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Abstract

Eight variations of higher-order transverse shear deformation (HTSD) theory were

developed for laminated composite shells. The behavior and limitations of these varia-

tions were numerically evaluated for several cylindrical shell problems. All variations of

the theory used linear kinematic assumptions and nonlinear strain-displacement relations

for in-plane strain components. Three different higher-order attributes were included, or

excluded, in various combinations to produce the eight variations. The first attribute de-

fined the order of the series expansions, in the thickness direction, used to approximate

the assumed displacement field. The second attribute defined the order of the series ex-

pansions used to approximate the geometric shape factors of the shell. The third attribute

was the choice to include, or exclude, the nonlinear terms of the Green-Lagrange strain-

displacement relations for the transverse shear strains. When nonlinear terms of transverse

shear were excluded, the theory was called quasi-nonlinear.

Several problems were investigated using a finite element computer code (SHELL)

with an element independent stiffness matrix formulation and a 36 degree of freedom

cylindrical shell element. The original version of SHELL was written at AFIT in 1989.

MACSYMA, a symbolic manipulation code, was used to formulate the element independent

stiffnes6 arrays for each variation of the theory. Thin shallow isotropic cylindrical shell

panels exhibited a more flexible response during collapse when nonlinear transverse shear

was included. The use of quartic, versus cubic, displacement and/or the use of quadratic,

versus linear, shape factor approximations had no significant effect upon accuracy of the

nonlinear HTSD theory. For deeper shells, the linear displacement assumption prohibited

the use of nonlinear strain- dibplacement relations for transverse shear strains. Thus, for

deep shells, the quasi-nonlinear HTSD theory produced a more flexible response during

collapse when the order of shell shape factor approximations was increased. The effects of

quartic displacement were much less significant than the effects of quadratic shape factor

approximation.

Xii



HIGHER-ORDER THICKNESS EXPANSIONS

FOR CYLINDRICAL SHELLS

L Introduction

Recent increased interest in composite shell analysis has been generated by the use

of fiber-reinforced composite materials for aerospace applications. A second factor in the

proliferation of composite shell research is the use of modern digital computers. With

computers, solutions can now be found for problems which before were impossible to solve

analytically. In particular, problems involving geometric and material nonlinearities can

be solved by numerical methods.

Composite shell structures are used in many US Air Force and defense-related equip-

ment because of the inherently high strength-to-weight ratios of composite shells. His-

torically, thin isotropic shells have been analyzed for many years according to the linear

elastic theory formulated by A. E. H. Love [47] in the late 1800's. Love's theory assumes

normals to the shell's midsurface remain straight and normal during deformation. This

assumption, like the Kirchhoff assumption for flat plates, implies transverse shear strain

and stress are zero throughout the shell. Also, since the shell is assumed to be very thin

compared to its other characteristic lengths, many terms in the equations are approxd-

mated (e.g., terms with radius in the denominator are assumed negligible). More recently,

Donnell [23], Mushtari, and Vlasov [104] independently derived comparable theories for

thin elastic shells that included nonlinear terms (functions of transverse displacement) for

the in-plane strains. These theories, however, still ignored transverse shear and most terms

with radius in the denominator.

In general, shell theories that ignore transverse shear effects will predict stiffer be-

havior than experimental data shows. Inclusion of transverse shear effects reduces this stiff

behavior. Like Love theory, the newer Donnell, Mushtari, and Vlasov theories invoked the

Kirchhoff hypothesis. Thus, they also ignored transverse shear strain and stress. For thick

1-i



shells, however, the transverse shear terms can not be ignored in all cases. Likewise, trans-

verse shear terms become more significant with the introduction of non-isotropic composite

materials. This is primarily due to the small transverse shear modulus of fiber-reinforced

composite laminates.

During the last two decades, many composite shell problems with transverse shear-

effects included have been solved using numerical solution techniques. Some investigators

have solved these problems using fully three-dimensional models. These models, however,

generally require excessive computational times. They may also exhibit singularities and

other mathematical problems when used to analyze thin shells. Other investigators have

solved these problems using shell theories, which require less computational effort, with

either first-order or higher-order transverse shear deformation.

The "order" of transverse shear deformation theories refers to the highest order poly-

nomial, in terms of the thickness coordinate, used to describe the assumed displacemen.

field. This does not, in general, imply that higher-order shear theories have more inde-

pendent degrees of freedom. The first-order transverse shear deformation (FTSD) theories

use shear correction factors and reduced integration. These artifices compensate for the

theoretically incorrect distribution of transverse shear strain. The higher-order transverse

shear deformation (HITSD) theories allow normals to the shell's midsurface to rotate from

normal and also to warp. This assumption results in a transverse shear strain distribution

that is parabolic through the thickness of a flat plate. Most previous theories for geomet-

rically nonlinear shell problems with HTSD theory have retained some nonlinear strain

displacement terms for in-plane strain components. Most, however, have also ignored non-

linear strain displacement terms and the effect of higher-order thickness expansions for the

transverse shear components. In this dissertation, transverse shear deformation theories

which include nonlinear terms for in-plane strains but linear strain-displacement relations

for transverse shear strains are generally called linear FTSD (or ITSD) theories. In some

cases, when the distinction is important, particularly in the summary chapter, these the-

ories are more precisely called quasi-nonlinear theories. Only HTSD theories including

nonlinear terms of transverse shear are called nonlinear IITSD theories.

1-2



For this research, the full nonlinear strain displacement relations for laminated com-

posite shells with nonliinear IITSD terms ikere developed. This was done without neglect-

ing higher-order terms in the thickness expansions. These relations were then incorporated

into a proven finite element formulation to investigate the accuracy of various geometric

approximations of curvature and displacements and the effect of nonlinear IITSD.

A review of related research in the areas of composite shells and transverse shear

deformation is included in Chapter II. Some theoretical concepts are piesented in Chapter

III. These concepts, common to most of the published literature addressing the subject

area of this dissertation, were not independently developed by the author. They are in-

cluded in the dissertation to assure a common understanding of the theoretical background

of this research. The new theory, developed by the author for this research, is presented

in Chapter IV. Since -train equations for this theory are very lengthy, abridged equations

are used in Chapter IV; unabridged equations of strain components are listed in the ap-

pendices. Typical composite shell problems of interest to the USAF and some classical

isotropic shell problems were investigated to determine the effects of higher-ordel thick-

ness expansions and nonlinear HTSD theory. Results of these investigations are discussed

in Chapters V and VI. A significant tool used in the development of this theory was a

computerized symbolic manipulation code called MACSYMA [48]. Use of., symbolic code,

like MACSYMA, allows the formulation of the full nonlinear IITSD theory without ignor-

ing terms. The use of one "symbolic input program" to generate all vaiations of theory

provided reliability and confidence that the Fortran codes were correctly generated. Part

of the symbolic input program is included as an appendix since it played such a critical

role in this research program.
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II. Literature Review

The field of structural shell analysis is rich in history and significant accomplishments.

Many textbooks, conference collections, and review articles have been published over the

last century. These publications and the hundreds of related technicai articles published

over the last two decades present a compreherisive view of what has been accomplished in

this field. One of the most recent review articles by Noor and Burton [56] comprehensively

reviews 400 published works on computational models for multilayered composite shells.

The cited works include those with analytic three-dimensional solutions, analytic solutions

usinig two-dimensional shear deformation theories, and finite element or other numerical

solutions [56]. Two other recent review articles cite many references related to this research.

Kapania and Raciti reviewed recent advances in analysis of transverse shear effects and

buckling of laminated beams and plates [38]. Th( v cite 145 references. Wempner cited

about 150 references on the mechanics and finite elements of shells f106].

For many years, the well-known Kirchhoff-Lo 'e assumptions were used as a starting

point for shell theory derivations. These assumptions include . state of plane stress and

inextensible normals which remain straight and normal during deformation. Koiter [40]

estimated the relative error associated with Love's approximation to be less than h2/L 2

or h/R, whichever was larger. Koiter defined .b as thickness, L as the smallest "wave

length" of the deformation pattern of the shell midsurfr ce, and 11 as the smallest principal

radius of curvature of the shell midsurface [40]. Koiter also estimated the magnitudes of

the transverse strain components. He indJi.-ted transverse shcar stresses are generally of

the order h/L times the bending or direct stresses. bi.' -. ansver. vormal stresses are of

the order h2/L 2 or h/IR times the same stresses. K-iter concluded, "... a refinement of

Love's approximation is indeed meaningless, in ,,eneral, unless the effccts of transverse

shear and normal stresses are takei into account ... " [40]. Koiter used simplifications

based upon small strain assumptions for isotropic materials. For large strail, problems, or

for non-isotropic ma.erial behavior, including traitsverse shear deformation may be even

more necessary.
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The simplicity and efficiency of the Donnell-Muthtari-Vlasov thin shell theory justi-

fies its use for many thin isotropic shell problems. For problems undergoing large rotations

or problems with significant radii of curvatui. ,t more general nonlinear theory is required.

Reissner [83, 84] developed a nonlinear thec:. - !allow shells and symmetrically deform-

ing shells of revolution witb transverc s," - abir and Lock [87] developed a shell

theory using a displacement field derived fro .a .mple independent generali,ed strain func-

tions." Their work was based upon plane stre., assumptions and ignored transverse shear

deformation. Their results for a 100-inch radih ,piged-i-oe isotropic shell with thicknesses

of 0.75, 0.5, and 1.0 inches are often cited as, on.parisons

Simmonds and Danielson [95] dex eloped a general noilinear theory for thin shells of

arbitrary midsurface geometry. Their theory included compatibility equations, equilibrLhm

equations and boundary conditions which were val:d for shells undergoing arbitrarily large

rotations and strains. In their work, they .used a finite rotation vector defined by:

C2 = Esin 0 (2.1)

where ex', ) is a unit vectr- r, t is the shell thickness coordinate, x', a = 1,2 are the

shell surface coordinates, and O(xcl, t) is the magnitude of rotation about an axis parallel

to F. When Eq (2.1) is included as part of the kinematic relations, one obtains highly

nonlinear expressions for the shell extensioial and bending strain components in terms of

the shell curvature tensor and the components of Eq (2.1). These expressions, accurding

to Simmonds and Danielson, can be simplified to the equations of Reissaer's theory and

to those of the Sanders-Koiter shell theory [951.

Other authors have separated rigid body rotations from rotations caused by deforma-

tions. Belytschko and Glaum [8] accounted for initial curvature and moderate variations of

rigid body rotation. Their formulation was for shallow arch structures where, despite large

rotations, deflections were less than two percent of the radius. They used Euler-Bernoulli

beam theory which, like the Kirchhoff-lve theory, assumes normals to the midsurface

remain straight and normal. Their results for an arch with a rise to thickness ratio of

6.83.5 were approximately 13 percent stiffer tiL,-t experimental results [8]. Belytschko and
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Glaum did not disc.ics the possible influence of transverse shear deformation.

Hughes and Liu [30] incorporated FTSD theory in a quasi-nonlinear, large-strain,

large-rotation finite element model for general shells. In their develot me'.t, they reduce

the three-dimensional theo-y of nonlinear continuum mechanics to a two-dimensional shell

theory -simultaneously with the finite element discretization. This method of ( :rivation is

sometimes called the degenerated shell niethod. Their incorporation of shetr correction

facto,-, however, was unique. For the general nonlinear problem, the transverse shear

terms in the equilibrium equatians are coupled with the in-plane tr'.ns. Hughes and Liu

modified their strain displacement relations to incorporate the si.ar correction factor,

instead of incorporating the factor in the constitutive relations. This allowtmd extension of

the selective integration procedure to the fully-coupled nonlinear case. Selective integration

refers-to using exact numerical integration for 'he finite element equations associated with

in-plane strain terms, and less-than-exact numerical integration for the transverse shear

strain terms. Hugies and Liu investigated shallow circular 100-inch radius arches and

hinged-free shells under point load. Their results compared well with other studies up

to the onset of instability [30]. Unfortunately, no results were shown for these problems

beyond this initial point of instal-lity.

Parisch presented a "layered" shell element model with large rotation capability and

nonlinear material assumptions. His results for the 100-inch radius hinged-free cylindrical

shell under point load also compared well to published works up to the point of instability

[691. Parisch's theory was intended for large displacement analysis, however, he neglected

all q-iadratic nonlinear strain terms in the constitutive relations. Thus, transverse shear

stresses were constant through the Ciell tiickness [69]. Like Simmonds's formulation,

Parisch's formulation has complicated nonlinear expressions of rotations within the strain

components.

Surana also published a paper [98] on a curved shell theory incorporating highr-

order nonlinear rotation terms. His shell theory employed five degrees of freedom at each

node. Although Surana's eight-node isoparametric elements permitted large nonlinear ro-

tations and linear elastic orthotropic material behavior, the effect of transverse shear was

not discernible from the published results. This was apparently due to the small ratio of
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thickness to radii of curvature for Surana's problems. The clamped-hinged circular arch,

Surana studied, had a radius of 100 inches, thickness of 1 inch, and an included angle of

215 degrees. Surana's results for a 2-inch wide arch showed beam-like behavior, but a

24-inch wide arch behaved more like a shell strip. His results for hinged-free cylindrical

shells, generally, compared well with other published results [87]. Surana concluded that

linearizing the element displacement field wi.b respect to nodal rotations limits the mag-

nitude of rotations during the large deformation process [98]. According to Surana, his

formulation includes many nonlinear terms of nodal rotation, and therefore, achieves good

convergence rates for large load increments.

Koiter's estimates of error can be used to show the important role transverse shear

can play in the behavior of shell strv.ctures In the previously cited papers, the hinged-free

cylindrical shell had an undeformed r? tio of h/R = 1/100. As the panel deforms, however,

the local radii of curvature at any point is no longer the undeformed radius of the shell.

Curvature, where the point load is applied, may even change sign. The wave length of

deformaWtion will generally be less than the largest in-plane dimension of the shell. For

the hinged-free shells Sabir and Lock studied, the longitudinal and circumferential arc

lengths of the shell are both 20 inches. The effects of local changes in the shell shape

are often ignored in shell theories. Morley [51] showed that thin shell finite elements

which use quadratic polynomials (with Cartesian coordinat-s) fo describe components of

displacement cannot adequately represent inextonsible bending. The well-known Semi-

Loof shell finite element developed by Irons and Ahmad [32] is such an element. Morley

indicates even isoparametric finite elements do not provide an acceptable description of

inextensible bending of curved surfaces unless the element nodal interpolation functions

are at least cubic in order [51].

The development of a shell model for large-rotation nonlinear problems is complicated

by the introduction of laminated anisotropic materials or large changes in curvature of

the surfaces. Noor, Peters, and Andersen [55] developed mied finite element models

for beams, and later for shells, which employed "reduction" techniques for large-rotation

nonlinear problems. Their mixed finite element model assumes other nodal unknowns,

such as stress, strain, etc., in addition to nodal displacements. Their results for the 100-
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inch radius clamped-hinged deep arch showed excellent convergence. They also included

Reissner's large deformation transverse shear approximations. Noor, Peters, and Andersen

state, "The development of mixed models is simpler and more straight forward than those

of the displacement models. This is particularly true for large-rotation and large strain

problems in which the functional of the mixed variational principle is simpler than that of

the minimum potential energy principle" [55].

Bathe and Dvorkin [5] also used a mixed finite element formulation to develop general

shell elements. They suggested six "Requirements on shell elements" which they consider

important for general shell elements. Three of these requirements are related to this re-

search. Condition 1 implied no specific shell theory should be used. Condition 3 specified

"[the element] must not-ever-contain any spurious zero energy nodes; it must not-

ever-lock and must not be based on numerically adjusted factors." Condition 4 suggested

five or six engineering degrees of freedom per node should be maximum for shell elements

[5]. Condition 3 seems to suggest FTSD-based finite elements are not acceptable, since

these models have shear correction factors and will shear lock if not numerically underin-

tegrated. On the other hand, HTSD-based finite elements require at least seven degrees

of freedom per node. Condition 1 seems to eliminate most two-dimensional shell-based

theories, since these generally assume the transverse displacement w is constant through

the thickness and the transverse normal stress a33 is approximately equal to zero. Further-

more, even the use of orthogonal curvilinear coordinate systems (and strain definitions)

based on lines of principal curvature seem forbidden.

Bathe and Dvorkin [5] developed their theory in terms of element-based isoparametric

coordinates. They used this "convected" coordinate system to numerically interpolate the

in-plane covariant components of the Green-Lagrange strain tensor and to determine con-

travariant components of the Second Piola-Kirchhoff stress tensor. Transverse shear strains

were interpolated differently than in-plane strains. The values of transverse shear strain

components c13 and 623 were interpolated numerically at two points of a four-noded rect-

angular element using the appropriate Green-Lagrange strain tensor equation [5]. These

two values for a each transverse shear strain component were then linearly interpolated

to determine approximate values of E13 and 623 at each node point. Their eight-noded
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shell element used a higher-order interpolation, based on six points, of transverse shear

strain. In-plane strain for this element were calculated using an eight-point interpolation

scheme. Bathe and Dvorkin presented results of a 20-inch radius curved cantilever of 0.2-

inch thickness subjected to constant bending moment. Their finite element results with

-undistorted elements were within 2 percent of analytical solutions. Results with distorted

elements were within 8 percent of analytical results [5]. They also reported good compar-

ison with analytic solutions for a pinched cylinder with h/IR = 1/100 and h/L = 1/200,

a Scordelis-Lo cylindrical roof and an isotropic cylindrical shell panel. Their shell panel

was rigidly supported at the cylindrical ends and free along the longitudinal edge with

h/R = 1/100 and LIR = 1/200. The only load on the shell was due to gravity. Again,

based on Koiter's estimates, the transverse shear strains occurring in these problems were

on the order of 1-2 percent of the in-plane strains. Thus, the results reported by Bathe

and Dvorkin do not substantiate the transverse shear performance of their element.

With so many shell theories available, a method to assess the capability of a particular

theory to represent large nonlinear rotations was needed. According to Nolte, Makowski,

and Stumpf, Pietraszkiewicz [71, 70] suggested classifying "small strain shell theories ac-

cording to the magnitude of rotation angle w of the material elements as follows: small

rotations w < 0(02), moderate rotations w = 0(0), large rotations w = O(Vf/) and finite

rotations w > 0(1), where 0 is a common small parameter ... " [53]. The term "material

elements" includes a vector normal to the shell midsurface and two vectors tangent to the

midsurface in the directions of principal curvature. The parameter 0 was defined by Nolte

et al., based upon the work of Koiter [40] and John [35], as follows:

f h h h 1 0h<
max d L< 1 (2.2)

where R, h, L, L* , 17, d are "the minimum principal radius of curvature, the shell thickness,

the wave length of deformation, the wave length of the curvature pattern, the maximum

principal strain in the shell space and the distance of any point under consideration to

the lateral shell boundary" [53]. The wave length of deformation is the distance between

points where the derivatives of transverse displacement have the same values. The wave
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length of the curvature pattern is the distance between counter-flexure points of the shell

midsurface.

Nolte, Makowski, and Stumpf [53] evaluated error estimates derived for cylindri-

cal bending of thin shells under the Kirchhoff-Love hypothesis for several shell theo-

ries. These theories included moderate rotation theories of Donnell, Koiter, Sanders, and

Pietraszkiewicz; various nonlinear theories of Koiter, Basar, Chuyko, Shapavalov, Yaghmai,

and Varpasuo; large rotation formulations of Nolte et al., Pietraszkiewicz, and Schmidt;

and the finite rotation theory of Pietraszkiewicz and Szwabowicz [53]. Many of these the-

ories were shown by Nolte to be inconsistent, because they ignored essential terms in the

strain-displacem-ent relations, the geometric boundary condition relations, or in the energy

equations. Nolte et al. state that

... all nonlinear shell equations, widely used in theory and engineering prac-
tice, are valid only in restricted domaines [sic.] of applicability, whereas these
domaines [sic. are in general not well-defined ... the consistency of a ge-
ometrically no-linear theory cannot be proved by proper estimates of the so
called 'intrinsic' error bounded to the required range of applicability, or in other
words that 'small' terms in the strain-displacement relations will lead to 'small'
differences in the solution. [53]

The theories evaluated by Nolte, Makowski, and Stumpf were for thin shells assumirg

the Kirchhoff-Love hypothesis that normals remain straight and normal to the midsurface

of the shell. Recall that Koiter indicated theories which ignore transverse normal stress

cannot improve on the classical Kirchhoff-Love shell theory [40]. Thus, unless the shell

is truly thin, one may need to include transverse shear deformation. Surana's nonlinear

large rotation finite element formulation [98] discarded the Kirchhoff-Love assumptions.

Surana generalized his theory to include "axisymmetric shells, two-dimensional isopara-

metric beams, curved shells, two-dimensional transition elements and solid-shell transition

elements ... " [99].

Schmidt [90] revisited the general nonlinear theory of thin elastic shells undergoing

small strains and arbitrary, unrestricted rotations. In this paper Schmidt develops, in

detail, a consistent "first approximation" shell theory for small strains and unrestricted ro-
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tations, where first approximation refers to Koiter's modified version of the Kirchhoff-Love

hypotheses. Kirchhoff-Love theory is based upon the assumption that straight normals

remain straight, normal and inextensible. This is equivalent to the assumption of plane

strain. In the case of plane strain, trajxsverse strains are assumed to be zero and transverse

stresses are assumed to be nonzero. The classical Kirchhoff-Love theory assumes transverse

normal stress is zero instead of normal strain being zero. Titus, the classical Kirchhoff-Love

theory is inconsistent. Koiter's first approximation corrects this inconsistency by allowing

transverse stresses to be nonzero. They are, however, restricted to magnitudes at least one

order less than the in-plane stresses [92:613]. Schmidt's theory assumed plane stress and

no transverse shear deformation. He then reduced this finite rotation theory to a large

rotation theory. Next, he reduced it further by assuming rotations about the normal were

small. Finally, a consistent small strain moderate ro.ation theory was derived by eliminat-

ing more terms in the governing equations. This paper shows the process of deriving what

Schmidt calls a "variationally consistent" nonlinear shell theory.

Many other investigators have used finite element shell models to solve practical

design-related problems. The development of general families of finite element models by

Bathe and Dvorkin [5] and Surana [99] seem to support this trend. A general purpose fi-

nite element code called STAGSC-1 [1] was developed by Lockheed for aerospace research.

This program also has a series of elements (all flat) used to simulate shell structures.

Knight, Starnes, and Williams [39 investigated the post-buckling response and failure

characteristics of graphite-epoxy cylindrical panels loaded in axial compression. They

used experimental tests and the STAGSC-1 computer code to evaluate post-buckling re-

sponse of cylindrical shells and curved panels. They found a severe reduction in load occurs

at buckling and failures begin near regions with severe local bending gradients. Knight

et al. point out that many previous studies of the post-buckling behavior of composite

cylindrical panels were extensions of classical methods. These often ignored the effects of

large rotations. They found that even low values of applied load can cause high values of

local surface strains to develop near regions with severe local bending gradient.i. Failures

occurred in regions of large radial displacements and severe bending gradients, which ap-

parently caused large surface strains [39:146]. Knight et al. were able to predict responses
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that correlated well with experiment up to buckling. They blamed the influence of local

failures for deteriorating correlation after buckling. They noted STAGSC-1 assumes the

composite material system remains linear elastic throughout the analysis. This assumption

is inaccurate since many composites suffer severe reduction in local stiffness as a result of

local failures. Furthermore, the local failures which occurred near regions of large changes

in curvature can not be analytically modeled by STAGSC-1 [39]. (STAGSC-1 uses flat

plate elements with a "corotational" scheme to model large rotations [76]. This program

also ignores higher-order curvature terms in the kinem,.tic assumptions [1].)

Palazotto, Tisler, and others [61, 62] have also used the STAGS computer code.

These authors compared analytical predictions of buckling response to experimental work

on graphite-epoxy cylindrical panels. Their work included the effects of rectangular, un-

reinforced cutouto. They also saw large radial displacements, large curvatures over small

regions, and severe gradients of curvature for loads less than 10 percent of the critical

buckling load. Again, the STAGSC-1 assumption of linear elastic material response was

used. Under these small loads no permanent damage occurred.

Design also entails estimation of failure or, more importantly, assurance that failure

will not occur. The STAGSC-1 computer code can provide stress distribution estimates

for a composite laminate. The accuracy of these estimates is subject to the approxima-

tion of curved surfaces by flat elements. To improve stress estimates for shell models,

some investigators have used the full three-dimensional equilibriurr equations to derive

transverse stress distributions. Chaudhuri [15] computed in-plane stresses using "assumed

quadratic displacement triangular elements based on transverse inextensibility and layer-

wise [sic.] constant shear angle theory (LCST)." Transverse stresses were then computed

using the equilibrium equations. Results for an infinitely-long fiber-reinforced [90/0/90]s

strip loaded with sinusoidal pressure matched exact results for the transverse shear vari-

ation at the boundary [15]. Engblom and Ochoa [24] superimposed shear rotation on the

midplane rotation, thus, relaxing the Kirchhoff hypothesis for a quadrilateral plate element.

This method is actually a FTSD theory, but only midplane displacements and rotations

are evaluated during the first step of the solution. Transverse shear and normal stresses are

then calculated by integrating the three-dimensional equilibrium equations. This method
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results in a parabolic distribution of transverse shear stress. According to Engblom and

Ochoa, this distribution for a 3 x 3 quarter-plate model of a simply supported [0/90/01

square plate with sinusoidal load predicts a a23 at the midplane that is 32 percent greater

than theoretical. The stress is reduced to 27 percent greater than theoretical for a 6 x 6

quarter plate mesh [24].

Higher-order transverse shear deformation theory was used by Kwon and Akin [41]

for the analysis of layered composite plates. Their mixed element formulation used six

unknown variables u,,, v, w0 , Mx, My, and M_, defined only at the midsurface of the shell.

Through the thickness shear is parabolic in this method, and thus, correction factors are

not needed. Kwon and Akin's transverse deflection results for several plate configurations

with sinusoidal load matched Pagano's exact elasticity solutions much closer than previous

finite element work by Mawenja (1974) and Panda (1979) [41]. Reddy's displacement-based

HTSD finite element model for plates is referenced, but Reddy's results are not .included

in Kwon and Akin's comparison of results. In general, Reddy's results were closer to the

exact elasticity solutions than the two finite element works cited by Kwon and Akin. Kwon

and Akin's results, however, predicted defections much more accurately than Reddy's. For

ratios of h/L exceeding 0.1, Kwon and Akin's results were actually more flexible than the

exact elasticity solution. Apparently, Kwon and Akin's mixed formulation overcompensates

for the flexural stiffness reductions caused by transverse shear deformation.

Reddy et al. published several technical reports and paper- '42, 65, 66, 74, 80, 81,

77, 78, 79] addressing transverse shear deformation of plates and shells. Their research

included analytical solutions of the linear theory with HTSD for various boundary condi-

tions, moderate rotation theory of laminated coi,.,.osite plates, and development of finite

element models for failure analysis using a mixed finite element method.

Liu in his dissertation, as reported by Reddy and Liu [80], formulated a "new" third-

order theory of laminated shells that accounts for a parabolic distribution of transverse

shear stresses and von Karman strains. Exact Navier solutions were derived for several

simply-supported laminated composite shells. A mixed variational principal was devel-

oped, and from it, a mixed C0 finite element was generated to study bending, vibration,

and transient response of laminated composite shells. In this formulation, generalized
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displacements u, v, w, q1, and 02 and generalized moments M1, M2, M6, P1, P2, and

P6 are used as the dependent variables. The higher-order displacements 41, and ¢2, are

actually rotations and must be included in a displacement-based transverse shear defor-

mation theory. Recall, Kwon and Akin only used u, v, w, M', M2, and M6 as dependent

variables in their mixed finite element model. According td Reddy and Liu [80], some

higher-order displacement-based shear deformation theories have been developed using

equilibrium equations of the first-order theory. Thus, the higher-order terms of the dis-

placement field are included only in the strain calculation not in the governing differential

equations or boundary conditions. Thus, they claim these theories are inconsistent [80].

The issues of variational consistency and theoretical accuracy have resulted in con-

tinued research in basic shell theory [3, 4, 46]. Axelrad and Emmerling were concerned

with analysis of flexible shells instead of those designed for strength and stiffness [3, 4].

Thus, "Not any thinkable large displacements and rotations but preferably those actually

realizable by small strain ... " were considered. The theory developed by Axelrad and

Emmerling is strictly "intrinsic." This means the deformed shape and displacements are

calculated in terms of strain resultants instead of solving for displacement parameters.

These types of formulations, according to Axelrad and Emmerling, have their foundation

in the fundamental works of Reissner, Goldenveizer, and others [3]. The flexible shell is,

essentially, in a state of inextensible bending. For this case, the displacement form of

the field equations may be ill-conditioned. Thus, according to Axelrad and Emmerling,

"The intrinsic approach makes the problem involving finite, and in particular large, rota-

tions immensely more tractable" [3]. Their analysis, however, used approximations of the

assumed stress state, such that all substantial strain and stress resultants occur in one co

ordinate direction. Thus, their theory is a one-dimensional theory like the one-dimensional

beam-shell theories of Libai [43, 44].

Librescu and Schmidt [45, 46] also re-examined shell theory with transverse shear

deformation and moderate rotations of the normal. Their theory was based upon the

following assumptions:
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"(a) that the strains are small everywhere in the shell,

"(b) that the in-surface rotations of the shell material elements about normals
to the midsurface are small (and of the same order as the strains), and

"(c) that the rotations of the normal to the midsurface are moderate. (46]

With these assumptions, the order-of-magnitude estimates of the linearized components of

the rotation vector 91 are Q,3 = (9(0) and Q2,p = (02), where only the linear part of the full

nonlinear rotational components are used [46]. For the generally shaped shell described

in an orthogonal curvilinear coordinate system based on lines of principal curvature, the

transverse strain components include contravariant components of the rotation vector. The

displacement vector V is written as a truncated power series of the shifted components

of V across the shell thickness. Then, the transverse strains become an infinite series

summation across the shell thickness. The in-plane strains are a finite sum with 2(n + 1)

terms, where n is the truncation order of V. Librescu and Schmidt indicate that these

infinite summations for transverse strains may only be reduced to finite sums under four

conditions:

(a) in the case of shallow shells (and, as a limiting case for planar surfaces),

(b) within the linearized higher-order shell theories,

(c) when an appropriate "thinness" requirement of the form (h/R)n < 1 is envoked, and

finally,

(d) under Kirchhoff-Love constraints [46].

Librescu and Schmidt also showed that the infinite summations for transverse strains of an

FTSD theory could be replaced by finite summations. The shell theory they developed was,

thus, a variationally consistent "geometrically nonlinear theory of elastic anisotropic shells

with transveise (normal and shear) deformations and higher-order effects and accounts for

small strains aad moderate rotations of the normal" [46].

Schmidt and Reddy [92] simplified the earlier works of Librescu and Schmidt [45, 46]

by simplifying the strain displacement relations of the FTSD theory. This included deriving

the governing equations in terms of displacements associated with the first-order expansion
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in the thickness coordinate. They retained small strain moderate rotation restrictions, such

that the strains Eij = 0(02), where 02 < 1, and the rotation components w, 3 ; (.9(0) and

w, _ 0(0). To achieve a consistent moderate rotation theory, they retained terms in the

strain-displacement equations of the order 03. Schmidt and Reddy stressed the desirability

of consistent, variationally derived theories:

... introducing the moderate rotation order estimates for linearized strains
and rotations and omitting those terms which are small when compared to the
leading terms ... can lead to inadequate and inconsistent equations, because it
can result in omission of such terms in the equilibrium equations which would
correspond to important terms in associated variationally-consistent moderate
rotation strain-displacement relations. [92]

Pandya and Kant [68] developed a C' continuous displacement isoparametric finite

element for laminated composite plates using HTSD theory. Their element was a nine-

noded quadrilateral with nine degrees of freedom per node. These degrees of freedom

included higher-order deformation parameters resulting from a Taylor's series expansion

of the primary variables (in-plane displacement and rotation) in the thickness direction.

Pandya and Kant did not enforce the zero transverse shear stress conditions on the top

and bottom of the plate. Their transverse normal displacement was assumed constant

through the thickness. Using the total potential energy functional, they derived equilibrium

equations for the eight common engineering stress-resultants N, NAy, A' y, I My,M y,

QX, and Qy and 10 higher-order stress resultants.

Using a displacement-based isoparametric finite element formulation, Pandya and

Kant numerically solved several problems of laminated square plates with uniform and si-

nusoidal transverse loading. Their finite element solutions for the in-plane stress-resultants

were then used in the full three-dimensional equilibrium equations to compute transverse

shear strains. Interestingly, the constit tive-derived transverse shear strains were generally

about 10 percent greater than those predicted by Pagano. In contrast, the equilibrium-

derived values were 10 percent less than Pagano's [68]. This element may have suffered

from the rather arbitrary choice of not satisfying zero transverse shear strcss conditions on

the surfaces of the plate.
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Another paper by Pandya and Kant [67] used a novel met od to force satisfaction of

the zero transverse shear stress conditions. For a curved shell, where the transverse stress

is of the order hIR times the in-plane bending stress [40], nonzero transverse stresses may

cause generation of equilibrating surface tractions during the nonlinear solution process.

Membrane and/or shear locking would, thus, seem possible despite the use of higher-order

shear deformation theory.

Dennis [18] developed a large displacement, moderately large rotation finite element

formulation for laminated composite shells with HTSD theory. His two-dimensional quasi-

nonlinear theory assumed a state of modified plane stress. In this case, direct normal

stress a33 was assumed negligible and the transverse displacement w was assumed con-

stant through the thickness [18]. These two assumptions implied direct normal strain E33

would be zero, and hence, there would be no strain energy contribution resulting from

normal strain. To more accurately account for all strain energy, E33 was assumed to be a

function of the direct strains in the element's 1- and 2-directions. This was equivalent to

the Poisson's ratio effect for isotropic materials. Dennis assumed an orthogonal curvilinear

coordinate system and a cubic-expansion of midsurface displacement parameters. This

displacement field was similar to the cubic displacement field used for the HTSD theory

of plates. Due to the curvature of the shell, however, a cubic displacement field will not

satisfy the conditions of zero transverse shear at the top and bottom surfaces of the shell.

Dennis ignored this inconsistency by eliminating linear terms of the order h2/R 2 in his as-

sumed displacement field. He also ignored linear terms of the order hIR in his transverse

shear strain-displacement equations. Furthermore, Dennis assumed 26 higher-order non-

linear terms of the in-plane strain-displacement relations were negligible compared to other

terms. This according to Schmidt and Reddy [92] can lead to inadequate and inconsistent

equations.

Dennis's quasi-nonlinear IITSI) formulation [18, 22] does accurately predict global

responses of thin and moderately thick shells This theory reduces to the third-order IITSD

theory of Reddy [81] for flat plates. Dennis showed good comparisons with exact solutions

by Pagano and finite element solutions by others for many flat plate problems [18, 20].

Results for hinged-free c lindrical shells, deep cylindrical arches, and laminated cylindrical
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pressure vessels showed results in good agreement with published works [18, 20]. Dennis

later [21] compared linear results from his theory to exaxct solutions for laminated cylindrical

shells under cylindrical bending published by Ren [85]. For the [90] and [90/0/90] laminates

evaluated, Dennis's theory showed nearly exact results for transverse displacement at values

of R/h in excess of 50, but for an fR/h value of 10, his solution was too stiff by 6 percent

for the [90] laminate and 11 percent for [90/0/90] laminate. At an R/h value of 4, Dennis's

theory predicted 11 percent and 16 percent stiffer deflection response for the [90] and

[90/0/90] laminates, respectively. Dennis did indicate in References [18, 22] that values

of R/h less than 5 would make the assumptions of his theory inappropriate. The effect

of a33 being ignored is a significant factor for thick shells. Results of practical problems

analyzed using Dennis's theory have shown excellent results [19, 93, 88, 102, 100]. The use

of Dennis's theory for these studies was appropriate since fR/h values were not less than

25.

For shell analysis, a higher-order finite element approximation can be used to model

curvature with a minimum number of elements [106]. In this sense, "higher-order" relates

to the order of nodal interpolation functions used in the finite element. Many papers

have been published on various higher-order shell elements. The most common element

is the degenerated isoparametric shell element [16, 68, 14, 11]. Chang, Saleeb, and Graf

[14' developed a mixed formulation nine-node Lagrange shell element with independent

assumptions for the displacement and strain fields. Their strain assumptions were based

upon the following guidelines for a linear strain field:

"(1) all kinematic modes must be suppressed,

"(2) natural (or local) coordinates must be used to prevent invariant element

properties,.

"(4) membrane and bending strains are interpolated separately in local coor-
dinates,

"(5) strain function have complete linear polynomial terms in r and S so that
uniform convergence is ensured to the linear order, and

"(6) the number of strain parameters is kept minimal [14].
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Guidelines 4-6 eliminate membrane locking. The question of mpmbrane locking for a finite

element model is a difficult issue to deal with, accordi,:; to Chang et al., who concluded

"... a she!l element (whether thick or thin) must have the same ability in representing

the membrane as well as bending actions of a structure" [14]. Chang et al. used the

Scordelis-Lo cylindrical roof, a pinched cylinder, and a hemispherical shell with opposing

point loads to show the performance of their element. Their results converged to analytical

solutions for each problem despite the lack of a nonlinear strain-displacement formulation.

As indicated earlier, these particular problems are not a rigorous test of nonlinear theory.

Simple degenerated isoparametric shell elements have been used for problems ex-

hibiting nonlinear geometric behavior and/or nonlinear material behavior[106, 16]. Yuan

and Liang [109] used a three-noded axisymmetric shell element with the nonlinear finite ro-

tation scheme introduced by Surana [98]. In their formulation only three nodal parameters

were required-two translations and one rotational parameter (axisymmetric deformation

was assumed). Yuan and Liang also incorporated nonconservative deformation-dependent

loads and elastic-plastic constitutive relations. They did not, however, use a HTSD theory.

Their rotational parameter represents the rotation of the normal at the node. Since this

rotation is independent of the translational parameters, the normal is free to rotate. The

normal is not, however, permitted to warp in this formulation. Hence, the transverse shear

deformation is of first-order. No mention was made of the use of shear correction factors,

but reduced integration was used to prevent shear locking. To achieve a satisfactory stress

distribution through the shell, they resorted to a layered approach as used by Parisch [69].

This approach requires numerical integration through the shell's thickness. Their results

compared well with similar published works.

Hsiao, Hung, and Chen also used degenerated isoparametric shell elements for non-

linear analysis [27, 28]. In the first of these papers, two new rotation strategies were

proposed and evaluated along with four previously published strategies. hi this paper,

Hsiao and Hung used the Kirchhoff-Love hypothesis, thus, transverse shear deformation

was not included in this analysis [27]. In the second paper, Ilsiao and Chen [28] evaluate

the four large rotation strategies of Ramm, Oliver and Onate, Parisch and Surana, and

Bathe. The technique of Iiughes and Liu [30, 31] is similar to that of Bathe. 1lsiao and
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Chen proposed a "finite rotation" method and a "mixed rotation" method. In the finite

rotation method the rotational parameters are the incremental rotations of the shell normal

during deformation. These are called a and 6 and are defined with respect to the x, and

X2 axes of a coordinate system fixed to the shell midsurface. The x3 direction coincides

with the shell normal and x2 is aligned with one of the element's edges. In the mixed

rotation method, the same parameters are used and the reference frame has x3 aligned

with the shell normal, but x 2 is aligned with the global X2 direction. Hsiao and Chen

used several problems, including the deep hinged-clamped circular arch and hinged-free

cylindrical shells, to evaluate the various rotation strategies. They concluded that their

two new rotation strategies and those of Ramm, Oliver and Onate, Parisch and Surana,

and Bathe all gave similar performance. They also concluded that the choice of rotation

axes has little effect on accuracy or convergence characteristics [27].

The large rotation strategies Hsiao and Chen e-'luated were based upon the total

rotation which includes rigid-body rotations. Many large rotation theories have been

developed using corotational formulations which separate rigid-body rotations from strain

rotations [76, 8]. Hsiao and Hung [27] used a corotational total Lagrangian formulation

for a four-node linear isoparametric zhell element and for a similar nine-node quadratic

element. They showed good correlation with published results for a hinged-free cylindrical

shell. This work according to Hsiao, was a "compromise between the total Lagrangian

formulation for the degenerated shell element using large-displacement theory and the

corotational formulation for the facet element using small-displacement theory" [27].

Neither of these papers by Hsiao and colleagues incorporated transverse shear defor-

mation. For many problems of practical interest thin-shell theory is sufficient. Yang and

Saigal [108] used a four-noded thin shell element with 12 degrees of freedom at each node

to study rigid-body mode representation and locking mechanisms for nonlinear shell prob-

lems. They wanted to determine whether curvilinear coordinates or Cartesian coordinates

were best suited for particular elements. They noted that rigid-body displacement of a

curved member is curvilinear and can be exactly described by trigonometric functions of

the element's arc angle. When polynomial functions are used to describe this curvilinear

motion, the trigonometric functions will be reproduced only approximately. As the ehI-
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ment's arc angle increases, the error in this approximation increases. Hence, for highly

curved shell elements the rigid body mode representation will deteriorate [108]. Yang and

Saigal used a displacement field defined in a Cartesian system, versus curvilinear, to obtain

exact implicit modeling of the rigid-body modes. Their formulation included nonlinear ex-

tensional strains, but they used linearized bending strains. This effectively restricted their

analysis to problems with moderate bending.

Yang and Sagal also discussed locking of thin shell models [108]. They explained

that degenerate shell elements may suffer from membrane locking and shear locking when

used to model curved thin structures such as arches and shells where bending is predom-

inant. Yang and Saigal showed that their elements do not exhibit membrane locking by

analyzing a pinched cylinder with several different finite element meshes. This analysis

was performed using varying the order of the numerical integration (Gauss quadrature)

from 3 x 3 to 5 x 5. Their results were identical for all meshes with the 4 x 4 and 5 x 5 in-

tegration rule, thus, "indicating that the element does not suffer from m'embrane locking"

[1081. They also showed inconclusive results for hinged-free cylindrical shells. Their most

interesting results were based on an analysis of a semitoroidal bellows ui:der axisymmetric

,ad (axial extension). The bellc ,vs have regions of positive, negative, and zero Gaussian

curvature. Accurately modeling this shell with curvilinear coordinates Lased on lines of

principal curvature is not a trivial problem due to the varying curvature. Yang and Saigal

showed significant .Iifferenccs in converged curvilinear displacements u and v compared

with Cartesian displacemen L parameters-the Cartesian parameters . Cre better for this

problem [108].

The classification scheme used by' Nolte, Makowski, and Stumpf [53] may help explain

why some of these p oblems don't provide a suitable test for nonlinear HTSD theories. For

example, if one considers various values of thickness h and 0 = \/-77l for the hinged

cylindrical shell of Sabir and Lock, then an appioximate rotational limit can be estimated

for each of Nolte's shell theory classifications. These limits are shown in Table 2.1. Despite

large differences in thickness and significantly different load-displacement behavior for the

shells of Table 2.1, the rotational limits for different shell theory classifications are the

same. For example, if material rotations are on the order of 1/2 degree, then Nolte's
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Table 2.1. Rotation Limits of Shell Theory Classifications

h [ classification [53] rotation w
radians degrees

1.0 0.1 finite, w > 1 1.00 57

large, w = Vl 0.32 18
moderate, w = 0 0.10 6.0

small, w < 02 0.01 0.6
0.5 0.07 finite, W> 1 1.00 57

large, w = VF 0.26 15
moderate, w = 0 0.07 4.0

small, w < 02 0.005 0.3
0.25 0.05 finite, w> 1 1.00 57

large, w = V0_ 0.22 13
moderate, w = 0 0.05 3.0

small, w < 02 0.003 0.1

classification scheme suggests small rotation theory may be used for any thickness of the

Sabir and Lock shell listed in Table 2.1. If rotations are on the order of 5 degrees, then

moderate rotation theory should be used. Large rotation theory should supposedly be

used for rotations on the order of 15 degrees. Finally, rotations in excess of 50 degrees

will surely require finite rotation theory. All the theories discussed in this dissertation,

according to their authors, have been small- to large-rotation theories. Also, these theories

generally matched analytical results for problems where rotations were in excess of the

Table 2.1 limits. Obviously, either this use of the classification scheme is not correct (i. e.,

it may ignore transverse shear deformation effects, anisotropic material effects, and large-

or finite-strain effects), or the published results for these classical problems are in error.

The author suspects the classification scheme of Nolte et al. is not appropriate for this use.

Nonetheless, how does one determine what theory is appropriate for a given problem?

Simmonds [94] raised several questions regarding shell analysis. He indicated "The

displacement form of the field equations is ill-conditioned in (near) inextensional [sic.]

bending" [94]. This, according to Simmonds, is caused by relative errors of the order 0(1)

caused by approximating the term 1 + h2/(12R 2) as unity [94]. This term is a result of

the geometric approximation of the shell's shape. Ini this expression, h is thickness and
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R is the radius of curvature of the shell. The theory developed by Donnell, for example,

approximates this term as unity. Simmonds also raised a question about "non-experts

in shell theory" [94] using finite element codes for general problem solving. Terms like

ill-conditioning, spurious modes, stiffness locking, etc. are commonly used in the field of

finite element analysis to describe numerical difficulties caused by inaccurate approxima-

tions. Many of these problems can be overcome, but before results should be used for

design applications, the errors inherent in the theory and the element formulation must be

estimated.

Yang and Wu [108] developed a geometrically nonlinear tensorial formulation of a

skewed thin quadrilateral finite element. This element retained the coupling terms of the

metric and curvature tensors since they no longer vanish in the non-orthogonal curvilinear

coordinate system. The tensor form was used to develop the shell shape functions, geomet-

ric derivatives, stiffness matrix and finite element computer code. The element incorporates

a small strain linear elastic isotropic material assumption and thickness is assumed to be

small compared with the smallest radius of curvature of the shell's reference surface. In

,this theory, Yang and Wu retained only linear terms in the curvature-displacement rela-

tions. This decision was based upon observations by Bushnell [12] that nonlinear terms

in the curvature-displacement relations can be neglected, provided the largest midsurface

rotation is less than about 20 degrees; and upon experience gained in other investigations

[108]. Yang and Wu showed excellent results for problems like the 1/2-inch thick hinged-

free cylindrical shell, a pinched cylinder, rhombic plates, trapezoidal shells, and spherical

shells. These problems included distortions of up to 16 degrees for the pinched cylinder, 8

degrees for the hinged-free cylindrical shell, and 60 degrees for the rhombic plate.

Simo, Fox, and Rifai [96] discussed the computational aspects of a geometrically-exact

mixed finite element shell model. In this context, geometrically exact refers to not ignoring

terms in the theoretical treatment of the shell geometry and the governing equations. Given

a kinematic assumption (which may, or may not, exactly describe the physical problem),

Simo et al. then treated the geometry and all equations exactly. The only numerical

approximation was a result of the solution procedure used to solve the governing equations.

Their model was base d on the "theory of a one-director inextensible Cosserat surface, which
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using the weak form of the momentum equations, can be parameterized in a way that avoids

the use of Christoffel symbols or the second fundamental form" [96]. This provides a more

simple formulation than most tensorial-based theories. Their formulation used the Hu-

Washizu type of variational principle for mixed parameter problems [105]. Hence, the stress

resultants and the (assumed) transverse shear strain field were included in the formulation.

They showed -esults for a number of classical problems including hinged-free cyl'adrical

shells, a pinched hemispherical shell, and other more complex problems. Problems such as

the nonlinear buckling of a built-in right angle frame and the collapse analysis of an axially

loaded cylinder showed good results with quadratic rates of convergence for all problems

[96].

Several recent papers authored, or co-authored, by Reddy [78, 79] specifically ad-

dressed the issue of transverse shear deformation. Reddy [79] has reviewed all third-order

two-dimensional technical theories of plates. He states in the abstract:

All third-order theories published during the last two decades are shown to be
based on the same displacement field, contrary to the claims by many authors.
Consequently, all variationally derived plate theories are a special case of the
third-order plate theory published by the author in 1984. [79]

In the paper, Reddy shows equivalence between kinematic assumptions used in over 20

published works of research and the third-order displacement field of Jemielite [34]. Reddy

further clarifies that many of these works were based on equilibrium equations of the first-

order theory of Reissner-Mindlin, and that he was the first to use consistent variational

principles to derive a third-order theory of laminated composite plates [79]. In the other pa-

per, Reddy [78] solves various linear and nonlinear bending, natural vibration, and stability

problems using his refined computational model of composite laminates (the variationally

consistent generalized third-order transverse shear deformation theory). Issues such as

locking, symmetry considerations, boundary conditions, and geometric nonlinearity effects

on displacements, buckling loads, and frequencies were discussed [78].

Fuehne and Engblom [25 developed a doubly-curved eight-noded isoparametric finite

element with FTSD. Their element used three independently prescribed rotations and three
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displacements per node in each layer. Evaluation of the stiffness matrix was performed

numerically using reduced integration layer by layer. Fuehne's element included rotation

about the normal as one of the six degrees of freedom. The stiffness terms related to

this degree of freedom, according to Fuehne and Engblom [25:88] were "very minute." To

overcome numerical difficulties caused by these small terms, they substituted "a fraction

of the smallest rotational stiffness due to the 0, or 0. rotation for each element." These

authors used the equilibrium equations to compute through the thickness stresses based

on in-plane stresses calculated from the FTSD finite element solution. This process yields

parabolic transverse shear stresses instead of the -constant transverse shear stresses of

the FTSD solution. This paper included results for a laminated composite cylinder with

internal pressure. Compared with a previously published analytical solution, Fuehne and

Engblom achieved "excellent" results for interlaminar shear stress [25:951.

Bhimaraddi, Carr, and Moss [9, 10] presented isoparametric finite element models

for shear deformable shells of revolution and laminated curved (constant curvature) beams

with HTSD. For the beam, they used nodal parameters called ul and v, defined as rota-

tions about the element's axes. Their assumed displacement field included both of these

parameters multiplied by "almost any function whose first derivative vanishes at ... [the

surfaces of the element] and is non zero elsewhere ... " [10:312]. Thus, Bhimaraddi et

al. achieved a parabolic distribution of transverse shear stress. The strain displacement

relations chosen were the "exact" linear relations which included transverse normal strain

and did not assume the shape function 1 + y3 /R was equal to unity. They indicated that

ignoring the y3/R factor would result in neglecting the variation of beam curvature across

the cross-section which would lead to greater errors in predicted response.

Kant and Menon [371 investigated the effects of h/R for thick shells compared to thin

shells using "higher-order" theories for composite laminates. They assumed the displace-

ment field shown in Eq (2.3).

= U + Oz+ tZ+ OZ (i = 1, 2) (2.3)

U3 = U3  (2.4)
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where the ui and Oi are midsurface displacements and rotations, and the u! and 0,' are

the corresponding terms of the Taylor's series expansion. Kant and Menon discuss the use

of "functions" of thickness coordinate z, similar to that used by Bhimaraddi [9], but do

not define them, or discuss how they were used in this paper. Bhimaraddi's formulation

included a cubic "function" with a parabolic first derivative as part of the displacement

field. This assured zero transverse shear strain at the top and bottom surfaces of the

element [10:312].

To arrive at their strains, Kant and Menon substituted the displacement field of

Eq (2.3) into linear strain displacement relations and reduced these for a cylindrical shell.

Their resulting strain components include 23 functions which form their generalized strain

vector of the reference surface. Using standard constitutive relations for an orthotropic

composite lamina, Kant and Menon formulated the potential energy of the system in terms

of stress resultants and couples. They then discretized their problem domain using a C'

formulation with selective integration to avoid membrane and shear locking. They used

four-noded bilinear, eight-noded Lagrangian, and nine-noded Serendipity quadrilateral el-

ements. Kant and Menon compared results for some interesting problems by assuming for

thin shells h/R = 0, and for thick shells h2 /1?R2 = 0. For the thick shells, the assumed loads

acted at the top or bottom surface of the shell instead of at the shell midsurface. This,

they concluded was the predominant factor in differences between their thin and thick shell

results [37:1202].

The method of incorporating transverse shear into a shell model is not standard,

even though FTSD and HTSD theories are both well accepted. These two theories are

generally employed with the linearized transverse shear strain components of the Green-

Lagrange strain tensor. They can, however, be used with nonlinear transverse shear strain

terms. Singh, Rao, and Iyengar [97] used a FTSD theory with selected nonlinear terms

included in the transverse strain components. Equation (2.5) shows these nonlinear terms

in parentheses.

E = Tx x rx(2.5)S= OY +.2-3+( a
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where

U(x,y,z) = Uo(X,y)+zOX(x,y)

v(xyz) = Vo(X,y)+ob(x,y)

w(X,Y,z) = w0,(X,y)

Singh, Rao, and Iyengar studied the effects of anisotropy, transverse shear modulus, aspect

ratio, and boundary conditions on the buckling behavior of thick laminated composite

plates. They found transverse shear to be a significant factor in determining buckling

load. Although this FTSD formulation included nonlinear E4 = E3 and E5 = E13, the

authors did not mention of the effects of these nonlinear terms.

Palmerio, Reddy, and Schmidt published a series of two papers [65, 66] on a moderate

rotation FTSD for laminated anisotropic shells. This theory was proposed by Schmidt

and Reddy [92]. Their paper was reviewed earlier in this Chapter; see page 2-12. In

their finite element formulation, Palmerio et al. separate transverse shear and transverse

normal effects from in-plane extension and bending terms. This allows them to use reduced

integration for the transverse stiffness terms to prevent shear locking. Interestingly, they

retain transverse normal strain in their formulation. They add a sixth degree of freedom

to the typical five used for a FTSD theory. This sixth parameter is the linear term in the

transverse normal strain component £33. Having a nonzero E33 normally requires use of

the full three-dimensional constitutive relations. Palmerio et al. assume a state of plane

stress and set v13 = V23 = 0 to achieve results similar to a five degree of freedom FTSD

model. Their results are stiffer without this assumption.

Palmerio, Reddy, and Schmidt [66] investigated several problems including Sabir and

Lock shells. For 1-inch and 1/2-inch shells this theory compared well with published so-

lutions. A variation of this problem was also studied by substituting a 1-inch thick [0/90]

composite material for the isotropic material of the Sabir and Lock shell. Results of these

moderate rotation theory (MRT) models compared well with a "refined" von Karman

(RVK) analysis, but none of the results compared favorably with a full continuum model

by Liao and Reddy. Pahnerio et al. suggested that, "One of the reasons for the discrepancy
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could be due to not updating the geometry in the RVK and MRT formulations" [66]. In

their discussion of the results, they indicated that the MRT has nonlinear transverse shear

strain terms due to in-plane displacements which are not present in the RVK. Thus, if both

theories give similar results then the additional terms in the MRT do not contribute signif-

icantly to the solution [66]. Based upon their comparison with Liao and Reddy's results,

Palmerio et al. revised their MRT to include more nonlinear terms in their in-plane Green-

Lagrange strain tensor components. Their first-order through the thickness expansion of

displacements was retained. They noted that the resulting "non-linear transverse shear

terms are exactly the same as the MRT, ... [if they neglect the transverse normal strain

degree of freedom]" [66]. The major difference in this modification was that the bending

components contained substantially more terms. With essentially the full Green-Lagrange

strain tensor representation, the modified theory of Palmerio, Reddy and Schmidt gave re-

sults that were in close agreement with the continuum model of Liao and Reddy for a thin

shallow isotropic spherical panel and a thin shallow isotropic arch. They concluded that

including more nonlinear bending terms improved results for one problem and "elimina-

tion" of nonlinear transverse shear terms was necessary to reduce the overly stiff behavior

of the MRT for some cases [66].
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III. Theoretical Background

The primary goal of this research was to consider the ability of a higher-order trans-

verse shear deformation (HTSD) theory to model deformation of a composite shell un-

dergoing large displacements, rotations, and changes in curvature. In particular, more

exact through-the-thickness approximations of displacement, more exact approximations

of shell geometric parameters, and the incorporation of nonlinear transverse shear strain

were considered in this research. Many HTSD models have been developed in recent years

[18, 78]. These theories are suitable for linear or nonlinear problem solving by a number

of numerical solution methods. This chapter of the dissertation includes some theoretical

background material. The background mateiial is necessary to assure a common under-

standing of the concepts underlying the nonlinear HTSD theory. A presentation of the

nonlinear HTSD theory developed for this research is included as Chapter IV.

3.1 Surface Geometric Considerations

Components of particular physical quantities, such as displacement, stress, and

strain, however, are more generally defined for arbitrary curvilinear coordinate systems

as being either covariant or contravariant. These quantities are identified in the text as

being covariant or contravariant when the tensorial nature of the quantity is generally

accepted in the literature. Conventional tensor notation requires that contravariant quan-

tities be identified by superscripts and covariant quantities be identified by subscripts. This

practice is generally followed throughout this dissertation. For convenience, however, coor-

dinates are always identified with subscripts. The basic assumptions of a two-dimensional

shell theory are tied to the concepts of a reference surface, the midsurface of the shell,

and a local curvilinear coordinate system associated with this surface. When this curvilin-

ear coordinate system is based upon lines of principal curvature, which by definition are

orthogonal, then the coordinate system is also orthogonal. In orthogonal system of coor-

dinates, the components of the metric tensor form a diagonal matrix. Thus, contravariant

and covariant components of tensors are identical. For this research, the author has de-

cided to restrict the theoretical development to orthogonal coordinate systems based upon
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lines of constant curvature. This is one of the most common coordinate systems used for

analysis of shells [50, 57].

The development of nonlinear strain displacement relations generally begins with

the mathematical description of the midsurface geometry. If one considers a surface in a

three-dimensional space, then the positions of points on its surface can be defined by:

F = F(01,02) (3.1)

where F is the position vector from the origin 0 to points on the surface [50]. The param-

eters (01, 92) are defined in a closed region S in the (01, 02) plane. Next, assume the unit

normal vector to the surface is 6.3(01, 02) and the thickness of the shell is h = h(0 1, 02),

where h > 0. The position vector of a point within the shell can be written in terms of F"

and a3 . This position vector is given by:

f'(01,02) + z4 3 (01 ,0 2) (3.2)

where (01,02) E S and Izi = h(01,02). The (01,02)-plane defined by the surface S is

called the middle surface. The lines defined by 91 = constant and 02 = constant are called

coordinate curves. These curves define a curvilinear coordinate system with covariant base

vectors a, and a2 given by:

l = Or-/001, U2 = 9r9/a902  (3.3)

or

= 070cr (3.4)

where Greek subscripts have values 1 and 2. The covariant base vectors, d,1 and 62, are

parallel to the tangents to the 01 and 02 coordinate curves. This is shown in Figure 3.1.
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Figure 3.1. Base Vectors and Coordinate Curves

An infinitesimal vector connecting two points on the surface with coordinates (01, 02)

and (91 + d91,0 2 + dO2) is given by:

of" OF 2

df= d 9 + -d02 - =dOo = ffddO, (3.5)

where the repeated subscripts imply summation as shown in Eq (3.5). The length (ds) of

this vector is given by:

(ds)2 = dF. di = U," -Ud03d, d Op (3.6)

Defining the covariant surface metric tensor as:

a.,13 = d," -f = ap , (3.7)

allows one to write (ds) 2 ill terms of the covariant surface metric tensor as:

(ds) 2 = a,dOodOo (3.8)

Equation (3.8) is called the first fundamental form of the surface.
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Next, consider a point on the middle surface with coordinates 0, and a unit vector

fin the tangent plane at this point. The normal curvature associated with the direction

determined by tis given by:

ds = -dU3  (3.9)

or
1 d63 .. (3.10)
R ds

Y one substitutes Eqs (3.5) and (3.6) into Eq (3.10), then one finds:

T= d- L01-± a 2 L- (3.11)

and
d6L3  . dO1  . dO2=a3,1 +a32- (3.12)

where a comma in the subscripts implies differentiation with respect to the coordinate

following the comma. Substituting Eqs (3.11), (3.12), and (3.8) into Eq (3.10) gives:

1 = a 3,. -dlOg dOp (3.13)
R g aagdO,,dO

The quantity bp can be defined, such that:

b ,. = -d 3. -do= U 3 -cr3 = bpa (3.14)

The curvature can now be defined as:

B = ,bdOdOo 
(3.15)R a, adOadOo

where b,,dOadOj3 is called the second fundamental form of the surface. Thus, the normal

curvature is given by the ratio between the first and second fundamental forms.

If one defines the coordinate curves of Figure (3.1) to be lines of principal curvature

of the shell, then the 01 and 02 curves are mutually orthogonal families of curves [50, 57].
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In this coordinate system, the lengths Aa of the basis vectors a- are given by:

Act = J aI = ( -a) (3.16)

where the A, are called the Lam6 parameters of the surface.

Next, define mutually orthogonal unit vectors 61, 62, F in the directions of the base

vectors 31, 62 and the normal vector 63, respectively. These unit vectors are given by:

F. = /Ac, (a = 1, 2); '3 = d 3  (3.17)

The derivatives of the orthonormal base vectors are given by [50:8]:

A 1 .2 ALE A2.1e2

6',1 = - --- 2 "62 + R13 F1l,2 
= 

Al 1

+ 1. A2 1 -+

=2,1 = ei e2, 2 = + 2 e3 (3.18)

F,=R1 6 3 ,2 = R2 F

If one now considers a vector field /(01, 02) on the middle surface of the shell, then one

can resolve this field in the directions of the orthogonal base vectors 61, 62, e3 as follows:

V(01,02) = 1/1 F1 + V2152 + V3 6*3  (3.19)

Differentiating Eq (3.19) with respect to 01 and 02 gives:

V'. = Vi,,i + 11i, (3.20)

where repeated indices imply summation and Latin subscripts have the values 1,2,3 and

Greek subscripts have values 1,2. If one substitutes Eq (3.18) for the derivatives of the

base vectors into Eq (3.19), then the derivatives of the vector V are given as follows:

f". I = 2tjjrj>+ +(1_2 f+ A I(2 +(3.21)
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One can show that certain relationships between A1 , A2, R 1, and R 2 must be satisfied.

These relationships are given by Codazzi's equations:

(A A,2 (A 2" = A2,1  (3.22)

and Gauss's equation:
A1,2 + (A1,2).. AA 2  (3.23)Al " A,1 ),2 --- RIR2

3.2 Strain Tensor Definition

In Figure 3.2, consider the displacement of a body in a three-dimensional space from

its original undeformed state to a new deformed state denoted by a superscript star. The

coordinates Yl, Y2, and y3 are chosen to form an orthogonal curvilinear coordinate system.

This system is not the same coordinate system as the two-dimensional (01, 02) system of

the shell midsurface. In the (y1, Y2, y3) system, the original length (ds) of the line from M

to I is given by:

(ds)2 = gijdyidyj (3.24)

where g,, is the metric tensor associated with the undeformed curvilinear coordinate system

(Y1, Y2, y3). The components of gjj are given by the scalar product ff§j §j.

In the deformed system of coordinates, the distance (ds*) from point .M* to N* is

given by:

(ds*)2 = g dYMy, (3.25)

If we use a Lagrangian description of deformation, we attempt to express all variables

in terms of conditions prior to deformation [86]. From Figure 3.2, the displacement 0 of

point Al and the derivatives of U are given by:

- "(3.26)

or7 o+
-- y - g, (3.27)

3-6



e3

Y3 3

[8, 05
Fiue32/oy eoeadAteleomto

3-7 Y



If one combines Eqs (3.24) and (3.25), then one can define the strain tensor 7Yj) as:

27yj = (g - gij) (3.28)

If one substitutes Eq (3.27) into Eq (3.28), then one can express the strain tensor ^,, as

follows:
-9 o oU oO

=. + (3.29)27'= i -yj + Oy'N 0yi 0Yj

The orthogonal base vectors , are related to a new set of orthonormal base vectors I by

the following relationship:
Yi i (3.30)

F> f5L- ___

where the h, are called scale factors [86:118]. The displacement vector U can be written

in terms of 6, 62, e3 at point M as follows:

0 = Ule 1 + U262 + ua 3  (3.31)

If one substitutes Eq (3.31) into Eq (3.29), then one obtains:

O(kk) + § (ujFJ) 0( mgm) 0(UnUF) (3.32)27i =]i Oyj + j  Oyi OyN 8yj

Next, if one expands the implied summations on k, 1, m, and n over their values of 1, 2,

and 3, the result becomes:

2^1j = i (uVe + U262 + u363 ) +
Oyj

§j e/) _ A VI+ A+?36') +(333)

O(.(U 1 1 + 712 2 + U363)" -( u e + 7126 2 + UA3C)

If one uses the relationships of Eqs (3.17) and (3.18), the strain components 7,, can be

written in terms of the displacement components and Lam6 parameters [86:136-137] as
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follows:

71, hi r~ + hi U2 Oh /1 U3 1
Onl h 2 

0 Y2 h 3 OYjh

+ I 192 1 h+ 
2 0y2 

+  h3 0y3
~1 (0ulu2 uOh" 21u 3  1 Oh1 \2 Oy, h2 Oy2 h3Oy3(

+ 1 (871 2 + 1 Oh 2 ) 2 + ((73 it, Ohl)2 (3.34)
2 Oyl h2y +Y 2 Oyh h3y3)

N2 + h2v, 8h2 + h2u ) 2
722 + 2 +  h2 2

1( O 2u3 u 2 3  h2h+ 1 (8112 + U3 (9y3 
+ hl (9h2) 2

+2 Oy2 h 3 Oy3) + (y h1 OyJ (3.35)

733 = 32y3 +h3u1O3 + h3u2 h2

\OY3 hi Oy, h2 01y2

+1( Uah3 + U2 a, 3
.))2

2 \Oy h ) 0 + 2k.Oy 3  h2 012) (3.36)

712 1 It, Ou +_ OU2 Oh2  O'I
2 ( 0112 aIj aYI 0Y2

+1 (Oul U2 Oh2) ( 0"1 U2 1 Oh2 113 Oh 2+2 \ y2 hi ay, a y, h2 ay2 + h3 ay3

1~h Oh3 l (
713= (h2 + "I a/1 +1 U3A

+21)U la l U 0 2 (3.37)
2 ay, h3aY3 J y2 Th3 (Y3 )

1 (oau U13 Oh3 ) (O, + 13 Ohl +, 2 1 1+ a\ y3 It, ay, aY It 9y 3y3 + h2 aY2

(13 , Oh 1 0,,a1 u 0113 + 112 Oh3
+ a0y h3 a 9 01 jy3 h3 Oy, 

+ h2 a 2
+' (02 l A h 112 _ 13 h 2  (3.38)

2 y, h2 Y2 ) y3 h2 OY2
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1 Ou3  Oh2  Oh3"\
72 - 3 - + h2 U2 - 3 ----
Y 23 O2 OY3 O9Y3 OY2/

(OU2 u3 oh3 ) ¢(0U2  U3 Oh2  u, h2
+ O3 h2 CY2 19 Y2 h3 

0 '3 h1 OYi

1 (Ou3 u2 9h2 \(6a3  U2 Oh3  u, Oh

+1 h2 OY1 3 hiy (3.39)2 Oy2 hi Oy ] \ y3 hi Oy )

For the shell discussed earlier, the Lam6 parameters A, a = 1,2, describe the two-

dimensional relationship between the orthogonal surface base vectors 6,a and their orthonor-

mal counterparts i . For the strains of Eqs (3.34-3.39), the scale factors hi, i = 1,2,3,

describe the three-dimensional relationship between the orthogonal base vectors fr, of the

three-dimensional orthogonal curvilinear coordinate system g, and their orthonormal coun-

terparts i. For a two-dimensional orthogonal curvilinear coordinate system, the scale

factors of Eqs (3.34-3.39) become:

hi = A,(I - y3/Ri), h2 = A 2 (1 - y3/R2), h3 = 1 (3.40)

where recalling Eqs (3.4) and (3.16), we have:

A, =( L.i), A 2= ( . (3.41)

Thus, for the convenient case of a cylindrical shell with radius R 2 and local coordinates

01 = x, 02 = s, z described in an orthogonal space with global coordinates yj = x, Y2 = s,

y3 = z, the position vector f (y1, y2, Y3) would be given by:

F = XF1 + Se , + Z63 (3.42)

and the Lam6 parameters reduce to A1 = A2 = 1. For the same shell described in terms

of an angle, say 0, the circumferential coordinate s would be given by ds = RI2d. In this

case, df(y, Y2 , Y3) is given by:

dF = dxFC + R&dO2 + dze 3  (3.43)
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and the Lam6 parameters would be A1 = 1 and A2 = R 2.

At this point, it is important to realize the strain components of Eqs (3.34-3.39)

are related to the orthogonal curvilinear basis vectors 61, d2, and a3, which change in

magnitude and direction. This strain tensor is typically called the Green-Lagrange strain

tensor [105]. These tensorial strain components must be converted to physical components

in order to complete the analysis. For the infinitesimal linear problem, the linear parts

of this strain tensor can be related to the physical strain of the line from point M to N

[86:129]. The change in length of the line segment from M to N, shown in Figure 3.2, is

given by:
1 (ds*) 2 - (ds) 2

CMN = 1 ( s) (3.44)
2 (ds)2

This equation can be written in terms of the curvilinear coordinates Yl, Y2, Y3 as follows:

MN = dy dy (3.45)EMN"- iZd ds

The derivatives appearing in Eq (3.45) can be written in terms of the direction cosines 11,

12, 13 of the line from M to N relative to the orthonormal base vectors e, e2, e. These

direction cosines are given by:

dyl .dy2 hdy3
11 = h,--_s , 12 h2 13 h3 (3.46)

ds ds ds

If one substitutes Eq (3.46) into Eq (3.45) and expands the summations, then:

EMN = ^ )II +722 )+33 )
(ill \ / 1i13 \ / 1213 (3.47)

"t211'12 (+2 r 2^j13 (-L13) + 2 -y23

This equation can be written in terms of physical strain components E,. as follows:

AMN I ell +E 2 212 + a3 3
(3.48)

+2s121112 + 2clj3113 + 2E231,13
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where
622 - ) 6 3 3 =l = F(3.49)

2= hlh, , 13 -- hih3 ) h2 113

are the physical components of strain for the case of an infinitesimal displacement U defined

by Eq (3.31) [86, 50].

3.3 Composite Material Analysis

In the previous sections of this dissertation, the concepts of strain for a shell in

an orthogonal curvilinear coordinate system have been presented. Next, the subject of

constitutive relations will be discussed. One can consider the material of a composite

laminate from a microscopic viewpoint or from a macroscopic viewpoint [2, 13, 36, 107].

For this research, the macro-mechanical behavior of the laminate will be assumed sufficient

provided stresses are small enough to assure no material failure occurs. Thus, the material

of each lamina is treated as a homogeneous anisotropic material. More specifically, we shall

assume the material is transversely isotropic. This means the material has properties which

are symmetric about two material axes. An orthotropic material has properties that are

different in three mutually orthogonal directions with three mutually perpendicular planes

of material symmetry. The small strain constitutive relations for an orthotropic material

are wr:tten in matrix form as follows [36:35]:

a l l  Cll C12 C1 3  0 0 0 11

C22 C12 C22 C23  0 0 0 E22

(733 C1 3 C 2 3 C33 0 0 0 33

723 0 0 0 C44 0 0 723

713 0 0 0 0 C 5 5  0 713

7*12 0 0 0 0 0 C66 712
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where

C11  = (1 - V23V32)EII/

C22 = (1- v 13v 31)E2 /A

C33 = (1 - V12V21)E3

C12 = (V21 + v31 23)EZ/A

= (v12 + v32v13)E2/A

C 13 = (V31 + v 21 3 2 )EI/A

= (v13 + V12V23)E3/A

C23 = (v32 + v12V/3 1)E2/A

= (V23 + V21 V13)E3 /A

C 4 4 = G23

C55 = G13

C66 = G12

and

A= 1 - 1 2 - - v31v13 - 2 1v/ 32V13  (3.52)

The terms of Eqs (3.51) and (3.52) are not all independent. The relationship between these

terms are given by:

=, i - Eli i,j = 1,2,3 (3.53)

As a further simplification, if the material )roperties are the same in the 2-direction as in

the 3--direction, shown in Figure 3.3, then the material is transversely isotropic [36]. Fur

this type of material there is no distinction between properties in the 2- and 3-directions,

thus, E 2 = E 3 , V21 = V3 1,)V12 = V13, and V23 = V32 - With this assumption, Eqs (3.51) and
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Figure 3.3. Material Axes for a Transversely Isotropic Lamina

(3.52) become:

C11 = (I1 v23)Eu/L\*

C22 = 033 = (1 - V22)2

C2= 013 = Vii(1 + V23)EI /A*

C23 = (V23 + V12V2i)E2// * (3.54)

C5= G13

C66 =G1

where

=1 - 21/ 121/21 - V2 - 2v,2v21 V23  (3.55)

and the relationships of Eq (3.53) apply.
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For a thin flat structural member, such as a plate, a state of plane stress is often

assumed [16] where a13 = a23 = a 33 = 0. In this research, however, the effects of transverse

shear deformation are to be considered. Thus, 013 and a 23 are not assumed to be zero. The

direct normal stress a33, however, is still assumed to be zero. This assumption is necessary

to reduce the three-dimensional problem to a two-dimensional problem. If a33 = 0 is

substituted into Eq (3.50), the direct transverse normal strain can be found as:

C13 C23
(33 = -- -11- C22 (3.56)

0-33 033

Thus, rewriting Eq (3.50) using Eq (3.56) to eliminate E33 gives:

all Qll Q12 0 0 0 Eli

a22 Q12 Q22 0 0 0 E2 2

T2 3 - 0 0 Q44 0 0 723 (3.57)

713 0 0 0 Q55 0 ^13

T12 0 0 0 0 Q55 712

where

Qll = Cll - C23/C 33 = ElI(1 - v12v 21)

Q22 = C22 - C23/C33 = E 2/(1 - V12V2 1 )

Q12 = C12 - C13C23/C33 = v21E 2/(1 - V1 2V2 1 ) (3.58)

Q44 = G23

Qss = G12

To form a structural component, the lamina are assumed to be perfectly bonded

together with their fibers oriented at a particular angle with respect to the structure's

reference axis. The stiffness contribution of each lamina in the laminate ,Lan be determited.

These stiffnesses must first be transformed to a common reference system of axes. If

one assumes the kth lamina's fibers are all in the same direction (say, the 1-direction of

Figure 3.3), and this direction is at an angle 0 from the reference axis (say, the x axis)
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then the constitutive relations in the reference system are given by:

Ux Q1 Q12  0 0 Q16

01 Q12 Q22  0 0 Q26  E
-y 0 0 q44 ; 45  0 (3.59)

T. 0 0 Q45 Q55  0 7Z

7x k Q16 Q26  0 0 Q66 k 7x k

where

QI -" Qll cos 4 4 + 2(Q12 + 2Q66) sin 2 0 cos 2 4 + Q22 sin 4 4

12 -" (Qn + Q22 - 4Q66) sin 2 0 cos2  + Q12(sin 4 4 + cos4 4)

Q22 Q11 sin 4 4 + 2(Q1 + 2Q66) cos 2 4 sin 2 4 + Q22 COS" 4

U16 (Qn - Q12 - 2Q66) sin 4 cos3 € + (Q12 -- Q22 + 2Q66) sin 3 ¢ COS 4

U26 (Q1 - Q12 - 2Q66) sin 3 € cos € + (Q12 - Q22 + 2Q 66)sin¢ cos 34€ (3.60)

66 -(Qll + Q22 - 2Q66)sin 2 4cos 2 4 + Q66(sin4 4 + cos4 4)

Q44 =  Q44 cos 2 4 + Q55 sin2 4

Q45 -- (Q44 - Q55)cos4,sin 0

Q55 =  Q44 sin 2 4 + Q55 COS 2 4

In Eq (3.59) and (3.60), each lamina has a specific orientation of fibers. Thus, each

lamina can have different values of Q,j given by Eq (3.58). These constitutive relations are

valid for small strains where the material behaves as a linear elastic solid. Equation (3.56)

relates the direct normal strain C33 to changes in the direct in-plane strains (11 and E22

for a 33 = 0. The assumption that Eq (3.56) is valid for an arbitrary laminated composite

shell is important for composite shell analysis. Without this assumption, the stress state is

fully three-dimensional and the reduced computational effort of the two-dimensional model

is lost. With the assumption, however, the two-dimensional model will never accurately

predict the stress distribution within the shell, since U33 generally will not be zero in the

real structure. Research in the 1960's and 1970's, by many investigators, has validated the
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Figure 3.4. Shear Deformation of a Thin Elastic Body

acceptability of this assumption for certain problems.

3.4 Transverse Shear Deformation Theory

When a thin body undergoes a small (infinitesimal) deformation, material points on

a line normal to the middle surface of the body will move relative to each other, as shown

in Figure 3.4. This movement results in rotation and warping of the normal. The angle

between the geometric normal to the midsurface and the warped normal is maximum at

the midsurface and zero at the the upper and lower surface. For a linear elastic material

undergoing infinitesimal displacement (i. e. , linear strain displacement relations hold), this

angle of deviation is equal to the transverse shear strain. The distribution of transverse

shear strain for the infinitesimal linear case is parabolic through the thickness of a flat

plate. Under the classical Kirchhoff assumption, one assumes the normal (or cross-section

of a beam) remains normal, straight, and inextensible. This assumption results in zero

transverse shear strain. For thin shells, where hIR < 1, the Kirchhoff assumption allows

accurate predictions of transverse deflection versus load for small displacements. For thick

shells, where h2/R 2 < 1, or when anisotropic material properties are assumed, transverse

shear effects become more apparent. Thick shells and composite shells generally will show

greater transverse deflection for a given load when the effect of transverse shear is included
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Figure 3.5. Deformation of Normals for FTSD and HTSD Theories

in the theoretical model.

3.4.1 First-Order Transverse Shear Deformation (FTSD) Theories. There are sev-

eral ways to include transverse shear deformation. Transverse shear effects can be included

using a first-order transverse shear deformation (FTSD) theory. In this case, material lines

originally normal to the midsurface are allowed to deviate from the normal to the shell

midsurface as shown in Figure 3.4.1. These lines remain straight and inextensible. Since

the angle of deviation is constant, the displacement field varies linearly. The constant an-

gle also implies transverse shear strain is constant, and thus, is not zero at the upper and

lower surfaces of the shell. This inconsistent distribution results in an overly stiff model

of the structure. This stiffening effect, called shear locking, becomes more pronounced as

the shell thickness approaches zero. First-order transverse shear theories can be used, pro-

vided some artificial corrections are made. The excessive strain energy resulting from the

constant shear strain assumption is usually reduced by multiplying the transverse strains

by a constant factor of 5/6 for isotopic materials. Although 5/6 is often used for composite

materials, there is no generally accepted method of determining shear correction factors

for anisotropic materials. The predicted response of the FTSD model is sensitive to the
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values of shear correction factors. Hence, some have suggested that theories of composite

shells should not depend upon any numerical factors [5:698].

The derivation of transverse shear deformation theories is, generally, based on writing

the displacement vector Uf, of Eq (3.31), as a function of the thickness coordinate of the

shell. According to Reddy [80], this approach was pioneered in 1890 by A. B. Bassett. Ac-

cording to literature cited by Dennis [18], Bassett expanded the displacement components

ui in an infinite power series as shown below:

Ui(yI, Y2, Y3 ) = Ui(y,, y2 , 0) + Y3 (3.61)

This displacement field, when substituted into Eqs (3.38) and (3.39), will give nonzero

transverse shear strains 713 and 723. Also, the U3 component is a function of the thickness

coordinate y3. This will result in a nonzero 033.

Hildebrand, Reissner, and Thomas [26] examined the importance of the terms leading

to the transverse strains for orthotropic shells. They truncated the expressions of Eq (3.61)

for ul and 12 at the second order terms. They also assimed, for the case of a3,3 ;z 0 with

633 given by Eq (3.56), that u3 could be determined by intergrating Eq (3.56) though the

thickness of the shell. Their investigations showed that the resulting linear and quadratic

y3 terms present in u3 could be neglected. Thus, the displacement field of Hildebrand et

al. has a U3 displacement function that Joes not vary through the thickness of the shell.

Theories based upon the assumptions of Hildebrand et al. are called first-order shear

deformation theories. These types of theories were extensively studied by Reissner and

Mindlin in the 1940's and 1950's [82, 49] for plates, and hence, are often called Reissner-

Mindlin theories. For a shell, the FTSD theory is given by the following displacement

field:

4 1 = u(1 - y3/Ri) + ¢jy3

U2 = v(1 - y3/R 2) + 1 2Y3  (3.62)

113 = W
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where the five degrees of freedom (dof), u, v, w, 7P and 4'2, are functions of the in-plane

curvilinear coordinates yj and Y2.

3.4.2 Iligher-Order Transverse Shear Deformation (HTSD) Theories. Higher-order

transverse shear deformation (HTSD) theories generally eliminate the need for shear cor-

rection factors. The HTSD theory allows the normal to rotate and warp as shown in Figure

3.4.1. Some HTSD theories also allow the normal to change length. The HTSD theory

for a fiat plate produces a parabolic distribution of shear strain as shown in Figure 3.4.2.

This distribution matches the exact distribution of shear strain for the linear infinitesi-

mal case. The results for curved shells, however, are different because of the curvature of

the shell. Due to curvature of the shell, the transverse shear strain is distorted as shown

in Figure 3A.2 by the heavier line labeled cubic transverse shear. Since the small-strain

transverse shear distribution for a shell is a cubic function of the thickness coordinate, the

displacement field should be at least quartic in the thickness coordinate. For a shell, the

curvature generally creates coupling between in-plane extension and bending activity. To

include this effect, one needs to include quartic terms in the displacement field or include

nonlinear strain displacement terms. Assuming a general quartic displacement field, as
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given in Eq (3.63), the derivation of a quasi-nonlinear HTSD theory for a shell follows:

ui(y1 ,y 2 ,y 3 ) = iily/,+ly+Oy+Iy30y

u2(Y l ,Y2,Y 3 ) = v(1 - y3/R 2) + 2Y3 + 02Y3 + 72y3 + O2YJ (3.63)

U3(yl,y 2,Y3) = w(yl,y2)

where u = u(y1,y2), v = v(y1,y2), w = w(yl,y2), ?A, = *bc(yI,y2), 0, = 0,,(Y1,Y2),

7 = 7C(Y, Y2), and 0 , = O,(yl, Y2) are degrees of freedom defined only at the midsurface of

the shell. These degrees of freedom are functions of the in-plane coordinates yj and Y2 and

will vary from point to point on the shell's midsurface. For the shell with hi = (1 - y3/RI),

h2 = (1 - y3/R2), and h3 = 1 and the displacement field of Eq (3.63), the linear transverse

shear strains (given by the first line of Eqs (3.38) and (3.39) are as follows:

1 rM + (1,- y ,,i , )- - ,y/.R1)] (3.64)"Ya=(1 - Y31R,) tY +  Y-yl~~ 3 - Oy3 J

723 = 1 [/ U2 0(1 -y3/Ri)] (3.65)
(1 - y3/R 2) UY2 Oy313

Substituting Eq (3.63) into Eq (3.65) gives:

7123 = (1311 W 2~+b-223 ( -2) Y3(9Y 2 R2

+( -402) Y3 + iV] (3.66)\R2 R

For this equation to be zero at y3 = ±h/2 and yield a parabolic distribution of 723, the

coefficients of odd powers of y3 must cancel each other or be equal to zero. If one assumes

02 = 0 and 02 = 72/R 2, these coefficients vanish and 723 is given by:

1 ['819w 2 -12 2 Yg72 =o, [, T- + 12,1 7 (3.67)
723 = (1 - 13/12) . + ¢2R2 (3.67)

Evaluating Eq (3.67) at y3 = h/2 and solving for 72 gives:

3 2 1- h );2 = + V2  (3.68)
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For a shell with radius R2 no smaller than five times the thickness h, the term h2 /8R 2 in

Eq (3.68) is less than or equal to 1/400. If one ignores this term, then -12 is given by:

72 = -3 2 ( + 02) (3.69)

Similarly, yj can be found. If one substitutes Eq (3.69) and 02 = 02 = 0 amd similar

relations for €1, yl, and 01 into Eq (3.63), the final form of the displacement field of a

third-order quasi-nonlinear transverse shear deformation theory is obtained:

U1l(Y1lY2, Y3) -= U I1--I ) + V) I Y3 - _3'4L V1 
"

1) Y3

/ = 4 V) (3.70)

u3(yi,y2,y3) = W

This third-order displacement field has two additional degrees of freedom not present in

the first-order theory. These two degrees of freedom are the differentials of transverse

displacement w. The third-order '.heory, thus, allows the slopes of the elastic curve, w,,,

to be different from the bending angles, 0,. These differences are directly related to the

transverse shear strains of the structure.

The third-order transverse shear theory can be generalized to represent all third-

order theories of flat plates. including classical laminate theory or first-order shear theories

[78] by assuming displacements of the form:

[__O Owb ~ _Xy32 
+0, 1 3 [-- 4 (1+ -- " -Y

U " = U+Y 3  + 1 + ayl [-+ .3 T

U2 = V + Y3 --- + 02 + AY3 + IY3 [-P' (02 + - '"f (3.71)

U3 = ONWb+ + !3W, + A y33 + "'y3

Here u, v are midsurface displacement functions in the Yl and Y2 directions, respectively.

The functions wb and iv, are the transverse displacements due to bending and shear in

the y3 direction. The -01 and 0 2 are rotations of the transverse normal about the yl- and

y2-axes, respectively. The choice of different values for a, ]3, and A will lead to various

theories. Classical shell theory is given by a = 1, 8 = 0, and A = 0. In this case, the
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displacements are linearly dependent upon the slope of the midsurface and lines normal

to the midsurface remain normal. Hence, there is no transverse shear deformation. The

first-order quasi-nonlinear transverse shear theory is given by a = 0, i0 = 1, and A = 0.

Thus, the displacement is a function only of the midsurface displacements (u, v, w) and

the rotations (01,0 2) of the transverse normals. Since the displacements u1 and u2 vary

linearly with changes in y3, the effective transverse shear strain is constant through the

thickness. The third-order quasi-nonlinear transverse shear theory is given by a = 0, fi = 1,

and A = 1. In this case, the displacement is a function of the midsurface displacements

(u, v, w), the rotations (01, 02) of the transverse normals, and the -Yj and 72 of Eq (3.69).

The 71 and 72 of Eq (3.69) are approximately equal to the transverse shear strain. Thus,

the Pi represent rotations of the normal caused by bending activity and the -1, represent

rotations of the normal caused by transverse shear activity.
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IV. Theoretical Development

The third-order quasi-nonlinear transverse shear deformation theory for a shell is

suitable for many problems of practical interest. Two approximations of this theory, how-

ever, require further examination to assess their effects upon the accuracy of this theory for

certain problems. Specific problems of interest are ones in which rotations and curvature

within the element become very large. The first approximation, in question, is the neglect

of some higher-order terms in the thickness-expansions of displacement and shell shape

factors. The third-order displacement field of the quasi-nonlinear HTSD theory, as applied

to flat plates, assures the linear terms of the transverse shear strain components have a

parabolic distribution through the thickness and are zero at the top and bottom of the

plate. The third-order kinematics of the quasi-nonlinear HTSD theory do not give zero

linear transverse shear strain at the upper and lower surface of a shell-unless the shell is

flat or some small terms of the transverse shear strain are ignored. The curvature of the

shell is important, because the shell shape factors distort the distribution of strain through

the thickness of the shell. Thus, the order of approximation of the shell shape factors af-

fects the accuracy of the strain distributions. The second approximation, in question, is

the neglect of nonlinear transverse shear strain terms. The quasi-nonlinear HTSD theory

of Reference [18] ignores all nonlinear terms of both E23 and 613. This linear restriction

is not necessary physically, but satisfying the zero strain boundary conditions of the full

nonlinear expressions is not a trivial problem.

According to Dennis [18] and Librescu [45, 46], the assumptions of quasi-nonlinear

HTSD theories are accurate for problems where the in-plane strains and stresses are larger

than the transverse quantities; these judgements are based upon Koiter's work [40] and

the ratio of h/R. Dennis evaluated problems with various ratios of h/R, and concluded

the quasi-nonlinear IITSD was acceptable provided h/IR was less than 1/5. Some problems

investigated using the quasi-nonlinear IITSD theory, however, would seem to have exhibited

large stresses and strains despite small values of h/R. For example, a graphite-epoxy

(AS4-350) cylindrical shell panel with clamped lateral edges and transverse point load was

analyzed by Tsai et al. [103]. This shell had a 12-inch radius and was 0.04-inches thick,

therefore, h/I? was equal to 1/300. Transverse displacements for this problem exceeded 65
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times the panel thickness (2.5-inch displacement). A deep circular arch problem Dennis

investigated had transverse displacements of over 30 times the thickness[18:257-265]. The

effects of ignoring nonlinear transverse shear terms and higher-order thickness expansion

terms were not determined during these studies.

4.1 Higher-Order Thickness Expansions

The kinematics of Eq (3.70) can be corrected to yield exactly zero at the top and

bottom surface. of a curved shell by adding two correction factors to the last term as shown

below:

U!(YI, Y2, Y3 ) = ( -L3)+?Iiiy3 +( ~+ a) [ - + k-y ]

3__- 3j (4.1)
U2 (?1, Y2, Y3) = V 1Y 2 9 y3 k (41

U3(yI,y2,Y3) = W

where k = -4/(3h 2) and the underlined terms are the correction terms added to Eq (3.70).

These kinematics will give zero linear transverse shear strains at the upper and lower surface

of a curved shell where y3 ±h/2. The additional terms of Eq (4.1) also vanish for a flat plate,

since each is divided by radius of curvature. Likewise, for a right circular cylinder with

radius R2 the first equation of Eq (4.1) reduces to the corresponding flat plate expression,

since R, is equal to infinity. The comparison of results based upon the incomplete cubic

kinematics of Eq (3.70) and results based upon the complete quartic kinematics of Eq(4.1)

is a major aspect of this research. As stated earlier, the cubic displacement field of Eq (3.70)

is the same as used by other authors [80, 18]. The complete quartic, however, is a unique

displacement field not derivable from those of reference [80]. This quartic displacement

field, thus, represents an exact solution for the linear traction free boundary conditions of

a quasi-nonlinear IITSD theory for shells. Thus, satisfying the linear boundary condition

for traction free surfaces involves four more terms in the displacement field.
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4.2 Nonlinear Transverse Shear Deformation

The nonlinear transverse shear boundary conditions are not as easily solved as the

linear versions of these conditions. If one substitutes the kinematics of Eq (3.63) into

Eqs (3.38) and (3.39), the results are the two coupled nonlinear partial differential equations

shown below:

E23 = (02 + W,2 - CUU,2 + C2 UW + u, 2 0 1 + 71,2 0 2 - cW¢'2)

+ (cv + 202 + Cw,2 + cik2 + 20 1u, 2 + 202u, 2 - 20 2cw

+c3uw + cu,20 1 + 0 1,20 1 - CU - C2WI2 + 02,22) Y3

"+" (C2 V + 372 + A2C - c3 u + C2 0 2 + 371U,2 + 37Y2U,2 + 241CU, 2 + C3 UU,2

-37 2cw - 2q 2c
2w - cu€ 2 ,2 + 20171,2 + 0 1,201 + c01,20 1

+20202,2 - C - C 2U,2¢ 2 + ¢ 2,2 02 + c0 2,20 2) Y2

+ (,102 + -12c + 02C2 + 401U,2 + 40 2u, 2 + 371eu, 2

-252C 2 U,2 - 402CW - 37 2 C2 W - CU72, 2

+201,2 + 2022, - c2u02,2 + 3-1 1 ,2 + 20lcV'1,2 + 71,201

+c01, 201 + 3Y20 2,2 + 20 2cO2,2 + 72,202 + c02,20 2) y3

+ (02c + 72c2 + 401cu,2 - 37 2c2u, 2 - 402C2w + 201171,2 (4.2)

+20272,2 - C2U72, 2 + 3711,2 + 20 1cO1 ,2 + 37202,2

+292cO2,2 + 4001,2 + 371 eC?1,2 + C71 ,2 0 1 + 40202,2

+3 7 2c7P2,2 + c7 2,20 2 + 0101,2 - cu0 2,2 + 0202,2) y3

+ (02c 2 - 40 2C2 2?,2 + 37171,2 + 2, 1c7 1 ,2 + 37272,2

+202C7Y2,2 + 4011,2 + 3y 1c$ 1 ,2 + 40202,2 + 3-12CO2 ,2 + 40 1Cb1 ,2

+40 2 CP 2 ,2 + 20 10 1 ,2 + C 1 0 1 ,2 + 20202, 2 - C2 U0 2 ,2 + C0 2 0 2 ,2 ) y;

+ (40171,2 + 371c71 ,2 + 40272,2 + 372c7 2 ,2 + 40 1cO, 2

+ 402CO2,2 + 37101,2 + 201C01, 2 + 37202.2 + 20 2 C02 ,2 ) y3

+ (40 1C71 ,2 + 40 2c2,2 + 40101,2 + 37 1c01,2

+ 40202,2 + 37 2c0 2,2 + 40 1c0 1,2 + 402C02,2) Y;
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E1.= (0 1 + w,1 - cvv, 1 + u,1 0 1 + v,10 2 )

+ (2¢ 1 + 2€juj + 202u,1 + c2uu,1 + V11,10 1 - cu¢2,1

-CU, 1 12 + 02,102) Y3

+ (37i + 3- 1u,j + 3y2u,, - 2q2CU,1 - CU02,1 + 2017P1,1

+01,1V51 + 20202,1 + 02,102)yA

+ (401 + 401u,l + 40 2u, 1 - 372cu,1 - cuY 21 + 20101,1 + 20202,1 (4.3)

+ 3 -7101,1 + 7yi,101 + 3_120 2 ,1 + 72,102) Y33

- (40 2c,1 + 271-y" + 202-Y2,1 + 3-y,1,1 + 37202,1 + 4 0 101,1

+40 2 ?¢2,1 + 0101,1 - cu02,1 + 0202,1) yJ

+ (3 yj-yi,1 + 37272,1 + 40101,1 + 40202,1 + 20101,1 + 20202,1)y3

+ (40171,1 + 40272,1 + 3 -y,01,1 + 37202,1) y3

+ (40101,1 + 40202,1)y3

Recall y, y,, and 0, were undetermined functions of the in-plane coordinates defined only

on the midsurface of the shell. In order to solve these two equations for all of the unknown

functions (there are six unknowns), one must evaluate these two equations at y3 = ±h/2

and set each resulting equation equal to zero. This is required to satisfy the zero traction

boundary condition on the surfaces of the shell. Although other authors have proposed

the inclusion of nonlinear transverse shear and the use of linear kinematics [92, 97, 65, 66],

none have done so within a HTSD theory.

Since no simple functions exist for Oi, -, and 0i that are linear in terms of u,v,w

and ?P,, several options are available. One could choose to ignore the natural boundary

conditions and use shear correction factors as done with the FTSD theory. Sing, Rao, and

Iyengar [97] choose this approach. One could also simply ignore all nonlinear transverse

shear strain terms. Palmerio and Reddy [65, 66], although intending to include nonlinear

transverse shear, ultimately choose this approach for their quasi-nonlinear FTSD theory.

These are the only two references, the author has located, which refer to nonlinear trans-

verse shear terms in a FTSD or HITSD theory for shells. It should be noted that some thin

shell theories include nonlinear transverse shear stress resultants. These, however, are not

a result of explicit nonlinear transverse shear strain terims, but result from integration of

the equilibrium equations with nonlinear in-plane stresses [46]. Thus, these nonlinear the-
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ories are not suitable for thick or anisotropic shells where variation of parameters through

the shell's thickness are important.

4.3 The Nonlinear Higher-Order Transverse Shear Deformation Theory

Some preliminary judgements of the relative importance of higher-order terms can be

gained by examining the terms of E23. If one uses the third-order kinematic assumptions to

compute strains for a shell with radius R = 5h, then the linear part of the 723 component

(first line of Eq (3.39)), when evaluated at the top (Y3 = -h/2) and bottom (y3 = +h/2)

surfaces of the shell, becomes:

7 23 (y3 =-h/2) = L + ¢2

= -0.OT Ow + 02) (4.4)

723(Y3 + +h/2) = + -1 - + 02)

= +0.0T (W + 02) (4.5)

When these quantities are divided by the shape factor h2 = 1 - y3/R (evaluated at Y3 =

±h/2), the E23 values become:

623 (Y3 =-h/2)= - 10 (Lw+ V2
165 kdY2~

= -0.0U-0 (0LW + 02) (4.6)

E23 (y3 = +h/2) = (O + )

- ±0.04" ( + 2) (4.7)
13 OY2

If the term (Ow/Oy2 + 02) is equal to 0.25, then 623 (Y3 = +h/2) would be equal to 0.0185

or about 2 percent strain. This magnitude of strain is significant for a small strain elastic

material model where strains in excess of about 4 percent are considered too large for an

elastic analysis. The use of the complete quartic kinematic assumptions of Eq (4.1) gives

4-5



exactly zero for these transverse shear strain quantities.

If nonlinear strain displacement terms are retained for the transverse shear strains,

the equations for -23 and 613 become more involved. Using the kinematic assumptions of

Eq (3.70) and evaluating Eq (3.39) with y3 = h/2, R 2 = 5h, and h = 1, one has:

=12 _.T W+0 . ua 0.45 OV O-W
723 0.03)3 Y 52 " yY2 Y2

-0.06 \ 2 OW + 01 O + 0.1W aw 2

++.09v +0.083 +
OY2 Dy 2  y l 5yl T y2 /

-0.033v--- - 0.02vw + 0.01w6v2

{ D ¢ 2w D5 Nv'
+7.45 x 10-9  2 + '/1' 2 - 1.502 J (4.8)

O D YI OY2 OY2/

where the underlined terms are the linear terms of Eq (4.4). The last three terms of

Eq (4.8) (those multiplied by 7.45 x 10- 9) are apparently negligible. For a cylindrical shell

of radius R2 undergoing large transverse displacement, say [h < w < max (L, R'2)], if one

assumes the shear-related term Ow/Oy2 + 0 2 is large, say [0.5 < (0w/0y2 + L2) _< 1.0], and

all other quantities in Eq (4.8) are negligible, then:

723 (0.033 + 0.1w) ( -2 + 02) (4.9)

The types of shell problems of interest in this research will undergo large transverse dis-

placement along with large bending rotations and shear angles. Thus, the iv (Ow/Dy2 + ('2)

term of Eq (4.9) may be of significance.

The author's approach to including nonlinear transverse shear terms in a TITSD the-

ory includes several assumptions beyond those of the quasi-nonlinear IITSD theory. First.

the author is primarily interested in problems involving large rotations and curvature

changes for laminated shells. Thus, the new theory should reduce to the quasi-nonlinear

HTSD theory for problems with smaller rotations or smaller curvatures. The kinematic

4-6



assumptions of Eq (4.1) reduce to those of [18] for small curvature problems, since each

additional term includes the radius of curvature in the denominator. Secondly, the satis-

faction of the nonlinear boundary conditions of Eqs (4.2) and (4.3) will not be achieved by

the use of nonlinear kinematics. Although this seems feasible, one goal of this research was

to extend the capability of HTSD theory to solve large-rotation large-curvature problems

with transverse shear nonlinearity. The quasi-nonlinear HTSD of [18] is computationally

quite expensive [18:278]. The incorporation of nonlinear kinematic terms and the correc-

tive terms of Eq (3.62), therefore, seems prohibitive. There is also a practical problem

associated with the ability of one researcher to numerically evaluate enough problems to

determine the effects of each of these variables. Thus, the author has chosen to evaluate

the kinematics of Eq (4.1) with the full nonlinear transverse shear relations of Eq (3.38)

and (3.39) with an approximate approach to the nonlinear boundary conditions. This

approximate approach assumes the nonlinear transverse shear strain should be zero at

the upper and lower surfaces and that the strain energy of the nonlinear transverse shear

strain terms is excessive. Recall the FTSD theory had excessive transverse shear strain

energy which was approximately corrected by multiplying the transverse shear strain by

5/6. The author hopes to achieve similar results and also force the satisfaction of zero

traction at the surface by multiplying the nonlinear transverse strain terms by a parabolic

function of the thickness coordinate. Other researchers have used similar functions to pro-

vide the parabolic shear distribution of the quasi-nonlinear HTSD theory; see for example

[9:300-301] and [37:1192].

Thus, the goal of this research is to evaluate the effects of two theoretical "attributes"

not previously investigated for linear-elastic thick shells with large displacement, rotations,

and curvatures using a higher-order transverse shear deformation theory. These two at-

tributes are the exactness of traction-free surface boundary conditions and the inclusion

of approximate nonlinear transverse shear strain terms. A third "attribute" will also be

considered, and that is the exactness of the approximation of functions of the shell shape

factors. These functions appear in the strain displacement relations of Eqs (3.34-3.39) as

functions of the shape factors h, and their derivatives. For a cylindrical shell, these geo-

metric functions depend only on the thickness coordinate. For a FTSD or IITSD theoiy,
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where displacements are expanded in terms of the thickness coordinate, these geometric

functions are often expanded in terms of the thickness coordinate and arbitrarily trun-

cated at a specific power of the thickness coordinate. Dennis [18:316-322] used Taylor's

series expansions of 60 of these geometric functions that appear in the strain displacement

relations for the quasi-nonlinear HTSD theory of a shell. These 60 functions are shown in

Appendix A with their Taylor's series approximations. Dennis truncated these functions

to the constant term for transverse shear strain components [18:65].

Although Dennis's quasi-nonlinear HTSD theory has been used for many problems

[18, 22, 64, 88, 93, 100], Prathap and Naganarayana [52, 73] investigated the effect of in-

consistently approximating the transverse shear strains for curved beam elements. An im-

portant aspect of their investigation was the consistency of approximation of the geometric

terms involving curvature in the denominator. They found that inconsistent approxima-

tions of out-of-plane transverse shear strain resulted in force and stress oscillations which

degraded convergence characteristics of numerical models. Although their geometric terms

were not identical to the 60 shell geometry functions of the quasi-nonlinear HTSD theory

for shells, the results of Prathap and Naganarayana suggest this "attribute" should also

be considered in this research.

Thus, the full nonlinear higher-order transverse shear deformation theory of this re-

search has been developed. This new theory incorporates, in its most complete form, a

quartic displacement field, quadratic approximation of shell shape factor functions, and all

nonlinear strain-displacement terms of the transverse shear strains. The surface boundary

conditions of a shell are exactly satisfied for the linear case and approximately satisfied

for the nonlinear case. The nonlinear boundary conditions are satisfied by forcing the

transverse shear strains to zero at the upper and lower surfaces with a parabolic Other

more common assumptions include the use of linear-elastic constitutive relations for lam-

inated transversely isotropic composite material, transverse normal stress is assumed to

be approximately zero, and transverse normal strain is assumed to be related to the di-

rect strains in direction of the fiber and the direction transverse to the fiber. Several of

these theoretical characteristics are shown in Tables 4.1 and 4.2 with the corresponding

characteristics of the Kirchhoff-Love theory, Donnell's Theory, a typical FTSD theory and
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Dennis's quasi-nonlinear HTSD Theory.

Table 4.1. Comparison of Shell Theories Without Transverse Shear Deformation

Kirchhoff-Love Theory
Shell Assumptions: Shell behavior is totally defined by the behavior of the midsurface.
Shell has thickness. Assumes plane strain with a,33 = 0 and isotropic material.
Kinematic Assumptions: 3 primary dof: u, v, w. No variation through the thickness.
Transverse Shear Assumptions: Transverse shear strains are assumed to be zero.
Nonlinear Assumptions: None-linear strain-displacement relations typically used for
all strain components.

Donnell-Mushtari-Vlasov Theory
Shell Assumptions: Shell behavior is totally defined by the behavior of the midsurface.
Shell has thickness. Assumes o33 = 0 and isotropic material.
Kinematic Assumptions: 3 primary dof: u, v, w. No variation through the thickness.
Transverse Shear Assumptions: Transverse shear strains are assumed to be zero.
Nonlinear Assumptions: Linear strain-displacement relations are used for transverse
shear strain components. Some nonlinear strain displacement terms involving w and its
derivatives are included for the in-plane strain components.

4.4 Element Independent Stiffness Formulation

The theory of the previous sections dealt with displacement fields, constitutive rela-

tions, and strain displacement relations for curved shells with a nonlinear HTSD theory.

The next step required, to yield a suitable tool for the investigation of our three new "at-

tributes", is the development and solution of the governing differential equations for shell

problems. Since the author is specifically interested in the nonlinear phenomena of large

displacements and rctations, no analytical or linear solutions are desired. Furthermore, to

provide a suitable comparison to previously published methods, the author has chosen to

develop the governing differential equations and solve these in a manner consistent with

that of Dennis. In his development, Dennis used an "element independent" finite element

formulation for an incremental/iterative solution based upon the principle of stationary

potential energy of a linear-elastic laminated shell [18:78-95].
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Table 4.2. Comparison of Shell Theories With Transverse Shear Deformation

Quasi-Nonlinear FTSD Theory

Shell Assumptions: Shell behavior is based on the behavior of the midsurface. Shell has
thickness and linear variation of displacement. Assumes a33 = 0 and isotropic material.
Kinematic Assumptions: 5 primary dof: U, v, w, 01, 02. Variation through the thickness
described by u, = u(1 - y3/R1) + Vbly3, U2 = v(1 - y3/R 2 ) + 02y3, and U3 = W.

Transverse Shear Assumptions: Linear infinitesimal transverse shear strain varies lin-
early through the thickness of the shell.
Nonlinear Assumptions: Linear strain-displacement relations are used for transverse
shear strain components. Some nonlinear strain displacement terms are typically used
for in-plane strain components.

Dennis Quasi-Nonlinear HTSD Theory
Shell Assumptions: Shell behavior is based upon the behavior of the midsurface. Shell
has thickness and incomplete cubic variation of displacements through the thickness.
Assumes a.3 = 0 and laminated composite material.
Kinematic Assumptions: 7 primary dof: u, v, w, 1, b2, w,1, w,2. Variation through the
thickness described by u, = u(1 - y3/R1) + ¢P1y3 - 4(0 1 + w, 1)y3/3h 2 , u2 = v(1 -
y3/R2) + 02Y3 -4(02 + w,2)Y."/3h 2 , and v/3 =- w.

Transverse Shear Assumptions: Linear infinitesimal transverse shear strain varies
parabolically through the thickness of the shell.
Nonlinear Assumptions: Linear strain- displacement relations are used for transverse
shear strain components. Most nonlinear strain displacement terms are included for

in-plane strain components (10 higher-order terms of E22 and 16 higher-order terms of
E12 are ignored).

Full Nonlinear HTSD Theory
Shell Assumptions: Shell behavior is based upon the behavior of the midsurface. Shell
has thickness and complete quartic variation of u, and u2 displacements through the
thickness. Assumes U33 = 0 and laminated composite material.
Kinematic Assumptions: 7 primary dof: 71, v, w, 01, 02, w,1, W,2. Variation through thw
thickness described by u, = u(1 - y3/R1) + 0 1y3 + (0 1 + w,j)[-1/Ri - 4y3/3h 2 +
4y.3/3h 2 RI]y32, U2 = v(1 - y3/R2) +072Y 3 + (V)2+ w,2)[-l/R2 - 4y3/3h 2 +i 4y 3/3h 2 R2 Y32,
and u3 = w.
Transverse Shear Assumptions: Linear infinitesimal transverse shear strain distribution
described by a complete quartic equation that exactly satisfies upper and lower surface
zero-traction boundary conditions for a curved shell.
Nonlinear Assumptions: Nonlinear strain-displacement relations used for all strain com-
ponents. Nonlinear transverse shear boundary conditions (zero-traction at surface) are
approximated by forcing nonlinear transverse shear strain to zero at upper and lower
surface using a parabolic function of thickness coordinate.
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The finite element technique is a powerful numerical method capable of solving many

coupled partial differential equations over a certain domain. In this research, the domain

is a cylindrical shell, shown in Figure 4.1, and the equations are based upon the variation

of the total potential energy HIp of the elastic body. Specifically, the principle of stationary

potential energy is used where bl'[p = 0. The potential energy expression is found by first

examining the equilibrium state of the body. For a body of volume V with prescribed

forces F on part of its surface S1 and prescribed boundary conditions on the remaining

part of the surface S2, the equation of equilibrium for an infinitesimal virtual displacement

R! is given by:

J(i367. _ pk6Uk)dV - jS F-bUkdS = 0 (4.10)

where

i'j =_ the components of the Second Piola Kirchhoff stress tensor (for the orthogonal

coordinate system chosen, aij = aij)

the Green strain components expressed in the body's coordinate system

pk = components of body forces, and

Fk = components of prescribed surface forces

For a conservative system, one where the forces f do not vary during virtual dis-

placement, there exists a strain energy density function W*, such that:

OW* 
(,1.11)

Assuming strains are small, then one can express the stress in terms of strain as:

o ij = Ci kl (4.12)

where Cij ki are constants of the elasticity tensor. Thus, the strain energy density becomes:

* 1 C "7i^I k1 (,1.13)
2
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The first variation of potential energy for the case with zero body forces is given by:

6 = b W'*(i))dV F j 6U F~ dS - 0 (4.14)

To evaluate Eq (4.14), a suitable reference frame must be chosen. A typical method is

to assume a total Lagrangian approach where the strain tensor, elasticity tensor, and all

other components are described in terms of coordinates of the original undeformed body.

For a laminated orthotropic material, the stress components can be written in terms

of the reduced structural stiffness of the lamina as in Eq (3.59). Substituting Eq (3.59)

into Eq (4.13) and integrating over the volume of the body, one obtains the strain energy

as U1 + U2, where:

U, 1  fv 2 + 2Q 1 e~

+2QU16 1ElE + 2QY26 E2 66 + Q766 6) dV (.5

2 2U2 = fV (U,44E4 + 2-U4.5E4C +- s55) dV

The e, in Eq (4.15) depend on the thickness coordinate and the midsurface coordinates yi

and Y2. The Q,, defined by Eqs (3.58) and (3.60), however, depend only on the thickness

coordinate. Thus, these equations can be reduced to an integral over the midsurface of the

shell. This is done by first assuming displacement components u1 , u2 , and u3 vary in the

form of a series expansion with respect to the thickness coordinate. Then, one can directly

integrate the Q, expressions through the thickness of the shell. The integral through the

thickness of -UoY' defines an elasticity array, say C,,,. These arrays are the familiar A2,,

B ,, D,,, ... associated with macro-mechanical behavior of laminated composite plates

[36:1.5,1-155]. For the laminated composite, the integral is replaced by a summation over

the number of plies as shown below:

N

C = o- = (j= (y3k - y3k-,)

k=1

Bi, )= I () 2k-1)

k--1



Cij2 D 3 3 (4.16)
k=1

Cj = i r1 r

r (Qj k tJ3 3 k-1)
k=1

where r is determined by the order of the thickness expansion approximation for u2 and

for the shape factor approximations.

The previous expression for the variation of total potential energy IHp gives five

coupled nonlinear partial differential equations which govern the equilibrium of the system.

These expressions contain 18 displacement parameters: u, u,1 , U,2, V, vj, v,2 , w, w,i,

w,2, W, 1 1 , W, 2 2, W,1 2 , 1 ,, 0 41,2, 02, 0 2,1 , 02,2. These parameters include the seven

displacement parameters of Eq (4.1) and their derivatives. Since the equilibrium equations

are nonlinear in terms of the displacement parameters, an incremental-iterative approach is

typically used to solve a system of linearized equations which yields an equivalent solution.

These linearized equations are found by differentiating the expression for HIP with respect

to the displacement functions. For simple theories, such as a Donnell theory or a linear

FTSD theory where relatively few terms are included, the first variation of HP and its

linearization, can be explicitly developed, term by term. For more complete theories, such

as the quasi-nonlinear HTSD theory [18] or a fully nonlinear theory, the expression of Hp

has several hundred terms. Its first variation would include, perhaps, thousands of terms

and the subsequent linear equilibrium equations would be quite lengthly.

Rajasekaran and Murray [75] developed a formal procedure for finite elements, which

defines the total potential energy, its first variation, and the linear incremental equilibrium

equations in terms of three stiffness matrices. Specifically, the total potential energy is

given by:

Il,= {q} T [I[K] + + l[N 2]] {q} - {q) T {R} (4.17)

where

{q} a column array of nodal displacement parameters

{JI} a column array of nodal loads
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[K] an array of constant stiffness coefficients

[N1J E an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([N1] is linear in terms of displacement)

[N2] - an array of nonlinear coefficients with each term dependent on the product

of two displacement parameters ([N2] is quadratic in terms of displacement)

The equilibrium equation, then is given by

[K + [NI] + -[N2]] {q} - {R} = fo} (4.18)

and the linear incremental equilibrium equation is given by:

[[K] + [N1] + [N2]] {Aq} - {AR} = {0} (4.19)

According to Rajasekaran and Murray, this notation was introduced by Mallett and Marcel

in 1968 [75]. To assure the formalism of Eqs (4.17-4.19) holds, the stiffness matrices [K],

[N1], and [N2] must be derived in a specific way. Rajasekaran and Murray showed that by

expressing strain components as follows:

Ei = {L} T {d} + 1{d}T[lli]{d} (4.20)

and then redefining the terms of [K], [Ni], and [N2], the formalism of Eqs (J.17-4.19) would

always be valid for any finite element representation of elastic continuum. In Eq (4.20)

.i = a particular strain component

{d} a column array of continuum displacement parameters

{L,} = a column array of the constant coefficients of terms in -, containing only one

displacement parameter (the terms linear in displacement)

[Hi] =- a symmetric array of the constant coefficients of terms in E, containing the

product of two displacement parameters (the terms quadratic in displacement)
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Using Eq (4.20) and defining the terms for a specific e, as 6, = 4t + Et L , the expression

for potential energy of an elastic material can be written as:

li = v (@ L -2 JL + N LN )'l
= 1 Cij ( E L + 1N L L) dV - {d}T{P} (4.21)

where C,. is the symmetric array of elasticity constants and summation on i = 1,..., 6 and

j = 1,...,6 is implied by the repeated subscripts. Introducing Eq (4.20) into Eq (4.21)

gives:

l ip Cij{d}T [{Lj}{Lj}7 + {Lild}T[ljI1
+1 [Hl]{d}{d}T1Hj]] {d}dV - {d}TP} (4.22)

4

Notice at this point, Eqs (4.20) and (4.21) are expressed in terms of {d}, the contin-

uum displacement gradient vector; no finite element discretization has been used. Thus,

these equations represent an element independent formulation. By defining a finite element

approximation for the continuum displacements {d} in terms of nodal displacements {q},

one defines a specific formulation. To provide the most general formulation, however, the

stiffness matrices of Eqs (4.17-4.19) can be developed in terms of the element-independent

formulation of Eqs (4.20) and (4.21). In this fashion, we seek definitions for [K], [N1], and

[N2], such that Eqs (4.17-4.19) will hold. Rajasekaran an.1 Murray showed tOat the direct

comparison of the terms of Eq (4.22) and those of Eq (4.17) will yield arrays [K], [NI] and

[N2] which satisfy Eq (4.17). Unfortunately, these arrays will not satisfy the formalism of

Eq (4.19); in some cases, they will not even satisfy Eq (.1.18). They showed that consistent

representations of these arrays are given by the following expressions:

[k = C ,{Li{ j}T (4.23)

1 Ciji({Li}d}T[l!;] + {d}T{L I[ L.}[ + [Ii]{d){Lj}T) (4.24)

[ 2] = 5Ci2 ([II{d}{d}'[i 'j] + I {d}' [lIj {d}[I] (4.5)

Rajasekaran and Murray's formulation was for finite elements wherc strains do not
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vary through the thickness of the element. This formulation can be extended to account

for variation of strain through the thickness [18:79-91]. To do this, one assumes strains at

a point in the shell can be represented by the the following series expansion:

2d4g

Ei(YlY2,Y3) = Ci(YxY2,0) E Xty" (4.26)
P=l

where

y3 = the distance from the midsurface in the F3 direction

X(YI, y2) E the coefficients of yP appearing in the strain expression

d the degree of the displacement field expression

g the degree of the series expansion approximation of shell shape factor functions

appearing in the strain tensor

Rewriting Eq (4.26) consistent with Eq (4.20) gives:

f = f + d } - d} T [Hij fd}) yP (4.27)
p=O

where

{L,p} a row array of the constant coefficients of terms in Ei containing only one

displacement parameter and the thickness coordinate y3 to the power p

[Hi,] = a symmetric array of the coefficients of terms in E, containing products of

displacement parameters and the thickness coordinate y3 to the power p

With this power series expansion of strains, the terms of Eq (4.22) can be written as:

n

[ ~C3(p+r) ({Lip}{Ljirj'T+{Lir {Ljp 1") (4.28)

p=O r.O1 1 )T
[A] = Z Z 2

6 "(p+r) Iti]{d} {[1H + [id [Hjp) (4.29)
p=O r=O

3 L Z 2Q(,+r) ([i I~d)f d}7T[In A f d){d (4.30)
3p=O r=O2t Hr
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where Cij+) = -QiyP+)dy3 (4.31)

are the higher-order elasticity arrays and summation on i = 1,2,4,5, 6 and j = 1,2,4, 5, 6

is implied. Notice that these equations ai2 a result of directly substituting definitions of

{L,P) and [Hip] into Eqs (4.24-4.25). These expressions will not satisfy the formalism of

Eqs (4.17-4.19). In a fashion similar to Rajasekaran and Murray's formulation, Eqs (4.28-

4.30) can be manipulated to yield new definitions for arrays [f], [N 1] and [N2] that satisfy

the formalism of Eqs (4.17-4.19)

nI

+{dT{Ljr}[Ijp] + [Hip]{d}{Ljr}T + [JIj{d}{Ljp}T) (4.33)

= = ]C ijO + ) [([ipld{d}7'[H] + [H I {d){d}T[II])

+ ({d}T[HI{d}[tIn + d[ d ) (4.34)

Equation (4.33) can be simplified and still retain the formalism of Eqs (4.17-4.19) [18:87-

89]. The simplified version of Eq (4.33) is:

1 Z Ci (Hi{Lp]j }{d}T[II,] + {d}T{i}[I 3 n]

p=O r=O

+ [tl+j]{d}{Ljp}T) (4.35)

Thus, with the definitions of {L(,}, [) a], [be], [sf], and[ 2], one can nw form the element

independent stiffness arrays given by Eqs (4.32), (4.35), and (4.34). This formulation

requires literally hundreds of matrix multiplications to evaluate these equations. Thus,

MACSYMA was used to accomplish this task.
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4.5 Symbolic Generation of Elemental Codes

A significant accomplishment of this research was the development of a tool to gen-

erate comparable versions of "elemental code". The results comparing various theoretical

attributes would be meaningless if undetected errors were present in some variations, or

if different finite element models or discretization schemes were used. For this research,

a reliable system of generating different, but comparable, versions of code was required.

A MACSYMA routine was developed to symbolically generate the assumed displacement

field, determine the strain components, determine the shell shape factor approximations,

determine the elements of the strain definition arrays, and finally generate the Fortran

code for elements of the [h], [k.k], [JV] , [Ri.,j, [R2], and [Ar2.] stiffness arrays. Devel-

opment of this routine was a time consuming, but crucial aspect of this research. With

elemental codes approaching 70,000 lines in length, the detection of errors caused by "hand

generation" would have been virtually impossible. The symbolic generation of codes as-

sured reliability and comparability not achievable by other means. By using these codes

in an element independent formulation, the accuracy of each version of theory could be

compared using the same finite element model and main program (SHELL). This further

assured a fair comparison of the various theoretical attributes of each version. The only

variables were the order of the assumed thickness expansion for the u2 displacement, the

order of the thickness expansion for the approximation of shell shape factor functions, and

the choice to include or exclude nonlinear transverse shear strain terms. The theoretical

attributes of the elemental codes used for this research are summarized in Table 4.3. The

codes are identified by a symbol "GXYZ", where

G = C for cylindrical, S for spherical, or A for arbitrary shell geometry (Appendix

A lists relations for arbitrary shells and Appendices B through E list relations for

cylindrical shells. Complete relations for spherical shells were not generated for this

research),

X = 0 for the incomplete cubic U2 displacement of Eq (3.70), or 1 for the complete

quartic u2 displacement of Eq (4.1),

Y = 0 for linear shell shape function approximations, or 2 for quadratic approximations,
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Z = 0 for linear transverse shear strain displacement relations, or 3 for nonlinear rela-

tions.

T.ble 4.3. Definition of Elemental Codes for Variations of Theory

Code Displacement Shape Factor Transverse Code Equations
Name Assumption Approximation Shear Length Given in

Order Order Strains (Lines) Appendix
CO00 cubic (1) linear (2) linear 13866 B
C003 cubic linear nonlinear 23176 B
C020 cubic quadratic (3) linear 24254 C
C023 cubic quadratic nonlinear 39322 C
C100 quartic (4) linear linear 29626 D
C103 quartic linear nonlinear 51637 D
C120 quartic quadratic linear 30777 E
C123 quartic quadratic I nonlinear 67618 E

(1) ui defined by Eq (3.70)
(2) See Appendix B for nonzero shell shape factor approximations.
(3) See Appendix C for nonzero shell shape factor approximations.
(4) ui defined by Eq (4.1)

The MACSYMA routine for generating elemental codes is included as Appendix G.

The routine includes comment statements Lo explain some special functions, called macros,

and a few comments to explain the steps in the process. Significant examples and advice

about using MACSYMA were garnered from References [54, 7] and from Dr. Mark Ewing,

a member of the author's committee. The generation of every version of elemental code

followed the same steps listed below:
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PART 1 Generate Strain Definition Arrays

1. Specify choice of incomplete cubic u2 thickness expansion or complete quartic

thickness expansion.

2. Specify choice of linear shell shape factor approximation or quadratic approxi-

mation.

3. Specify choice of linear or nonlinear transverse shear strain.

4. Symbolically compute Green strain components for an arbitrary shell, where

hi = h1(yl,y 2,y3 ), h2 = h2(y1,Y2,y 3) and h3 = 1, by differentiating displace-

ment field equations according to Eq (3.49).

5. Factor out all geometric shape factor functions, hl, h2 and derivatives of h,

and h2, appearing in the numerator and denominator of all terms in every

strain component. There are 60 possible combinations of these functions for an

arbitrary shell. These terms are shown in Appendix A as functions ft1 through

6. Specify the shell geometry by specifying hi and h2 and symbolically compute

the 60 shape factor approximations H1,..., I60. Nonzero functions for each

elemental code are listed in Appendices B-E.

7. Substitute shape factor function approximations into each strain component

expression.

8. Identify coefficients of thickness coordinate y from each strain component ex-

pression. These are the XP expressions listed for each strain component in

Appendices B-E.

9. From each XP17 identify the coefficients of any terms containing two continuum

displacement parameters. These are the 18 functions u, U, 1 , u,2 , v, v,1, v,2, V',

W,1, W,2 ,1 1 , t, 2 2 , W,12, g1 , 0b1 ,1, 01b,2 , 02, 0 2 , 1 and 0 2 ,2 . The coefficients of

these quadratic nonlinear terms are stored as entries in an array 7-:,fim, where

i = 1,...,6, j = 0,...,12,l = 1,...,18 and m = 1,...,18.
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10. Similarly, identify the coefficients of each X? that depend on only one dis-

placement parameter. These coefficients are stored as entries in an array /-iji,

i = 1,. .. ,6,j = 0,...,7 and I= 1,...,18.

11. Form strain definition arrays [LO],. .. ,[L7] and [110],.. .,[1112] for strain com-

ponents E1, E2 and E6, where

[Li] = [{Lji} I {C2j 1} I {46j}], I = 1,. . .,18

[Hj] = [[Hijim)I[Wgjim I[H611m11, 1, m = 1,.. .,18

12. Form strain definition arrays [S0],...,[S7] and [SSO],...,[SS12] for strain

components -,, and E5, where

[SJ] = [{ } I f{L5j}], I = 1,..., 18
[SSj] = [[ 4 jIm] I [l 5jImJ] , Im = 1,.. .,18

13. Store strain definition arrays for use in Part 2

PART 2 Generation of Elemental Stiffness Arrays and Fortran Code

1. Generate [] and [k8J matrices and Fortran code for each.

(a) Combine Lp and Lr matrices with the elasticity arrays Cii(p+r) according

to Eq (4.32) to form [k]. (The elasticity arrays Cij(,+,), where p + r =

0,. .. , 12 and ij = 1,2,6, are labeled Aij,...,XRij and ASijj,... ,XRSij in

the MACSYMA Routine. This labeling corresponds to the Fortran variables

used in the BLAST subioutine of the program SHELL [18]. BLAST was

modified by the author to calculate the higher-order elasticity arrays needed

for this research. Part 2 of the MACSYMA Routine uses only the even sums

of p + r which correspond to the elasticity arrays of a symmetric laminate.

(b) Generate a Fortran program statement, using MACSYMA's gentran f-nic-

Lion, for computation of each nonzero upper right triangle entry of the [kc]

matrix. Repeat this step until all nonzero entries of [/I are coded
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(c) If nonlinear transverse shear terms are desired, combine Sp and Sr matrices

with the elasticity arrays Cij(p+r) where p + r = 0, 14 and i,j = 4,,5

according to Eq (4.32), to form [K8]

(d) Generate a Fortran program statement, using MACSYMA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the [k8]

matrix. Repeat this step until all nonzero entries of [k.,] are coded

2. Generate [IN 1] and [N8] matrices and Fortran code for each

(a) Combine [Lp], [Lr], [Hp], and [Hr] arrays for the first elasticity array

Cij(p+r) where r +p = 0 and i,j = 1,2,6, according to Eq (4.35) to form

(b) Generate a Fortran program statement, using MACS MA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the

matrix. Repeat this step until all nonzero entries of [N1]¢ are

coded

(c) If nonlinear transverse shear terms are desired, combine [Sp], [Sr], [SSp],

and [SSr] arrays with the first elasticity array Ciip+r) where r + p = 0 and

i,j = 4,5, according to Eq (4.35) to form [N1 ]¢°

(d) Generate a Fortran program statement, using MACSYMA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the

[iT,]¢ ° matrix. Repeat this step until all nonzero entries of [NIS] ° are

coded

(e) Repeat the four previous steps for [N" ri]¢ and [A'1,}] 1 through [ r ]¢19

and [AlT1 ] c19

3. Generate [N2] and [N21] matrices and Fortran code for each

(a) Combine [lip] and ([1r] arrays for the first elasticity array Cij(p+,) where

r+ p = 0 and i,j = 1,2,6, according to Eq (4.34) to form [1 2] C°

(b) Generate a Fortran program statement, using MACSYMA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the
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[N 2] , matrix. Repeat this ste, until all nonzero entries of ['N2] are

coded

(c) If nonlinear transverse shear terms are desired, combine [SSp] and [SSr]

arrays with the first elasticity array Cij(p+,) where r + p = 0 and i, j = 4, 5,

according to Eq (4.34) to form [ST2 S] cO

(d) Generate a Fortran program statement, using MACSYMA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the

[&2.s] ° matrix. Repeat this step until all nonzero entries of [N2.s] C are

coded

(e) Repeat the four previous steps for [/ t2] , and [!&2 ] C through [N2] C24

and [1 C24

4.6 Verification of the MACS YMA Routine

Verification of the MACSYMA routine was accomplished by several methods. First,

each segment of the program was developed independent of the others. Then each was

thoroughly tested in an interactive node to assure results corresponded to those expected.

S- ,nts were then combined to form larger blocks and finally, a full version of the routine

was developed. This final version of the MACSYMA program was run in batch mode on

a Digital Equipment Corporation VAX8550 with 64 megabytes of main memory. The first

part of this program, generation of stain terms and strain definition arrays, generally took

about 5 CPU hours depending on machine usage and the version of elemental code chosen.
The second part of the program, generation of stiffness matrices and corresponding Fortran

code, was accomplished also in batch mode. This last part of the program took about 5

CPU hours for the C003 code and up to 30 CPU hours for the C123 code.

Verification of this work was quite difficult. The output of Part 1 was compared with

the strain components and strain definition arrays of Dennis [18:67-70,333-336,338-341].

Although some differences were noted, these were due to Dennis ignoring 26 terms of the in-

plane strain components and significantly simplifying the transverse shear strain relations

[18:67-70]. Once discrepancies were resolved, Part 2 of the program was executed. The
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output of Part 2 was 45 files containing the Fortran statements for each element of [/],

[u'8], [N1], [A~1 s], [-'2], and [J, 28] stiffness arrays. The C003 elemental code output files

for the [fi], [ff], [N,], and [A2] stiffness arrays were compared, virtually term-by-term,

with the Fortran subroutines generated by Dennis. Finally, all output files for the nonlinear

arrays were compiled and assembled into four separate subroutine libraries. Each library

contained the Fortran object files for the [Ar1], [ R1 , [AV2], and [N2,] stiffness array

subroutines of either the COOX, the C02X, the ClOX or the C12X elemental codes. The

finite element program SHELL written by Dennis [18] was then modified to call element

independent stiffness array subroutines needed to give either a modified Donnell solution,

a CXXO linear transverse shear solution, or a CXX3 nonlinear transverse shear solution.

4. 7 Finite Element Solution

The element independent stiffness matrices of Eqs (4.32), (4.34), and (4.35) depend

upon the continuum displacement gradient vector {d}. This vector includes the following

functions: u, u,1 , 7, 2 , v, V,1 , V,2 , W, W,1 , W, 2 , W, 11 , W,22, W,1 2 2 Vt1, 01,l, 01,2, 02, 7P2,1

and 7P2,2. Likewise, the potential energy expression of Eqs (4.21) and (4.22) also depend

upon these functions. Using a standard displacement-based finite element method, the

18 two-dimensional functions of the continuum displacement gradient vector {d(yi, Y2)}

are approximated by interpolation from discrete values of nodal displacement parameters.

These nodal parameters or degrees of freedom (dof), are defined only at a finite number

of points or nodes and are denoted by {q} in Eq (4.36)

{d(yi, y2)} = [V(x, s)] {q} (4.36)

where [D(x, s)] is an array of nodal interpolation functions and (x, s) are the local coor-

dinates of a two-dimensional rectangular finite element. If one substitutes Eq (4.36) into

Eq (4.22) and rewrites the expression in terms of {q}, then one obtains for the potential

energy:
ip,= 2 r[ + 3[N] + 6[IN2]] {q} - {q}T{R} (4.37)
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where [K] = [k] [D] dV (4.38)

[N] = IV [,D]T [ D] [TI]dV (4.39)

The finite element method generally requires the computation of the stiffness matrices

of Eqs (4.38-4.40) for each element independently. These elemental stiffnesses are then

assembled according to their -h!itionship to global nodes of the structure. In this manner,

Eq (4.37) represents the pot.- ,tial energy of a single element. The total energy of the

system is then found by su. ming the energies of each element.

4.8 The 36 Degree of Freedom Cylindrical Shell Finite Element

Defining the terms of Eq (4.37) requires definition of the specific element, since

the nodal parameters {q} and the associated nodal interpolation array [TI] are element

specific. Recall, the three stiffness arrays [k'], [N1], and [9-2] of Eqs (4.38-4.40) were

element independent. The choices of the number of nodes per element and the nodal

degrees of freedom at each node have not been specified at this point. In fact, virtually

any two-dimensional element that will provide values for the 18 functions of the continuum

displacement gradient vector {d} could be used.

The author's research objective was to investigate structural phenomena. Thus, an

existing, proven finite element model for laminated cylindrical shells was used for this

research. The element chosen was the 36 degree of freedom (DOF) quadrilateral curved

shell element described in Reference [18:95-111]. This element has been used for many

investigations of static and dynamic response of plates arches and cylindrical shells under-

going large displacements with quasi-nonlinear IITSD theory [22, 61, 19, 64, 88, 93, 102].

In addition to these investigations, many linear problems were used to validate the ele-

ment's performance. These problems included typical flat plate and patch tests used to

show convergence as the number of elements in a mesh is increased [59]. These patch test

problems were based upon a linear analysis, not a nonlinear analysis. This is because the
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Figure 4.2. Translational DOF Definitions for the 36-DOF Cylindrical Shell Finite
Element

patch test is based upon the mathematical theory of linear partial differential equations.

Since the element stiffness array includes nonlinear terms, the element will not pass the

usual definition of the of the patch test unless the nonlinear terms are eliminated. For

the nonlinear problem, convergence cannot be proven by a simple patch test. Convergence

must be demonstrated. The 36 DOF element is shown in Figure 4.2. This element has

eight nodes with seven degrees of freedom, u, v, IV, w1, w2, Vb1, and 0 2, at each of the

four corner nodes and two degrees of freedom, u and v, at the foui midside nodes. The

two degrees of freedom at the midside nodes allow for quadratic interpolation of in-plane

displacements u and v. This is important for shells due to the curvature-induced coupling

of bending and membrane activity in shells.

The continuum values of u and v are interpolated from the nodal values Uk and

vk, using Eq (4.41) where Q,. are quadratic Lagrangian interpolation functions given in
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Eq (4.42) [18:110]
8 . 8

U = Z Q.uk v = Z Qkvk (4.41)
k=1 k=1

= (1 +&)(1 +1k7)(&+k17- 1), k=1,2,3,4

Qk 1(1-2) (1 +r,q), k = 6,8 (4.42)
Ok = k5,

k 1 (1 _rq2)(1 + k ) k'=5,7

where the kth node has natural coordinates 1. = xk/a and Sk = s,/b. The natural

coordinates correspond to local coordinates (x,.s) in the longitudinal and circumferential

directions shown in Figure 4.2. These translational degrees of freedom are also shown in

Figure 4.3.

The continuum displacement gradient vector {d} includes rotational degrees of free-

dom 7b, and 02 and the first derivatives of these parameters. The parameters 1 and V, 2

are shown in Figure 4.3. Linear interpolation can be used for these parameters, since only

C' continuity is required. The interpolations of 4ib and -d;2 are given by Eqs (4.43) with

the linear Lagrangian interpolation functions of Eq (4.44) [18:103]

4 1

¢, = 7 Pf01 k ¢2 JV .P2k (4.43)
k=1 k=1

J - (1 + k)(1 + 710k) (4.44)

The continuum displacement gradient variables associated with transverse displace-

ment w, include w and it's first and second derivatives. Figure 4.3 shows w, v,, and w,2.

Nodal parameters associated with transverse displacement include only the values wk, wv,1 ,,

and 70 ,2k at the four corner nodes where k = 1,2,3,4. Interpolation of iv is accomplished

using Eq (1.45) and the Ilermitian shape functions of Eq (4.46) [18:103].

'I

w(x, n) = 4 (-Llwk + 'H2 k Wk + h .) (4.,15)
k=l
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Hk= .(+ k ) (1 +'q;.7) (2 + k + 777 _2 _ 12)

R2k = a 1) (1 + 7k7) k (4.46)

ak = b (1 + G(0 7- 1) (1 + 71q)2 1nk

The approximate continuum values for derivatives of u, v, ¢h, b2, and w, at any point

( , i/) in the element, are also found by interpolation. This is accomplished by using the

corresponding derivatives of the interpolation functions. Thus, the approximate continuum

displacement gradient vector is related to the array of discrete nodal degrees of freedom

as shown below:

{d(6, 77)} = [D(6,q)) {q} (4.47)

where

[Q11 0 0 ........ [Q4] 0 0 [Qs. [QIs]
[ ] 0 (Hi] 0 ......... 0 [H41] 0 0 (4.48)

0 0 [A] ........ 0 0 [:.,] 0 0

and

Q 0 Ar 0

Q 0 Af 0

[Qj= Q [ r(4.49)
0 0 0 Ar

0 C) 0 jvC
0 Q7k 0 k

1 7-12 73

-H,7-(. H350
W'k 1i, ?12,,, -H3,,7(.o

L- "H 2 ,? 7"i3t)J



In Eq (4.48) the numerical subscripts refer to node numbers. In Eqs (4.49) and
(4.50) the Greek subscripts imply differentiation with respect to the indicated
natural coordinate variable. The k subscript implies that natural coordinates
G and 77k appearing in each of the interpolation functions are to be assigned
values corresponding to the natural coordinate of the k th node.

In Eq (4.47), notice that {q} is a 36 x 1 array of nodal displacements, [D] is an 18 x 36

array, and the resulting array {d( , 71)} is an 18 x 1 array as expected. Transformation of

coordinates using the inverse of the Jacobian matrix J, as shown in Eq (4.51), completes

the definition of the element interpolation scheme:

[V( , ]= [j-1] [V( , )J (4.51)

where [J-1] is a diagonal matrix for the transformation of coordinates used in this research.

[J-] = r 1, /a, l/b, 1, /a, 11b, 1, /a, 1/b, (4.52)

1/a2 , 1/b2  1/ab, 1, I/a, 1/b, 1, 1/a, 1/b j

With this finite element discretization, Eq (4.19) can be written as

[7n [,~ [V] T [ [A'] +' [1T1] + [r 2]] [D] dA.] ] {q)

- R} - [E [I [D]T [[fl + 1 [91] + [9] [D] dAfl] ]I {q} (4.53)

where

dA, the two-dimensional domain of an individual element n

m - the total number of elements in the mesh

{Aq} - the global column array of nodal dis'.lacement parameters assembled from

elemental array {Aq}n

{q} - the global column array of nodal displacement parameters assembled from

elemental array {q)n

{ q}1 -a 36 x 1 nodal displacement array for element n, and
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{R} the global load array which has the sanie dimension as the global displacement

arrays {Aq} and {q}

The integrations of Eq (4.53) are approximated by numerical integration using Gaus-

sian quadrature. Using one of the terms of the first summation of Eq (4.53) as an example,

the integral 1,, shown in Eq (4.54), can be transformed to natural coordinates as shown in

Eq (4.55). Next, the integrations of Eq (4.55) are approximated numerically by a double

summation of weighting factors at the corresponding Gaussian integration points. This is

shown in Eq (4.56)

_T. Hj [k] + [N]+ [z ,] I(] [PdAn (4.54)

n  -- 1 [D]T [[k] + [11] + [A2]] [D] det J d~d?7  (4.55)
m n

1. 14Zw IwiI( , 77) (4.56)

where

det J the determinant of the Jacobian matrix

=[D]T [[k] + [N1] + [N2]] [D]det J evaluated at Gauss integration

points (6iqj)

Wi, 1Wi the weighting factors

The range of indices i and j define the order of the numerical integration. When ?n = n

the integration is called uniform; n x n integration will exactly integrate a polynomial

integrand of order 2n - 1 [16:172].

The solution of Eq (4.53) is accomplished by an incremental-iterative technique com-

monly called the Newton-Raphson method [18:115-127]. The parameters to be incremented

are the elements of the array {q} containing global degrees of freedom. For the first itera-

tion of the first increment, all elements of {q} are assumed to be zero and a linear solution

of Eq (4.53), one involving only [k], is found by Gauss elimination. This solution, call it

{q}j, is used during the next iteration to compute [N1 ] and [-2 ]. Eq (4.53) is then solvcd
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using [RI, [N1] and [Rg2] to generate a new solution, call it {q}2. This process contin-

ues until the solution for {q} has converged. The following criterion is used to determine

convergence:

×(q .2)2)1 2  x 100%_< V (4.57)

where qi,, qi,-, and qi, are the elements of {q} for the r th, (r - 1)th, and first iterations,

respectively, for a given increment. The criterion is satisfied when the left hand side of

Eq (4.57) is less than or equal to V, a user specified percentage tolerance. Values of V

ranging from 0.01 to 0.5 percent were chosen for the problems investigated.
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V. Discussion of Shallow Shell Results with Nonlinear HTSD Theory

Chapters III and IV presented the development of eight variations of a nonlinear

higher-order transverse shear deformation (HTSD) theory for a cylindrical shell. This

chapter discusses the results for shallow shell structures using the full nonlinear HTSD

theory developed for this research. Results for deep shell structures are discussed in Chap-

ter VI. The depth criterion chosen was the ratio of the shell height (from the supports to

the crown of the shell) versus one-half the distance between the supports. One objective

of this research was to evaluate the accuracy of the HTSD variations shown in Table 4.3,

another objective was to assess their limitations. The first step in achieving these objec-

tives was verification of the computational tools used to achieve results. This verification

process included verification of the MACSYMA routines used to generate the elemental

codes (this process was discussed in Section 4.6), verification of the finite element program,

and finally verification of numerical results.

Several test problems were solved to verify the MACSYMA generated Fortran codes.

These test problems were classical fiat plate and thin shell problems with known solutions.

In all of these test problems, the higher-order elemental codes C020, C100 and C120 should

give results equivalent to the C000 code. This result is expected since the additional terms

of the higher-order thickness expansions include radius in the denominator. Thus, these

terms are zero for the flat plate and should be negligible for the classical thin shell. In

addition, these results should match those produced by Dennis [18]. Investigations of the

limitations of quasi-nonlinear and nonlinear HTSD theories were based on shallow isotropic

shell panel problems and a deep isotropc arch problem. The shallow shell problems were

thin 100-inch-radius hinged-free shell panels with transverse point load. The 20x20-inch

shell panels studied were 0.25-inch and 1-inch thick.

To study the limitations of the quasi-nonlinear and nonlinear HTSD theories with

composite materials, two composite material problems were selected. A thin shallow

axially-loaded 12-inch-radius quasi-isotropic lix8-inch cylindrical shell panel exhibits

large transverse deflection, large rotation, and large curvature. The 0.05-inch-thick quasi-

isotropic material also has a large ratio of in-plane modulus to shear modulus. This large
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ratio implies transverse shear deformation may be significant for this problem. The seLond

problem was a deep clamped-free cylindrical shell with transverse point load. This pr' b-

lem is also discussed in Chapter VI. These composite shell problems required excessive

computational times, because of the small mesh sizes required to achieve converged results.

Therefore, results were calculated for the axially-loaded panel using codes C120 and C123

only.

5.1 Flat Quasi-Isotropic Panel with Uniform Transverse Pressure Load

A transversely-loaded flat plate problem was used to test the MACSYMA generated

elemental codes and the modified finite element program. The plate chosen was an 8-ply

quasi-isotropic laminated square plate with simple boundary conditions along each of its

16-inch long sides. The plate was loaded with a uniform transverse pressure load. The plate

thickness was 1.6 inches, which being 1/10 of the edge length, should indicate transverse

shear may be important. The plate was analyzed by discretizing one quadrant into a 4 x 4

mesh of uniform elements. Only one quadrant was analyzed because symmetric response

is known to occur [18:221]. The problem was solved by incrementing load in five equal

increments of 7500 pounds per square inch. Material properties and boundary conditions

are:

x = 0: v = = 'P2 = 0 (symmetry)

s= 0: u =w, = v1= 0 (symmetry)

x = ±a/2: v = W = 2 =0 (simple)

= ±b/2: u = i=v = 0 (simple)

a = b = 8 in, h = 1.6 in

E, = 60 x 106 psi E2 = 1.5 x 106 psi
G 23 = 0.75 x 106 psi G 12 = G13 = 0.9 x 106 psi

V1 2 = 0.25

Transverse displacements at the center of the plate, as predicted by the CXXX codes

and several other references, are shown in Table 5.1. The results shown on the first line of

the table were thobe reported by Dennis in 1988 (18:236]. The second line of results, labeled
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CDON, was produced using a modified Donnell theory. This theory includes transverse

shear deformation; details of this theory are given in Appendix F. The third line of

Table 5.1, labeled CSTD, was produced using the unmodified SHELL program (the 8JAN

-double precision version which Dennis wrote). The results Dennis previously reported were

slightly stiffer than the CSTD results the author obtained using the same code. The most

likely reason for these differences was the increased precision of the CRAY X-MP used for

the author's computations versus the VAX 8550 used by Dennis. Line four, labeled CRAS,

was obtained using the author's modified SHELL program with Dennis's stiffness routines.

This version tests the modification of the SHELL program. Several changes were required

to calculate the additional higher-order elasticity arrays and call the sibroutincs for the

nonlinear HTSD stiffness arrays. The lines labeled C00 through C123 were results of the

eight variations of the theory developed for this research. From Table 5.1, one can see

that the six quasi-nonlinear HTSD codes (CSTD, CRAS, COO0, C020, C100, and C120)

produce identical results. This close agreement shows that the author's theories correctly

degenerate to flat plate solutions when curvature is not a factor in the problem. Similarly,

the four nonlinear HTSD codes (C003, C023, C103, and C123) predict identical results.

The fully-nonlinear codes, however, predict a slightly greater transverse displacement than

the quasi-nonlinear codes. The final line of the table include:; the results reported by

Putcha and Reddy [74]. They used a mixed finite element model with parabolic transverse

shear deformation to solve the von Karman plate equations. Graphical results are also

shown in Figure 5.1 for three of the theories given in Table 5.1.

5.2 Itinged-Fice Isotropic Shell Panel, 0.25-Inch Thick, with Transverse Point load

The second class of problems investigated was thin hinged-free isotropic cylindrical

shells with transverse point load. The first problem was a 1/4-inch-thick sh.ll. The second

problem was a 1-inch-thick shell of the same configuration. The 1/4-inch shell is shown in

Figure 5.2. Geometric and material properties are also given for this problem in the same

figure.

So!utions were computed using a 4 x 6 mesh of elements to model one quadrant of the

shell. Convergence studies by Dennis [18:247] showed little difference in results between
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Table 5.1. Comparison of Flat Plate Displacement Results for Variations of Geometrically
Nonlinear HTSD Theory with Linear and Nonlinear Transverse Shear Strain
Displacement

Total Load (psi) 7500 15000 22500 30000 37500
Ref. [18:236] 0.4414 0.7797 1.036 1.240 1.412
CDON (1) 0.4446 0.7939 1.065 1.288 1.479
CSTD (2) 0.4454 0.7982 1.076 1.308 1.513
CRAS (3) 0.4454 0.7982 1.076 1.308 1.513
C00 0.4454 0.7982 1.076 1.308 1.513
C020 0.4454 0.7982 1.076 1.308 1.513
C100 0.4454 0.7982 1.076 1.308 1.513
C120 0.4454 0.7982 1.076 1.308 1.513
C003 0.4457 0.8001 1.081 1.317 1.527
C023 0.4457 0.8001 1.081 1.317 1.527
C103 0.4457 0.8001 1.081 1.317 1.527
C123 0.4457 0.8001 1.081 1.317 1.527
Ref. [74:537] 0.45 0.80 1.1 1.3 1.5

(1) CDON refers to results obtained using program SHELL with
stiffness arrays corresponding to a modified Donnell theory
with transverse shear (see Appendix F for details)

(2) CSTD refers to results obtained using program SHELL, as
written by Dennis [18], with Dennis's [k], [&1], and [N2]

stiffness array subroutines
(3) CRAS refers to results obtained using program SHELL as

modified to incorporate COOX subroutines, but calling Den-
nis's stiffness array subroutines to test the modifications
made to SHELL.
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Figure 5.1. Comparison of Flat Plate Displacement Results for Variations of Geometri-
cally Nonlinear HTSD Theory with Linear and Nonlinear Transverse Shear
Strain Displacement

4 x 6 and 8 x 8 meshes. Significant computational savings result when the 24 element

mesh is used instead of the 64 element mesh. Table 5.2 shows the results of equilibrium

load predictions, for increments of transverse displacement from 0.1 to 1.0 inclis, for

the eight elemental codes and the modified-Donnell theory with transverse .hear included

(CDON). The values of load shown are four times the equilibrium load of the quarter

shell; this load represents the total load on the entire shell panel. Vaies were computed

using 10 increments of center point transverse displacement. One quadrant of the shell was

modeled using a 2,4 element mesh with 4 elements in the lateral direction and 6 elements

in the circumferential direction. From this table one observes the quasi-nonlinear IITSD

codes (CXXO) all produce the same results, and the nonlinear IITSD codes (CXX3) all

produce the same results. The results of the CDON, C120, and C123 codes were selected

for more detailed analysis, since they represent the three variation.6 with different results.

Figures 5.3 and .5.4 show the equilibrium paths of transverse load versus center-point

displacement for the 1/4-inch shell predicted by the CDON and C120 codes, and by the

CDON and C123 codes, respectively. As in the flat plate case, the results for the quasi-

nonlinear IITSD codes are all the same. In contrast, the nonlinear JITSD codes all show
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Boundary Conditions:
x = 0: U, =,, 0 (symmetry)
8 = 0: VW2,0 0 (symmetry)
S =±10: u =v w=401 = (hinged)
x = ±10: (free)

Other Data:
E 4.5 x 101 psi
0 =0.1 radians
h =0.25 in.
11 100 in.
L =20 in.

ii=0.3

7 hinged fe

LL

free0 hinged

Figure 5.2. 1/4-Inch Hfinged-Free Point-Loaded Isotropic Cylindrical Shell
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Figure 5.3. Equilibrium Path Comparisons for 1/4-inch Hinged-Free Cylindrical Shell -

CDON and C120 Theories
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Figure 5.4. Equilibrium Path Comparisons for 1/4-inch Ilinged-Free Cylindrical Shell -
CDON and C123 Theories
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Table 5.2. Predicted Transverse Point For Center Transverse Displacement of 1/4-inch
Hinged-Free Isotropic Cylindrical Shell Panel

Disp. CDON COO0 C020 C100 C120 C003 C023 C103 C123
0.1 50.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6
0.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2 84.2
0.3 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7
0.4 125.0 124.6 124.6 124.6 124.6 124.9 124.9 124.9 124.9
0.5 133.0 132.4 132.4 132.4 132.4 133.0 133.0 133.0 133.0
0.6 111.2 109.6 109.6 109.6 109.6 111.1 111.1 111.1 111.1
0.7 -86.6 -86.6 -86.6 -86.6 -86.6 -79.5 -79.5 -79.5 -79.5
0.8 -72.0 -71.5 -71.5 -71.5 -71.5 -66.3 -66.3 -66.3 -66.3
0.9 -40.3 -39.6 -39.6 -39.6 -39.6 -33.9 -33.9 -33.9 -33.9
1.0 13.9 14.7 14.7 14.7 14.7 22.2 22.2 22.2 22.2

slightly greater flexibility (a smaller magnitude of load) during the collapse phase (froir,

w = 0.7-0.9) than the quasi-nonlinear HTSD variants. This trend is shown in Figures 5.5

and 5.6 where the difference between loads predicted by the CDON and C120, and CDON

and C123 theories are plotted versus transverse displacement. Values plotted in these

figures are the relative difference (in percent) between the values of load predicted by the

C120, or C123, and CDON theories. A negative value is given for data points where the

new theory (C120 or C123) codes predict a more flexible structure (less transverse load

required to achieve the same displacement) than the CDON code. Similarly, a positive

value indicates a stiffer prediction for the C120, or C123, code than the CDON code.

From Figure 5.5, one can see the C120 theory predicts a slightly more flexible structure

at points, but this difference is negligible. From Figure 5.6, one can see the C123 theory

predicts a load about 8 percent less in magnitude than the CDON theory in the range

0.7 < w < 0.8 and about 15 percent less at w = 0.9. Once the shell has reached the point

where it is fully snapped though, around w = 1.0, the C123 theory predicts a significantly

stiffer structure than either the CDON or C120 theories. This is caused by the increased

coupling of transverse terms with in-plane terms.

This result is interesting, since this phase of the collapse is characterized by the most

extreme displacements and rotations occurring in the problem. The inclusion of nonlinear
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Figu,.e 5.5. Percent Relative Load Difference Comparisons for Transversely Loaded 1/4-
inch Shell - CDON and C120 Theories
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Figure 5.6. Percent Relative Load Difference Comparisons for Transversely Loaded 1/4-
inch Shell - CDON and C123 Theories
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-0.0005

-0.001

-0.0015
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Circumferential Coordinate S (inches)

Figure 5.7. Meridian Values of '2 + w, 2 for 10 Increments, 0.1-inch each, of Transverse
Displacement of 1/4-inch Hinged-Free Cylindrical Shell - CDON Theory

transverse shear terms for this problem had a noticeable effect upon load-displacement

results. Figures 5.7 and 5.8 show values of the linear X° transverse shear term, 02 +

w,2 , for ten increments for transverse displacement w for the CDON and C123 theories,

respectively. Values plotted are the values of 02 + w, 2 at nodes along the x = 0 line from

the center of the panel (s = 0) out to the hinge line (s = 10). The labels 1,.. .,10 indicate

the 1st through 10th increments of transverse displacement w. These results are virtually

identical for increments 1-6, before the shell snaps through. After the shell snaps, however,

the values of 0 2 + w,2 are about 20-25 percent less in magnitude over the majority of the
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Figure 5.8. Meridian Values of 42 + w, 2 for 10 Increments, 0.1-inch each, of Transverse
Displacement of 1/4-inch Hinged-Free Cylindrical Shell - C123 Theory
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Figure 5.9. Meridian Values of -wg' 2/R 2 for 10 Increments, 0.1-inch each, of Transverse
Displacement of 1/4-inch Hinged-Free Cylindrical Shell - C123 Theory
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Figure 5.10. Meridian Values of 02 + W,2 - wtV2/R 2 for 10 Increments, 0.1-inch each, of
Transverse Displacement of 1/4-inch ilinged-Free Cylindrical Shell - C123
Theory
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panel, where 1 < s < 8, for the C123 theory as compared to the CDON quasi-nonlinear

theory. In Figure 5.8, the value of 02 + w, 2 is dramatically more positive at the hinge line

(s = 10) during increments 7-10 for the C123 theory than for the CDON theory.

These figures show the values of only the linear term of the XO term of the E23 strain

at the midsurface of the shell. For the nonlinear HTSD theory, the E23 and E13 strain

components include many more nonlinear terms. These terms are shown for the C003,

C323, C103 and C123 theories in Appendices B-E as XPL and XPNL" The distribution

of shear strain is significantly affected by including the nonlinear transverse shear terms.

Figure 5.9 shows the largest nonlinear term of the XO term of the transverse shear strain

component for the C123 theory. This term, -w4' 2/R 2, and the linear term, 02 + W,2,

are the predominant terms of the X4 strain component. Table 5.3 shows a comparison

of these terms for the three theories. From Table 5.3, for increment 5 when the largest

Table 5.3. Comparison of Maximum Values of Linear and Nonlinear Terms of X° for the
1/4-inch Cylindrical Shell

Code A Increment
Name Term 1 5 7 8 9 10

CDON 02 + w, 2  .0006 .0017 -.0012 -.0009 -.0004 .0002
C123 4'2 + W,2 .0006 .0017 -.0010 -.0007 -.0003 .0003
C123 -w0 2/R 2  .0000 -.0002 -.0004 -.0005 -.0006 -.0008
C123 102 + w,2 - wI 2/R 2  .0006 .0015 -.0014 -.0012 -.0009 -.0005

magnitude of 42+w,2 occurs, the maximum values of 02 +w, 2 and -w4' 2/R 2 are 0.0017 and

-0.0002, respectively. Thus, the largest nonlinear term of C123 is less than 20 percent of

the linear term. With each increment from 7 to 9 (after the shell has snapped through), the

nonlinear term becomes more significant compared with the linear terms. This noninear

term, while it is of comparable magnitude with the linear terms, creates a softening effect.

It effectively increases the magnitude of the transverse shear strain over a large area of the

shell's midsurface.

Figure 5.10 shows the value of of 02 + w,2 - wif 2/T?2 for the C123 theory. Comparing

this figure with Figures 5.7 and 5.8 reveals the significant difference in the transverse shear

terms for the nonlinear theory, as compared to the quasi-nonlinear IITSD theories. This
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difference is large enough to affect the strain euergy of the shell and subsequently results

in slightly different equilibrium values of the nodal displacements for the C123 theory as

compared to the CDON or C120 theories. At increment 10 when the largest magnitude of

-wlP2 /.R 2 occurs, the magnitude of this nonlinear term exceeds that of the linear terms

by some 800 percent. Thus, the beneficial effect of transverse shear has been totally

obliterated by the nonlinear terms of this formulation. Palmerio and Reddy [66] reported

an overstiff response for similar shells when nonlinear transverse shear was included in

their formulation (See Chapter II, page 2-24, for more details on their work).

5.3 Hinged-Free Isotropic Shell Panel, 1.0-Inch Thick, with Transverse Point load

Table 5.4. Predicted Transverse Point Load for Center Transverse Displacement of 1-inch
Hinged-Fr. e Isotropic Cylindrical Shell Panel

Disp. CDON C123
0.1 830.3 826.5
0.2 1476.4 1467.6
0.3 1948.1 1933.6
0.4 2263.0 2242.7
0.5 2454.6 2430.0
0.6 2579.7 2554.7
0.7 2716.1 2697.5
0.8 2944.2 2940.2
0.9 3326.8 3345.3
1.0 3902.7 3950.4

A 1-inch thick isotropic shell exhibits a significantly different equilibrium path than

the 1/4-inch shell. For this case, the shell never "snaps"; load always increases monoton-

ically for all values of transverse displacement. The effects of nonlinear IITSD should be

different in this case. The data of Figure 5.11 applies for this case. As shown in Figure

5.12, the increase in thickness significantly affects the juiflbrium path of this shell. Data

from the various theories are given in Table 5.4 Although the curvature of the shell, initia'ly

and finally, compares with that of the thin shell, the thicker shell never snaps through to

the concave position. Figure 5.13 shows the relative differences between the CDON and
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Boundary Conditions:
x = 0: uw,,¢b = 0 (symmetry)
s = 0: Vw,2,= 0 (symmetry)
s=±10: u=v=w=?1 

= 0 (hinged)
x = ±10: (free)

Other Data:
E = 4.5 x 101 psi
0 0.1 radians
h = in.
R = 100 in.
L = 20 in.
v =0.3

hinged P free

L L

0 hinged, free -

1?
iR

Figure 5.11. l-Inch tHinged-Free Point-Loaded Isotropic Cylindrical Shell
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Figure 5.12. Equilibrium Path Comparisons for 1-Inch Hinged-Free Cylindrical Shell -

CDON and C123 Theories

C123 theory. In this case there is less than about 1 percent difference over most of the

graph.

Figures 5.14-5.17 show tle linear X° term 4'2 + W,2 and the largest nonlinear term

-wp 2 /R 2 for this shell with tne CDON and C123 theories. Comparing the maximum

value of Figure 5.17 with that of Figure 5.15, we can clearly see the significantly different

character of the nonlinear transverse shear terms. Despite this difference, the in-plane ex-

tensional and bending terms in the strain energy expression for this shell are predominant.

Thus, the equilibrium path is little affected by these changes in transverse shear strain.

5.4 Clamped-Free Quasi-Isotropic Shell Panel with 4-Inch Square Cut-Out and Axial

Compression Load

The earlier quasi-isotropic flat panel results indicated the nonlinear ITSD codes

predicted a slightly more flexible response than their quasi-nonlinear 1ITSD variants. Sim-

ilarly, for the collapse phase of the thin isotropic cylindrical shell, the nonliner HTSD

codes also predicted a slightly more flexible response than their quasi-nonlinear IITSD

variants. In both cases, the more exact gcoinct,*, approximations predicted responses vir-
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Figure 5.13. Relative Load Difference Compar,-ons for Transversely Loaded 1-Inch Shell

- CDON and C123 Theories

tually identical to the simplest elemental codes. Problems combining the quasi-isotropic

material and a smaller radius of curvature with large displacements and rotations should

provide more interesting comparise

The first problem selected was an axially-loaded quasi-isotropic cylindrical s"ell panel

with a centrally-located cut-out. Figure 5.18 shows the shell configuration and gives bound-

ary conditions and material data. Panels of this general configuration have been the subject

of mr r:y AFIT research projects, conducted in cooperation with the Wright Laboratory

at Wrih,t-Patterson AFB, Ohio. Panels of this material and configuration were recently

tested exnerimentally, as part of a Master's thesis by Schimmels [88]. The experimental

procedures used for these expericni s N~ere similar to experimental procedures used by

Becker [6], Janisse [331, and Tisler [60, 61, 58, 1011 at Wright-Patterson AFB. Results of

Tisler were used by Dennis for his comparisons of the linear HTSD theory he developed

[18, 22]. According to Palazotto and Dennis, Tisler had problems with the experimental

measurements and with the panels not being properly seated in the test fixtures [22:1087].

These particular problems were avoided during the latest series of experiments [88].

Table 5.5 shows results for total-applied compression load versus axial displacemevnt
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Figure 5.14. Meridian Values Of 0k2 + IV, 2 for 10 Increments, 0.1-Inch each, of Transverse
Displacement of 1--Inch Hlinged-Free Cyiv'carical Sli21l - CDON Theory
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Figure 5.15. Meridian Values of V)2 + w,2 for 10 Increments, 0.1-Inch each, of Transverse
Displacement of 1-Inch Hinged-Free Cylindrical Shell - C123 Theory
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Figure 5.16. Meridian Values of -w4 2/R 2 for 10 Increments, 0.1-Inch each, of Transverse
Displacement of 1-Inch Hinged-Free Cylindrical Shell - C123 Theory
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Figure 5.17. Meridian Values of v12 + w, 2 - wt4 2/R 2 for 10 Increments, 0.1-Inch each, of
Transverse Displacement of 1-Inch Hinged-Free Cylindrical Shell - C123
Theory
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Boundary Conditions: X= +11: V, W, W,W,2, 01, 02 =0, (clamped, u controlled)
X 0 U, V,W, W;,1 W, 2 , 1 , V1 2 = 0, (clamped)
S=O0 (free)
s=8: (free)
Cut-out: 4 in centered

Other Data: [88:4-2]
Material: AS4-3501 Graphite Epoxy
Ej = 20.461 x 106 psi
E2 =1.3404 x10r'psi
G12 =0.8638 X 106 psi

12 0.301
Ply Layup:
[0/-45/+45/90]s
0= 0.75 radians 0
h =0.05 in.
R? 12 in. hcapd
A =11 in.
B =8 in.

4freere

clampedI

Figure 5.18. Quasi-Isotropic 12-Inch Radius Cylindrical Composite Shell with Centered
4-Inch Cut-Out and Free Edges Loaded in Axial Compression
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u computed with the C120 and C123 theories. Values of transverse displacement w are

also shown in this table. As shown in the table, the nonlinear HtTSD theory gives virtu-

ally identical results to those of the quasi-nonlinear theory. Figure 5.19 shows predicted

transverse displacement of a poili, located at the shell's lateral center line (x = 5.5) and

1.5-inches in from the lateral edge (s = 1.5), versus axial displacement u for the C120

and C123 theories. Figure 5.20 shows the differenice between the two theories as axial

displacement is increased.

Table 5.5. Axial Displacement vs Transverse Displacement and Load for a 12-inch Ra-
dius 11 x 8-inch Quasi-Isotropic Cylindrical Shell Panel with Centered 4-
inch Cutout under Axial Compressive Load - C120 and C123 Theories and
Experimental

Axial C120 C123
Disp (in) Wt (in) Load (lbs) Wt (in) Load (lbs)

0.001 .002741 133.1 .002741 133.1
0.002 .008689 260.1 .008689 260.1
0.003 .002400 354.1 .002398 354.2
0.004 .04472 392.7 .04467 393.0
0.005 .06300 411.5 .06293 412.3
0.010 .1282 430.6 .1281 434.4
0.015 .1712 422.4 .1710 430.2
0.020 * * .2045 410.8

t W is measured at (x,s) = (5.5,1.5)
* Datum point not computed

Figures 5.21-5.24 show the linear X° term 02 + w, 2 and the largest nonlinear term

-wu, 2 /R 2 for this shell with the C120 and C123 theories. Comparing the maximum values

of Figure 5.24 with those of Figure 5.22, we can see for this case, the nonlinear o terms

of the C123 theory are virtually identical to the linear X° terms of the C120 theory. This

could be attributed to many characteristics of this problem. The most significant diffeicnce

between this panel and panels reported earlier is the ratio of thickness to characteristic

length. The plate was 1.6-inches thick with an edge length of 16 inches. The isotropic

shells had thicknesses of 1/4 and 1 inch with edge lengths of 20 inches. The axial panel
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Figure 5.19. Transverse Displacement vs Axial Displacement at (x,s) = (5.5,1.5) -

C120 and C123 Results for 11 x 8-inch Axially-Compressed Composite Panel
with Centered 4-inch Cutout

0

-0.02

-0.04

-0.06

-0.08

-0.12
-0.12 I I I I I

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Axial Displacement U (in)

Figure 5.20. Difference in Transverse Displacement vs Axial Displacement at (X,) =
(5.5,1.5) - C120 and C123 Results for 11 x 8-inch Axially-Compressed

Composite Panel with Centered 4-inch Cutout
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Figure 5.21. Meridian Values of 02 + w, 2 for Increments of Axia.l Displacement of 12-inch
Radius Composite Shell with Centered Cutout - C120 Theory

is 0.05-inches thick with radius and minimum edge length of 8 inches, respectively. Based

on Koiter's work the transverse shear strains for these p:oblems would be of the order h/L

times the in-plane strains. Thus, for the plate the transverse shear strains would be about

1/10th the in-plane strains. For the isotropic shells the transverse shear strains would be

1/80th of the in plane strains. Finally, for the axial panel ",hese strains are about 1/160th

of the in-plane strains. Considering the relative magnitudes of transverse deflection, the

axial panel represents a rather mild test of transverse shear behavior compared to the other

two problems.
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Figure 5.22. Meridian Values of 02 + W,2 for Increments of Axial Displacement of 12-inch
Radius Composite Shell with Centered Cutout - C123 Theory
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VI. Discussion of Deep Shell Results with quasi-nonlinear HTSD Theory

6.1 Clamped-Free Quasi-Isotropic Shell Panel with Transverse Point Load

The first deep shell problem, chosen for this research, was a deep composite shell

panel with transverse point load. This problem demonstrates a severe test of an HTSD

theory because of the shell's depth, thickness, And quasi-isotropic properties. A deep 12-

inch-radius quasi-isotropic 11x12-inch cylindrical shell panel was clamped at its lateral

boundaries and free on the circumferential boundaries. The shell configuration is shown

in Figure 6.1; geometric and material properties are also listed in the figure. A transverse

point load was applied at the center of the 0.4-inch-thick panel until the panel center

displaced over 2.5 inches. This distance is significantly greater than the 1.9 -inch depth of

the shell. Results for the transversely-loaded panel were compared with the computational

results of Tsai [103]. Palazotto and others investigated shells of this configuration and

compared static and dynamic results for different material properties and ply layups [63,

64, 102, 103]. Their work was typically based on a 96 element model of a quadrant of the

shell. This mesh was chosen based on the results of their convergence studies summarized

in Table 6.1. Tsai et al. concluded the 8 x 12 mesh results were acceptable considering

Table 6.1. Convergence Study for Quasi-Isotropic Shell Panel

Mesh Load at Onset
of Instability (lbs)

4 x 6 116
8 x 12 56
11 x 16 53

[103:69]

the CPU consumption was about 70 percent less than the 11 x 16 mesh [103:69]. Another

recent study by Silva, however, revealed that the quasi-isotropic panel with transverse load

does not deform in a symmetric manner [93:3-6]. Figures 6.2 and 6.3 show results taken

from Refeience [93] for a 24-ply quasi-isotropic [0/-45/45/90]s panel with h = 0.12 inches

and R = 100 inches. Figure 6.2 shows the unsymmetric transverse displacemnlet of the full
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Boundary Conditions:
-s = ±6 : il=)W ,)',70,0 0, (clamped)
x = ±5.5: (free)

Other Data:
Material: AS4-3501 Graphite Epoxy
E, = 20.461 x 106 psi
E2 =1.3404 x 106 psi

G1 0.8638 X 106 psi
V1 2 =0.301

Ply Layup: [0/-45/+45/90]s
0 = 1.0 radians
h =0.04 in.
6 = 1.9 in.
R = 12 in.
A = 11 in.

B=12 in.

. . . . .. .... .. A

clamped

Figure 6.1. Clamped-Free Composite Shell with Transverse Point Load
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Figure 6.2. Quarter Panel vs Full Panel End Profile
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Figure 6.3. Load vs Transverse Displacement, Angle Ply Quarter Panel Test
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panel (labeled as Full) versus the symmetric distribution of a quarter panel model (labeled

as Qtr). Figure 6.3, however, shows Jittle if any deviation in load versus displacement

predictions for the two models. Thus, since this research was primarily concerned with

load displacement behavior, a quarter shell 8 x 12 mesh was chosen for this problem.

Transverse load values versus displacements were computed for a [0/-45/+45/90]s

ply layup, using the modified-Donnell, all quasi-nonlinear HTSD, and all nonlinear HTSD

thenries. Table 6.2 shows values of transverse load predicted by the various the.ries.

The quasi-nonlinear HTSD elemental codes all predicted identical results, comparable to

those of Tsai. Figure 6.4 shows the equilibrium values of transverse load for the quasi-

nonlinear CDON and C100 HTSD theories. The fully-nonlinear HTSD theories predicted

a significantly more flexible structure at the onset of loading, as shown in Figure 6.5.

As w increased, however, the nonlinear codes predicted an increasipgly stiffer structure.

Figures 6.6 and 6.7 show relative differences in equilibrium loads predicted by these three

theories. The differences are plotted as a percentage difference from the CT90DN values. A

negative value would indicate a more flexible result for the HTSD theory as compared to

t, CDON theory. The deviation in the CDON results for displacement -.:qual to 0.625

irc , is caused by the use of two fc v elements in the mesh for this theory. The shell at

this point of deflection is very unsttaole; its midsurface has severe local be:di ,g with large

gradients of curvature. The CDON theory with only transverse nonlinear terms, w and

its derivatives, can not achieve satiofactory equilibrium predictions, at this point. If the

number of elements are increasr-d, the CDON code performs as expected. See the next

section on deep arches for a comparison showing the use of more elennent!.

The quasi-nonliniar HTSD theory predicted snapping occurs at about w = 0.5.

Palazotto et al. [63, 102] used the quasi-nonlinear HTSD developed by Dennis (18]. Their

results showed snapping for many variations of material and geometric parameters [63:703-

705]. The ratio of thickness to characteristic length of this problem is even smaller than any

of the problems analyzed earlier. This ratio is equal to 1/300. Therefore, we would expect

transverse shear strain to be totally insignificant, yet the results of the nonlinear variants

for this problem deviate considerably from all the previous results. Several reasons for this

behavior are apparent. The most obvious reason is the excessive strai, energy caused by
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Table 6.2. Transverse Center Point Load Predicted for Prescribed transverse Displace-
ment of a 0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell Panel

Disp. CDON COOO C020 C100 C120 C003 C023 C103 C123
0.250 35.5 34.6 34.6 34.6 34.6 9.1 9.1 9.1 9.1
0.375 53.7 56.6 56.6 56.6 56.6 16.0 16.0 16.0 16.0
0.500 53.3 52.1 52.0 52.1 52.0 25.2 25.2 25.2 25.2
0.625 29.6 47.3 47.2 47.3 47.2 35.3 35.3 35.3 35.3
0.750 38.5 36.7 36.6 36.7 36.6 49.4 49.4 49.4 49.4
1.000 11.0 7.6 7.4 7.6 7.4 88.0 88.0 88.0 88.0
1.250 15.4 12.5 12.3 12.5 12.3 160.8 160.8 160.8 160.8
1.500 21.9 21.3 21.0 21.3 21.0 252.1 252.0 252.1 252.0
1.750 32.7 38.4 38.1 38.4 38.1 361.7 361.6 361.7 361.6
2.000 54.0 70.4 70.1 70.4 70.1 488.7 488.7 488.7 *

2.250 100.8 132.6 132.2 132.6 132.2 629.7 629.6 629.7 1

, Datum point not computed

300 C100 4-
>DON -i--

250

200

(Ibs) 150

100 -

50 -

0/
0 0.5 1 1.5 2 2.5

Transverse Displacement W (in)

Figure 6.4. Equilibrium Path Comparisons for Transverse Point Loaded 0.04-inch
Clamped-Free Quasi-Isotropic Cylindrical Shell - CDON and C1 00 Theories
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Figure 6.5. Equilibrium Path Comparisons for Transverse Point Loaded 0.04-inch

Clamped-Free Cylindrical Shell - CDON and C103 Theories
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Figure 6.6. Relative Load Difference Comparisons for Transverse Point Loaded 0.04-inch

Clamped-Free Cylindrical Shell - CDON and CI00 Theories
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Figure 6.7. Relative Load Difference Comparisons for Transverse Point Loaded 0.04-inch
Clamped-Free Cylindrizal Shell - CDON and C103 Theories

the nonlinear terms of traiisverse shear. Figure 6.8 shows values for the linear terms of X4

for the CDON theory. Values plotted are the values of 7P2+w, 2 at nodes along the x = 0 line

from the center of the panel (s = 0) out to the hinge line (s = 6). The labels 1,... ,9 indicate

the 1st through ninth increments of transverse displacement w. These can be compared

with the linear terms of x0 for the C100 theory, shown in Figure 6.9, and the linear and

nonlinear terms of x ° for the C103 theory, shown in Figures 6.10-6.12. From these graphs,

we again see a significantly different behavior for the x° terms of the C100 theory and

the CI03 theory. The C103 nonlinear term, shown in Figure 6.11, clearly dominates its

linear counterpart, shown in Figure 6.10. This is caused by increased coupling of transverse

shear and circumferential membrane activity. This problem is further compounded by

the predominance of relatively weak material in the circumferential direction, compared

to the lateral direction. The quai-isotropic shell has a [0/-45/+45/90]s ply layup with

a ratio of EI/E2 = 15 and transverse shear moduli less than E2. The primary cause of

deformation for this problem is bending activity. The oter plies of this laminated panel

are the only plies oriented in the transverse drection. This impiies that 75 percent of the

material of this shell has a stifiness in the circ.mmferential direction that is significantly

less than the outer plies. This panel is only 0.04-incies thick, thus, the outer plies may
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Figure 6.8. Meridian Values Of 012 + W.2 for 11 Increments of Transverse Displacement of
0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell - CDON Theory
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Figure 6.9. Meridian Values of 0 2 + W,2 for 11 Increments of Transverse Displacement of
0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell - C100 Theory
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Figure 6.10. Meridian Values of V2 -+-w,2 for 11 Increments of Transverse Displacement of
0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell - C103 Theory
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Figure 6.11. Meridian Values of -w0 2/R 2 for 11 Increments of Transverse Displacement
of 0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell - C103 Theory
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not be very effective in resisting bending, since they are so close to the midsurface of the

shell. With the lateral supporLs of this shell clamped the final deformed shape of the shell

exhibits both positive and negative curvatures. Thus, severity of bending is characterized

by the distance between counterflexure points of the final deformed shape; a distance of

about 2 inches. The bending activity of the clamped composite shell is more severe than

that of the hinged isotropic shell. Since transverse shear stress is roughly equal to h/L

times the bending stress, the clamped quasi-isotropic shell is a more severe test of nonlinear

HTSD theory.

6.2 Deep Isotropic Cylindrical Arch with Transverse Point Load

Deep circular arches can be used to demonstrate a theory's ability to predict large

displacements and rotations. Many variations of transversely-loaded deep arch problems

have been reported in the literature [17, 29, 91, 98]. The problem chosen here is a 100-

inch radius arch with a 1-inch square cross section and an opening angle of 106 degrees.

The arch configuration is shown in Figure 6.13 along with geometric and material data.

Solutions for this problem were computed using all eight elemental codes and a 1 x 16 mesh

of elements to represent one quadrant of the arch. Data from the quasi-nonlinear theories

are shown in Table 6.3. The higher-order quasi-nonlinear transverse shear deformation

theories in this case predict a more dramatic collapse of the arch than the Donnell-type

solution. Dennis explained this difference was due to the "many nonlinear in-plane dis-

placement terms in the strain definitions that are not included in the Donnell equations "

[18:260]. He reasoned that these additional terms become more important as displacements

become large. A more exact representation of these terms, therefore, should produce more

flexible results. Figure 6.14 shows load versus crown displacement values predicted by the

C100 and C120 theories. Both the COOO and C100 theories predicted the same results. The

C100 theory however does not give any more flexible results than the COOO theory despite

the more exact u2 displacement assumptions. The C020 and C120 theories both predict

a more flexible response after collapse than the COO0 and C100 theories. This difference

is shown as a percentage reduction in load versus the transverse displacement in Figure

6.15. Values plotted are the relative difference (in percent) between the values of load
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Boundary Conditions for one Quadrant:
x = 0 : ) l 7,= 0 (symmetry)
S =0: VW20= 0 (symmetry)
s=±92.5: u=v =w= 1=0 (hinged)
x = ±0.5 : (free)

Other Data:
E =4.5 x 10' psi
0 .92 radians
width = 1 in.

R 100 in.
h 1.0 in.

L =160 in.
6 40 in.
v' 0.0

Figure 6.13. Hinged Point-Loaded Isotropic Cylindrical Arch
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Table 6.3. Transverse Center Point Load Predicted for Prescribed transverse Displace-
ment of a 100-Inch Radius Hinged-Free Deep Isotropic Cylindrical Arch

Disp. CDONt C00 C020 C100 C120 C120t
4 621.24 640.6 640.0 640.6 640.0 632.5
8 893.66 914.8 911.6 914.8 911.6 899.1
12 1028.2 1018.6 1010.2 1018.6 1010.2 993.9
16 1088.3 929.5 914.0 929.5 914.0 978.7
20 1100.5 898.7 872.7 898.7 872.7 879.3
24 1078.4 775.3 728.7 775.3 728.7 705.2
28 1029.5 548.5 471.9 548.5 471.9 440.3
32 958.56 52.9 -232.3 52.0 -232.1

+ Values taken from Reference [18:259]
t Computed with a 1 x 48 element mesh
* Datum point not computed
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Figure 6.14. Deep Arch Crown Displacement vs Load - C100 and C120 T,,eories
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Figure 6.15. Percent Relative Load Difference vs Displacement for Deep Isotropic Arch
- C120-C100 Theories

predicted by the C120 and C100 codes. A negative value is given for data points where

the C120 code predicts a more flexible structure (less load required to achieve the same

displacement) than the C100 code. Similarly, a positive value indicates a stiffer prediction

for the C120 code than for the C100 code.

Comparison for Figure 6.15 with Figure 5.6 (the difference figure of the shallow

1/4-inch-thick isotropic shell panel) reveals that the shapes of these "difference" plots are

similar. Recall, however, the differences for the shallow shell were due to the nonlinear

transverse shear terms of the nonlinear HTSD theories. The differences of Figure 6.15 are

due only to more exact kinematic and geometric approximations.

For the chin shallow cylindrical shell, the nonlinear HTSD variants produced promis-

ing results, an 8-14 percent reduction in loads during the collapse phase of the equilibrium

path. For the deep circular arch, however, the nonlinear HTSD variants predicted stiff

results, as shown in Figure 6.16. This stiff response was very similar to responses obtained

for thin shallow shells when too few elements were used. The deep circular arch has charac-

teristics sinilar to the cylindrical shells previously analyzed. With appropriate boundary

conditions, one can even consider the arch as a small segment of a cylindrical shell. The
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Figure 6.16. Deep Arch Crown Displacement vs Load - CDON and C123 Theories

arch is, however, very narrow. Because of this, the finite element discretization becomes

more difficult, due to excessive aspect ratios when small numbers of elements are used.

The isotropic shells discussed earlier were discretized with six elements in the meridian di-

rection from the crown to the lateral edge. The lateral dimension was discretized with four

elements. Since both dimensions from the crown to the edges in the x and s directions are

10 inches, the aspect ratio of each element is 1.5. Cook [16:5581 defines a rough indicator

of relative error caused by discretization as:

er PIP2 (6.1)

where

pi largest element aspect ratio

P2 ratio of characteristic length of 'ie largest element to characteristic length of

the smallest element

N number of elements in the mesh

n spatial dimension (n =1, 2, or 3 for line, plane, and solid problems, respectively)
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q one plus the degree of the highest complete polynomial in the element displace-

ment field, r = 0 for displacement error, r = 1 for stress or strain error

For the cylindrical shell with a 4 x 6 mesh of plane elements. the aspect ratio pi = 1.5,

n = 2, and since all elements are of the same size P2 = 1. The highest order complete

polynomial in the element displacement field is cubic in order, therefore, q = 3 + 1 = 4.

Thus, with 4 x 6 mesh of elements the relative errors estimated by Eq (6.1) are:

erdiP " 1.5 V4) = 0.0128 (6.2)

er,. ; 1.5 1)2 = 0.0625 (6.3)

According to Cook, these values can be used to estimate total errors versus relative errors

by multiplying these values by a factor of 10 [16:358]. Thus, we can pessimistically expect

errors in displacements of up to 1.3 percent relative or 13 percent total for the shell panel.

Stress and strain may be in error up to 6.3 percent relative, or about 63 percent total. For

a 100-inch radius arch with 1-inch square cross section and an opening angle of 53 degrees,

Eq (6.1) suggests at least 48 elements are needed to effectively model half the arch. In this

case, the aspect ratio Pi = 3.85 and the relative error estimates would be:

erdsp ,- 3.85 ( 1)3 = 0.0116 (6.4)

era,, Z 3.85 (1) = 0.080 (6.5)

Thus, despite the arch being a simple 1-dimensional problem, modeling it with 2-dimensional

shell elements may create di'cretization errors which should be avoided. Even with twice as

many elements as the cylindrical shell, the stress and strain estimates for the arch may be

in error by up to 80 percent. Cook, however, points out that these estimates are "rough"

and may be very pessimistic [16:559]. Nonetheless, the arch shown in Figure 6.13 was

analyzed with more elements. Figure 6.17 shows results for a 1 x 48 element discretization

using the quasi-nonlinear HITSD variants and the Donnell-type theory. These results show

an even greater reduction in load after collapse with the C020 and C120 theories. Unf'or-
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Figure 6.17. Comparison of 16 and 48 Element Meshs - Deep Arch Crown Displacement
vs Load - C120 Theory

tunately, the nonlinear HTSD variants still diverged to overly stiff solutions beyond crown

displacements of about 4 inches as shown in Figure 6.18.

At this point we have examined two "shells" with thickness of 1 inch and radius of

100 inches. The nonlinear IITSD theory predicts a slightly more flexible structure for the

shallow shell panel, but it predicts a grossly overstiff response for the deep shell arch. The

only differences between these problems are the width and the circumferential length. The

arch has a width of one inch and a circumferential length of 185 inches. The shell panel has

a width of 20 inches and a circumferential length of 20 inches. Correction of discretization

errors due to large aspect ratios did not correct the overly stiff behavior of the nonlinear

HTSD codes, therefore, there must be another explanation. Surana investigated similar

100-inch radius arches of varying width [98]. He found a 2-inch wide arch behaved like

a beam, where as a 24-inch wide arch behaved more like a shell strip. The 24-inch wide

arch generally was less stiff than the 2-inch arch despite equal valucs of bending stiffness

El. This implies the membrane activity of the shell panel must cause the shell to be less

stiff.
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Figure 6.18. Comparison of 16 and 48 Element Meshs - Deep Arch Crown Displacement
vs Load - C123 Theory

Huddleston [29] published a closed form solution for an arch with an extensible

midsurface. Extensibility was characterized by a factor c relating bending stiffness El to

axial stiffness EA, as given below:

c -(6.6)

where

I area moment of inertia

A cross sectional area

L distance from centerline to supports

Inextensible behavior occurs when the bending stiffness EI is very small compared to the

axial stiffness EA and c approaches zero. For the arch of Figure 6.13, c = 3.3 x 106 so the

behavior is expected to be inextensible based upon liuddleston's factor. The shell panel of

Figure 5.2, however, has a value of c = 2 x 10- 1 which would also indicate an inextensible

behavior. Clearly, the shell panel has significant membrane, or extensional, strain. Thus,

it appears that Huddleston's factor does not fully explain the behavior of "wide" arches.

Figure 6.19 shows iHuddleston's results for an inextensible (c = 0) solution and an extensible
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Figure 6.19. Deep Arch Results of Others

(c = 0.01) solution. Interestingly, the two solutions have different behavior from the onset

of deformation. Also shown in Figure 6.19 are results of Dennis's large displacement

and rotational formulation with linear HTSD [18:258-265]. Dennis's solution was found

to deviate considerably from the inextensible results of Huddleston for crown transverse

displacement in excess of 5 inches. In fact, Dennis's formulation predicts a snapping

phenomena where the transverse load must be negative to prevent displacements in excess

of about 32 inches [18:261].

Based upon these observations, it seems feasible that nonlinear terms of the trans-

verse shear strain components may have a more significant effect than expected for these

deep arch problems. As discussed in Chapter IV, the nonlinear IITSD used for this re-

search was not exact. The author has used linear kinematics that exactly satisfied the

zero traction boundary conditions of the linear transverse shear strain of a curved shell.

These kinematics, given in Eq (4.1), do not satisfy this boundary condition when the full

nonlinear ,13 and E23 of Eqs (3.38) and (3.39) are used. A parabolic function of thickness

coordinate was included in the nonlinear transverse shear strain definitions of EqS (3.3S)

and (3.39) to assure a traction free surface.
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This approximate formulation has nonlinear transverse shear strain terms at the

midsurface of the shell. The presence of these terms explains why the arch, which should

behave in an inextensible fashion, exhibits a stiff response for the nonlinear theories. The

linear and nonlinear midsurface terms for E23 and E13 of the C003 theory are given as 0

and X° of Appendix B on page B-3 and page B-4, respectively. These terms are shown in

the following two equations; the underlined terms are the linear terms and c = 11R.

E23 = X4 = W,2 + ' 2 - cvv, 2 + c2 vw + u,2 b1 + V,20.2 - cwIP (6.7)

13 X5 W', + 01 - cvvI + u,JIP + v. 10 2

The values of the linear term 02 + W,2 of Eq (6.7) for the C120 and C123 theories are

shown in Figures 6.20 and 6.21, respectively. The largest nonlinear term -wP 2/R 2 of X1

is shown in Figure 6.22 for the C123 theory. The C120 theory has only linear terms for
the transverse shear strains. Figure 6.23 shows the sum of the largest linear and nonlinear

terms of Eq (6.7) for the C123 theory. From these figures, it is clear that the largest

nonlinear term of X4 of the C123 theory deviates significantly from the linear X° terns

of the quasi-nonlinear C120 theory. Similar data for the shell panel was shown earlier

in Figures 5.14 through 5.17. For the arch, the nonlinear transverse shear X1 term is

heavily dominated by the last nonlinear term of Eq (6.7). This term effectively cancels

out all positive terms of x° . This causes X° to change sign, and ultimately the negative

transverse shear strain becomes so dominant it causes stiff response instead of the more

flexible response expected.

The deep arch revealed two significant findings. First, a more exact approximation of

the shell's geometric shape factor functions will predict a more flexible structure during the

collapse phase. Secondly, the linear kinematic assumptions of Eq (4.1) result in coupling of

nonlinear transverse shear terms with transverse displacement w. This coupling can cause

E23 to vanish or dramatically vary from its expected blehavior when transverse displacement

increases beyond certain bounds. These bounds are dictated by the assumption that

transverse shear strains shodld be of the order h/L times the bending or (arect strains.

This was one of the basic assuimptioits u.,cd to justify the use of a tvo-(imnenbional model
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with 33 = 0. This bound implies that the nonlinear terms of E23 must also be of the order

h/L times the in-plane strains. In Figure 6.16, we observe that the nonlinear variants

predict the same behavior until transverse displacement exceeds about 5 inches, or about

5 times the thickness of the shell.
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VII. Summary and Conclusions

The goal of this research was to develop a nonlinear higher-order transverse shear

deformation (HTSD) theory with more-exact higher-order thickness expansions than used

by previous researchers. In this case, the term nonlinear refers to using the full nonlinear

Green-Lagrange strain tensor representation for the transverse shear strain components

and for the in-plane strain components. Transverse shear deformation theories that use

nonlinear terms for in-plane strains, but only linear terms for transverse shear strains,

are referred to, in this dissertation, as quasi-nonlinear HTSD theories. In the past, non-

linear transverse shear deformation theories have been limited to kinematic assumptions

based upon first-order polynomials in terms of the thickness coordinate. Similarly, most

researchers truncated geometric shell shape factor approximations at the first-order terms

of the corresponding thickness expansions. The theory developed for this research incor-

porated polynomial kinematic assumptions, for the ul and u2 displacements, that were

complete fourth-order polynomials in the thickness coordinate. These assumed displace-

ments, however, were linear in terms of the unknown degrees of freedom of the system.

These kinematic displacement assumptions assured that the linear parts of the transverse

shear strain components were exactly zero when evaluated at the upper and lower surfaces

of a curved shell. Furthermore, as a result of these kinematic assumptions, the distribution

of transverse shear strain through the thickness of the shell was a complete third-order poly-

nomial in the thickness coordinate. This distribution correctly modeled the nonsymmetric

distribution of transverse shear stress caused by the effect of shell curvature.

7.1 Literature Review

A brief summary of the author's literature review follows. The complete literature

review is included as Chapter II of the dissertation. For many years, the well-known

Kirchhoff-Love assumptions were used as a starting point for shell theory derivations.

These assumptions included a state of plane stress and inextensible normals that remained

straight and normal during deformation. Koiter (1960) estimated the magnitudes of the

transverse strain components. lie indicated transverse shear stresses were generally of the
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order h/L times the bending or direct stresses, but transverse norAnal stresses were of the

order h2/L2 or hIR times the bending or direct stresses. (Koiter referred to h as the

thickness, R as the minimum principal radius of curvature, and L as the distance between

counter-flexure points of the deformed shell's midsurface.) Koiter used simplifications

based upon small strain assumptions for isotropic materials; for prolblems with large strains

or non-isotropic material behavior, including transverse shear deformation is even more

necessary.

The development of a shell model for large-rotation nonlinear problems is compli-

cated by the introduction of laminated anisotropic materials, changes in curvature of the

surfaces, and geometric nonlinearity. Palazotto and Tisler (1987) compared computational

predictions of buckling response to experimental work on graphite-epoxy cylindrical pan-

els. Their work included the effects of rectangular unreinforced cutouts. They saw large

radial displacements, large curvatures over small regions, and severe gradients of curvature

for loads less thai, 10 percent of the critical buckling load. Many investigators have used

finite element shell models to solve practical design-related problems that include these

complications. Material nonlinearity could also be included in a nonlinear HTSD theory,

but this was beyond the scope of this research project.

Dennis (1988) developed a large displacement, moderately large rotation, finite el-

ement formulation for laminated composite shells with a quasi-nonlinear HTSD theory.

His theory assumed a state of modified plane stress. Direct normal stress, 0"33, was as-

sumed negligible and the transverse displacement, w, was assumed constant through the

thickness. Dennis assumed an orthogonal curvilinear coordinate system and an incom-

plete cubic-expansion of midsurface displacement parameters. This displacement field was

similar to the cubic displacement field used for the linear HTSD theory of plates. Due

to the curvature of the shell, however, a cubic displacement field will not exactly sat-

isfy the conditions of zero transverse shear at the top and bottom surfaces of the shell.

Dennis ignored this inconsistency by eliminating linear terms of the order h2/R 2 in his

assumed displacement field. ie also ignored linear termns of the order h/R in his trans-

verse shear strain-displacement equations. Furthermore, Dennis assumed 26 higher-order

nonlinear terms of the in-plane strain-displacement relations were negligible compared to
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other terms. Dennis's quasi-nonlinear HTSD formulation accurately predicted global re-

sponses of thin and moderately thick shells; practical problems, with h/IR not greater than

1/25, compared well with known solutions.

Bhimaraddi, Carr, and Moss (1989) presented finite element models for shear de-

formable shells of revolution and laminated curved (constant curvature) beams with HTSD.

For the beam, they used rotations about the element's axes as nodal parameters. Their

assumed displacement field included these rotation parameters multiplied by a function

whose first derivative vanished at the surfaces of the element and was non zero elsewhere.

This resulted in a parabolic distribution of linear transverse shear strain. The strain dis-

placement relations chosen were the "exact" linear relations which included transverse

normal strain and did not assume the shape function 1 + y3 /R was equal to unity. They

indicated that ignoring the y3/R factor would result in neglecting the variation of beam

curvature across the cross-section which would lead to greater errors in predicted response.

Kant and Menon (1989) investigated the effects of h/R for thick shells compared to thin

shells using "higher-order" theories for composite laminabes. Kant and Menon discussed

the use of "functions" of thickness coordinate z, similar to that used by Bhimaraddi, Carr,

and Moss, but did not define them, or discuss how they were used in their paper.

The method of incorporating transverse shear into a shell model is not standard, even

though FTSD and HTSD theories are both well accepted. These two theories are generally

employed with the linearized transverse shear strain components of the Green-Lagrange

strain tensor. They can, however, be used with nonlinear transverse shear strain terms.

Singh, Rao and Iyengar (1989) used a FTSD theory with selected nonlinear terms included

in the transverse strain components. They found transverse shear to be a significant

factor in determining buckling load. Although this FTSD formulation included nonlinear

transverse shear strains, the authors did not specifically evaluate the effects of the nonlinear

terms.

Palmerio, Reddy, and Schmidt (1990) published two papers on a moderate rotation

nonlinear FTSD theory for laminated anisotropic shells. This theory was proposed by

Schmidt and Reddy in 1984. They indicated that their theory had nonlinear transverse

shear strain terms, due to in-plane displacements, which were not present in a von Karman-
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type thebry. Based upon a poor comparison with the results of a continuum model by Liao

and Reddy (1989), Palmerio et al. revised their new theory to include more nonlinear terms

for their in-plane strain components. Their first-order through-the-thickness expansion of

displacements was retained. They noted that the bending components, thus, contained

substantially more terms. With essentially the full Green-Lagrange strain tensor repre-

sentation, the modified FTSD theory of Palmerio, Reddy, and Schmidt gave results that

were in close agreement with the continuum model of Liao and Reddy for a thin shallow

isotropic spherical panel and a thin shallow isotropic arch. They concluded that including

more nonlinear bending terms improved results. Interestingly, they had to eliminate non-

linear transverse shear terms to reduce an over-stiff behavior of the theory for a laminated

composite cylindrical shell with transverse load.

Based upon the author's review of the published literature on transverse shear de-

formation of composite shell's, the author proposed the research project reported in this

dissertation.

7.2 Theory

A summary of the theory developed for this research follows. Complete details are

included in Chapters III and IV of the dissertation. The distribution of transverse shear

through the thickness of a curved shell is distorted by the shell shape factors and their

derivatives that appear in the representation of the strain components. (These shape

factors are linear functions with respect to the thickness coordinate.) Thus, the exact dis-

tribution of transverse shear strain through the thickness of a curved shell is not parabolic,

but is at least cubic in terms of the thickness coordinate. The theory of this research

incorporated linear fourth-order ul and u_ displacement assumptions. These assumptions

exactly satisfied the linear transverse shear strain boundary conditions at the upper and

lower surfaces of the shell. The exact satisfaction of these boundary conditions was ac-

complished by adding second-order and fourth-order correction terms to the assumed Z;i

and U2 displacement functions of the third-order linear HTSD theory. The theory also in-

corporated quadratic approximations of all geomitric shape factor terms appearing in the

strain displacement relations. The nonlinear transverse shear boundary conditions 'cre
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approximated by multiplying all nonlinear 623 and E13 terms by a parabolic function of the

thickness coordinate. This assured the nonlinear transverse shear terms did not violate

the zero transverse shear boundary condition at the upper and lower surfaces of the shell.

Other more common assumptions of HTSD shell theories, such as the assumption that

direct normal stress was equal to zero and that direct normal strain was a function of Ell

and E22, were also applied to this theory.

The basic assumptions of a two-dimensional shell theory are tied to the concepts of

a reference surface (the midsurface of the shell) and a local curvilinear coordinate system

associated with this surface. When this curvilinear coordinate system is based upon lines

of principal curvature, which by definition are orthogonal, then the coordinate system is

also orthogonal. For this research, the theoretical development was restricted to orthogonal

coordinate systems based upon lines of constant curvature. This is one of the most common

coordinate systems used for analysis of shells.

If one uses a Lagrangian description of deformation, all variables are expressed in

terms of conditions prior to deformation. In this system, the displacement vectol can

be written in terms of orthonormal base vectors, i, (i = 1,2,3). For the shell, the

Lam6 parameters A,, (a = 1,2), describe the two-dimensional relationship between the

orthogonal surface base vectors da and their orthonormal counterparts F,". The shell shape

factors, hi, (i = 1,2, 3), describe the three-dimensional relationship between the orthogonal

base vectors gf of the three-dimensional orthogonal curvilinear coordinate system g, and

their orthonormal counterparts F,. For an orthogonal curvilinear coordinate system based

upon the lines of principal curvature of a shell, the shape factors are:

hi = A,(1 - y3/R 1 ), h2 = A2(1 - y 3 /R 2 ), h3 = 1 (3.40)

where

A1/2 A=1/2 (3.41)

Thus, for the convenient case of a cylindrical shell with radius R2 and local coordinates

01 = x, 02 = s, z described in an orthogonal space with global coordinates Yi = x, Y2 = 5,

y3 = z, the position vector F(Yj, Y2, Y3) is given by:
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XI 1I + SIF2 + ZIF3  (3.42)

and the Lam6 parameters reduce to A 1 = A2  1.

For this research, the macro-mechanical behavior of a composite lamina was assumed

sufficient provided stresses were small enough to assure no material failure occurs. Thus,

the material of each lamina was treated as a homogeneous anisotropic material. More

specifically, the material was assumed to be transversely isotropic. This means the material

has properties which are symmetric about two material axes. For a thin flat structural

member, such as a plate, a state of plane stress is often assumed where o13, (2 3 , and a33

are all assumed to be equal to zero. In this research, however, the effects of transverse

shear deformation were to be considered. Thus, a13 and U 2 3 were not assumed to be zero.

The direct normal stress, a33, however, was still assumed to be zero. This assumption was

necessary to reduce the three-dimensional problem to a two-dimensional problem. The

direct transverse normal strain was assumed to be given by:

C13  C23

3= - (3.56)

where the Cij were functions of material properties and ply lay-up.

To form a structural component, the lamina were assumed to be perfectly bonded

together with their fibers oriented at a particular angle with respect to the structure's

reference axis. The stiffness contribution of each lamina in the laminate was transformed

to a common reference system of axes. The constitutive relations used for this research

were valid for small strains where the material behaved as a linear elastic solid. Eq (3.56)

related the direct normal strain (33 to changes in the direct in-plane strains cil and C22

for the case where a33 is equal to zero. The assumption that Eq (3.56) was valid for

an arbitrary laminated composite shell was important. Without this assumption, the

stress state would be fully three-dimensional and the two-dimensional model's reduced

computational effort would be lost. With the assumption, however, the two-dimensional

model will not accurately predict the stress distribution within the shell, since a33 generally

will not be zero in the real structure and (33 may vary considerably from that predicted by

Eq (3.56). Research in the 1960's and 1970's by many investigators, however, has validated
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the acceptability of this assumption.

When a thin body undergoes a small (infinitesimal) deformation, material points

on a line normal to the middle surface of the body move relative to each other. This

movement results in rotation and warping of the normal. The angle between the geometric

normal to the midsurface and the warped normal is maximum at the midsurface and zero

at the the upper and lower surface. For a linear elastic material undergoing infinitesimal

displacement, this angle of deviation is proportional to the transverse shear strain. The

distribution of transverse shear strain in a flat plate, for the infinitesimal linear case, is

parabolic through the thickness of the plate. Under the classical Kirchhoff assumption,

one assumes the cross-section remains normal, straight, and inextensible. This assumption

results in zero transverse shear strain throughout the body. Thick shells and composite

shells generally will show greater transverse deflection for a given load when the effect of

transverse shear is included in the theoretical model.

There are several ways to include transverse shear deformation. Transverse shear

effects can be included using a first-order transverse shear deformation (FTSD) theory. In

this case, material lines originally normal to the midsurface are allowed to deviate from

the normal to the shell midsurface. These lines remain straight and inextensible. Since the

angle of deviation is constant, the displacement field varies linearly through the thickness

of the shell. The constant angle also implies transverse shear strain is constant, and thus, is

not zero at the upper and lower surfaces of the shell. This inconsistent distribution results

in a stiff model of the structure. This stiffening effect, called shear locking, becomes more

pronounced as the shell thickness approaches zero. The higher-order transverse shear

deformation (HTSD) theory allows the normal to rotate and warp. The HTSD theory for

a flat plate produces a parabolic distribution of shear strain. This distribution matches the

exact distribution of shear strain for the linear infinitesimal case. The results for curved

shells, however, are different because of the curvature of the shell. These differences, due

to curvature, were a primary concern of this research.
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For a shell, the FTSD theory is given by the following displacement field:

Ul = U(1 - V3/R1) + 1Y3

U2 = v(1 - y3/R 2) + 0 2Y3  (3.62)

U3 = W

where the five degrees of freedom, u, v, w, 1, and ¢'2, are functions of the in-plane

curvilinear coordinates (yI, y2). The displacement field of a third-order linear transverse

shear deformation theory is given by the following equations:1 (O 0) V
U1(Yl,Y2,Y3) = U 1Y3-112jy 3

3 4 ~OW V3U2(YlY 2,Y3) = V ( -+-} + 2  
3  (3.70)

U3(yl,y2,y3) = W

This third-order displacement field has two additional degrees of freedom not present in

the first-order theory. These two degrees of freedom are the derivatives of transverse

displacement, w. These derivatives are independent degrees of freedom that represent the

slope of the elastic curve. The third-order theory, thus, allows the slopes of the elastic curve

to deviate from the bending angles. This deviation is directly related to the transverse

shear strains of the structure.

The third-order linear transverse shear deformation theory for a shell is suitable for

many problems of prdctical interest. Two approximations of this theory, however, required

further examination to assess their effects upon the accuracy of this theory for certain

problems. Specific problems of interest were ones in which rotations and curvature within

the element become very large. The first approximation, in question, was the neglect of

some higher-order terms in the thickness-expansions of displacement field and the shell

shape factor functions. For a shell, the third-order kinematics of the linear IITSD theory

do not give zero linear transverse shear strains at the upper and lower surface; unless, the

shell is flaL or some small terms of the transverse shear strains are ignored. The curvature

of the shell is important, because the shell shape factors distort the distribution of strain

through the thickness of the shell. Thus, the order of approximation of the shell shape

factors affects the accuracy of the strain distributions. The second al)proxiniation, in
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question, was the neglect of nonlinear transverse shear strain terms. The quasi-nonlinear

HTSD theory ignores all nonlinear terms of both E23 and e13. This linear restriction on

E23 and E13 is not necessary physically, but satisfying the zero strain boundary conditions

of the full nonlinear expressions is not a trivial problem.

The kinematics of Eq (3.70) were modified to yield exactly zero at the top and bottom

surface of a curved shell by adding two correction factors to the last term as shown below:

uiy1y2 yU 3l±13~1O)[ Y3 3

U2 (Y1,Y2, Y3) = (1 V L3) + 02Y3 + (02 + i) -+ky,3-+k (4.1)

u3(yI, Y2, Y3) = w

where k = -4/(3h 2 ) and the underlined terms were the correction terms added to Eq (3.70).

These kinematics gave zero linear transverse shear strains at the upper and lower surface

of a curved shell. The additional terms of Eq (4.1) also vanished for a flat plate, since each

term was divided by radius of curvature. Likewise, for a right circular cylinder, with radius

R?2 = R and R, = oo, the first equation of Eq (4.1) reduced to the corresponding flat plate

expression, since R1 was infinite. The comparison of results from the incomplete cubic

kinematics of Eq (3.70) and results from the complete quartic kinematics of Eq (4.1) was

a major aspect of this research. As stated earlier, the cubic displacement field of Eq (3.70)

was the same as used by other authors. The complete quartic, however, was a unique

displacement field not derivable from those of other authors. This quartic displacement

field, thus, was an exact solution for the linear traction free boundary conditions of a

quasi-nonlinear HTSD theory for shells.

The nonlinear transverse shear boundary conditions are not as easily solved as the

linear version of these conditions. The general fourth order kinematic assumptions, when

substituted into the full nonlinear Green-Lagrange strain-displacement relations for e13

and 623, gave two coupled nonlinear partial differential equations that were seventh-order

in the thickness coordinate. In order to solve these two equations for the six unknown

functions of displacement, one must evaluate the equations at y3 = ±h/2 and set each

7-9



resulting equation equal to zero. This is required to satisfy the zero traction boundary

cunditi .n on the surfaces of the shell. Solving four coupled nonlinear partial differential

equations with six unknowns was beyond the scope of this research project. Although other

authors have proposed the use of nonlinear transverse shear strain-displacement relations

with linear V:' matics, none have done so within the context of a HTSD theory.

Since no linear kinematic assumption exactly satisfies the zero traction boundary

conditions, several options were available. One could choose to ignore the natural boundary

conditions and use shear correction factors as done with the FTSD theory. Singh, Rao, and

Iyengar (1989) chose this approach. One could also simply ignore all nonlinear transverse

siv.ar strain terms. Palrnerio, Reddy, and Schmidt (1990), although intending to include

nonlinear transverse shear, ultimately chose thi-s approach for their FTSD theory. These

were the only two references which referred to nonlinear transverse shear terms in a FTSD

or HTSD theory for shells.

The author's approach to including nonlinear transverse shear terms in the theory

included several assumptions beyord those of the quasi-nonlinear HTSD theory. First,

the author was primarily interested in problems involving large rotations and curvature

changes for laminated shells. Thus, the displacement field of the new theory should reduce

to the displacement field of the linear HTSD theory for problems with smaller rotations

or smaller curvatures. The kinematic assumptions of Eq (4.1) reduce to the kinematics

of the linear IITSD theories for small curvature problems. Secondly, nonlinear kinematic

assumption" were not used to satisfy the nonlinear boundary conditions for 613 and £23.

The incorporation of nonlinear kinematic terms and the corrective terms of Eq (4.1) was

prohibitive. Thus, the author chose to use the linear kinematics of Eq (4.1) with the full

nonlinear transverse shear relations and an approximate approach to the nonlinear bound-

ary conditions. This approximate approach assumed the nonlinear transverse shear strain

should be zero at the upper and iower surfaces and that the strain energy of the nonlinear

transverse shear strain terms was excessive. The author achieved a slight reduction in

transverse shear strain energy and forced the satisfaction of zero traction, at the shell's

surfaces, by multiplying the nonlinear transverse strain terms by a parabolic function of

the thickness coordinate. Other iesearchers have used similar functions to provide the
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parabolic trapsverse shear distribution of the linear HTSD theory.

Thus, the goal of this research was to evaluate the effects of two theoretical "at-

tributes" not previously investigated for linear-elastic shells with large displacement, rota-

tions, and curvatures using a higher-order transverse shear deformation theory. These two

attributes were the accuracy of the displacement field assumption and the incorporation of

nonlinear strain-displacement terms for the transverse shear strains. A third "attribute"

was also considered, and that was the order of the approximation of functions of the shell

shape factors. These functions appear in the strain displacement relations as functions of

the shape factors and their derivatives. For a cylindrical shell, these geometric functions

depei, I only on the thickness coordinate. For a FTSD or HTSD theory, where displace-

ments are expanded in terms of the thickness coordinate, these geometric functions are

often expanded in terms of the thickness coordinate and arbitrarily truncated at a specific

power of the thickness coordinate.

The previous discussion of theory dealt with the development of the displacement field

assumptions, the strain-displacement relations, and the constitutive relations for laminated

composite shells. The next plhase in the research was the development and solution of

the governing differential equations for shell problems. Since the author was specifically

interested in the nonlinear phenomena of large displacements and rotations, no analytical or

linear solutions were desired. The finite element technique was used to obtain numerical

solutions for cylindrical shells. The finite element equations were based upon the total

potentiai energy of the elastic body. Specifically, the principle of stationary potential

energy was used where the first variation of potential energy of the system is set equal

to zero. The potential energy expression was found by first examining the equilibrium

state of the body. For a body with prescribed forces on part of its surface and prescribed

boundary conditions on the remaining part of the surface, the equations of equilibrium for

an infinitesimal virtual displacement were developed in terms of the Second Piola Kirchhoff

stress tensor and the Green strain components expressed in the body's coordinate system.

Assuming strains were small, then the stresses could be written in terms of the strains. For

a laminated orthotropic material, the stress components could be written in terms of the

reduced structural stiffness of the laminia. These quantities depended only on the thickness
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coordinate. Thus, they could be written in terms of an integral over the midsurface of the

shell, with the integration in the thickness direction performed analytically.

The variation of total potential energy gave five coupled nonlinear partial differential

equations which governed the equilibrium of the system. These expressions contained 18

displacement parameters: u, U,1 , U,2, V, V,1 V, 2 , W, W,, W, 2 , W,l1, W,2 2 , W,12, *1l, 0 1 ,1 ,

01,2, 0 2, 02,1, and 02,2. These parameters included the seven displacement parameters of

Eq (4.1) and their derivatives. Since the equilibrium equations were nonlinear in terms of

the displacement parameters, an incremental-iterative approach was used to solve a system

of linearized equations which yields an equivalent solution. For simple theories, such as

Donnell's theory or a linear FTSD theory where relatively few terms are included, the first

variation of potential energy and its linearization, can be explicitly developed, term by

term. For more complete theories, such as a linear HTSD theory or the fully nonlinear

theory, the potential energy expression has several hundred terms. Its first variation would

include, perhaps, thousands of terms, and the subsequent linear equilibrium equations

would .be quite lengthly.

Rajasekaran and Murray (1973) developed a formal procedure for finite elements,

which defined the total potential energy, its first variation, and the linear incremental

equilibrium equations in terms of three stiffness matrices. Specifically, the total potential

energy was given by:

UP= {q} T [1[K] + 6[N1] + 1[N2]] {q} - {q}T {R} (4.17)

where

{ q} a column array of nodal displacement parameters

{R} a column array of nodal loads

[K] an array of constant stiffness coefficients

IN,] an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([N,] is linear in terms of displacement)

[N2] = an array of nonlinear coefficients with each term dependent on the product

of two displacement parameters ([N2] is quadratic in terms of displacement)
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The first variation of potential energy, then was given by

[[K] + [N1 ] + -[V1{q} - f R) = {0} (.8

and the linear incremental equilibrium equation was given by:

[[K] + [NI] + [N21] {Aq} - {AR} = {0} (4.19)

To assure the formalism of Eqs (4.17)-(4.19) held, the stiffness arrays [K], [N1], and [N2]

had to be derived in a specific fashion. This derivation is discussed in Chapter IV of the

dissertation.

Rajasekaran and Murray's formulation was for finite elements in which strains did

not vary through the thickness of the element. This formulation was extended to account

for variation of strain through the thickness of the curved shell. To do this, strain at

a point in the shell, was in terms of a series expansion in the thickness coordinate, and

new definitions of [A'], [T 1], and[9 2] were developed for the theory with transverse shear

deformation. This formulation required literally hundreds of matrix multiplications to

evaluate these equations. A MACSYMA routine was developed to symbolically generate

the assumed displacement field, determine the strain components, determine the shell

shape factor approximations, determine the elements of the strain definition arrays, form

the stiffness arrays, and finally generate the Fortran code for elements of the [A'], [kis],

[A1], [AT13], [! 2], and [92s] stiffness arrays. Development of this routine was a time

consuming, but crucial aspect of this research. The symbolic generation of codes assured

reliability and comparability, not achievable by other means. By using these codes in an

element independent formulation, the accuracy of each version of theory could be compared

using the same finite element model and main program (SHELL). This further assured a

fair comparison of the various theoretical attributes of each version.

The element independent stiffness matrices of this theory depended upon the contin-

uum displacement gradient vector {d}. Using a standard displacement-based finite element

method, the 18 two-dimensional functions of the continuum displacement gradient vector

were approximated by interpolation from discrete values of nodal displacement parame-

ters. These nodal parameters, or degrees of freedom, were defined only at a finite number

of points or nodes. The finite element mcthod required the computation of the stiffness
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matrices for each element independently. These elemental stiffnesses were then assembled

according to their relationship to global nodes of the structure.

Defining the nodal degrees of freedom required definition of the specific element,

since the nodal parameters of {q} and the associated nodal interpolation array are element

specific. The element chosen was the 36 degree of freedom quadrilateral curved shell

element developed by Dennis (1988). This element has been used for many investigations

of static and dynamic response of plates, arches, and cylindrical shells undergoing large

displacements with linear HTSD theory. The element has eight nodes with seven degrees

of freedom, u, v7 W, wI, w 2, 01, and 02, at each of the four corner nodes and two degrees

of freedom, u and v, at the four midside nodes. The two degrees of freedom at the midside

nodes allow for quadratic interpolation of in-plane displacements u and v. This is important

for shells, due to the curvature-induced coupling of bending and membrane activity in

shells. The continuum values of it and v were interpolated from the nodal values Uk and vk,

using quadratic Lagrangian interpolation functions. The continuum displacement gradient

vector {d} included ¢p and '2 and the first derivatives of these parameters. Thus, linear

interpolation could be used for these parameters, since only C' continuity was required.

The interpolations of 4'l and 02 were given by linear Lagrangian interpolation functions.

Nodal parameters associated with transverse displacement included the values w, w,1, and

w, 2 at each of the four corner nodes. Thus, interpolation of w was accomplished using

quadratic Hermitian shape functions.

The two-dimensional integration of the finite element equations, in the plane of the

finite element, was accomplished by numerical integration using Gaussian quadrature. So-

lution of the resulting equations was accomplished by an incremental-iterative technique

commonly called the Newton-Raphson method. The parameters to be incremented were

the elements of the array {q}, containing global degrees of freedom. A global criterion,

written in terms of the norms of all displacement parameters, was used to determine con-

vergence.
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7.3 Shallow Shell Results with Nonlinear HTSD Theory

One objective of this research was to evaluate the accuracy of the new HTSD the-

ories; another objective was to assess their limitations. Shallow shell problems included

a thick fiat quasi-isotropic plate with uniform transverse pressure load, two thin isotropic

cylindrical shell panels with a transverse point load, and a thin quasi-isotropic cylindrical

shell panel with a large cut-out and uniform axial compression load.

The transversely-loaded flat plate problem was used to test the MACSYMA gener-

ated codes. The plate chosen was an 8-ply quasi-isotropic laminated square plate with

total length of each side equal to 16 inches. Load was a uniform transverse pressure load.

The plate thickness was 1.6-inches which indicated transverse shear may be important.

For this problem, the eight HTSD theories all gave results that agreed within 1 percent of

each other. Although the difference was negligible, all the nonlinear HTSD codes predicted

a more flexible response than the linear HTSD codes predicted. In addition, the theories

with the highest-order thickness expansions, and most floating point computer operations,

gave identical results to the lower-order theories. This problem validated the computa-

tional algorithms used to develop and solve the linear and nonlinear HTSD finite element

equations for laminated composite shells.

The second class of problems investigated was thin shallow hinged-free isotropic

cylindrical shells with a transverse point load acting at the center of the panel. The first

problem was a 1/4-inch-thick shell. The second problem was a 1-inch-thick shell of the

same configuration. Solutions were computed using a 4 x 6 mesh of elements to model

one quadrant of the shell. For this problem, the linear IITSD codes all produced the same

results, and the nonlinear HTSD codes all produced the same results. In comparison with

the flat plate problem, the nonlinear IITSD codes for this problem showed greater flexibility

than the linear HTSD variants, but only during the collapse l)hase. The most sophisticated

nonlinear HITSD theory predicted a load about 8 percent less in magnitude than a modified

Donnell theory (with HTSD included) in the range 0.7 < w < 0.8 and about 15 percent

less at w = 0.9. This was due to the increased coupling of membrane, be,,! g and

transverse shear activity in the full nonlinear 1ITSD theory. Interestingly, this phase of

the collapse was characterized by the most extreme displacements and rotations occurring
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in the problem. Thus, including nonlinear transverse shear terms had a noticeable effect

upon load-displacement predictions for this problem.

Values of the largest linear 623 transverse shear term, V12 + w,2 , for ten increments

of transverse displacement, were compared for the full nonlinear IITSD theory and the

modified Donnell theory. These results were virtually identical for increments 1-6, (before

the shell snaps through). After the shell snaps, however, the values of V52 + W,2 were about

20-25 percent less in magnitude over the majority of the panel for the full nonlinear theory,

as compared to the modified Donnell theory. The value of 0 2 + w, 2 was dramatically more

positive at the hinge line during increments 7-10 for the full nonlinear HTSD theory than

for the modified-Donnell theory. For the nonlinear HTSD theory, the 623 and 613 strain

components included many more nonlinear terms. The distribution of shear strain was sig-

nificantly affected by including the nonlinear transverse shear terms. The largest nonlinear

term of the 623 transverse shear strain component for the full nonlinear HTSD theory was

the term -w4' 2/R 2. This term and the linear term, ¢2 + W,2, were the predominant terms

of the E23 transverse shear strain component. For increment 5, when the largest magnitude

of 02 +w, 2 occurs, the maximum values of b2 + w, 2 ard -wV) 2/R 2 were 0.0017 and -0.0003,

respectively. Thus, the largest nonlinear term of the full nonlinear HTSD theory was less

than 20 percent of the linear term. With each increment from 7 to 9, after the shell has

snapped through, the nonlinear term became more significant compared with the linear

terms. This nonlinear term created a softening effect while it was of comparable magnitude

with the linear terms. It effectively reduced the magnitude of the transverse shear strain

over a large area of the shell's midsurface. This softening effect was large enough to affect

the strain energy of the shell and subsequently resulted in slightly different equilibrium

values of the nodal displacements for the full nonlinear HTSD theory, as compared to the

theories with linear transverse shear strain-displacement relations.

A 1-inch thick isotropic shell exhibited a significantly different equilibrium path

than the 1/4-inch shell. For this case, the shell never "snaps"; load always increased

monotonically for all values of transverse displacement. Comparing results for the full

nonlinear HTSD theory with results of the modified-Donnell theory revealed there was

virtually no diffeience in load versus displacement results for this problem. Because of its
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thickness, the in-plane extensional and bending terms in the strain energy expression for

this shell were predominant. Thus, the equilibrium path was little affected by including

nonlinear transverse shear strain terms.

The quasi-isotropic fiat panel results indicated the nonlinear HTSD codes predicted

a slightly more flexible response than their quasi-nonlinear HTSD variants. Similarly, for

the collapse phase of the thin isotropic cylindrical shell, the nonlinear HTSD codes also

predicted a more flexible response than the quasi-nonlinear HTSD variants. In both cases,

the more exact geometric approximations predicted responses virtually identical to the

simplest elemental codes for these shallow shell problems.

A problem with quasi-isotropic material and a smaller radius of curvature was chosen

next. This problem was an axially-loaded quasi-isotropic cylindrical shell panel with a cut-

out. This panel had a radius of 12-inches, a thickness of 0.04-inches, and dimensions of

12-inches (lateral) by 8-inches (circumferential). The cut-out was square, with 4-inch

sides, and was centrally located. Due to the possibility of nonsymmetric deformation,

the entire panel was discretized into 360 elements. Only the full nonlinear HTSD theory

and the most sophisticated quasi-nonlinear HTSD theory were evaluated. For this case,

the 623 of the full nonlinear HTSD theory was virtually identical to the E23 of the quasi-

nonlinear HTSD theory. This was altributed to several characteristics of the problem. The

most significant difference, between this panel and panels reported earlier, was the ratio of

thickness to characteristic length. The plate was 1.6-inches thick with an edge length of 16

inches. The isotropic shells had thicknesses of 1/4 inch and 1 inch with edge lengths of 20

inches. The axial panel was 0.04-inches thick with a 12-inch radius and a minimum edge

length of 8 inches. Based on Koiter's work, the transverse shear strains for these problems

would be of the order h/L times the in-plane strains. Thus, for the plate the transverse

shear strains would be about 1/10th of the in-plane strains. For the isotropic shells the

transverse shear strains would be 1/80th and 1/20th of the in-plane strains. Finally, for

the axial panel these strains were about 1/160th of the in-plane strains. Thus, this axial

panel problem was a mild test of transverse shear behavior compared to the flat plate

problem and the 1/4-inch-thick shell problem.
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74 Deep Shell Results with Quasi-Nonlinear HTSD Theory

A deep clamped-free quasi-isotropic cylindrical shell panel, with a transverse point

load at the center, was chosen to study the effects of nonlinear transverse shear for deep

composite shell panels. This panel, like the axially-loaded panel, was a laminated quasi-

isotropic panel with a radius of 12-inches, but the thickness was only 0.04-inches and

the dimensions were 12-inches (lateral) by 12-inches (circumferential). Because of the

larger circumferential dimension, this shell was significantly deeper than the axially-loaded

panel. Tsai and others (1990) investigated shells of this configuration and compared static

and dynamic results for different material properties and ply layups. A one quadrant

96 element mesh was chosen for this problem. The quasi-nonlinear HTSD theories all

predicted identical results, comparable to those of Tsai. The nonlinear ITSD theories,

however, predicted a significantly more flexible structure at the onset of loading. As

transverse displacement increased, the nonlinear HTSD theories predicted an increasingly

stiffer structure. This response was much stiffer than the quasi-nonlinear HTSD theories

predicted. The ratio of thickness to characteristic length of this problem was even smaller

than any of the problems analyzed earlier. This ratio was equal to 1/300, thus, nonlinear

transverse shear strain was expected to be insignificant. However, The nonlinear HTSD

results of this problem deviated considerably from the results of previous problems.

Comparing three of the linear and nonlinear terms of E23, as done for other problems,

revealed a significantly different behavior for the E23 of the fullly-nonlinear IITSD theory as

compared to the inodified-Donnell theory. This explained the stiff response as tv increased,

but did not explain the increased flexibility at the onset of loading. Although the depth

of this shell was an important factor, the magnitude of transverse displacement did not

cause the increased flexibility.

The 1/4-inch-thick isotropic panel had properties that did not vary with orientation

of the material. Shear modulus for the isotropic material was assumed to be one-half

the Young's Modulus. Since the shell behaved in a flexible manner and snapped through

with relatively low transverse load, the primary cause of deformation was bending activity.

Since the panel was hinged, the initial severity of bending was characterized by the distance

between the lateral supports and the depth of the shell. The quasi-isolropic shell had a [0/-

7-18



45/+45/90]s ply layup with a ratio of EI/E 2 = 15 and transverse shear moduli less than

E 2. For the composite shell, the primary cause of deformation was also bending activity.

The outer plies of this laminated panel were the only plies oriented in the transverse

direction. This implied that 75 percent of the material of this shell had a stiffness in the

circumferential direction that was significantly less than the outer plies. This panel was

only 0.04-inches thick, thus, the outer plies may not have been very effective in resisting

bending, since they were so close to the midsurface of the shell. With the lateral supports

of this shell clamped the final deformed shape of the shell exhibited both positive and

negative curvatures. Thus, severity of bending was characterized by the distance between

counterflexure points of the final deformed shape; a distance of about 2 inches. The bending

activity of the clamped composite shell was more severe than that of the hinged isotropic

shell. Since transverse shear stress is roughly equal to h/L times the bending stress, the

clamped quasi-isotropic shell was a more severe test of nonlinear HTSD theory.

This problem demonstrated that nonisotropic material properties could have a signif-

icant effect upon the predicted behavior of shell structures. Because of the reduced stiffness

in the circumferential direction, the increased coupling of transverse shear activity with

in-plane strains, and the significantly lower transverse shear properties of this panel, the

incorporation of nonlinear terms for transverse shear strain significantly affected the strain

energy of the composite shell. This resulted in a more flexible structure at the onset of

loading.

Deep circular arches can be used to demonstrate a theory's ability to predict large

displacements and rotations. Many variations of transversely-loaded deep arch problems

have been reported in the literature. The problem chosen for this research was a 100-

inch radius isotropic arch with a 1-inch square cross section and an opening angle of 106

degrees. Solutions for this problem were computed using all variations of the IITSD the-

ory. A 1 x 16 mesh of elements was used to represent one quadrant of the arch. The

quasi-nonlinear ITSD theories, in this case, predicted a more dramatic collapse of the

arch than the Donnell-type solution (even though the Donnell theory was modified to in-

clude transverse shear deformation). This difference in predicted response was due to the

many nonlinear in-plane displacemnent terms in the strain definitions that are not included
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in the Donnell equations. A more exact representation of these terms, therefore, should

produce more flexible results. The quasi-nonlinear HTSD theory with quartic u 2 displace-

ment assumption, however, did not give a more flexible result than the quasi-nonlinear

HTSD theory with the incomplete cubic u2 displacement assumption. In contrast, the two

quasi-nonlinear HTSD theories with quadratic shape function approximations both pre-

dicted a more flexible response after collapse than the theories with linear shape function

approximations. This difference in results was 10-15 percent.

For the thin shallow isotropic cylindrical shell, the nonlinear HTSD variants produced

promising results; the nonlinear HTSD variants predicted an 8-15 percent reduction in

loads during the collapse phase of the equilibrium path. For the deep circular arch, however,

the nonlinear HTSD variants predicted results that were too stiff when 16 elements were

used to model a quadrant of the structure. The stiff response was similar to responses

obtained for thin shallow shells when too few elements were used. A rough analysis of

relative error, caused by discretization, revealed that more elements were needed for this

arch to assure the accuracy of results was comparable with that of the shell panel. Thus,

despite the arch being a simple 1-dimensional problem, modeling it with 2-dimensional

shell elements created discretization errors which should be avoided. Results for a 1 x 48

element discretization, using the quasi-nonlinear HTSD variants and the modified Donnell

theory, showed an even greater reduction in load after collapse with quadratic shape factor

approximations. Unfortunately, the nonlinear HTSD variants still diverged to stiff solutions

beyond crown displacements of about 4-inches.

At this point, two "shells" with thickness of 1 inch and radius of 100 inches had

been analyzed with dramatically different results. For one, a shallow panel, the nonlinear

HTSD theory predicted a more flexible structure. For the other, a deep arch, the same

theory predicted a grossly over-stiff response. The only differences between these problems

were the width, depth, and circumferential length. Correction of discretization errors due

to large aspect ratios did not correct the over-stiff behavior of the nonlinear IITSD codes.

Therefore, there must be another explanation. Surana (1986) investigated similar 100-inch

radius arches of varying width. lie found a 2-inch wide arch behaved like a beam, but a

24-inch wide arch behaved more like a shell. The 2-inch wide arch was stiffer than the
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24-inch arch despite equal values of bending stiffness El. This implies the membrane

activity of the shell panel must cause it to be less stiff than the arch.

Based upon these observations, it seems feasible that nonlinear terms of the trans-

verse shear strain components may have a more significant effect than expected. The

nonlinear HTSD theory used for this research was not exact. The author used linear kine-

matics based upon exactly satisfying the zero traction boundary conditions of the linear

transverse shear terms of a curved shell. These kinematics, given in Eq (4.1), did not satisfy

this boundary condition when the full nonlinear el3 and E23 strain-displacement relations

were used. A parabolic function of thickness coordinate was included in the nonlinear

transverse shear strain definition to assure a traction free surface. The possibility of non-

linear transverse shear strain terms exceeding the allowable estimates of transverse shear

stress (from Koiter's shell research), still existed with this approximate nonlinear HTSD

theory. Comparing values for the linear and nonlinear terms of .23 revealed a behavior

very similar to the shell panel, but of much greater magnitude. The largest nonlinear

term, -w* 2/R 2, deviated significantly from the linear terms of transverse shear strain.

The nonlinear term effectively eliminated all positive terms of E23 . This caused the trans-

verse shear strain to change sign, and ultimately, the nonlinear transverse shear strain

terms became so dominant, they caused an over-stiff response instead of the more flexible

response expected.

The deep arch revealed two significant findings. First, a more-exact approximation

of the shell geometric shape factors predicted a more flexible structure during the collapse

phase. Secondly, the linear kinematic assumptions of Eq (4.1) resulted in coupling of

nonlinear transverse shear e2 3 and transverse displacement, w. This coupling caused S23 to

vary, dramatically, from its expected behavior when w increased beyond certain bounds.

These bounds were dictated by the assumption that transverse shear strains be of the

order h/L times the bending or direct strains. This was one of the basic assumptions used

to justify the use of a two-dimensional shell model. Thus, the nonlinear IITSD theory

(with linear kinematics) was suitable only for shallow shell problems which undergo small

rotations.
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7.5 Conclusions

This research revealed several unique findings related to the limitations of a nonlin-

ear HTSD shell theory employing higher-order thickness expansions and linear kinematic

assumptions. The ratio of thickness to wave length of curvature (distance between counter-

flexure points of the deformed midsurface) and the ratio of transverse displacement to

depth of the shell were found to be important factors in predicting the applicability of the

nonlinear HTSD theory. If these ratios were negligible, nonlinear transverse shear strain

terms had no impact on predicted response. If these ratios were small ( on the order

of 10 - 3 to 10-1), the incorporation of nonlinear ItTSD theory produced a more flexible

response. A shallow 1/4-inch-thick hinged-free isotropic shell panel exhibited this more

flexible response with nonlinear strain-displacement terms in the transverse shear strain

formulation. If the ratios were large, the nonlinear terms of the transverse shear strain

components could possibly exceed the magnitudes of the corresponding linear transverse

shear strain terms. This resulted in a stiff response prediction. Both deep shell problems

exhibited stiff response predictions with nonlinear transverse shear strain-displacement

relations.

The additional computational burden of the nonlinear strain-displacement relations

is significant. Table 4.3, on page 4-20, shows the number of lines of Fortran code required

for each variation of theory. The most simple nonlinear ITSD theory is C003. This theory

has 23176 lines of code compared to 13866 lines for the CO00 quasi-nonlinear IITSD theory.

The resulting computatio:ial burden of this additional code was significant in terms of CPU

consumption and memory requirement. The elemental independent formulation of stiffness

arrays, with Gauss integration in the plane of the element, requires execution of all 23176

lines of code at each Guass point of every element (for the 36 degree of freedom element
chosen, 49 Guass points are calculated per element for exact integration) on every iteraton

of every load increment of the nonlinear problem. Clearly, this formulation of a higher-order

theory is practical only for specialized research of this nature, not for routine engineering

use. Since the element independent formulation is based upon arrays of strain coefficients,

the possibility of "vectorizing" the formulation exists. In this manner, perhaps, a more

efficient higher-order theory may be of practical use.
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Koiter showed that typical shell theory assumptions resulted in transverse shear

strains that were of the order h/L times the bending or direct strain components. For his

work, strain and stress were directly related by the constitutive relations for linear elastic

isotropic materials. For composite materials, however, the material properties can vary

significantly in different directions. A quasi-isotropic composite shell panel with relatively

few fibers oriented circumferentially exhibited a more flexible response from the onset of

loading when nonlinear transverse shear terms were included. This was a direct result

of the increased coupling of membrane and transverse shear activity with the nonlinear

HTSD formulation. Thus, for composites, one must be careful to apply Koiter's estimates

to stress instead of strain. Thus, provided one assures the nonlinear transverse shear

terms of the nonlinear IlTSD theory do not result in transverse shear stresses exceeding

h1L times the bending or direct stresses, this theory can be used for the prediction of

nonlinear HITSD responses of curved shells. For the six problems the author investigated,

the nonlinear HTSD theory was suitable for the four shallow shell problems, but not for

the deep composite shell problem or the deep isotropic arch.

Another objective of this research was to determine the effect of using higher-order

thickness expansions for the displacement field assumptions and for the geometric shell

shape factor approximations. The use of the complete quartic displacement assum tion

made no noticeable difference in static equilibrium load-displacement results, as compared

to the incomplete third-order HTSD kinematic assumpt;oP. The author believes the

higher-order kinematic assumption would be important fcr shells with larger ratios of

thickness to radii of Ljrvature. The additional te-ms of the quartic displacement field are

multiplied by factors of y3/R, thus, large values of h/IR will make these additional terms

more significant. For the problems the author investigated, h/IR was not less than 1/25.

The quartic displacement assumption increased the number of lines for the quasi-nonlinear

C100 theory to 29626, compared to 15SC6 lines for the incomplete cubic displacement as-

sumption (COOO). Since this additioi,al co aputational effort had no significant effect upon

results, one could conclude that practical prcblems, of the type investigated by the author,

can be accurately and efficiently solved with incomplete cubic kinematic assumptions.
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The use of quadratic approximations for the shell geometric shape factor functions

consistently provided more flexible response predictions for the deep circular arch during

the collapse phase. For the shallow shell panels analyzed, the quadratic shape factor

approximations gave results identizal to the linear shape factor approximations. The

quadratic shape factor approximations, like the quai t - displacement, significantly in-

creased the number of lines of Fortran code required. Erom Table 4.3, the quasi-nonlinear

HITSD theory with quadratic shape factor approximations (C020) had 24254 lines of code.

For the deep shell problems investigated the ratio of h/IR was never less than 1/100, thus,

the effect of the higher-order shape factor approximations was not apparent until the de-

formation was significant. The deep arch required displace' nts of at least R/4 before

the higher-order effect was recognizable. As with the quartic displacement, the higher-

order shape factor approximations required significantly more computational resources.

Thus, the author believes quasi-nonlinear HTSD theories based upon the assumption that

h2/R 2 < 1 are sufficiently accurate and economical for practical engineering analyses.

Thus, including higher-order thickness expansions in a quasi-nonlinear HTSD theory

resulted in a more flexible response prediction for deep shell problems during tli- collapse

phase. Similarly, the nonlinear HTSD theory provided a more flexible response prediction

for shallow shell problems during the collapse phase. The incorporation of these theoretical

characteristics required a significant increase in the amount of Fortran code with a pro-

portional increase in the computational memory and time required for problem solution.

The simplest nonlinear HITSD theory, developed for this research, incorporated incom-

plete third-order kinematics and a linear approxination of the shell geometric shape factor

functions. This theory resulted in Fortran code about twice thc length of the compaiable

quasi-nonlinear IITSD variant. Further investigations could be accomplished with this

version of the theory, in lieu of the most complete nonlinear theory used for this research.

The use of nonlinear kinematics was beyond the scope of this investigation. Their use,

however, may allow nonlinear ITSD theories with nonlinear transverse shear strain terms

which will not exceed the [asic theoretical limitations of two-dimensional shell theory.
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Appendix A. Arbitrary Shell Strain Displacement Relations

The arbitrary shell is described in tern. s of a curvilinear orthogonal coordinate system

aligned with lines of principal curvature. Displacement within the shell is assumed to be

of the form

U = U16 + U2 62 + 71313  (A.l1)

where the orthonormal vectors F, and 62 are aligned with principal lines of curvature.

The direction of F3 is determined by the cross product of 61 and 62. The components of

displacement in the 1-, 2-, and 3-direction are assumed to be unspecified functions of

the curvilinear coordinates yi, Y2 and y3. The shell shape factors 1, and h2 are general

arbitrary functions, specifically: h, = h,(yl, Y2 , y3) and h2 = h2 (YI, Y2 , y3 ) and h3 =

A. 1 Midsurface Strain Components for the A rbitrary Shell

The strain equations listed below are the linear and nonlinear parts of the strain

components for the case of an arbitrary shell. The E3 component is assumed to be zero

for this shell formulation. Contracted notation is used, where El = Ell, £2 = £22, E4 E 23,

E5 = E13, and Er, = 612.

61L =U1i1/h, +hi, 2 u2 /(hih2) +hj,3 U3 /hj

E2L =h 2,lul/(hih2 ) +112,2/112 +h2,3U3/h2

E4L =U2,3 h12 ,31L2 /h2 +U3,2/112

65 U1, 3 -hi ,3ui/h, +U3 ,1/h,

= G,/h h, 2UI /(hjh2 ) +U12,1/11i -12 ,1712/(hih12)

2,L hu,/2) +hI,3h3u 2/(2112) +h12 h3 112/2h h2) -hj,2ujU2,1/(h~h2)

+h1,3u , tL/h +li 2 11,3112713/(hih 2) +hl, 3han 3/(2hi)
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62NL ,h 3u 2 /(2h2) +h2,lh u/(2h~ h 2 2 2

-h2,iui,2 2/(i +h2 lh3U2/(2hPi 2 2,3hi3u 2h 2 2,3U2U3,2 /h2 +1h3 3,2/(2h2

+h 2 ,1 h 2 ,3Ul U 3/(hih2) +h 2,3u 2 ,2 u3 /h 2 +h2, 3 h3 u3/(2h 2)

E4NL = u1,2u1 ,3/h2 +h2,1u1u 2,3/(hih 2 ) +u2,2u2,3/h 2 -h2,1 u1,3U2/(hj h2) -h 2,3u 2u 3,3/h2

+u3,2u3,3/h 2 +h2,3u 2,3 u3/h 2

SNL -- Ul,1 U1,3 /hl -hl,2Ul u2 ,3 /(hlh 2 ) +u2,1 u 2 ,3 /hl +hl,2u1 ,3 u2 /(hi h2) -h1, 3 U1 'u3 ,3 /h1

+u3,1u3,3/h, +hj,3u1,3 u3/hj

E6VL = Ul, 1u1,2/(hjh 2 ) -hil,lh2,1u/(hlh2) +h2,1Uu12,i/(h~h2 ) -hj, 2u1u 2,2/(hj )

+u2,1u2,2/(hih 2) -h 2 ,iUl,1 U2/(h~h 2) +hl,2U1, 2u2/(hlh2) +hl,3h 2,3U1u2/(hih 2)
-h, 2h2,lu2/(hJh2) -h2, 3U2 u3,1/(hh 2) -hi, 3UlU3,2/(hlh 2) +u3,1 u3, 2/(hih2)

+hl,3ul,2u3/(hih 2) -hl, 2 h2,3 uIu3/(hih2) +h2,3 u2,1u3/(hjh 2) -hl, 3h2,Iu2u 3/(h2h 2 )

A.2 Midsurface Strain Components for the Arbitrary Shell with a General Quartic Dis-

placement Field Assumption

The expressions listed in the previous section represent strain components for an

arbitrary shell where displacement components are unspecified functions of the coordinates

(Y1, Y2, Y3). For a shear deformation theory, the displacements are assumed to be functions

of the thickness coordinate. Specifically, for a shell with radius R, in the yl-direction and

radius R2 in the y2-direction, we shall assume a quartic series expansion for ul and u2 as

shown below; the u3 component is assumed to be constant through the thickness of the

T;hell.

ul = u(1 - y3/R) + Oy + OjY3 + -yl + Ojyj

U = u(1 - y 3 /R 2 ) + ?P2Y3 + q02Y2 + 72Y + 02/y (A.2)

U3 = w(y1, y2)

If one substitutes these expressions for the displacemnents into the previously derived ex-

pressions for strain components, the following expressions are obtained for the strain corn-

ponents XF, where:
n

'L = Xit + XPL1Y (A.3)
p=1
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and1
n

NL=0 + (A.4)
EiL XiNL +LEXINL Y3

p= 1

0 'X1L 1hu,/h +h'.7v/(hh)

0I 1,11h, +hl,2 0~2/(hih 2) -u,i/(Rih1 ) -hl,2v/(R2 hlh2)

XlL = 01, 11h, +hl,2'k2/(hih2)

X1 7 ,/h 7 2 1 2/(hih2)

4
XlL = 01,1/h, +hl,202/(hih 2)

02 = h2,lu/ (hih2) +v,2/h 2

I~ = h2,1V11/(hih2) +V)2,2/h2 -h2,lu/(?1 hih2) -v, 2/(R 2 h)

2~ = h2,1.P1/(hih 2) ±q02,2/h2

X2L = y2,2/h 2 +ylh 2,1/(hih2)

4~ = h2,101/(hih2) ±02,2/h 2

X4L = U3 ,2 /h 2 ±V'2 -v/R 2

I~ = 20 2 -h 2,3 0b2/h2 +h 2,3 V/(1? 2 h2 )

2~ = 3-12 -h 2,342/h2

3~ = 72h2,3/1 2 +402

X4L =

XL= 113,11h, +V)'i -i/Ri
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XSL = 2~- 1 3?ku/hl +hl,3u/(Rihi)

X5L = 3-11 -h1 ,3 01/h,

3~ = -,yjhj,z/hj +4 01

XSL = 1 3011h,

0g -h11,2u/(hih2) +u, 2/h2 -h12,lv/(hlh2) +v,i/hl

X?6L = 7P, 2/h2 -hl,20p1/(hih2) +0P2,1/h, -112,1 i'02/(h111 2) +h11, 2 u/(Rihih 1) -7,2/(R11 h2 )

+h2,lv/(J?2hlh2) --v,u/(R 2h,)

X6L = 051,2/h2 -h1 ,2q 1/(hih2) +0P2,1/h, -112,1q$2/(htlh 2)

XGL = ^12,1/h, +,yl, 2/h2 --,'hl,2/(hih 2) -7Y2h2,1 /(h 1 2 )

X6L = 01,2/h 2 -hi ,291/(hih2) +02,1/h, -h2,102/(hih2)

XIINL = (U3,1)2 ht3/(2hi) ±h 2h3 u2/(2h h2) ±h 3U2 /(2112) +hl u~V/(11 2

+h , 2h3 V2!(2hlh2) -hl,2UV, 1 /(hih2) +h3V,1 /(2hi)

XlNL = U3h 1,3i01,1/hi -U3,1 hl,3 ?Pl'/hi +1u3h1 ,2h1 ,30i2/(hi/h2) +1L3,I hl 23 /R ')

X ,3L = u/h2 2,~~ 2i 2)z 23 1h 237S 2)~ 2uh U2h 13 i2 (hh2 +2) 1  (

+hl,2iki,iJk/(h1 2) +h 2h, 3 ' 2/h 12~ k /(h 2  1 2 ), /h

1 ,22v(hh2-112Ulv(Rhi2)-lU~vAR-4/2



+h2, h 2 /(2R2h2h2) 1-01,1 U,1/112 +hl h2) -Ojjuj/(Rjh2)12 3U 1 1 2 1 202U,1/(h2I I
-hl,202UI/(Rih 2 h2) +h3U2 /(2R 2 h 2) +h, 2 +112 0 2 it 2)

1 
1 . 1 1 201,lv/(hh2) 

1,2 2v/(hl
-hi '2V)IIvl(R2h 2 h2) -h 2, )2v/IR2h 2 h 2) +hl vl(RIR2h 2 h2) +h 2 h3 V2 1(2R 2 h 2 h 2)

2 2,201V,1/(h h2) +02,lv,,/h +hl,2?PIVI/(R2h21112) -V'2,lVI/(R2h2)
-hl 2 h2) -',-h 3V2 /(2R 2 h2)

,2UVI/(RlR2/11 
'1

3 - U3'Yllhl 2 2 2 +01', 11,1/,,12
XlJVL ":- 31hi -?t.3,j^jjhj,3/hl +U3-/2h,,2h,,3/(hi/12) v I

30101/h2 +112
+hl,202?Pll/(h2h2) +h 2 /(h2h') -hi

1 1,20101 1 202,101/(h2h2)

-hj,20102,1/(h'2h2) +02,1V)2,1/0 +hj,201,l*2/(h'h2) +h2 /(lt2 h 2) +,711j2 ulh2I I 1 1,20202 1 2 1,3 1
2 2 2) 2 112 _112,201 2)+-Y, 11, , .2u/(h h -- 12,lhl,2U/(h h2) I I u/(Itlhllh21 2 1 1,301 u/(Rih2)

+hl,202,lu/(Rih2h2) +-yllz,,I/h2 2h2) 112)
1 

1 +112 hl,2Ul 1(h 1 -01,17il/(Ri
-hl,20271,1/(Rih 2 h2) +-/2h2 2)

1,2V/(h2,h2 i--yllhl,2v/(h2 h2) -hi 2h"ehI 201,IV/(R 1 2)

-h2,,, 02v/(R2h2 h2" +^f2,lVl /h.2 _-,, hi 2 h2) +hl,20,v,,/(R2h 2 hc) -q)2,1j),-,1(R2h 2)

h3 I,/(2h2) +h2 h302 /(2lt2) +h2 02XiNL 1 1,3 ,2h3 1 1 2 -hj,20J02,1/(hh2)
02, 2) 2) 2

0jj(k21(h2h,,) +h21 - 1,2h3O-,/(2h2+h3 21/(2h -4-hl,? h IV +7J,1,2 bjj/(h h2)

2 2 /(112 2) 2h2) +-12..IV/2,1/h' -- 'Ihl,202,1/(h2+,y, hl , 3011h +-llh2 h -- f2,lhl,2,01/(h h2)
+-/2h2, '21202/(h2h') +-I,,lhi '2/(h'h2) +U3h,

01,1 / h2 - u,,, 1 h 1 3 01 / 1)

+U3/11,2h,,302/(h 2 h2) -^Ilh2, u/(Rih2) 1,2UAR,0112)
1 1 2 +-12,lhl,2U/(Ilh'h2)

2 2 2+hl , 3olu/h2 +h 2 2 h 2) -hi h2) -'YIIUl -- Y2hI 2Vl 1 h2)1,201ii/(h l(Rih')202,1 /(h] I l(Rih
2 2 2 2) 2+01,lu,,/h +hl /(/t'h2) -72h 1 2 -- Yllltl,2V/(112h h,)) +hI1 .202Ul I 1,2V/(1?2h h 201,111/

2+hl , 202v/(h2/12) -,y2,lvl/(R2h') +-Ilhl 2 h?) -hl,201Vj/(h2 h2) +92 ivl 1h'
2 2 +-11112,361 2 2)

xlVL -,-: 111,101,11h +'/2h, 1(h h,)) Ih /(h2h
1 201,1 1 -/

-^i?.,lhl,201/(h h2) +72,102,1/h -- I, hi '/I-) +-/2h 0210, 1 +-jj_,hj,202/(l"h2)
1 1 202.1 /(Ili 1,20

2 /(112/12) 2"?hlo, 2)+vll,,Ol,,/hi +hl,20201,1 I +h 1hl 1 2 1
1 3 - -A.h2l27plol/(/I'h -hj,2V;j.,Oj/(h2h2)

-hl,2V'102,1/(h'h2) +71'2,102,1/h 2 A-hl,2?Pt,102/(h2,h2) +h' -12 Olul(Rjh -)
I I 1,2?P202/(h2h2)

2 2 2) 2-hi , 201U/(]?Iltlh2 +/11,202,lu/(Rlhjh,>) -01.111,1 1 - h 1,2 02 Ul / (R I h"ll 2
2) +hl,20,v,,/(R2/t2 h2) - 2),201,IV/(R2h2h2) -h2,-hi I 202V/(112h2h -0,,Ivl /(R2h

2h,2) h2) +-j2 h,/(2h 2) +-y2 "20)

x1m, " -^11^12,1111,2/(h -/II-Y2/11,2/(h2
I I I'l 1 2.1 h3 I

2112, 2) +-f2h' h.3/(21i'2/4) +-j2h2,,)h.3/(2/i2h') + 1,101+-/I 1,3h3/(2h 2 1 2 2 1 1 2 '1 /V
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1 1,20101 /(h2h2l 2h+h? +hz - h 1,2 02,101 / (h h2) +02,102,1/h2L.30101 1h 1 2) 1 2) -/11,20102,1/(h2

2h,)+h 2, 2 h')+h,,,201,102/(hi - 1 20202/(hi 2

yl,,01,1/h2 + 2,
-,2h,,701,1/(h2h2) +,ylh 01/h2 +71 2,1.11 L 1 13 1 hl 201/(h2h2)

-- 12,lhl,201/(h2 112)

2 2 2, ih 2) +71,1h, 202/(h 2 hi-72,102,1/hi -7,hl,202,1/(hih2) +72hl 202/(h2 2 2)

XINL 1,1/(2h2) +h2 3h302 /(211.2) +h2 2h302 2
/(2h h2) -hl,20,02,1/(h2h2)

h3 21/(2hl,) +h1,201,102/(0112) +hl , 2h3 2/(2h2 02, 2 92 2)

0 (7t3,2)2h3/(2h2)Y,2]VL +h2, U2/ 2) U2 2)1 2 2 2 U,2v/(/),lh2)2y 21h3 (2h2h +h3 /(2h -h2,1 2
+h2 21 ,v 2 2, 2)

I, A2 lh2) +h2,IUI;,2/(hih +h3V3 1(2h 2)

X21,f L 2,3V:,/(Izlh2 +U3h2,3V)2,2/h2 U3h-,, h 2) 2 2)

2 -U3,2h2,37P2/h2 - 3h2,lh2,3U/(Rlhlh2
+h2, 2h2) 2) _ 2, 2 2)2,Olu/(hl 2 V)2,27t/(hlh2 h2lU l(Rih2h +?Pl,2U,2/h2 2)

1 2 2 -h2,1'02u,.2/(hih2
-U2 /(Rih2) 2 -h2,1?PI,2V/(hih2) 2',

,2 2 A-U3,2h2,3V/(R2h2) 2 +h 02V/(h2h2) 2,37P2v/h2
+h2,17i,2v/(Rihih)2 +h2,1'11.-.V/(R2/iih2) -h2,lV2 /(R2h2h2)

1 2 2 ,3V /(R2h)2

2) +h2,1?blV,2/(hlh2) 2 2)-U3h2,3V,2/(R2h2 2 +lP2,2V,2/h2 -h2,lUV,2/(Rihih2

-h2,IIIV,2/(R2hih)2 -V3 /(R2h2)

2 2) IZ2 2 V. 2 2)

X2NL = u3h2,lh2,.301/(hi/"2 +U3h2,302,2/ 2 -U3,2h2,302/h2 +h3 1,2/(2h2
+h',113 lp2/ (2h 2 h2) +lz'),IIPI*2,2/(hih2)

2,1 1 '1 2 hjh2)
1 2 2 +h302 ,2/(W ) -h2,,'PI,2?P2/(1113 /.2/ /12) 2),2 (2h +112 02 2)4-h2 1 2 2 h.3 2/(2h2 +02,1 ju/(O 2) 02,2u/(h, h,3 lh2 +h2,1

IV)Iul'Rlhlh 2) -h2,,V'2,2u/(Rihih 2) +h',, h3U2/ h 2 h 2) +01,2U,2/h 2
2 2 1 1 2 2

-h2,'AO211,2/(hlhl) -V/1,2U,2/(Rih2) 2) U2 2h2)
+h2,1?P2?1,2/(Rlhlh +113 /(2R

2 2 1 2
-h2,1101,2v/(hjh2) +h2. 2 2

2, 
210.2v/(/ 

2/"2) 
+h2

1 2 2,302v/h +h2,101,2v/(R2hjh2)
2-h2 , 1 ?k'2v/(R2f'12h2) -h 2 -h2,1 U,2V/(Ri R 2) 2 2 2 2112)1 2 2,302v/(R2/t') 2hh +h lh3V /(2R 2 2 2 2 1 2

h2 , 311,v -h 1(hlh') -F02,2V,2/h2 -h2,,V)IV,2/(R2hih2) 2)
J /(2R2 2 2,IOIV,2/ 2 2 2 -7P2,2V,2/(R2/12

+h2,IUV.2/(.t!IR2hlh2) +h.jV3 2)/(2R2h
,2.

I
-V3 -V3,2-Y2k2.3jh22.3/0 ,3/(hO) 1 2/h27131"1112,1 h., -01,201
-1-2,102,jj,2/(hjh2) +h2,lb)

V;11(h2 h 2) -1 l'12,1'h,2V)I/(hjh 2) +h2,lolp2,2/(hlh2)

02,2 02.2 /1,,2 -h2,,k'2V'2/(hjh2) 2, 21,2) 2 2
+' - 10202/(hj 2 2,3 2 12/h +Y2.2/1'2,)71/(lljh2)

A-6



+-Ih 2 , lu/(h h -h 1 u~/(1h h -h10 2 /(Rh) +, 2/h +712h 2 ,ll, 2 /(h h2)
-h 2, 1 ~bv 2/( 2  1~ 2q$2,+v,2/(R,/)

X-01,2U~ p,2/( 2 ) +102,h2 /(ihh ) +-Ih2, biq$/(h 1 2) +h q 2 /1 (2h2) yh2V/1

yih2, 2 /(Rh, h ) - 2 ,1 2 /(h h ) -72 h ,~ 2 / +h 2) 1 h2 /h1 2h~ +h, 3 2 )

+h~1 9v/(~h 2 +, 3 2  1 - 2,2 ,2 ( 2 ,3-1 2 v 2/(R2h +~ +,V2h2 ,1 91 2,V, 2/(h h2

X-h2 1,q1,2/ h21 - 2 2 V,2/(h21 2h)+7,121ki(h )+1h q /hh)+y2 S,/h

62N ""= 2 l~ 2721 1 1,2 2 ,2/2h
X2L 1,22,/(111 2) 7120 /(h h ) + 72 /(2h( 21) +1t(21z2)

+-1h2,1 0 /(h h ) +1h2,1 V,21 (h2 h') +-2,2 '102,2h21 1ly) +,102,202/( -2 ,1) 22/Ij12

X-L71,2 1 ,2/l' 72112h1'I 0 2/(h1 h) +7122h 2,01(1 h)+1 0 (12) +22 2

X 2L=h302/ 2h ±-12,hui h 11/2l) -- 1 2,101,/( 41 2 h ) +h,0,/(121hl2)

+h,12,U(hh2 -Yl2U2(Rh2+Y~2,U2/Rll 2+0,U,/h2-hA-,2(hh



X4NL = 1,?-/(11 2  4'u 2 1:-u,/R1 2  -h2,14'1 v/(h111 2) +112,uv/(Rlh 1Iz 2)

-h2,1 uv/(R2 h1i h2) +ak2V,2/112 -VV, 2/(1 2112)

X4NL = u1 2,3052/h12 +ibi,2'?bi/h2 -U3,3h2,3 P2/1 2 +0P2,20P2/11 2 +2h2,1 042111(11112)

-212,1)1 v/(hih2) -7P2,2v/(R 2h2) +2qS2V,2/h2 -'P2v,2/(R 2h2) +VV, 2/(R~h2)

X4NL = u-~ 2,3/h2 -U3 ,3 h2 ,34)2 /h 2 +201i?kl,2/h2 +0)1,2 0 1 1/h2 +112,10V)1 /(Ith 1 ,2

+20)2?P2,2/h2 -112,14)1?P/2/(h1112) +0)2,2012/h12 +3-[2h2,1 u/(hih12) -i, 2?u/(R 1 12)

-h 2 ,1 042U/(Ri 11112) +37k ul, 2/12 -24)iU, 2/(Rih 2) - 3 Yih12,1 v/(h112) +112,1)1 v/(R 2 h1 12)

-04 2,2V/(R 2112) +3-Y2V,2/112 -24) 2V,2/(R 2 h12)

X'INL = -u,- 2 2,3/h2 +2051,20)1/h12 +20)2,20)2/h12 +37111'l,2/h?2 +11,2011/h12

+2712h2,1 0 /(h1jh 2) +3-Y2* 2,2/h2 1-1 2 ,2 702 /h 2 -2,712, 112('11) i42 3 2 h

-71,2u(?1 /2) -27t2h 2 ,lu/(14 h1 h2) ±4h2,O2u/(11 12) -3~,/ ~ 2 ~4~u2 h

-- 2,2v/(R2 12) +2ytih2,1 v/(R2 h11 h2) -4h2,1 017?/( 11112) -3y 2V,2/(R~h2) +402v,2 /h2

X4NL, =" 3-1101~,2/h12 +2-11,20)1/h2 +7Y22,14)1/(h11/2) +3-202,2/112 +212,20)2/h12

+312,101 v/(R2h1 /2) -9 2 ,2 V/(1? 2 h2 ) -402 V,2/(R?l)

5X4NIl = 371~,2711/h,) +372,2-12/h12 +201~01,2/11 ~4)20I/A2 -21,42,/h 12 4 2 2 2 h2

+2112,14102/(h,h12) +40)2,202/h12

X'SNVL = 37101,2/h12 +471,201/12 +412 1 1 (1h) I:70,/1 ±4y ,/h 2

+-yI 12,1 021(111 12)

7~N = 401,201/h12 +402,202/h2

X -5,V L 11 2?P2u/(h11 h2) ±ibl,,/1 -uu,, /(Rjh,1) +h1,,2Y1 v,/1111 2) -- h1 .2uv/( Rp1111 1))

+I-l 2 lV/(R2 h11 12) + g~v.1/11 -vv,,/(R 2 h1 )
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X-5NL =2 3 1 1/h, -u 3,3h1 ,317l /h, +4 'i,1 /h, +0P2,102/h, +U3,3h1 ,3?L/(RJZ h1)

X2h,,=02u/( 1h1 h -u, 1,34 /h1 +21u,i k1 +5 1 , 'j h -Vui h 1,2+ii~i /( h)

XSVL =- 3,3 1h, 3  2,h,,1/hi +202 , 2 hl +0- 117Pi/h, +71,202V1 /h h

- 2 2 I1h, hl1P/(h1 1 2) + 0-~',. 1+2,10?~2/h, +32il,2ub/(h 1 12) +u3 1, 1/(Rh

-Itl,202/(l A1 ) +2h1 ,/ih, 112) 4, 20/( 1 2) -ilhl,2V/(h) +4l,01 U,( /h

- 2,IV/(fl 2h,) -3271 h, 2 /(h h2 ) +4/(Rh, 20v( 1 h)-7v 1 () 1  4 2 ,

X5NL = 374,/h +21,1 1h, - 2 1 02 /(hh +3-11V) 2,1/hl +2-y,iqV' 2h

-2Y h, 2b2 /(h 2) +30 1 ,/h2,-, 3 1 ,102/h,1 +44's ,2701 /h 3 1 2i (h2) +b 202,2130 1h

--110 lv/(f2h, ) -02,1 v(Jh 1 -4h2,l /(fh 1)

-21 21 2v/((R12)i2 +42, 20v(hh)/h1  42vl

45N 3,yi0i,l/ +471,101/h, +7211,201 1(h1 2 ) +3202,1/ll +72,102/ll

= 4hl, 0 ii(hIhz +4P0, 10/h,-k1 h,0/,+0,0/, 3j2P0/hh)+221h

X-v = 3j,2 32 /(1l 1 2) 402 10,2/h,2 ,u/(Rll) +uh,, 2 012) -11h2, iL, 1 v/(h (Rh2 )

+111 ,2 ,v/(1hi l) -,21 v/(Rl~h,) +k02,v, /(1lh)-Ilu 2 (h )+v /( 1)

XGNL = 2-0JP2/7ih2 / 1402),u 10 2 /,aii(lh)- 3 2 j 3 ~ (112 131,12I(11

6 = i 3 1101_,/hh +4^1, 1 1h k 2, 2/( 1 2)+uh 3h2 ,3 u3R1202,1/h, +113.12/, ,t/RIj1
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-2h,, 2h2,1 i/2 v/(h~h2) -h,lh2,lu/(hi 2) -h, 12u(Rhi 2 h 2)+ 2 1 u1 v(il 2

-u~2,v, 1 /( 21 1 2 +1, 1v 1  27?12  'P 2,2 /(hh 2) 3h2,lu,3?Puh/1 2)
+h, 2, /(Rh 2 h 2) -hhll 124~ v?,2 /hlh) +b 2,17,/(h 112) h,v/(ihh)

X~L= ~ 1,~ ,/h 12 -~ 1,hk 1 (~4 Iu,2 1 31q( 1 2 /lhlq 1h12)
-uVh, 31z,k 2/(Ilh 1 -3h 2 k/(12) 2~1 1 b,/1 1 12 -l 2 2 1 i~(~

-12, 4 2 iu(J 1 ~2) +11,27b 2 ,2 u/(11h2 h2u,) -(hih 2 k)(~ +U ,h12) l 2h, 1
2 /() z1~

+U,lh,3/(Rli2) -112, k 1 ,v/(h 2 ) +11 2lV/1 1) +l 1,1v(hh 2
-211,2121 4v/(l~z~)+12,14~ iv(Jh~ 2 V) 21,2v/(R 2 1 ) 3 h, 3 21 v/( 2 1h

+11 2h2 ,1 01,2 v/(h2 l~1~ 2 11 ,3 2 ,3 UV/(Rii12) -hl,32,1 uv/(Rhih2 R 2 lu /Rh

+11~l/R~l2 -h,2U,2V/(II1 h z) 1i 2 l2 ,vhh +11,2,1v/(l~h2 ) + 2 ,2 v,1 1(112)

-12, 'iv,1 /(R211?h2) -V2,IOV,1 /( 2 12) +112,1iV,I /(R 1 2 12) -U,/(R1.2hV2(1)

+2,lv,/(11 112) hi' v,/R 2 1 1 2,V, 2 /( 21 1 12) hil~,2UV,2 (JR 21)

+,2UV, 2 /(R1ih 12),2(Rhi

X6NL -' Uhj111,2112j,3111 ) U3 7 .2/,3/(11112) -U3,2h,31/ ~(1ih12) +~2321(i2

+13,,32,bI/(h 2 2) -1,l2,2/(h1) ±1lI,12,2/1 (11112) +11,22,1 ?p2 1k/(2 2 )

+h2,IIPI'02,1/A- 10 hi2



-h 2 , 2 *2 /( 1hh2) +h, 2 c2 ,0 2 /(i h2 ) -111 ,2h2 ,102 02/(Rih 1 12) +1,, 2u/(1l12)

-7211hl2,1 u/(h2- 2 , /(~ 12) 212, 2)(? ~l 2  711,2 ,/h

-h1, 241 ,2v/(1 2 h) -h1 ,lh 2,lu 1 /(1h 12) +21i,1 2,U/h52v/(R 2h,,11 2,, /(1i 112)

+7112, u1/(h h 2 ) -1 2,qh , /Rhh 2 ) -hiv 1 /Rh 1)-711,v 2 (l ~

+7 ,v,/hi 2 +i 2 ,2 U/(hi 2~ 3h22 1 ,2 /( 2 u/Rh~2 h2 )2,/(i

X'12h2l =u,l,/(h 2) -h 1 ,2 l, 1 q/(hih) +h2,1 51/ 2 ,1 /(2 h2) h,24 h221l)

+71,11,,21(1 12) +0,u,2(Rhih2 31,/h 2112)-~i,2112,301' 1(1114) -U,2(th1 311(112

+U312,, 3 2,l/(1h12) -3 111 ,3/2,lv1 02I(1h2) +-yu3, 1112,391(l1Ih2) +h2, 1 1,lu/(Ri Ill1)

+2-h.21,2,1 /(J?;h 1l),12,31 /(Ri h2) -2/1,, 2 , 31/(R 1hh 111122,/(i

-1/l2,10 u/(1l~) +12,10,1 /(h21h2 ) - 0 2,2 1L/(h 1) +111h ,3 1(i 2)

-72,1 ,2 1 /(R11 2) +201V2 /(Rhh 2 ) 01,211/(hih12) -1, 2 ~/h1

-21L= 1,2 l, 1012 /(hi14) -h2 ,2 ,R1 1(h h) - 101 2 ,1 /(h hz2 ) +112I V, /(il2

+02,1 2 ,/(1112) +72,11,V, 2/( 2 h21 ) -'y 2 , 2 /(11 12) -11,20 v 2/(14

+-72,211,,29/(1112) -22h,1 ,212 4,/l) 42112 h(112) l21,1 2d 1(12)

+722~21 /11112)+7111,1,2(hh2) -1l11,220//114) U3,122/111,31 112)

+U~h2302,1(hih2 -U~h,3h2,02/(h h2)-,h,02(i2 I-22h



+l,20/(hh) - 2 1b2h,2, 1 2/(h2 h -ylh,102/(h h2) + 2 ,3h0i,2 /(h1 h2)

+02,1 ,/(h1 h2) -h 2,1 02,102/(h~h2) +11,2k1,202(111 h2) +h, 3h, 0 2 ~1
-2111,211,2/2,1 2)2/h~

X2hl =,21,1 IO/(1l2 h 2) -7 h2,7P01,1 /(h 2h2) +-h1,0 .111 i +1,01,32/(1 2)
-722h,2 1 (11 ~ 271,2210 /1 ~~ +22,01 (h, h2) 211,1231(11

X+h2= 10,1( 21h2) -11,22,1 /(1l )+1, 12 lh2) - .20102,21(11h2)
+02,1i~02,(h h2) -11201,02/(h) +1,2,02/14) -21,h20, 021(h12)

A~~~~~~~~~~~~~~~ 23 Aprxiaio2f,0S17SaP2ato0unton2it/ecn(Odr halorsSre
Expa2h2) 20sionshi 2

Most of tl/(h h expressions Rjh liste int2 rvosscincnti h hp ucin
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-hl,3h2,302U/(Rihih2)~~~~~~~~ -12,/Rh2) h,0,/(hh2 0,,/Rhh)



combinations possible. For a shell with radius R, in the Yl direction and radius R 2 ill the

y2 direction, the shape factors h, and h2 are as shown below:

hi = Al (1 - y3/Ri) h2 = A 2 (1 - y3/R 2) (A.5)

where A, = a,/'iaj" and A2 = V are the Lam6 parameters of the surface. The 60 possible

combinations of the functions are listed below along with their quadratic Taylor's series

approximation.

= h [A 1,2 /A1 ] +A[R,2 /R ]Y + [ R II, 2/R 3 ]Y

f 2 = hl,3h [A1 ,3/Al -11R, ] + [ -1/R 2 +R R,3/2 ]y3 + -1/R 3 +R1 ,3/RI ]y2

f13 = 11h2  [ 1/Al ] + [ 2/(A2RI) I ?y3 + [ 3/(A2R2) ] y2
H4 2 2 *'y 2 2 +[3

A4 = hl, 2/hi A, 2 /AI [2A,, 2Rt,2/(AR) ] y3 + [ 2A,, 2R,,2/(A 1 Rl) +R 21/R 1 2

I5 2 2 ., 2 2 +2 I 2 ) ,2

f5=hl2 /h2 c- A,2/A2 [ -2A, 2/(A21 1) +2A,, 2A1 R1 ,2/(A2RI) +2A?, 2/(A2R 2)IY3+ 2 2 2) ) 212 24
+AI, 2 /(A2Rx) -2A,, 2A1JR?, 2/(A2R 3) +AR?,2/(A2R4) -4AR,2/(,AR R2)
+4A,, 2A1 .R1,2/(A.R'2R 2) +3A, 2 /(.42R2) 2y.

ft 6 = hl ,/1-h A,, 3IA? -2A 1 ,3/(AR 1 ) +I/1RI + -2A 1 ,3/(AIR)

+2A1 ,3 14,3/(AR?) +2/Ri -2R,/R/ ]J3 +/[ -2A,/.(AR,) +2AI, 3R,, 3/(AIRI)

+3/ I -4R,, 3/Ri1 + RI I z'R

fi- = hl,3 - [ A, 3 -2A 1,3A1 /R +Al/J ] +[ -2A1, 3/R, +2AI, 3Ia/R2
+2A-,3A/R+,3/fl -2A2R, 3  y3 2At.3A1 R, 3/R3 +. 1111.3/R1 2 J

118 = h1,2h,,3/h 9e [ A1 ,2AI, 3/A' -A 1 ,2/(AR 1 ) I +[ -A 1,2 /(A 1 R?) +A,, 3 R,,/(:IIR)

+ A1 , 2R, 3 (AIR?) -RA 1,,/(A1 R ) +A1 3R,, 2/(AIR7) +Al, 2R. 3/(A 1 R )

-2R, 2/R1 +R,,2 JR, 3/R" ]y3

fI9 = h2,3/h 2 - [1 2,3/A2 -/1.2 I +[ -I/J? +R2.3/It ]Y3 +2[ -il'? 2, 2.IRI uYi



1110 = 112,1/h2 ~ A2,u/A2] + [R2,1/1?R2y + [R2,1 /R2' y 2

-ll 1/h2  1/ 2 ] + 2 R 2 ) IY3 + [ 3/(A2R2) )y32

fI 12 h~2 -h[~ I/A + [ 2A 2 1 2 1 ( 2 )]3 2A 2 1 2 1 ( 2 ~ R,/~Iy

21=h, 2h~A, 2A + [ A,/(~ 1 -2A,/AR)+A 1 A 2 u(A) ] y.33)2

f124 = h2 'I/h v~A 2 /A~ 2A2,,/(A 2R+1R + [ -2A 2,lR/(A2 R + 2)

f11 3  2 ,3/( A2  l/A + / -2 2 /? ] Ai~ + -2A2,3/(A 2?) +2A2,3AR21 /(A 2 )
+3/J? 1/ - R2 R +]?2,1/J?2Rl2 ] A, 2y2

2i1  1 2 1h 3/ 2  1A2 3 A -, 1/( 2 ) +4- 2, 1A2R~) 2 32,1/(A21
+A2,lR 2,/(A 2 ) + 22, /~y [-uA2R1? ]A 1 R, 1 ( 2~ yA, 1 2 3/2 2

11=1/ 2 /2 1+[1( 2 2 ~+[1( 2R ] + 2

f14= h2,3/h2 2 A 2A ] +[A2 /(AR) -A11 /(A 2 A2 ?,/(A R )]y
+2[A2,3R/(A~ 2 ,ARR2) + 2 /(AiiRR) ]I3y 3

= ~ [ 1,2 A2 I [ A1 2 /( 2R) A2~,3/(A 2 Jf +A2,3 2 /(A 2R) I

+/ [ - 4,/1?R2 ) +R, /A 2 1?1 +I,/( ~ Y32

21 A/(~2 3 -[1/A2A 2 R I /A 2 R] +1/AA)]y [ -2A2A 2 R

±1/(A 1=A2 112,3R2  A2,( 1 A2 ,3/) -A, y(22 -21(22+AR,/AR

+A2IR23/(2R2 -R,1/3 ]y3 [ A 1423 AR,/AR)+ 2I23(23



H2 hl, 3/h2 ~ Al, 3/A2 -A, /(A2RI) I+ [-A, 3/(A 2 ]11) +AiR, 3/(A2 R 2)1
+A113/(A2R2) -Au/(A 2R112) ]Y3 + [ -A1,,3/(A21?1 R2) +A1 R1 ,3/(A2RIR2)

A123 = h2,3/h, ~ A2,3/Al -A 2/(AIR 2) I + [ A2,3/(A1 Rl) -A 2,3/(AlR 2) -A 2/(AlRlR 2)
+A2R2,3/(AIR) 1 3 + [ A2,3/(A1 Rl) -A 2,3 /(AlR1 R2) IA2 (AR 2)

+A2R2 ,3/(AiRiR2)

f24 = hl,2h2,1/h2  AA,i/? Ai 2 2,/A1) 2A,~,/R)
A1,A21/(~1 2) A1 2A 2,1/A) + [ A 1 A,/A1) +2 2 12/(A )

-A, 221 /(~ 1R2 - A2,1 R, /(A RI ) +A 2,lRRl
+ R1 2 2  22) ] y3 2R2) 3)

+A1;2A2,1/(AIR 2) +A1 ,2AR2,1/(A 2)Iy + [ -A, 2A2,1/(Al I 2 2,I2/A
+Al,2A 2, 1 ,/(A RR 2) A 2 A211 2/(AR)-R2 2 2 1 ( 2 1 Z) +A R1 2 2 2 1 /AR1~

+2AI,2A2Ru,1/2RA) Iy

+A2R,A2R2,1/(R - 1 2R,/( 1 R)Iy+[A1 A,/(1?)- 1 123I /.fR)

f127 = hl,2h2,1/h2 [A,A 2 /A 2 1 u( 1 I + -A A12 ,1 1 -2 2 ( 1)

-*21 21 ( 11 11~ ~2 2A,/A 2 ,i(~~ 2A2,1/(AR) +2A 2,1R,/(A2RI)
-A 133 2,1 (~ 1  +Au/ARR 2) -A., + 1 3 ( 1 ~ 2 [AAR, 2(~ 1 J~

-2A2JA2,1/(A R21?) +AR,3R 1 /A -A,1?~ 2

f18 h, 2 2,/ 2 1 I, 2 A2,1~-/(A 2 2 ) AI,+ [ 1/A 2 ,2A R 1 /2RR

fi16 A,1 11 2,3(Al,3A) +AIA 2,3/R +A1,, 2/R 2 ) A 1 2/( 2 1 +-A3 2) 311

-2A,/A 2R)/ +iI1 2R2,3/(2 J?)y3 + [A ,A 2,3/(ARR12) +A 2 3?/(R1 2

2 2 ~~A 23 2



= 1,2,/(h' h2) + [A,, 2/(A 2 R) + [R 1,2/(A2RR) Ai, 2R2 )(2, 2)~

+A[ Rl,2 ,/(A2RIR +R1 ,2/(A2 2 +Ai2AA 2 R2,3) I y

f19= hl,2 /(hh 2) [AI, 2/(AlA 2) I + [ 2A, 12/(A 2 ) +A 2/(A A2 1?2) Y3

+ [ 2A, 2 J? 1/(A R/A 2 R)+?,/ ID 2 1 2 1 /AARR2) +A, 2 /(A(A 2R2 2

flo= hl ,/( hih2) Al [A? 2/(A1 A2)] + f -A,/A1 1 2A1,2R 1,2 (A+A

+2~,/(iAR 2 Iy~+1 A1R,2 AR I 2A 2/(AARI 2 14i,2/(A 1?R)
+3A I, 2/(AAR) R R2)+A 1

1132 = hl 3 /1h [AA 2 1 3 R A/? -A2 3 ( 11 +2AI, 3 1 3

1133 =2 A 1 ,2/Al [A12 /~ +1,2/(A 1R ) I J 2/(AR)

+ 2 i 2/2(2 4))2I 2

fl3Aj = (A A 1 Y3 /-(R) + A ,2(RI -AI, 3 /(AAR-2A) +RI, 3 2(1 R) y
+A [ 1,/(AIA R) 32(i~ 2 1 3 ( 1 ?)Iy

Hl32 = hl 3/h 13A, 2A,/(i Al2) -A 1 ARl) + A12 ,/(AAi?

-A,IR/(-AIR 1 3R2 ) I y3 + [ -Al/, 2! j~ /AA2  +AR 2 AAk) +2 1Z,/A 2

-2R1 1 2 /(A2 111) 3RT,3 ( 2 I A1 /( 1A2 ? 2 +, 3/R'l12 (V3R~

A33 = hi/( 2 ) 2 A2 1 ( 1 2 A2 1 ( 1  2 ) y3/( 1~ 212)

+ 2 /h A,2 R/A 1RR [AIA+1,2(ARl) + Ay2(AR

1137 = hiu/(1h) A,/(A)I + 3 ~ 1 (A'RI) +2A2 R 1(Al 1 A ) ]RI

+ I iI,,/(hAR) +2 2 I,/(AA 2 R) +2A,/(AA 2 ) +R 2/(lA2R~ j

+AlR,,2(AI2R2)+AI2R1,/(A A2R)-Rl2(2 ) AA,/( 2



Ai38 ;h, 11/(h h2) [ 4 1/(A A2) ] + [2A ,11(A A2Rj) -A , 1/(A YA2R2 )

+2A,1 2,/( 2R) Iy3 +2 A,/(A 2 ) -2,/( 2 R1 2 242 1 2 1/ARR)

1139 = h23 /h2  + [i~ 3/ 2 A2,/ 2 + 2 1~ A 3 (AR)+. 2 3 ?,/Z
+A2/?~ -2JR~ I y + A2 R -2A, 3 R'A A 2RI3 R2) +2IR21(

+2R 2 , /(Al 2R~ v

1141 = h2 ,1h3/h h A [ 2 A2,3/(AA2 A2 / (A1-AR) 2,32,+

-R,/(1 ~)]~ 2,A 2 ,3 ( 1 ~? -A2,/(AA 2RR 2) 'A/(A1?1

112 2 h A2 3/A-/A) + [ A2/R-R, 3/R 2 ) -/A2 1R 1 2 3 (AR)I

flo- 21h2 A, A2]+ [ A2,1/(AR) 23/R2R) +2R2 33 /(A2R2) ] y 3 21(A2R2

+ (2, 2/(A2R 2 )+AR,/ARR)+A,(AJ)Iy

41 = h2, A2,1/A/ I + [ A 2,/AR) - 2 1 (~?)+ 2 2 1 (~~

+ [3A,1 (AR~ -A 2,IA2,?1 R) +2A 2,/(AIR)] + ( yI2,/AA

445 = 1 /(hRh2) -[A2,1,/(AIA 2R ) -1/A 2 R2,+ 1/( A2 ) + J?1IR, 3/(A 2R 2

"46= 2,1/(hih 2  A, I A3/(AA 2 , 1/A 2)] + [A2,3/(A A2 I,1/(AARR)

-1/A3 1 (IAR, +1 2,/A ) ]3+A [ 2,3/(AA 2R) -A1/(AIAR) -+/A,R2,1/ 3

2~ ~~A 17 R2 21V



,2h7 ,=(hih2 Al, 2A2,u/(AA 2) I + [ A1,2A2,/(AIA 2R,) +A2,IRI,2/(A1ARl
+AI, 2R2 11/(AlJ~ 2 Y +[ AI,2A2,1 /(AIA 2RI) +2A 2,i1?i,2/(AlA21?I

+-AI,2R2,1 /(Al1RR +RI,2R2,1/(A1?RR +AI,21?2,u/(AlR~ 2

fljs = hl221/h [AI, 2A2,1/(AIA2) + [A2,IRI,2/(A2R~ +I 2A2,1 /(AIA R 2)

+Al,2 R2 ,1/(AI A2R2)Iy + [A 2,1R, 2/(A21R) +A211 R1 ,2/(A2RIR 2) +A1 ,2A2 ,1 /(A1 A2R2

+1?1 21 2,/( 2 1?2) +2Ai, 3,/Ai2 ?) ) y32

2A2,1/(A 1 2 ~ + 21 R 1 /(AA 2 )+AR 2 ,1 (~~ R~/ARR)Iy

+149 A=3A 1 hi~ 2 R~ I 3 2 1 / A2 ) 3A2,1R1 ,/(A1 A2Rj)+1 3 2 1 (~? ?)

H5 ,3h1 h2,1/(h h2) (A1,3A2,1/(Ali~ -A 1 /(AIA 2R,) ] + [ A2 l, 2/A1

-2?112/(Al 2R 2?) +A2, 2R2,3/(AI 21? 2?) +3A, (A A2R 2) -2AR 2,/(A 1RI 2 ) I
JI51 1 3 RA, 2 3 A2 - 1 2 3 ( 2 , 1 A,/ 2 2A1 /(i Y3)

+(-[ A, 3A2 1 /(A 2R1) +AA 2,31 /(A 2 1?3) ±A2,, 3/(1 1? 2 ) A,/(? ) -(A,R
+Ai2,/(R R ) +Rl,/? -A1 2 2(R) 2y +) ] y1 3 ( 1 ~)- 1 1 3 2

-A13R, 3 (R R) A1 R3R2,(RlR) -A2 1 +A,321 /(J? ) +1A,R,R

.1152 = hl22.3(2 AA, 3/Aj -i 2 )R -A, [A3l2 /(A1 2 )+/R R 2)

+ [ -A2,3/.fl~~~ +A 2 J 1 /R 2AA 2,3/ (A 2) 2 /(1A2R 2)+ 2 (~ 2

A2R12A, 3/(AIR 2) Ai, 2R/(ARR) -A 2 ,/(AR2 Iy + [ - 2,3/R A2 R 3J

,22 /(A ) A2,3 ,3(J 2 +1 /.~ 2 /(-A2R 3/R 2) -,A 2 ,3/(lA2R)

f153= , 2 /( 2 h2) -i[AI, 2 2,/(A2AR) I + I, 2/(AAR) 42A, 2 ,/(AA12) 2J

+ A,3 2 ,/(A2 1R) +JA,3R/(iR) +,, 23/( 1 A"J2) 3A,3/(2A R2) AI1 2~

A1I2



f1154 hi 2 [A, (A 2A2)] + A, i, 2/(~ 2 1  + ,/ A 2 )
+i2/(hih2 2) 2 1~ + i 2 (~ 2 ? 2 2/(A~IA 2R) ±i,2/(AI 2R 1 R2

+A, 2 A2RR) + 1 /(A 2 ) 32

.1155~ 2 = Y3 [ A,/(A2R + 2,/(AR) AR 2 /AAR)Iy

2/(Al A2 1/( 1 ~ 1 A 2 /(AAR, +A 2 /(A AR

+R 2 /(AlA2Rl) + [A2 /(AIAJR A, 1 (i2 1R)+ 2 1/AA1~

+2,1/( 2RR) A22,1 /(AAR)]y

ffi 5 = h2 [u 1 2 A2)] + [2 R1 2 /(A 2AR) +2A ,lAAR 2 )(22 2) y3

.1[5A = 2,1 /( 2A2 2) +4(A2,lR,/(A~2 A  I [ 2A 2 A2 R21 /(AR) +R2, I( 2 4)j

A6= h21/h[2 i~A2,1/(A 1) I + [ A,/AA 2 , 1/A) +A2,1 1,2 (A1 A.R2
+AAu(~~ 2 ) +, 2u/AA1)I + 2 A2 2 2 1/4R)

+2AR2,u/(AA 2R) I 2 +21

fz6~ = ~ [A1A2,/(AA) A2,(AAR 1 ) A, 3 (AIR)+/(?])

+R[-2,1/(A 2RIR) ±A 2, 1,/(A 2R2)+/J~ 2  R,/('R)-i 3 ( 1 ~

11.57?= A1,2/(h 2 ,2/(1R I) -1 2 ,/(?R~)I 13+[- 2 3 ( 2 ~ A,1i 3 (

Ass/=(h1 -,/(h~2 1 ( 2  A2(R) -21 3 (J 2A2ji ) R2,/(2R ) y.1 3R2 3 (~~
A 1 (A'R ) +R 1 A,/(A ) -R2,/(1?R3) y

1 ~ ~ A 19 2I



Appendix B. Strain Displacement Relations for C000/C003 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular

cylindrical shell with its longitudinal axis in the Yi direction and a radius of 112. The Y2

coordinate is the circumferential distance dy 2 = R2d9. The kinematic displacement within

the shell is assumed to be of the form:

U u 1 + U2e 2 + U3 6 3  (B-1)

where
uI(y1, Y2 , y3) = u + y3 01 + k(0 + w,1 )y3

2(yl,Y2, y3) = V(1 - cy3) + 2Yy3 + /(V/2 + w,.2)YJ (B.2)

U3(Yl, Y2, Y3) = W

The seven degrees of freedom, u, v, w, w,I) w,2, 0 1 and 02, are functions of midsurface coor-

dinates (YI, y2) only. The V/i are rotations of the normals and c = I/R 2 and k = -4/(3h 2).

For this case, the 60 shell geometric functions fi, are simplified, because h, = h3 = 1 and

the quadratic terms of the expansions are neglected. The simplified nonzero functions of

Appendix A are listed in Eq (B.3)

fI 3  = 1 f49 = -c- c'Y3

flI = 1+2cy3  fI14 = c2 + 2c3y3

fl 15 = c2  f17 = 1+cy3

f1 21 = 1 + cy 3  f 1 8 = 1 (B.3)

fI21 = I + cy3 f23 = -c

f1 39 = C2 + c 3 V3  f,142 = -c - 2C2y3

1465 = -C - C Y3

The strain equations listd below are the parts of the linear and nonlinear strain compo-

nents for the C000 and C003 elemental codes. Contracted notation is used, where 6, = Eii,

62 = F22, -03 = E33, 64 = ^23, 65 = --- 3, and E6 = 612. The strain components E, are given by

B-i



the series -expansion shown in E q -(B.4).

n

= F3 (B.4)
p=o

The nonzero XPare listed below for each component of the C003 nonlinear HTSD theory

code. The CONO quasi-nionlinear IITSD theory is given by neglecting the nonlinear terms

of X4Pand XP

XI ~f1+~2 1 +V2~b~ + 2 1

=' +uv /2 P/ 2 /,~2,+i/2

I _kw +)u +kU,1 l +kV,iw,1 2+k, 1 +u 1 '~ k,~,

I j=V 2cv1 ,1 2 wV,l +kP2,1 -ckv2,j/2 ,+k, 2 b 1 k 1

=1 kw 1 / +k%w/ +kW 2u+ubi~i +kilb, 1/2l~ +kv, 12 2,1 + 2 P,/

-ckv, 2 -ckv,2 wVl + O',2 +cv,l +cw +kw~b. + p2,2 +,422-wb, cv

X2 32W 2  2 -eZ2,vp1 +2c , 2  +c4 2  + Z22 +cb21

+c,2 bk-2cw~, +'12/ 2 1/vb2 +c~42 +k2 ~ /2

-1 11 c~ 2±cv+k, 12 +k, 2 Jkw 2 cW, 2 0 2kv,1 cw ku 2 k

0 Ub1 2 + 2,-cV,t 2  +kV,2 2  -Ckw, 2,2 +Cg2 -v2  + 2 vk cw 2 b

/2 2cu2 ~ +, 2 /cv2 2 -cw ,2 +ck 2 +cwkw /2eki.',

+k 2 ',2 +k, IV +Ck V, 211 +CkV,2 ,2 -2 +71~b,2 0~.w2 P2,2 +V,20, 2 +CWkVi 2,2 -

+3CkW, 2 2 +~4

2 V2 _C2 C13-2C



-2c2kVw 2  -2c"kvw 12k,2 1 2 +c'b 2 -2c 2kV, 2 72,2 +2ckW,22 0'2,2
+ 2c,2 - 2c'kviPb2 +2c'kw,2 V)2 +2c'k~p2

6 =k 2W2  2/ C2 ' k'2 J4 2 1 !.2j ,/2+kw 2 +kw, 12 1201n~u,2 +k2I,~i 2/ 2 +k2 W22 12,2 ~2,2/ 2

+c kW,2 0k2 +c~k~~ 2

=2 1kw2 +ck 2
2 +c 2  +kW, 12 V/1,2 +ck 1k,2 +2ck W,22 ?b2,2 +ck 2 ..2

+2c3k W,2 0b2 +k 2

4 -CVV, 2 +c VW +W,2 +U,2 0P1 +0P2 +V,2 VP2 -W~

4 VW +CW,2 +CU, 2 4'i +?k1,20b1 -CVVP2,2 +Cg.' 2 -C WVfl2 +0k2,20'2

X4=cVV,2 -3ckvv, 2 +3c2kvw +3kU, 2W,l +3kW, 2 +3kV, 2W,2 -3cklW, 2 +6kU, 2 Ik

±C0k1,20'1 -C 2 V02,2 +3k7P2 -C 2V,2 0~2 +6kV, 2 V12 -6ckwIVP 2 +042,2 0b2

X - 3c kvw +3cku,2w,l -ckvW, 22 +ckW,2 -ckw 2 +3kw,, 2  6k, 2Vi+k, 2 b

+7kbl,2 ?kl -4ckVt* 2,2 +3kz, 2 02,2 +ck7.h2 -6cC2kW*b 2 +kv, 22 Vb2 +7kV 2,2 Vb2

X:1= 3C1?V2+k 12~ ckI,22 -2C" ,2 -3C 2 kV, 2W,2 +9k ~.V,2w,2 -9ck 2 WW, 2

+3ckiv,iik, 2 +9k 2u1,2 01 +ckW, 12 VP1 +7ckkl,21k1 -4c'kvV/2,2 +3cktw, 2 k2,2 -2C 2kP 2

- 6c kV, 2iP2 +9k2V,2 )2 -9ck 2WiO2 +ckI,22 0b2 +7ckP 2,2 Vk2

X = 9ck 1L,2W,l +3k W,12W,l -3ck VI, 22 -Ck U)ZV, 2 +3k I,22 W,2 +12k 2  'I V'1,2

+9ck 2u1, 2 0k1 +6k 2W,12 Vb1 +15k 2 7pi21 -3ck 1 2 .2 +12k 2W,2 Vb2,2 _ 9C2k 2 w4 2 +6k2 W,224'2

X = 3ck Iw,12W,l -3c kVW, 22 -9c kV,2 10,2 +3ck 2w, 2 , W12k '0g1,2 +6ck 2 ,12 0b1

+15ck 24, ,20 1 -3C2k 2 V72,2 +12c/. 2W,2 0b2,2 -9C2 /2v1,2 0~2 +6ck'W, 22 Vb2 + 15ck2 
2,2 0b2

= 9~w12 ,,+9~w221V,2 +9k3W,141, + 1,12 0b1 +9k3 7b1 2lb +k1. 2

-19k I, 22 0b2 +9k 0!2,20'2
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X4 9Ck w 1 2W,l +9kW,22W,2 +9ck~wi~, +9kW,12 01 +9ck ~1 20'1 +9ck'Iw, 2 '2 ,2

+9ck 3W22 7P2 +9ck3
2 ,20b2

X5= -cv~ +w,1 +7b1 +u,iii +v,IVk2

X5= -3ckvv,l +3kw,1 +3ktu, 1 w,l +3kv,1 W,2 +3k4' 1 +6ku,Vf1 +6kv,1 IP2

X5 Ickv -ckvi, 12 -3 IW,2 +3kw,Vf111 +kw,ivl +7kb 1 ,1~pl -4ckV7 2 1

+3kW, 2 V' 2 ,1 -6ckv, 1ip2 +kW,12402 +7kOi2,102

X5= 9ku, , 1 +9k 'I1 W,2 +9k u4I +9k~v 1 k

5 -3ck2 VW, 12 +3k2lo,u, 1 -9ck 2V,1 W,2 +3k 2 W,12W,2 +12k 2W,14'x,l +6k 2W )lk

+15k 241,i*l -3c1' 2 , , +12k'W,2 7b2 ,1 -9ck 2v,1 ' 2 +6k2 W,12 0b2 +15k 2 ' 21 042

=5 9k~w 1 tv,1' +9k tv, 12W,2 +9k3W,1 o111 +9k w,IVb +9kb 1 1 +9k W,2 0b2,1

+9k 3 10, 202 +9k 3 02 1 '2

=r 71. 2 +U,lU,2 +V,l +V,IV, 2 -CV,IW +CVW, 1 +W, 1 W, 2

X(= Cu,2 +CU,IU, 2 -CV,l -CV, 1V,2 +CW,iW, 2 +U,2 1'111 +0b1 ,2 +1t,101i, 2 +V'2,1 +V,2ik:,i

-CW7P2,1 +V,1 1k2,2 +CW,iiP 2

'0022 = C ,2 +V,iW W

=G C V,2 +ku, 2 1U,ll +2kw,12 +ku,1 W,12 +kv,2W,12 -ckww, 12 +kv,1 W,22 +ckw,1 W,2
+ku,2 VIP,i +kv/1,2 +ki,1 P1 ,2 +C01,101,2 +kOb2,1 _C2 V,2 0~2,1 +kV, 2 Vb2,1 -ckw0&2 ,1 -c 2 V'f402,2

+kv,j 42,2 +Cik 21 IV/92 +ckiw,47P2

BA'



4 6 ckU,2W~l +ckW,1 2 +cku,1 W,12 -C2kww, 12 +C2kw,iW,2 +ckU,2ik1 ,l +kw,12V1l,l
+kki2 +cku,l 1, +k, 1 ', 2~ 1 1 ', kwi 2 ,1 +kW,,221P2,1 +wnb,

+2k*b2,14'2,2 +C 2 kw,iik2

A6 = -ckv,2W,12 -ckv,1 W,22 +ckW, 12 1b1 ,l +ckw,11 ?Ik,2 +2ckt'i,lOb,2 -C kV, 2i02,1
+ckW, 22?P2,1 -C2 kv,ap 2 ,2 +ckW, 2 ?P2,2 +2ck7 2,1 IP2,2

X6-k 1W,1i~2 +k W,12 ?,22 +k w,12 ', +k w,1141 ,2 +k~ 1 1 b, +k W,22 02,1
+kW, 12 0b2 ,2 +k V2,Vb2,2

X6-ck w, 1W,12 +ck 2w,12W,22 +ck W,2 011,1 +ck ', 7PI, 2 +ck ~j 1 '01,2 +ck W,22 0b2,1
+ck W, 1 2,2 +ck2 b, 2 2
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Appendix C. Strain Displacement Relations for C020/C023 Elemental Codes

The strain displacement relations of tiis appendix are for the case of a circular

cylindrical shell with its longitudinal axis in the yj direction and a radius of R 2 . The Y2

coordinate is the circumferential distance dy2 = R2dO. The kinematic displacement within

the shell is assumed to be of the form:

U= u1 i + u2'2 + 113 3  (C.1)

where

U (Y1, Y2 , Y3) = u1+ Y30k1 + k(Vb1 + ' 1)Y3

U2(YI,Y 2 ,Y3) = V(1 - CJ3) + '2V3 + k(Vb2 + IV,2)Y3 (C.2)

U3(Y,1Y2,Y3) = w

The seven degrees of freedom 1, v, w, w, 1, W,2, 01 and V72, are functions of midsurface coor-

dinates (Y1, Y2) only. The .hi are rotations of the normals and c = 1/Rf2 and k = -4/(3h 2).

For this case, the 60 shell geometric functions fi, are quadratic in order and are simplified

because hi = h3 = 1. The simplified nonzero functions of Appendix A are listed in Eq

(C.3)

f13 = 1 f19 = -C-c2 3

fi,, = 1 + 2cy3 + 3Cy.j JI,, = c2 + 2c3 y3 + 3e"aA
f115 = C2  

f1l7 = + cY3 + c2y5

f121 = 1+cy3+c y5 Ills = 1 (C.3)

f21 = 1+Cy3+C 2 1i f23 = -c
/1 9 = C2 + C3 y 3  +  C ty,32  f~ 2 = -¢ c V - C y

139 = c cy 3  c2 = -c - 2c2y3 - 3c 3y

Ijl16 = _C C2 y 3 _C3 y32

The strain equations listed below are the parts of the linear and nonlinear strain compo-

nents for the C020 and C023 elemental codes. Contracted notation is used. where El = Ell,

E2 = E22, 63 = Z33, 64 = 623, E5 = E13. and E = 12. The strain components E, are given by

the series expansion shown in Eq (C.4).

n

p'O
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The nonzero XP are listed below for each component of the nonlinear C023 elemental code.

The C020 quasi-nonlinear HTSD theory is given by neglccting the nonlinear terms of x

and x.

x° = u,i +Ui/2 ,/2 + /2

xi = -CV,1 +01,1 +U,IV¢1,l +V,lV¢2,1

X1 = kw,11 +ku,lw,li +kV,lW, 12 +k4'l,1 +ku,V)1 ,1 +kv,lVb2,1

= -ckv,w, 12 +kw,u4' 1 ,1 +k ,1 -ck, 1 ¢b2,1 +kw,1 2V)2,1 +k 2¢,1

xi=k w 1 / 1kw2 / 2 +k wu'1 l, + 10,1/ 2 +k W,1 2 0P2,1 +k4,/2

O= u1/2 +cZv/2 +v,2 +V2/2 -cw v,2 +C2W2 /2 +cvw, 2 +W2/2

+2c,2 2C,21 2 ~2  2 3 2 C2 C2 +C, 2,
X2 =u, cvCUc +v, ,2 +u2 ip, +W2, 2W vC2W V,2 -CWyV'2,2 i- V02

= u/2 -c -c +32.w2/2 +c ,2 +201,2  +0c2,2 ,b¢, +¢V,2/2 +c2,2

+cv,2 ¢, 2 -2c 2w ,2 +,_3/2 +c3v 2 +2c3w,2 ¢2 +c2 2  +2

X2 C5 v 2 -C 3 v,2 -2C 3 V +3c 4 v,2w +kU,2 w, 1 2 +3w 2 2 +kv 2,2 2 -ckWW, 2 2 -3c2vw, 2

+c~kvw,2 +ckw2 +3c~u,¢ 1,2 +ku,02P, 2 +CC3,2 +c2 ¢2 ,2 +ker, +c~v,2 ¢2 ,2 +kv,2 ',

-3c 3 w 2 ,2 -ckw¢ 2,2 +c2 , 2 +c 4w 2 +c2kv, 2 +3c 3w,2 2 +ckw,2/2 2 +c3

2 3cv/2 +Vc" ,2V, +cku, 2w, 1 +ckw 2 +ckvw, 22 -c~kW, 22 +ckWW, 2 +2c2

+2cku, 2  +kw, 2 ¢b,2 +3c 2 ?,2 / 2 +k1, 2 +ck 02,2 -3c 3 v,24 2,2 +ckv,2 0 2 ,2 2ck2 kw 2 ,2

+2k, 2 V¢,2 +3, 2 ,2/2 +k3c2, 2 -3c+c2 ++3 kv,2  +3 c / 2 +c Ik0,
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- Cku, 2 +C2kW, 22 +C2 kV, 2W,22 -3 3 kwW, 22 +2kw 2 3~w +C2ku 2 k
+2ck 2 ,12 -2kb, ckb, 2 +~v 2 ~ 2 23e~wk +2ckw,i, 2  +2ek~bW2+c5vi3 +kU ,~ -+32c,2kl,

+2=kw 2 /2 -3ckV)2 , 2 + 2 / 2 3~v, C3 kw 3~k~ 2 ~
+k~,12 '1 2 +c~kk1 2 +Ck2 , 2 3ckV, 2 P2,2 -3c kWV, 2 ', +2k~W,22 2,2 +ck 2

+2e~k~, 2 2,2

c 2 +k~W,2 +2 k2 3~~

X2 12/ 2 -3 k 2w,2 2 + 2 Cw2/ 2 +3c W2 +k2w 2 /.2 +3 C2k4',l

k 2 W,201 2 +C2 VZV+, 2 +2~ 1)2 +C3 iP -C2 2

X4 -CVW+C 2,1; + ?/1,2/2b -3 k,2 P,2 + 3 -CW ,/2 +12,2 +k 2 20, 3~

2 = +3u,2,2
X4 23'P22, 2 3kV0 +3c 2 vw2+ 2 W, 2 +3kw2 + 2k, 2 2  3 w, cu,1

= X2 , +ckvtv +3k2,2, -ck, 2  ck 12 3 2 ck2 + ,02, 2 +ck 2 '

-6 1w) 1k,~2  
2

2  2 / 2  17~2 2 12  c o2W2,

83k~ 22 +2 k 2 +92W,2  6kWi2 9C 2 i 2 +cw4 2 +7k2 2 1

X2 = 3c kvv,/ 2 +k 2 2 2 +3c 2w, 2/ vw2 3 k vW,21. +3c k, 2/c y2 w

W,~2 22,2 +3 w 2 2 2 +3Ck2~ W',02 +12k 2
1 2 

2 U2 1,1 +~w 1  6~, 2

+7 C Vk1'1 ,2 +C +15 W,'1 2  +UV1 4ck 0i2 2 -3ck2V)2 , +3C7 2 kw 2 / 2 2 +2~,4 2 2 -ck

-6Xk4i) VW CWk 2 + 2 kw+0, 2 01~ Gk2 ,2 +C2 W0k~,2 2 +5 2
2,2 2

2 C2 ~~C23?12p



% 2 W1 +3ck' 12W,l -3c kVW, 22  OckWW, 2 +3ck2 W,22W,2 +l2ck2W,4 1,

+9 2 k2 U,2 01' +Gck 2 W,12 01i + 15ck2
1, 2 0b1 .L3C2 k 2V02,2 + 12ck2W,2 0b2,2 _9C3 k 2 WP2

+6ck2 W,22 0'2 +15ck 2 
2,2 0b2 '

X4_- 3c 2k2 W,12w,l +9k3 W,121,1 -3C3 k2 VW, 22 _9C3 k2V,2 W,2 +3C2k2 W,22W,2 +90 W,22W,2

+12c 2k 2W,l 01,2 +9k.3W,l 01,2 +6C2 k2 W,120k1 +i9k W,1201i +15C2 k 2 0'1 ,2  +9 3 V)1,2

-3c 3k2 V02,2 +12C2kV W,2 0b2,2 +9k W,2 '02,2 -9C3k2 V,2 0/2 +6c2k2 W,2202 +90 W,2202

+15C 2k2 
2 ,2 0~2 +9k0 02,2 0b2

X4- 9ck3 W,121V,l +9ck3 W,22W,2 +9ck 3W,l 01,2 +9ck 3 W,1201i +9ck 3 V1,2 0~1 +9ck3 I, 2 02,2

+9ck 3 W,2 /2 +9ck 3 k2 22

9=9c 2k3 lV,12W~l +9c2k 3w, 2  +9Ckwb,2 +9c2k~~2  +9C2k3~b~V/

+9c 2k3 l, 2 V2,2 +9C2 k3 W,22 0b2 +9C 2k 3 0 2,202

0X5= -cvv,l +W,l +01 +U,1'01 +V,1 '2

I =_C
X5 -CVV 1l +0b1,1 01 -CVVi,b1  C,0+212

X5= -3ckvv,i +3kw,1 +3kit,lw,l +3kv,iW,2 +3kI. +6ku,jik +Gkv,uiP2

3= 3C2 kvv,l -ckvW, 12 -3ckv,1 w, 2 +3kw,ii)I,l +kw,il~pl +7kV/1,v1'i -4ckV4' 2,1

+3/ZW, 2 V/2,1 -6ckv,,' 2 +kW,l 2 ?P2 +7kO2,iiP2

X5=9k 2u,lw,l +9k 'I W,2 +9k 1, +9k ',1 0.2

X5= -3ck VwV,1 +3k t,uiW,l -9ck v, V),2 +3k W,12W,2 +12k wi'V, +6k w ?pik
+15k 2 ?p,V/ I -3ck 2 V 2,1 +12kZ2 W,20b2,1 -9ck 2v,l b2 +6k 2W,12 0P2 +15k 2 V/2,1 0~2

X5= 9k~w~, +9k 3w,12W,2 +9k~wvk~ +9kw, 1 k +9k~iii +9k W,2 7b2,1

+913 W,12 0P2 +9k 3 
2,1 0k2

0
Xr, =U,2 +71,1U,2 +V,l +V,lV,2 -CV,IW +CVIW, 1 +IW,]W, 2
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X6 =CU, 2 +CU,lU,2 -CV,l -CV,lV,2 +CZV,IW,2 +11, 2 0'i,1 +01,2 +11,i01, 2 +7P2,1 +V,2 V)2,1

-CW'Vk2,1 +V,10k2,2 +CW,10,2

-6 C U,2 +C CU,1U,2 +C W,lW,2 +CU,22P 1,1 +CII)1,2 +CU,lVki, 2 +01 ,10'1,2 -C W2) 2,1 +V)2,lV 2 ,2

+c W,i102

-G CV,,2 +C VW -ikU,2W,ll ±2kW,12 +ku,iW,12 +kv, 2W,12 -ckww, 12 -cv,

+kv,iW, 22 +ckw,iW, 2 +C 2U,2 0k1,1 +kU, 24' 1,1 +c 2 V),2 +kV1,2 +C2u,1 401,2 +ku,ii0i, 2

+Ciki,1tpi, 2 +k0'2 ,1 +kV, 24'2,1 -C 3 W 2,1 -ckvV 2,1 +kv,?)b 2 ,2 +C4' 2,lV2,2 +C 3W,1 042

+ckw, 1 042

X6 cV,lV,2 +ckU, 2w,ll +ckW, 12 +ckit,iw,12  cklWw, 12 +ckw,iW,2 +cku,2 7pi,l

+k ,121 +ck,01,2 +ckit, 1 i,2 +kw,ilol~,2 +C 2 0', 101,2 +2k4' 1 ,1 4',2 -C 3V,2 2 1

-c 2kW0'2,1 +kW, 224'2,1 -c~v,1 4'2,2 +ktW,12 0'2,2 +C 2 02,10'2,2 +2kV 2,14'2,2 +C2 kw,,' 2

4 -ckU, 2W,ll +ckw,12 +cku,1 W,12  ckwW, 12 +c kw,itv, 2 +cku,2 ',1 +ckW, 12 ',1

+c 2k, 1 ,2 +C2 ku,1 '1,2 +ckw,1101',2 +2cko4' 1 ,2 -C3 kIV? 2,1 +FckW,22 V2,1 +ckw,12 '2,2
+2Ck'V 2,14' 2,2 +Clkw,14'2

X6= -C cv 2W,12 +k W,1 ,12 -ckv,1 w,22 +k kW, 12W,22 +ck ,12 ' +kw, 2 ' 1

+c2 kw,il4'1,2 +k2 IV,1101,2 +2c 2 k4'1,,, 1,2 +k2 01,101, -clkv, 2 V2,1 +C2 kIV, 224'2,1
+k2 W,22 '02,1 -c3 kv,l4'2,2 +C2 kW, 124'2,2 +k2 W,12 0'2,2 +2C2 k' 2,1 '2,2 +k 2 02,1 0'2,2

=6 ck2W ,uW,12 +ck2 W,12W,22 +ck2 W,12V)I ± ck 2W,114'1 ,2 +ck 2 o4'1 ,', 2 +ck2 IV,22 02,1

+ck2 W,12 1P2,2 +ck 2 I 2,1vb2,2

8 = ckw ,2  + 2  
2,W1,X6 k2,11 ~ 2 tIlW U +C2k2w, 2 ', +C2k ~' 1 ,2 +c1k101,2

+c'k 2W,2'V 2,1 +C2k2W,l 2 2,2 + C2k2 7b2,1 ' 2,2



Appendix. D. Strain Displacement Relations for C00/C103 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular

cylindrical shell with its longitudinal axis in the Yi direction and a radius of R2 . The Y2

coordinate is the circumferential distance dy2 = R2dO. The kinematic displacement within

the shell is assumed to be of the form:

U = u1J 1 + U262 + U.363 (D.1)

where
ul(yl, Y2, y3) = U + y 30 1 + k(p 1 + w,1 )y

12(yl,y 2,y3) = v(1 - cy3) + VP2y3(V)2 + W,2) [-c + ky3 - cky] y2 (D.2)

13(y 1, Y2, y3) = w

The seven degrees of freedom u, v, W, w,1, W,2, b1 and 0 2, are functions of midsurface coor-

dinates (YI, Y2) only. The ¢P are rotations of the normals and c = 1/R2 and k = -4/(3h 2).

For this case, the 60 shell geometric functions Ii are simplified because hl = h3 = 1 and

the quadratic terms of the expansions are neglected. The simplified nonzero functions of

Appendix A are listed in Eq (D.3)

H3  = 1 fI9  = _C _ C2y

ll = 1 + 2cy3 f114 +2

fJ15  = c2  fl 7 = 1+cy3

1i 21 = 1+Cy3 fH18  = 1 (D.3)

f 21 = I +CY3 123 = -c

fi39  = c2 + c3Y3 ft,12 = -c - 2c~y3

f146 = -c - C2y3

The strain equations listed below are the parts of the linear and nonlinear strain compo-

nents for the C100 and C103 elemental codes. Contracted notation is used, where 61 = El,

2 = E22, E3 = E33 , e4 = E23 , 65 = 6 13 , and e 6 = C12. The strain components ,, are given by
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the series expansion shown in Eq (D.4).

fl

ZxFY (D.4)
p=O

The nonzero X, are listed below for each component of the nonlinear C103 code. The C100

quasi-nonlinear theory components are the same except for neglect of all nonlinear terms

of the X4 and X5 strain components.

X0 = u, +u2/2 + 1 /2 +W2 /2

Xi = -cv 2
1 +Vb 1 ,1 +U,Ill,1 +v, 1 ik 2 ,1

Xic= C /2 -CV,lW, 1 2 +ip?, 1/2 -2cv,102,1 +~,/

2x3 -" kw,11 +] U,lw,ll +C2},113W,12 +kv,lW,12 +kV)l,1 +ku,1,01,1 +c2V,10b2,1 +k,112,1

-2ckv, 1 ,1W,12 C 2 k2/2 +kw,,Vi-¢, +k 2,b, -2ckv 1  +C 2 + 2,1

+102,1/ W,122,1kw

x = k2,,/2 +c kw2 ,2 +k ,/2 +k w,,, 1,¢,, +k 2?P, 1/ 2 +2c kw, 2 ¢2,, +k 2i,i 2 b2,i
+c2 0k1, +k ¢b,/2

-c 2  2 wk 2 b,

X -- =c2v,,212 -22C 2 kv,21k2,1 -c32,1

c2 2 w212 /2 +c2 k 2 w, 1 2 212 ,, +c2 k 2 b, 1 / 2

1= ,2 + 2V21/ 2 +v,2 + 1/ 2 -cw -I, +c 1/ 2 +cvw,2 +wc 12

0 = U2/ -c 2w -c2 ,2w +cV/ 2+cvw ,2 +cW +u,2u,2 +CV2,2 +W,242 ,2 cii 2,2 +
2
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-- 3cv' 2 -cV,2 -3 2 / 2 +2C3V,2W -CW, 22 -CV, 2w,22 +tWW, 22 -3c VW, 2 -C W,

-+2CU, 2 V)1,2 +2 1,2/2 CWVJ2,2 +?2,2/2 +cW,202 +C 2 /2

-CYv +c3v 2 +kU, 2 w,12 _C2 W,22 +kl, 22 -C2 V,2w,-)2 +kV, 2W,22 +2c 3wW,2 2 -cktW, 22

-c vw,2 +(; kvw,2 -2 2w +ck 2 +kU, 2k1 ,2 +1, 2 0-.2 ,~2 +k0 2,2 -3 V,2 "2,2

+kV, 2 V/,2,2 +2c 3 WV2,2 -ckw7P2,2 -CW, 22 ' 2,2 -3c 4 VO. +c 2kvPq -30~W, 2 02 +FckW,2 7b2

X= 2cku,2 1,12 +2c V,2W,22 -C2kww,22 + 2
2/ 2 +2C'vw 2 2ew/ 2 + 2

-+2ckU,2 V)i, 2 +kW, 12ikl,2 +k 1,2 +2c3V,2 7P2,2 -C kWV)2,2 cW,22 0'2 ,2 +kW, 22 l1'2,2
-3c 2 b 2/ 2 +k~b2, 2 +2c'VIP2 -C'il, 2i 2 +j2c kW,2V2 -3c 2~ 2 +c k4'2

=2 -- ~ 22 -3c kV, 2 1,22 +2c3kwW, 22 2cw2 - 2 2k 2
2 -3' 3v, kcw 2ckw

+2ckw,12b1,2 +2k4 2  c2 kV2,2 -3C2kV, 2 0b2,2 +2c'kwi/'2,,2 +2C3w, 2 b, -ckIV, 22?P2,2
±c4',2 -ck 2 +2c 1, 2~b -3- kb W,221P2,

-3 kV02 / 2W2P - 2 2232ckc' 1 ~,2 -- cw 2

+6 tV,~~ 2  C3~?,/ C2 W2~ 2 2 /-2kw 21 ,2 +0 2?2 -3C 2 k4' 2 +2 i 2 /
+2 = k'12 2 k+ 22 +k2w,22ik 2  22/k 2 +2 't )22+ck,/2

h.2 2w 2 +k 7p C k-V2 +c 2 t C24p2c3 V)
, 2/~w2 +2c~w 2022c-4k 2 V2+ 9221P2, 2 3 k2 ,2 +k2b, 2/

+4C2k2,V/'2 222V)2

82~V -3ckW 2 ) -~W 2 72 -3c~2 +C 22 -c'kw 2  3ck /2

= 22 32 5 ,2 - . 4,2 -3~ 2p 2  3 2
2ck 2 +k-,2 +2c kw,22 b2,2 +3 k2V/12 +cI1 2 +ckW2?P, +ck ,

+ck,22 +ck' 2
2 2  S~,A

-3 C2 k-2W2, 2 -30k,2,2 2+2 c2, 2 +IV, 22&2, -3c,2 k -cv 2 , 2 1c,' 2 -c~k 222

2 2 +3 2  
22/2-3"wV

X2 v k 2 2C -3k ,2 +2 k ,2 u , vwk2 w,2  + k ±3v 2 w2 +cw,

X4-3C, 2 +G W,2ik +7~1,2 1 -22, 2 7 -Ci0 2 ki' C ,i 2 +k,~ 2 +cw

-6ckwW 2 -cw,22 11 -?- 2,~ 2 CV222-202+kb-2V,0 6,V;+0W2
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- 3c-3kvw +3ckU,2W,l +C3VW, 22 -ckv'W,22 +C3 W,2 -3ckW, 2 +2C3v,2W,2 -IOckV, 2W,2

+7c~kw f2 +cW, 22W,2 +3kw,1 7P11 2 +6cku,2 i+k 1 b +kb ,201 +CV'02,2 -4ckV4P 2,2

+3kW, 24'2,2 +c 3 02 -3ckIb2 +2c 3v,2 *b2 -1OckV,2 ?b2  ' 2kW0P2 +C2 I,22 0b2 +kW, 22 0b2

-C 2 ~2 0~2 +7k7 2 ,2 V)2

- 3~kv,2 +9 2 ,l, +3ckw 2  -3C2kW, 2 - ,2W, 2 +kV, 2W,2 +~~w,

-9kWW, 2 +2C3 w,22W,2 -5ckw, 22W,2 +3ckw,101k,2  1 ) 2 , b +ckw,12iki +7ckb 1 ,2V)/,

+20 W,2 0b2,2 -12kW, 2 0b2 ,2 -3c 2 k72 -6C2 kV, 2 0~2 +9"' 7.2V) ±Tk2  -9ck 2W~b
+20 W,2 20P2 -8ckW, 22 02 +203 ',~ -12ckVb) 2 b

X4 = 9ck U,2~W,l +3k W,121w,l +4c kvW, 22 -', .k2VIV,22 4 3. k, 2 + lOc3kV, 2W,2
-2c, 2 W,2 43C2k 2 ,+7 ck W,22,W,2 +3 k2w 221V, 2 +112k2 wil b,2 j- 9ck 2 1,2 0b1

+6k 2 W,2 01 +15k 2 7pi 20 1 +4c 3kv-02,2 -3ck V0b2,2 -3c kV).2 lP2,2 +121,2 W,2 lP2,2 +3c k7b2
-Il~~v,4' 2 02 2 +c~2 +3  3~w2 ~ 2  6~, 2 ' -7ck 2 2 4

X~=3ck~w,~2 W02 +3k~,, +1c k~W, 2 22 +6c k -,2 - 2 ,2 1 2 ,20

6 ek~~ 2  +1 2k 2  k2  -119,2 ~ 2 + 2~~,~ 2 2 ck 2 ,2 4

-I 3k W,12W,- +3c 2 W,2 2 +12ckvW, 2 +1k~W, 22W,2 +k W,1 b, 2 +9kU,2 4

+12k 2Wpl,2~ +ckvP, 22 W,121 15ck , 2,P +1k~W, 2 V2,2  12ck2 ,, _C2h k,22 V

12c W,22 /2 +1 2 3k2
2 1P2 9k w27P 12k2,2 02-2cb2 V ,2,1

-4 9ck w,12W,l +3c VW,22 w,.2  k lVk~, 2 2,2 +9ck3W, 12 12  +9kw1 4+9ck3 ki,2

+22= c3 W,2 12 - 122Ck2W, 2 2 ,2 +22c3 , 2 b -1 W2kw2 ~ 2 +2~ b, 2 I

=4 -ck W,22W,2 -ck W,2 0~2,2 -9c2k W,2202  00~k42,2 0b2

X4- 12C3 Z3 I,22W,2 + 12c 3k3 ivw,2 ,2 + 12C3kPIV,2202 + 12C3 k 3 2,2 0~2

0
=5 -CVV,j +WA,l +7)I +71,10k '.-V.102
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X5 jv, -2ev,lW, 2 +0/1 1'0b1 -CZ4' 2,1 -3v 1 02 +0P2,10k2

= -3cktv,l +c 2 vw,h +3kw,l +3ku.1w,l +2c2 V,lw,2 +3kv,iW, 2 +3kb 1 +6'-i,

+c 2 V7P 2,1 -2Mz, 2 0~2,1 +2c2V,lV 2 +6kv,?!' 2 -w 12'0!2 -30~2,10'2

- 3 =3c 2kvv,l -ckvw, 12 -3ckv, 1 W,2 +2C2 ,1 ,2 ±kiib,+k 11 1 +7b,1 1

m-4ckVI 2 1 +2/ 2 W,2 0P2,1 +3kW, 2 0b2 1 -2 4 ckv,1ip2 -.2c2 W,12 02 +kwi2 b +2c2~ 2 ii

-5 =4 kv12 +9k 2 u,,i llck~w,. +9k2V,l w,2 -cw 12W,2 +9k2 l,? 1 +clv',

" 15ckW, 2 ?2,1 +1OC'kv,1 V)2 +9k ',1 02 -9ckw, 124'2 -19ck*b 2,lV)2

X5 -3ck VW, 12 +3k-w,llw,l -2c'v 1 W,2 +12C kw 12 71, 2 +3k W,12W,2 +12kw,1 b1,
+ 2w,11?b1 +15 2 01,10,b -c 2V~b, l~2 4'2,+1kw 2 bi-2V, 1~

+62ckt, 2 b +6-, 1 i 2 1ck4,v +1 2
2 , 2 '1

- 3~k~w~ +1c~~v~w,2 -2ck~. 2 2 +12k', -3c -,~2 1 +2 ~ ni
-25c~w, 2 kW Wck2'i22,v02

+22C2kw,2 '21 +k~ 2 4' + 2k 2 ,1 22 +5k, 2 4 +2k4',b + 3 b 11 2

1 21k W2W,22 1ckw2 cb, 2c~, 2~ 02k4 2,1

-5 3c k 12w, +12c k ' t, 2~ :!2ck.12, +3c1P2 k 2 Vk 3P 2,1 3c 2 W221+2~~,0

-25ck2 +,120 2 +V7ck'+V,,lV 2 -Vit)CWi+,W,

-7c -9 3W +v 1  22 c~k~2 3 9 .3 yl ll + k W, o 9k 7 ,V
25 = -W, 2 -,2 kw,12 W,

5= 2ck *v,1 ,2 c2v 1 k W,021 2 wkw,12V2 -2ck'vw, 1 0

+cu, 2 , +c4'x,2 +VCU,I~,2 -C,I +CV,2 -CWk,I ,2 , C, k2±k, ',

1-



=G cV,1v,2 +kU, 2W,ll +2kw,12 +ku?, 1 W,12 +kV, 2w,12 +eWW,12 -ckww,12 +kv,iW, 22

-C 3 vWW 2 ±ckw,1 W,2 +ki,24'1 ,l +k4' 1 ,2 +kiu, 14' 1,2 +C4' 1,14'1,2 +kV)2,1 -C 2V,2 7P2,1 +kV, 2ik2,1

+cWIP2,1 -ckli0 2,1 -CW, 22 2 ,1 -C V,1042,2 +kv,l4' 2,2 -CW,124' 2,2 -042, 1 0'2,2 -C W,1 0'2

+ckw,1042

=6 cu 2W,ll +cku,1 W,12 +C V,2w,12 -ckV, 2W,12 +4LV, 1 W,22 -ckv,1 W,22 +C W,12W,22

+cku,2iP1 ,l +kw,12 VI,b11 +ck4'1 ,2 +cku,14'i,2 +kw,1 i'I,2 +2kV'1 ,lV)1,2 -ck/'0 2,1 +C 3V,2 02,1

-k,2 0P2,1 +kW, 22 V)2,1 +C V,1 0'2,2 -k 1 02 ,2 +kw,124'2,2 .-C 2 ,102,2 +2kV 2,14'2,2

x6 C ckV, 2Wt,12 +c-IOW,12 -c2kv,1 W,22 +cW,121,22 -2ckW, 12W,22 lckiW,2

+ckw,12iP1,1 +Fckw,114'i,2 +2ck4' 1,, 4'1,2 -C21' J,20'2,1 +C3 kWV)2,1 +C3 I,224'2,1 -2ckw, 224'2,1
-c 2kv,1 '2,2 +C3 W,124' 2,2 -2ckw, 12 -b2 ,2 +C3V'2 10'2,' -2ck 2,14'2,2 -C 3kw1~

X6=ckV, 2 Wt,l2 +k 11Wt~, 1 2 +ckv,iW,22 +kW,12W,22 +k W,124'1 ,1 +kwu 0'1,2
+k2ii, 1 0k1,2 +C3 kV, 24'2,1 _c2kW, 224' 2,1 +k2 W,2 ', +C3ka', -1w,2, 2 ,+kW, 12 0'2 ,2

-C2k*'2,10'2,2 +k24, 1 ' 2

X6 k2iv,,lW, 12 +2c3ktw, 12W,22 - ck2 W,12W,22 +ck2 W,1 24'1,l +ck2v,ll 01,2 +ck 24'1,14'1,2
+2c3kW,22V)2,1 -ck2 1,220'2,1 +i20 kw,121P2,2 - -ck

2 IV,124'2,2 +2clkV; 2,14'2.2 -Ck24 2,1?P2,2

= c~~v12W,22 -c'k 2w,22 2,j 2k 1,120'2,2 -ck 2 02,102,2

c31.2  +C3h2  +ckw,2 ', kr12I~
=c C W,l2W,22 IV,2-21 2 ,1  222+ 0~2 ,12,
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Appendix E. Strain Displacement Relations for C120/C123 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular

cylindrical shell with its longitudinal axis in the Yi direction and a radius of R 2 . The Y2

coordinate is the circumferential distance dy2 = R2dO. The kinematic displacement within

the shell is assumed to be of the form:

U = u16'1 + 112e2 + u363  (E.1)

where

U (Y1,Y 2,Y 3 ) = U + Y.301 + k(b1  + w,1)y3

u2(YIY 2,Y3) = v(1 - cY3) + 2k3(P2 + W,2) [-c + ky3 - cky3 v3 (E.2)

713 (Yl, y2, y3 ) = W

The seven degrees of freedom u, v, W, w,1, w,2, i,'1 and 02, are functions of midsurface coor-

dinates (yl, Y2) only. The ¢ib are rotations of the normals and c = 1/fl 2 and k = -4/(3h 2).

For this case, the 60 shell geometric functions fI, are only simplified because h1 = = 1.

The quadratic terms of the expansions are retained. The simplified nonzero functions of

Appendix A are listed in Eq (E.3)

f3 = 1 19 = -c - c2 y3 - c 3y

fl = 1 + 2cy3 + 3c2y2  fjI = c2 + 2c3y3 + 3c"y3

fis = c2  fII 7  = I + cy3 + c 2y

fA21 = 1+ cy3 + C2 y 2  flls = 1 (E.3)

f"21 = 1+ cy 3 + c 2Y23 f123 = -C

fI 39 = C2 + c3 y3 + c'4y 2  f,12 = -c - 2c2y3 - 3C3y2

flr = -c - c2 y3 - c 3 yj

The strain equations listed below are the parts of the linear and nonlinear strain compo

nents for the C120 and C123 elemental codes. Contracted notation is used, wherc E = '-1,

E2 C22 , E3 = C337 E,1 = E23- ES = E13, and Er = E12. The strain components c, are given by

E-I



the series expansion shown in Eq (E.4).

n

= xi (E.,)
p=O

The nonzero Xt are listed below for each component of the C123 elemental code. The

C120 quasi-nonlinear HTSD theory is given by neglecting the nonlinear terms of X4 and

p
X5.

x = u, +U 2 /2 +v2 /2 +w2 /2

2l 2 -2v +¢, + V,2,1 ++,2¢,,

xi C 2v,/2 -CV,V, 1 2 +1 ,/2 -2cv, 1 ,2,1 +2'.,/2

xi = kw,11 +kulw,li +cv,1 "w,12 +kv,w, 12 +kP,, +ku,V"ii +CV, 1 ¢ 2,1 +kv,102,1

-CW,12c, 1  2,1

15 - c2 kv,1 ,12 -Ckw1 2 +C2kv, 1 "b2,1 -3Cw,1 2 2 ,1 -2ck 212,1

12/22 +c ,,, +kw, 2/2 +kw,,1,1  +k i¢k,./ 2 + kw,'0 2 , +kw,,

+c2k,, 1 +k 2 ,1/2

5 c2I,, ,/2 +c=k C2, 2  , +c2 k¢ ,/

1o  ,/2 + C2v2 //2 +k2 +v,/2 -cw -p,,. +c 2/ +c2 w, l + 20,/28 = ~2 2 C2 3 2 2,2 2

X0 = cu2 -c2V 2  T,,2 +V2c, +,,, +C2. +W2./2

2-,2 +,201,2 +02.2 +V, 2 0 2 ,2 CWVr2,2
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=2 3c U,2 -w-eV, 2W +3C4W2/ 2 -CU), 22 -C, 2 W,2 2 +cWW,22  c 2 / 2 +2CU, 20'l,2

1'P,2/2 -cW42,2 +i 2, 2/2 +C'W,2 02 +c 2 2b/ 2

X2= -2cv 2 -C V,2 -2c V,2 +3c V,2W +kU, 2w, 12 - 2W,22 +kW, 22 -c ,W,2 2 +kV, 2W,22

+20 WW,22 -ckwtv,2 -4c4 VW, 2 +C 2kVW, 2 -2C3W2 +ckW2 +3C~u 12 U kiP, +C4' 2

+k0b2,2 +k-V, 2 P2 ,2 -C 3vW 2,2 -ckwV 2,2 -CW, 22 0~2,2 +C 2kvik 2 +ckW, 2 2

-2 3c v / 2 +3 2v/ 2 +2Ckut.2W,12 -C 3W,22 -C V,2W,22 +3c WW,2 2 -CklW, 22

+c2w 2 - 5  4W, 2 ~w/ 2 +C2 kW2 +2cku,2iki, 2 +kW, 1241 ,2 +3c 2i/ 2 / 2
ci 2 22 -c V,2 W,2 -5C W~, 2  -kw 23 -c 2 b,2  12/2 i~', +i, 2 -4k vi 2

40c7P, 2i~ +4'22i, 2 +r -~k1,b2-C 1 -c

X2= 3c tvku, 2W,12 +3c'IV,2W,22 -C3kZww, 22 +cw 22 -ckw,22 +3c VW, 2 +CW, +3C2k1,2 V11,2

+2ck,121b1,2 +2c1,2 +3c V,2 02,2 -C3kw7P2,2 -C W,222,2 -ckW, 22 V"2,2 -2c 2,,~

+3c Vik 2 -c W,202~ -2002i

X 2  w 2/ 2 -c ckW,22 -4C3 kV,2U, 2 2 +3c ww 22 +3cw /2-c 2 + 2
2 / 2

-4c5kvw,2 +3c w/ 2 -4c 4kW2 +C2k2W2 / 2 +3Ckwk,2 IM Wi2 b, +ck1,2

+k122 - c3k0~2,2 -4c3kV,2 2,2 +3c kw2,2 +3c W,22 0/2,2 -C kW,22 l172,2 +k W,22 VP2,2

?P222 +k 7P2,2/ 2 - 4c-5kvV/2 +3C6W,2 02b -4c0kiW, 2i/2 +Ck W,2P 2 +3c i2/2

+C2 k2 0k2

=2 ck2w, 2 +3c v 2W,22 2ckw2 +3c 6k VW, 2 -k : 2 +2kW,12 V;11,2 +ck 1,~2

+3c4kV, 2 ,2 2 -5C 3kW, 22 1P2,2 -4C3 k7L, +ckvP -5c 5kW, 2 7P2 -4c5kp2

= 3~kw~2 2+3ckw2  23~w ±ckW,12 ,bI,2 +3c k1, 2/ 2 +6c~'kW, 22V'2,2

23~kb,2 + Gc~kW,2?P2 +3c~ 1 b

2- 2c k W,22 -2c 5k 2 -4 k W,22 ,V/2,2 -2c k 2 ,2 - 4c5k2 w,202 -2c5k2 2b

X2 3c ZkW,2 2/ 2 +3c6k'w /2+cwn&,2 +3k 2 .~2/ 2 + 3c6k2w2 b +3ck 2 /2

Xj= -CVV,2 +c 2 VII) +IV,2 +?L,2#11 +0/2 +V,20P2 -042,b
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4 c~w c, 2v 2 , 2~w2 +CU, 27Pl +0b1,2 0b1 -CVI)2,2 -0~t2 -2CV, 2V' 2 +C2wk

=-3ckVV, 2 +C4VW +3e2kvw +3kU, 2W,l +C2 VW,2 +3kw, 2 +3kV, 2W,2 +2C3WW,
-3ckww, 2 +C 2 ,2 01i +6kU, 2 01k +01',201i -2CW, 2 ' 2 ,2 +3kP 2 +6kV, 2 '2 +C wiP2 -6ckWlIb2

-CW, 22 V)2 -2042,2 0~2

-' c4vv,2 +3c'kvw +3ckU,2W,l +cVW,22 -ckvW, 22 -C3W,2 -3cklv, 2 -0ckV, 2W,2
+20 WW, 2 +7C2 kWW, 2 +2c2W,22W,2 +3kw,, 2  6ku2 ki+wl2 b + 2 7pii 1 +k1 1 2

"4ckv' 2,2 +3kW, 2k 2 ,2 -C3 b -3ckVi2  cV,2'02 -0ckV, 2 lP2 +2c"W' 2 +4c 2kw'

+c2 W,2202 +kW, 22 Vk2 +7kvP2,2iP2

-
4  kv +3 2 ,l, +9k U,2W,l +cVW,22 +3C2kvW, 22 +c1 v2+cV,2W,2

+9k2 V,2W,2 +7c3kWW, 2 -9ck 2 WW2 +2C 3 W,22 W,2 -5ckW,22W, 2 +3cki,'O1 ,2 +Wcku, 2k1

9 2 1PI + ckw,12?pl +7ckoi, 2 'l + C Vi/',2 -12ckW, 2 V'2,2 +ci 2 +2c"V,2*P2 +9k~v 2 k

+4cktvb2  ck 2 wi/i2 +C3 1,22 0b2 -8ck, 22 V'2 -C3402,20'2 -2Cki/i 2 ,2 /'2

X 3c=k3c ,2 +9ck2u, 2W,l +3k2w, 2 , +3kw22 -3kVW, 22 -3c kw 2 -3C3kV, 2w,2

-12ck 2 V,2W,2 +10c"kwW, 2 +3C2 Vww,2 +2C4w, 22W,2 +7c2kW,22W,2 +3k2 W,22W,2-

+3c r.W,I1', 2 +12k~, 4I,2 +9ck U,2 0b1 +ckw,12 VPI +6k W,12 Ik +7c kvfl,2 VPI

+kiP, 2 0~ 13ckVi/ 2,2 +2c"I, 2 72 ,2 +12k2 ,i/ 2 -3 c .ai_ 6 ckV, 2i/i2 V~,2 lP2

+1l0ekWV)2 +3C2k2wtP 2 +2c" W,22 412 +4c2kW,22 Vk2 +6k2 W,22 0k2 +2c 4 102,2012 + 15k2 712.2 012

X4 k~u 2 , +3ck 2W, 12W,1 +4C4 kvW, 22 +3C~kw, 2 +IOC'IkV,2W, 3k2V

.7~w22W.2  l Ik,22W,2 +12ckwi IVI,2 +9c 11u,2 0bi +6ck2W, .21 +1 c 2 11

+4c4kvk 2 ,2 -3C3 kw,212 ,2 -22ck 2 W,2412,2 +3c'kVP2 +1OC4 kV,2 V2 +3001qv~ 2 +3c3kw,22 YI2
-9ck 2 1,22 012 -7AIk4 2,2 02 -22ck 2 72,2 0b2

-4 = UY W,12W,l +9k3v, 12iv,1 -9- 3k2V,2 1w,2 +12C 4 k2WIV,2 +12c"kW, 22 1w,2 +3C2k 2
2 w,2

+9k3 W,22w,2 +12C2k2W,1 )l1 2 +9k3w,1ik01,2 +6C2k2W, 12 0 1 +9011, 12 011 +15c 2k2 1 2 VI;

+90041,2011 + 12c"kw,212 ,2 +9k 3W,27fi2,2 -9 9 3k2 V,2 '02 + 12c'k 2w1 2 +12I 2V, 2 2

+3c2k 2 7,22 012 +9k3 W,22 02 +12ck1 2.2 12 +9k 3 02 .2 012
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X4 -9ckOw, 12 W,l +3c kVW, 22 +12c4k2 V,2W,2 -12ck 3 W,22W,2 +9ck3W,l ?Pl,2 +9Ck,3W,l2P1

+9ck 3 V), 2 0 1 +3c'k 2 V02 ,2 -12C3 k2 W,21/) 2 ,2 -12ck 3 W,2 V)2 ,2 +12c~k 2 V,2 0b2 -3C3k 2 I, 22 7P2

-12ck 3 W,22 0/2 -15C 3 k 4 12  -12ck 3b, 2 2

-4 9C kW,12W~l +22clk2w, 22W,2 +9c ktvI~pl,2 +9C2 k w 12 0'1 +9c k3 b, 2 0b1

+22c kW,2 0'2,2 +22C4k2 W,22 0b2 +22C4 V 2,2 0~2

10 33 qk _9C 3X4, -9C kW,22W,2 -ckW, 2 P2,2  0c kW,22'02 -9C 03
2,2 0b2

-12c"k
3w,22W,2 +12C4 k3 W,2 V2,2 +12c 4 k 3w, 2 ' +2k 3 ,2

X5 -CV +10, 1 +0b1 +u,vt01 +V,l7P2

15 1 2vl, 20,lp -CV'Ib 2,1 +2,lX6=vvi- vi 2 +bij 1  -3cv,V 2  0,2

2 +2w, +2, 1X5s -3ckvv,i +c VW, 12 +3wj+3ku,lw,l 2 Vl, +3kv,iW, 2  3 l Guvl
+c 2 V0/2,1 -2CW, 2 V2 ,1 +2c vg2 V 6v 1 P c, 2 P -30~i21 0 2

X5= 3c kvv,l -ckvv, 12 -13ckv, 1 W,2 +2c w,12W,2 +3kw,,V 1 ,1 +kw,1101 +7kvll,1 )1
-4ckvO 2,1 +2c2 W,2 0b2,1 +3kW, 2 ?P2,1 -24ckv,17P2 +2C2 W,1202 +kiv,124'2 +2c 2 0 2,1 0b2

-4c
2 kvw, 12 +9k2 l,1 ,W1 +lOC2kv,iW,2 +9k 2V,1w - 5ckW, 12W,2 +9k 2 l,' 1 +1 c2kvV2,1

15ckWi 2 1 +lck4 2  09~,~2 -9ckW, 124)2 -19ckOb2,'V' 2

X5= -3ck VIV, 12 +3kww 1 -2ck 'I1 w,2 + l2c'kt, 12W,2 +3k W,12W,2 +12k w, 10i'
+6kw, 1 k +15k2 ', -b1 3ck V4' 2,1 +12c kW, 2 V/2 ,1 +12k W,2 02,1 -2lckv, 0'2

+l2c2kw,124'2 +6k2 W,120'2 + 12c2 k4'2 ,1 7P2 +15k 2 02 ,1 0'2

-5 3C2 k2 VI,1 2 + 12C2 k 2V, W,2 -22ck 2W,l2W,2 +3C2 k 2 'V'2,1 -34ck 2 W,2 0'2,1 + 12c2k 2V,l 0'2

-25ck 2W,12 *2 -37ck 2 02,10'2

x7= 9kWI,~ T+d2CN2W +k12W,2 + Wuri,12 W, 2 +9k 3 Wi4'i1, +9k3W,u lP +9'Jt04' ,i4'i

+22c 2k2 W,2 0'2,1 +90 W,2 0'2,1 +22c 2 k2 W,12 0'2 +90Tw, 124' 2 +22c'k 2 0'2,102 +9k 3 0 2,10'2
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-2lck3 W,2 , -21ck 3w, 2  -21ck 3 W,12  -21ck 3 Ob2,14i2

X. !2c 2k3W,12W,2 +12c k W,2 lP2,1 +12c kW,12 '02 +12 k 02,1 0t2

X6 U,2 +U, 1 U, 2 +V,l +V,lV, 2 -CV,IW +CVW,l +W,IW, 2

X6CU, 2 +Ctl,lU, 2 -CV,l -CV, 1 V,2 +CIV,IW, 2 +U, 2i ili +4'1,2 +U,i101, 2 +0/2,1 +V,2iP 2 1

-CW4 2 1 +V,10P2,2 +CW,pb)2

-G cU,2 +C cu,1U,2 -CW, 12 -CV, 2W,12 +C WW, 12 -CV,lW, 22 +CU, 2'4'1 ,l +C4'i, 2 +CU,1?Ik, 2

IX6- V,V,2 FC'v,lw +k'u, 2W,ll +2kw,12 +kiu, 1 W,12 +kV, 2 1V,12 +cWW,12 -ckww, 12

-C 4vw,j +kv,iW, 22 -C 3 W,W,2 +ckw,IIV, 2 +C 2U,2 ?P1,l +kU, 2 vb111 +c 20, 2 +kk1 ,2 +C2U,1q01,2
+kiu,lvb1,2 ±CObI,1?Pi,2 +k4' 2,1 +kV, 2 Vk2,1 -ckw0i2,1 -CW, 22 V2,1 +kV, 14'2,2 -CIw,12 V2,2
-c0 2,1 0~2,2 +ckw,11P2

=G cV,lV,2 +ckU,2 W,ll +cku,1w, 12 -ckV, 2W,12 +C'Iww,12 -ckv,1 W,22 +cW,12W,22

-ckV 2,1 -C 3V,2 02,1 -ckV, 2 2,1 +c 4 wV 2,1 +kw,22iP2,1 -c 3v,1 02,2 -ckv,lV)2,2 +kW, 12 V2 ,2
+2k' 2,lV) 2,2 -C W,10 2

X6 ckU,2wV,l +ckW,12 +cku,,n +C'IV, 2w,12 +vlW,2 2 +cw,12W,22 -2ckv, 12W,22

+ 2 02i 1,1 +ckW, 12 k1,1 +ki, 2 +ku 4 ,+cw b2 +cii 1 01,2 +C"v,2 V/-2,1

-2ckw, 22 V;2,1 +C4V,l 7,12,2 -2ckw, 12 02,2 -C 3 V)2,IVP2 ,2 -2ck 2,11P2,2

I6 = kV2W, 1 2 IckV,12 " W,1 1llW, 1 2 - ,W, 2 2  C[,2V2+k 1W2

-c 4kw,1 W,2 +ckW, 124'1,l +k 2 ,il +ck vpj2 +k 101~b,2 +2c2kii,ii01,2
+k 2k1,,,1 ,2 _C3 kV, 2 02,1 +C4kWOk2,1 +C4 I,22 V)2,1 +k2W,224'2,1 -C3 kv,l 0t2,2 +C"W, 12 V)2,2
+k2 T,12ik 2,2 +C4 VP2,lV)2,2 +k2?02,10~2,2 - C4kw,'vb2

-6= ckV,2W,12 +ck Iw,1 ,12 +c2kv,1 W,22 -ck W,12W,22 +ck W,12 0 I +ck w 11, 112

+c I 1,1 01'i,2 +C~ kV, 27P2,1 -c3kw, 22ik2,1 -Ck2W,22 02,1 +c4kv~lP 2,2 -C3ki,12 0b2,2
-ck, 12 V2,2 -2c 3k/' 2,1 '2,2 -ck20 2,1 0~2,2
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X6 ck Ww, 12 +2C4 kw, 12W,22 +C2k2 W,12 V)1 ,l +Ckw,4', 2 kbii 2

+4kW~2 '' 1 +ckw,1~2 2,2 +2c4 k 2,1 V)2

x6 = ckW,121w,22 -c3k2 W,22 02,1 _C3k2 W,1202,2 -clk 2 72,1 02,2

6 ck 21V, 12W,22 +c kW,22 0P2,1 +ckW,12 0b2,2 0ck~2,10b2,2
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Appendix F. Strain Displacement Relations for the Modified Donnell Theory with

Higher-Order Transverse Shear Deformation (CDOV)

The strain displacement relations of this appendix are for the case of a circular

cylindrical shell with its longitudinal axis in the Yi direction and a radius of R 2 . The Y2

coordinate is the circumferential distance dy2 = R2dO. The kinematic displacement within

the shell is assumed to be of the form:

0 Ull + U2 2 + U3 3 (F.1)

where

Ill(Yi, Y2, y 3) = u+ yV3¢4 + k(¢O1 + w,1)y3

U2Y(Y, Y2, Y3) = v(1 - cy 3) + V/2y3 + k('02 + W,2)y3 (F.2)

u3 (yl, Y2, Y3) = w

The seven degrees of freedom u, v, w, w,l, w,2 , ib1 and 02, are functions of midsurface coor-

dinates (Yl, Y2) only. The Oi are rotations of the normals and c = 1//R2 and k = -4/(3h 2 ).

For this case, the 60 shell geometric functions f, are simplified because hl = h2 = h= 1.

The simplified nonzero functions of Appendix A are listed in Eq (F.3)

ft1 =1I f1 I =i

fH17  = 1 fI21 = 1 (F.3)

f118 = 1 1721 = 1

The strain equations listed below are the parts of the linear strain components for the

modified Donnell theory. Contracted notation is used, where e1 = Ell, 62 = £22, E3 = £33,

E4 = 623, ES =: 613, and r = E12. The strain components E, are given by the series expansion

shown in Eq (P.4).
n

= XY3 (P.4)
p=O
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The nonzero X? are listed below for each component of the CDON code.

x 0 U ¢+ W2/2 x = 0- kw,1 + k, 1,1

X2 V,2 -C c+w/ W ~ A CV,2 +'02,2 x2

X = U12 + W,+ + "2,1 = 2kw,12 + kW,'1,2 + k.'2,1
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Appendix G. MACSYMA Routine for Elemental Codes qeneration

/, MACSYMA ROUTINE FOR ELEMENTAL CODES GENERATION BY R. A. SMITH ,/

/, CREATED AS PART OF AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT)
/* PHD PROGRAM IN AERONAUTICAL ENGINEERING --- JULY 1991 */

/* MACSYMA IS A REGISTERED TRADEMARK OF

/* THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY. */

/* INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES */
[DYNAMALLOC:TRUE,DISKGC:TRUE,DERIVABBREV:TRUE,POWERDISP:TRUE]$
DEPENDS(CUiD,UiR,U2D,U2R,U3,PI,P2,HI,H2],[Yi,Y2,Y3])$
DEPENDS([R1,R2,M1,M2,PSII,PSI2,PHI1,PHI2],[Y1,Y2,Y3])$

DEPENDS([GAMMA1,GAMMA2,THETAi,THETA2,U,V,WJ,[Yi,Y2])$

DECLARE([R,C,AR1,AR2,AR3,AR4,H3],CONSTANT)$

/* SET THEORETICAL ATTRIBUTES FOR SPECIFIC ELEMENTAL CODE */
-H3:1$ /* H3=1 FOR A SHELL

AR1:1$ /* ARi='O FOR INCOMPLETE CUBIC KINEMATICS */
/* AR1=1 FOR COMPLETE QUARTIC KINEMATICS

AR2:1$ /* AR2=0 FOR LINEAR Hi/H2 APPROXIMATIONS */
/* AR2=i FOR QUADRATIC APPROXIMATIONS

AR3:1$ /* AR3=O FOR LINEAR TRANSVERSE STRAIN */
/* AR3=1 FOR NONLINEAR TRANSVERSE STRAIN */

/* SUBLIST IS A VARIABLE CONTAINING THE DEFINITIONS OF DISPLACEMENT */
/* PARAMETERS Q(1) THROUGH Q(18). ALL SYMBOLIC MANIPULATION OF */
/* STRAIN COMPONENTS IS DONE WITH THE NAMES TO THE LEFT OF THE EQUAL*/

/* SIGNS IN SUBLIST. THE Q(XX) DEFINITIONS ARE REQUIRED ONLY FOR */
/* GENERATION OF ELEMENT INDEPENDENT STRAIN DEFINITION ARRAYS LO */
/* THROUGH SS12, ETC.

SUBLIST:[ DIFF(U,Y1)=Q(2), DIFF(U,Y2)=Q(3), U=Q(1), DIFF(V,Y1)=Q(5),

DIFF(V,Y2)=Q(6), V=Q(4), DIFF(W,Y1,2)=Q(1O), DIFF(W,Y2,2)=Q(11),
DIFF(W,Y1,l,Y2,1)=Q(12), DIFF(W,Yl)=Q(8), DIFF(W,Y2)=Q(9), W=Q(7),
DIFF(PSIl,Yl)=Q(14), DIFF(PSII,Y2)=Q(15), PSII=Q(13),

DIFF(PSI2,Yi)=Q(17), DIFF(PSI2,Y2)=Q(18), PS12=Q(16)]$

/* BEGIN GENERATING THE DISPLACEMENT FIELD COMPONENTS Ul, U2, U3 */
/* THESE NEXT STEPS HAVE BEEN SPECIALIZED FOR A CYLINDRICAL SHELL */
/* R2=1/C, RI=INFINITY, K=-4/(3*H-2). THE VALUES OF C AND K WILL BE */
/* INPUT AS PART OF THE FORTRAN PROGRAM. THEY ARE UNSPECIFIED */
/* CONSTANTS AS FAR AS MACSYMA IS CONCERNED . */

PI:U$ P2:V*(1-Y3*C)$ P1l:DIFF(U,Y1)$ P12:DIFF(U,Y2)$
P21:DIFF(V,Y1)*(i-Y3*C)$ P22:DIFF(V,Y2)*(1-Y3*C)$
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Liil:DIFF(PSIl,Yl)$ L22:DIFF(PS12,Y2)$ L12:DIFFCPSII,Y2)$
L21:DIFF(PSI2,Yl)$-Mi:K*(DIFF(W,Yi)+PSIi)$ M2:K*(DIFF(W,Y2)+PSI2)$

-UlD:Pl+Y3*TSIi+Y3**3*MI; /* INCOMPLETE CUBIC Ul DISPLACEMENT OF DENNIS *

-U2D:P2+Y3*PSI2+Y3**3*M2;-/* INCOMPLETE CUBIC U2 DISPLACEMENT OF DENNIS *

/* COMPLETE QUARTIC U2 OF SMITH = U2D+U2R WHERE U2R ARE THE CURVATURE *

/* CORRECTION TERMS. NOTE: UIR=O, SINCE Rl=INFINITY. *

U2R: (-M2*(I+K*Y3**2)*Y3**2/(K/C)); U2:U2D+U2R*ARl;

UI:UlD; U3:W$-

/* SYMBOLICALLY COMPUTE THE DERIVATIVES OF Ul AND U2

DUII:PII+Lii*Y3+DIFF(M1,YI)*Y3**3+DIFFCUlR,Yi);

DU21:P21+L21*PY3+DIFF(M2,Yl)*Y3**3+DIFF(U2R,YI);

DUI 2:.P2+L12*Y.3+DIFFCMi ,Y2)*Y3**3+DIFF(U1R,Y2);

-DU22:P22+L22*Y3+DIFFCM2,Y-2)*Y3**3+DIFF(U2R,Y2);

/* SYMBOLICALLY GENERATE THE GREEN-LAGARANGESTRAIN COMPONENTS DIVIDED *
/*--BY THE- APPROPRIATE SHELL LAME PARAMETERS Hl, H2, TO GIVE THE PHYSICAL*/

-1* STRAINS-EPSILONii-,EPSILON22,EPSILONi2,EPSILON23,EPSILONi3,EPSILON33 *

1*EPSILONil COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. LINES 2-4 N.L. *
:ERE1iJ (Hi*DUii+H1*U2/H2*DIFF(H1 ,Y2)+H1*U3/H3*DIFF(Hi ,Y3)+

1/2*,(Dtlii4U2/H2*'DIFF(Hi ,Y2)+U3/H3*DIFFCH1 ,Y3) )-2+
1/2*(DV21-U1/H2*DIFF(H1,Y2))-2+

1/2*(DIFF(U3,Yi)-Ui/H3*DFF(H,Y3)Y2)/Hr-2;

* 1/* EPSILON22 COMPONENT OF STRAIN., LINE 1 IS LINEAR TERMS. LINES 2-4 N.L. *
ERE2) (H2*DU22+H2*U3/H3*DIFF(H2,Y3)+H2*U1/H1*DIFF(H2,Yl)+

1/2*-(DU22+U3/H3*DIFFCH2,Y3)+Ui/H1*DIFFCH2,Y1) ) 2+
1/2*(DIFFCU3,Y2)-U2/H3*DIFF(H2,Y3) )-2+

i/2*(DU12-U2/H1*DIFF(H2,Yl)y-2)/H2-2;

/* -EPSILON12 COMPONENT OF STRAIN. LINE I IS LINEAR TERMS. LINES 2-4 N.L. *
-ERE6) ((H1*DU12+H2*DU2i-U2*DIFF(H2,Yl)-Ui*DIFF(H1 ,Y2) )+

(DU12-U2/H1*DIFF(H2,Yi) )*(DUai+U2/112*DIFF(H1 ,Y2)+U3/H3*DIFF(H1 ,Y3))+

(DU21-Ui/H2*DIFFCHI,Y2) )*(DU22+Ul/Hl*DIFF(H2,Yi)+U3/H3*DIFF(H2,Y3))f

(DIFF(U3,Yl)-Ui/H3*DIFFCH1,Y3))*(DIFF(U3,Y2)-U2/H3*DIFF(H2,Y3))D/(Hl*H2);

1* EPSILON23 COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. LINE 2-8 N.L. *

1* F(Z)=1+3*K*Y3-2 PARABOLIC FORCING FUNCTION APPLIED ONLY TO N.L. TERMS *
ER[4 : (DIFFCU3,Y2)+(l-C*Y3)*DIFF(U2,Y3)-U2*(-C))/CH2*H3);
ERNLE4 : (1+3*K*Y3-2)*(
(DIFF(U2,Y3)-U3/H2*DIFFCH3,Y2) )*

(DIFF(U2,Y2)+U3/H3*DIFF(H2,Y3)+Ul/H1*DIFF(H2,Y1) )+

(DIFF(U3,Y2)-U2/H3*DIFF(H2,Y3) )*

(DIFF(U3,Y )+U2/H2*DIFF(H3 ,Y2)+Ul/H1*DIFF(H3 ,Y ) )+
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-(DIFF(Ui ,Y2)-U2/Hl*DIFF(H2 ,Y1) )*

(DI FF(Ul,Y3)-U3/Hl*DIFF(H3,Yi)))/(H2*H3);
ERE[41 :ERE[4)+ERRL [4)*AR43;

-1* -EPSILONi3 COMPONENT OF STRAIN. LINE I IS LINEAR TERMS. ..INE 2-8 N.L. *
/* F(Z)=1+3*K*Y3-2 PARABOLIC FORCING FUNCTION APPLIED ONLY TO N.L. TERMS *
ERES]_:(H3*DIFF(U3,Yl)+HI*DIFF(Ul,Y3)-Ul*(O))/(H1*H3);

-ERNLE[5) Cl+3*K*Y3-2)*(

CDIFF(U1,Y3)-U3/Hi*DIFF(H3,Yl))*

(DIFFCUl ,Yi)+U3/H3*DIFF(Hi ,Y3)+U2/H2*DIFF(Hi,Y2) )+
(DIFF(U3,Y1-)-Ul/H3*DIFF(Hl ,Y3) )*

(DIFFCU3,Y3)+ul/Hl*DIFFCH3,Yl)+U2/H2*DIFF(H3,Y2) )+

-(DIFF(U2,Yl)-Ul/H2*DIFF(Hl ,Y2) )*

(DIFF(U2,Y3)-U3/H2*DIFF(H3,Y2)))/(Hli*H3);
ER ES): ER ES)+ERNL[ES)*AR3;

/* EPSILON3 COMPONENT OF STRAIN IS ZERO. IT IS HOWEVER INCLUDED IN THE
*CONSTITUTIVE RELATIONS THROUGH THE ELASTICITY SUBROUTINE OF THE CODE
*-WRITTEN BY DENNIS. *

ER E3):o-;

/* SUBSTITUTE THE QWl THROUGH Q(18) DEFINITIONS OF SUBLIST AND DISPLAY
~*STRAIN; COMPONENTS INDIVIDUALLY *

FOR I THRU 6 DO (EREI):EXPAND(EREI)),
EREI] :EXPAND(SUBST(SUBLIST,EREI)),DISPLAY(ER[I))

1* THE NEXT -60 EXPRESSIONS ARE THE POSSIBLE COMBINATIONS OF LAME *
1* PARAMETERS APPEARING IN THE STRAIN EXPRESSIONS FOR A ANY SHELL, *
1* WHERE, H3=1 AND Hl,H2 DEPEND UPON Yl,Y2, AND Y3. *

HREXPEl): (DIFF(Hl,Y2)/Hl)$
HREXP [2] :(DIFFCHl,Y3)/Hi)$

-HREXP E3) (I(Hl**2))$
-HREXP E4) (DIFF(Hl,Y2)**2/(Hl**2))$

HREXP [5):(DIFF(Hl,Y2)**2/(1i2**2))$
HREXPE6) (DIFFCHl,Y3)**2/(Hl**2))$
HREXPE7] :(DIFF(HI,Y3)**2)$
HREXPE8) :(DIFF(Hl,Y2)*DIFF(Hl,Y3)/(Hl**2))$
HREXP [9): (DIFF(H2,Y3)/H2)$

HREXPE1O) CDIFF(H2,Yl)/H2)$
HREXP Eli): (l/(H2**2))$
HREXPE12) (DIFF(H2,Yl)**2/(H2**2))$
HREXPE13) (DIFF(H2,Yl)**2/(Hl**2))$

-HREXPE14) CDIFF(H2,Y3)**2/(H2**2))$
HREXPE15) :DIFFCH2,Y3)**2$
HREXPE16 : (DIFF(H2,Y3)*DIFF(H12,Yl)/(H2**2) )$
HREXPE173:Cl/H2)$
HREXP[18) (IHl)S
HREXPE19 : (DIFF(H2,Yi)/Hl)$
HREXP [20) (DIFF(Hl,Y2)/H2)$
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-HREXPE21):-(1/(Hi*H2))$
HREXPE [22): (DIFFCHI,Y3)/H2)$
-HREXP[23i:(DIFF(H2,Y3)/H1)$
HREXP[2 4) :-DIFF(H2,Yl)*DIFF(H1,Y2)/CHl**2))$
-HREXP [25) :-(DIFik(H2,Yl)*DIFF(H1 ,Y2)/(H2**2) )$
H'REXP [t26): (DIFF(H1 ,Y3)*DIFFCH2,Y3))$
-HREXP[27 :-(DIFF(Hl,Y3)*DIFF(H2,Y1)/(H1**2))$
HREXP[28 :(DIFF(H2,Y3)*DIFF(H1 ,Y2)/(H2**2) )$
HREXR[ 9): (DIFF(Hl,Y2)/(H1*-H2))$
HREXP [30)-:(DIFFCH1 ,Y2)**2/CHl**2*H2) )$
HREX'PE31) CDIFF(H1,Y2)**2/(H2**2*Hl))$

IIREXPE33) -(DIFFCHi,Y2)/(H1**2))$
-HREXP[-34) C(DIFF(Hl,Y3)/(Hi**2))$
:HREXP [35) :(DIFECHI.,Y2)*DIFF(H1 ,Y3)/CH1**2*H2) )$
JH REXP [36) ( DIFFCH2,YiL)/(H1*H2) )$
HREXP [37) :.DIFFCH2,Yi)**2/CHI*H2**2) )$
hREYP [38) (DIFF(H2-,Y1)*P*2/CH2*Hl**2) )$
HREXP [39) -(DIFFCH2,Y3)**2/H2)$

"HREXP [40] (DIFF(H2,Yi)/(H2**2))$
;H REXP[41) (DIFFCH2,Y3)*DIFF(H2,Yi)/(H1*H2**2))$
-HREXP[42)1 (DIFF(H2,Y3)/(H2**2) )$
;HREXP[43J -:(DIFF( H1,Y2-)I(H2**2))$
-HREXP [44) : (DjFF(H2,Y1)/CH1l**2))$
H REXP[451: bIFF(Hl,Y3)/CHi*H2))$
-HREXP [46):(DIFF(H2,Y )/(HI*H2))$-
HREXP[47 : (DIFF(H2,Yi)*DIFFCH1,Y2)/(Hl**2*H2))$
HREXP [48): (DIFF(H1 ,Y2)*DIFF(H2,YI)/(H2**2*H1) )$
'HREXP[49) : CDIFF(Hl,Y3)*DIFF(H2,Yl)/CH1**,2cH2))$
HiREXP[50) :(DIFF(H2,Y3)*DIFRCH1,Y2)/CH2**2'Hl) )$
;HREXR[5i : (DIFF(H1 ,Y3)* DIFF(H2,Y3)/H2)$
-HREXP[52): (DIFF(Hi ,Y3)*DIFF(H2,Y3)/Hi)$
;HREX(P[5 -3)(DIFF(HI,Y2)**2/(H1**2*H2**2))$
'HREXP [54): (DfFF(H1 ,Y2)ICHl**2*H2))$
--HREXP [55): CDIFF(H2,Yi)**2/(H1**2*H2**2) )$
HREXPE[56 : (DIFF(H2,Yi)/CH2**2*Hl) )$
-HREXP[57) :(DIFFCH1,Y2)/(Hi*H2**2))$
H-REXP[58 : (DIFFCH2,Yi)/CH2*Hi**2))$
HREXP [59): (DIFF(H2,Yi)*DIFF(HI,Y2)/(H1**2*H2**2))$
HREXP[60) : DIFFCH,Y3)*DIFF(H2,Y3)/CHl*H2))$

/*THIS MACRO HELTAY(X,I)::= GENERATES THE COEFFICIENTS F, G, AND H OF ~
1* THE TAYLOR'S SERIES EXPANSION OF THE EXPRESSION X ABOUT THE POINT *
1* Y3=0 FOR A CYLINDRICAL SHELL WITH H1=1 AND H2=i-Y3/R2 *

HRTAY(X,I): : BUILDQ([X,I),(
PRINT(" THE TAYLOR SERIES SCALE FACTOR EXPANSION OF
") ,DISPLAY(X),
PRINT(" IS EQUAL TO F + G*Y3 + H*Y3**2 + H.O.T., WHERE ,

(X:TAYLOR(FACTOROUT(EXPAND(RAT(EV(X,HP1l,H2=(-Y3*C) ,DIFF))) ,C) ,Y3,O,3)),
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FEIJ :EXPANDCCOEFFCX,Y3,O)),DISPLAY(FEI)),
Gl [0: EXPAND (COEFFCx, Y3, i) ),DISPLAY (G[ID),
H LET :EXPAND (COEFF (X, Y3,2 )),DISPLAY (H'Llj))$

1* COMPUTE THE COEFFICIENTS F, G, H, FOR ALL 60 HREXP EXPRESSIONS *
FOR I THRU-60 DO HRTAY(HREXPEI],I)$

* /* 'MACRO-HRSUB(X) TAKES ANY ONE-TERM EXPRESSION X, (PRODUCTS ARE OK, *
1*k 'BUT [+)OPERATORS ARE NOT) AND SUBSTITUTES THE APPROXIMATE SERIES *

/* EXPANSION F+G*Y3+AR2*H*Y3-2- FOR THE FUNCTION OF LAME PARAMETERS *

THRSUB(X): :BUILDQ(EX) ,C
XO:X,
-X:NUMCX)/SUBST(D Wl ,Hl,DEN.OM(X)),
X:NUM(X)/SUBST(DE2J ,H2,DENOM(X)),
X:NUM(X)/RATSUBST(DE3J ,DE1]*DE1) ,DENOM(X)),
X:NUMf(X)/RATSUBST(D[4] ,D[2)*DE2) ,DENOM(X)),
X':NUM(X)/AT$UBST(D[S Es-D[lJ*DE23 ,DENOM(X)),
-X:NUM(X)/RATSUBSTCDE6],D~i)*DE4) ,DENOM'(X)),
-X:NUH(X)/R-ATSUB-ST(DE7J ,DE2J*DE3) ,DENOM(X)),
X:NUM(X)/RATSUBSTCDE8] ,DE31*DE4) ,DENOM(X)),
-XD: X
IX:NUM(X)/RATSUBST(i/D[i),D~l) ,DENOM(X)),
-X: NUM (X) /RLTSUBST(i/D [21 , DE[2 , DENOM (X),
K: ,NUM(X)/RATSU-BST(i/DE[3],DE3) ,DENOM(X)),
X:F - 'X)/R ATSUBST(l/DE4) ,DE4),DENOM(X)),
-X: Wit /RATSUBST(-i/D ES),D[S) ,DENOMo)),
X:Nbi. )/RATSUBST(l/DE6) ,DE6) ,DENOM.;(Y)),
X:NUM(X)/RATSUBST(l/D[7) ,DE7) DN1 IL)
-X:NUM(X)/RATSUBST(l/DE8) ,DES),DENOM(X)),
XN:X,
-X:RATSUBSTF59]+Y3*G[59j rY. **2a AF,2*H[59], 'DIFF(H2,Yi)*.'DIFF(Hl,Y2)*DE8) ,X),
X:RATSUBS TCFE55]+Y3*GfF.i)+Y3*0*2*AR2*HE55 , 'DIFF(H2,Yi)**2*D[8) ,X),
X:RAtSUBST(F[E53]+Y3*G[53]+Y3i',*2-uAR2*HE53), 'DIFF(Hi ,Y2)**2*DE8) ,XX-,
X:-RATSUBST(FESO)+Y3*G[5O)+Y3**2*AR2*HESO), 'DIFF(H2,Y3)*'DIFF(HI,Y )*DE6) ,X),
-X:RATSUBST,(FE49)+Y3*GE49]+Y3**2*AR2*HE49 , 'DIFF(H1 ,Y3)*'DIFF(H2,Yl)eDi7] ,X),
-X:RATSUBSTCFE48)+Y3*GE48]+Y3**2*AR2*HE48 , 'DIFF(Hl ,Y2)*'DIFF(H2,Y:,)*DE6) ,X),
X:RATSUBST(FE47]+Y3*GE47]+Y3**2*AR2*HE471, 'DIFF(H2,Yl)*'DIFF(Hl ,Y2)*DE7) ,X),
X:RATSUBST(FE4l)+Y3*GE4l)+Y3**2*AR2*HE4lJ, 'DIFF(H2,Y3)* 'DIFF(H2,Yl)*DEG) ,X),
X:RATSUBSTCFE38)+Y3*GE3SJ+Y3**2*AR2*HE38], 'DIFF(H2,Yl)**2*DE7] ,X),
-X:RATSUBST(F[37)+Y3*G[37]+Y3**2*AR2*H[37), 'DIFF(H2,Yl)**2*D[6) ,X),
X:RATSUBST(FE3S)+Y3*GE35)+Y3**2*AR2*HE3S , 'DIFF(H1 ,Y2)*'DIFFCHl,Y3)*DE7) ,X),
X:RATSUBST(FE31]+Y3*GE3l)+Y3**2*AR2*HE3l), 'DIFF(HI ,Y2)**2*DE6] ,X),
-X:RATSUBST(F[30)+Y3*G[30]+Y3**2*AR2*H[30 , 'DIFF(H1 ,Y2)**2*D[7J ,X),
X:RATSUBST(FE58)+Y3*GE58]+Y3**2*AR2*H[58 , 'DIFF(H2,Yl)*D[7) ,X),
-X:RATSUBST(FE57]+Y3*GES7]+Y3**2*AR2*HES7 , 'DIFF(Hl ,Y2)*DE6J ,X),
-X:RATSUBST(FES6]+Y3*GE56J+Y3**2*AR2*1E56 , 'DIFF(H2,Yl)*DE6] ,X),
X:RATSUBST(FES4)+Y3*GES4]+Y3**2*AR2*HE54 , 'DIFF(Hl ,Y2)*DE7) ,X),
X:RATSUBST(F[60J+Y3*cGE60]+Y3**2*AR2*H[60 , 'DIFF(Hl ,Y3)*'DIFF(H2,Y3)*D[S] ,X),
X:RATSUBST(FE28)+Y3*GE28]+Y3**2*AR2*HE28 , 'DIFF(H2,Y3)* 'D1FF(H1 ,Y2)*DE4J ,X),
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X:RATS5UBST(F[27]+Y3*G(27)+Y3**2*AR2*H[27), 'DIFF(H1,Y3)*'DIFF(H2,Y1)*DC3] ,X),
X:RATSUBST(F[25)+Y3*G[25]+Y3**2*AR2*HE25J, 'DIFF(H2,Yl)*'DIFF(H1 ,Y2)*D[4) ,X),

X:RATSUBST(FE24)+Y3*G[24)+Y3**2*AR2*H(24J, 'DIFF(H2,Yi)*'DIFF(H1,Y2)*D[3J ,X),

X:RATSUBST(FE16)+Y3*GE16)+Y3**2*AR2*H[i6], 'DIFF(H2,Y3)*'DIFF(H2,Yl)*DE4) ,X),
X:RATSUBST(F[8)+Y3*GE8)+Y3**2*AR2*HE8) ,'DIFFCH1,Y2)*'DIFF(H1,Y3)*DE3) ,X),
X:RATSUBST(FE14]+Y3*GEi4)+Y3**2*AR2*H[14 , 'DIFF(H2,Y3)**2*DE4) ,X),

X:RATSUBST(FE13]+Y3*G[i3)+Y3**2*AR2*H[13 , 'DIFF(H2,Y1)**2*DE3J ,X),
X:RATSUBSTCF[12]+Y3*G[12]+Y3**2*AR2*H[12 , 'DIFF(H2,Y1)**2*DE4J ,X),
X:RATSUBST(F[6]+Y3*G[6)+Y3**2*AR2*HE6J ,'DIFFCH1 ,Y3)**2*D[3] ,X),

- X:RATSUBST(F[5)+Y3*GE5J+Y3**2*AR2*HES , 'DIFF(H1 ,Y2)**2*D[4] ,X),
X:RATSUBST(F[4]+Y3*G[4)+Y3**2*AR2*HE4 , 'DIFFCH1 ,Y2)**2*DE3] ,X),

X:IRATSUBST(F[46j+Y3*G[46]+Y3**2*AR2*H[46 , 'DIFF(H2,Y3)*DES) ,x),
X:RATSUBSTCF[45J+Y3*GE45]+Y3**2*AR2*HE4S , 'DIFF(H1 ,Y3)*DES] ,X),
X:RATSUBSt(FE44]+Y3*GE44]+Y3**2*AR2*HE44), 'DIFFCH2,Yl)*DE3) ,X),
X:RATSUBST(F[43]+Y3*GE43]+Y3**2*AR2*HE43 , 'DIFF(H1 ,Y2)*DE4] ,X),
X:RATSUBST(FE42)+Y3*GE42)+Y3**2*AR2*H[42), 'DIFFCH2,Y3)*DE4) ,X),

X:RATSUBST(FE4O)+Y3*GE4O]+Y3**2*AR2*HE4O , 'DIFF(H2,Y1)*DE4] ,X),
X:RATSUBST(FE36)+Y3*G[36)+Y3**2*AR2*H(36), 'DIFF(H2,Yl)*DES] ,X),

X:RATSUBST(F[34]+Y3*G[343+Y3**2*AR2*H[34 , 'DIFF(HI,Y3)*D[3J ,X),
-X:RATSUBST(F[33]+Y3*G[33]+Y3**2*AR2*H[33] , DIFF(H1,Y2)*D[3) ,X),
X:RATSUBST(FE29]+Y3*GE29]+Y3**2*AR2*HE29] 'DIFF(H1 ,Y2)*D[5) ,X),

X:RATSUBST(FE3]+Y3*G[3)+Y3**2*AR2*HE3J , *D(3) ,X),
X:RATSUBST(F[21]+Y3*G[2i]+Y3**2*AR2*H[21) ,1*DE5J ,X),
X:RATSUBST(F[11)+Y3*G[i1)+Y3**2*AR2*H[1i) ,1*DE4] ,X),
X:RATSUBST(FE52]+Y3*G[52]+Y3**2*AR2*HE52 , 'DIFF(H1,Y3)*'DIFF(H2,Y3)*DE1) ,X),

X:RATSUBST(FESI)+Y3*G[51]+Y3**2*AR2*HS1) , 'DIFF(Hi,Y3)*'DIFF(H2,Y3)*DE2) ,X),

X:RATSUBST(F[39)+Y3*G[39]+Y,3**2*AR2*H[39 , 'DIFFCH2,Y3)**2*DE2J ,X),
X:RATSUBST(F[32]+Y3*G[32)+Y3**2*AR2*HE32 , 'DIFF(H1 ,Y3)**2*DCIJ ,X),
X:RATSUBST(FE23]+Y3*GE23)+Y3**2*AR2*HE23 , 'DIFF(H2,Y3)*DE1) ,X),
X:RATSUBST(F[22]+Y3*GC22]+Y3**2*AR2*H[22 , 'DIFF(H1 ,Y3)*DE2) ,X),
X:RATSUBST(F[201+Y3*G[20]+Y3**2*AR2*H[20 , 'DIFF(Hl ,Y2)*D(2) ,X),
X;RATSUBST(F[19J+Y3*GE19]+Y3**2*AR2*H[19), DIFF(H2,Yl)*DE1) ,X),
X:RATSUBST(FC1OJ+Y3*G[1O)+Y3**2*AR2*HE1O , 'DIFF(H2,Y1)*DE2] ,X),

X:RATSUBST(FE9)+Y3*G[9)+Y3**2*AR2*HE9) ,'DIFFCH2,Y3)*DE2] ,x),
X:RATSUBST(FEi)+Y3*G[1)+Y3**2*AR2*HEi), 'DIFF(H1 ,Y2)*DE1) ,X),

X:RATSUBSTCFC2)+Y3*GE2)+Y3**2*AR2*H[2 , 'DIFF(Hi ,Y3)*DE1) ,X),
X:RATSUBST(F[17J+Y3*G[17)+Y3**2*AR2*HE17) ,1*D[2) ,X),
X:RATSUBST(F[18]+Y3*GE18)+Y3**2*AR2*HE18) ,1*DE1) ,X),
X:RATSUBST(FE15J+Y3*G[1SJ+Y3**2*AR2*H[15), 'DIFF(H2,Y.3)**2,X),

X:RATSUBSTCFE7]+Y3*GE7)+Y3**2*AR2*H[7 , 'DIFF(H1,Y3)**2,X),

X:RATSUBST(F[26J+Y3*G[26)+Y3**2*AR2*H[26), 'DIFF(H1,Y3)*'DIFF(H2,Y3),X)))$

1* MACRO PICK(XXX) TAKES ANY EXPRESSION XXX (PREVIOUSLY EXPANDED) *
1* AND SEPARATES IT INTO SINGLE EXPRESSIONS LABELED ECI). IT THEN *
1* CALLS MACRO HRSUB(X) TO FIND THE APPROPRIATE LAME PARAMETER *
1* APPROXIMATION FOR EACH EXPRESSION AND THEN SUMS ALL THE EXPRES- *
1*SIONS TO YIELD THE EXPRESSION XXX WITH ALL TERMS FULLY APPROXIMATED*/

ECI) :CONCATCE,I)$
PICK(XXX):: BUILDQ( (XXX) ,



ii:LINENUM,
NT: NTER!IS(XXX),
12: II+NT-1,
PRINT(" THIS EXPRESSION HAS",NT,"TERMS TO. BE RESOLVED"),
-PICKAPART(XXX,i),
FOh.K:1THRU 12 DO EXH[K):EV(ECK),EVAL),
FOR K:I1 THRU 12 DO HRSUB(EXHEK)),
XXX:SUM(EXH[K] ,K,I1,I2),
DISPLAY(XXX)

1* USE MACRO PICK(XXX) TO APPROXIMATE LAME PARAMETER FUNCTIONS OF *

* ~ /* THE STRAIN COMPONENTS *

ERR4: ERC4] $ ERR: ER[5) $
PIdK(ERR4)-; -PICK(ERR5);

* ERE4) :ERR4$ ERESJ:.ERR5$
ERRI:ERE1)$ ERR2:ER[2]$ ERR6:ERE6)$
'PICK(ERR1):; PICK(ERR2)-; PICK(ERR6);
E RE1:ERRI$ ER[2) :ERR2$ ER[6) :ERR6$
-SAVE('!ER123.SV",ER);

1* THIS MACRO,. CHIFORM(XX;,YY,K)::= EXPANDS A 6XI VECTOR CALLED XX, *
* THEN- DEtERMINES AND. DISPLAYS THE COEFFICIENTS OF Y3 UPTO THE *
-* KTH--POWER. THESE ARE CALLED YY[I ,K). *

CHIFORM(XX,YY,K) : :BUILDQ( EXX,YY,I,
-'(FOR -I THRU,6 DO-FOR 33 THRU-K+1 DO
(XYEI) :FACTOROUT(EXPAND(RAT(XXEI))),EHI ,H2]),
.YYEIjJ...±:COEFF(XY[Iil,Y3,JJ-i),
DISPLAY(YY-[I , 3-iT-))) )$

POWERDISP:TRUE$ CHIFORM(ER,XR, ±2); KILL(ER); SAVE("XR123.SV" ,XR);

1* THIS MACRO, DECOMPOSE(XR)::= DETERMINES AND DISPLAYS THE COEFFIC- *
1* IENTS OF DISPLACEMENT VARIABLES Q(1) THROUGH 9(18) AND CREATES A *
1* 6X13Xi8 ARRAY CALLED LMAT OF THE CONSTANT COEFFICIENTS OF LINEAR *
1* DISPLACEMENT TERMS, AND A 6X13X18X18 ARRAy CALLED HMAT OF THE *
1* CONSTANT COEFFICIENTS OF THE QUADRATIC DISPLACEMENT TERMS. *

DECOMPOSE(XR): :=BUILDQ( EXR),
- (FOR I THRU 6 DO (PRINT("DECOMPOSING STRAIN COMPONENT",I),

(FOR 3:0 THRU 12 DO
(FOR K THRU 18 DO
(IF HIPOW(XR[I,3),Q(K))=2 THEN
XQUADEI,J,K) .RATCOEFF(XREI,3] ,Q(K),2)*Q(K)*2+RATCOEFF(XREI,3) ,Q(K) ,1) ELSE
XQUADEI,J,K) :RATCOEFF(XREI,3) ,Q(K),i),
FOR L THRU 18 DO HMATEI,J,K,L):RATCOEFF(XQUADILI,3,K),Q(L),1),
LMAT[I,J,KJ :EXPAND(XQUADEI,j,K)-SUM(HMAT[I,J,K,L)*Q(L) ,L,1,18))))))))$
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bECOMPOSE(XR);
-1ILL(XR);

-SAVE("LHMAT. SV-i23",PLHAT,HMAT);

/* GENERATE ELEMENT-INDEPENDENT STRAIN DEFINITION ARRAYS LX AND HXX *
1* FOR INPLANE STRAINS AND SX AND SSXX FOR TRANSVERSE SHEAR STRAINS. *
1*X AND XX REPRESENT THE POWER OF Y3 FOR WHICH THE COEFFICIENTS
1* APPLY. NOTE LX HAS 3 COLUMNS. COLUMN 1 CONTAINS COEFFICIENTS OF *
1* THE EPSIL0911 TERMS WHICH ARE LINEAR IN DISPLACEMENTS Q(1)-Q(18). *
1'COLUMN 2 CONTAINS EPSILON22 TERMS AND COLUMN 3 CONTAINS EPSILON12 *
1* TERMS. -LIKEWISE-HXX HAS 3 PARTITIONS. COLUMNS 1-18 CONTAINS *
1* COEFFICIENTS OF EPSILON 11 TERMS WHICH ARE QUADRATIC IN DISPLACE- *
1* MENT. COLUMNS 19-36 CONTAIN THE EPSILON22 TERMS AND COLUMNS 37-54 *
1* CONTAIN THE -.EPSILON12 TERMS. SIMILARLY, SX CONTAINS 2 COLUMNS *
1* PERTAINING-TO THE COEFFICIENTS OF LINEAR TERMS OF EPSILON23 AND *
1* EPSILONi3,-RESPECTIVELY. SSXX HAS 2 PARTITIONS. COLUMNS 1-18 *

-*PERTAIN TO. THE-COEFFICIENTS OF THE. QUADRATIC TERMS OF EPSILON23 *
/* 'AND _EPSILONi3, RESPECTIVELY.

:FOR NN THRU18 DOC
LO[NN;,1--:LMAT[1,O;-NNJ,LO[NNI,2) :LMAT2,,NN),LOENN,3):LMATE6,O,NN],
-LIENN,1):LMATEi,I,NNJ-,Li[NN,2) :LMATE2,1,NNJ,Li[NN,3):LMATE6,1,NN),
L2[N.N,1):LMATE1,2,NNJ,L2[NN,2) :LMAT[2,2,NNj,L2[NN-,3):LMATE6,2,NN).
L3[NN-,1):LMATEi,3,NN],L3[NN,2):LMATE2,3,NNLL3[NN,3]:LMAT[6,3,NN],
-L4CNN-,i) :LMAT[i,4,NNJ ,L4ENN,2) :LMATE2,4,NN] ,L4[NN,3) :LMAT[6,4,NN),
L5ENN,1)]:LMAT.Ci,5,NN],LS[NN,2):LMATE2,5,NNJ,LS[NN,3):LMAT[6,5,NN),
L6ENN-,1):LMATE1,6,NNJ,L6ENN,2J :LMATE2,6,NNLL6[NN,3):LMAT[6,6,NN),
-LZ-[NN-,1):LMATE1,7,NN) ,L7[NN,2) :LMAT[2,7,NNJ ,L7[NN,3) :LMATE6,7,NN),
SO[NN,i) :LMATE4,O,NN) ,SO[NN,2) :LHAT[5.O,NN),
SiENNp-1):LMATE4,1,NN),Sl[NN,2):LMAT[5,1,NN),
S2ENN-,I]:LMAT[4-,2-,NNJ ,S2[NN,2) :LMAT[5,2,NN),
S3ENN,1] :LMAT[4;3,NN] ,S3(NN,2J :LHAT[5,3,NN),
S4[NN,1) :LMATE4,4,NN] ,54[NN,2) :LMATES,4,NN),
S5ENN-,1):LMATE4,5,NN] ,SS[NN,2) :LMAT(5,5,NN),
S6ENN,1J:LMAT[4,6,NN),S6ENNI,2] :LMAT[E5,6,NN),
S7ENN,1):LMAT[4,7,NNJ,S7[NN,2):LMAT(5,7,NN),
FOR MM THRU 18 DO (
HOCNN,MM] :HMATE1,0,NN,MMJ,HO[NN,MM+18):HMATE2,O,NN,MM),
HO[NN,MM+36) :HMAT[6,O,NN,MM),
H1,[NN,MMJ:HMATE1,1,NN,HMJ,Hl[NN,MM+18):HMATC2,1,NN,MM),
Hl[NN,M4-36) :HMATEG,1,NN,MM),
H2[NN,MM) :HHATE1,2,NN,MM),H2ENN,MM+18):HMATE2,2,NN,MM),
H2[NN,MM+36) :HMAT(6,2,NN,MM),
H3[NN,MM) :HHAT[1,3,NN,MMJ,H3ENN,MH+18J:IIMATC2,3,NN,MM),
H3[NNI,MM+36) :HHAT(6,3,NN,MM),
H4ENN,MM) :HMATE1,4,NN,MM),H4ENN,MM+18J:HMATE2,4,NN,MMJ,
H4[NN,MM+36) :HMAT[6,4,NN,MM),
HSENNi,MM):HHATE1,S,NN,MM),H5ENN,MK+18J:HMATE2,5,NIN,MMJ,
HSCNN,MM+36) :HMAT[6,5,NN,MM),



-H6[NN,MMJ:HMAT[1,6,NN,MM),H6ENN,MM+18]:HMATE2,6,NN,MMI ,
16[NN,MM+36J :HMATE6,6,NN,MM],
H7[NN,,MM);.:HHAT[i,7,NN,MM),H7ENN,MM+18]:HMAT[2,7,NN,MMJ,
I7[NN,MM+ 36) :HMATE6,7,NN,MM),
H8[NN,MH)l:HMATE1,8,NN,IMJ,H8ENN,MM+18]:HMATE2,8,NN,MM),
H8ENN,MM+36) :HMA1E6,8,NN,MM),
9NN,MM) :HHATE1,9,NN,MM],HgENN,MM+18]:HMATE2,9,NN,MM),
H9ENN,MM+3):HMATE6,9,NN,MM),
H1O(NN,MM]:HMATE1,1O,NN,MH],HIO[NN,MM+18]:HMAT[2,1O,NN,MM],
HiO[NN,MM+36) :HMATE6,1O,NN,MM),
:Hli[NN,MM]:'HMAT~i,11,NN,MMJ,H11ENN,MM+18]:HMAT[2,11,NN,MM),
Hu1ENN,MM+36J :HMAT[6,li,NN,MM),
H12[NN,MM] :HMAT~i,12,NN,MM],H12[NN,MM+18]:HMATE2,12,NN,MMJ,
H12ENN,MM+36] :HMAT[6,12,NN,MM),
SSO[NN,HM]-:HMAT[4,O,NN,MM],SSO[NN,MM,+18]:HMAT[S,O,NN,MH],
SSiENN,MM]:HHATE4,1,NN,MM),sS1ENN,MH+18]:HMAT[5,1,NN,MM],
-SS2[-NN-,MM):HMAT[4,2,NN,MM),SS2[NN,MM+18]:HHATES,2,NN,MM),
SS3[NN,IMM):HHAt[4,3,NN,MM),SS3[NN,MM+i8):HMATE5,3,NN,MM),
SS 4CNN,MM):HMAT[4,4,NN,MM),SS4ENN,MM+18]:HHAT[5,4,NN,MM),
SS5ENN;,MMJ:HMAT[4,5S,NN,MM] ,SSS[NN,MH+18) :HHATE5,5,NN,MM),
SS6 [NN-, MM] : HMAT [4,6-,NN,M,SS6ENN,MM+18]:HMAT[ES,6,NN,MM),

* SS?[NN,MM):HMAT[4,7,NN,MMJ,SS7[NN,MHi8):HMAT[5,7,NN,MH),
SS8[NN,MM:HMAt[4,8,NN,-MH),SS8ENN,MM+18]:HMATES5,8,NN,HMJ,
S§6ENN,N MM:HMAT[4-,9,NN,MM3,SS9[NN,NM+18]:HMATES,9,NN,MM],
SS11ENN,MM):HMAT[4,il,NN,MM),SSi1ENN,MM+18):HMATES,11,NN,MMJ,
SS12ENN,MM] :HMATE4,12,NN,MH) ,SSi2[NN,MH+18) :HMATES,12,NN,MMJ,
SSIOENN,MMJ :HMAT[4,1O,NN,MM) ,SS1O[NN,MM+18J :HMATES,1O,NN,MMJ ))$

1* FORM MACSYMA MATRICES-FROM THE ABOVE DEFINED ARRAYS. *
LO:GENMATRIX(LO,18,3)$ L1:GENMATRIXCL1,18,3)$ L2:GENHATRIX(L2,18,3)$
L3:GENMATRIX(L3,18,'3)$ L4:GENHATRIXCL4,18,3)$ LS:GENHATRIX(LS,18,3)$
L6:GENMATRIX(L6,18,3)$ L7:GENHATRIX(L7,18,3)$
S0:GENMATRIX(SO,18,2)$ Si:GENMATRIX(S1,18,2)$ S2:GENMATRIX(52,18,2)$
S3:GENMATRIX(S3,i8,2)$ S4:GENMATRIXCS4,18,2)$ SS:GENMATRIX(S5,18,2)$
S6:GENMATRIX(S6,18,2)$ S7:GENHATRIX(S7,18,2)$
HO:G-ENMATRIX(HO,18,54)$ H1:GENMATRIXCHi,18,54)$ H2:GENMATRIX(H2,18,54)$
H3:GENMATRIX(H3,18,54)$ H4:GENMATRIX(H4,18,54)$ HS:GENHATRIX(HS,18,54)$
H6:GENMATRIX(H6,i8,54)$ H7:GENMATRIX(H7,18,S4)$ H8:GENMATRIX(H8,18,54)$
H9:GENMATRIX(H9,18,54)$ H1O:GENMATRIX(H1O,i8,54)$
Hhl:GENMATRIX(Hhl,18,54)$ Hi2:GENMATRIX(HI2,18,54)$
SS-O:GENMATRIX(SSO,18,36)$ SSI:GENMATRIX(SSI18,36)$
SS2:GENMATRIXCSS2,18,36)$ SS3:GENMATRIX(SS3, 18,36)$
SS4:GENHATRIX(SS4, 18,36)$ SS5:GENMATRIX(SS5, 18,36)$
SS6:GENMATRIX(SS6, 18,36)$ SS7:GEIUIATRIX(SS7, 18,36)$
SS8:GENHATRIX(SS8,18,36)$ SS9:GEMMATRIX(SS9, 18,36)$
SSIO:GENHATRIX(SS1O,18,36)$ SSi1:GEHMATRIX(SS11,18,36)$
SS12:GEINMATRIX(SS12, 18,36)$
SAVE("LSMAT123.SV",LOL1,L2,L3,L4,LS,L6,L7,SO,S1,S2,S3,S4,S,S6,S7);
SAVEQ'HMAT123.SV',HO,H1,H2,H3,H4,H,,H6,H7,H8,H9,HIO,Hl1,H1l2);
SAVE("SSHAT123.SV",SSO,SSI,SS2,SS3,SS4,SSS,SS6,SS7,SS8,SS9,SS O,SS11,5512);
I{ILL(ALL) $
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/* GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY K. *

/* ASSEMBLE MATRIX KO *
LOADF ILE("LSMAT123. SV")$
LO:SUBST([K=Kl,C--Pi),L0)$ Li:SUBST([K=K1,C=P1),Ll)$
L2:SUBST([K=Kl,C=P1] ,L2)$ L3:SUBST([K=Ki,C=P1,L3)$
L4:SUBST([K=Ki,C=P1J ,L4)$ LS:SUBST([K=K1,C=Pi),L5)$
L6:SUBST(EK=K1,C=P1),L6)$ L7:SUBST([K=K1,C=PI),L7)$
LOT:TRANSPOSE(LO); LiT:TRANSPOSE(Ll); L2T:TRANSPOSE(L2);
L3T:TRANSPOSE(L3); L4T:TRANSPOSE(L4); LST:TRANSPOSE(L5);
L6T:TRANSPOSE(L6); L7T:TRANSPOSE(L7); KM:ZEROMATRIX(18, 18)$

FOR II THRU 3 DO FOR 33 THRU 3 DO (PRINT(II,JJ),
KM:KM+AEII,JJ)*CCOL(LO,II).ROW(LOT,JJ))r-

DD[1113J*(COL(L1,Il).ROW(LlT,J3)+
COL(LO,II) .ROW(L2T,J3)+
COL(L2,II) .ROW(LOTJJ))+

F[II,33)*(COL(L2,I) .ROW(L2T,JJ)+
COL(Li,II).ROW(L3T,33)+ COL(L3,II).ROW(LIT,J3)+
COL(LO,II).ROW(L4T,JJ)+ COL(L4,II).ROW(LOT,JJ))+

HEII,33)*CCOL(L3,II) .ROW(t.3T,J3)+
COL(L2,II) .ROW(L4T,33)+COL(L4,II) .ROW(L2T,JJ)+
COL(L1,II).ROW(LST,JJ)+COL(LS,II).ROW(LiT,JJ)+
COL(LO,II).ROW(L6T,JJ)+COLCL6,II).ROWCLOT,JJ))+

3E11,J3)*(COL(L4,II) .ROW(L4T,JJ)+
COL(L3,II) .ROW(L5T,JJ)+COL(LS,II) .ROW(L3T,33)+
COL(L2,II) .ROW(L6T,JJ)+COL(L6,II) .ROW(L2T,JJ)+
COL(Li,II).ROW(L7T,JJ)+COL(L7,II).ROW(LlT,JJ))+

L[II,33]*(COL(L5,II) .ROW(L5T,JJ)+
COL(L4,II) .ROW(L6T,JJ)+COL(L6,II) .ROW(L4T,JJ)+
COL(L3,II).ROW(L7T,JJ)+COL(L7,II).ROW(L3T,JJ) )+

REII,JJJ*(COL(L6,II).ROWCL6T,JJ)+
COL(LS,II).R.POW(LA'7T,JJ)+COL(L7,II).ROW(LST,JJ)));

/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH *
/* NONZERO ELEMENT OF STK(I,J). THESE STATEMENTS ARE OF THE FORM *
/* STK(2,2)=A(1,l) *
/* EACH STATEMENT IS WRITTEN TO A SEPARATE FILE CALLED TT2XXX, *
/. WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND CON-
/* TINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH STK(18,18) *
/* ARE GENERATED. THE MACSYMA FUNCTION GENTRAN WILL ALSO BREAK
1* STATEMENTS EXCEEZ"NG 800 CHARACTERS INTO SHORTER EXPRESSIONS TO *
/* AVOID TOO MANY CONTINUATION LINES. MACSYMA AUTOMATICALLY MAKES *
/* CONTINUATION LINES COMPLETE WITH A LEGAL CHARACTER IN COLUM4N 6. *

KO :ZEROMATRIX(18, 18)$
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FOR III THRU 18 DO FOR 333:111 THRU 18 DO
KO[III,333) :KM[III,J3J$
FRAHE(I,J) :CONCAT(TT,EV(18*(I-1)+J+1000))$
FOR I THRU 18 DO FOR. J:I THRU 18 DO
(IF KO[I,J)#O-THEN (PT:1,GENTRAN(STK[EVAL(I),EVAL(J)] :EVAL(KO[I,3J),
EEVAL(FRAME(I, 3))]))))$
IF PT#1 THEN GENTRAN(PT:EVAL(PT), ETT2000] )$

/* GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY KS. *

/* ASSEMBLE MATRIX KS *
LOADFILE( "LSMATi23. SV") $
SO:SUBSTC[K=Ki,C=P1) ,SO)$ Si:SUBST([K=K1,C=P1J ,Si)$ S2:SUBST(.[KKi,C=P1 ,S2)$
S3:SUBSTC[K=K1,C=Pl],S3)$ S4:SUBST([K=Kl,C=P1),S4)$ SS:SUBST([K=K1,C=Pi),SS)$
S6:SUBST([K=Ki,C=P1J,S6)$ S7:SUBST(EK=K1,C=Pl),S7)$
SOT:TRANSPOSE(SO); S1T:TRANSPOSE(S1); S2T:TRANSPOSECS2);
S3T:TRANSPOSE(S3); S4T:TRANSPOSE(S4); SST:TRANSPOSECS5);
S6T:TRANSPOSE(S6); S7T:TRANSPOSE(S7); KS:ZEROHATRIX(18, 18)$

FOR II THRU 2 DO FOR 33 THRU 2 DO (PRINT(II,JJ),
KS:KS+ASEII,JJ]*(COL(SO,II) .ROW(SOT,JJ))+

DSEII,JJ)*(COL(S1,II) .ROW(S1T,JJ)+
COL(SO,II).ROW(S2T,JJ)+COL(S2,II).ROW(SOT,JJ))+

FS[II,JJ)*(COLCS2,II) .ROW(S2T,3J)+
COL(Si,II) .ROW(S3T,.13)+COL(S3,II) .ROW(S1T,JJ)+
COL(SO,II).ROW(S4T,JJ)+COL(S4,II).ROW(SOT,JJ))4

HS[II,JJ)*(COL(S3,II) .ROW(S3T,JJ)+
COL(S2,II).ROW(S4T,JJ)+COL(S4,Il).ROW(S2T,JJ)+
COL(S1,II) .ROWCS5T,JJ)+COL(S5,II) .ROW(S1T,JJ)+
COL(SO,II).ROW(S6T,JJ)+COL(S6,II).ROW(SOT,JJ))+

.3S(II,JJ.3*(COL(S4,II) .ROW(S4T,JJ)+
COL(S3,II) .ROW(SST,33)+COL(S5,II) .ROW(S3T,33)+
COL(S2,II) .ROW(S6T,.33)+COL(S6,II) .ROW(S2T,JJ)+
COL(S1,II).ROW(S7T,JJ)+COL(S7,II).ROW(SIT,JJ))+

LSEII,3J*CCOL(SS,II) .ROW(SST,JJ)+
COL(S4,II) .ROW(S6T,33)+COL(S6,II) .ROIJCS4T,JJ)+
COL(S3,II).ROW(S7T,JJ)+COL(S7,II).ROW(S3T,JJ))+

RS[II,33)*(COL(S6,II) .ROW(S6T,JJ)+
COL(S5,II).ROW(S7T,JJ)+COL(S7,II).ROW(SST,JJ)));

KO :ZEROMATRIX(18 ,18)$
FOR III THRU 18 DO FOR 333:I11 THRU 18 DO
KO[III,J3J :KSEIII,JJJ)$
FRAME(I,J) :CONCAT(TT,EV(18*(I-1)+3+1000))$
FOR I THRU 18 DO FOR 3:I THRU 18 DO
(IF KOEI,J]#O THEN (PT:1,GENTRAN(STKS[EVAL(I),EVAL(3)J :EVAL(KOEI,3)),
[EVAL(FRAME(I,J)))) ))$
IF PT#1 THEN GENTRAN(PT:EVAL(PT),[TT2000))$
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/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY Ni. *

/* ASSEMBLE MATRI-X Ni 1
TQ:MATRIX([Q(i),q(2),Q(3),Q(4),Q(S),Q(6),Q(7),Q(8),Q(9),Q(iO),

Q :TRANSPOSE(TQ)$
LOADFILE("LSMAT123.SV")$ LOADFILE('HMAT123. SV'K1S
LO:SUBST(EK=Ki,C=Pi) ,LO)S Li:SUBST(EKKIi,C=PiJ,Li)$
L2:SUBSTCD@=Ki,C=P1) ,L2)$ L3:SUBST(EK=Ki,C4'1),L3)$
L4:SUBST([IKiK,C=PiJ ,L4)$ LS:SUBST(EK=Ki,C=P1),LS)$
LG:SUBSTCEKIKi,C=PiJ ,LS)$ LT:SUBST(EK=Ki,C=Pi),L7)$
LOT:TRANSPOSE(LO)$ LiT:TRANSPOSE(L1)$ L2T:TRANSPOSE(L2)$
L3T:TRANSPOSE(L3)$ L4T:TRANSPOSECL4)S LST:TRANSPOSE(LS)$
L6T:TRANSPOSE(L6)$ L7T:TRANSPOSE(L7)$
HO:SUBST(EKKIi,C=piJ ,HO)$ Hi:SUBST(EK4{i,C=Pi),Hi)$
H2:SUBST(EKIKi,C=pJ ,112)$ H3:SUBST(EK=Ki,C=P1),H3)$
H4:SUBSTCEK1{i,C=PiJ ,H4)$ HS:SUBST(EK=Ki,C=Pi),HS)$
H6:SUBSTCEK=Ki,C=P1J ,H6)$ l7:SUBST([K=KI,C=P1),H7)$
H8:SUBST(EK=Ki,C=PiJ ,H8)$ H9:SUBST(EKIKi,C=P1),H9)$
HIO:SUBST([K=Ki,C=Pi),HiO)$ Hii:SUBST(E!Ki,C=Pi),Hi)$
Hi2:SUBSTC[KKi,C=Pi),H12)$ Ni:ZEROMATRIX(18,18)$

FOR II THRU 3 DO FOR 33 THRU 3 DO (PRINT(II,33),
(11 :3*(-9*11-2+33*11-12), 32:3*C 9*3Y-2-39*33+48),
31 :3*(-9*JY-2+33*3J-i2), 12:3*( 9*11-2-39*11+48),

SUBIO:SUBMATRIX(HO,Ii,Ii-i,Ii-2,Ii-3,Ii-4,Ii-S,Ii-6,Ii-7,I1-8,Ii-9,

12,12-1,12-2,12-3,12-4,12-S,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJO:SUBMATRIX(HO,31,J1-i,Ji-2,31-3,Ji-4,3i-S,3i-6,3i-7,3i-8,31-9,

3i-iO,3i-ii,3i-i2,Ji-i3,3i-14,Ji-iS,Ji-i6,3i-i7,

32,32-i,32-2,32-3,32-4,32-S,32-6,32-7,32-8,32-9,

32-iO,32-i1,32-12,32-13,32-i4,32-iS,32-i6,32-i7),
SUBI1:SUBMATRIX(Hi,I1,Ii-i,Ii.-2,Ii-3,Ii-4,Ii-S,I1-6,Ii-7,I1-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-i11,12-12,12-13,12-i4,12-iS,12-i6,12-i7),

SUB31:SUBMATRIX(H1,31,3i-i,31-2,31-3,Ji-4,3i-S,31-6,31-7,31-8,31-9,

3I-10,Ji-1i,Ji-12,31-13,3i-i4,Ji-1S,3i-16,3i-17,

32,32-i,32-2,32-3,32-4,32-S,32-6,32-7,32-8,32-9,
32-iO,32-i1,J2-12,32-13,32-i4,32-iS,32-16,32-i7),

SUB12:SUBMATRIX(H2,Ii,Ii-i,I1-2,Ii-3,I1-4,I1-S,I1-6,li-7,Il-8,I-9,

12,12-i,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,I2-12,I2-13,12-14,I2-iS,I2-16,I2-17),

SUBJ2:SUBMATRIX(H2,31,31-i,31-2,31-3,31-4,31-S,31-6,J1-7,31-,31-,

31-10,31-11,J1-12,31-13,3l-14,3l-1S,Ji16,31-17,

32,32-i,32-2,32-3,32-4,32-S,32-6,32-?,32-8,32-9,
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32-10,J2-11,32-12,32--13,32-14,32-15,J2-16,32-17),
SUB13:SUBMATRIX(H3,I1,I1-1,I1-2,I1-3,II-4,Ii-5,II-6,Ii-7,Il-8,II-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8, 12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB33:SUBMATRIX(H3,Jl,31-1,31-2,31-3,31-4,31-5,J1-6,31-7,31-8,31-9,

31-10,31-11, 31-12,31-13,31-14, 31-15,31-16,31-17,

32,32-1,32-2, 32-3,32-4,32-5,32-6, 32-7, 32-8,32-9,

32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),
SUB14:SUBMATRIX(H4,I1 ,Ii-1,I1-2,I1-3,I1-4,I1-S,Il-6,I1-7,I1-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8, 12-9,

12-10,-12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUB34:SUBMATRIX(H4,31,31-1,J1-2,J1-3,J1-4,31-5,31-6,31-7,31-8,31-9,

31-10,31-11,31-12,31-13,31-14,31-15,31-16,31-17,

32,32-1,32-2,32-3,32-4, 32-5,J2-6,32-7,32-8, 32-9,

J2-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),
SUBI5:SUBMATRIX(HS,I1,I1-1,I1-2,I1-3,I1-4,I1-5,l±-6,I-7,I-8,I-9,

12,12-1 ,12-2,12-3,12-4,12-5,12-6,12-7,12-8, 12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB35:SUBMATRIX(HS,31,J1-1,J1-2,J1-3,31-4,31-5,31-6,Jl-7,J1-8,1-9,

31-10,31-11,31-12,31-13,31-14,31-15,31-16,31-17,

J2,32-1,32-2,J2-3,32-4,32-5,32-6,32-7,32-8, 32-9,
J2-10,J2-11,32-12,J2-13,J2-14,J2-15,32-16,32-17),

SUB16:SUBMATRIX(H6,II,Il--1,Il-2,Ii-3,Ii-4,Ii-5,I1-6,I1-7,11-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-iO,I2-11,I2-12,I2-13,I2-14,I2-IS,I2-16,I2-17),
SUBJ6:SUBMATRIX(H6,J1,31-1,J1-2,31-3,31-4,J1-5,J1-6,J1-731-,J1-9,

31-10,31-11,31-12, 31-13, 31-14,31-15,31-16,31-17,

32, 32-1, 2-2, 32-3, 32-4, 32-5, 32-6, 32-7 , 2-8, 32-9

32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),
SUB17:SUBMATRIX(H7,I1 ,Ii-1,I1-2,Il-3,I1-4,II-5,I1-6,I1-7,I1-8,I1-9,

12,12-1,12-2, 12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-i1,I2-12,I2-13,I2-14,I2-15,12-16,I2-17),
SUBJ7:SUBMATRIX(H7,Jl,J1-1,31-2,Ji-3,J1-4,31-5,31-6,31-7,J1-8,J1-9,

31-10, 31-11 ,31-12,31-13,J1-14,J1-15,31-16,31-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),
SUBI8:SUBMATRIX(H8,I1,I1-1,I1-2,I1-3,I1-4,Il-5,I1-6,I1-7,I1-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9

12-10,I2-11,I2-12,I2-i3,I2-14,I2-iS,I2-16,I2-17;,

SUBJ8:SUBMATRIX(H8,J1,31-1,31-2,J1-3,J1-4,J1-5,31-6,J1-7,31-8,31-9,

31-10,31-l1,31-12,31-13,3l-14,31-15,31-1631-17,
32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBI9:SUBMATRIX(H9,I1,I1-l,I1-2,I1-3,I1-4,I1-5r,I1-6,I1-7,Il-8,I1-9,
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12,12-1,12-2,12-3,12-4,12-5,12-6 ,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

J1-iO,31-11,Jl-i2,Jl-13,31-14,31-15,Jl-16,J1-17,
J2,J2-1,32-2,J2-3,32-4,32-5, 32-6,32-7,J2-8, J2-9,
J2-1O,J2-11,J2-12,J2-13,J2-14,32-i5,32-16,32-17),

SUBI1O:SUBMATRIX(HiO,I1,Il-i,Ii-2,I1-3,I1-4,r1-5,I1-6,Il-7,Il-8,I1-9,

12,12-1,12-2,12-3,12-4,12-6,12-6,12-7,12-8,12-9,
12-10,I2-i1,I2-12,I2-13,I2-14,I2-iS,I12-16,I2-17),

SUB31O:SUBMATRIX(HiO,J1,J1-1,J1-2,31-3,J1-4,Ji-5,31-6,31-7,31-8,31-9,

31-10,Jl-11 ,J1-12, 31-13,31-14,31-15, 31-16,31-17,
J2,J2-1 ,32-2,32-3,J2-4,32-5,32-6,32-7,32-8,J2-9,
32-1O,J2-1i,32-i2,J2-i3,J2-14,J2-15,32-16,J2-i7),

SUBI11:SUBMATRIXCH11,I1,11-1,11-2,11-3,I1-4,I1-5,11-6,I1-7,I1-8,Il-9,

12,12-1, 12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11 ,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ11:SUBMATRIX(H11,J1,31-1,31-2,31-3,J1-4,31-5,J1-6,J1-7,31-8,Ji-9,
31-10,31-11, 31-12,31-13,31-14,31-15, 31-16,31-17,
32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,J2-1i,32-12,32-13,32-14,2-S,2-16,32-17),

SUBI12:SUBMATRIX(Hi2,I1,I1-1,I1-2,I1-3,I1-4,I1-5,11-6,I1-7,I1-8,I1-,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-l10,I2-ii,I2-12,I2-i3,I2-14,I2-15,I2-i6,I2-i7),

SUBJ12:SUBMATRIX(H12,J1,31-1,J1-2,J1-3,u1-4,31-5,31-6,31-7,31-8,31-,
31-10,31-11 ,J1-i2,J1-13,31-14,31-15,31-16,31-17,
32, 32-1, 32-2, 32-3, 32-4, 32-5 , 2-6 32-7, 32-8, 32-9,
32-1O,32-11,32-i2,J2-13,32-14,32-15,32-16,J2-17),

Nl:N1+A[II,3J*(
COL(LO,II) .TQ.SUB3O+(TQ.COLCLO,II))*SUB3O+SUBIO.Q.ROW(LOT,JJ)),
N1:Ni+DDEII,J3)*(
COL(LO,II) .TQ.SUB32+(TQ.COL(LO,II))*SUBJ2+SUBI2.Q.ROW(LOT,33)+
COL(L2,II) .TQ.SUBJO+CTQ.COLCL2,II))*SUB3O+SUBIO.Q.ROW(L2T,33)+
COL(L1,II) .TQ.SUB31+(TQ.COL(L1,II))*SUB31+SUBII.Q.ROW(L1T,33)),
N1:N1+ F[II,3J*(
CDL(LO,II) .TQ.SUBJ4+(TQ.COL(LO,II))*SUBJ4+SUB14.Q.ROW(LOT,33)+
COL(L1,II) .TQ.SUBJ3+(TQ.COL(L1,II))*SUB33+SUBI3.Q.ROW(LIT,33)+
COL(L2,II) .TQ.SUBJ2+(TQ.COL(L2,II))*SUB32+SUBI2.Q.ROW(L2r,33)+
COL(L3,II).TQ.SUB31+CTQ.COL(L3,II))*SUBJ1+SUBII.Q.ROW(L3T,33)+
COL(L4,II) .TQ.SUBJO+CTQ.COL(L4,II))*SUBJO+SUBIO.Q.ROWCL4r,J3)),
N1:N1+ HEII,33)*(
COL(LO,II) .TQ.SUBJ6+(TQ.COL(LO,II))*SUB36+SUBI6.Q.ROW(LOT,33)+
COL(L1,II) .TQ.SUBJ5+(TQ.COL(L1,II))*SUB35+SUBI5.Q.ROW(L'r,J3)+
COL(L2,II) .TQ.SUBJ4+(TQ.COLCL2,II))*SUBJ4+SUBI4.Q.ROWCL2T,33)+
COL(L3,II) .TQ.SUBJ3+(TQ.COL(L3,II))*SUBJ3+SUBI3.Q.ROW(LST,33)+
COL(L4,II).TQ.SUBJ2+(TQ.COLCL4,I))*sUB2+SUBI2.Q.ROW(L4r,33)+
COLCL5,II).TQ.SUBJ1+(TQ.COL(LS,II))*SUBJ1+SUBII.Q.ROW(LST,J3)+
COL(L6,II).TQ.SUB3O+(TQ.COL(L6,II))*SUBJO+SUBIO.Q.ROW(L6r,JJ)),
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N1:Ni+ J[II,JJ)*(
COLCLO,II) .TQ'.SUB8+TQ.COLCLO,II))*SUBJ8+SUBI8.Q.ROW(LOT,J)+
COL(L1,II).TQ.SUBJ7+(TQ.COLCL1,II))*SUBJ7+SUBI7.Q.ROW(LlT,JJ)+
COL(L2,II).TQ.SUBJ6+(TQ.COL(L2,II))*SUBJ6+SUBIG.Q.ROW(L2T,JJ)+
COL(L3,II) .TQ.SUBJS+CTQ.COL(L3,II))*SUBJ5+SUBIS.Q.ROW(L3T,JJ)+
COLCL4,II).'rQ.SUBJ4+(TQ.COL(L4,II))*SUBJ4+SUBI4.Q.ROW(L4T,J3)+
C OL(L5,II) .TQ.SUBJ3+(TQ.COL(L5,II))*SUBJ3+SUBI3.Q.ROW(LST,J3)+
COL(L6,II) .TQ.SUB32+(TQ.COL(L6,II))*SUBJ2+SUBI2.Q.ROW(L6T,JJ)+
COL(L7,II).TQ.SUBJ1+(TQ.COL(L7,II))*SUBJI+SUBIi.Q.ROW(L7T,JJ)),
Nl:N1+ L[II,33)*(
COL(LO,II) .TQ.SUBJ1O+(TQ.COL(LO,II))*SUBJIO+SUBIIO.Q.ROW(LOT,JJ)+
COL(L1,II) .TQ.SUBJ9+(TQ.COLCLi,II))*SUBJ9+SUBI9.Q.ROW(LlT,JJ)+
COL(L2,II) .TQ.SUBJ8+(TQ.COLCL2,II))*SUBJ8+SUBI8.Q.ROW(L2 T,JJ)+
COL(IL3,II) .TQ.SUBJ7+(TQ.COL(L3,'1))*SUBJ7+SUBI7.Q.ROWCL3T,JJ)+
COLCL4,II).TQ.SUBJ6+(TQ.COL(L4,II))*SUBJ6+SUBI6.Q.ROW(L4T,JJ)
COL(LS,II) .TQ.SUBJ5+(TQ.COL(LS,II))*SUBJ5+SUBIS.Q.ROW(L5T,JJ)+
COL(L6,II).TQ.SUBJ4+(TQ.COL(L6,II))*SUBJ4+SUBI4.Q.ROW(L6T,JJ)+
COLCL7,II).TQ.SUBJ3+(TQ.COL(L7,II))*SUBJ3+SUBI3.Q.ROW(L7T,J)),
N1:Nl+ R[II,JJ)*(
COL(LO,II) .TQ.SUBJ12+(Q.COL(LO,II))*SUBJ12+SUBI12.Q.ROW(LOT,JJ)+
COLCLl,II).TQ.SUBJii+(Tp.COL(Ll,II))*SUBJii+SUBIll.Q.ROW(LIT,JJ)+
COL(L2,II) .TQ.SUBJ1O+(TQ.COL(L2,II))*SUBJIO+SUBIIO.Q.ROWL2T,JJ)+
COL(L3,II).TQ.SUBJ9+(TQ.COL(L3,II))*SUBJ9+SUBI9.Q.ROW(L3T,JJ)+
COL(L'J,II) .TQ.SUB38+(TQ.COL(L4,II))*SUBJ8+SUBI8.Q.ROW(L4T,JJ)+
COL(LS,II) .TQ.SUBJ7+(TQ.COL(LS,II))*SUB2J7+SUBI7.Q.ROW(L5T,JJ)+
COL(L6,II) .TQ.SUBJ6+CTQ.COL(L6,II))*SUBJ6+SUBI6.Q.ROWCL6T,JJ)+
COL(L7,II) .TQ.SUBJ5+(TQ.COL(L7,II))*SUBJS+SUBI5.Q.ROW(L7T,JJ)),
Ni:Ni+ TEII,JJ)*C
COLCL2,II).TQ.SUBJi2+(TQ.COL(L2,II))*SUBJ12+SUBI12.Q.ROW(L2T,J3)+
COLCL3,II).TQ.SUBJli+(TQ.COLCL3,II))*SUBJII+SUBIII.Q.ROW(L3T,JJ)+
COL(L4,II).TQ.SUBJiO+CTQ.COL(L4,II))*SUBJIO+SUBIlO.Q.ROW(L4T,JJ)+
COL(L5,II) .TQ.SUBJ9+(TQ.COL(LS,II))*SUBJ9+SUBI9.Q.ROW(LST,J3)+
COLCL6,II).TQ.SUBJ8+(TQ.COL(L6,II))*SUBJ8+SUBI8.Q.ROW(L6T,JJ)+
COL(L7,II).TQ.SUB37+(TQ.COL(L7,II))*SUBJ7+SUBI7.Q.ROW(L7T,JJ)),
N1:N1+XHEII,J3]*(
COL(L4,II) .TQ .SUBJ12+(TQ.COL(L4,II))*SUBJ12+SUBI12.Q .ROW(L4T,JJ)+
COL(L5,II) .TQ.SUBJII+(TQ.COLCL5,II))*SUBJII+SUBIll.Q.RW(LST,3J)+
COL(L6,II) .TQ.SUBJIO+(TQ. COLCL6,II))*SUBJIO+SUBIIO .Q .ROW(L6T,JJ)+
COL(L7,II).TQ.SUBJ9+(TQ.COL(L7,II))*SUBJ9+SUBI9.Q.ROW(L7T,JJ)),
N1:NI+XJ[II,JJ)*(
COL(L6,II) .TQ.SUBJ12+(TQ.COL(L6,II) )*SUBJ12+SUBI12 .Q.ROW(L6T, 33)+
COL(L7,II).TQ.SUBJ11+(TQ.COL(L7,II)')*SUBJII+SUBIII.Q.ROW(L7T,JJ)),

KILL(SUBJO,SUBJ1,SUPJ2,SUBJ3,SUBJ4,SUBJS,SUBJ6,SUBJ7,SUBJ8,SUBJ9,SUB310),
KILL(SUB.LO,SUBII,SUBI2,SUBI3,SUBI4,SUBIS,SUBI6,SUBI7 ,SUBI8,SUBI9 ,SUBI1O)) )$

KILL(LO,L1 ,L2,L3,L4,LS,L6,L7,LOT,LIT,L2T,L3T,L4T,LST,L6T,L7T)$
KILL(HO,H1 ,H2,H3,H4,HS,116,H7,HS,H9,HIO,H11 ,1112)$
NiSYM:ZEROMATRIX(18, 18)$
FOR II THRU 18 DO FOR 33:11 THRU 18 DO NiSYM[II,JJ):N1EII,JJ)$
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PRINT("SYZ4METRIC NI FORMED")$
KILL(Ni)$
Ni:ZEROHATRI'X(18,18)$
-KILL(Q,TQ)$
FOR II THRU 18 DO FOR 33:11 THRU 18 DO
NIEII,33):FACTOROUTCNISYM[II,J3),p(1),Q(2),Q(3),Q(4),Q5),pC6),

FRAME(I,J):=CONCAT(TT,EV(18*(I-1)+3+1000))$
FOR I THRU 18 DO FOR J:1 THRU 18 DO
(IF -NI[I,3)#O THEN (PT:1,GENTRANCSNi[EVAL(I),EVAL(J)):EVAL(NlEI,3J),
EEVAL(FRA ME(I,J))])))$
IF PT#i THEN GENTRAN(PT:EVAL(PT),[TT2000])$

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY NlS. *

/* ASSEMBLE MATRIX NIAS *
TQ:MATRIX([Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),Q(8),Q(9),Q(iO),

Q(11) ,QC12) ,Q(13) ,Q(i4) ,Q(15) ,Q(16) ,Q(17) ,Q(18)) )$
Q :TRANSPOSE(TQ)$ LOADFILEC"LSMAT123.SV')$
SO:SUBST([K=KlC=Pl),SO)$ Si:SUBST([K=K1,C=P1),S1)$
S2:SUBST(EK=K1,C=P1),S2)$ S3:SUBST(EIKK,C=P1) ,S3)$
S4:SUBST(EK=K1,C=P1,S4)$ S5:SUBST([K=K1,C=P1] ,SS)$
S6:SUBST([K=K1,,C=P1 ,S6)$ S7:SUBSTC[K=KI,C=Pi),S7)$*
SOT:TRANSPOSE(SO)$ SIT:TRANSPOSE(Sl)$ S2T:TRANSPOSE(S2)$
S3T:TRANSPOSE(S3)$ S4T:TRANSPOSECS4)$ SST:TRANSPOSE(S5)$
S6T:TRANSPOSE(S6)$ S7T:TRANSPOSE(S7)$
LOADFILE("SSMAT123 .SV")$
SSO:SUBST([K=Kl,c~pi) ,sso)$ ssl:SUBST([KKi,C=P1],SS1)$
SS2:SUBST([K=Ki,C=P1) ,SS2)$ SS3:SUBST([K=K1,C=P1],SS3)$
SS4:SUBST([K=K1,C=Pl),SS4)$ SSS:SUBST([K=Ki,C=P1),SS5)$
SS6:SUBST([K=Ki,C=Pi),SS6)$ SS7:SUBST([K=K1,C=PlJ,SS7)$
SS8:SUBST(CK=K1,C=Pl],5S8)$ SS9:SUBST([K=K1,C=PiJ,SS9)$
SSIO:SUBST([K=K1,C=P1),SS1O)$ SS11:SUBST([IKK,C=P1),SSII)$
SS12:SUBST([K=K1,C=P1) ,SS12)$ N1S:ZEROMATRIX(i8,18)$

FOR II TftRU 2 DO FOR 33 THRU 2 DO (PRINT(II,33),
32:3*( 9*(J3+1)-2-39*(33+i)+48), 12:3*( 9*(11+1)-2-39*(I1+1)+48),

SUBISO :SUBMATRIX(SSO, 12,I2-1,I2-2,I2-3,I2-4,I2-S,I2-6,I2-7,I2-8,I2-9,

SUB3SO :SUBMATRIX(SSO, 32,32-1, 32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
J2-1O,J2-11,32-12,32-i3,J2-14,32-15,32-16,32-17),

SUBISI:SUBMATRIX(SS1, 12,I2-1,12-2,I2-3,I2-4,I2-5,I2-6,I2-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17);

SUB3S1 :SUBMATRIX(SSI, 32,32-1, 32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
J2-1O,32-11,J2-12,32-13,32-14,32-15,32-i6,J2-i7),

SUBIS2:SUBMATRIXCSS2, 12,12-1, 12-2,12-3,12-4,12-6,12-6,12-7,12-8,12-9,
12-10,I2-11,I2-12,I2-13,I2-14,I2-1S,12-16,I2-17),

SUB3S2:SUBMATRIXCSS2, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10O,32-11 ,32-12,32-13,32-14,J2-15,32-16,32-17),
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SUBIS3:SUBMATRIX(SS3, 12,12-1,I2-2,I2-3,I2-4,I2-5,I2-6,12-7,12-8,I2-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUS3S3:SUBMATRIX(SS3, 32,32-1,32-2, 32-3, 32-4,32-5,32-6,32-7[,32-8,32-9,
J2-10,32-11-,32-12,32-13,32-14,J2-15,32-16,32-17),

SUBIS4:SUBMATRIX(SS4, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7, 12-8,12-9,
2-10,12-1,1-12,12-13,12-14,12-15,12-16,12-17),

SUB3S4:SUBMATRIX(SS4, 32,32-1,32-2,32-3, 32-4, 32-5,32-6,32-7,32-8,J2-9,
J2-10,32-11,J2-12,J2-13,J2-14,32-15,32-16,32-17),

SUBIS5:SUBMATRIXCSS5, 12,12-1 ,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSS:SUBHATRIX(SS5, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7, 32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBIS6:SUBMATRIX(SS6, 12,12-1 ,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB3S6:SUBHATRIX(SS6, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBIS7:SUBMATRIX(SS7, 12,I2-1,12-2,I2-3,I2-4,12-5,I2-6,I2-7,I12-s,I2-9,
12-10,I2-11,I2-i2,I2-13,I2-i4,I2-lS,I2-16,I2-17),

SUBJ97:SUBMATRIX(SS7, 32,32-1, 32-2,32-3, 32-4,32-5,32-6,32-7,32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,J2-16,32-17),

SUBIS8:SUBMATRIX(SS8, 12,I2-1,I2-2,I2-3,I2-4,I2-S,12-6,I2-7,I2-8,12-9,
12-lO,I2-11,I2-12,I2-13,I2-14,I2-15,I2-16,I2-17),

SUB7S8:SUBMATRIX(SS8, 32,32-1,J2-2,32-3,32-4,32-5,32-6,32-7,J2-8,32-9,
J2-10,J2-11,32-12,32-13,32-14,J2-15,J2-16,32-17),

SUBIS9:SUBMATRIX(SS9, 12,12-1 ,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB3S9:SUBMATRIX(SS9, 32,32-1, 32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBIS1O:SUBHATRIX(SS1O, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-il,I2-12,I2-13,I2-14,I2-15,12-16,I2-17),

SUB3S1O:SUBMATRIX(SS1O, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBISil :SUBMATRIX(SSII, 12,12-1,12-2,12-3,12-4, 12-5,12-6,12-7,12-8,12-9,
12-10,12-11 ,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSii:SUBMATRIX(SS11, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,J2-11,32-12,32-13,32-14,32-15,32-16,J2-17),

SUBIS12:SUBHATRIX(SS12, 12,I2-1,I2-2,I2-3,I2-4,12-S,I2-6,I2-7,I2-8,I2-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB3S12:SUBHATRIX(SS12, 32,32-1,32-2,32-3,32-4,J2-5,J2-6,32-7,32-8,J2-9,
32-10,32-11,32-12,32-13, 32-14,J2-15,32-16,32-17),

N1S:N1S+AS [II ,33]*(
COL(SO,II) .TQ.SUBJSO+(TQ.CaL(SO,II))*SUBiSO+SUBISO.Q.ROW(SOT,J3)),

N1S:N1S+DSEII ,33)*(
COL(SO,II) .TQ.SUBJS2+(TQ.COLCSO,II))*SUB3S2+SUBIS2.Q.ROW(SOT,33)+
COL(S2,II) .TQ.SUBJSO+CTQ.COL(S2,II))*SUBJSO+SUBISO.Q.RaW(S2T,33)+
COLCS1,II).TQ.SUBJS1+(TQ.COL(S1,II))*SUBJS1+SUBIS1.Q.ROW(ST,33)),
N1S:N1S+FS[EII,J3)*(
COL(SO,II) .TQ.SUB3S4+(TQ.COLCSO,II))*SUB3S4+SUBIS4.Q.ROJ(SOT,JJ)+
COL(S1 ,II) .TQ.SUBJS3+CTQ.COLCS1 ,II))*SUB3S3+SUBIS3.Q.ROW(S1'r,JJ)+
COLCS2,II) .TQ.SUBJS2+CTQ.C0L(S2,II))*SUB3S2+!5UBIS2.Q.ROW(S2T,JJ)+
COLCS3,II) .TQ.SUBJS1+(TQ.COL(S3,II))*SUBJS1+SUBIS1 .Q.ROW(S3T,JJ)+
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tCOL;(S4, II). .TP.SUBJS6+CTQ. COL(S4,II))*SUBJSO+SUBISO. Q. ROW (S4T, JJ)),

-COL(SO,IIY. TQ.SUBJS6+(TQ.COL(SO,II))*SUBJS6+SUBIS6.Q.ROW(SOT,JJ)+
C OL(Si-,II).-TQ.SUBJSS+(TQ.COL(S,II))*SUBJSS+SUBIS.Q.ROW(SiT,J)i
tCOL(S2 ,II):.TQ.SUBJS4+(TQ.COL(S2,II))*SUBJS4+SUBIS4.Q.ROWCS2T,JJ)+
-COL(S3,II) .TQ.SUBiS3+(TQ.COL(S3,II))*SUBJS3+SUBIS3.Q.ROW(S3T,JJ)+
-COL(S4,II) .TQ.SUBJS2+(TQ.COL(S4,II))*SUBJS2+SUBIS2.Q.ROWCS4T,JJ)+
CdOL(S5,II-).TQ.SUBJSI+(TQ.COL(S5,II))*SUBJSI+SUBISI.Q.ROWl(SST,JJ)+
COL(S6,II) .TQ.SUBJSO+(TQ.COLCS6,II))*SUBJSO+SUBISO.Q.ROW(S6T,JJ)),
NiS:Ni-S+JSEII,i3)*C
CqOL(SO,II) .TQ.SUBJS8+(TQ.COLCSO,II))*SUBJS8+SUBIS8.Q.ROW(SOT,JJ)+
COL(S1,II) .TQ.SUB3S7+(TQ.COL(SI,II))*SUBJS7+SUBIS7.Q.ROW(SiT,JJ)+
~c6L(S2,II) .TQ.SUBJS6+(TQ.COL(S2,II))*SUBJS6+SUBIS6.Q.ROW(S2T,JJ)+
COL:(S3,II).TQ.SUBJSS+(TQ.COL(S3,II))*SUBJSS+SUBISS.Q.RaW(S3T,JJ)+
COL(S4,II) .TQ.SUBJS4+CTQ.COL(S4,II))*SUBJS4+SUBIS4.Q.ROW(S4T,JJ)+
-COL(S5,II' .TQ.SUBJS3+CTQ.COL(S5,II))*SUBJS3+SUBIS3.Q.ROW(S5T,JJ)+
COL(S6,II).TQ.SUBJS2+(TO.COL(S6,II))*SUBJS2+SUBIS2.Q.ROW(S6T,33)+

.CLC7,I.TQ.SUBJS1+CTQ.COL(S7,II))*SUBJSI+SUBISI.Q.ROWCS7T,JJ)),
NIS:NIS+LS[II,3JJ*(
COL(SO,II).tQ.SUBJSIO+(TQ.COL(SO,II))*SUBJSIO+SUBISiO.Q.ROWCSOT,33)+
COL(S1,II).TQ.SUBJS9+CTQ.COL(Si,II))*SUBJS9+SUBIS9.Q.ROW(SIT,JJ)+
COL(S2,II) .TQ.SUbJS8+(TQ.COL(S2,II,)*SUBJS8+SUBIS8.Q.FtOW(S2T,JJ)+
C.1OL(S3-;II)/rTQ.SUB3S7+CTQ.COL(S3,II))*SUBS7+SUBTS7.Q.ROW(S3T,JJ)+

-COL(SS,II).TQ.SUBJS6+(TQ.COL(S4,II))*SUBJS6+SUBIS6.Q.RoW(SST,JJ)+
COL(S5,II).TQ.SUBJS5+CTQ.COLCS5,II))*SUBJS4+SUBIS4.Q.ROWsS6T,JJ)+

CO-L(S7,II).tQ.SUBJS3+(TtQ.COL(S7,II))*SUBJS3+SUBIS3.Q.ROW(S7T,JJ)),
NiS:NIS+RS[II,J3)*(
COLCSO,II-).TQ.SUBJSi2+(TQ.COL(SO,II))*SUBJS12+SUBISi2.Q.ROW(SOT,JJ)+
COL(Si,Il) .Tq.SUBJS11+(TQ.COL(S1,II))*SUBJS11+SUBISii.Q.ROW(SiT,3J)+
COL(S2,II).TQ.SUBJSIO+(TQ.COL(S2,II))*SUBJSIO+SUBISiO.Q.ROW(S2T,JJ)+
COL(S3,'II)-.TQ.SUBJS9+(TQ.COLCS3,II))*SUBJS9+SUBIS9.Q.ROW(S3T,JJ)+
COLCS4,II).TQ.SUBJS8+CTQ.COLCS4,II))*SUBJS8+SUBIS8.Q.ROW(S4T,JJ)+
COL(SS,II).TQ.SUBJS7+(TQ.COL(SS,II))*SUBJS7+SUBIS7.Q.ROW(S5T,JJ)+
COL(S6,II).TQ.SUB3S6+CTQ.COL(S6,II))*SUBJS6+SUBIS6.Q.ROW(S6T,JJ)+
COL(S7,II).TQ.SUBJS5+CTQ.CJL(S7,II))*SUBJS5+SUBISS.Q.ROW(S7T,JJ)),
NiS:NiS+TS[II,JJ)*(
COL(S2,II).TQ.SUBJSi2+(TQ.COLCS2,II))*SUBJS12+SUBIS12.Q.RDW(S2T,j3)+
COL(S3, II) .TQ .SUBJSII+(TQ.COL(S3,II))*SUBJS1I+SUBIS11 .Q.ROW(S3T,JJ)+
COL(S4,II) .TQ.SCBJSIO+(TQ.COLCS4,II))*SUBJS1O+SUBISIO.Q.ROW(S4T,JJ)+
COL(S5,II) .TQ.SUBJS9+CTQ.COL(S,II))*SUBJS9+SUBIS9.j.tUW(S5T,vJ)+
COL(S6,II) .TQ.SUBJS8+(TQ.COL(S6,II))*SUBJS8+SUBIS8.Q.ROW(S6T,JJ)+
COL(S7,II) .TQ.SUBJS7+CTQ.COL(S7,II))*SUBJS7+SUBIS7.Q.ROW(S7T,JJ)),
-NIS:NiS+XHSCII,3J*(
COLCS4,II).TQ.SUBJS12+(TQ.COL(S4,II))*SUBJS12iSUBIS12.Q.ROW(S4T,JJ)+
COL(SS,II).TQ.SUBJSII+(TQ.COL(S5,II))*SUBJS~I+SUBISII.Q.ROW(S5T,JJ)+
COLCS6,II).TQ.SUBJSIO+(TQ.COL(S6,II))*SUBJS1O+SUBISIO.Q.ROW(S6T,21)+
COL(S7,II) .TQ.SUBJS9+(TQ.COLCS7,II))*SUB3S9+SUBIS9.Q.ROW(S7T,JJ)),
ITIS:NiS+XJSEII,3JJ*(
COL(S6,II) .TQ.SUBJS12+(TQ.COLCS6,II))*SUBJS12+SUBIS12.Q.ROW(S6T,JJ)+
COLCS7,II).TQ.SUBJSII+(TQ.COL(S7,II))*SUBSI+SUBIS1.Q.ROWj(S7T,J)),



KILL(SUBJSO,SUB3S1 ,SUBJS2,SUBJS3,SUB3S4,SUB3SS,
SUB356,SUBJS7,SUBJS8,SUBJS9,SUB3SIO,SUB3511 ,SUBJS12),

KILL(SUBISO,SUBISI,SUBIS2,SUBIS3,SUBIS4,SUBISS,
SUBIS6,SUBIS7,SUBIS8,SUBIS9,SUBISIO,SUBIS11 ,SUBIS12))$

-KILL(SSO,SSI,SS2,SS3,SS4,SSS,SS6,SS7,SS8,SS9,SSIO,SSi,SS12 $
K ILL(SO,Si,S2,S3,S4,S5,S6,S7,SOT,SiT,S2T,S3T,S4T,SST,S6T,E7T)$

NISYM: ZEROMATRIX(18, i8)$
FOR II THRU 18 DO FOR 33:11 THRU 18 DO NISYMEII,JJ:NiSEII,33)$
PRINT( SYMMETRIC NI FORMED")$
KILL(Nl ,NiS)$
Ni: ZEROMATRIX( 18,18) $
kILL(Q ,TQ)$
FOR II THRU 18 DO FOR 13:11 THRU 18 DO
Nl[II,J3]:FACTOROUT(N1bYM[II,3J,Q 1),QC2),Q(3),Q(4),Q(),Q(6),

FRAME(I,J): -CONCAT(TT,EV(i8*CI-1)+J+iOOO))$
FOR I THRU 18 DO FOR 3:I THRU 18 DO
(IF Ni[Ir,3)]O THEN (PT:i,GENTRAN(SNiS[EVAL(I),EVAL(3)] :EVAL(Nl[I,3J),
-[EVAL(FRAME(I,J))3)))$
IF PT#I THEN GENTRAN(PT:EVAL(PT),[TT2000))$

/*GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2.

* /* ASSEMBLE MATRIX N2A *

Q~:TRANSPOSE(TQ)$ LOADFILE("HMATi23.SV")$
HO:SUBST(EK=K1,C=P1),HO)$ Hi:SUBST(EK=Ki,C=Pi] ,Hi)$
H2:SUBST([K=K1,C=P1J ,H2)$ H3:SUBST([K=Kl,C=PI) ,H3)$
H4:SUBST([KKi,C=P1J,H4)$ HS:SUBST([K=KI,C=PI] ,HS)$
H6:SUBST(EK=KI,C=P1J ,H6)$ H7:SUBST([K=KI,C=PI) ,H7)$
H8:SUBST(CK=KI,C=P1J ,18)$ H9:SUBSTCEXK1,C=Pi],H9)$
HIO:SUBSTCEK=K1,C=P1ll1O0)$ Hll:SUBSTCEK=Ki,C=P1),Hli)$
H12:SUBST([KK1,C=P1),H12)$ N2:ZEROMATRIX(i8,18)$

FOR II THRU 3 DO FOR 33 THRU 3 DV (PRINT(II,33),
(1i:3*(-9*11-2+33*11-12), J2:3*C 9*JJ-2-39*JJ+48),
31 :3*(-9*JJ32+33*JJ-12), 12:3*( 9*11-2-39*11+48),

SUBIO:SUBMATRIX(HO,11 ,I1-i ,I1-2,I1-3,I1-4,I1-S,Ii-6,Ii-7,I1-8,Ii-9,

12,I2-1,I2-2,I2-3,I2-4,I2-S,I2-6,I2-7,I2-8,I2-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJO:SUBMATRIX(HO,Ji,31-i,J1-2,Ji-3,Ji-4,J1-5,J1-6,Ji-7,J1-8,J1-9,
J1-1O,J1-li,3i-12,J1-13,Ji-14,JI-15,Ji-16,Ji-i7,
32,32-i,J2-2,J2-3,J2-4,32-S,J2-6,J2-7,J2-8,312-9,
32-10,J2-il,J2-12,J2-13,J2-14,J2-15,J2-16,J2-17),

SUBIl :SUBMATRIX(111,I,1-i ,I1-2,I1-3,I1-4,I1-S,I1-6,Ii-7,I1-8,I1-9,



12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-il,I2-12,I2-i3,12-14,I2-16,I2-16,I2-i7),

SUBJI :SUBMATR.IX(H1 ,J1 ,J1-1,J-2,31-3,J1-4,J1-5, Ji-6,J1-7,31-8,Jl-9,
31-10,31-il, 31-12,Jl-i3,31-14,J1-15,31-16,31-17,

J2,J2-i,J2-2,J2-3,32-4,J2-5, 32-6,32-7,32-8,32-9,

J2-10,32-11,32-12,32-13,J2-14,J2-15,32-16,32-17),

SUB12:SUBMATRIX(H2,i,Il-1,Ii-2,II-3,II-4,I1-S,Il-6,Il-7,II-,Ii-9,

12,I2-1,I2-2,I2-3,I2-4,I2-S,I2-6,I2-7,I2-8,I2-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17).
SUBJ2:SUBMATRIX(H2,J1,J1-1,Jl-2,J1-3,J1-4,31-5,J1-6,J1-7,31-8,J-9,

31-10, 31-11,J1-12,J1-13,J1-14,J1-15,31-16,J1-i7,

32,32-1,32-2,32-3,J2-4,32-5,32-6,32-7,32-8,32-9,
J2-10,J2-11,J2-12,J2-13,32-14,J2-15,32-16,32-17),

SUB13:SUBMATRIX(H3,I11,Il-1,Il-2,II-3,Ii-4,Ii-5,I1-6,I1-7,I1-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-li,I2-12,I2-13,I2-14,I2-15,I2-16,I2-17),

SUBJ3:SUBMATRIXCH3,J1,Jl-1,J1-2,31-3,J1-4,31-5,J1-6,J1-7,31-8,J1-9,

31-10,31-11 ,J1-i2,31-i3,31-14,J1-15,J1-16,J1-17,
32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUB14:SUBMATRIX(H4,II,II-1,II-2,II-3,11-4,II-S,II-6,I1-7,Ii-8,I1-9,

12,I2-1 ,f2-2,I2-3,12-4,I2-5;I2-6,I2-7,I2-8,I2-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ4:SUBMATRIX(H4,J1,J1-1,J1-2,J1-3,J1-4,J1-5,J1-6,J1-7,J1-8,Jl-9,

J1-10,J1-11,31-12,J1-13,J1-14, 31-15,31-16,31-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

J2-10,J2-11,J2-12,J2-13232-14,J2-15,J2-16,J2-17),
SUBI5:SUBMATRIX(HS,I1,I1-1,Il-2,I1-3,I1-4,I1-5,I1-6,Il-7,I1-8,I-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

SUBJ5:SUBMATRIX(HS,J1,J1-1 ,312,31-3,J1-4,315,1-6,31-7,31-8,J1-9,

31-10, 31-11,31-12,J1-i3,J1-14,J1-15,J1-16,J1-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7, 32-8,32-9,

J2-10,J2-11,J2-12,J2-13,J2-14,J2-15,J2-16232-17),
SUB16:SUBMATRIX(H6,I1 ,I1-1,I1-2,I1-3,I1-4,I1-5,I1-6,I1-7,I1-8,i-9,

12,I2-1,I2-2,I2-3,I2-4,I2-S,I2-6,I2-7,I2-8,I2-9,
12-10,12-11 ,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ6:SUBMATRIX(H6,J1,J1-1,J1-2,J1-3,J1-4,J1-5,J1-6,31-7,31-8,J1-9,
31-10,31-11 ,J1-12,J1-i3,J1-14,J1-15,J1-16,J1-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

J2-10,J2-11,J2-12,J2-13,J2-14,J2-1S,J2-16,J2-17),
SUB17:SUBMATRIX(H7,II,I1-1 ,Ii-2,II-3,Il-4,Il-5,I1-6,I1-7,Ii-8,II-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-11,I2-12,I2-13,I2-14,I2-IS,12-16,I2-17),
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SUBJ7:SUBHATRIX(H7,31,31-l,31-2,J1-3,31-4,Ji-5,31-6,31-7,J1-8,J1-,

31-10,31-11, 31-12,31-13,31-14,31-15,31-16,31-17,
32,32-1, 32-2,32-3,32-4,32-5, 32-6,32-7,32-8,J2-9,
J2-1O,J2-11,J2-12,J2-13,J2-14,J2-i5,J2-16,32-17),

SUBI8:SUBMATRIX(H8,11 ,I11i1-,13I-,151-,17I-,1

12,12-1 ,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJ8:SUBMATRIX(H8,J1,J1-1,Ji-2,J1-3,J1-4,Jl-5,J1-6,Ji-7,J1-8,Ji-9,

Ji-10,J1-11, 31-12,J1-13,J1-14,J1-15,J1-16,J1-17,
32,32-1,32-2,32-3,32-4,32-5,32-6, 32-7,32-8,32-9,
J2-10,32-11,J2-12,32-13,32-14,J2-15,J2-16,J2-17),

SUBI9:SUBMATRIXCH9,I1,I1-l,I1-2,Il-3,Il-4,I1-5,I1-6,I-7,Il-8,I1-9,

12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ9:SUBMATRtIX(H9,31 ,J1-1,J1-2,31-3,J1-4,J1-5,31-6,J1-7,31-8,31-9,

J1-10,J1-11,31-12,31-13,31-14,31-15,J1-16,31-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),
SUBI1O:SUBMATRIX(HI0, 1,11-1 ,I1-2,I1-3,I1-4,I1-5,Il-6,I1-7,11-8,I1-9,

11-10,11-11 ,I1-12,I1-13,I1-14,I1-15,11-16,I1-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-11,I2-12,I2-13,I2-i4,I2-iS,I2-i6,I2-17),
SUB31O:SUBMATRIXCH1O,J1,Jl-1,J1-2,Jl-3,J1-4,J1-5,J1-6,J±-7,J1-8,31-9,

J1-1O,Ji-11,J1-12,J1-13,J1-i4,Jl-15,31-16,J1-17,

32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
32-10,32-11,32-12,32-13,32-14,32-15,32-16,32-17),

SUBi1:SUBMATRIX(H11,I1,I1-1,I-2,I-3,I-4,I1-,I1-6,I.-7,I1-8,Il-9,

I1-10,I1-11,I1-12,I1-13,I1-14, 11-15,11-16,11-17,

12-10,12-11,12-12,12-13,12-14,12-15,!2-16,12-17),
SUBJ11:SUBMATRIXCH11,31,J1-1,J1-2,Ji-3,J1-4,J1-S,jl-6,J1-7,J1-8,J1-9,

31-10,31-11,31-12,31-13,31-14,31-15,31-16,31-17,
32,32-1,32-2,32-3, 32-4,32-5,32-6,32-7,32-8,32-9,
J2-10,J2-11,32-12sJ2-13,J2-14,32-15,J2-16,J2-rl),

SUB112:SUBMATRIv%(HI2,I1,I1-1 ,I1-2,Il-3,I1-4,I1-5,II-6,i-7,I1-8,II-9,

12,12-1,12-2,12-3,!2-4,12-5,12-6,12-7,12-8,12-9,

12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJ12:SUBMATRIX(HI2,Ji,JI-i.31-2,31-3,JI-4,JI-S,J1-6,31-7,Jl-S,JI-9,

31-10,J1-l1,J1-12,J1-13,J1-14,J1-15,JI-16,J17,
32, 32-1, 32-2 , 2-3 , 2-4, 32-5, 32-6, 32-7, 32-8, 32-9,
J2-10,J2-11,J2-12,J2-13,J2-14,J2-l5,32-16,J2-17),

CA:0.5$ CB:1./3.$ CC:2.13.$

112:N2+ A(II,JJ)*( SUBIO.Q.TQ.SUBJO+CA*(TQ.SUBJO.Q)*SUBIO )
112:112+DD(II,JJ)*( CB*(SUBIO.Q.TQ.SUB32+CA*('TQ.SUBIO.Q)*SJBJ2+

SUB12.Q.TQ.SUBJO+CA* (TQ.SUBI2.Q) *SUBJO) +
SUBII.Q.TQ.SUBJ4+CA*(Tp.SUBJI.Q)YSUBI1 )
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N2:N2+ F[II,3Jj*( CB*(SUBIO.Q.TQ.SUBJ4+CA*(TQ.SUBIO.Q)*SUBJ4+
SUB14.Q.TQ.SUBJO+CA*(TQ.SUB14.Q)*SUBJO)+

CC*(SUBII.Q.TQ.SUBJ3+CA*(TQ.SUBII.Q)*SUBJ3+
SUB13.Q.TQ.SUBJI+CA*(TQ.SUBI3.Q)*SUBJ1)+
SUB12.Q.TQ.SUBJ2+CA*(TQ.SUBJ2.Q)*SUBI2 )

N2:N2+ H[II,JJ*( CB*(SUBIO.Q.TQ.SUBJC>tCA*(TQ.SUBIO.Q)*SUBJ6
SUB16.Q.TQ.SUBJO+CA*(TQ.ST'BI6.Q)*SUBJO)+

CC*(SUBII. Q.TQ.SUBJ5+CA*(TQ.SUBIi.Q)*SUBJS+
SUBI&.Q.TQ.SUBJI+CA*(TQ.SUBI&.Q)*SUBJ1)+

CC*(SUB12.Q.TQ.SUBJS+CA*(Q.SUBI2.Q)*SUBJ4+
SUB14.Q.TQ.SUBj2+CA*(CTQ. SUB14.Q) *SUBJ2) +
SUB13.Q.TQ.SUBJ3+CA*(TQ.SUBJ3.Q)*SUBI3 )

N2:N2+ JEII,JJ)*( CB*(SUBIO.Q.TQ.SUB38+CA*(TQ.SUBIO.Q)*SUB~JS+
SUB18.Q.TQ.SUBJO+CA*(TQ.SUBI8.Q)*SUBJO)+

CC*(SUBI.Q.TQ.SUBJ7+CA*(TQ.SUBIl.Q)*SUBJ7+
SUBI7.Q.TQ.SUBJI+CA*(TQ.SUBI7.Q)*SUBJI)+

CC*(SUB12.Q.TQ.SUB36+CA*(TQ.SUB!2.Q)*SUBJ6+
SUB16.Q.TQ.SUBJ2+CA* (TQ.SUBI6. Q) *SUBJ2) +

CC*(SUB13.Q.TQ.SUBJ5+CA*(TQ.SUBI3.Q)*SUBJS+
SUBIS.Q.TQ.SUBJ3+CA*CTQ.SUBIS.Q)*SUBJ3)+
SUB14.Q.TQ.SUBJ4+CA*(TQ.SUBJ4.Q)*SUBI4 )

N2:N2+-LEII,J3)*( CB*(SUBIO.Q.TQ.SUBJIO+CA*C(TQ.SUBIO.Q)*SUB31O+
SUBIIO .Q .TQ.SUBJO+CA*(TQ.SUBIIO.Q)*SUBJO)+

CC*(SUBI1 .Q.TQ.SUBJ9+CA*(TQ.SUBli.Q)*SUBJ9+
SUBI9.Q.TQ.SUBJi+CA*(TQ.SUBI9.Q)*SUBJI)+

CC*(SUB12.Q.TQ.SUBJ8+CA*(TQ.SUBI2.Q)*SUBJ8+
SUBI8.Q.TQ.SUBJ2+CA*(TQ.SUBI8.Q)*SUBJ2)+

CC*(SUB13.Q.TQ.SUBJ7+Ck*(TQ.SUBI3.Q)*SUBJ7+
SUB17.Q.TQ.-SUBJ3+CA* (TQ.SUBI7.Q) *SUBJ3) +

CC*(SUB14.Q.TQ.SUBJ6+CA*(TQ.SUB!4.Q)*SUBj6+
SUB16.Q.TQ.SUBJ4+CA*(CTQ.SUBI6.Q) *SUBJ4) +
SUBI5.Q.TQ.SUBJS+CA*(TQ.SUBJ5.Q)*SUBIS )

N2:N2+ REII,JJ)*( CB*(SUBIO.Q.TQ.SUBJ12+CA*(TQ.SUBIO.Q)*SUBJ12+
SUBI12.Q .TQ.SUBJO+CA*CTQ.SUBIIL2.Q)*SUBJO)+

CC*(SuBII.Q.TQ.SUBJ11+C*(TQ.SUBII.Q)*SUBJII+
SUBIlI .Q.TQ.SUBJI+CA*(TQ.SUBIlI.Q)*SUJI)+

CC*(SUB12.Q.TQ.SUBJ10+CA*(TQ.SUBI2.Q)*SUBJIO+
SUBIIO.Q.TQt.SUBJ2+CA*CTQ.SUBIIO.Q)*SUBJ2)+

CC*(SUB13.Q.TQ.SUBJ9+CA*(TQ.SUB13.Q)*SUBJ9+
SUBI9.Q.TQ.SUBJ3+CA*(TQ.SUBI9.Q)*SUBJ3)+

CC*(SUB14.Q.TQ.SUBJ8+CA*(TQ .SUBI4.Q)*SUBJS+
SUBI8.Q.TQ.SUBJ4+CA*(TQ.SUBIS.Q)*SUBJ41)+

C*(SUBIS.Q.TQ.SUBJ7+CA* (TQ.SUBIS. Q) *SUBJ7+
SUB17.Q.TQ.SUBJS+CA*(TQ.SUBI7.Q)*SUBJS)+
SUB16.Q.TQ.SUBJ6+CA*(TQ.SUBJ6.Q)*SUB16 )

N2:N+ TEII,JJJ*( CC*(SUB12.Q.TQ.SUBJ12+CA*(TtQ.SUBI2.Q)*SUBJ12+
SUBIi2.Q .TQ .SUBJ2+CA*(TQ.SUBI12.Q)*SUBJ2)+

CC*(SUB13.Q.TQ.SUBJII+CA*(TQ.SUBI3.Q)*SUBJ11+
SUBIll .Q.TQ.SUBJ3+CA*(TQ.SUBIll.Q)*SUBJ3)+

CC*(SUBI4.Q.TQ.SUBJIO+CA.CTQ.SUBrI1.Q)*SUBJIO+
SUBIIO.Q .TQ.SUBJ4+CA*(TQ.SUBIIO.Q' *SUBJ4)+

G-22



CC*(SUBI5.Q.TQ.SUBJ9+CA*(TQ.SUBIS.Q)*SUBJ9+
SUBI-9.Q.TQ.SUBJ5+CA*(TQ.SUBI9.Q)*SUBJ5)+

C* (SUB16.Q.TQ.SUBJ8+CA*(CTQ.SUBI6. Q) *SUBJ8+
SUBI8.Q.TQ-.SUBJ6+CA*(TQ.SUBI8.Q)*SUBJ6)+
SUB17.Q.TQ.SUBJ7+CA*(TQ.SUBJ7.Q)*SUBI7 )

N2:N2+ XHEII, 33)*(CC*(SUBI4.Q.TQ.SUBJ12+CA*(TQ.SUBI4.Q)*SUBJ12+
SUBl12.Q.TQ.SUBJ4+CA*(TQ .SUBI12.Q)*SUBJ4)+

CC*(SUBI5.Q.TQ.SUBJII+CA*(TQ.SUBIS.Q)*SUBJ1i+
SUBIlIIQ .TQ.SUBJ5+CA*CTQ .SUBI11 Q)*SUBJ5)+

CC*(SUB16.Q.TQ.SUBJIO+CA*(TQ.SUBI6.Q)*SUBJ10+
SUBI1O.Q.TQ.SUBJ6+CA*CTQ.SUBIlO.Q)*SUB36)+

CC*(SUB17.Q.TQ.SUBJ9+CA*(TQ.SUBI7.Q)*SUBJ9+
SUBI9.Q.TQ.SUBJ7+CA*(TQ.SUBI9.Q)*SUBJ7)+
SUB18.Q.TQ.SUBJ8+CA*(TQ.SUBJ8.Q)*SUBI8 )

N2:N2+ XJEII,JJ)*C CC*V(SUB16.Q.TQ.SUBJ12+CA*(TQ.SUBI6.Q)*SUBJ12+
SUBI12.Q.TQ.SUBJ6+CA*(TQ.SUBI12.Q)*SUBJ6)+

CC*(SUB17.Q.TQ.SUBu11+CA*(TQ.SUBI7.Q)*SUBJli+
SUBIll .Q.TQ.SU!337+CA*(TQ.SUBI11.Q)*SUBJ7)+

CC*(SUB18.Q.TQ.SUBJIO+CA*(TQ.SUBIB.Q)*SUBJIO+
SUBIlO. Q.TQ.SUB38+CA*(TQ .SUBIlO. Q)*SUBJ8)+
SUBI9.Q.TQ.SUBJ9+CA*(TQ.SUBJ9.Q)*SUBI9 ),

N2:N2+ XLEII,33]*( CC*(SUBI8.Q.TQ.SUBJi2+CA.*(TQ.SUBI8.Q)*SUBJi2+
SUBI12.Q.TQ.SUBJ8+CA*(TQ.SUBI12.Q)*SUBJ8)+

CC*(SUBI9.Q.TQ.SUBJII+CA*(TQ.SUBI9.Q)*SUBJII+
SUBIlII.Q .TQ.SUBJ9+CA*(TQ .SUBI11 .Q)*SUBJ9)+

SUBIIO.Q.TQ.SUBJIO+CA*CTQ.SUBJIO.Q)*SUBIIO )
N2:N2- XREII ,JJ)*( CC*(SUBIIO.Q.TQ .SUBJ12+CA*(TQ.SUBI1O.Q)*SUBJ12+

SUBI12.Q.TQ.SUBJ1O+CA*CTQ.SUBI12.Q)*SUBJIO)+
SUBI11.Q.TQ.SUB~i+CA*(TQ.SUBJ11.Q)*SUBI11 )

N2:N2+ XTEII,33)*( SUBI12.Q.TQ.SUBJ12+CA*(TQ.SUBJ12.Q)*SUBI12 )

KILL(SUBJ12,SUBIi2,SUBJII,SUBJ11),
KILL(SUBJO,SUB31 ,SUBJ2,SUBJ3,SUBJ4,SUB3S,SUBJ6,SUBJ7,SUB38,SUBJ9,SUBJIO),
KILL(SUBIO,SUBII ,SUBI2,SUBI3,SUBI4,SUBI5,SUBI6,SUBI7,SUBI8,SUBI9,SUBIIO)) )$

KILL(HO,Hi ,H2,H3,H4,H5,H6,H7,H8,H9,H1O,Hll,H12)$
N2SYH:ZEROMATRIX(i8, 18)$
FOR II THRU 18 DO FOR 33:11 THRU 18 DO N2SYM[II,J3J:N2(II,JJ)$
ERINT("SYMMETRIC N2 FORMED")$
I{ILLCN2)$
N2:ZEROMATRIX(18,18)$
KILL(Q ,TQ)$
FOR II THRU 18 DO FOR 33:11 THRU 18 DO
N2E11,33) :FACTOROUT(N2SYM[II,3J) ,Q(1) ,Q(2) ,Q(3) ,Q(4) ,Q(S) ,Q(6),

FRA14ECI,J) :CONCAT(TT,EV(18*(I-1)+J+1000))$
FOR I THRU 18 DO FOR J:1 THRU 18 DO
(IF N2EI,J)ItO THEN (PT:1,GENTRAN(SN2[EVAL(I),EVAL(J)J :EVAL(112[I,3J),
EEVAL(FRAHE(I,J))J )))$
IF PT#. THEN GENTRAN(PT:EVAL(PT),(TT2000J)$
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/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2S. *

/* ASSEMBLE MATRIX N2AS *
TQ:MATRIX( p(I) ,Q(2) ,Q(3) ,Q(4) ,Q(S) ,Q(6) ,Q(7) ,Q(8) ,Q(9) ,Q(1o),

Q: TRANSPOSE (TQ) $ LOADFILE("SSMATi23.SV")$
SSO:SUBST([K=Ki,C=Pi),SSO)$ SSI:SUBST([F=Ki,C=P1] ,SS1)$

SS2:SUBST([K=Ki,C=Pi) ,SS2)$ SS3:SUBST(EK=KI,C=Pi],SS3)$

SS4:SUBSTCEK=K1,C=Pi),SS4)$ SSS:SUBST([K=Ki,C=P1],SSS)$

SS6:SUBSTC[K=KI,C=P1] ,SS6)$ SS7:SUBST((K=Ki,C=Pi) ,SS7)$

SS8:SUBST([K=KI,C=PiJ ,SS8)$ SS9:SUBST([K=Kl,C=Pi] ,SS9)$

SSIO:SUBST([K=K1,C=Pi),SSiO)$ SS1i:SUBST([K=1{i,C=P1J,SS1i)$

SSi2*:SUBST(EK=Ki,C=Pi3,SSi2)$ N2S:ZEROI4ATRIX(18,i8)$

FOR II TIIRU 2 DO FOR 33 THRU 2 DO (PRINT(II,33),

( 2:3*C 9*(J3+1)-2-39*(JJ+i)+48), 12:3*( 9*(11+1)-2-39*(11+1)+48),
SUBISO:SUBMATRIX(SSO, 12,I2-1,I2-2,I2-3,I2-4,I2-5,IL.-6,12-7,12-8,I2-9,

12-10,12-i11,!2-12,12-13,12-14,12-16,12-16,12-17),
SUBJSO:SUBI4ATRIX(SS0, 32,J2-i,J2-2,J2-3,J2-4,J2-5,J2-6,32-7,2--8,32-9,

J2-iO,J2-ii,J2-i2,J2-i3,32-14,32-15,J2-16,J2-i7),

SUBISI:SUBMATRIX(SSI, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-iO,I2-li,I2-12,I2-13,I2-14,12-15,I2-16,I2-17),
SUBJSI:SUBMATRIX(SS1, J2,J2-1,32-2,J2-3,J2-4,J2-5,J2-6,J2-7,32-8,J2-9,

J2-iO,J2-ii,32-i2,32-i3,32-i4,32-i5,J2-i6,32-17),
SUBIS2:SUBMATRIX(SS2, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-11,I2-i2,I2-13,I2-14,12-I5,I2-16,I2-17),
SUB352 :SUBMATRIXCSS2, 32,32-i ,32-2,J2-3 ,J2-4,J2-5,J2-6, 32-7,32-8,32-9,

32-iO,J2-ii,32-i2,J2-i3,32-14,J2-iS,J2-16,J2-17),

SUBIS3 :SUBMATRIX(SS3, 12,12-1 ,12-2,12-3,12-4,12-5,12-6 ,12-7 ,12-8,12-9,

12-10,I2-litI2-12,I2-i3,I2-14,12-15,12-16,I2-17),

SUBJS3:SUBMATRIX(SS3, J2,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

J2-iO,J2-ii,J2-12,J2-i3,32-14,32-15,32-16,J2-i7),

SUBIS4:SUBMATRIX(SS4, 12,I2-1,I2-2,I2-3,I2-4,12-5,I2-6,I2-7,12-8,I2-9

12-10,I2-li,I2-12,I2-13,I2-14,12-15,I2-16,12-17),
SUBJS4:SUBMATRIX(SS4, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,

J2-iO,32-ii,J2-12,32-13,J2-14,J2-i5,J2-16,J2-i7),

SUBIS5:SUBMATRIX(SS5, 12,I2-lI,2-2,I2-3,I2-4,I2-5,I2-6,I2-7,12-8,I2-9,

12-10,I2-11,I2-12,I2-13,I2-i4,I2-iS,I2-16,I2-17),

SUB355:SUBMATRIX(SS5, 32,32-i ,32-2,J2-3, 32-4,32-5,32-6,32-7,32-8,32-9,

32-10,J2-11,J2-12,J9-i3,J2-14,J2-l5,32-16,J2-17),
SUBIS6:SUBMATRIX(SS6, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,

12-10,I2-1l,I2-i2,I2-i3,I2-14,12-15,12-i6,I2-17),

SUBJS6:SU~uIATRIX(SS6, J2,J2-i,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,

J2-1IA,J2-11,J2-12,J2-13,J2-i4,32-15,J2-16,J2-17),

12-10,I2-ii,I2-12,I2-13,12-14,12-iS,I2-16,I2-17),

SUBJS7:SUBMATRIX(SS7, J2,J2-1 ,3-2.3 2-3,32-4,32-5,32-6,32-7,J2-8,32-9,

J2-iO,J2-1i,J2-12,J2-13,J2-14,J2-15,J2-16,J2-17),
SUBIS8:SUBMATRIX(SS8, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
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SUB3S8:SUBMATRIX(SS8, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
J2-1O,J2-11,J2-12,J2-13,32-14,32-iS,32-16,J2-17),

SUBIS9:SUBMATRIX(SS9, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB3S9:SUBMATRIX(SS9, 32,J2-1,32-2,J2-3,32-4,J2-5,32-6,32-7,32-8,32-9,
J2-1O,J2-11,32-12,J2-13,32-14,J2-i5,J2-16,J2-17),

SUBISIO:SUBMATRIX(SSIO, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUB3SiO:SUBMATRIX(SS1O, J2,J2-1,32-2,J2-3,J2-4,J2-5,J2-6,32-7,32-8,J2-9,
32-iO,J2-11,J2-12,J2-13,J2-14,32-15,J2-16,J2-17),

SUBIS11:SUBMATRIX(SS11, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJSII:SUBMATRIX(SS11, 32,32-1,32-2,32-3,32-4,32-5,32-6,32-7,32-8,32-9,
J2-1O,J2-11,J2-12,J2-13,J2-14,J2-15,J2-16,J2-17),

SUBISi2:SUBMATRIX(SS12, 12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-1O,I2-il,I2-12,I2-13,I2-14,I2-i5,I2-16,I2-17),

SUB3S12:SUBMATRIX(SS12, 32Z,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,J2-7,32-8,J2-9,
J2-1O,32-ii,J2-i2,J2-13,32-14,J2-15,2-16,J2-17),

CA:O.5$ CB:i./3.$ CC:2./3.$

N2S :N2S+AS[EII,JJ*( SUBISO.Q.TQ.SUBJSO+CA*(TQ .SUB3SO.Q)*SUBISO )
N2S:N2S+DSCII,33)*( CB*CSUBISO.Q.TQ.SUBJS2+CA*(TQ.SUBISO.Q)*SUBJS2+

SUBIS2.Q.TQ.SUBJSO+CA*(TQ .SUBIS2.Q)*SUBJSO)+
SUBISI.Q.TQ.SUB3S1+CA*(TQ.SUBJSI.Q)*SUBIS1 )

N2S.,N25+FS[II,JJ)*( CB*CSUBISO.Q.TQ.SUBJS4+CA*(TQ.SUBISO.Q)*SUBJS4+
SUBIS4.Q.TQ.SUBJSO+CA*(TQ.SUBIS4.Q)*SUBJSO)+

CC* (suBIsi.Q.TQ.SUB3S3+CA* (TQ.SUBISI.Q) *SUBJS3-
SUBIS3.Q.TQ.SUBJS1+CA*(TQ .SUBIS3.Q)*SUBJS1)+
SUBIS2.Q.TQ.SUBJS2+CA*(TQ.SUBJS2.Q)*SUBIS2 )

N2S:N2S+HS[II,3J*( CB*(SUBISO.Q.TQ.SUB3S6+CA*(TQ.SUBISO.Q)*SUBJS6+
SUBIS6.Q .TQ. SUBJSO+CA*(TQ.SUBIS6.Q)*SUBJSO)+

CC*(SUBISI.Q.TQ.SUBJSS+CA*(TQ.SUBISI.Q)*SUBJSS+
SUBISS.Q.TQ.SUB3S1+CA*(TQ.SUBIS5 Q)*SUBJSI)+

CC*(SUBIS2.Q.TQ.SUB3S4+CA*(TQ.SUBIS2.Q)*SUBJS4+
SUBIS4.Q.TQ.SUB3S2+CA*(TQ.SUBIS4. Q)*SUBJS2)i
SUBIS3.Q.TQ.SUBJS3+CA*CTQ.SUB3S3.Q)*SUBIS3 )

N2S:N2S+3SEII,33)*( CB*(SUBISO.LQ.TQ.SUBJS8+CA*(TQ.SUBISO.Q)*SJBJS8+
SUBIS8.Q.TQ. SUBJSO+CA*(TQ.SUBIS8.Q)*SUBJSO)+

CC*(SUBIS1.Q.TQ.SUBJS7+CA*(TQ.SUBIS1.Q)*SUBJS7+
SUBIS7.Q.TQ. SUB3SI+CA* (TQ.SUBIS7.Q) *SUB3S1) +

CC* (sUB1S2.Q.TQ.SUBJS6+CA* (TQ.SUBIS2.Q) *SUBJS6+
SUBIS6.Q.TQ. SUBJS2+CA4'(TQ.SUBIS6 Q)*SUBJS2)+

CC* (suBIS3.Q.TQ.SUBJS5+CA* (TQ.SUBIS3.Q) *SUB3SS+
SUBIS5.Q.TQ. SUBJS3+CA*(TQ .SUBIS5.Q)*SUB3S3)+

SUBIS4.Q.TQ.SUBJS4+CA*(TQ.SUB3S4.Q)*SUBIS4 )
N2S :N2S+LSEII, 33)*(CB*(SUBISO .Q.TQ.SUBJS1O+CA*(TQ.SUBISO.Q)*SUBJS1O+

SUBISIO.Q .TQ.SUBJSO+CA*(TQ. SUBISIO.Q)*SUBJSO)+
CC* (sUBIS1 ..TQ.SUBJS9+CA* (TQ.SUBISi.Q) *SUBJS9+

SUBIS9.Q.TQ.SUB'3SI+CA*(TQ.SUBIS9.Q)'*SUB3S1)+
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Cc* (SUBIS2 ..TQ.SUBJS8+CA* (TQ. SUBIS2.Q) *SUBJSB+
SUBIS8.Q.TQ.SUBJS2+CA*(TQ.SUBIS8.p)*SUBJS2)+

CC* (SUBIS3.p. Tp.SUBJS7+CA* (TQ. SUBIS3 . ) *SUBJS7+
SUBIS7.T.TQ.SUBJS3+CA*(TQ.SUBIS7.Q)*SUBJS3)+

cc* (5UBIS4.p. TQ. SUBJS6+CA* CTQ. SUBIS4 .p) *SUBJS6+
SUBIS6.Q.TQ.SUBJS4+CA*(Tp.SUBIS6.Q)*SUBJS4)+
SUBIS5.Q.TQ.SUBJSS+CA*(Q. SUBJSS .Q)*SUBIS5 )

N2S:N2S+RSEII,JJ)*(CB*CSUBISO.Q.TQ.SUBJS12+CA*CTQ.SUBISO.Q)*SUBJSi2+
SUBIS12.Q.Tp.SUBJSO+CA*(Tp.SUBIS12.p)*SUBJSO)+

CC*(SUBISi .Q.TQ.SUBJS11+CA*(Tp.SUBISI.Q)*SUBJSii+
SUBISII.Q.TQ.SUBJSI+CA*(Tp.SUBISi1.Q)*SUBJSI)+

CC*(SUBIS2.Q.Tp.SUBJSIO+CA*(Tp.SUBIS2.p)*SUBJS1o+
SUBISIO.Q.Tp.SUBJS2+CA*(TQ.SUBISlO.Q)*SUBJS2)+

CC*(SUBIS3.Q.Tp.SUBJS9+CA*(TQ.SUBIS3.p)*SUBJS9+
SUBIS9.Q.TQ.SUBJS3+CA*(TQ.SUBIS9.p)*SUBJS3)+

CC*(SUBIS4.Q.TQ.SUBJS8+cA*(TQ.SUBIS4 .p)*SUBJS8+
SUBISB . .TQ .SUBJS4+CA* (TQ .SUBIS . p) *SUBJS4) +

CC* (SUBISS . .TQ. SUBJS7+CA* (TQ .SUBISS .p) *SUBJS7+
SUBIS7.Q.TQ.SUBJS5+CA*(Tp.SUBIS7.Q)*SUBJSS)+

SUBIS6.Q.Tp.SUJS6+CA*(TQ.SUBJS6 .p)*SUBIS6 )
N2S:N2S+TSEII,J3J*(CC*(SUBIS2.Q.Tp.SUBJS12+CA*(TQ.SUBIS2.p)*SUBJS2+

SUBIS12 . .Tp. SUB3S2+CA* (T . SUBIS12 . ) *SUBJS2)+
CC*(SUBIS3.Q.TQ.SUBJSII+CA*(TQ.SUBIS3.p)*SUBJSII+
SUBISII.Q.Tp.SUBJS3+CA*(Tp.SUBISi1.Q)*SUBJS3)+

CC*(SUBIS4.Q.T.SUBI3sO+CA*( rp.SUBIS4.p)*SUBJSio+
SUBISIO.Q.Tp.SUBJS4+CA*(TQ.SUBISIO.Q)*SUBJS4)+

CC*(SUBISS.Q.TQ.SUBJS9+CA*(Tp.SUBISS.Q)*SUBJS9+
SUBIS9. p.TQ-qUBJSS+CA*(Tp.SUBIS9.p)*SUBJS5)+

cc* (SUBIS6 . .Tp.SUBJS8+CA* (Tp. SUBIS6 .Q) *SUBJS8+
SUBIS8 .Q.Tp.SUBJS6+CA*(Tp.SUBIS8.p)*SUBJS6)+

SUBIS7. p.TQ.SUBJS7+CA*(Tp.SUBJS7.p)*SUBIS7 )
N2S:N2S+XHSEII,JJ)*(CC*(SUBIS4.Q.Tp.SUBJSi2+CA*(Tp.SUBIS4.p)*SUBJSi2.+

SUBIS12.Q.Tp.SUBJS4+CA*(Tp.SULISi2.p)*SUBJS4)+
CC*(SUBIS5.Q.Tp.SUBJS11+CA*(Tp.SUBIS5.Q)*SUBJS11+
SUBISII.Q.TQ.SUB.3S5+CA*(TQ.SUBISII.Q)*SUBJSS)+

CC*(SUBIS6 .p.TQ. SUBJSIO+CA*(TP .SUBIS6.p)*SUBJSIO+
SUBISiO.Q.Tp.SUBJS6+CA*(Tp.SUBISiO.Q)*SUBJS6)+

cc* (SUBIs7 .Q .TQ. SUBJS9+CA* (Tp. SUBIS7 .Q) *SUBJS9+
SUBIS9.Q.Tp.SUBJS7+CA*(TQ.SUBIS9.Q)*SUBJS7)+
SUBIS8 .Q.TQ.SUBJS8+CA*(Qr. SUBJS8 .p)*SUBIS8 )

N2S:N2S+XJSEII ,JJ)*(CC*(SUBILS6 .Q.Tp.SUBJS12+CA*(TQ.SUBIS6.p)*SUBJS12+
SUBIS12. Q.Tp.SUBJS6+CA*(Tp.SUBIS12.p)*SUBJS6)+
CC*(SUBIS7.Q.TQ.SUBJSII+CA*(TP.SUBIS7.p)*SUBJS11+
SUBISII.Q.Tp.SUBJS7+CA*(Tp.SUBIS11.Q)*SUBJS7)+

cc* (SUBIs8 . .TQ .SUBJSIO+CA* CT.- .SUBIS8 .Q) *SUBJSiO+
SUBISIO.Q.Tp.SUBJS84.CA*(Tp.SUBISIO.Q)*SUBJS8)+
SUBIS9 .Q.Tp.SUBJS9+CA*(Tp.SUBJS9.p)*SUBIS9 )

N2S:N2S+XLS[II ,J*(CC*(SUBIS8.Q.Tp.SUBJS12+CA*(Tp.SUBISS.Q)*SUBJS12+
SUBIS12 .Q.Tp.SUBJS8+CA*(Tp.SUBIS12 .p)*SUBJS8)+
CC*(SUBIS9.Q.Tp.SUBJSII+CA*(Tp.SUBIS9.p)*SUBJSII+
SUBISII.Q.TQ.SUBJS9+CA*(Tp.SUBIS11.Q)*SUBJS9)+
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SUBISIO.Q.TQ.SUBJSIO+CA*(TQ.SUBJSIO.Q)*SUBISIO )
N2S:N2S+XRS[II,J*CCC*(SUBISIO.Q.TQ.SUBJS12+CA*(TQ.SUBISlO.Q)*SUB3S12+

SUBISI2.Q.TQ.SUBJSIO+CA*(TQ.SUBIS12.Q)*SUBJSIO)+
SUBISII.Q.TQ.SUBJS11+CA*(TQ.SUBJS11.Q)*SUBIS11 )

N2S:N2S+XTS[II,33]*( SUBIS12.Q.TQ.SUBJSi2+CA*(TQ.SUBJS12.Q)*SUBIS12 )

KILL(SUB3S12,SUBIS12,SUBJSil,SUBISil),
KILL(SUBJSO ,SUBJS , SUBJS2 ,SUBJS3 ,SUB3S4 ,SUBJSS,

SUBJS6,SUBJS7,SUBJS8,SUBJS9,SUBJSIO),
KILL(SUBISO ,SUBISI ,SUBIS2 ,SUBIS3, SUBIS4 ,SUBIS5,

SUBIS6,SUBIS7,SUBIS8,SUBIS9,SUBISIO)) )*

KILL(SSO,SS1 ,SS2,SS3 ,SS4,SS5,SS6,SS7,SS8,SS9,SSIO,SS11 ,SS12)$
N2SYM:ZEROMATRIX(i8,i8)$
FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYMEII,JJ:N2SEII,J3]$
PRINT("SYMMETRIC N2 FORMED")$
KILL(N2S)$
N2:ZEROMATRIX(18,18)$
KILL(Q ,TQ) $
FOR II THRU 18 DO FOR 33:11 THRU 18 DO
N2EII,J3) :FACTOROUT(N2SYM[II,33 ,Q(i) ,Q(2) ,Q(3) ,QC4) ,Q(S) ,Q(6),
Q(7),Q(8),Q(9),Q(1O),Q(11),Q(12),Q(i3),Q(14),QC1S5),Q(16),Q(17),Q(18))$
FRAMECI,3) :CONCATCTT,EV(18*CI-i)+J+1000))$
FOR I THRU 18 DO FOR 3:1 THRU 18 DO
(IF N2EI,JO THEN (PT:1,GENTRAN(SN2S[EVAL(I),EVAL(3)):EVAL(N2[I,3J),
EEVAL(FRAME(I,3)))))$
IF PT#l THEN GENTRANCPT:EVALCPT), ETT2000] )$
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