' opera-
tion in Test2 inserts 25 tuples, while each "Insert" operation in Test3 consists of 50 Tuples. The results
show that PRDB favors coarse-grained parallelism in the computation.

1 107I!_ - - - -

"3

Xteedet o PRDg noveLr RDBNitm her of nmce'_onr ! .2.. L- 4A -i-5- 6 fi

TestI Time Units 4613 3704 3074 2593 2515 2447
Speedup 1.24 1.50 1.77 1.83 1.88

Test2 Time Units 9046 5761 4170 3471 3120 2904
Speedup -_ _I _1 1.57 2.16 2.60 2.89 3.11

Test3 Time Units 26195 14276 9878 7813 6752 5841
S~eedup 1.3 2.65-3.35 17 4.48 M

4. Concluding Remarks

A real-time database manager is one of the critical components of a real-time system. To satisfy
timing requirement, transactions must be scheduled considering not only the consistency constraints but
also their timing constraints. In addition, the system should support a predictable behavior such that the
possibility of missing deadlines of critical tasks could be informed ahead of time. before their deadlines PS
expire. In this paper, we have presented new paradigms that exploit the ideas of dynamic adjustment of

serialization order and parallel computing. We are currently working on the performance evaluation of
new paradigms using the prototyping environment as well as experimental database systems.

REFERENCESP

tBok87) C. Boksenbaum, M. Cart. J. Feme, and 1. Pons, "Concurrent Certifications by Intervals of
Timestamps in Distributed Database Systems," IEEE Transactions on Software Engineering,
Vol. SE-13, No. 4. April 1987.P

(Cook9O] R. Cook, and Y. Oh, "The StarLite Project," The 3rd Sym. on Frontiers of Massively Parallel
Computation, Univ. of Maryland.College Park. Oct. 1990.

(Har90l J.R. Haritsa. M.J. Carey, and M. Livny, "Dynamic Real-Time Optimistic Concurrency Con-
trol," IEEE Real-Time Systems Symposium, Orlando, Florida, December 1990.

[Lin90] Y. Lin and S. H. Son, "Concurrency Control in Real-Time Database Systems by Dynamic
Adjustnent of Serialization Order," IEEE Real-Time Systems Symposium, Orlando. Florida.
December 1990.

(Rob891 E. S. Roberts, and M. T. Vandevoorde, "WorkCrews: An Abstraction for Controlling Parallel-
ism," DEC SRC Technical Report, April 1989.

[Son90l S. H. Son, "Real-Time Database Systems: A New Challenge," Data Engineering, vol. 13. no.
4, Special Issue on Directions for Future Database Research and Development. December
1990.

[Son9l] S. H. Son. M. Poris, and C. lannacone, "Implementing a Distributed Real-Time Database
Manager," The Second International Symposium on Database Systems for Advanced Applica-
tions (DASFAA '91), Tokyo, Japan, April 1991.

[Tok89] H. Tokuda and C. Mercer, ARTS: A Distributed Real-Time Kernel, ACM Operating Systems P 3
Review, 23 (3), July 1989.

10
108 P1

RTDB: A Real-Time Database Manager for Time-Critical Applications

I Sang H. Son, Carmen C. lannacone, and Marc S. Poris

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903
USAI

Abstract conventional database systems allow users to specify
timing constraints or ensure that the system meets those

Compared with traditional databases, database set by the user. Interest in this new application domain
systems for time-critical applications have the distinct is also growing in the database community. Recently, a
feature that they must satisfy timing constraints associ- number of research results have appeared in the litera-
ated with transactions. Transactions in real-time data- ture [Abb89, Buc89, Kor9O, Lir19O, Sha88, Sha9l,
base systems should be scheduled considering both Son88, Son89, Son9O].
data consistency and timing constraints. Since a data- Time is the key factor to be considered in real-
base system must operate in the context of available time database systems, and the correctness of the sys-
operating system services, an environment for database tem depends not only on the logical results but also on
systems developmen! must provide facilities to support the time within which the results are produced. Tran-
operating system functions and integrate them with sactions must be scheduled in such a way that they can
database systems for experimentation. We chose the be completed before their corresponding deadlines
ARTS real-time operating system kernel. In this paper, expire. For example, both the update and query on the
we present our experience in integrating a relational tracking data for a missile must be processed within
database manager with a real-time operating system given deadlines, satisfying not only database con-
kernel, and our attempts at providing flexible control sistency constraints but also timing constraints.
for concurrent transaction management. Current Conventional database systems are typically not
research issues involving the development of a pro- used in real-time applications due to the inadequacies
gramming interface and our efforts in using these tech- of poor performance and lack of predictability. Current
niques in implementing a specific experimental appli- database systems do not schedule their transactions to

meet response requirements and they commonly lock
data tables to assure only the consistency of the data-
base. Locks and time-driven scheduling are basically

1. Introduction incompatible, resulting in response requirement failures
when low priority transactions block higher priority

Real-time computing is an open research area transactions. New techniques are required to manage
[Stan88]. The growing importance of real-time com- the consistency of rea!- ime databases, and they should
puting in a large number of -aplications, such as be compatible with time-driven scheduling and meet
aerospace and defense systems, industrial automation both the required system response predictability and
and robotics, and nuclear power plants, has resulted in temporal consistency.
an increased research effort in this area. Recent To address the inadequacies of current database
workshops lave pointed to the need for basic research systems, the transaction scheduler needs to be able to
in database systems that satisfy timing constraints in take msate of the semantic and needs informationsineat e smnin timinginomtn
collecting, updating, and retrieving shared data, since associated with data objects and transactions. A model
traditional data models and databases are not adequate of real-time transactions needs to be developed which
for real-time systems [IEEE90, ONR90]. Very few characterizes distinctive features of real-time databasesIU that can contribute to the improved responsiveness of

This work was supported in part by ONR under contract the system. The semantic information of the transac-
N0I4 8S-K-0245, by the Naval Ocean Systems Center. and by tions investigated in the modeling study can be used to
IBM Federal Systa'.s Dlviiion, develop efficient transaction schedulers [Son90b,

I

Son9l]. applications of this type. Since the success of applica-

A database system must operate in the context of tions in real-time computing is primarily contingent on I
available operating system services, because correct a system's temporal functionality, what is needed is an
iunctioning and timing behavior of database control environment in which the system engineer can analyze
algorithms depend on the services of the underlying and predict, during the design stage, whether the given

operating system. As pointed out by Stonebraker, real-ime tasks having various types of system and task I
operating system services in many systems are not interactions (i.e. memory allocation/deallocation, mes-
appropriate for support of database functions [Ston81]. sage communications, I/O interactions, etc.) can meet
In many areas, such as buffer management, recovery, their timing requirements.

and consistency control, operating system facilities In an attempt to provide such functionality, I
have to be duplicated by database systems because they ARTS provides the process and data encapsulation that
are too slow or inappropriate. An environment for other distributed, object-oriented operating systems do,
database systems development must, therefore, provide while at the same time including elements of temporal
facilities to support operating system functions and significance to the services it provides. This integration
integrate them with database systems for experimenta- of data, thread and concurrency control greatly facili-
tion. tates real-time schedulability analysis. The ARTS can

The ARTS real-time operating system kernel, support both hard and soft real-time tasks as well as I
under development at Carnegie-Mellon University, periodic and sporadic ones [Tok89].
auempts to provide a "predictable, analyzable, and reli- To support time-critical operations, the ARTS
able distributed real-time computing environment" programming language interface allows designers to I
which is an excellent foundation for a real-time data- specify timing requirements and the chosen communi-
base system [Tok89]. The ARTS system, which pro- cation structure so that they are visible at both the
vides support for programs written in C and C++, language and system level; this allows the system-wide
implements different prioritized and non-prioritized ARTS environment to make scheduling decisions U
scheduling algorithms and prioritized message passing based on both temporal constraints and priority. The

as well as supporting lightweight tasks. All of these Integrated Time-Driven Scheduler (ITDS) model of the
features are important when considering a real-time ARTS is more effective than the common priority-
database. based preemptive scheduling of many real-time sys-

Our research effort resulted in a new relational tems. Such simple schedulers become confused during
database manager for distributed real-time systems. heavy system loads when they cannot decide which

We have used the relational database technology since tasks are important and should be completed and which I
it provides the most flexible means of accessing distri- tasks should be aborted, causing unpredictability in the
buted data. In this paper, we present our experience in applications. The ITDS model however, employs a

integrating a relational database manager with a real- time-varying "value function" which specifies both a
time operating system kernel, and our attempts at pro- task's time criticality and semantic importance simul-
viding flexible control for concurrent transaction taneously. A hard real-time task can be characterized
management using a technique called workload media- by a step function where the discontinuity occurs at the

tion. Current research issues involving the develop- deadline, while soft real-time tasks are described by I
ment of a programming interface, associated issues of continuous (linear or non-linear) decreasing function
client/server object development which can be after its critical time. In addition, ARTS' designers
simplified through the use of templates, and our efforts have separated the policy and mechanism layers, so

in using these techniques in implementing a specific that users can implement new scheduling policies with
experimental application are also discussed. a minimum of effort, even dynamically changing the

policy during runtime.

2. The ARTS Real-Time OS Kernel The issue of priority inversion is crucial to pro-

Research in the area of distributed, real-time viding semantically correct system behavior in addition

operating systems indicates that most are designed for a to addressing temporal concerns. Priority inversion

specific need, and as such are difficult to build, main- occurs when a high priority activity waits for a lower I
tain, and modify; in addition, they do not afford the priority activity to complete. Resource sharing and

capability of predicting runtime behavior during appli- communication among the executing tasks can lead to
cation design. In fact, few non-real-time operating sys- priority inversion if the operating system does not

tens provide a functionally complete set of general manage the available resource set properly. Significant I
purpose, real-time task and time management func- research in the construction of ARTS was done to

tions, despite the fact that the user community is avoid priority inversion among concurrentJN executing

expressing the desire for increasingly complex tasks; in the processor scheduling domain, low priority

I

I
!

servers which provide service to clients of all priorities 3. Comparison with ExLsting Systems
are susceptible to inversion. For example, when a low One of the principal goals of the ARTS project is
priority request is being serviced, a high priority task to provide a more easily extensible real-time environ-
requests the same service; since the server's computa- ment than is currently enjoyed by programmers

tion is non-preemptable, the high priority request waits. developing on other kernels. To that end, ARTS
Any task of higher priority than the server may requires better data management facilities than many
preempt the server itself, however, so if a medium other kernels offer. The RTDB on ARTS represents a
priority task arrives it preempts the server indefinitely, combination of desirable aspects of database technol-
causing the high priority job to be lost in the shuffle. ogy and development flexibility. In comparing the
The ARTS employs a priority inheritance mechanism RTDB with other existing systems, we note some
to propagate information about a single computation differences between it and both research and commer-
which crosses task boundaries. That is, if a server task cial products. For example, the CASE-DB is
acceptsfent, the server inherits the developed as a single-user, disk-based, real-time rela-
priority of the client. Furthermore, the server should tional DBMS, which uses the relational algebra as its
also inherit the priority of the highest priority task wait- query language [Ozso90]. RTDB diverges from this
ing for the service, design philosophy in many ways, being a multi-user,

The notion of time encapsulation cannot be distiibuted real-dme DBMS.
divorced from the basic structure of ARTS, in which Supported media types also differ among real-

every computational entity is represented as an object, time environments. The HP-RTDB, one of Hewlett
called an artobject. An artobject is defined as either a Packard's Industrial Precision Tools, provides software
passive or an active object. In a passive object, there is application developers with a tool to structure and
no explicit declaration of a thread which accepts access memory-resident data [Fate89]. Essentially,
incoming invocation requests while an active object HP-RTDB is a library of routines used to define and
contains one or more threads defined by the user. In an manipulate a database schema, build the database in
active object, its designer is responsible for providing memory, as well as load and unload, and write or read
concurrency control among coexecuting operations. data to and from it. They also provide mechanisms for
When a new instance of an active object is created, its archiving schema and data, and storing timestamp
root thread will be created and run immediately. A information. The ARTS-RTDB provides a three tiered
thread can create threads within its object. approach for supported media types, offering memory-

The ARTS kernel supports the notion of real- resident data options, RAM-based disk storage, and
Lime objects and real-time threads. A real-time object access to the UNIX file system for disk storage. Each
is defined with a "time fence," a timer associated with media has its own advantage. and drawbacks in terms
the thread which ensures that the remaining slack time of compatibility, performance, and recoverability.
is larger than the worst case execution time for the Naturally, access times decrease along this continuum.
operation. A real-time thread can have a value function This support of various media types provides develop-
and timing constraints related to its execution period, ers the flexibility to choose appropriately those that
worst case execution time, phase, and delay value, best suit their needs. Also, we provide the ability to
When an operation with a time fence is invoked, the cross the boundaries between these media, and to util-
operation will be executed (or accepted) if there is ize several media types in an individual query for both
enough remaining computation time against the the source and resultant relations.
specified worst case execution time of the operation for
the caller. Otherwise, it will be aborted as a time fence 4. The RTDB Real-Time Database Manager
error. The objective of this extension to a normal object The RTDB is a relational database manager writ-
paradigm is to prevent timing errors from crossing task ten in C designed to run on ARTS. It offers not only a
or module boundaries (as often happens in traditional functionally complete set of relational operators- such
real-time systems which use a cyclic executive) and as join, projection, selection, union, and set
bind the timing error at every object invocation, difference- but also other necessary operators as

On top of the ARTS foundation we have built a create, insert, update, delete, rename, cn'press. sort,
relational database manager using message passing extract, import, export, and print. These operators give
primitives and employing the client/server paradigm. the user a good amount of relational [xp er and con-
The result, RTDB, currently consists of a multi- venience in managing the database.
threaded server which accepts requests of several We have developed two different kinds of clients
clients. Based on the temporal urgency of the request, for the RTDB. One is an interactive command
the server determines whether it can commit the tran- parser/request generator that makes requests to the
saction or it has to reject it. server on behalf of the user. This client looks and

I
I

RTDB SERVER OB.JECT RTDB I
CLI ENTF
OBJECr

CLI NT IQUEUE QUU

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ IPACKET k OBJECT

Figure 1. Mediator object model !

behaves similarly to a single-user database manager. It queue, instantiating the backup thread, and instantiating
is possible to run the client without knowing that any the server worker threads. There is at least one server I
interaction between server and client is occurring. The worker created for each thread priority. After complet-
other client is a transaction-generating "batch" client, ing these tasks, the root thread enters an infinite loop
representing a real-time process that needs to make that accepts database requests from any client. The
database access requests. requests come in as packets. The RTDB provides two

The RTDB server object is the heart of the data- different types of packets: call packets and return pack-

base management system. It is responsible for creating ets. The call packet, created by a client, contains all the
and storing the relations, receiving and acting on information that the server needs to carry out the
requests from multiple clients, and returning desired desired database access operation. Since different com-

information to the clients. mands require different information, the call packet has
a variant field containing different information for each

The server object defines three threads. The root command. When the server completes the processing Ithread is automatically executed by ARTS upon invo- of the request, it returns a packet to the client with the

cation of the server. The server activates one or more information requested. This packet is called a return
worker threads, and activates a backup thread which is packet. The return packet is created by the server andresponsible for periodically backing up the relations also has a variant field that carries command specific I
that reside only in main memory. information.

The root thread of the server is responsible for The communication between the server and
binding the server's name in the ARTS name server so clients is performed by the ARTS communication
that the clients can find it and send requests. It is also primitives: Request, Accept, and Reply. The commun-
responsible for reading the relations into memory, ini- ication is synchronous; when a client issues a Request,
tializing the lock table, initializing the blocked request it is blocked until the server Accepts and Replies to the

1I1

message. This may cause some problems, especially in Whenever the worker becomes free, it first
a real-time environment, for two reasons: priority checks its queue of blocked requests. If there are any
inversion and data sharing, requests in the block queue that can be unblocked, it

The ARTS kernel (and thus the RTDB system) dequeues the request and processes it. If no request in
supports eight message priorities. When the root thread the block queue is ready to be processed, the worker
Accepts a message, it extracts priority information looks to its incoming request queue.

from the message packet. The root thread then
enqueues the request on the message queue (i.e. pend- 5. Programming Interfaces

ing request queue) of the worker thread designated to Conventional database systems often provide
service requests of that priority level. If inactive, the some interface through which they export functionality
server worker will be polling its queue; if active, the to application developers. Such programming inter-

requests will be processed in FIFO order. Note that in faces simplify storage and retrieval tasks and provide a
this way we can easily exploit the scheduling merits of scheme for the creation, manipulation and destruction
the underlying ARTS kernel without circumventing its of database files. For systems utilizing the client-server
priority-based scheduling mechanisms. Since the paradigm, communication primitives can also be
worker thread's priority matches that of the messages it accessed through such an interface, achieving further
services, it will only be scheduled for the CPU in an hiding of the implementation details.
interval where its priority is currently the highest in the To facilitate the construction of application
system. This is for a general case. For those instances clients, we seek to provide a programming interface for
where the scheduling technique is not priority based, or the database command set which hides the implementa-
ARTS priority inheritance mechanism is employed, on details of the system as much as possible. In this
these decisions will naturally be reflected in the work- way, developers who are more familiar with function-

ers. call interfaces (e.g. SQL) can quickly adjust to the task
This technique of distributing requests among a of constructing custom application clients rather than

pool of workers based on information contained in the application programs. Programming interfaces in real-
request packet is called workload mediation. It is time databases differ greatly in terms of application-
intrinsic in implementing various algorithms which developer friendliness. Some DBMS interfaces are
deal with semantic information provided by the clients tightly coupled to theoretical techniques such as the
and/or the task requests (i.e. temporal issues, priorities, relational algebra. CASE-DB [Ozso9O] is an example
etc.). Determining the proper balance of control of this type of interface. While this interface satisfies
between ARTS primitives and RTDB explicit media- the desired functionality requirements for a database, it
tion will help us achieve the most beneficial symbiosis can be awkward to use when developing large, com-
of the system's resources, which is one of the goals of plex applications. For these applications, it is more
our research. Figure 1 illustrates the mediator mechan- appropriate to use an interface similar to those already
ism incorporated within the server object. in use in non-real-time systems. These application pro-

The worker thread of the RTDB server performs gram interfaces consist of library functions.
the client's request to access the database. It checks its In designing the programming interface for
request message queue, carries out the work that is RTDB, in addition to providing routines as in other
requested, and replies back to the client. The worker relational databases, we seek to hide the details of

Replies to a client without completing a request when it ARTS' Request/Accept/Reply message passing
needs to return more information than can fit in a single sequence. This allows interaction between client and
packet. In such a case, the client must make continua- server to appear as if the application client were the
tion requests to the server until it gets all the informa- only one interacting with the server. This goal is only
tion requested. partially attainable, since the physical code provided by

To maintain the consistency of the database, the the application developer must coexist in the same
RTDB server needs to handle conflicting requests prop- source code file as code which specifies constants and
erly. For example, a problem occurs when some declarations necessary to construct the complete client
request or part of a request (as in a multi-relational image. To expedite the development process, wke pro-

query) has to be blocked since it needs to lock a rela- vide a thoroughly commented, standardized client tem-
tion that is already locked. Our solution to this prob- plate with which developers need only combine their

lem is to use a lock table that keeps track of which rela- source and compile.
tions are in use at any given time. If a request for file A
comes in while file A is being used by another active 6. DOSE: An Application of the RTDB

worker, then the new request must be put on an internal One of the applications of the RTDB is the Dis-
queue until A and any other files it needs are available. tributed Operating System Experiment (DOSE), as

4m

presented in [Butt90l. The goal of DOSE is to evaluate Without DMC, the survivability and consistency of the
the feasibility of using a database kernel in embedded system would be weakened.
systems with requirements for high performance and The scenario used with the DOSE application is
real-time priority and predictability guarantees. an outer air battle scenario generated by IBGTT, the

The DOSE application consists of data input, Interim Battle Group Tactical Trainer. The data gen-
storage, display, and retrieval functions. These func- erated by IBGTT consists of coordinate and motion
tions are implemented by four components: parser data as well as general military classifications of
manager (PM), track report manager (TRM), graphics tracked objects, called platforms. This data can be
map client (GMC), and database monitor client (DMC). used to plot tactical information for a variety of situa-
Figure 2 illustrates the information flow among objects tions, including personnel training programs, strategic
in the DOSE experiment. simulations, and real-time military surveillance. Table

The PM receives tracking data from data termi- 1 shows the attributes of data objects used in the DOSE
nals or communication links and converts them into a application.
useful format such as floating point and signed integer Since some of the fields above are basically used
numbers. The PM does not retain any incoming or out- as categorical designators, or flags, they can be used in
going information. The parsed data coming out from simple boolean subqueries (e.g., "where clauses" in the
the PM are stored by the TRM. For each new incoming RTDB syntax). For example, an "H" value for attribute
tracking data, a new data object is created. For high cat indicates a hostile platform; an "F, a friendly plat-
reliability, TRM maintains replicated data objects. The form. A "Y" value for attribute nuclear indicates a
GMC enables the data to be mapped out and visualized confirmed nuclear platform; a "N" value is a confirmed
on screen. It periodically checks with the TRM for the non-nuclear platform, and "U" is unknown. For exam-
latest updates to be displayed. The DMC monitors the pie, a query which seeks to determine all the attributes
data objects in each replicated TRM database. Using of the friendly nuclear platforms may look as follows:
frequent updates, it guarantees that data would remain
consistent across the replicated TRM databases.

binary parsed TRACK
PARSER

messages messages REPORT GRAPHICS
MANAGER

MANAGER • MAP

CLIENT

DMC

TRACK

REPORT GRAPHtICS

MANAGER MAP

CLIENI
DMCen

Figure 2. Information flow among objects in the DOSE experiment

Attrihnte Name Tvne Meaning
trk num integer track number
lat track real latitude of track
long-track real longitude of track
bearing real bearing from data link reference point
dep-high real depth or height of platform
lat-dlrp 7_a latitude of data link reference point
long-dlrp real longitude of data link reference point
platform-type char type of platfoir'
cat char category of platform
time integer greenwich mean time
trkqa integer confidence of measurements
lat_tdir char latitude direction
longjtdir char longitude direction
course real bearing minus data link reference point
speed real speed of platform
range real range from data link reference point in nautical miles
nuclear char nuclear classification of platform

Table I. Data object attributes in the DOSE application

RTDB => print * from trackfile real-time transactions. Other potential improvements
where cat = "F" and nuclear = "Y"; in efficient implementation are being examined to

determine their overall value to the RTDB system.
A query to display information on all platforms Indices and views are two of them. Since such features

in a certain track might look like this: not only alter the speed and predictability of the system

but also the basic file structure, they need to be exam-
RTDB ==> print lattrk, longtrk, bearing, ined closely on their own, and then as new elementsnuclear from trktable I where trk = 4741; within the existing system.

In implementing the TRM and DMC using the 7. Conclusions
RTDB, the original DOSE tracking data has been A real-time database manager is one of the criti-
decomposed into several track files of similar data. All cal components of real-time systems, in which tasks are
commands currently supported by the RTDB have been cat wit dealie andtamsinfic ton of
tested on the trackfile data. associated with deadlines and a significant portion of

data is highly perishable in the sense that it has value to
Modifications to earlier versions of RTDB have the mission only if used quickly. To satisfy the timing

been made to support attribute type REAL which is requirements, transactions must be scheduled consider-
identical to the floating point type of DOSE applica- ing not only the consistency constraints but also their
tion, and to support aggregate operators such as SUM, timing constraints. In addition, the system should sup-
COUNT, MIN, MAX, and AVG. Although not port a predictable behavior such that the possibility of
specifically delineated in the queries proposed in the missing deadlines of critical tasks could be informed
DOSE application, the addition of aggregates seems ahead of time, before their deadlines expire.
important for the type of queries expected for the appli- In this paper, we have presented an expermental
cation. For example, the system may be called to report relational database manager developed for distributedIa COUNT of all hostile, nuclear, air platforms, or the reainldtbsmngrdvlodfodsrbud
bearing and speed of the hostile platform with N real-time systems. Since the characteristics of a real-
range. time database manager are distinct from conventional
rdatabase managers, there are different kinds of issues

Temporal database components are being inves- to be considered in developing a real-time database
tigated for inclusion in the RTDB for DOSE applica- manager. For example, priority-based scheduling and
tion. They will address the desired timestamping of sur- memory resident data have been investigated in the
veillance updates generated by radar, sonar, or similar development of the RTDB.
equipments, and temporal consistency requirements of

I

The foundation now exists for a real-time rela- 1990.
tional database manager. However, as with any active [Sha88] Sha, L., R. Rajkumar, and J. Lehoczky,
research project, there are many technical issues asso- "Concurrency Control for Distributed Real-
ciated with real-time database systems that need further Time Databases," ACM SIGMOD Record
investigation. It is our goal to facilitate further develop- 17, 1, Special Issue on Real-Time Database
menit in this area, as well as with our RTDB. To that Systems, March 1988,82-98.
end, we have discussed our work toward providing a
flexible programming interface and standard client tem- [Sha9l] Sha, L., R. Rajkumar, S. H. Son, and C.
plate to allow quick prototyping and faster modeling. Chang, "A Real-Time Locking Protocol,"
The RTDB described in this paper with its multi- IEEE Transactions on Computers, to

threaded server model, is an appropriate research vehi- appear.
cle for investigating new techniques and scheduling [Son88] Son, S. H., "Real-Time Database Systems:
algorithms for distributed real-time database systems. Issues and Approaches," ACM SIGMOD

Record 17, 1, Special Issue on Real-Time
Database Systems, March 1988.

References [Son891 Son, S. H. and H. Kang, "Approaches to
Design of Real-Time Database Systems,"

[Abb89] Abbott, R. and H. Garcia-Molina, "Schedul- International Symposium on Database Sys-
ing Real-Time Transactions with Disk tens for Advanced Applications, Seoul,
Resident Data," VLDB Conference, August Korea, April 1989, 274-281.
1989. [Son90l Son, S. H. and C. Chang, "Performance

[Buc89l Buchmann, A. et al., "Time-Critical Data- Evaluation of Real-Time Locking Protocols
base Scheduling: A Framework for Integrat- using a Distributed Software Prototyping
ing Real-Time Scheduling and Concurrency Environment," 10th International Confer-
Control," Fifth Data Engineering Confer- ence on Distributed Computing Systems,
ence, Feb. 1989, 470-480. Paris, France, June 1990, 124-13 1.

[Butt9O] Butterbrodt, M. and J. Green, "DOSE: A [Son90b] Son, S. H. and J. Lee, "Scheduling Real-
Vital Link in the Development of a Real- Time Transactions in Distributed Database
Time Relational Database Environment," Systems," 7th IEEE Workshop on Real-
Project Summary, Naval Ocean Systems Time Operating Systems and Software,
Center, Jan. 1990. Charlottesville, Virginia, May 1990, 39-43.

[Fate89] Fatehi, Feyzi, "With the Speed of the [Son9l] Son, S. H., P. Wagle, and S. Park. "Real-
Winged Horse: Hewlett-Packard Real-Time Time Database Scheduling: Design, Imple-
Database," Internal Document. Hewlett mentation, and Performance Evaluation,"
Packard Company, Apr. 1989. International Symposium on Database Sys-

tems for Advanced Applications (DASFAA[IEEE90] Seventh IEEE Workshop on Real-Time '91), Tokyo, Japan, April 1991.

Operating Systems and Software, University

of Virginia, Charlottesville, Virginia, May [Stan88] Stankovic, J., "Misconceptions about Real-
1990. Time Computing," IEEE Computer 21, 10,

[Kor90] Korth, H., "Triggered Real-Time Databases October 1988, 10-19.

with Consistency Constraints," 16th VLDB [Ston8l] Stonebraker, M., Operating System Support
Conference, Brisbane, Australia, Aug. 1990. for Database Management, Commun. of

[Lin90] Lin, Y. and S. H. Son, "Concurrency Con- ACM 24, 7 (July 1981), 412-418. 3
trol in Real-Time Databases by Dynamic [Tok89J Tokuda, H. and C. Mercer, "ARTS: A Dis-
Adjustment of Serialization Order," 11th tributed Real-Time Kernel," ACM Operat-
IEEE Real-Time Systems Symposium, ing Systems Review, 23 (3), July 1989.

Orlando, Florida, Dec. 1990, to appear.

[ONR901 ONR Annual Workshop on Foundations of
Real-Time Computing, Washington, DC,
Oct. 1990.

[Ozso90l Ozsoyoglu, G., et al., "CASE-DB--A Real-
Time Database Management System," Tech.
Rep. Case Western Reserve University,

I

An Environment for Integrated Development and Evaluation
of Real-Time Distributed Database Systems

I Sang H. Son
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

I
3 ABSTRACT

3 Real-time database systems must maintain consistency while minimizing the number of transactions

that miss the deadline. To satisfy both the consistency and real-time constraints, there is the need to

I integrate synchronization protocols with real-time priority scheduling protocols. One of the reasons for

the difficulty in developing and evaluating database synchronization techniques is that it takes a long time

to develop a system, and evaluation is complicated because it involves a large number of system parame-

ters that may change dynamically. This paper describes an environment for investigating distributed real-g time database systems. The environment is based on concurrent programming kernel which supports the

creation, blocking, and termination of processes, as well as scheduling and inter-process communication.

3 The contribution of the paper is the introduction of a new approach to system development that utilizes a

module library of reusable components to satisfy three major goals: modularity, flexibility, and extensi-

I bility. In addition, experiments of real-time concurrency control techniques are presented to illustrate the

3 effectiveness of the environment.

3 Index Terms - distributed database, prototyping, synchronization, transaction, real-time

g This work was supported in part by ONR contract# NOW 14-91 -1-1102.

.I

1. Introduction

In this paper, we report our experiences with a new approach to integrated development and evalua-

tion of real-time distributed database systems, and present experimental results of various real-time syn-

chronization techniques. The goal of the project is to test the hypothesis that a host environment can be

used to significantly accelerate the rate at which we can perform experiments in the areas of operating

systems, databases, and network protocols for real-time systems. A tool for developing components of

real-time distributed systems and integrating them to evaluate design alternatives is essential for the

advance of real-time computing technology. To the best of our knowledge, this is the first successful

attempt to develop such a tool as an environment consisting of a hybrid of actual implementation and

simulation. 3
As computers are becoming essential part of real-time systems, real-time computing is emerging as

an important discipline in computer science and engineering [Shin87]. The growing importance of real-

time computing in a large number of applications, such as aerospace and defense systems, industrial auto- 3
mation, and nuclear reactor control, has resulted in an increased research effort in this area. Researchers

working on developing real-time systems based on distributed system architecture have found out that I
database managers are assuming much greater importance in real-time systems. In the recent workshops u
developers of "real" real-time systems pointed to the need for basic research in database systems that

satisfy timing constraint requirements in collecting, updating, and retrieving shared data [IEEE90, 3
ONR90]. Further evidence of its importance is the recent growth of research in this field and the

announcements by some vendors of database products that include features achieving high availability I
and predictability [Son881. 3

In addition to providing relational access capabilities, distributed real-time database systems offer a

means of loosely coupling software processes; therefore, making it easier to rapidly update software, at 3
least from a functional perspective. However, with respect to time-driven scheduling and system timing

predictability, they present new problems. One of the characteristics of current database managers is that

they do not schedule their transactions to meet response requirements and they commonly lock data tables

indiscriminately to assure database consistency. Locks and time-driven scheduling are basically incompa-

tible. Low priority transactions can and will block higher priority transactions leading to response require-

ment failures. New techniques are required to manage database consistency which are compatible with

time-driven scheduling and the essential system response predictability/analyzability it brings. One of the

primary reasons for the difficulty in successfully developing and evaluating new database techniques is

that it takes a long time to develop a system, and evaluation is complicated because it involves a large

number of system parameters that may change dynamically.

A prototyping technique can be applied effectively to the evaluation of database techniques for dis-

tributed real-time systems. In this paper, we report our experiences with a new database prototyping

environment. It is constructed to support research in distributed database and operating system technol-

ogy for real-time applications. A database prototvping environment is a software package that supports

the investigation of the properties of database techniques in an environment other ahan that of the target

database system. The advantages of an environment that provides prototyping capability are obvious.

First, it is cost effective. If experiments for a twenty-node distributed database system can be executed in

a software environment, it is not necessary to purchase a twenty-node distributed system, reducing the

cost of evaluating design alternatives. Second, design alternatives can be evaluated in a uniform environ-

ment with the same system parameters, making a fair comparison. Finally, as technology changes, the

environment need only be updated to provide researchers with the ability to perform new experiments.

A prototyping environment can reduce the time of evaluating new technologies and design alterna-

tives. From our past experience, we assume that a relatively small portion of a typical database system's

code is affected by changes in specific control mechanisms, while the majority of code deals with intnn-

sic problems, such as tile management. Thus, by properly isolating technology-dependent portions of a

database system using modular programming techniques. we can implement and evaluate design alterna-

fives very rapidly. In addition, a prototyping environment provides a friendlier development environment

than a target hardware system. The bare machine environment is the worst possible place i, which to

.2.

3
I

explore new software concepts. For example, even the recovery of the event history leading up to an

error in a distributed system can be a difficult and, in some cases, an impossible task. Debugging is

greatly facilitated in a prototyping environment. The symbolic debugger of our environment supports the

examination of an arbitrary number of execution threads. As a result, the state of a distributed computa-

tion can be examined as a whole. 3
Although there exist tools for system development and analysis, few prototyping tools exist for dis-

tributed database experimentation, especially for distributed real-time database systems. Recently, simu- I
lators have been developed for investigating performance of several concurrency control algorithms for

real-time applications [Abb88, Abb89, Raj89I. However, they do not provide a module hierarchy com-

posed from reusable components as in our prototyping environment. Software developed in our prototyp- 3
ing environment will execute in a given target machine without modification of any layer except the

hardware interface. In addition, since our environment is a hybrid of prototyping and simulation (i.e., I
partially implemented and partially simulated), we can capture important timing features of the system,

while it is very hard using simulation only.

A database system must operate in the context of available operating system services. In other 3
words, database operations need to be coherent with the operating system, because correct functioning

and timing behavior of database control algorithms depend on the services of the underlying operating

system. Unless you have a control over the operating system, investigating timing behavior of a database 3
system does not provide much information. An environment for database systems development must,

therefore, provide facilities to support operating system functions and integrate them with database sys- 3
tems for experimentation.

Another important use of a prototyping environment is to analyze the reliability of database control

mechanisms and techniques. Since distributed systems are expected to work correctly under various 3
failure situations, the behavior of distributed database systems in degraded circumstances needs to be well

understood. Although new approaches for synchronization and checkpointing for distributed databases

.3-

have been developed recently [Liu87, Kor90, Lin9O, Son89, Son90], experimentation to verify their pro-

perties and to evaluate their performance has not been performed due to the lack of appropriate test tools.

When developing a database system, functional completeness and performance of the system are of

primary concern. The resulting systems are often not layered or modular in their implementation. How-

ever, for experimentation, a layered implementation approach facilitates the rapid evaluation of new tech-

niques. Such a facility improves signiticantly the capability of the system designer in comparing design

alternatives in a uniform environment. In this regard, the concept of developing a methodology for lay-

ered implementation of the system and building a library of modules with different

performance/reliability characteristics for operating system and database system functions seems promis-

ing. The prototyping environment we have developed follows this approach [Cook87, Son88b].

The rest of the paper is organized as follows. Section 2 presents an informal description of a

message-based simulation. Section 3 describes the design principles and the current implementation of

the prototyping environment. Section 4 presents experimentations of priority-based synchronization algo-

rithms and multiversion data objects using the prototyping environment. Section 5 concludes the paper.

2. Message-Based Simulation

When prototyping distributed database systems, there are two possible approaches: sequential pro-

gramming and distributed programming based on message-passing. Message-based simulations, in which

events are message-communications, do not provide additional expressive power over standard simula-

tion languages; message-passing can be simulated in many discrete-event simulation languages including

SIMSCRIPT [Kiv691 and GPSS [Sch74]. However, a message-based simulation can be used as an effec-

tive tool for developing a distributed system because the simulation "looks" like a distributed program,

while a simulation program written in a traditional simulation language is inherently a sequential pro-

gram. Furthermore, if a simulation program is developed in a systematic way such that the principles of

modularity and information hiding are observed, most of the simulation code can be used in the actual

system, resulting in a reduced cost for system development and evaluation.

-4-

I

To prototype a distributed database system on a single host machine, it is necessary to provide vir-

tual machines for each node of the system being simulated. For that, the process view of a system has I
been adopted. A distributed system being simulated consists of a number of processes which interact 3
with others at discrete instants of time. Processes are basic building blocks of a simulation program. A

process is an independent, dynamic entity which manipulate resources to achieve its objectives. A 3
resource is a passive object and may be represented by a simple variable or a complex data structure. A

simulation program models the dynamic behavior of processes, resources, and their interactions as thJy I
evolve in time. Each physical operation of the system is simulated by a process. and the process inEerac-

tions are called events.

In the literature, the notion of a process has been given numerous definitions. The definition used in 3
our model is much the same as that given in [Bri78]: A process is the execution of an interruptible

sequential program and represents the unit of resource allocation, such as the allocation of CPU time,

main memory and I/O devices.

We use the client/server paradigm for process interaction in the prototyping environment. The sys-

tem consists of a set of clients and servers, which are processes that cooperate for the purpose of transac-

tion processing. Each server provides a service to its clients, where a client can request a service by send- 3
ing a request message (a message of type request) to the corresponding server. The computation structure

of the system to be modeled can be characterized by the way clients and servers are mapped into 3
processes. For example, a server might consist of a fixed number of processes, each of which may execute

requests from every transaction, or it might consists of varying number of processes, each of which exe-

cutes on behalf of exactly one transaction. 3
Internal actions of a process, i.e., actions that do not involve interactions with other processes in the

system, are modeled either by the passage of simulation time or by the cxccution of sequential statements 3
within the process. We use a simulator clock to represent the passage of time in a simulation. The simula- 3
tor clock advances in discrete steps, where each step simulates the passage of time between two events in I

-5- 3

the system.

In a physical system, each process makes independent progress in time the resources they need

are available, and many processes execute in parallel. In its simulation, the multiple processes of a physi-

cal system must be executed simultaneously on one processor. This simultaneity is achieved in the proto-

typing environment by supporting a simultaneous execution of multiple processes in a single address

space.

A message-based prototyping environment can be of enormous benefit in designing and testing

emerging systems, such as real-time systems, and in comparing and improving algorithms that are appli-

cable to many different systems. One such benefit is that the software to be used in an actual system can

be developed using the environment. The prototyping environment can support a simulated environment,

actual hardware, or a "hybrid" mode in which some of the modules are implemented in hardware and

some are simulated. In this way, it is irrelevant to the software developer using the environment whether

or not all or part of the software is running on hardware. When the system is running in a hybrid mode,

the virtual clock used for performance measurement is updated by the actual time used for direct execu-

tion, making performance measurements correct.

3. Structure of the Prototyping Environment

The prototyping environment is designed to facilitate easy extensions and modifications. Server

processes can be created, relocated, and new implementations of server processes can be dynamically

3 substituted. It efficiently supports a spectrum of real-time database functions at the operating system

level, and facilitates the construction of multiple database systems with different characteristics. For

3id experimentation, system functionality can be adjusted according to application-dependent requirements

3 without much overhead for new system setup. Since one of the design goals of the prototvping environ-

ment is to conduct an empirical evaluation of the design and implementation of real-time distributed data-

base systems, it has built-in support for performance measurement of both elapsed time and blocked time

for each transaction.

-6-

The prototyping environment provides support for transaction processing, including transparency to

concurrent access, data distribution, and atomicity. An instance of the prototyping environment can

manage any number of virtual sites specified by the user. Modules that implement transaction processing

are decomposed into several server processes, and they communicate among themselves through ports.

The clean interface between server processes simplifies incorporating new algorithms and facilitic- into

the prototyping environment, or testing alternate implementations of algorithms. To permit c oncurrent

transactions on a single site, there is a separate process for each transaction that coordinates with other

server processes.

Figure 1 illustrates the structure of the prototyping environment. The prototyping environment is

based on a concurrent programming kernel, called the StarLite kernel. The StarLite kernel supports pro-

cess control to create, ready, block, and terminate processes. It also supports the semaphore abstraction to

be used by higher level modules in resource control, critical section implementation, and synchronous

message-passing. The internal structure of the kernel follows the well-known client-server model

[Tan87l, in which most of the operating system operates as server processes in the same address space as

client processes, with the kernel merely handling message communication between various processes.

Figure 2 shows an instance of this model. This structure is particularly useful for extensible systems such

as our prototyping environment, since additional or alternative functionality can easily be provided by

creating a new server, instead of changing and recompiling the kernel.

Scheduler in the kernel maintains a virtual clock and provides the hold primitive to control the pas-

sage of time. The benefit of a virtual clock is that any number of performance monitoring operations may

be performed at an instant of virtual time. If a physical clock were embedded, the monitoring activities

themselves would interfere with other system acivities and add to the execution time, resulting in

incorrect performance measures.

The kernel also providc the capability of isolating overhead imposed by each system component.

For instance, total time at each node can be divided into CPU time and I/O time, to determine the

-7-

computation-intensive and I/O-intensive functions and investigate the distribution of tasks around the sys-

tem so as to maximize parallelism.

The User Interface (UI) is a front-end invoked when the prototyping environment begins. UI is

menu-driven, and designed to be flexible in allowing users to experiment various configurations with dif-

ferent system parameters. A user can specify the following:

3 system configuration: number of sites and the number of server processes at each site, topology and

communication costs.

9 database configuration: database at each site with user defined structure, size, granularity, and levels of

replication.

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers f Transaction Manager

Resource Manager DB

*] Message Server

U StarLite Kernel

I Fig. 1. Structure of the prototyping environment

1 -8-

" load characteristics: number of transactions to be executed, size of their read-scts and write-sets, tran-

saction types (read-only or update) and their priorities, and the mean interarrival time of transactions.

" concurrency control: locking, timestamp ordering, and priority-based.

The UI initiates the Configuration Manager (CM) which initializes necessary data structures for

transaction processing based on user specification. The database at each site consists of different number

of files, and each file consists of different number of records. The database structure can be made compli-

cated if necessary. However, we use a simple file access, since investigating synchronization problems

does not require complex database structures.

The CM invokes the Transaction Generator at an appropriate time interval to generate the next tran-

saction to form a Poisson process of transaction arrival. The environment is flexible enough to generate

any number of transactions with different characteristics. The user can specify his own procedure for tran-

sactions. At initialization time, the user-specified procedure is converted into a transaction process.

Furthermore, the prototyping environment supports the facility that allows mixing system generated tran-

sactions with user-specified ones. It is very desirable to have such a capability, since the user can setup

any workload that represents the situation to be simulated, with or without system generated background

workload.

A transaction is distinguished from the other processes in the system by its behavior. To the system,

the only distinction between transactions and server processes is the PortTags on which each receives

messages. When a transaction is generated, it is assigned an identifier that is unique among all transac-

tions in the system. Each transaction is also assigned a globally unique timestamp which is hidden within

a single module. The advantage of extracting the definition and assignment of the timestamp from its use

is that it provides a means of uniquely assigning timcstamps which is independent from any specific

implementation.

The timestamp assignment is closely related to the clocks in the system. In a sequential simulation,

a single clock suffices to order events in the system. An event is taken off the event queue, and the global

-93

Machine 1 Machine 2 Machine 3

Client File server Process server

Kernel Kernel KernelI
Message from Communication medium
client to server

Fig. 2. Client-server model

clock is advanced to the time required for the event to occur. Events are related in time by their relation to

the global clock. In prototyping distributed environments, no such global clock is available. Time is

referred to by iocal clocks, which is maintained at each site and visible only to processes at that site. Ord-

ering of events in terms of the global time, therefore, depends on the proper synchronization of local

clocks. In our environment, clocks are synchronized by intersite communication. An intersite message

includes the clock value of the sender site at the time the message is sent. If the sum of this clock value

and the propagation delay between the sites is greater than the clock value at the receiver site, the receiver

increments its clock by the difference between the sum and its clock value. In this way, all succeeding

events at the receiver site can be said to occur after the sending of the message. This satisfies our intuitive

notion of "happens before" relationship [Lam78].

3Transaction execution consists of read and write operations. Each read or write operation is pre-

ceded by an access request sent to the Resource Manager, which maintains the local database at each site.I
Each transaction is assigned to the Transaction Manager (TM). The TM issues service requests on behalf

3 of the transaction and reacts appropriately to the request replies. For instance, if a transaction requests

access to a file and that file is locked, TM executes either blocking operation to wait until the data ohject

I can be accessed, or aborting procedure, depending on the situation. If granting access to a resource will

produce deadlock, TM receives an abort response and aborts the transaction. Transactions commit in two

-10-

phases. The first commit phase consists of at least one round of messages to determine if the transaction

can be globally committed. Additional rounds may be used to handle potential failures. The second com-

mit phase causes the data objects to be written to the database for successful transactions. TM executes

the two commit phases to ensure that a transaction commits or aborts globally. Figure 3 illustrates a

queueing model adopted for transaction processing.

Transactions are generated and put into the start-up queue. When a transaction is started, it leaves

the start-up queue and enters the ready queue. The transaction at the top of the queue is selected to run.

The current running transaction sends requests to the concurrency controller (CC) implemented in the

resource manager. The transaction may be blocked and placed in the block queue. It may also be aborted

and restarted. In such a case, it is first delayed for a certain amount of time and then put in the ready

queue again. When a transaction in the block queue is unblocked, it leaves the block queue and is placed

in the ready queue again.

RESTART

------ CCCOMMIT
Ready Queue

@A AC CE S S

Fig. 3 Simulation Model

-11-

!

In prototyping distributed database systems, a communication network is an important component

3 to be simulated, since the system performance depends heavily on the topology and communication pro-

tocols used. However, in many database simulators, the communication subsystem is either ignored or

simplified by adding communication cost to the transaction processing time. Our prototyping environ-

3 ment uses a different approach by providing a virtual communication network that actually runs a layered

communication protocol on a network topology specified by the user. Since the communication module

3 is a separate building block in the prototyping environment, the user can change it to simulate different

requirements of the application.

The Message Server (MS) is a process listening on a well-known port for messages from remote

3sites. When a message is sent to a remote site, it is placed on the message queue of the destination site

and the sender blocks itself on a private semaphore until the message is retrieved by MS. If the receiving

site is not operational, a time-out mechanism will unblock the sender process. When MS retrieves a mes-

sage, it wakes the sender process and forwards the message to the proper servers or TM. The prototyping

environment supports both Ada-style rendezvous (synchronous) as well as asynchronous message pass-

ing. Inter-process communication within a site does not go through the Message Server, processes send

and receive messages directly through their associated porc

The inter-process communication structure is designed to provide a simple and flexible interface to

3 the client processes of the application software, independent from the low-level hardware configurations.

It is split into three levels of hierarchy: transport, network, and physical layers.

I The Transport layer is the interface to the application software, thus it is designed to be as abstract

3 as possible in order to support different port structures and various message types. In addition, application

level processes need not know the details of the destination device. The invariant built into the design of

3 the inter-process communication interface is that the application level sender allocates the space for a

message, and the receiver deallocates it. Thus, it is irrelevant whether or not the sender and receiver share

memory space, i.e., whether or not the Physical layer on the sender's side copies the message into a buffer

-12-

II
I

and deallocates it at the sender's site, and the Physical layer at the receiver's site allocates space for the

message. This enables prototyping distributed systems or multiprocessors with no shared memory, as I
well as multiprocessors with shared memory space. When prototyping the latter, only addresses need to 3
be passed in messages without intermediate allocation and deallocation.

The Physical layer of message passing simulates the physical sending and receiving of bits over a 3
communication medium, i.e., it is for intersite message passing. The device number in the interface is

simply a cardinal number, this enables the implementation to be simple and extensible enough to support

any application. To simulate sending or to actually send over an Ethernet in the target system, for exam-

ple, a module could map network addresses onto cardinals. To send from one processor to another in a

multiprocessor or in a distributed system, the cardinals can represent proce:,.ur numbers.

Messages are passed to specific processes at specific sites in the Network layer of the communica-

tions interface. This layer serves to separate the Transport and the Physical layers, so that the Transport

layer interface can be processor- and process-independent and the Physical layer interface need be con- 5
cemed only with the sending of bits from one site to another. The Transport layer interface of the com-

munication subsystem is implemented in the Transport module. A Transport-level Send is made to an

abstraction called a PortTag. This abstraction is advantageous because the implementation (i.e., what a 5
PortTag represents) is hidden in the Ports module. Thus the PortTag can be mapped onto any port struc-

ture or the reception points of any other message passing system. The Transport-level Send operation

builds a packet consisting of the sender's PortTag, used for replies, the destination PortTag, and the

address of the message. It then retrieves from the destination PortTag the destination device number. If

this number is the same as the sender's, the Send is an intra-site message communication, and hence the 3
Network-level Send is performed. Otherwise the send requires the Physical module for intersite commun-

ication.

Note that accesses to the implementation details of the PortTag are restricted to the module that 3
actually implements it; this enables changing the implementation without recompiling the rest of the sys-

I
-13- 3

tern.

The Performance Monitor interacts with the transaction managers to record, priority/timestamp and

read/write data set for each transaction, time when each event occurred, statistics tor :z,;h transactinn and

cpu hold interval in each node. The statistics for a transaction includes arrival time, start time, total pro-

cessing time, blocked interval, whether deadline was missed or not, and the number of aborts.

Since each TM is a separate process, each has its own data area in which to keep track of the time

when a service request is sent out and the time the response arrives, as well as the time when a transaction

begins blocking, waiting for a resource, and the time the resource is granted. When a transaction com-

mits, it calls a procedure that records the above measures; when the simulation clock has expired, these

measures are printed out for all transactions.

4. Prototyping Real-Time Database Systems

The previous section described the structure of the prototyping environment, with some of its

advanced features. In this section, we present real-time database systems implemented using the prototyp-

ing environment. The objectives of our study using the prototyping environment are 1) to evaluate the

prototyping environment itself in terms of correctness, functionality, and modularity, and 2) performance

comparison between two-phase locking and priority-based synchronization algorithms, and between a

multiversion database and its corresponding single-version database, through the sensitivity study of key

parameters that affect performance.

Compared with traditional databases, rcal-time database systems have a distinct feature: they must

satisfy the timing constraints associated with transactions. In other words, "time" is one of the key factors

to be considered in real-time database systems. The timing constraints of a transaction tpically include

its ready time and deadline, as well as temporal consistency of the data accessed by it. Transactions must

be scheduled in such a way that they can be completed before their corrc.,px)nding deadlines expire. For

I example, both the update and query on a tracking data of a missile must be processed within the given

deadlines: otherwise, the information provided could be of little value. In such a system, transaction

1 -14-

processing must satisfy not only the database consistency constraints but also the timing constraints.

The prototyping environment we have developed is especially useful for investigating timing

behavior of real-time transactions, since we can control all the system components. An alternative to the 3
prototyping approach is to develop a system on a bare machine, based on a specialized real-time kernel.

The ARTS [Tok891 and the RT-CARAT [Hua90] take this approach. Difficulties with such an approach 3
are 1) it takes much more effort to develop, 2) the system is strongly coupled with its hardware and hence

hard to change its timing characteristics when needed, and 3) the system is not portable since it is imple-

mented in the target environment. 3
In addition to providing shared data access capabilities, distributed real-time database systems offer

a means of loosely coupling communicating processes, making it easier to rapidly update software, at 3
least from a functional perspective. However, with respect to time-driven scheduling and system timing 5
predictability, they present new problems. One of the characteristics of current database managers is that

they do not schedule their transactions to meet response time requirements and they commonly lock data 3
tables to assure database consistency. Locks and time-driven scheduling are basically incompatible. Low

priority transactions holding locks required by higher priority transactions can and will block the higher

priority transactions, leading to response requirement failures. New techniques are required to manage

data consistency which are compatible with time-driven scheduling.

4.1. Steady State Estimation I
In order to show that the results we get from experiments represent the performance of the system in 3

steady states, we have performed experiments to check if the system were allowed to run for any length of
tU111C.. rpkd~l,,. UAiit wlaI [11.ivld vuc, U variation in results would be within some tolerable interval.

We have implemented a well-known synchronization protocol. two-phase locking (2PL), for the follow- 3
ing system and workload configuration: 3

8 sites with fully interconnected network
multiprogramming level of 10

-15-3

75% read-only and 25% update transactions
read-only transactions access 3% of the database
update transactions access 1% of the database
database consists of 500 unreplicated objectsPoisson distribution of transaction arrivals

Figure 4 shows the average response time of transactions using the 2PL. It shows that the average

response time begins to stabilize at 3000 simulation time units, and varies only slightly from then on. The

lower response time up to 3000 time units are due to the first set of transactions that benefits from a lower

3 initial multiprogramming level and potential conflicts. In addition, since transactions requiring longer

execution time will increase the average response time when they complete, they do not contribute to the

average response time during the early stage of transaction execution if they were in the initial group of

transaction. These initial characteristics are gradually erased from the average performance.

In addition, as we increase the time for experiments, the average response time is determined from

an increasing number of transactions. For example, at 100 time units, the number of transactions contri-

buting to the mean is approximately 12. At 4000, it is approximately 60. Thus the overall behavior of the

system becomes less and less subject to the behavior of individual transactions. From the graph and

characteristics of our environment, we concluded that an experiment must run at least 3500 time units

400

A 2PL

300-

Average
Response 200-

Time

100-

I I I I

-0 1(XX) 2000 3000 400)

Simulation length

Fig. 4. Response time stability

-16-

3

before it starts to capture the steady state behavior of the system.

4.2. Priority-Based Synchronization

Real-time databases are often used by applications such as tracking. Tasks in such applications con- 3
sist of both computing (signal processing) and database accessing (transactions). A task can have multi-

ple transactions, which consists of a sequence of read and write operations operating on the database. I
Each transaction will follow the two-phase locking protocol, which requires a transaction to acquire all 3
the locks before it releases any lock. Once a transaction releases a lock, it cannot acquire any new lock. A

high priority task will preempt the execution of lower priority tasks unless it is blocked by the locking

protocol at the database.

In a real-time database system, synchronization protocols must not only maintain the consistency

constraints of the database but also satisfy the timing requirements of the transactions accessing the data-

base. To satisfy both the consistency and real-time constraints, there is the need Lo integrate synchroniza-

tion protocols with real-time priority scheduling protocols. A major source of problems in integrating the I
two protocols is the lack of coordination in the development of synchronization protocols and real-time 3
priority scheduling protocols. Due to the effect of blocking in lock-based synchronization protocols, a

direct application of a real-time scheduling algorithm to transactions may result in a condition known as 3
priority inversion [Raj89]. Priority inversion is said to occur when a higher priority process is forced to

wait for the execution of a lower priority process for an indefinite period of time. When the transactions I
of two processes attempt to access the same data object, the access must be serialized to maintain con- 3
sistency. If the transaction of the higher priority process gains access first, then the proper priority order is

maintained. however, if the transaction of the lower priority gains access first and then the higher priority 1

transaction requests access to the data object, this higher priority process will be blocked until the lower

priority transaction completes its access to the data object. Priority inversion is inevitable in transaction

systems. However, to achieve a high degree of schedulability in real-time applications, priority inversion

must be minimized. This is illustrated by the following example.

-17-

U
U

Example: Suppose TI, T2, and T 3 are three transactions arranged in descending order of priority

I with T, having the highest priority. Assume that T, and T 3 access the same data object Oi. Suppose that

at time t, transaction T3 obtains a lock on Oi. During the execution of T3 , the high priority transaction T,

arrives, preempts T 3 and later attempts to access the object Oi. Transaction T, will be blocked, since O is

3 already locked. We would expect that TI, being the highest priority transaction, will be blocked no longer

than the time for transaction T3 to complete and unlock Oi. However, the duration of blocking may, in

I fact, be unpredictable. This is because transaction T 3 can be blocked by the intermediate priority transac-

tion T2 that does not need to access Oi. The blocking of T3, and hence that of TI, will continue until T,

and any other pending intermediate priority level transactions are completed.

3 The blocking duration in the example above can be arbitrarily long. This situation can be partially

remedied if transactions are not allowed to be preempted; however, this solution is only appropriate for

very short transactions, because it creates unnecessary blocking. For instance, once a long low priority

3 transaction starts execution, a high priority transaction not requiring access to the same set of data objects

may be needlessly blocked.

I An approach to this problem, based on the notion of priority inheritance, has been proposed

3 (Sha871. The basic idea of priority inheritance is that when a transaction T of a process blocks higher

priority processes, it executes at the highest priority of all the transactions blocked by T. This simple idea

3 of priority inheritance reduces the blocking time of a higher priority transaction. However, this is inade-

quate because the blocking duration for a transaction, though bounded, can still be substantial due to the

potential chain of blocking. For instance, suppose that transaction T, needs to sequentially access objects

3 01 and 02. Also suppose that T 2 preempts T 3 which has already locked 02. Then, T2 locks O. Transac-

tion TI arrives at this instant and finds that the objects 01 and 02 have been respectively locked by the

3 lower priority transactions T2 and T3. As a result, TI would be blocked for the duration of two transac-

lions, once to wait for T 2 to release 01 and again to wait for T 3 to release 02. Thus a chain of blocking

can be formed.

I
I I-lg

II
One idea for dealing with this inadequacy is to use a total priority ordering of active transactions

[Sha88I. A transaction is said to be active if it has started but not yet completed its execution. A transac- I
tion can be active in one of two states: executing or being preempted in the middle of its execution. The 3
idea of total priority ordering is that the real-time locking protocol ensures that each active transaction is

executed at some priority level, taking priority inheritance and read/write semantics into consideration. 3
4.3. Total Ordering by Priority Ceiling3

To ensure the total priority ordering of active transactions, three priority ceilings are defined for

each data object in the database: the write-priority ceiling, the absolute-priority ceiling, and the rw-

priority ceiling. The write-priority ceiling of a data object is defined as the priority of the highest priority 3
transaction that may write into this object, and absolute-priority ceiling is defined as the priority of tre

highest priority transaction that may read or write the data object. The rw-priority ceiling is set dynami- I
cally. When a data object is write-locked, the rw-priority ceiling of this data object is defined to be equal

to the absolute priority ceiling. When it is read-locked, the rw-priority ceiling of this data object is

defined to be equal to the write-priority ceiling. 3
The priority ceiling protocol is premised on systems with a fixed priority scheme. The protocol

consists of two mechanisms: priority inheritance and priority ceiling. With the combination of these two 3
mechanisms, we get the properties of freedoni from deadlock and a worst case blocking of at most a sin- -
gle lower priority transaction.

When a transaction attempts to lock a data object, the transaction's priority is compared with the 3
highest rw-priority ceiling of all data objects currently locked by other transactions. If the priority of the

transaction is not higher than the rw-priority ceiling, the access request will be denied, and the transaction

will be blocked. In this case, the transaction is said to be blocked by the transaction which holds the lock 3
on the data object of the highest rw-priority ceiling. Otherwise, it is granted the lock. In the denied case.

the priority inheritance is performed in order to overcome the problem of uncontrolled priority inversion. i
For example, if transaction T blocks higher transactions, T inherits Pil, the highest priority of the

-19-

transactions blocked by T.

Under this protocol, it is not necessary to check for the possibility of read-write conflicts. For

instance, when a data object is write-locked by a transaction, the rw-priority ceiling is equal to the highest

priority transaction that can access it. Hence, the protocol will block a higher priority transaction that may

write or read it. On the other hand, when the data object is read-locked, the rw-priority ceiling is equal to

the highest priority transaction that may write it. Hence, a transaction that attempts to write it will have a

priority no higher than the nv-priority ceiling and will be blocked. Only the transaction that read it and

have priority higher than the nv-priority ceiling will be allowed to read-lock it, since read-locks are com-

patible. Using the priority ceiling protocol, mutual deadlock of transactions cannot occur and each tran-

saction can be blocked by at most by one lower priority transactions until it completes or suspends itself.

The next example shows how transactions are scheduled under the priorit ceiling protocol.

Example: Consider the same situation as in the previous example. According to the protocol, the

priority ceiling of Oi is the priority of T1 . When T2 tries to access a data object, it is blocked because its

priority is not higher than the priority ceiling of Oi. Therefore T, will be blocked only once by T 3 tO

access Oi, regardless of the number of data objects it may access.

The total priority ordering of active transactions leads to some interesting behavior. As shown in the

example above, the priority ceiling protocol may forbid a transaction from locking an unlocked data

object. At first sight, this seems to introduce unnecessary blocking. However, this can be considered as

the "insurance premium" for preventing deadlock and achieving block-at-most-once property.

Using the pmtotyping environment, we have investigated issues associated with this idea of total

ordering in priority-based scheduling protocols. One of the critical issues related to the total ordering

approach is its performance compared with other design alternatives. In other words, it is important to

figure out what is the actual cost for the "insurance premium" of the total priority ordering approach.

-20-

3

4.4. Performance Evaluation

Various statistics have been collected for comparing the performance of the priority-ceiling protocol I
with other synchronization control algorithms. Transaction are generated with exponentially distributed 3
interarrival times, and the data objects updated by a transaction are chosen uniformly from the database.

A transaction has an execution profile which alternates data access requests with equal computation 3
requests, and some processing requirement for termination (either commit or abort). Thus the total pro-

cessing time of a transaction is directly related to the number of data objects accessed. Due to space con- I
siderations, we do not present all our results but have selected the graphs which best illustrate the differ- 3
ence and performance of the algorithms. For example, we have omitted the results of an experiment that

varied the size of the database, and thus the number of conflicts, because they only confirm and not 3
increase the knowledge yielded by other experiments.

For each experiment and for each algorithm tested, we collected performance statistics and averaged

over the 0 runs. The percentage of deadline-missing transactions is calculated with the following equa- 3
tion: %missed = 100 * (number of deadline-missing transactions / number of transactions processed). A

transaction is processed if either it executes completely or it is aborted. We assume that all the transac- I
tions are hard in the sense that there will be no value for completing the transaction after its deadline. 3
Transactions that miss the deadline are aborted, and disappeared from the system immediately with some

abort cost. We have used the transaction size (the number of data objects a transaction needs to access) as 3
one of the key variables in the experiments. It varies from a small fraction up to a relatively large portion

(10%) of the database so that conflict would occur frequently. The high conflict rate allows synchroniza- I
tion protocols to play a significant role in the system performance. We chcose the arrival rate so that pro- 3
tocols are tested in a heavily loaded rather than lightly loaded system. It is because for designing real-

time systems, one must consider high load situations. Even though they may not arise frequently, one

would like to have a system that misses as few deadlines as possible when such peaks occur. In other

words, when a crisis occurs and the database system is under pressure is precisely when making a few

extra deadlines could be most important [Abb88]. 3
-21-

We normalize the transaction throughput in records accessed per second for successful transactions,

not in transactions per second, in order to account for the fact that bigger transactions need more database

processing. The normalization rate is obtained by multiplying the transaction completion rate

(transactions/second) by the transaction size (database records accessed/transaction).

In Figure 5, the throughput of the priority-ceiling protocol (C), the two-phase locking protocol with

priority mode (P), and the two-phase locking protocol without priority mode (L), is shown for transac-

tions of different sizes with balanced workload and I/O bound workload. The two important factors

affecting the performance of locking protocols are their abilities to resolve the locking conflicts and to

perform I/O and transactions in parallel. When the transaction size is small, there is little locking conflict

and the problem such as deadlock and priority inversion has little effect on the overall performance of a

locking protocol. On the other hand, when transaction size becomes large, the probability of locking

conflicts rises rapidly. In fact, the probability of deadlocks goes up with the fourth power of the transac-

tion size [Gray8l]. Hence, we would expect that the performance of protocols will be dominated by their

abilities to handle locking conflicts when transaction size is large.

As illustrated in Figure 5, the performance of the two-phase locking protocol, with or without prior-

ity assignments to transactions, degrades very fast when transaction size increases. This can be attributed

to the inability of this protocol to prevent deadlock and priority inversions. On the other hand, the priority

ceiling protocol handles locking conflicts very well. The protocol performs much better than the two-

phase locking protocol when the transaction size is large. The main weakness of the priority ceiling proto-

col is its inability to perform I/O and transactions in parallel. For example, suppose that transaction T has

lock on 01 and it now wants to lock data object 02. Unfortunately, 02 is not in the main memory. As a

result, T is suspended. However, neither are transactions with priorities lower than the rw-priority ceiling

of O allowed to execu,:. This could lead to the idling of the processor until either 02 is transferred to the

main memory or a transaction whose priority is higher than the rw-priority ceiling arrives. We refer this

type of blocking as I/O blocking. When transaction size is small, the locking conflict rate is small. Hence,

the two-phase locking protocol performs well. However, due to I/O blocking the throughput of the

I .22-

I
U

priority ceiling protocol is not as good as that of the two-phase locking protocol, especially when the

workload is I/0 bounded. I
Since 1/0 cost is one of the key parameters in determining performance, we have investigated an 3

approach to improve system performance by performing 1/0 operation before locking. This is called the

intention 1/0. In the intention mode of 11O operation, the system pre-fetches data objects that are in the 3
access lists of transactions submitted, without locking them. This approach will reduce the locking time

of data objects, resulting in higher throughput. As shown in Figure 6, intention 1/0 improves throughput

of both the two-phase locking and the ceiling protocol. However, improvement in the ceiling protocol is 3
much more significant. This is because intention I/O effectively solves the I/O blocking problem of the

priority ceiling protocol. 3
Another important performance statistics is the percentage of deadline missing transactions, since

the synchronization protocol in real-time database systems must satisfy the timing constraint of individual

transaction. In our experiments, each transaction's deadline is set to proportional to its size and system 3
workload (number of transactions), and the transaction with the earliest deadline is assigned the highest

priority. As shown in Figure 7, the percentage of deadline missing transactions increases sharply for the I
two-phase locking protocol as the transaction size increases due to its inability to deal with deadlock and 3
to give preference to transactions with shorter deadlines. Two-phase locking with priority assignment per-

forms somewhat better, because the timing constraints of transactions are considered, although the 3'
deadlock and priority inversion problems still handicap its performance. The priority ceiling protocol has

the best relative performance because it addresses both the deadlock and priority inversion problem.

A drawback of the priority ceiling protocol from the practical viewpoint is that it needs knowledge 3
of all transactions that will be executed in the future. This may be a very strong requirement to satisfy in

some applications. 3
The priority ceiling protocol takes a conservative approach. It is based on two-phase locking and 3

employs only blocking, but not roll-back, to solve conflicts. For conventional database systems, it has

I.23-

20.0

Throughput
(records/second)

15.0 Balanced Workload

10.0

5.0-

0.0 , , ,
0 4 8 12 16 20 24

Transaction size

a) balanced workload transaction

25.0

Throughout
20.or Iod /0 bounded Workload(recordg/st~cond)
20.0-

15.0

10.0- o • o

0.0- P

0 4 8 12 16 20 24

Transaction size

b) 1/O bounded workload transaction

Fig. 5 Transaction Throughput.

C: priority-ceiling protocol
P: 2-phase locking protocol with priority mode
L: 2-phase locking protocol without priority mode

I
I

25.0

(reco s 'nd)
20.0.

Balanced Workload

15.0

10.0

5.0

0.0
0 4 8 12 16 20 24

Transaction size

Fig. 6 Transaction Throughput with Intention I/O.

70.0
Percentage of .m ssg eadne 60.0 ---

50.0

40.0 P

30.0

20.0

10.03

0.0
0 4 8 12 16 20 24

Transaction size

Fig. 7 Pcrcentage of Missing Deadline. i

------ --- -

been shown that optimal performance may be achieved by compromising blocking and roll-back [Yu90J.

For real-time database systems, we may expect similar results. Aborting a few low priority transactions

and restarting them later may allow high priority transactions to meet their deadlines, resulting in

improved system performance. Several concurrency control protocols based on optimistic approach have

been proposed [Har9O, Lin90, Son90. They incorporate priority-based conflict resolution mechanisms,

such as priority wait, that makes low priority transactions wait for conflicting high priority transactions to

complete. However, this approach of detecting conflicts during validation phase degrades system predic-

tability. A transaction is detected as being late when it actually misses its deadline, since the transaction is

only aborted in the validation phase.

4.5. A Multiversion Database System

To illustrate the effctivcness of the prototyping environment, we have investigated the performance

of a multiversion database system. There is no correlation between the priority ceiling protocol study and

multiversion database study.

In a multiversion database system, each data object consists of a number of consecutive versions.

The objective of using multiple versions in real-time database systems is to increase the degree of con-

currency and to reduce the possibility of rejecting user requests by providing a succession of views of

data objects. One of the reasons for rejecting a user request is that its operations cannot be serviced by the

system. For example, a read operation has to be rejected if the value of data object it was supposed to read

has already been overwritten by some other user request. Such rejections can be avoided by keeping old

versions of each data object so that an appropriate old value can be given to a tardy read operation. In a

system with multiple versions of data, each write operation on a data object produces a new version

instead of overwriting it. Hence. for each read operation, the system selects an appropnate %ersion to

Iread, enjoying the flexibility in controlling the order of read and write operations. When a new verion is

created, it is uncertified. Uncertified versions are prohibited from being read by other transactions to

guarantee cascaded-abort free [Bem87). A version is certified at the commit time of the transaction that

I
1 -24-

U

generated the version.

The multiversion database system we have implemented is based on timestamp ordering. Each data 3
object is represented as a list of versions, and each version is associated with timestamps for its creation

and the latest read, and a valid bit to specify whether the version is certified. The multiversion con-

currency control scheme we have implemented is called "multiversion timestamp ordering method", and 3
is proved to satisfy the serializability [Bem871.

Each transaction consists of read and write requests for data objects. Read requests are never I
rejected in a multi-version database system if all the versions are retained. A read operation does not 3
necessarily read the latest committed version of a data object. A read request is transformed to a version-

read operation by selecting an appropriate version to read. The timestamp of a read request is compared 3
with the write-timestamp of the highest available version. When a read request with timestamp T is sent I
to the Resource Manager, the version of a data object with the largest timestamp less than T is selected as

the value to be returned. Figure 8 shows an example of a read operation with the timestamp "11". I
The timestamp of a write request is compared with the read timestamp of the highest version of the

data object. A new version with he timestamp greater than the read-timestamp of the highest certified I
version is built on the upper level, with the valid bit reset to indicate that the new version is not certified 3
yet. In order to simplify the concurrency control mechanism, we allow only one temporary version for

each data object. Inserting a new version in the middle of existing valid versions is not allowed. 3

I I
I

Fig. 8. A read operation with two certified versions of a data object. U
I

-25- I

I

The experiment was conducted to measure the average response time and the number of aborts for a

group of transactions running on a multiversion database system and its corresponding single-version sys-

tern. Two groups of transactions with different characteristics (e.g., type and number of access to data

objects) were executed concurrently. The objective was to study the sensitivity of key parameters on

those two performance measures. Here we present our findings briefly.

Performance is highly dependent on the set size of transactions. As shown in Figure 9. a multiver-

sion database system outperforms the corresponding single-version system for the type of workload under

which they are expected to be beneficial: a mix of small update transactions and larger read-only transac-

tions. The reason for this is that, in a multiversion database system, a read requests have higher priority

than the write requests; whereas the priority for read requests is not provided in a single-version system.

Therefore, in a single-version system, the probability of rejecting a read request is equal to that of a write

request. The experiment shows that a single-version database system outperforms its multiversion coun-

terpart for a different transaction mix.

It was observed that the performance of a multiversion system in terms of the number of aborts is

better than its single-version counterpart for a mix of small update transactions and larger read-only tran-

sactions. Similar experiments have been performed by changing the database size and the mean interar-

rival time of transactions. It was found, however, that the main result remains the same. From these

experiments, it becomes clear that among the four variables we studied, the set-size of transactions is the

most sensitive parameter for determining the performance of a multiversion database system. This experi-

ment demonstrates the expressive power and performance evaluation capability of the prototyping

environment.

5. Conclusions

Prototyping large software systems is not a new approach. However, methodologies for developing

a prototyping envirorment for real-time database systems have not been investigated in depth in spite of

its potential benefits. ,n this paper, we have presented a prototyping environment that has been developed

-26-

I
I

based on the StarLite concurrent programming kernel and message-based approach with modular building

blocks. Although the complexity of a distributed database system makes prototyping difficult, the imple- U
mentation has proven satisfactory for experimentation of design choices, different database control tech- 3
niques. and even an integrated evaluation of database systems.

There are three main goals to be achieved in developing a prototyping environment for real-time I
database systems: modularity, flexibility, and extensibility. Modularity enables the environment to be

easily reconfigured, since any subset of the available modules can be combined to produce a new testing

environment.

An additional benefit of the "right" modularity is that actual system software can be developed in

the prototyping environment and then ported to the target machine. This is enabled by the use of

technology-independent interfaces which are general enough to support any target system architecture. In

addition to the portability, programs may be ruai in a "hybrid" mode, that is, not all service calls need be

simulated. For example, file system calls in the application program can be intercepted by the interpreter

and directed to the existing host file system. Then, as a file system is developed, the file system calls can

be directed to it. If the file system is not necessary or is not the focus of the current research, it need not

be developed. This feature of the prototyping environment allows the developer to focus on only pertinent

design issues.

Flexibility enables the prototyping environment to be applicable over a wide range of configurations

and system parameters. One of the keys to achieving this goal is to design interfaces whose operations

are independent both of the implementation technclogy and the context in which they are used. For

example, the user-level Send operation sends an array of bytes to an abstract data type, the PortTag. Thus

this operation can be used to send any packet type to any destination, be it local or distant.

The third goal is that the prototyping environment be extensible enough to model additional features

of particular systems by adding modules without affecting the operation of or requiring the recompilation 3
of existing modules. For instance, the implementation can be extended to model the operation of dif-

.27-

!

ferent types of 1O devices of different speeds by modifying the implementation module that performs the

I read and write operations. One way to modify the implementation would be to delay for a period depend-

ing on the address passed to the read or write operation. Reading from a disk might be indicated by one

range of addresses and take some time, while reading from a tape drive might be indicated by another

3 range and presumably take longer. However, because the interface of this module is device-independent,

changing the implementation to process I/O requests at different speed will not affect any of the modules

I that request I/O operations. Therefore, time and effort for system reconfiguration can be reduced.

3 Expressive power and performance evaluation capability of our prototyping environment has been

demonstrated by implementing real-time database systems and investigating the performance characteris-

3 tics of the priority-ceiling protocol and multiversion databases.

3 In real-time database systems, transactions must be scheduled to meet their timing constraints. In

addition, the system should support a predictable behavior such that the possibility of missing deadlines

of critical tasks could be informed ahead of time, before their deadlines expire. Priority ceiling protocol

is one approach to achieve a high degree of schedulability and system predictability. In this paper, we

have investigated this approach and compared its performance with other techniques and design choices.

It is shown that this technique might be appropriate for real-time transaction scheduling since it is very

stable over the wide range of transaction sizes, and compared with two-phase locking protocols. it reduces

the number of deadline-missing transactions.

Using the prototyping environment, we have shown that in general, a database system with a mul-

tiversion concurrency control algorithm performs better while processing read requests. Read requests

3 that would be aborted in a single-version database system due to conflicts may be successfully processed

in a multiversion system using older versions. Therefore, when the read requests dominate the transaction

I load, and there is a high probability for abort of read-only transactions due to conflicts, a multivcrsion

system outperforms its corresponding single-version system. The relative sizes of the read and write sets

of transactions is an important factor affecting the performance. Although the actual performance figures

* -28-

I
9!

will vary depending on workload and implementation details, we believe that our results provide a good

picture of the costs and benefits associated with the multiversion approach to concurrency control.

Real-time distributed database systems need further investigation. In priority ceiling protocol and

many other database scheduling algorithms, preemption is usually not allowed. To reduce the number of

deadline-missing transactions, however, preemption may need to be considered. The preemption decision

in a real-time database system must be made very carefully, and as pointed out in [Stan88I, it should not

necessarily based only on relative deadlines. Since preemption implies not only that the work done by

the preempted transaction must be undone, but also that later on, if restarted, must redo the work. The

resultant delay and the wasted execution may cause one or both of these transactions, as well as other

transaction to miss the deadlines. Several approaches to designing scheduling algorithms for real-time

transactions have been proposed [Liu87, Stan88, Abb88], but their performance in distributed environ-

ments is not studied. The prototyping environment described in this paper is an appropriate research

vehicle for investigating such new techniques and scheduling algorithms for real-time database systems.

-29-

References

I [Abb88] Abbott, R. and H. Garcia-Molina, "Scheduling Real-Time Transactions: A Performance
Study," VLDB Conference, Sept. 1988, pp 1-12.

[Bern87I Bernstein, P., V. Hadzilacos, and N. Goodman, Concurrency Control and recovery in Data-
base Systems, Addison Wesley, 1987.

[Bri781 Brinch Hansen, P., "Distributed Processes: A Concurrent Programming Concept," Comm. of
the ACM 21, 11, Nov. 1978.

[Cook871 Cook, R. and S. H. Son, "The StarLite Project," Fourth IEEE Workshop on Real-Time Operat-
ing Systems, Cambridge, Massachusetts, July 1987, 139-141.3 [Gray8l] Gray, J. et al., "A Straw Man Analysis of Probability of Waiting and Deadlock," IBM
Research Report, RJ 3066, 1981.

[Har90] Haritsa, J., M. Carey, and M. Livny, "On Being Optimistic on Real-Time Constraints," ACM
PODS Symposium, April 1990.

[Hua90] Huang, J., J. Stankovic, D. Towsley, and K. Ramamritham, "Real-Time Transaction Process-
ing: Design, Implementation and Performance Evaluation," Tech. Rep. TR-90-43, Dept. of
Computer and Information Science, University of Massachusetts, May 1990.

[IEEE901 Seventh IEEE Workshop on Real-Time Operating Systems and Software, University of Vir-
ginia, Charlottesville, Virginia, May 1990.

[Kiv69I Kiviat, P.. R. Villareau, and H. Markowitz, The SIMSCRIPT I/ Programming Language,
Englewood Cliffs, NJ, Prentice-Hall, 1969.

[Kor9O] Korth, H., "Triggered Real-Time Databases with Consistency Constraints," 16th VLDB
Conference, Brisbane, Australia, Aug. 1990.

[Lam781 L. Lamport, "Time, Clocks and Ordering of Events in Distributed Systems," Commun. ACM,
July 1978, pp 558-565.

[Lin89] Lin, K., "Consistency issues in real-time database systems," Proc. 22nd Hawaii Intl. Conf.
System Sciences, Hawaii, Jan. 1989.

[Lin90] Lin, Y. and S. H. Son, "Concurrency Control in Real-Time Databases by Dynamic Adjustment
of Serialization Order," l1th IEEE Real-Time Systems Symposium, Orlando, Florida, Dec.
1990.

[Liu87] Liu, J. W. S., K. J. Lin, and S. Natarajan, "Scheduling Real-Time, Periodic Jobs Using Impre-
cise Results," Real-Time Systems Symposium, Dec. 1987, 252-260.

[ONR90] ONR Workshop on Foundations of Real-Time Computing, Washington, D. C., Oct. 1990.

[Raj89] Rajkumar, R., "Task Synchronization in Real-Time Systems," Ph.D. Dissertation. Carnegie-
Mellon University, August 1989.

[Sch741 Schriber, T., Simulation Using GPSS, NY, Wiley, 1974.
[Sha871 Sha, L., R. Rajkumar, and J. Lehoczky, "Priority Inheritance Protocol: An Approach to Real-

Time Synchronization," Technical Report, Computer Science Dept., Carnegie-Mellon Univer-
sity, 1987.

[Sha881 Sha, L., R. Rajkumar, and J. Lehoczky, "Concurrency Control for Distributed Real-Time
Databases," ACM SIGMOD Record 17, 1, Special Issue on Real-Time Database Systems,
March 1988, 82-98.

[Shin871 Shin, K. G., Introduction to the Special Issue on Real-Time Systems, IEEE Trans. on Comput-
ers, Aug. 1987, 901-902.

-30-

U

[Son88] Son, S. H., editor, ACM SIGMOD Record 17, 1, Special Issue on Real-Time Database Sys-
tems, March 1988.

[Son88b] Son, S. H., "A Message-Based Approach to Distributed Database Prototyping," Fifth IEEE
Workshop on Real-Time Software and Operating Systems Washington. DC, May 1988, 71-74.

[Son89] Son, S. H. and A. Agrawala, "Distributed Checkpointing for Globally Consistent States of
Databases," IEEE Transactions on Software Engineering, Vol. 15, No. 10, October 1989, U1157-1167.

[Son89b] Son, S. H. and H. Kang, "Approaches to Design of Real-Time Database Systems," Symposium
on Database Systemsfor Advanced Applications, Korea, April 1989, pp 274-281.

[Son90] Son, S. H. and J. Lee, "Scheduling Real-Time Transactions in Distributed Database Systems,"
7th IEEE Workshop on Real-Time Operating Systems and Software, Charlottesville, Virginia,
May 1990, pp 39-43.

[Stan88l Stankovic, J., "Misconceptions about Real-Time Computing," IEEE Computer 21, 10, October
1988, pp 10-19. 3

[Tan87] Tanenbaum, A., Operating Systems Design and Implementation, Prentice-Hall, 1987.
[Tok891 Tokuda, H. and C. Mercer, "ARTS: A Distributed Real-Time Kernel," ACM Operating Sys-

tems Review, 23 (3), July 1989.

[Yu90 Yu, P. and D. Dias, "Concurrency Control using Locking with Deferred Blocking," 6th Intl.
Conf. Data Engineering., Los Angeles, Feb. 1990, pp 30-36.

3
I

I

I
I

I
-31-I

m single-version

500- 0 multi-version

400-
AverageU response

time 300-

U 200-

1001 I _ i I
10 20 30 40 50 60 70 80 90 100

.# of transactions

PARAMETERS
Group I: Setsize = 10, Type =READ-only, Transaction Ratio = 80%
Group 2: Setsize = 2, Type WRITE-only. Transaction Ratio = 20%

300- a single-version

0 multi-versionI 250-
Average
response 200-I time 15

I100d
10 20 30 40 50 60 70 80 90 100

of transactions

3 PAR AMETERS
Group I Setsize = 10, Type = READ-only, Transaction Ratio = 50%1
Group 2 Setsize = 2, Type =WRITE-only, Transaction Ratio = 50%1

Fig. 9. Average transaction response time

I

IDISTRIBUTION LIST

1 - 3 Scientific Officer Code: 1211
Dr. James G. Smith
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

4 Administrative Grants Officer
Office of Naval Research
Resident Representative N66002
Administrative Contracting Officer
National Academy of Sciences
2135 Wisconsin Avenue, N. W., Suite 102
Washington, DC 20007-3259

5 Director, Naval Research Laboratory
Attn: Code 2627
Washington, DC 20375

6 - 7 Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314

8-9 S.H. Son

10 A. K. Jones

11 - 12 E. H. Pancake, Clark Hall

13 SEAS Preaward Administration Files

JO#4043:ph

I
I
I

