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Abstract

Eight variations of higher-order transverse shear deformation (HTSD) theory were
developed for laminated composite shells. The behavior and limitations of these varia-
tions were numerically evaluated for several cylindrical shell problems. All variations of
the theory used linear kinematic assumptions and nonlinear strain-displacement relations
for in-plane strain components. Three different higher-order attributes were included, or
excluded, in various combinations to produce the eight variations. The first attribute de-
fined the order of the series expansions, in the thickness direction, used to approximate
the assumed displacement field. The second attribute defined the order of the series ex-
pansions used to approximate the geometric shape factors of the shell. The third attribute
was the choice to include, or exclude, the nonlinear terms of the Green-Lagrange strain-
displacement relations for the transverse shear strains. When nonlinear terms of transverse

shear were excluded, the theory was called quasi-nonlinear.

Several problems were investigated using a finite element computer code (SHELL)
with an élement independent stiffness matrix formulation and a 36 degree of freedom
cylindrical shell element. The original version of SHELL was written at AFIT in 1989.
MACSYMA, a symbolic manipulation code, was used to formulate the element independent
stiffness arrays for each variation of the theory. Thin shallow isotropic cylindrical shell
panels exhibited a more flexible response during collapse when nonlinear transverse shear
was included. The use of quartic, versus cubic, displacement and/or the use of quadratic,
versus linear, shape factor approximations had no significant effect upon accuracy of the
nonlinear HTSD theory. For deeper shells, the linear displacement assumption prohibited
the use of nonlinear strain-displacement relations for transverse shear strains. Thus, for
deep shells, the quasi-nonlinear HTSD theory produced a more flexible response during
collapse when the order of shell shape factor approximations was increased. The effects of
quartic displacement were much less significant than the effects of quadratic shape factor

approximation.

Xii




HIGHER-ORDER THICKNESS EXPANSIONS
FOR CYLINDRICAL SHELLS

L. Introduction

Recent increased interest in composite shell analysis has been generated by the use
of fiber-reinforced composite materials for aerospace applications. A second factor in the
proliferation of composite shell research is the use of modern digital computers. With
computers, solutions can now be found for problems which before were impossible to solve
analytically. In particular, problems involving geometric and material nonlinearities can

be solved by numerical methods.

Composite shell structures are used in many US Air Force and defense-related equip-
ment because of the inherently high strength-to-weight ratios of composite shells. His-
torically, thin isotropic shells have been analyzed for many years according to the linear
elastic theory formulated by A. E. H. Love [47] in the late 1800’s. Love’s theory assumes
normals to the shell’s midsurface remain straight and normal during deformation. This
assumption, like the Kirchhoff assumption for flat plates, implies transverse shear strain
and stress are zero throughout the shell. Also, since the shell is assumed to be very thin
compared to its other characteristic lengths, many terms in the equations are approxi-
mated (e.g., terms with radius in the denominator are assumed negligible). More recently,
Donnell [23], Mushtari, and Vlasov [104] independently derived comparable theories for
thin elastic shells that included nonlinear terms (functions of transverse displacement) for
the in-plane strains. These theories, however, still ignored transverse shear and most terms

with radius in the denominator.

In general, shell theories that ignore transverse shear effects will predict stiffer be-
havior than experimental data shows. Inclusion of transverse shear effects reduces this stiff

behavior. Like Love theory, the newer Donnell, Mushtari, and Vlasov theories invoked the

Kirchhoff hypothesis. Thus, they also ignored transverse shear strain and stress. For thick




shells, however, the transverse shear terms can not be ignored in all cases. Likewise, trans-
verse shear terms become more significant with the introduction of non-isotropic composite
materials. This is primarily due to the small transverse shear modulus of fiber-reinforced

composite laminates.

During the last two decades, many composite shell problems with transverse shear-
effects included have been solved using numerical solution techniques. Some investigators
have solved these problems using fully three-dimensional models. These models, however,
generally require excessive computational times. They may also exhibit singularities and
other mathematical problems when used to analyze thin shells. Other investigators have
solved these problems using shell theories, which require less computational effort, with

either first-order or higher-order transverse shear deformation.

The “order” of transverse shear deformation theories refers to the highest order poly-
nomial, in terms of the thickness coordinate, used to describe the assumed displacemen:
field. This does not, in general, imply that higher-order shear theories have more inde-
pendent degrees of freedom. The first-order transverse shear deformation (FTSD) theories
use shear correction factors and reduced integration. These artifices compensate for the
theoretically incorrect distribution of transverse shear strain. The higher-order transverse
shear deformation (HTSD) theories allow normals to the shell’s midsurface to rotate from
normal and also to warp. This assumption results in a transverse shear strain distribution
that is parabolic through the thickness of a flat plate. Most previous theories for geomet-
rically nonlinear shell problems with HTSD theory have retained some nonlinear strain
displacement terms for in-plane strain components. Most, however, have also ignored non-
linear strain displacement terms and the effect of higher-order thickness expansions for the
transverse shear components. In this dissertation, transverse shear deformation tlieories
which include nonlinear terms for in-plane strains but linear strain-displacement relations
for transverse shear strains are generally called linear FTSD (or HTSD) theories. In some
cases, when the distinction is important, particularly in the summary chapter, these the-
ories are more precisely called quasi-nonlinear theories. Only HTSD theories including

nonlinear terms of transverse shear are called nonlinear I'CSD theories.




For this research, the full nonlinear strain displacement relations for laminated com-
posite shells with nonlinear HTSD terms were developed. This was done without neglect-
ing higher-order terms in the thickness expansions. These relations were then incorporated
into a proven finite element formulation to investigate the accuracy of various geometric

approximations of curvature and displacements and the effect of nonlinear II'TSD.

A review of related research in the areas of composite shells and transverse shear
deformation is included in Chapter II. Some theoretical concepts are presented in Chapter
III. These concepts, common to most of the published literature addressing the subject
area of this dissertation, were not independently developed by the author. They are in-
cluded in the dissertation to assure a common understanding of the theoretical background
of this research. The new theory, developed by the author for this research, is presented
in Chapter IV. Since strain equations for this theory are very lengthy, abridged equations
are used in Chapter IV; unabridged equations of strain components are listed in the ap-
pendices. Typical composite shell problems of interest to the USAT and some classical
isotropic shell problems were investigated to determine the effects of higher-order thick-
ness expansions and nonlinear HTSD theory. Results of these investigations are discussed
in Chapters V and VI. A significant tool used in the development of this theory was a
computerized symbolic manipulation code called MACSYMA [48]. Use of . symbolic code,
like MACSYMA, allows the formulation of the full nonlinear HTSD theory without ignor-
ing terms. The use of one “symbolic input program” to gencrute all vasiations of theory
provided reliability and confidence that the Fortran codes were correctly generated. Part
of the symbolic input program is included as an appendix since it played such a critical

role in this research program.
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II. Literature Review

The field of structural shell analysis is rich in history and significant accomplishments.
Many textbooks, conference collections, and review articles have been published over the
last century. These publications and the hundreds of related technicai articles pubiished
over the last two decades present a comprehensive view of what has been accomplished in
this field. One of the most recent review articles by Noor and Burton [56] comprehensively
reviews 400 published works on computational models for multilayered composite shells.
The cited works include those with analytic three-dimensional solutions, analytic solutions
using two-dimensional shear deformation theories, and finite element or other numerical
solutions [56]. Two other recent review articles cite many references related to this research.
Kapania and Raciti reviewed recent advances in analysis of transverse shear effects and
buckling of laminated beams and plates [38]. Tluv cite 145 references. Wempner cited

about 150 references on the mechanics and finite elements of shells [106].

For many years, the well-known Kirchhoff-Lo ‘e assumptions were used as a starting
point for shell theory derivations. These assumptions include o state of plane stress and
inextensible normals which remain straight and normal during deformation. Koiter [40]
estimated the relative error associated with Love’s approximation to be less than h%/L?
or h/R, whichever was larger. Koiter defined » as thickness, L as the smallest “wave
length” of the deformation pattern of the shell midsurfoce, and R as the smallest principal
radius of curvature of the shell midsurface [40]. Koiter aisv estimated the magnitudes of
the transverse strain compenents. He indiccted transverse shear stresses are generally of
the order /L times the bending or direct stresses. bu* =iansverse normal stresses are of
the order h2/L? or h/R times the same stresses. Koiter concluded, “... a refinement of
Love’s approximation is indeed meaningless, in general, unless the effects of transverse
shear and normal stresses are taken into account ..." [40]. Koiter used simplifications
based upon small strain assumptions for isotropic materials. Tor large strai1. problems, or
for non-isotropic maerial behavior, including transverse shear deformation may be even

more necessary.




The simplicity and efficiency of vhe Donnell-Mushtari-Vlasov thin shell theory justi-
fies its use for many thin isotropic shell problems. For problems undergoing large rotations
or problems with significant radii of curvatui. =~ more general nonlinear theory is required.
Reissner [83, 84] developed a nonlinear thee:y - '-allow shells and symmetrically deform-
ing shells of revoluvion with transverse shv.. ¢ -2..: . “-abir and Lock [87] developed a sheil
theory using a displacement field derived fro.. :.mple independent generalized strain func-
tions.” Their work was based upon plane stre: , assumptions and ignored transverse shear
deformation. Their results for a 100-inch radi: uinged-i-o¢ izotropic shell with thicknesses

of 0.75, 0.5, and 1.0 inches are often ci‘ed as « omparisons

Simmonds and Danielson [95] deteloped a general noulinear theory for thin shells of
arbiirary midsurface geometry. Their theory included compatibility equations, equilibriz.m
equations and boundary conditions which were val'd for shells undergoing arbitrarily large

rotations and strains. In their work, they nsed a finite rotation vector defined by:
Q) =ésing (2.1)

where €(z%,1) is a unit vecter, ¢ is the shell thickness coordinate, 2%, @ = 1,2 arc the
shell surface coordinates, and 6(z%,t) is the magnitude of rotation about an axis parallel
to & When Eq (2.1) is included as part of the kinematic relations, one obtains highly
nonlinear expressions for the shell extensional and berding strain components in terms of
the shell curvature tensor and the components of Eq (2.1). These expressions, according
to Simmonds and Danielson, can be simplified to the equations of Reissner’s theory and

to those of the Sanders-Koiter shell theory [95].

Other authors have separated rigid body rotations from rotations caused by deforma-
tions. Belytschko and Glaum (8] accounted for initial curvature and moderate variations of
rigid body rotation. Their formulation was for shallow arch structures where, despite large
rotations, deflections were less than two percent of the radius. They used Euler-Bernoulli
beam theory which, like the Kirchhoff-Luve theory, assumes normals to the midsurface
remain straight and normal. Their results for an arch with a rise to thickness ratio of

6.835 were approximately 13 percent stiffer ti..n experimental results [8]. Belytschko and
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Glaum did not discuss the possible influence of transverse shear deformation.

Hughes and Liu [30] incorporated FTSD theory in a quasi-nonlinear, Jarge-strain,

‘la.rge-rotation finite element model for general shells. In their develoi-ment, they reduce

the three-dimensional theory of nonlinear continuum mechanics to o two-dimensional shell
theory simultaneously with the finite element discretization. This method of dzrivation is
sometimes called the degenerated shell method. Their incorporation of shear correction
factoi -, however, was unique. For the general nonlinear problem, the transverse shear
terms in the equilibrium equations are coupled with the in-plane ter.ns. Hughes and Liu
modified their strain displacement relations to incorporate the sicar correction factor,
instead of incorporating the factor in the constitutive relations. This allow=u extension of
the selective integration procedure *o the fully-coupled nonlinear case. Selective integration
refers to using exact numerical integration for the finite element equations associated with
in-plane strain terms, and less-than-exact numerical integration for the transverse shear
strain terms. Hugiies and Liu investigated shallow circular 100-inch radius arches and
hinged-free shells under point load. Their results compared well with other studies up
to the onset of instability [30]. Unfortunately, no results were shown for these problems

beyond this initial point of instablity.

Parisch presented a “layered” shell element model with large rotation capability and
nonlinear material assumptions. His results for the 100~inch radius hinged-free cylindrical
shell under point load also compared well to published works up to the point of instability
[69]. Parisch’s theory was intended for large displacement analysis, however, he neglected
all g:adratic nonlinear strain terms in the constitutive relations. Thus, transverse shear
stresses were constant through the cheil thickness [69]). Like Simmonds’s fermulation,
Parisch’s formulation has complicated nonlinear expressions of rotations within the strain

components.

Surana also published a paper {98] on a curved shell theory incorporating highcer-
order nonlinear rotation terms. His shell theory employed five degrees of freedom at each
node. Although Surana’s eight-node isoparametric elements permitted large nonlinear ro-
tations and linear elastic orthotropic material behavior, the effect of transverse shear was

not discernible from the published results. This was apparently due to the small ratio of
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thickness to radii of curvature for Surana’s problems. The clamped-hinged circular arch,

‘Surana studied, had a radius of 100 inches, thickness of 1 inch, and an included angle of

215 degrees. Surana’s results for a 2-inch wide arch showed beam-like behavior, but a
24-inch wide arch behaved more like a shell strip. His results for hinged-free cylindrical
Shells,} generally, compared well with other published results [87]. Surana concluded that
linearizing the element displacement field wi.b respect to nodal rotations limits the mag-
nitude of rotations during the large deformation process [98]. According to Surana, his

formulation includes many nonlinear terms of nodal rotation, and therefore, achieves good

convergence rates for large load increments.

Koiter’s estimates of error can be used to show the important role transverse shear
can play in the behavior of shell structures Tu the previously cited papers, the hinged-free
cylindrical shell had an undeformed rztio of h/R = 1/100. As the panel deforms, however,
the local radii of curvature at any point is no longer the undeformed radius of the shell.
Curvature, where the point load is applied, may even change sign. The wave length of
deformation will generally be less than the largest in-plane dimension of the shell. For
the hinged-free shells Sabir and Lock studied, the longitudinal and circumferential arc
lengths of the shell are both 20 inches. The effects of local changes in the shell shape
are often ignored in shell theories. Morley [51] showed that thin shell finite elements
which use quadratic polynomials (with Cartesian coordinat.is) to describe components of
displacement cannot adequately represent inextensible bending. The well-known Semi-
Loof shell finite element developed by Irons and Ahmad [32] is such an element. Morley
indicates even isoparametric finite elements do not provide an acceptable description of
inextensible bending of curved surfaces unless the element nodal interpolation functions

are at least cubic in order [51].

The development of a shell model for large-rotation nonlinzar problems is complicated
by the introduction of laminated anisotropic materials or large changes in curvature of
the surfaces. Noor, Peters, and Andersen [55] developed mived finite element models
for beams, and later for shells, which employed “reduction” techniques for large-rotation
nonlinear problems. Their mixed finite element model assumes other nodal unknowns,

such as stress, strain, etc., in addition to nodal displacements. Their results for the 100~

2-4




inch radius clamped-hinged deep arch showed excellent convergence. They also included
Reissner’s large deformation transverse shear approximations. Noor, Peters, and Andersen
state, “The development of mixed models is simpler and more straight forward than those
of the displacement models. ‘This is particularly true for large-rotation and large strain
problems in which the functional of the mixed variational principle is simpler than that of

the minimum potential energy principle” [55].

Bathe and Dvorkin [5] also used a mixed finite element formulation to develop general
shell elements. They suggested six “Requirements on shell elements” which they consider
important for general shell elements. Three of these requirements are related to this re-
search. Condition 1 implied no specific shell theory should be used. Condition 3 specified
“[the element] must not—ever—contain any spurious zero energy nodes; it must not—
ever—lock and must not be based on numerically adjusted factors.” Condition 4 suggested
five or six engineering degrees of freedom per node should be maximum for shell elements
[5]. Condition 3 seems to suggest FTSD-based finite elements are not acceptable, since
these models have shear correction factors and will shear lock if not numerically underin-
tegrated. On the other hand, HTSD-based finite elements require at least seven degrees
of freedom per node. Condition 1 seems to eliminate most two-dimensional shell-based
theories, since these generally assume the transverse displacement w is constant through
the thickness and the transverse normal stress o33 is approximately equal to zero. Further-
more, even the use of orthogonal curvilinear coordinate systems (and strain definitions)

based on lines of principal curvature seem forbidden.

Bathe and Dvorkin [5] developed their theory in terms of element-based isoparametric

coordinates. They used this “convected” coordinate system to numerically interpolate the

‘in-plane covariant components of the Green-Lagrange strain tensor and to determine con-

travariant components of the Second Piola-Kirchhoff stress tensor. Transverse shear strains
were interpolated differently than ir-plane strains. The values of transverse shear strain
components €13 and €23 were interpolated numerically at two points of a four-noded rect-
angular element using the appropriate Green-Lagrange strain tensor equation [5]). These
two values for a each transverse shear strain component were then linearly interpolated

to determine approximate values of €3 and €23 at each node point. Their eight-noded
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sheH element used a higher-order interpolation, based on six points, of transverse shear

strain. In-plane strain for this element were calculated using an eight-point interpolation

scheme. Bathe and Dvorkin presented results of a 20~inch radius curved cantilever of 0.2-

inch thickness subjected to constant bending moment. Their finite element results with

-undistorted elements were within 2 percent of analytical solutions. Results with distorted

elements were within 8 percent of analytical results [5]. They also reported good compar-
ison with analytic solutions for a pinched cylinder with k/R = 1/100 and h/L = 1/200,
a Scordelis-Lo cylindrical roof and an isotropic cylindrical shell panel. Their shell panel
was rigidly supported at the cylindrical ends and free along the longitudinal edge with
h/R = 1/100 and L/R = 1/200. The only load on the shell was due to gravity. Again,
based on Koiter’s estimates, the transverse shear strains occurring in these problems were
on the order of 1-2 percent of the in-plane strains. Thus, the results reported by Bathe

and Dvorkin do not substantiate the transverse shear performance of their element.

With so many shell theories available, a method to assess the capability of a particular
theory to represent large nonlinear rotations was needed. According to Nolte, Makowski,
and Stumpf, Pietraszkiewicz [71, 70] suggested classifying “small strain shell theories ac-
cording to the magnitude of rotation angle w of the material elements as follows: small
rotations w < O(62), moderate rotations w = (), large rotations w = O(v/8) and finite
rotations w > O(1), where 8 is a common small parameter ...” [53]. The term “material
elements” includes a vector normal to the shell midsurface and two vectors tangent to the
midsurface in the directions of principal curvature. The parameter 6 was defined by Nolte

et al., based upon the work of Koiter [40] and John [35], as follows:

Jh b b [k 2
ma{d’f’L”\/;"/ﬁ}’ ° <1 (2.2)

where R, h, L, L* , 0, d are “the minimum principal radius of curvature, the shell thickness,

ST
]

the wave length of deformation, the wave length of the curvature pattern, the maximum
principal strain in the shell space and the distance of any point under consideration to

the Jateral shell boundary” [53]. The wave length of deformation is the distance between

points where the derivatives of transverse displacement have the same values. The wave




length of the curvature pattern is the distance between counter-flexure points of the shell

midsurface.

Nolte, Makowski, and Stumpf [53] evaluated error estimates derived for cylindri-
cal bending of thin shells under the Kirchhoff-Love hypothesis for several shell theo-
ries. These theories included moderate rotation theories of Donnell, Koiter, Sanders, and
Pietraszkiewicz; various nonlinear theories of XKoiter, Basar, Chuyko, Shapavalov, Yaghmai,
and Varpasuo; large rotation formulations of Nolte et al., Pietraszkiewicz, and Schmidt;
and the finite rotation theory of Pietraszkiewicz and Szwabowicz [53]. Many of these the-
ories were shown by Nolte to be inconsistent, because they ignored essential terms in the
strain-displacenient relations, the geometric boundary condition relations, or in the energy

equations. Nolte et al. state that

. all nonlinear shell equations, widely used in theory and engineering prac-
tice, are valid only in restricted domaines [sic.] of applicability, whereas these
domaines [sic.' are in general not well-defined ... the consistency of a ge-
ometrically no~linear theory cannot be proved by proper estimates of the so
called ‘intrinsic’ error bounded to the required range of applicability, or in other
words that ‘small’ terms in the strain-displacement relations will lead to ‘small’
differences in the solution. [53]

The theories evaluated by Nolte, Makowski, and Stumpf were for thin shells assumirg
the Kirchhoff-Love hypothesis that normals remain straight and normal to the midsurface
of the shell. Recall that Koiter indicated theories which ignore transverse normal stress
cannot improve on the classical Kirchhoff-Love shell theory [40]. Thus, unless the shell
is truly thin, one may need to include transverse shear deformation. Surana’s nonlinear
large rotation finite element formulation (98] discarded the Kirchhoff-Love assumptions.
Surana generalized his theory to include “axisymmetric shells, two-dimensional isopara-
metric beams, curved shells, two-dimensional transition elements and solid-shell transition

elements ...” [99).

Schmidt [90] revisited the general nonlinear theory of thin elastic shells undergoing
small strains and arbitrary, unrestricted rotations. In this paper Schmidt develops, in

detail, 2 consistent “first approximation” shell theory for small strains and unrestricted ro-
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tations, where first approximation refers to Koiter’s modified version of the Kirchhoff-Love
hypotheses. Kirchhoff-Love theory is based upon the assumption that straight normals
remain straight, normal and inextensible. This is equivalent to the assumption of plane
strain. In the case of plane strain, transverse strains are assumed to be zero and transverse
stresses are assumed to be nonzero. The classical Kirchhoff-Love theory assumes transverse
normal stress is zero instead of normal strain being zero. Tuus, the classical Kirchhoff-Love
theory is inconsistent. Koiter’s first approximation corrects this inconsistency by allowing
transverse stresses to be nonzero. They are, however, restricted to magnitudes at least one
order less than the in-plane stresses [92:613]. Schmidt’s theory assumed plane stress and
no transverse shear deformation. He then reduced this finite rotation theory to a large
rotation theory. Next, he reduced it further by assuming rotations about the normal were
small. Finally, a consistent small strain moderate ro.ation theory was derived by eliminat-
ing more terms in the governing equations. This paper shows the process of deriving what

Schmidt calls a “variationally consistent” nonlinear shell theory.

Many other investigators have used finite element shell models to solve practical
design-related problems. The development of general families of finite element models by
Bathe and Dvorkin [5] and Surana [99] seem to support this trend. A general purpose fi-
nite element code called STAGSC-1 [1] was developed by Lockheed for aerospace research.
This program also has a series of elements (all flat) used to simulate shell structures.
Knight, Starnes, and Williams [39] investigated the post-buckling response and failure
characteristics of graphite-epoxy cylindrical panels loaded in axial compression. They
used experimental tests and the STAGSC-1 computer code to evaluate post-buckling re-
sponse of cylindrical shells and curved panels. They found a severe reduction in load occurs
at buckling and failures begin near regions with severe local bending gradients. Knight
et al. point out that many previous studies of the post-buckling behavior of composite
cylindrical panels were extensions of classical methods. These often ignored the effects of
large rotations. They found that even Jow values of applied load can cause high values of
local surface strains to develop near regions with severe local bending gradients. Failures
occurred in regions of large radial displacements and severe bending gradients, which ap-

parently caused large surface strains [39:146]. Knight ct al. were able to predict responses




that correlated well with experiment up to buckling. They blamed the influence of local
failures for deteriorating correlation after buckling. They noted STAGSC-1 assumes the
composite material system remains linear elastic throughout the analysis. This assumption
is inaccurate since many composites suffer severe reduction in local stiffness as a result of
local failures. Furthermore, the local failures which occurred near regions of large changes
in curvature can not be analytically modeled by STAGSC-1 {39]. (STAGSC-1 uses flat
plate elements with a “corotational” scheme to model large rotations [76]. This program

also ignores higher-order curvature terms in the kinematic assumptions [1].)

Palazotto, Tisler, and others [61, 62] have also used the STAGS computer code.
These authors compared analytical predictions of buckling response to experimental work
on graphite-epoxy cylindrical panels. Their work included the effects of rectangular, un-
reinforced cutouts. They also saw large radial displacements, large curvatures over small
regions, and severe gradients of curvature for loads less than 10 percent of the critical
buckling load. Again, the STAGSC-1 assumption of linear elastic material response was

used. Under these small loads no permanent damage occurred.

Design also entails estimation of failure or, more importantly, assurance that failure
will not occur. The STAGSC-1 computer code can provide stress distribution estimates
for a composite laminate. The accuracy of these estimates is subject to the approxima-
tion of curved surfaces by flat elements. To improve stress estimates for shell models,
some investigators have used the full three-dimensional equilibriun cquations to derive
transverse stress distributions. Chaudhuri [15] computed in-plane stresses using “assumed
quadratic displacement triangular elements based on transverse inextensibility and layer-
wise [sic.] constant shear angle theory (LCST).” Transverse stresses were then computed
using the equilibrium equations. Results for an infinitely-long fiber-reinforced [90/0/90]s
strip loaded with sinusoidal pressure matched exact results for the transverse shear vari-
ation at the boundary [15]. Engblom and Ochoa [24] superimposed shear rotation on the
midplane rotation, thus, relaxing the Kirchhoff hypothesis for a quadrilateral plate element.
This method is actually a FTSD theory, but only midplane displacements and rotations
are evaluated during the first step of the solution. Transverse shear and normal stresses are

then calculated by integrating the three-dimensional equilibrium equations. This metlod
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results in a parabolic distribution of transverse shear stress. According to Engblom and
Ochoa, this distribution for a 3 x 3 quarter-plate model of a simply supported [0/90/0]
square plate with sinusoidal load predicts a 093 at the midplane that is 32 percent greater
than theoretical. The stress is reduced to 27 percent greater than theoretical for a 6 X 6

quarter plate mesh [24].

Higher-order transverse shear deformation theory was used by Kwon and Akin [41]
for the analysis of layered composite plates. Their mixed element formulation used six
unknown variables u,, vo, Wo, Mg, My, and Mz, defined only at the midsurface of the shell.
Through the thickness shear is parabolic in this method, and thus, correction factors are
not needed. Kwon and Akin’s transverse deflection results for several plate configurations
with sinusoidal load matched Pagano’s exact elasticity solutions much closer than previous
finite element work by Mawenja (1974) and Panda (1979) [41]. Reddy’s Jisplacement-based
HTSD finite element model for plates is referenced, but Reddy’s results are not included
in Kwon and Akin’s comparison of results. In general, Reddy’s results were closer to the
exact elasticity solutions than the two finite element works cited by Kwon and Akin. Kwon
and Akin’s results, however, predicted defections much more accurately than Reddy’s. For
ratios of h/L exceeding 0.1, Kwon and Akin’s results were actually more flexible than the
exact elasticity solution. Apparently, Kwon and Akin’s mixed formulation overcompensates

for the flexural stiffness reductions caused by transverse shear deformation.

Reddy et al. published several technical reports and paper: 42, 65, 66, 74, 80, 81,
77, 78, 79] addressing transverse shear deformation of plates and shells. Their research
included analytical solutions of the linear theory with HTSD for various boundary condi-
tions, moderate rotation theory of laminated coi. vsite plates, and development of finite

element models for failure analysis using a mixed finite element method.

Liu in his dissertation, as reported by Reddy and Liu [80], formulated a “new” third-
order theory of laminated shells that accounts for a parabolic distribution of transverse
shear stresses and von Karman strains. Exact Navier solutions were derived for several
simply-supported laminated composite shells. A mixed variational principal was devel-
oped, and from it, a mixed C° finite element was generated to study bending, vibration,

and transient response of laminated composite shells. In this formulation, generalized
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displacements u, v, w, ¢;, and ¢, and generalized moments. My, My, Mg, Py, P,, and
Ps are used as the dependent variables. The higher-order displacements ¢y, and ¢4, are
actually rotations and must be included in a displacement-based transverse shear defor-
mation theory. Recall, Kwon and Akin only used u, v, w, My, My, and Mg as dependent
variables in their mixed finite element model. According to Reddy and Liu [80], some
higher-order displacement-based shear deformation theories have been developed using
equilibrium equations of the first-order theory. Thus, the higher-order terms of the dis-
placement field are included only in the strain calculation not in the governing differential

equations or boundary conditions. Thus, they claim these theories are inconsistent [80].

The issues of variational consistency and theoretical acéuracy have resulted in con-
tinued research in basic shell theory (3, 4, 46). Axelrad and Emmerling were concerned
with analysis of flexible shells instead of those designed for strength and stiffness [3, 4].
Thus, “Not any thinkable large displacements and rotations but preferably those actually
realizable by small strain ...” were considered. The theory developed by Axelrad and
Emmerling is strictly “intrinsic.” This means the deformed shape and displacements are
calculated in terms of strain resultants instead of solving for displacement parameters.
These types of formulations, according to Axelrad and Emmerling, have their foundation
in the fundamental works of Reissner, Goldenveizer, and others [3]. The flexible shell is,
essentially, in a state of inextensible bending. For this case, the displacement form of
the field equations may be ill-conditioned. Thus, according to Axelrad and Emmerling,
“The intrinsic approach makes the problem involving finite, and in particular large, rota-
tions immensely more tractable” [3]. Their analysis, however, used approximations of the
assumed stress state, such that all substantial strain and stress resultants occur in one co
ordinate direction. Thus, their theory is a one-dimensional theory like the one-dimensional

beam-shell theories of Libai [43, 44].

Librescu and Schmidt [45, 46)] also re-examined shell theory with transverse shear
deformation and moderate rotations of the normal. Their theory was based upon the

following assumptions:
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“(a) that the strains are small everywhere in the shell,

“(b) that the in-surface rotations of the shell material elements about normals
to the midsurface are small (and of the same order as the strains), and

“(c) that the rotations of the normal to the midsurface are moderate. [46)

With these assumptions, the order-of-magnitude estimates of the linearized components of
the rotation vector 2 are Q43 = O(6) and Qap = (6?), where only the linear part of the full
nonlinear rotational components are used [46]). For the generally shaped shell described
in an orthogonal curvilinear coordinate system based on lines of principal curvature, the
transverse strain components include contravariant components of the rotation vector. The
displacement vector V is written as a truncated power series of the shifted components
of V across the shell thickness. Then, the transverse strains become an infinite series
summation across the shell thickness. The in-plane strains are a finite sum with 2(n + 1)
terms, where n is the truncation order of V. Librescu and Schmidt indicate that these
infinite summations for transverse strains may only be reduced to finite sums under four

conditions:

(a) in the case of shallow shells (and, as a limiting case for planar surfaces),
(b) within the linearized higher-order shell theories,

(¢) when an appropriate “thinness” requirement of the form (h/R)" < 1 is envoked, and

finally,

(d) under Kirchhoff-Love constraints [46).

Librescu and Schmidt also showed that the infinite summations for transverse strains of an
FTSD theory could be replaced by finite summations. The shell theory they developed was,
thus, a variationally consistent “geometrically nonlinear theory of elastic anisotropic shells
with transverse (normal and shear) deformations and higher-order effects and accounts for

small strains aad moderate rotations of the normal” [46].

Schmidt and Reddy [92] simplified the earlier works of Librescu and Schmidt [45, 46]
by simplifying the strain displacement relations of the FTSD theory. This included deriving

the governing equations in terms of displacements associated with the first-order expansion
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in the thickness coordinate. They retained small strain moderate rotation restrictions, such
that the strains E;; = O(6%), where §% < 1, and the rotation components wyz &~ O(f) and
wag & O(6?). To achieve a consistent moderate rotation theory, they retained terms in the
strain-displacement equations of the order #3. Schmidt and Reddy stressed the desirability

of consistent, variationally derived theories:

. introducing the moderate rotation order estimates for linearized strains
and rotations and omitting those terms which are small when compared to the
leading terms ... can lead to inadequate and inconsistent equations, because it
can result in omission of such terms in the equilibrium equations which would
correspond to important terms in associated variationally-consistent moderate
rotation strain-displacement relations. [92]

Pandya and Kant [68] developed a C° continuous displacement isoparametric finite
element for laminated composite plates using HTSD theory. Their element was a nine-
noded quadrilateral with nine degrees of freedom per node. These degrees of freedom
included higher-order deformation parameters resulting from a Taylor’s series expansion
of the primary variables (in-plane displacement and rotation) in the thickness direction.
Pandya and Kant did not enforce the zero transverse shear stress conditions on the top
and bottom of the plate. Their transverse normal displacement was assumed constant
through the thickness. Using the total potential energy functional, they derived equilibrium
equations for the eight common engineering stress-resultants Nz, Ny, Nz, Mz, My,Mzy,

@z, and @y and 10 higher-order stress resultants.

Using a displacement-based isoparametric finite element formulation, Pandya and
Kant numerically solved several problems of laminated square plates with uniform and si-
nusoidal transverse loading. Their finite element solutions for the in-plane stress-resultants
were then used in the full three-dimensional equilibrium equations to compute transverse
shear strains. Interestingly, the constitutive-derived transverse shear strains were generally
about 10 percent greater than those predicted by Pagano. In contrast, the equilibrium-
derived values were 10 percent less than Pagano’s [68]. This element may have suffered
from the rather arbitrary choice of not satisfying zero transverse shear stress conditions on

the surfaces of the plate.
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Another paper by Pandya and Kant [67] used a novel met? od to force satisfaction of
the zero transverse shear stress conditions. For a curved shell, where the transverse stress
is of the order 2/R times the in-plane bending stress [40], nonzero transverse stresses may
cause generation of equilibrating surface tractions during the nonlinear solution process.
Membrane and/or shear locking would, thus, seem possible despite the use of higher-order

shear deformation theory.

Dennis [18] developed a large displacement, moderately large rotation finite element
formulation for laminated composite shells with HTSD theory. His two-dimensional quasi-
nonlinear theory assumed a state of modified plane stress. In this case, direct normal
stress 033 was assumed negligible and the transverse displacement w was assumed con-
stant through the thickness [18]. These two assumptions in.plied direct normal strain €33
would be zero, and hence, there would be no strain energy contribution resulting from
normal strain. To more accurately account for all strain energy, €33 was assumed to be a
function of the direct strains in the element’s 1- and 2-directions. This was equivalent to
the Poisson’s ratio effect for isotropic materials. Dennis assumed an orthogonal curvilinear
coordinate system and a cubic-expansion of midsurface displacement parameters. This
displacement field was similar to the cubic displacement field used for the HTSD theory
of plates. Due to the curvature of the shell, however, a cubic displacement field will not
satisfy the conditions of zero transverse shear at the top and bottom surfaces of the shell.
Dennis ignored this inconsistency by eliminating linear terms of the order £2/R? in his as-
sumed displacement field. He also ignored linear terms of the order /R in his transverse
shear strain-displacement equations. Furthermore, Dennis assumed 26 higher-order non-
linear terms of the in-plane strain-displacement relations were negligible compared to other
terms. This according to Schmidt and Reddy {92] can lead to inadequate and inconsistent

equations.

Dennis’s quasi-nonlinear HTSD formulation [18, 22] does accurately predict global
responses of thin and moderately thick shells This theory reduces to the third-order HTSD
theory of Reddy [81] for flat plates. Dennis showed good comparisons with exact solutions
by Pagano and finite element solutions by others for many flat plate problems [18, 20].

Results for hinged-free cylindrical shells, deep cylindrical arches, and laminated cylindrical
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pressure vessels showed results in good agreement with published works [18, 20]. Dennis
later [21] compared linear results from his theory to exact solutions for laminated cylindrical
shells under cylindrical bending published by Ren [85]. For the [90] and [90/0/90] laminates
evaluated, Dennis’s theory showed nearly exact results for transverse displacement at values
of R/h in excess of 50, but for an R/h value of 10, his solution was too stiff by 6 percent
for the [90] laminate and 11 percent for [90/0/90] laminate. At an R/h value of 4, Dennis’s
theory predicted 11 percent and 16 percent stiffer deflection response for the [90] and
[90/0/90] laminates, respectively. Dennis did indicate in References [18, 22] that values
of R/h less than 5 would make the assumptions of his theory inappropriate. The effect
of o33 being ignored is a significant factor for thick shells. Results of practical problems
analyzed using Dennis’s theory have shown excellent results [19, 93, 88, 102, 100]. The use

of Dennis’s theory for these studies was appropriate since R/h values were not less than

25.

For shell analysis, a higher-order finite element approximation can be used to model
curvature with a minimum number of elements [106]. In this sense, “higher-order” relates
to the order of nodal interpolation functions used in the finite element. Many papers
have been published on various higher-order shell elements. The most common element
is the degenerated isoparametric shell element [16, 68, 14, 11]. Chang, Saleeb, and Graf
[14] developed a mixed formulation nine-node Lagrange shell element with independent
assumptions for the displacement and strain fields. Their strain assumptions were based

upon the following guidelines for a linear strain field:

“(1) all kinematic modes must be suppressed,

“(2) natural (or local) coordinates must be used to prevent invariant element
properties, . ...

“(4) membrane and bending strains are interpolated separately in local coor-
dinates,

“(5) strain function have complete linear polynomial terms in 7 and s so that
uniform convergence is ensured to the linear order, and

“(6) the number of strain parameters is kept minimal [14].
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Guidelines 4~6 eliminate membrane locking. The questivz of membrane locking for a finite
element model is a difficult issue to deal with, according to Chang et al., who concluded
“... a sheli element (whether thick or thin) must have the same ability in representing
the membrane as well as bending actions of a structure” [14]. Chang et al. used the
Scordelis-Lo cylindrical roof, a pinched cylinder, and a hemispherical shell with opposing
point loads to show the performance of their element. Their results converged to analytical

solutions for each problem despite the lack of a nonlinear strain-displacement formulation.

As indicated earlier, these particular problems are not a rigorous test of nonlinear theory.

Simple degenerated isoparametric shell elements have been used for problems ex-
hibiting nonlinear geometric behavior and/or nonlinear material behavior[106, 16]. Yuan
and Liang [109] used a three-noded axisymmetric shell element with the nonlinear finite ro-
tation scheme introduced by Surana [98]. In their formulation only three nodal parameters
were required—two translations and one rotational parameter (axisymmetric deformation
was assumed). Yuan and Liang also incorporated nonconservative deformation-dependent
loads and elastic-plastic constitutive relations. They did not, however, use a HTSD theory.
Their rotational parameter represents the rotation of the normal at the node. Since this
rotation is independent of the translational parameters, the normal is free to rotate. The
normal is not, however, permitted to warp in this formulation. Hence, the transverse shear
deformation is of first-order. No mention was made of the use of shear correction factors,
but reduced integration was used to prevent shear locking. To achieve a satisfactory stress
distribution through the shell, they resorted to a layered approach as used by Parisch [69].
This approach requires numerical integration through the shell’s thickness. Their results

compared well with similar published works.

Hsiao, Hung, and Chen also used degenerated isoparametric shell elements for non-
linear analysis [27, 28]. In the first of these papers, two new rotation strategies were
proposed and evaluated along with four previously published strategies. In this paper,
Hsiao and Hung used the Kirchhoff-Love hypothesis, thus, transverse shear deformation
was not included in this analysis [27]. In the second paper, Hsiao and Chen [28] evaluate
the four large rotation strategies of Ramm, Oliver and Onate, Parisch and Surana, and

Bathe. The technique of Hughes and Liu 30, 31] is similar to that of Bathe. Hsiao and
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Chen proposed a “finite rotation” method and a “mixed rotation” method. In the finite
rotation method the rotational parameters are the incremental rotations of the shell normal
during deformation. These are called @ and B and are defined with respect to the z; and
x2 axes of a coordinate system fixed to the shell midsurface. The z3 direction coincides
with the shell normal and z, is aligned with one of the element’s edges. In the mixed
rotation method, the same parameters are used and the reference frame has z3 aligned
with the shell normal, but 2, is aligned with the global X, direction. Hsiao and Chen
used several problems, including the deep hinged-clamped circular arch and hinged-free
cylindrical shells, to evaluate the various rotation strategies. They concluded that their
two new rotation strategies and those of Ramm, Oliver and Onate, Parisch and Surana,
and Bathe all gave similar performance. They also concluded that the choice of rotation

axes has little effect on accuracy or convergence characteristics [27].

The large rotation strategies Hsiao and Chen e -aluated were based upon the total
rotation which includes rigid-body rotations. Many large rotation theories have been
developed using corotational formulations which separate rigid-body rotations from strain
rotations (76, 8]. Hsiao and Hung [27] used a corotational total Lagrangian formulation
for a four-node linear isoparametric <hell element and for a similar nine-node quadratic
element. They showed good correlation with published results for a hinged-free cylindrical
shell. This work according to Hsizo, was a “compromise between the total Lagrangian
formulation for the degenerated shell element using large-displacement theory and the

corotational formulation for the facet element using small-displacement theory” [27).

Neither of these papers by Hsiao and colleagues incorporated transverse shear defor-
mation. For many problems of practical interest thin-shell theory is sufficient. Yang and
Saigal [108] used a four-noded thin shell element with 12 degrees of freedom at each node
to study rigid-body mode representation and locking mechanisms for nonlinear shell prob-
lems. They wanted to determine whether curvilinear coordinates or Cartesian coordinates
were best suited for particular elements. They noted that rigid-body displacement of a
curved member is curvilinear and can be exactly described by trigonometric functions of
the element’s arc angle. When polynomial functions are used to describe this curvilinear

motion, the trigonometric functions will be reproduced only approximately. As the el¢-
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inent’s arc angle increases, the error in this approximation increases. Hence, for highly
curved shell elements the rigid body mode representation will deteriorate [108]. Yang and
. Saigal used a displacement field defined in a Cartesian system, versus curvilinear, to obtain
exact implicit modeling of the rigid-body modes. Their formulation included nonlinear ex-
tensional strains, but they used linearized bending strains. This effectively restricted their

analysis to problems with moderate bending.

Yang and Saigal also discussed locking of thin shell models [108]. They explained
that degenerate shell elements may suffer from membrane locking and shear locking when
used to model curved thin structures such as arches and shells where bending is predom-
inant. Yang and Saigal showed that their elements do not exhibit membrane locking by
analyzing a pinched cylinder with several different finite element meshes. This analysis
was performed using varying the order of the numerical integration (Gauss quadrature)
from 3 x 3 to 5 X 5. Their results were identical for all meshes with the 4 < 4 and 5 x 5 in-
tegration rule, thus, “indicating that the element does not suffer from riembrane locking”
[108]. They also showed inconclusive results for hinged-free cylindrical shells. Their most
nteresting results were based on an analysis of a semitoroidal bellows ui.der axisymmetric

rad (axial extension). The bellc ¥¢ have regions of positive, negative, and zero Gaussian
curvature. Accurately modeling this shell with curvilinear coordinatss Lused on lines of
principal curvature is not a trivial problem due to the varying curvature. Yang and Saigal
showed significent lifferences in converged curvilinear displacements v and v compared

with Cartesian displacemen: parameters—the Cartesian parameters were better for this

problem [108].

The classification scheme used by Nolte, Makowski, and Stumpf [53] may help explain
why some of these p vblems don’t provide a suitable test for nonlinear HTSD theories. For
example, if one considers various values of thickness & and 6 = \/h/R for the hinged
cylindrical shell of Sabir and Lock, then an appioximate rotational imit can be estimated
for each of Nolte’s shell theory classifications. These limits are shown in Table 2.1. Despite
large differences in thickness and significantly different load-displacement behavior for the
shells of Table 2.1, the rotational limits for different shell theory classifications are the

same. Ior example. if material rotations are on the order of 1/2 degree, then Nolte’s
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Table 2.1. Rotation Limits of Shell Theory Classifications

h 8 | classification [53] rotation w
radians | degrees
1.0 1 0.1 finite, w > 1 1.00 57
large,w=+0 | 0.32 18
moderate,w =6 | 0.10 6.0
small, w < §? 0.01 0.6
0.5 | 0.07 finite, w > 1 1.00 57
large, w = V0 0.26 15
moderate, w = @ 0.07 4.0
small, w < 62 0.005 0.3
0.25 | 0.05 finite, w > 1 1.00 57
large, w = V0 0.22 13
moderate,w =6 { 0.05 3.0
small, w < §? 0.003 0.1

classification scheme suggests small rotation theory may be used for any thickness of the
Sabir and Lock shell listed in Table 2.1. If rotations are on the order of 5 degrees, then
moderate rotation theory should be used. Large rotation theory should supposedly be
used for rotations on the order of 15 degrees. Finally, rotations in excess of 50 degrees
will surely require finite rotation theory. All the theories discussed in this dissertation,
according to their authors, have been small- to large-rotation theories. Also, these theories
generally matched analytical results for problems where rotations were in excess of the
Table 2.1 limits. Obviously, either this use of the classification scheme is not correct (i. e.,
it may ignore transverse shear deformation effects, anisotropic material effects, and large-
or finite-strain effects), or the published results for these classical problems are in error.
The author suspects the classification scheme of Nolte et al. is not appropriate for this use.

Nonetheless, how does one determine what theory is appropriate for a given problem?

Simmonds (94] raised several questions regarding shell analysis. He indicated “The
displacement form of the field equations is ill-conditioned in (near) inextensional [sic.]
bending” [94]. This, according to Simmonds, is caused by relative errors of the order o(1)
caused by approximating the term 14 h%/(12R?) as unity [94]. This term is a result of

the geometric approximation of the shell’s shape. In this expression, h is thickness and
g PI p




2
o

R is the radius of curvature of the shell. The theory developed by Donnell, for example,
approximates this term as unity. Simmonds also raised a question about “non-experts
in shell theory” [94] using finite element codes for general problem solving. Terms like
ill-conditioning, spurious modes, stiffness locking, etc. are commonly used in the field of
finite elément analysis to describe numerical difficulties caused by inaccurate approxima-
tions. Many of these problems can be overcome, but before results should be used for
design applications, the errors inherent in the theory and the element formulation must be

estimated.

Yang and Wu [108] developed a geometrically nonlinear tensorial formulation of a
skewed thin quadrilateral finite element. This element retained the coupling terms of the
metric and curvature tensors since they no longer vanish in the non-orthogonal curvilinear
coordinate system. The tensor form was used to develop the shell shape functions, geomet-
ric derivatives, stiffness matrix and finite element computer code. The element incorporates
a small strain linear elastic isotropic material assumption and thickness is assumed to be

small compared with the smallest radius of curvature of the shell’s reference surface. In

‘this theory, Yang and Wu retained only linear terms in the curvature-displacement rela-

tions. This decision was based upon observations by Bushnell [12] that nonlinear terms
in the curvature-displacement relations can be neglected, provided the largest midsurface
rotation is less than about 20 degrees; and upon experience gained in other investigations
[108). Yang and Wu showed excellent results for problems like the 1/2~inch thick hinged-
free cylindrical shell, a pinched cylinder, rhombic plates, trapezoidal shells, and spherical
shells. These problems included distortions of up to 16 degrees for the pinched cylinder, 8

degrees for the hinged-free cylindrical shell, and 60 degrees for the rhombic plate.

Simo, Fox, and Rifai [96] discussed the computational aspects of a geometrically-exact
mixed finite element shell model. In this context, geometrically exact refers to not ignoring
termsin the theoretical treatment of the shell geometry and the governing equations. Given
a kinematic assumption (which may, or may not, exactly describe the physical problem),
Simo et al. then treated the geometry and all equations exactly. The only numerical
approximation was a result of the solution procedure used to solve the governing equations.

Their model was bascd on the “theory of a one-director inextensible Cosserat surface, which
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using the weak form of the momentum equations, can be parameterized in a way that avoids
the use of Christoffel symbols or the second fundamental form” [96]. This provides a more
simple formulation than most tensorial-based theories. Their formulation used the Hu-
Washizu type of variational principle for mixed parameter problems [105]. Hence, the stress
resultants and the (assumed) transverse shear strain field were included in the formulation.
They showed ~esults for a number of classical problems including hinged-free cyl adrical
shells, a pinched hemispherical shell, and other more complex problems. Problems such as
the nonlinear buckling of a built-in right angle frame and the collapse analysis of an axially

loaded cylinder showed good results with quadratic rates of convergence for all problems
[96].

Several recent papers authored, or co-authored, by Reddy [78, 79] specifically ad-
dressed the issue of transverse shear deformation. Reddy [79] has reviewed all third-order

two-dimensional technical theories of plates. He states in the abstract:

All third-order theories published during the last two decades are shown to be
based on the same displacement field, contrary to the claims by many authors.
Consequently, all variationally derived plate theories are a special case of the
third-order plate theory published by the author in 1984. [79]

In the paper, Reddy shows equivalence between kinematic assumptions used in over 20
published works of research and the third-order displacement field of Jemielite [34]. Reddy
further clarifies that many of these works were based on equilibrium equations of the first-
order theory of Reissner-Mindlin, and that he was the first to use consistent variational
principles to derive a third-order theory of laminated composite plates [79]. In the other pa-
per, Reddy [78] solves various linear and nonlinear bending, natural vibration, and stability
problems using his refined computational model of composite laminates (the variationally
consistent generalized third-order transverse shear deformation theory). Issues such as
locking, symmetry considerations, boundary conditions, and geometric nonlinearity effects

on displacements, buckling loads, and frequencies were discussed [78].

Fuehne and Engblom [25] developed a doubly-curved eight-noded isoparametric finite

element with FTSD. Their element used three independently prescribed rotations and three
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displacements per node in each layer. Evaluation of the stiffness matrix was performed
numerically using reduced integration layer by layer. Fuehne’s element included rotation
about the normal as one of the six degrees of freedom. The stiffness terms related to
this degree of freedom, according to Fuehne and Engblom [25:88] were “very minute.” To
overcome numerical difficulties caused by these small terms, they substituted “a fraction
of the smallest rotational stiffness due to the 8, or @, rotation for each element.” These
authors used the equilibrium equations to compute through the thickness stresses based
on in-plane stresses calculated from the FTSD finite element solution. This process yields
parabolic transverse shear stresses instead of the constant transverse shear stresses of
the FTSD solution. This paper included results for a laminated composite cylinder with
internal pressure. Compared with a previously published analytical solution, Fuehne and

Engblom achieved “excellent” results for interlaminar shear stress [25:95].
g

Bhimaraddi, Carr, and Moss [9, 10] presented isoparametric finite element models
for shear deformable shells of revolution and laminated curved (constant curvature) beams
with HTSD. For the beam, they used nodal parameters called u; and v; defined as rota-
tions about the element’s axes. Their assumed displacement field included both of these
parameters multiplied by “almost any function whose first derivative vanishes at ... [the
surfaces of the element] and is non zero elsewhere ...” [10:312). Thus, Bhimaraddi et
al. achieved a parabolic distribution of transverse shear stress. The strain displacement
relations chosen were the “exact” linear relations which included transverse normal strain
and did not assume the shape function 1+ y3/R was equal to unity. They indicated that
ignoring the y3/ R factor would result in neglecting the variation of beam curvature across

the cross-section which would lead to greater errors in predicted response.

Kant and Menon [37] investigated the effects of A/ R for thick shells compared to thin
shells using “higher-order” theories for composite laminates. They assumed the displace-

ment field shown in Eq (2.3).

U;
Us

w+ 02+ uiz? + 0;2°, (i=1,2) (2.3)

i3 (2'4)




where the u; and 6; are midsurface displacements and rotations, and the u} and 6] are
the corresponding terms of the Taylor’s series expansion. Kant and Menon discuss the use
of “functions” of thickness coordinate 2, similar to that used by Bhimaraddi [9], but do
not define them, or discuss how they were used in this paper. Bhimaraddi’s formulation
included a cubic “function” with a parabolic first derivative as part of the displacement

field. This assured zero transverse shear strain at the top and bottom surfaces of the

element [10:312].

To arrive at their strains, Kant and Menon substituted the displacement field of
Eq (2.3) into linear strain displacement relations and reduced these for a cylindrical shell.
Their resulting strain components include 23 functions which form their generalized strain
vector of the reference surface. Using standard constitutive relations for an orthotropic
composite lamina, Kant and Menon formulated the potential energy of the system in terms
of stress resultants and couples. They then discretized their problem domain using a C°
formulation with selective integration to avoid membrane and shear locking. They used
four-noded bilinear, eight-noded Lagrangian, and nine-noded Serendipity quadrilateral el-
ements. Kant and Menon compared results for some interesting problems by assuming for
thin shells 2/R = 0, and for thick shells h2/R? = 0. For the thick shells, the assumed loads
acted at the top or bottom surface of the shell instead of at the shell midsurface. This,
they concluded was the predominant factor in differences between their thin and thick shell

results [37:1202].

The method of incorporating transverse shear into a shell model is not standard,
even though FTSD and HTSD theories are both well accepted. These two theories are
generally employed with the linearized transverse shear strain components of the Green-
Lagrange strain tensor. They can, however, be used with nonlinear transverse shear strain
terms. Singh, Rao, and Iyengar [97] used a FTSD theory with selected nonlinear terms

included in the transverse strain components. Equation (2.5) shows these nonlinear terms

in parentheses.

er = Yo+ 32+ (B0 + 320y)

& = wy+%+ (%7/):'*‘ %d’y)
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where

u(a:, Y, Z) = uo(x’ ?/) + z¢z(x, y)
vo(2,9) + 29y(2, )

wo(z,y)

v(2,y,2)

w(,y,z)

Singh, Rao, and Iyengar studied the effects of anisotropy, transverse shear modulus, aspect
ratio, and boundary conditions on the buckling behavior of thick laminated composite
plates. They found transverse shear to be a significant factor in determining buckling
load. Although this FTSD formulation included nonlinear ¢4 = €23 and €5 = €13, the

authors did not mention of the effects of these nonlinear terms.

Palmerio, Reddy, and Schmidt published a series of two papers [65, 66] on a moderate
rotation FTSD for laminated anisotropic shells. This theory was proposed by Schmidt
and Reddy [92). Their paper was reviewed earlier in this Chapter; see page 2-12. In
their finite element formulation, Palmerio et al. separate transverse shear and transverse
normal effects from in-plane extension and bending terms. This allows them to use reduced
integration for the transverse stiffness terms to prevent shear locking. Interestingly, they
retain transverse normal strain in their formulation. They add a sixth degree of freedom
to the typical five used for a FTSD theory. This sixth parameter is the linear term in the
transverse normal strain component €33. Having a nonzero £33 normally requires use of
the full three-dimensional constitutive relations. Palmerio et al. assume a state of plane
stress and set vy3 = vp3 = 0 to achieve results similar to a five degree of freedom FTSD

model. Their results are stiffer without this assumption.

Palmerio, Reddy, and Schmidt [66] investigated several problems including Sabir and
Lock shells. For 1-inch and 1/2-inch shells this theory compared well with published so-
lutions. A variation of this problem was also studied by substituting a 1-inch thick [0/90]
composite material for the isotropic material of the Sabir and Lock shell. Results of these
moderate rotation theory (MRT) models compared well with a “refined” von Karman
(RVK) analysis, but none of the results compared favorably with a full continuum model

by Liao and Reddy. Palmerio et al. suggested that, “One of the reasons for the discrepancy
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could be due to not updating the geometry in the RVK and MRT formulations” [66]. In
their discussion of the results, they indicated that the MRT has nonlinear transverse shear
strain terms due to in-plane displacements which are not present in the RVK. Thus, if both
theories give similar results then the additional terms in the MRT do not contribute signif-
icantly to the solution [66]. Based upon their comparison with Liao and Reddy’s results,
Palmerio et al. revised their MRT to include more nonlinear terms in their in-plane Green-
Lagrange strain tensor components. Their first-order through the thickness expansion of
displacements was retained. They noted that the resulting “non-linear transverse shear
terms are exactly the same as the MRT, ...[if they neglect the transverse normal strain
degree of freedom|” [66). The major difference in this modification was that the bending
components contained substantially more terms. With essentially the full Green-Lagrange
strain tensor representation, the modified theory of Palmerio, Reddy and Schmidt gave re-
sults that were in close agreement with the continuum model of Liao and Reddy for a thin
shallow isotropic spherical panel and a thin shallow isotropic arch. They concluded that

including more nonlinear bending terms improved results for one problem and “elimina-

tion” of nonlinear transverse shear terms was necessary to reduce the overly stiff behavior

of the MRT for some cases [66].




III. Theoretical Background

The primary goal of this research was to consider the ability of a higher-order trans-
verse shear deformation (HTSD) theory to model deformation of a composite shell un-
dergoing large displacements, rotations, and changes in curvature. In particular, more
exact through-the-thickness approximations of displacement, more exact approximations
of shell geometric parameters, and the incorporation of nonlinear transverse shear strain
were considered in this research. Many HTSD models have been developed in recent years
(18, 78). These theories are suitable for linear or nonlinear problem solving by a number
of numerical solution methods. This chapter of the dissertation includes some theoretical
background material. The background material is necessary to assure a common under-
standing of the concepts underlying the nonlinear HTSD theory. A presentation of the
nonlinear HTSD theory developed for this research is included as Chapter IV.

3.1 Surface Geometric Considerations

Components of particular physical quantities, such as displacement, stress, and
strain, however, are more generally defined for arbitrary curvilinear coordinate systems
as being either covariant or contravariant. These quantities are identified in the text as
being covariant or contravariant when the tensorial nature of the quantity is generally
accepted in the literature. Conventional tensor notation requires that contravariant quan-
tities be identified by superscripts and covariant quantities be identified by subscripts. This
practice is generally followed throughout this dissertation. For convenience, however, coor-
dinates are always identified with subscripts. The basic assumptions of a two-dimensional
shell theory are tied to the concepts of a reference surface, the midsurface of the shell,
and a local curvilinear coordinate system associated with this surface. When this curvilin-
ear coordinate system is based upon lines of principal curvature, which by definition are
orthogonal, then the coordinate system is also orthogonal. In orthogonal system of coor-
dinates, the components of the metric tensor form a diagonal matrix. Thus, contravariant
and covariant components of tensors are identical. For this research, the author has de-

cided to restrict the theoretical development to orthogonal coordinate systems based upon
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lines of constant curvature. This is one of the most common coordinate systems used for

analysis of shells [50, 57].

The development of nonlinear strain displacement relations generally begins with
the mathematical description of the midsurface geometry. If one considers a surface in a

three-dimensional space, then the positions of points on its surface can be defined by:
7 = 7(6y,62) (3.1)

where 7 is the position vector from the origin O to points on the surface [50]. The param-
eters (61, 62) are defined in a closed region S in the (6, 8;) plane. Next, assume the unit
normal vector to the surface is @3(6;, 62) and the thickness of the shell is & = h(61, 62),
where h > 0. The position vector of a point within the shell can be written in terms of i

and @z. This position vector is given by:
1_"(91 y 02) + 263(01, 02) (32)

where (61,0;) € S and |z] = 1h(6;,02). The (61,6,)-plane defined by the surface S is
called the middle surface. The lines defined by 6; = constant and #; = constant are called
coordinate curves. These curves define a curvilinear coordinate system with covariant base

vectors a; and a; given by:
@ = 0r/06,, @G = 07/08; (3.3)

or

G = 07004 (3.4)

where Greek subscripts have values 1 and 2. The covariant base vectors, @ and @, are

parallel to the tangents to the 6, and 6, coordinate curves. This is shown in Figure 3.1.
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Figure 3.1. Base Vectors and Coordinate Curves

An infinitesimal vector connecting two points on the surface with coordinates (61, 63)

and (6; + dby, 0, + db,) is given by:

oF oF 2 R
a—ol‘w‘ + —df; = Z Godly = Gudfy (3.5)

di =
06, =

where the repeated subscripts imply summation as shown in Eq (3.5). The length (ds) of

this vector is given by:

(ds)? = dF - dF = @y - GpdBadfp (3.6)

Defining the covariant surface metric tensor as:
Gofp = Go * A8 = Ggy (3.7)
allows one to write (ds)? in terms of the covariant surface metric tensor as:

(ds)? = anpdl,dlg (3.8)

Equation (3.8) is called the first fundamental form of the surface.

3-3




Next, consider a point on the middle surface with coordinates 8, and a unit vector
{'in the tangent plane at this point. The normal curvature associated with the direction

determined by ¢ is given by:

%z-ds = —d(-l,';; . t-. (3.9)
or
1 diz -

I one substitutes Eqs (3.5) and (3.6) into Eq (3.10), then one finds:

= — = a4y — + (12'—‘-9—' (311)
and

PLYTS + @327 (3.12)

where a comma in the subscripts implies differentiation with respect to the coordinate

following the comma. Substituting Egs (3.11), (3.12), and (3.8) into Eq (3.10) gives:

1 -~ Za,ﬁ dzp - apdf,dls

= = 3.13
R Ya,8 Capdfadls (3.13)
The quantity b, can be defined, such that:
bop = —l3o " Gp = A - Ga,p = 3 - Go,p = bga (3.14)
The curvature can now be defined as:
bopdf,dl
1 _ Zapbapdladis (3.15)
R o p0apdfsdis

where bypdf,dfp is called the second fundamental form of the surface. Thus, the normal

curvature is given by the ratio between the first and second fundamental forms.

If one defines the coordinate curves of Figure (3.1) to be lines of principal curvature

of the shell, then the 8, and 8, curves are mutually orthogonal families of curves [50, 57).




In this coordinate system, the lengths A, of the basis vectors @, are given by:

(3.16)

where the A, are called the Lamé parameters of the surface.

Next, define mutually orthogonal unit vectors €, €2, €3 in the directions of the base

vectors @, @, and the normal vector @s, respectively. These unit vectors are given by:

o = GafAo, (a=1,2); E3 = a3 (3.17)
The derivatives of the orthonormal base vectors are given by [50:8]
> a2z 4= 5 . — A2 >
1,1—-,;22 2+ €3 €12 = ;€2
- 1.2 = - A2_1 - 1 =
21 = 3261 22 = — 26 + 7é (3.18)
- Ay = Y T
31 = Rré1 €32 = F5€2

If one now considers a vector field 17(01,02) on the middle surface of the shell, then one

can resolve this field in the directions of the orthogonal base vectors €j, €, €3 as follows:

V(6,,02) = Vi&) + Vol + Va3 (3.19)
Differentiating Eq (3.19) with respect to 6; and 6; gives:
Vie= Viali + Vifia (3.20)

where repeated indices imply summatjon and Latin subscripts have the values 1,2,3 and
Greek subscripts have values 1,2. If one substitutes Eq (3.18) for the derivatives of the

base vectors into Eq (3.19), then the derivatives of the vector V are given as follows:

I (V1 1+ -A—‘xlv - lf;'s) 1 + (172,1 - %’-Vl) é + (V3,1 + 7 Vx) é; (521)
Vo= (Vo= 2207) & + (Voo + 2207, - 127) & + (Voo + 22Vh) & '




One can show that certain relationships between A;, Az, Ri, and Ry must be satisfied.

These relationships are given by Codazzi’s equations:

Ay ) Ao (Az\ A2y
Ay _Aw Az) _Am 3.22
(Rl 2 I /)y Iy (8.22)

and Gauss’s equation:

Ay 2) < Ap 2\ A1 42
_— + | —= = - 3.23
( Ay /a Az ) 2 Ry Ry (3.23)
3.2 Strain Tensor Definilion

In Figure 3.2, consider the displacement of a body in a three-dimensional space from
its original undeformed state to a new deformed state denoted by a superscript star. The
coordinates ¥, ¥z, and y3 are chosen to form an orthogonal curvilinear coordinate system.
This system is not the same coordinate system as the two-dimensional (6;,6;) system of
the shell midsurface. In the (y1,¥2,y3) system, the original length (ds) of the line from M
to N is given by:

(ds)? = gijdyidy; (3.29)

where g,, is the metric tensor associated with the undeformed curvilinear coordinate system

(%1,%2,¥3)- The components of g;; are given by the scalar product §; - §.

In the deformed system of coordinates, the distance (ds*) from point M* to N* is
given by:
(ds*)? = gfdyFdy} (3.25)

If we use a Lagrangian description of deformation, we attempt to express all variables
in terms of conditions prior to deformation [86). From Figure 3.2, the displacement U of

point M and the derivatives of U are given by:
=~7 (3.26)

-—-.'=———'-——.’=f/‘;—.(-l.i (3.27)
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If one combines Eqs (3.24) and (3.25), then one can define the strain tensor v;, as

271] (gz] gt]) (3.28)

If one substitutes Eq (3.27) into Eq (3.28), then one can express the strain tensor 7,, as

follows: .
ou ou ol aU

205 =G 5, A e o0 (3.29)

The orthogonal base vectors §, are related to a new set of orthonormal base vectors & by

the following relationship:
Jt - gi  _ Gi

€& = —_—_— =
1@ - Vg M

where the &, are called scale factors [86:118]. The displacement vector U can be written

(3.30)

in terms of €y, €2, €3 at point M as follows:

—

U =ué) + ueés + u3és (3.31)

If one substitutes Eq (3.31) into Eq (3.29), then one obtains:

o O(wk€y) | o O(wEl) | O(umém) O(unén)

(3.32)

Next, if one expands the implied summations on k, I, m, and n over their values of 1, 2,

and 3, the result becomes:

. O(e
29 = Gi- (S)JL)('UICI + 128 + u3€3) +
7

Pod

-

g; - Q%(u]é'] + u€2 + u383) + (3.33)
(cm) (gn)

U181 + U2€s + uaé:
ou: ayj(11+ 262 + u3€3)

(u1€1 + u2€2 + u3és) -

If one uses the relationships of Eqs (3.17) and (3.18), the strain components v,, can be

wrritten in terms of the displacement components and Lamé parameters [86:136-137] as




follows:

58!

Y22

Y33

712

713

a'll,l h1u2 (’)h1 h] us ah]
Yoy, T The Oy hs Oys
L1 <% L w2l 1@?&1.)2
2\0y1 " hy Oy " hy Oys
(2 _mdhe)? 3 (0
2\0y1 ha0y2 o hs Oys
0ya  hs Oy3  h Oy
+l (_02 + &8 Uz 01).2 Uy (9h2)
2 \0y2 ' h30ys ' hy Oy
1 (%_ 2%) - (@1 _ @.%)2
2\0y2 haOys 0y hy Oy
3u3 h3u1 0h3 h3u2 ahg
*Bys T hi Oy | kg Oy
+1 <8u3 Uy 3h3 us Ohs 2
(ot o Hina)
1 0u1 51 0h1 1 Oug Us 6}13 2
a(aTJa‘h—za‘y:) +5(5«J3"m;)
1 ( wdun,p du | Oh 6h1>
2\ 8y, " oy oy, oy
+1 (?_“1 - "_23h2> (01_1 vz Ohy 1_3@_1)
2\0y2 mMoy/\O0yn  ha0y2 h30ys
+1 <0u2 U %) (@z 4 b 13%)
2\0y1  hy0y2/) \Oy2 ' hi Oy h3 Oys
+l (0‘&3 Uy (')h1> (_a_‘(ﬁ _ %Q’I_g)
2\0y1  hadys) \0y; haOys
:_1_( l (?_ul_ - (?h, 0113)
2 (? o0 oy oy
(o st 90 el s
2\0ys  hi0y1/ \Oy1  hadys  hs Oy
1 (3u3 U ahl) (%_ Lo Ohs u_g%)
*3 Oyr  haOys) \dyz ' hadyr | hy Oy
l (01!2 Uy 01&1) (_@2 - Eﬁ%)
2 0_/1 hg aJZ 0]/3 /).2 (?yg

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)




-1— (h —-u Qi_zz - %)
2\ oy, a?/2 2 33/3 0ys o
41 (@z U 3hs) <?ﬁz ;w3 ﬂ%)
dys  hy Oy ) \By; ' hadys ' hy Oy
4= (311,3 Uy ahz) <?_‘U_3. Ezg_h_a U 8113)
dy2  h3Oys) \Bys @ ha0y2 ' hy Oy
(’)ul Ug ahg) (8u1 Uus 3]2,3)
S (S nfhz) (fh a0fs 3.39
2 ((7?/2 hi0y1/ \3ys hy 0n (3:39)

For the shell discussed earlier, the Lamé parameters A,, a = 1,2, describe the two-
dimensional relationship between the orthogonal surface base vectors @, and their orthonor-
mal counterparts €,. For the strains of Eqs (3.34-3.39), the scale factors ki, ¢ = 1,2,3,
describe the three-dimensional relationship between the orthogonal base vectors g, of the
three-dimensional orthogonal curvilinear coordinate system #, and their orthonormal coun-
terparts &;. For a two-dimensional orthogonal curvilinear coordinate system, the scale

factors of Egs (3.34-3.39) become:

by = A1(1—y3/R1), ha=A2(1-y3/R2), ha=1 (3.40)
where recalling Eqs (3.4) and (3.16), we have:
oF  oF\'/? oF o7 \/?
n=(a53) = (% ) (341

Thus, for the convenient case of a cylindrical shell with radius R, and local coordinates
0 = z, 02 = s, z described in an orthogonal space with global coordinates y; = z, y2 = s,

Y3 = z, the position vector 7*(y;,y2,y3) would be given by:

et

= Zcé'] + 552 + Zé‘a (342)

and the Lamé parameters reduce to A; = A2 = 1. For the same shell described in terms
of an angle, say ¢, the circumferential coordinate s would be given by ds = Rad@. In this

case, d7 (y1, ¥2,¥3) is given by:

dF = dzé) + Raddéy - dzés (3.43)
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and the Lamé parameters would be A; =1 and Az = R,.

At this point, it is important to realize the strain components of Eqs (3.34-3.39)
are related to the orthogonal curvilinear basis vectors &, @, and @3, which change in
magnitude and direction. This strain tensor is typically called the Green-Lagrange strain
tensor [105]. These tensorial strain components must be converted to physical components
in order to complete the analysis. For the infinitesimal linear problem, the linear parts
of this strain tensor can be related to the physical strain of the line from point M to N
[86:129]. The change in length of the line segment from M to N, shown in Figure 3.2, is

given by:
_ 1(ds*)* - (ds)?

EMN = 3 (ds)?

(3.44)
This equation can be written in terms of the curvilinear coordinates y;, y2, y3 as follows:

dy; dy;
EMN = Vij——— 4
MN = 7ij ds ds (3 5)
The derivatives appearing in Eq (3.45) can be written in terms of the direction cosines I,
[, I3 of the line from M to N relative to the orthonormal base vectors €;, €, é&;. These

direction cosines are given by:

dyy
ds’

12 = }12@3 13 = hgfhi}- (346)

h=h ds’ ds

If one substitutes Eq (3.46) into Eq (3.45) and expands the summations, then:

2 2 9
L I I3\
EMN = T -1:1_ + 722 E + 733 E

3.47)
Ll ) ( L ) ( lal3 ) (
2 —_— 2 — n
+in2 (hlhg +2n3 hyhg 2723 hahs
This equation can be written in terms of physical strain components ¢, as follows:
eMn = enl?+ €22} + e33l3
(3.48)

+2¢12l1la + 2e43l3 13 + 26930013
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where

- — — 3
en=34, 2=, =3¢
, : : (3.49)

. v - 3 —
€12 = hyho? €13 = hihy)? €23 = hahg

are the physical components of strain for the case of an infinitesimal displacement U defined

by Eq (3.31) (86, 50].

3.8 Composite Material Analysis

In the previous sections of this dissertation, the concepts of strain for a shell in
an orthogonal curvilinear coordinate system have been presented. Next, the subject of
constitutive relations will be discussed. One can consider the material of a composite
laminate from a microscopic viewpoint or from a macroscopic viewpoint [2, 13, 36, 107].
For this research, the macro-mechanical hbehavior of the laminate will be assumed sufficient
provided stresses are small enough to assure no material failure occurs. Thus, the material
of each lamina is treated as a homogeneous anisotropic material. More specifically, we shall
assume the material is transversely isotropic. This means the material has properties which
are symmetric about two material axes. An orthotropic material has properties that are
different in three mutually orthogonal directions with three mutually perpendicular planes
of material symmetry. The small strain constitutive relations for an orthotropic material

are written in matrix form as follows {36:35]:

(o1 ) F Cu C2 Ci3 0 0 O - en |
022 Ciz2 C2 Co3 0 0 0 €22

ﬁ o33 | _ Ciz Cg C;3 0 0 O ) £33 (3.50)
723 0 0 0 Cyu O 0 Y23
T13 0 0 0 0 Cs5 O 713

72 ) [0 0 0 0 0 Ce| me)
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where

Cn = (1-vavn)k/A
Cy = (1=viava1)Er/A
Ciz = (1=viva1)Es/A

Ciz = (va1 +vaivaz)Er/A

= (12 + vaev13) Ea /A
Cis = (va1+vavs)E/A
(3.51)
= (n13 + vi2ve3) E3/A
Cuz = (va2 +viova1)Ea/A
= (vo3 +vnn3)E3/A
Cy = G2
Css = Gus
Ces = Gn2
and
A =1- vi9191 — va3lsz — V3113 — 2121V32013 (3.52)

The terms of Eqs (3.51) and (3.52) are not all independent. The relationship between these

terms are given by:
Vi yas o }
—E—_:ﬁ-, i,j=1,2,3 (3.53)
As a further simplification, if the material properties are the same in the 2-direction as in
the 3-direction, shown in Figure 3.3, then the material is transversely isotropic [36). For
this type of material there is no distinction between properties in the 2- and 3-directions,

thus, Ey = E3, vy = va1, V12 = 13, and vo3 = vaz. With this assumption, Eqs (3.51) and
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Figure 3.3. Material Axes for a Transversely Isotropic Lamina

(3.52) become:
Cu

Caz
Ciz
Cas
Caa
Css

Ces

where

(1~ v35) Br/AF

Caz = (1= wviavm)Ey/AF
Ciz = vn(1 4 v3)E /A
(Va3 + vigva1 ) Eaf A*

Gas

Gs

Gz

A =1- 21/121/21 - V§3 - 21/121/211/23

and the relationships of Eq (3.53) apply.
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(3.54)
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For a thin flat structural member, such as a plate, a state of plane stress is often
assumed [16] where 013 = 093 = 033 = 0. In this research, however, the effects of transverse
shear deformation are to be considered. Thus, 013 and 023 are not assumed to be zero. The
direct normal stress o33, however, is still assumed to be zero. This assumption is necessary
to reduce the three-dimensional problem to a two-dimensional problem. I o33 = 0 is

substituted into Eq (3.50), the direct transverse normal strain can be found as:
€33 = ———¢€ ——&922 (3.56)
3 3

Thus, rewriting Eq (3.50) using Eq (3.56) to eliminate 33 gives:

( ] {
on W Qu @12 0 0 0 1 &n 1
022 Q12 Q2 0 0 O €22
T23 V= 0 0 Q4 O 0 Y23 (3'57)
13 0 0 0 Qs O M3
2 ) [ 0 0 0 0 Qs || M|
where
Qu = Cn-Ck/Cau = E1/(1~-viavn)
Qu = Cp—Ch/Cs = Ez/(1-viova)
Q12 = Ci2—C13C23/Caz = vy B2/(1 = v12v21) (3.58)
Qs = Ga3
Qss = G

To form a structural component, the lamina are assumed to be perfectly bonded
together with their fibers oriented at a particular angle with respect to the structure’s
reference axis. The stifiness contribution of each lamina in the laminate can be determined.
These stiffnesses must first be transformed to a common reference system of axes. If
one assumes the kth lamina’s fibers are all in the same direction (say, the 1-direction of

Figure 3.3), and this direction is at an angle ¢ from the reference axis (say, the z axis)
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then the constitutive relations in the reference system are given by:

( ) r 1

Oz Qn @ 0 0 Qe &z
Oy Qu G 0 0 Qo €y
Tyz =| 0 0 Qu Qp O Vyz
Tzz 0 0 Z2-45 Z2—55 0 Vez
L Tey J L Qs Qs 0 0 Qs |, | 7oy

where

44 = Qaacos® ¢+ Qsssin® ¢
Qs = (Qa4 — Qss)cosgsing
ss = Quasin®¢+ Qsscos?

Q. = Qucos’ ¢+ 2(Quz + 2Qes) sin® pcos? ¢ + Qaosin ¢

12 = (Qu + Q2 — 4Qes)sin’ $cos’ ¢ + Qua(sin’ ¢ + cos” ¢)

Qo = Quisin®¢+2(Q12 + 2Qes) cos® gsin® ¢ 4 Q2 cos® ¢

16 = (Qu — Q12— 2Qes)sin g cos® ¢ + (Qu2 -~ Q22 + 2Qes) sin® pcos ¢

Q6 = (Qu — Q12— 2Qeg)sin pcos ¢ + (Q12 — Qa2 + 2Qes) sin pcos’® ¢ (3.60)
66 = (Qu + Q22— 2Qes)sin’ §cos? ¢ + Qes(sin’ ¢ + cos® ¢)

(3.59)

In Eq (3.59) and (3.60), each lamina has a specific orientation of fibers. Thus, each

lamina can have different values of Q,, given by Eq (3.58). These constitutive relations are

valid for small strains where the material behaves as a linear elastic solid. Equation (3.56)

relates the direct normal strain €33 to changes in the direct in-plane strains €13 and €2

for o33 = 0. The assumption that Eq (3.56) is valid for an arbitrary laminated composite

shell is important for composite shell analysis. Without this assumption, the stress state is

fully three-dimensional and the reduced computational effort of the two-dimensional model

is lost. With the assumption, however, the two-dimensional model will never accurately

predict the stress distribution within the shell, since o33 generally will not be zero in the

real structure. Research in the 1960’s and 1970’s, by many investigators, has validated the
g )
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Figure 3.4. Shear Deformation of a Thin Elastic Body

acceptability of this assumption for certain problems.

3.4 Transverse Shear Deformation Theory

When a thin body undergoes a small (infinitesimal) deformation, material points on
a line normal to the middle surface of the body will move relative to each other, as shown
in Figure 3.4. This movement results in rotation and warping of the normal. The angle
between the geometric normal to the midsurface and the warped normal is maximum at
the midsurface and zero at the the upper and lower surface. For a linear elastic material
undergoing infinitesimal displacement (i. e. , linear strain displacement relations hold), this
angle of deviation is equal to the transverse shear strain. The distribution of transverse
shear strain for the infinitesimal linear case is parabolic through the thickness of a flat
plate. Under the classical Kirchhioff assumption, one assumes the normal (or cross-section
of a beam) remains normal, straight, and inextensible. This assumption results in zero
transverse shear strain. For thin shells, where A/ R < 1, the Kirchhoff assumption allows
accurate predictions of transverse deflection versus load for small displacements. For thick
shells, where h?/R? < 1, or when anisotropic material properties are assumed, transverse
shear effects become more apparent. Thick shells and composite shells generally will show

greater trausverse deflection for a given load when the effect of transverse shear is included
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Figure 3.5. Deformation of Normals for FTSD and HTSD Theories

in the theoretical model.

3.4.1 First-Order Transverse Shear Deformation (FTSD) Theories. There are sev-
eral ways to include transverse shear deformation. Transverse shear effects can be included
using a first-order transverse shear deformation ('T'SD) theory. In this case, material lines
originally normal to the midsurface are allowed to deviate from the normal to the shell
midsurface as shown in Figure 3.4.1. These lines remain straight and inextensible. Since
the angle of deviation is constant, the displacement field varies linearly. The constant an-
gle also implies transverse shear strain is constant, and thus, is not zero at the upper and
lower surfaces of the shell. This inconsistent distribution results in an overly stiff model
of the structure. This stiffening effect, called shear locking, becomes more pronounced as
the shell thickness approaches zero. First-order transverse shear theories can be used, pro-
vided some artificial corrections are made. The excessive strain energy resulting from the
constant shear strain assumption is usually reduced by multiplying the transverse strains
by a constant factor of 5/6 for isotopic materials. Although 5/6 is often used for composite
materials, there is no generally accepted method of determining shear correction factors

for anisotropic materials. The predicted response of the FTSD model is sensitive to the
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values of shear correction factors. Hence, some have suggested that theories of composite

shells should not depend upon any numerical factors [5:698).

The derivation of transverse shear deformation theories is, generally, based on writing
the displacement vector U, of Eq (3.31), as a function of the thickness coordinate of the
shell. According to Reddy [80], this approach was pioneered in 1890 by A. B. Bassett. Ac-
cording to literature cited by Dennis [18], Bassett expanded the displacement components
u; in an infinite power series as shown below:

2 0%u;

+ Y375 - 3.61
y3=0 ’ ayg ( )

Ou;
ui(y1,Y2,¥3) = wi(91,92,0) + ysg—‘
Y3 y3=0
Y=
This displacement field, when substituted into Eqs (3.38) and (3.39), will give nonzero
transverse shear strains 7,3 and 423. Also, the uz component is a function of the thickness

coordinate y3. This will result in a nonzero o33.

Hildebrand, Reissner, and Thomas [26] examined the importance of the terms leading
to the transverse strains for orthotropic shells. They truncated the expressions of Eq (3.61)
for u; and u, at the second order terms. They also assnmed, for the case of o33 =~ 0 with
€33 given by Eq (3.56), that u3 could be determined by intergrating Eq (3.56) though the
thickness of the shell. Their investigations showed that the resulting linear and quadratic
y3 terms present in u3 could be neglected. Thus, the displacement field of Hildebrand et
al. has a uz displacement function that Joes not vary through the thickness of the shell.
Theories based upon the assumptions of Hildebrand et al. are called first-order shear
deformation theories. These types of theories were extensively studied by Reissner and
Mindlin in the 1940’s and 1950’s [82, 49] for plates, and hence, are often called Reissner-
Mindlin theories. For a shell, the FTSD theory is given by the following displacement
field:

u = uw(l—y3/Ri)+ iy

U2

v(1 = y3/R2) + t2ys (3.62)

Uy = w

3-19




\— Top Surface

|
/

\_ Parabolic

Transverse Shear

Cubic
Transverse Shear

<=

Bottom Surface

Figure 3.6. Parabolic and Cubic Transverse Shear Distributions for a Curved Shell

where the five degrees of freedom (dof), ©, v, w, ¥; and 9, are functions of the in-plane

curvilinear coordinates y; and y,.

3.4.2 Higher-Order Transverse Shear Deformation (HTSD) Theories. Higher-order
transverse shear deformation (HTSD) theories generally eliminate the need for shear cor-
rection factors. The HTSD theory allows the normal to rotate and warp as shown in Figure
3.4.1. Some HTSD theories also allow the normal to change length. The HTSD theory
for a flat plate produces a parabolic distribution of shear strain as shown in Figure 3.4.2.
This distribution matches the exact distribution of shear strain for the linear infinitesi-
mal case. The results for curved shells, however, are different because of the curvature of
the shell. Due to curvature of the shell, the transverse shear strain is distorted as shown
in Figure 3.4.2 by the heavier line labeled cubic transverse shear. Since the small-strain
transverse shear distribution for a shell is a cubic function of the thickness coordinate, the
displacement field should be at least quartic in the thickness coordinate. For a shell, the
curvature generally creates coupling between in-plane extension and bending activity. To
include this effect, one needs to include quartic terms in the displacement field or include

nonlinear strain displacement terms. Assuming a general quartic displacement field, as
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given in Eq (3.63), the derivation of a quasi-nonlinear HTSD theory for a shell follows:

(Y, 92,%) = w(l-y3/R1)+ by + 6193 + 1193 + 615
u2(y1,92,93) = v(1— ya/R2) + Poys + bov: + 7293 + 0273 (3.63)
u3(y1 y Y2, y3) = w(yl y ?/2)

where v = u(y1,%2), v = v(y1,¥2), w = w(yLR), Ya = Ya(y1,12), ba = da(¥1,92),
Yo = TalU1, ¥2), and 8, = 0,(11, ¥2) are degrees of freedom defined only at the midsurface of
the shell. These degrees of freedom are functions of the in-plane coordinates y; and y, and
will vary from point to point on the shell’s midsurface. For the shell with &y = (1-y3/Ry),
hz = (1 —y3/R2), and hg = 1 and the displacement field of Eq (3.63), the linear transverse
shear strains (given by the first line of Eqs (3.38) and (3.39) are as follows:

1 O (')ul (1~ y3/R1)]
S S +(1-y3/R g R 3.64
"= U w/k) [ayl L (3.64)
1 dug au2 o(1 - yisl)] -
—_— A LA AR .6
Tz (1 =y3/R2) [(711 +({ yS/R2) T dy3 (3.65)
Substituting Eq (3.63) into Eq (3.65) gives:
- 1 Jow . . 92 _q ) 2
Yoz = TS [ay2 + Py — 2¢2y3 + (R2 372 | ¥3
272 30
+ < T 402) 3+ E%yg] (3.66)

For this equation to be zero at y3 = +£h/2 and yield a parabolic distribution of 723, the
coefficients of odd powers of y; must cancel each other or be equal to zero. If one assumes

@2 = 0 and 82 = 72/ Ry, these coefficients vanish and 73 is given by:

1 ow 37 ,.
8= A g/ ko) [Efz - St + 211?”"] (3.67)

Evaluating Eq (3.67) at y3 = h/2 and solving for y, gives:

3h? h? dw
— — — — - — —L ,) : L
4 (1 81?.5) (0J v 2) (3.68)

3-21




For a shell with radius R, no smaller than five times the thickness k, the term h%/8R3 in

Eq (83.68) is less than or equal to 1/400. If one ignores this term, then 72 is given by:

4 (0w
T2 =3 (5?/-2' + ¢2) (3.69)

Similarly, 7; can be found. If one substitutes Eq (3.69) and ¢2 = 6, = 0 amd similar
relations for ¢y, 11, and 6, into Eq (3.63), the final form of the displacement field of a

third-order quasi-nonlinear transverse shear deformation theory is obtained:

u(y,¥2,93) = u (1 - -}’f;) + iy — 32 (5"’% + 1,’)1) 3
uz(¥1,92,93) = v (1 - 7’%) + Yoy — 5z (-g-;g + qu) 3 (3.70)
u3(y1,¥2,%3) = w

This third-order displacement field has two additional degrees of freedom not present in
the first-order theory. These two degrees of freedom are the differentials of transverse
displacement w. The third-order theory, thus, allows the slopes of the elastic curve, w,,
to be different from the bending angles, ¥,. These differences are directly related to the

transverse shear strains of the structure.

The third-order transverse shear theory can be generalized to represent all third-
order theories of flat plates. including classical laminate theory or first-order shear theories

[78] by assuming displacements of the form:

4y = u+ys (—a?,—'ﬁ +ﬁ‘¢’1) + A3 (%%) + 39 [—ﬂ,—:‘f (11’1 + %‘) -y
3

1
uy v+ 3 (—a%—’;’f +ﬂ¢z) + M3 (%’5—2) + 513 [—ﬂff (11’2 + %’,—‘-") - 75-3%] (3.71)

Uz = auwy + ﬂws + /\?/311)3 + ’yy§¢3

Here u, v are midsurface displacement functions in the y; and y» directions, respectively.
The functions wy and w, are the transverse displacements due to bending and shear in
the y3 direction. The %; and 1), are rotations of the transverse normal about the y;- and
ys—axes, respectively. The choice of different values for o, 8, and A will lead to various

theories. Classical shell theory is given by a = 1, 8 = 0, and A = 0. In this case, the
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dispiacements are linearly dependent upon the slope of the midsurface and lines normal
to the midsurface remain normal. Hence, there is no transverse shear deformation. The
first-order quasi-nonlinear transverse shear theory is given by & = 0, 8 = 1, and A = 0.
Thus, the displacement is a function only of the midsurface displacements (u,v,w) and
the rotations (3,%,) of the transverse normals. Since the displacements u; and u, vary
linearly with changes in y3, the effective transverse shear strain is constant through the
thickness. The third-order quasi-nonlinear transverse shear theoryis given by e = 0,8 = 1,
and A = 1. In this case, the displacement is a function of the midsurface displacements
(w,v,w), the rotations (11,2) of the transverse normals, and the 7; and 72 of Eq (3.69).
The 71 and 72 of Eq (3.69) are approximately equal to the transverse shear strain. Thus,

the t; represent rotations of the normal caused by bending activity and the 7, represent

rotations of the normal caused by transverse shear activity.




IV. Theoretical Development

The third-order quasi-nonlinear transverse shear deformation theory for a shell is
suitable for many problems of practical interest. Two approximations of this theory, how-
ever, require further examination to assess their effects upon the accuracy of this theory for
certain problems. Specific problems of interest are ones in which rotations and curvature
within the element become very large. The first approximation, in question, is the neglect
of some higher-order terms in the thickness-expansions of displacement and shell shape
factors. The third-order displacement field of the quasi-nonlinear HTSD theory, as applied
to flat plates, assures the linear terms of the transverse shear strain components have a
parabolic distribution through the thickness and are zero at the top and bottom of the
plate. The third-order kinematics of the quasi-nonlinear HTSD theory do not give zero
linear transverse shear strain at the upper and lower surface of a shell—unless the shell is
flat or some small terms of the transverse shear strain are ignored. The curvature of the
shell is important, because the shell shape factors distort the distribution of strain through
the thickness of the shell. Thus, the order of approximation of the shell shape factors af-
fects the accuracy of the strain distributions. The second approximation, in question, is
the neglect of nonlinear transverse shear strain terms. The quasi-nonlinear HTSD theory
of Reference [18] ignores all nonlinear terms of both €23 and £;3. This linear restriction
is not necessary physically, but satisfying the zero strain boundary conditions of the full

nonlinear expressions is not a trivial problem.

According to Dennis [18} and Librescu [45, 46], the assumptions of quasi-nonlinear
HTSD theories are accurate for problems where the in-plane strains and stresses are larger
than the transverse quantities; these judgements are based upon Koiter's work [40] and
the ratio of A/R. Dennis evaluated problems with various ratios of h/R, and concluded
the quasi-nonlinear HTSD was acceptable provided h/R was less than 1/5. Some problems
investigated using the quasi-nonlinear HTSD theory, however, would scem to have exhibited
large stresses and strains despite small values of A/R. For example, a graphite-epoxy
(AS4-350) cylindrical shell panel with clamped lateral edges and transverse point load was
analyzed by Tsai et al. [103]. This shell had a 12-inch radius and was 0.04-inches thick,

therefore, i/ R was equal to 1/300. Transverse displacements for this problem exceeded 63
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times the panel thickness (2.5-inch displacement). A deep circular arch problem Dennis
investigated had transverse displacements of over 30 times the thickness[18:257-265]. The
effects of ignoring nonlinear transverse shear terms and higher-order thickness expansion

terms were not determined during these studies.

4.1 Higher-Order Thickness Ezpansions

The kinematics of Eq (3.70) can be corrected to yield exactly zero at the top and
bottom surface of a curved shell by adding two correction factors to the last term as shown

below:

1
u; (Y1,Y2,93) = u (1 - ;2_31) + hys + (1!)1

2
w Y3 3 k 4
TN -8 3
* a1‘/1)[ R, kY Rle}
AN AN ( .aﬂ) B s ko
w2 (y1,¥2,93) = ‘U<1 R2)+V2y3+ ¢2+0y2 R2+1~1/3 IRE (4.1)

u3(yl)y2’ y3) = w

where k = —4/(3h?) and the underlined terms are the correction terms added to Eq (3.70).
These kinematics will give zero linear transverse shear strains at the upper and lower surface
of a curved shell where y34//2. The additional terms of Eq (4.1) also vanish for a flat plate,
since each is divided by radius of curvature. Likewise, for a right circular cylinder with
radius 22 the first equation of Eq (4.1) reduces to the corresponding flat plate expression,
since ) is equal to infinity. The comparison of results based upon the incomplete cubic
kinematics of Eq (3.70) and results based upon the complete quartic kinematics of Eq(4.1)
is a major aspect of this research. As stated earlier, the cubic displacement field of Eq (3.70)
is the same as used by other authors [80, 18]. The complete quartic, however, is a unique
displacement field not derivable from those of reference (80]. This quartic displacement
field, thus, represents an exact solution for the lincar traction free boundary conditions of

a quasi-nonlinear HTSD theory for shells. Thus, satisfving the linear boundary condition

for traction free surfaces involves four more terms in the displacement field.




4.2 Nonlinear Transverse Shear Deformation

The nonlinear transverse shear boundary conditions are not as easily solved as the
linear versions of these conditions. If one substitutes the kinematics of Eq (3.63) into
Eqs (3.38) and (3.39), the recults are the two coupled nonlinear partial differential equations

shown below:

g23 = (2 4wz — cuug+ cPuw + uphy + ugthy — cwihy)
+ (cv 4 2¢2 + cw g + e + 2¢01u 2 + 2¢2u 2 ~ 2¢cw
+cluw + cupr + Y1291 — cutbas — cPwihy + Paath) Us
+ (v + 372 + ¢ac — Cu+ Ao + 3nug + 3y2ug + 2¢1cuy + uuy
—372cw — 2¢9¢?w — cudy 2 + 261912 + 1,291 + 291
+2¢212,2 — Puthy g — Cuathy + do a2 + c229) Y2
+ (467 + y2¢ + ¢oc? + 401w g + 40pu 2 + 3y10U2
—2¢c%u 5 — 402cw — 3y2c®w — cuyzn
+20161,2 + 202022 — cPuda g + 311912 + 281c%12 + 11,291
+edrath + 312¥a2 + 202cta 2 + V2,002 + ch22%2) 13
+ (2¢ + 72¢% + 481cu 2 — 3y2cu g — 462¢%w + 26171 2 (4.2)
+2¢272,2 = Curaz + 311912 + 2016612 + 372d2,2
+2¢2¢h2,2 + 401912 + 3micr 2 + en1 291 + 402922
+372¢t2,2 + Y2292 + Y161,2 — cubla 2 + P2b2.2) 3
+ (02¢® — 402¢u + S11712 + 2616M .2 + 3712722
+2¢2¢72,9 + 401412 + 311¢01,2 + 402022 + 372cda 2 + 401c9y 2
+402cth22 + 201012 + 1012 + 20202 2 ~ Zuba g + 2o 2) 13
+ (401712 + 3116712 + 402722 + 3720722 + 4011 2
+ 402¢¢22 + 311612 + 20101 2 + 372022 + 2¢2¢022) ¥§
+ (401¢71,2 + 402¢72,2 + 401601 2 + 371¢01 2
+ 409022 + 372022 + 401615 + 402¢022) y3
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g13 = (Yr1+wy—covg+uath +va92)
+ (201 + 26101 + 2621 + cPuny + 119 — cutba,
—cu %P2 + P2,1%2) Y3
+ (371 + 3nuy + 3v2u,n — 2d2cuy — cudz + 26191,
+é1,1%1 + 262321 + 2,1%2) 3
+ (46 + 4011, + 463uy — 3v2cuy ~ cuyzn + 26161,1 + 20202
+ 31,1 + 71381 + 312 + v21%2) U3
— (462cuy + 261711 + 20272,1 + 311 d1,1 + 3vade, + 401911
+402%2,1 + 91611 — cubay + P262,1) ¥3
+ (B1am1 + 31272, + 401911 + 402621 + 261613 + 26202,1) 93
+ (401711 + 402721 + 371011 + 37262,1) 5
+ (46101,1 + 46262,1) y3

(4.3)

Recall ¢,, 7, and 8, were undetermined functions of the in-plane coordinates defined only
on the midsurface of the shell. In order to solve these two equations for all of the unknown
functions (there are six unknowns), one must evaluate these two equations at yz = £h/2
and set each resulting equation equal to zero. This is required to satisfy the zero traction
boundary condition on the surfaces of the shell. Although other authors have proposed
the inclusion of nonlinear transverse shear and the use of linear kinematics [92, 97, 65, 66,

none have done so within a HTSD theory.

Since no simple functions exist for ¢;, 7., and 6; that are linear in terms of u,v,w
and ,, several options are available. One could choose to ignore the natural boundary
conditions and use shear correction factors as done with the FTSD theory. Sing, Rao, and
Iyengar [97] choose this approach. One could also simply ignore all nonlinear transverse
shear strain terms. Palmerio and Reddy [65, 66], although intending to include nonlinear
transverse shear, ultimately choose this approach for their quasi-nonlinear FTSD theory.
These are the only two references, the author has located, which refer to nonlinear trans-
verse shear terms in a F'TSD or HTSD theory for shells. It should be noted that some thin
shell theories include nonlinear transverse shear stress resultants. These, however, are not
a result of explicit nonlinear transverse shear strain terms, but result from integration of

the equilibrium equations with nonlinear in-plane stresses {46]. Thus, these nonlinear the-
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ories are not suitable for thick or anisotropic shells where variation of parameters through

the shell’s thickness are important.

4.3 The Nonlinear Higher-Order Transverse Shear Deformation Theory

Some preliminary judgements of the relative importance of higher-order terms can be
gained by examining the terms of £23. If one uses the third-order kinematic assumptions to
compute strains for a shell with radius R = 5h, then the linear part of the y23 component
(first line of Eq (3.39)), when evaluated at the top (y3 = —h/2) and bottom (y3 = +h/2)

surfaces of the shell, becomes:

Y23 (Y3 = —h/2) - (Q% + ¢2)

Il
I
o
=3
bt
<

33 (% + ¢2> (4.4)

i

Y23 (y3 = +h/2) +—1— (a—?% + ¢2>

— 0w
3 22 .y
+0.033 (03/2 + 1,)2) (4.5)

When these quantities are divided by the shape factor i, = 1 — y3/R (evaluated at y3 =

+h/2), the 23 values become:

10 (Ow
€23(ys = —h/2) ~ 165 (552- + ?,’Jz)

= —0.050 (% +) (4.6)

]

10 /ow
_ — (¥,
€23 (y3 = +h/2) +135 ((’)yg + ?,)2)

Jw

= +0.0740
+0.0740 <(9y2

+ '402) (4.7)

If the term (w/0y, + %2) is equal to 0.25, then €23 (y3 = +h/2) would be equal to 0.0185
or about 2 percent strain. This magnitude of strain is significant for a small strain elastic
material model where strains in excess of about 4 percent are considered too large for an

elastic analysis. The use of the complete quartic kinematic assumptions of Eq (4.1) gives
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exactly zero for these transverse shear strain quantities.

If nonlinear strain displacement terms are retained for the transverse shear strains,
the equations for €53 and €13 become more involved. Using the kinematic assumptions of

Eq (3.70) and evaluating Eq (3.39) with y3 = h/2, Ry = 5h, and k = 1, one has:

ow 8u ow ov Qw
= — = (.45
728 (3 + ¢2) 3 Y2 0t 0y2 0y2

0y Ow 01[11 8w) ((?w )
—0.156 0.1w
(33!2 o0 T o o) YO 92

2 2
+0.0002% 1 0.0833 (aw Tw 213——3—"’—)

0y2 Oy2 a!/Q dy1 011 0y2
2
~0.033v @3 — 0.020w 4+ 0.01560 22
Y2 ayz
+7.45 x 107° ¢a2w+¢ O —151&-@2 (4.8)
' 2003 T o0y, 0w '

where the underlined terms are the linear terms of Eq (4.4). The last three terms of
Eq (4.8) (those multiplied by 7.45 x 10~°) are apparently negligible. For a cylindrical shell
of radius Ry undergoing large transverse displacement, say [h < w < maz (L, Ry)), if one
assumes the shear-related term dw/dy, + 1, is large, say [0.5 < (Qw/dy2 + 92) < 1.0, and
all other quantities in Eq (4.8) are negligible, then:

The types of shell problems of interest in this research will undergo large transverse dis-
placement along with large bending rotations and shear angles. Thus, the w (0w/9y2 + ¥2)

term of Eq (4.9) may be of significance.

The author’s approach to including nonlinear transverse shear terms in @ HTSD the-
ory includes several assumptions beyond those of the quasi-nonlinear I'TSD theory. First.
the author is primarily interested in problems involving large rotations and curvature
changes for laminated shells. Thus, the new theory should reduce to the quasi-nonlinear

HTSD theory for problems with smaller rotations or smaller curvatures. The kinematic
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assumptions of Eq (4.1) reduce to those of [18] for small curvature problems, since each
additional term includes the radius of curvature in the denominator. Secondly, the satis-
faction of the nonlinear boundary conditions of Egs (4.2) and (4.3) will not be achieved by
the use of nonlinear kinematics. Although this seems feasible, one goal of this research was
to extend the capability of HTSD theory to solve large-rotation large-curvature problems
with transverse shear nonlinearity. The quasi-nonlinear HTSD of [18] is computationally
quite expensive [18:278]. The incorporation of nonlinear kinematic terms and the correc-
tive terms of Eq (3.62), therefore, seems prohibitive. There is also a practical problem
associated with the ability of one researcher to numerically evaluate enough problems to
determine the effects of each of these variables. Thus, the author has chosen to evaluate
the kinematics of Eq (4.1) with the full nonlinear transverse shear relations of Eq (3.38)
and (3.39) with an approximate approach to the nonlinear boundary conditions. This
approximate approach assumes the nonlinear transverse shear strain should be zero at
the upper and lower surfaces and that the strain energy of the nonlinear transverse shear
strain terms is excessive. Recall the FTSD theory had excessive transverse shear strain
energy which was approximately corrected by multiplying the transverse shear strain by
5/6. The author hopes to achieve similar results and also force the satisfaction of zero
traction at the surface by multiplying the nonlinear transverse strain terms by a parabolic
function of the thickness coordinate. Other researchers have used similar functions to pro-
vide the parabolic shear distribution of the quasi-nonlinear HTSD theory; see for example

[9:300-301] and [37:1192].

Thus, the goal of this research is to evaluate the effects of two theoretical “attributes”
not previously investigated for linear-elastic thick shells with large displacement, rotations,
and curvatures using a higher-order transverse shear deformation theory. These two at-
tributes are ihe exactness of traction-free surface boundary conditions and the inclusion
of approximate nonlinear transverse shear strain terins. A third “attribute” will also be
considered, and that is the exactness of the approximation of functions of the shell shape
factors. These functions appear in the strain displacement relations of Eqs (3.34-3.39) as
functions of the shape factors i, and their derivatives. For a cylindrical shell, these geo-

metric functions depend only on the thickness coordinate. For a 1*TSD or IITSD theoty,




where displacements are expanded in terms of the thickness coordinate, these geometric
functions are often expanded in terms of the thickness coordinate and arbitrarily trun-
cated at a specific power of the thickness coordinate. Dennis [18:316-322] used Taylor’s
series expansions of 60 of these geometric functions that appear in the strain displacement
relations for the quasi-nonlinear HTSD theory of a shell. These 60 functions are shown in
Appendix A with their Taylor’s series approximations. Dennis truncated these functions

to the constant term for transverse shear strain components [18:65).

Although Dennis’s quasi-nonlinear HTSD theory has been used for many problems
(18, 22, 64, 88, 93, 100], Prathap and Naganarayana [52, 73] investigated the effect of in-
consistently approximating the transverse shear strains for curved beam elements. An im-
portant aspect of their investigation was the consistency of approximation of the geometric
terms involving curvature in the denominator. They found that inconsistent approxima-
tions of out-of-plane transverse shear strain resulted in force and stress oscillations which
degraded convergence characteristics of numerical models. Although their geometric terms
were not identical to the 60 shell geometry functions of the quasi-nonlinear HTSD theory
for shells, the results of Prathap and Naganarayana suggest this “attribute” should also

be considered in this research.

Thus, the full nonlinear higher-order transverse shear deformation theory of this re-
search has been developed. This new theory incorporates, in its most complete form, a
quartic displacement field, quadratic approximation of shell shape factor functions, and all
nonlinear strain-displacement terms of the transverse shear strains. The surface boundary
conditions of a shell are exactly satisfied for the linear case and approximately satisfied
for the nonlinear case. The nonlinear boundary conditions are satisfied by forcing the
transverse shear strains to zero at the upper and lower surfaces with a parabolic Other
more common assumptions include the use of linear-elastic constitutive relations for lam-
inated transversely isotropic composite material, transverse normal stress is assumed to
be approximately zero, and transverse normal strain is assumed to be related to the di-
rect strains in direction of the fiber and the direction transverse to the fiber. Several of
these theoretical characteristics are shown in Tables 4.1 and 4.2 with the corresponding

characteristics of the Kirchhoff-Love theory, Donnell’s Theory, a typical FTSD theory and
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Dennis’s quasi-nonlinear HTSD Theory.

Table 4.1. Comparison of Shell Theories Without Transverse Shear Deformation

Kirchhoff-Love Theory
Shell Assumptions: Shell behavior is totally defined by the behavior of the midsurface.

Shell has thickness. Assumes plane strain with o3z = 0 and isotropic material.
Kinematic Assumptions: 3 primary dof: u,v,w. No variation through the thickness.

Transverse Shear Assumptions: Transverse shear strains are assumed to be zero.
Nonlinear Assumptions: None—linear strain-displacement relations typically used for
all strain components.

Donnell-Mushtari-Vlasov Theory
Shell Assumptions: Shell behavior is totally defined by the behavior of the midsurface.
Shell has thickness. Assumes 033 = 0 and isotropic material.
Kinematic Assumptions: 3 primary dof: u,v,w. No variation through the thickness.
Transverse Shear Assumptions: Transverse shear strains are assumed to be zero.
Nonlinear Assumptions: Linear strain-displacement relations are used for transverse
shear strain components. Some nonlinear strain displacement terms involving w and its
derivatives are included for the in-plane strain components.

4.4 Element Independent Stiffness Formulation

The theory of the previous sections dealt with displacement fields, constitutive rela-
tions, and strain displacement relations for curved shells with a nonlinear HTSD theory.
The next step required, to yield a suitable tool for the investigation of our three new “at-
tributes”, is the development and solution of the governing differential equations for shell
problems. Since the author is specifically interested in the nonlinear phenomena of large
displacements and rctations, no analytical or linear solutions are desired. Furthermore, to
provide a suitable comparison to previously published methods, the author has chosen to
develop the governing differential equations and solve these in a manner consistent with
that of Dennis. In his development, Dennis used an “element independent” finite element
formulation for an incremental/iterative solution based upon the principle of stationary

potential energy of a linear-elastic laminated shell [18:78-95].




Table 4.2. Comparison of Shell Theories With Transverse Shear Deformation

Quasi-Nonlinear FTSD Theory

Shell Assumptions: Shell behavior is based on the behavior of the midsurface. Shell has
thickness and linear variation of displacement. Assumes o33 = 0 and isotropic material.

Kinematic Assumptions: 5 primary dof: u, v,w, ¥y, ¥,. Variation through the thickness
described by u; = u(1 — y3/R1) + ¥193, w2 = v(1 — y3/ R2) + 133, and uz = w.

Transverse Shear Assumptions: Linear infinitesimal transverse shear strain varies lin-
early through the thickness of the shell.

Nonlinear Assumptions: Linear strain-displacement relations are used for transverse
shear strain components. Some nonlinear strain displacement terms are typically used
for in-plane strain components.

Dennis Quasi-Nonlinear HTSD Theory

Shell Assumptions: Shell behavior is based upon the behavior of the midsurface. Shell
has thickness and incomplete cubic variation of displacements through the thickness.
Assumes o33 = 0 and laminated composite material.

Kinematic Assumptions: 7 primary dof: u,v,w, %), %, w1, w2. Variation through the
thickness described by w3 = u(l — y3/R1) + ¥1ys — 4(¢¥1 + w,1)y3/3R2%, w2 = v(1 —
y3/R2) + ays — 4(1hs + w2)y3/3h?, and u3 = w.

Transverse Shear Assumptions: Linear infinitesimal transverse shear strain varies
parabolically through the thickness of the shell.

Nonlinear Assumptions: Linear strain-displacement relations are used for transverse
shear strain components. Most nonlinear strain displacement terms are included for
in-plane strain components (10 higher-order terms of €22 and 16 higher-order terms of
€12 are ignored).

Full Nonlinear HTSD Theory

Shell Assumptions: Shell behavior is based upon the behavior of the midsurface. Shell
has thickness and complete quartic variation of u; and u, displacements through the
thickness. Assumes 033 = 0 and laminated composite material.

Kinematic Assumptions: 7 primary dof: u,v,w, ¢, %2, wy, w2. Variation through the
thickness described by w; = u(l — y3/R1) + t1ys + (%1 + w,1)[-1/ Ry — 4y3/3h? +
453/3h* RaJy3, uz = v(1 - y3/R2) + thoys + (b2 + w2)[~ 1/ R2 — 4ya /3% + 435 /30 Ry)43,
and u3 = w.

Transverse Shear Assumptions: Linear infinitesimal transverse shear strain distribution
described by a complete quartic equation that exactly satisfies upper and lower surface
zero-traction boundary conditions for a curved shell.

Nonlinear Assumptions: Nonlinear strain-displacement relations used for all strain com-
ponents. Nonlinear transverse shear boundary conditions (zero-traction at surface) are
approximated by forcing nonlinear transverse shear strain to zero at upper and lower
surface using a parabolic function of thickness coordinate.
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The finite element technique is a powerful numerical method capable of solving many
coupled partial differential equations over a certain domain. In this research, the domain
is a cylindrical shell, shown in Figure 4.1, and the equations are based upon the variation
of the total potential energy II, of the elastic body. Specifically, the principle of stationary
potential energy is used where 6II, = 0. The potential energy expression is found by first
examining the equilibrium state of the body. For a body of volume V with prescribed
forces F on part of its surface $; and prescribed boundary conditions on the remaining
part of the surface 2, the equation of equilibrium for an infinitesimal virtual displacement
64 is given by:

/V (0967 — P6uk)dv — /S FESuRdS = 0 (4.10)
1

where

0% = the components of the Second Piola Kirchhoff stress tensor (for the orthogonal

coordinate system chosen, o7 = 0;;)

7, = the Green strain components expressed in the body’s coordinate system

g
I

= components of body forces, and

F* = components of prescribed surface forces

For a conservative system, one where the forces I do not vary during virtual dis-

placement, there exists a strain energy density function W*, such that:

.. ow*
oV = — (4.11)
871']
Assuming strains are small, then one can express the stress in terms of strain as:
o' = Cikly, (4.12)
where C7* are constants of the elasticity tensor. Thus, the strain energy density becomes:

1 ..
W* = 56""""/;_,71;1 (4.13)
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Figure 4.1. Cylindrical Shell Domain for Derivation of the HTSD Theory
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The first variation of potential energy for the case with zero body forces is given by:
611, = 6 / W @)V - [ FFsubds =0 (4.14)
Vv S1

To evaluate Eq (4.14), a suitable reference frame must be chosen. A typical method is
to assume a total Lagrangian approach where the strain tensor, elasticity tensor, and all

other components are described in terms of coordinates of the original undeformed body.

For a laminated orthotropic material, the stress components can be written in terms
of the reduced structural stiffness of the lamina as in Eq (3.59). Substituting Eq (3.59)
into Eq (4.13) and integrating over the volume of the body, one obtains the strain energy

as Uy + U,, where:

Ul = %fv (?):11€¥ +§22€g + 2-(—2126182

+ 2Q16€186 + 2Q 266266 + 6666(25) dv (4.15)
UV = 3k (64453 +2Q 56465 + 55552) dv

The ¢, in Eq (4.15) depend on the thickness coordinate and the midsurface coordinates y;
and y2. The Q;,, defined by Eqs (3.58) and (3.60), however, depend only on the thickness
coordinate. Thus, these equations can be reduced to an integral over the midsurface of the
shell. This is done by first assuming displacement components u;, us, and uz vary in the
form of a series expansion with respect to the thickness coordinate. Then, one can directly
integrate the Q,J expressions through the thickness of the shell. The integral through the
thickness of @; ,¥5 defines an elasticity array, say C,,. These arrays are the familiar 4,),
B,;, D,,, ... associated with macro-mechanical behavior of laminated composite plates
[36:154-155]. For the laminated composite, the integral is replaced by a summation over

the number of plies as shown below:

\’
Cio = Aij= LIZ(Q.J) (3 = ¥3,-y)
=
N
Cin = =%_Z_:(Q*J) (48, - #...)
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Cip = D=3y (@), (83, - %) (4.16)

1 —
Cijp = Xij=~ (@), (5, - 45._.)
where 7 is determined by the order of the thickness expansion approximation for u; and

for the shape factor approximations.

The previous expression for the variation of total potential energy II, gives five
coupled nonlinear partial differential equations which govern the equilibrium of the system.
These expressions contain 18 displacement parameters: u, w3, %32, v, v1, V2, W, W1,
W2, W11, W22, W12, Y1, P1,1, Y1,2, Y25 P21, P2,2. These parameters include the seven
displacement parameters of Eq (4.1) and their derivatives. Since the equilibrium equations
are nonlinear in terms of the displacement parameters, an incremental-iterative approach is
typically used to solve a system of linearized equations which yields an equivalent solution.
These linearized equations are found by differentiating the expression for I, with respect
to the displacement functions. For simple theories, such as a Donnell theory or a linear
FTSD theory where relatively few terms are included, the first variation of II, and its
linearization, can be explicitly developed, term by term. For more complete theories, such
as the quasi-nonlinear HTSD theory {18] or a fully nonlinear theory, the expression of II,
has several hundred terms. Its first variation would include, perhaps, thousands of terms

and the subsequent linear equilibrium equations would be quite lengthly.

Rajasekaran and Murray [75)] developed a formal procedure for finite elements, which
defines the total potential energy, its first variation, and the linear incremental equilibrium
equations in terms of three stiffness matrices. Specifically, the total potential energy is

given by:
I, = {g}* [%[K] + %[Nl] + %[1\’2]] {a} = {0} {R} (4.17)

where

{q} = a column array of nodal displacement parameters

{R} = a column array of nodal loads
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[K] = an array of constant stiffness coefficients

[N1] = an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([NVy] is linear in terms of displacement)

[N2] = an array of nonlinear coefficients with each term dependent on the product

of two displacement parameters ([Vo] is quadratic in terms of displacement)

The equilibrium equation, then is given by

i1+ 300 + 20%] {03 - (2 = {0) (4.18)
and the linear incremental equilibrium equation is given by:

(K] + [M] + (M)} {Ag} - {AR} = {0} (4.19)

According to Rajasekaran and Murray, this notation was introduced by Mallett and Marcel
in 1968 [75]. To assure the formalism of Eqs (4.17-4.19) holds, the stiffness matrices [/,
[V1), and [N;] must be derived in a specific way. Rajasekaran and Murray showed that by

expressing strain components as follows:
1
& = {L}T{d} + S {¢} (I ){a} (4.20)

and then redefining the terms of [}, {N1], and [iV], the formalism of Eqs (2.17-4.19) wou'd

always be valid for any finite element representation of elastic continuum. In Eq (4.20)

€; = a particular strain component
{d} = a column array of continuum displacement parameters

{L:} = a column array of the constant coefficients of terms in ¢, containing only one

displacement parameter (the terms linear in displacement)

[Hi] = a symmetric array of the constant coefficients of terms in &, containing the

product of two displacement parameters (the terms quadratic in displacement)




Using Eq (4.20) and defining the terms for a specific ¢, as €, = e& + ML, the expression

for potential energy of an elastic material can be written as:
1 N
Hp = :2-/;, Cij (E,-LE‘? +2€£J€§-VL +£:_ 1’5;'\1') dV — {d}T{P} (4.21)

where Cj, is the symmetric array of elasticity constants and summationoni = 1,...,6 and

j=1,...,6 is implied by the repeated subscripts. Introducing Eq (4.20) into Eq (4.21)

gives:

M, = 3 [ Cold [(LHEY + (BT

+§[]I,-]{d}{d}7'[]{j]] {d}dV - {&}T{P} (4.22)

Notice at this point, Eqs (4.20) and (4.21) are expressed in terms of {d}, the contin-
uum displacement gradient vector; no finite element discretization has been used. Thus,
these equations represent an element independent formulation. By defining a finite element
approximation for the continuum displacements {d} in terms of nodal displacements {¢},
one defines a specific formulation. To provide the most general formulation, however, the
stiffness matrices of Eqs (4.17-4.19) can be developed in terms of the element-independent
formulation of Eqs (4.20) and (4.21). In this fashion, we seek definitions for [K], [N}, and
[V2], such that Eqgs (4.17-4.19) will hold. Rajasekaran an.l Murray showed that the direct
comparison of the terms of Eq (4.22) and those of Eq (4.17) will yield arrays (K], [V;] and
[N2] which satisfy Eq (4.17). Unfortunately, these arrays will not satisfy the formalism of
Eq (4.19); in some cases, they will not even satisfy Eq (4.18). They showed that consistent

representations of these arrays are given by the following expressions:

(K] = Cio{LiH{L;)T (4.23)
(V] = %C,-,- ({Li}{d}fll-',-] +{d)T {131, + [Hs]{d}{L;}T) (4.24)
(V] = %C,—,- <[11,-]{d}{(1}7[1:]-]+%{d}"[n,-]{d}[ﬂ,-]) {4.25)

Rajasekaran and Murray’s formulation was for finite elements where strains do not
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vary through the thickness of the element. This formulation can be extended to account
for variation of strain through the thickness [18:79-91]. To do this, one assumes strains at

a point in the shell can be represented by the the following series expansion:

2d+g
iy, ¥, 48) = €y, 92,0) + . XFo (4.26)
»=1

where

y3 = the distance from the midsurface in the &; direction

X! (y1, y2) = the coefficients of 3% appearing in the strain expression

d = the degree of the displacement field expression

g = the degree of the series expansion approximation of shell shape factor functions

appearing in the strain tensor

Rewriting Eq (4.26) consistent with £q (4.20) gives:
€ = Z ({Lz,.}T{d} + = {(Z}T[!I,p]{d}) (4.27)
p=0
where

{L.,} = a row array of the constant coeflicients of terms in ¢; containing only one

displacement parameter and the thickness coordinate y3 to the power p

[H;,) = a symmetric array of the coefficients of terms in ¢, containing products of

displacement parameters and the thickness coordinate y3 to the power p

With this power series expansion of strains, the terins of Eq (4.22) can be written as:

) = ZZ; psny (T HE T + {1 HE5 ) (4.28)

[ = %ZZ = Coipn (L MU + (L1, 1)) (4.29)
p=0r=0

] = 523 56000 (IO IHAWI) (130
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where

Cijipary = /h @ijygp“)dys (4.31)

are the higher-order elasticity arrays and summation on ¢ = 1,2,4,5,6 and j = 1,2,4,5,6
is implied. Notice that these equations a2 a result of directly substituting definitions of
{L,} and [H;,] into Eqs (4.24-4.25). These expressions will not satisfy the formalism of
Eqs (4.17-4.19). In a fashion similar to Rajasekaran and Murray’s formulation, Eqs (4.28-
4.30) can be manipulated to yield new definitions for arrays [K], [V;] and [NV,) that satisfy
the formalism of Eqs (4.17-4.19) :

7] = égécfj(p+,) ({6, HE5 ) + {1 }E3, ) (432)
(] = §§§%cej(,,+,) (€2 MO + {2 HOTUL + {0724 ;)
+{dYT (Lo YH, ) + (B MK LY + (i HaH L)) (4.33)
] = §§§§cej(,,+,> (A IO AR AITI )
+3 ([0 U N + (@ ) (4.30)

Equation (4.33) can be simplified and still retain the formalism of Eqs (4.17-4.19) [18:87-
89]. The simplified version of £q (4.33) is:

177. n

(M) = 2303 Ciigpy (L HAT U]+ ()T (L3, ) ()

p=0r=0

+ [H;, {dH{L;,}7) (4.35)

Thus, with the definitions of {L,,}, [# ], [i], (1], and[V2], one can now form the element
independent stiffness arrays given by Eqs (4.32), (4.35), and (4.34). This formulation
requires literally hundreds of matrix multiplications to evaluate these equations. Thus,

MACSYMA was used to accomplish this task.
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4.6 Symbolic Generation of Elemental Codes

A significant accomplishment of this research was the development of a tool to gen-
erate comparable versions of “elemental code”. The results comparing various theoretical
attributes would be meaningless if undetected errors were present in some variations, or
if different finite element models or discretization schemes were used. For this research,
a reliable system of generating different, but comparable, versions of code was required.
A MACSYMA routine was developed to symbolically generate the assumed displacement
field, determine the strain components, determine the shell shape factor approximations,
determine the elements of the strain definition arrays, and finally generate the Fortran
code for elements of the [K ], [f(s], [Nl], [1\713], [Ng], and [1{’23] stiffness arrays. Devel-
opment of this routine was a time consuming, but crucial aspect of this research. With
elemental codes approaching 70,000 lines in length, the detection of errors caused by “hand
generation” would have been virtually impossible. The symbolic generation of codes as-
sured reliability and comparability not achievable by other means. By using these codes
in an element independent formulation, the accuracy of each version of theory could be
compared using the same finite element model and main program (SHELL). This further
assured a fair comparison of the various theoretical attributes of each version. The only
variables were the order of the assumed thickness expansion for the u, displacement, the
order of the thickness expansion for the approximation of shell shape factor functions, and
the choice to include or exclude nonlinear transverse shear strain terms. The theoretical
attributes of the elemental codes used for this research are summarized in Table 4.3. The

codes are identified by a symbol “GXYZ”, where

G = C for cylindrical, S for spherical, or A for arbitrary shell geometry (Appendix
A lists relations for arbitrary shells and Appendices B through E list relations for
cylindrical shells. Complete relations for spherical shells were not generated for this

research),

X = 0 for the incomplete cubic uy displacement of Eq (2.70), or 1 for the complete

quartic up displacement of Eq (4.1),

Y = 0for linear shell shape function approximations, or 2 for quadratic approximations,
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Z = 0 for linear transverse shear strain displacement relations, or 3 for nonlinear rela-

tions.

Teble 4.3. Definition of Elemental Codes for Variations of Theory

Code || Displacement | Shape Factor | Transverse | Code Equations
Name || Assumption | Approximation | Shear Length | Given in
Order Order Strains (Lines) | Appendix
C000 || cubic (1) linear (2) linear 13866 B
C003 || cubic linear nonlinear | 23176 B
C020 | cubic quadratic (3) | linear 24254 C
C023 || cubic quadratic nonlinear | 39322 C
C100 | quartic (4) linear linear 29626 D
C103 || quartic linear nonlinear | 51637 D
C120 || quartic quadratic linear 30777 E
C123 || quartic quadratic nonlinear | 67618 E

(1) u; defined by Eq (3.70)
(2) See Appendix B for nonzero shell shape factor approximations.

(3) See Appendix C for nonzero shell shape factor approximations.
(4) u; defined by Eq (4.1)

The MACSYMA routine for generating elemental codes is included as Appendix G.

The routine includes comment statements o explain some special functions, called macros,

and a few comments to explain the steps in the process. Significant examples and advice

about using MACSYMA were garnered from References [54, 7] and from Dr. Mark Ewing,

a member of the author’s committee. The generation of every version of elemental code

followed the same steps listed below:
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PART 1

Generate Strain Definition Arrays

. Specify choice of incomplete cubic u, thickness expansion or complete quartic

thickness axpansion.

. Specify choice of linear shell shape factor approximation or quadratic approxi-

mation.

. Specify choice of linear or nonlinear transverse shear strain.

. Symbolically compute Green strain components for an arbitrary shell, where

hi = ha(y1,¥2,93), ha = ha(y1,¥2,y3) and hz = 1, by differentiating displace-
ment field equations according to Eq (3.49).

. Factor out all geometric shape factor functions, hq, h2 and derivatives of hy

and ho, appearing in the numerator and denominator of all terms in every
strain component. There are 60 possible combinations of these functions for an

arbitrary shell. These terms are shown in Appendix A as functions H, through

Hgp.

. Specify the shell geometry by specifying h; and hs and symbolically compute

the 60 shape factor approximations Hi,...,Heo. Nonzero functions for each

elemental code are listed in Appendices B-E.

. Substitute shape factor function approximations into each strain component

expression.

. Identify coefficients of thickness coordinate y} from each strain component ex-

pression. These are the x? expressions listed for each strain component in

Appendices B-E.

. From each x?, identify the coefficients of any terms containing two continuum

displacement parameters. These are the 18 functions u, w1, u2, v, v,1, v2, v,
w1, W2, W1, W22, W2, Y15 Y1,1, Y120 Y2, P21 and P2 The coefficients of
these quadratic nonlinear terms are stored as entries in an array H,jim, where

i=1,...,6,7=0,...,12,l=1,...,18and m = 1,...,18.
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10.

11.

12.

13.

PART 2

Similarly, identify the coefficients of each x? that depend on only one dis-
placement parameter. These coeflicients are stored as entries in an array L;ji,

i=1,...,6,j=0,...,7and = 1,...,18.

Form strain definition arrays [L0],...,[L7} and [H0},...,[/12] for strain com-

ponents €1, £ and &g, where

(5]
[H3]

{Luj} H{Loit} [{Lesi}), 1=1,...,18
((Hizim) | Hojim] [ Hejimll,  Lm=1,...,18

]

Form strain definition arrays [S0],...,[S7] and [$50],...,[S512] for strain

components &4 and €5, where

[$5]
[553]

[{‘C’UI} I{’C5ﬂ}]) l=1,""18
([(Hajim) | Msjim]], lm=1,...,18

Store strain definition arrays for use in Part 2

Generatjon of Elemental Stiffness Arrays and Fortran Code

. Generate [K] and [I;’s] matrices and Fortran code for each.

(a) Combine Lp and Lr matrices with the elasticity arrays Cij(,,+,) according
to Eq (4.32) to form [K} (The elasticity arrays Cij,,,,, where p+ 1 =
0,...,12and 7,5 = 1,2,6, are labeled A;;,...,XR;; and ASj;,..., XRS;; in
the MACSYMA Routine. This labeling corresponds to the Fortran variables
used in the ELAST subioutine of the program SHELL [18]. ELAST was
modified by the author to calculate the higher-order elasticity arrays needed
for this research. Part 2 of the MACSYMA Routine uses only the even sumns
of p + r which correspond to the elasticity arrays of a symmetric laminate.

(b) Generate a Fortran program statement, using MACSYMA’s gentran finc-
tion, for computation of each nonzero upper right triangle entry of the [I\’]

matrix. Repeat this step until all nonzero entries of [I-\'] are coded
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(c) If nonlinear transverse shear terms are desired, combine Sp and S matrices
with the elasticity arrays C’,-j(p+,) where p+7 =10,...,14 and 7,7 = 4,5
according to Eq (4.32), to form [Ii’s]

(d) Generate a Fortran program statement, using MACSYMA’s gentran func-
tion, for computation of each nonzero upper right triangle entry of the [K s]

matrix. Repeat this step until all nonzero entries of [I;’S] are coded
. Generate [Nl] and [le] matrices and Fortran code for each

(2) Combine [Lp], [Lr], [Hp}, and [Hr) arrays for the first elasticity array
Cijp+r) Where 74+ p = 0 and 4,5 = 1,2,6, according to Eq (4.35) to form
[Nl]co

(b) Generate a Fortran program statement, using MACSYMA’s gentran func-
tion, for computation of each nonzero upper right triangle entry of the

[1{’1]00 matrix. Repeat this step until all nonzero entries of [NI]CO are
coded

(c) If nonlinear transverse shear terms are desired, combine [Sp}, [S7}, [S 5D},
and [557] arrays with the first elasticity array Cij,,,, where r+p =0 and

i,j = 4,5, according to Eq (4.35) to form [N,,]CO

(d) Generate a Fortran program statement, using MACSYMA’s gentran func-
tion, for computation of each nonzero upper right triangle entry of the
[le]co matrix. Repeat this step until all nonzero entries of [le]co are
coded

. O Av . Ar
(e) Repeat the four previous steps for [Nl]a and [1\/15]0l through [1\1]

C19
and [N, 5]

C19

. Generate [Ng] and [N-)_s] matrices and Fortran code for each

(a) Combine [Hp] and [Hr] arrays for the first elasticity array Cijp+r) Where
r+p=0and{j=1,2,6,according to Eq (4.34) to form [Nz] o
(b) Generate a Fortran program statement, using MACSYMA's gentran func-

tion, for computation of each nonzero upper right triangle entry of the
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[Ng] co matrix. Repeat this step until all nonzero entries of [1\72]
coded

are

co

(¢) If nonlinear transverse shear terms are desired, combine [$Sp] and [$57]
arrays with the first elasticity array C,-j(p_;_,) where 7+ p =0and 7,7 =4,5,

according to Eq (4.34) to form [Ngs] o

(d) Generate a Fortran program statement, using MACSYMA'’s gentran func-
tion, for computation of each nonzero upper right triangle entry of the
[Ngs] co matrix. Repeat this step until all nonzero entries of [1\725] o are
coded

(e) Repeat the four previous steps for [1{’2] and [Nu] o through [1\72]

C1 C24
and [N ]
25} c2a

4.6 Verification of the MACSYMA Routine

Verification of the MACSYMA routine was accomplished by several methods. First,
each segment of the program was developed independent of the others. Then each was
thoroughly tested in an interactive node to assure results corresponded to those expected.
S~ nts were then combined to form larger blocks and finally, a full version of the routine
was developed. This final version of the MACSYMA program was run in batch mode on
a Digital Equipment Corporation VAX8550 with 64 megabytes of main memory. The first
part of this program, generation of stain terms and strain definition arrays, generally took
about 5 CPU hours depending on machine usage and the version of elemental code chosen.

" The second part of the program, generation of stiffness matrices and corresponding Fortran
code, was accomplished also in batch mode. This last part of the program took about 5

CPU hours for the C003 code and up to 30 CPU hours for the C123 code.

Verification of this work was quite difficult. The output of Part 1 was compared with
the strain components and strain definition arrays of Dennis [18:67-70,333-336,338-341].
Although some differences were noted, these were due to Dennis ignoring 26 terms of the in-
plane strain components and significantly simplifying the transverse shear strain relations

[18:67-70). Once discrepancies were resolved, Part 2 of the program was executed. The
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output of Part 2 was 45 files containing the Fortran statements for each element of [I;'],
[I;’s], [1\7 1], [1\715] , [1\72], and [1\7231 stiffness arrays. The C003 elemental code output files
for the [I;’], [K s], [Nl], and [Ng] stiffness arrays were compared, virtually term-by-term,
with the Fortran subroutines generated by Dennis. Finally, all output files for the nonlinear
arrays were compiled and assembled into four separate subroutine libraries. Each library
contained the Fortran object files for the [Nl], [1\715], [Ng], and [Ngs] stiffness array
subroutines of either the C00X, the C02X, the C10X or the C12X elemental codes. The
finite element program SHELL written by Dennis [18] was then modified to call element
independent stiffness array subroutines needed to give either a modified Donnell solution,

a CXXO0 linear transverse shear solution, or a CXX3 nonlinear transverse shear solution.

4.7 Finite Element Solution

The element independent stiffness matrices of Eqs (4.32), (4.34), and (4.35) depend
upon the continuum displacement gradient vector {d}. This vector includes the following
functions: wu, uy, w2, v, v1, v2, W, W1, W2, W11, W22, W32, Y1, ¥Y1,1, V1,2, P2, P21
and 12,. Likewise, the potential energy expression of Egs (4.21) and (4.22) also depend
upon these functions. Using a standard displacement-based finite element method, the
18 two-dimensional functions of the continuum displacement gradient vector {d(y1,¥2)}
are approximated by interpolation from discrete values of nodal displacement parameters.
These nodal parameters or degrees of freedom (dof), are defined only at a finite number

of points or nodes and are denoted by {¢} in Eq (4.36)

{d(y1,92)} = [D(z, )] {4} (4.36)

where [D(z,s)] is an array of nodal interpolation functions and (z,s) are the local coor-
dinates of a two-dimensional rectangular finite clement. If one substitutes Eq (4.36) into
Eq (4.22) and rewrites the expression in terms of {¢q}, then one obtains for the potential

energy:

[y T
np = 42 )+ 000+ 0l 1) - 07 () (4.87)
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where

(K] = /v (o) [&] () av (4.38)
(V] = /V (D[] (D)av (4.39)
o] = [ (DI [ 2] (D) av (440)

The finite element method generally requires the computation of the stiffness matrices
of Eqs (4.38-4.40) for each element independently. These elemental stiffnesses are then
assembled according to their r2lationship to global nodes of the structure. In this manner,
Eq (4.37) represents the pot-. itial energy of a single element. The total energy of the

system is then found by su. ming the energies of each element.

4.8 The 36 Degree of Freedom Cylindrical Shell Finite Element

Defining the terms of Eq (4.37) requires definition of the specific element, since
the nodal parameters {¢} and the associated nodal interpolation array [D] are element
specific. Recall, the three stiffness arrays [Ix’ ], [JVI], and [1\72] of Eqs (4.38-4.40) were
element independent. The choices of the number of nodes per element and the nodal
degrees of freedom at each node have not been specified at this point. In fact, virtually
any two-dimensional element that will provide values for the 18 functions of the continuum

displacement gradient vector {d} could be used.

The author’s research objective was to investigate structural phenomena. Thus, an
existing, proven finite element model for laminated cylindrical shells was used for this
research. The element chosen was the 36 degree of freedom (DOF) quadrilateral curved
shell element described in Reference [18:95-111]). This element has been used for many
investigations of static and dynamic response of plates arches and cylindrical shells under-
going large displacements with quasi-nonlinear HTSD theory (22, 61, 19, 64, 88, 93, 102].
In addition to these investigations, many linear problems were used to validate the ele-
ment’s performance. These problems included typical flat plate and patch tests used to
show convergence as the number of elements in a mesh is increased [59]. These patch test

problems were based upon a linear analysis, not a nonlinear analysis. This is because the
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Figure 4.2. Translational DOF Definitions for the 36-DOF Cylindrical Shell Finite
Element

patch test is based upon the mathematical theory of linear partial differential equations.
Since the element stiffness array includes nonlinear terms, the element will not pass the
usual definition of the of the patch test unless the nonlinear terms are eliminated. For
the nonlinear problem, convergence cannot be proven by a simple patch test. Convergence
must be demonstrated. The 36 DOJ element is shown in Figure 4.2. This element has
eight nodes with seven degrees of freedom, u, v, w, wy, wa, ¥y, and ¥, at each of the
four corner nodes and two degrees of freedom, u and v, at the four midside nodes. The
two degrees of freedom at the midside nodes allow for quadratic interpolation of in-plane
displacements u and v. This is important for shells due to the curvature-induced coupling

of bending and membrane activity in shells.

The continuum values of © and v are interpolated from the nodal values u; and

vk, using Eq (4.41) where Q,. are quadratic Lagrangian interpolation functions given in




Eq (4.42) [18:110]

8 . 8
v=Y Quu v= Qg (4.41)
k=1 k=1
1
Q = Z(l +€k€)(1 + leﬂ)(fkf-i— N = 1)7 k=1,2,3,4
1
Q% = 3 (1-€) (1 +mn), k=68 (4.42)
_ 1 2 !
o = F(1-7")1+&8), k=57

where the ith node has natural coordinates £. = zr/e and 5 = s;/b. The natural
coordinates correspond to local coordinates (z,s) in the longitudinal and circumferential
directions shown in Figure 4.2. These translational degrees of freedom are also shown in

Figure 4.3.

The continuum displacement gradient vector {d} includes rotational degrees of free-
dom %; and ¥ and the first derivatives of these parameters. The parameters ¥; and 12
are shown in Figure 4.3. Linear interpolation can be used for these parameters, since only
C° continuity is required. The interpolations of ¥1 and 4, are given by Egs (4.43) with
the linear Lagrangian interpolation functions of 'Eq (4.44) [18:103]

4 4
b= Zde}lk .@[’2 = Z-N}:"l’bk (4.43)
k=1 k=1
Ni = %(1 + &€) (1 + men) (4.44)

The continuum displacement gradient variables associated with transverse displace-
ment w, include w and it’s first and second derivatives. Figure 4.3 shows w, w, and w 2.
Nodal parameters associated with transverse displacement include only the values wy, w,,,
and wp, at the four corner nodes where k£ = 1,2,3,4. Interpolation of w is accomptished

using Eq (4.45) and the Hermitian shape functions of Eq (4.46) [18:103].

4
w(z,n) = z (H1lgw + H2rw + H3pwt) (4.45)
k=1
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Figure 4.3. Rotational DOT Definitions for the 35-DOF Cylindrical Shell Finite Element
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Ml = %(1 + 66) (1+ mem) (2 + €46 + men — €2 = )

M2 = 2(L4 687 (6~ 1) (1 + ) & (4.46)
H3y = g (1 + &) (men = 1) (1 + men)* me

The approximate continuum values for derivatives of u, v, ¥y, %2, and w, at any point
(¢,7) in the element, are also found by interpolation. This is accomplished by using the
corresponding derivatives of the interpolation functions. Thus, the approximate continuum
displacement gradient vector is related to the array of discrete nodal degrees of freedom

as shown below:

{d(&,m)} =D&, MH{g) (4.47)
where
(@] © o - ----.. Q4 O 0 [Qs5) - - [Qs]
D&M= 0 [Hy] 0 -+ - .. 0 [Hd 0 0 -- 0 (4.48)
0 0 M)------ 0 0 [AM] 0 -- 0
and i ) i
Q 0 N0
Q 0 NMe 0
Q, 0 \,
Q=] " Wi=|"" 0 (4.49)
0 @ 0 N
0 9 0 N
0 @], [ 0 M ],
M1 M2 M3 ]

Hie 7’(25 7‘(3(
H1 H2 H3

(Hi] = 7 ! ? (4.50)
Hl(( H2¢¢ 7‘(3{5

| Hlgy M2 H3gy




In Eq (4.48) the numerical subscripts refer to node numbers. In Eqs (4.49) and
(4.50) the Greek subscripts imply differentiation with respect to the indicated
natural coordinate variable. The k subscript implies that natural coordinates
& and 7 appearing in each of the interpolation functions are to be assigned
values corresponding to the natural coordinate of the kth node.

In Eq (4.47), notice that {q} is a 36 x 1 array of nodal displacements, [D] is an 18 X 36
array, and the resulting array {d(£,7)} is an 18 x 1 array as expected. Transformation of
coordinates using the inverse of the Jacobian matrix J, as shown in Eq (4.51), completes

the definition of the element interpolation scheme:

[D(z,s)) = [J7] (D&, )] (4.51)
where [J~1] is a diagonal matrix for the transformation of coordinates used in this research.

JYY=[ 1, 1a, 1/b, 1, 1/a, 1/b, 1, 1/a, 1/b,

(4.52)
1/a®, 1/b* 1/ab, 1, 1/a, 1/b, 1, 1/a, 1/b |

With this finite element discretization, Eq (4.19) can be written as

[é [/dA o) [[£] + [] + []] ) dAn] J {Aq)

o S [ o[ 2 oraa |0 s

where

dA, = the two-dimensional domain of an individual element n
m = the total number of elements in the mesh

{Aq} = the global column array of nodal disnlacement parameters assembled from

elemental array {Aq},

{q} = the global column array of nodal displacement parameters assembled from

elemental array {q}n

{q}» = 2 36 x 1 nodal displacement array for element n, and
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{R} = the global load array which has the sanie dimension as the global displacement

arrays {Aq} and {q}

The integrations of Eq (4.53) are approximated by numerical integration using Gaus-
sian quadrature. Using one of the terms of the first summation of Eq (4.53) as an example,
the integral I, shown in Eq (4.54), can be transformed to natural coordinates as shown in
Eq (4.55). Next, the integrations of Eq (4.55) are approximated numerically by a double
summation of weighting factors at the corresponding Gaussian integration points. This is

shown in Eq (4.56)

I = /dA" (O [[&] + [W] + [#2]] (D) a4 (4.54)

o= [ [ o [[&]+ (@] + (] 01 et dedn (4.55)

Lo= 33 W) (4.56)
i=1 i=1

where

det J = the determinant of the Jacobian matrix

I(&,m;) = [D)F HK ] + [Nl] + [Ng” [D]det J evaluated at Gauss integration
points (&;,7;)

W;, W; = the weighting factors

The range of indices ¢ and j define the order of the numerical integration. When m = n
the integration is called uniform; n x n integration will exactly integrate a polynomial

integrand of order 2n — 1 [16:172].

The solution of Eq (4.53) is accomplished by an incremental-iterative technique com-
monly called the Newton-Raphson method [18:115-127]. The parameters to be incremented
are the elements of the array {¢} containing global degrees of freedom. For the first itera-
tion of the first increment, all elements of {¢} are assumed to be zero and a linear solution
of Eq (4.53), one involving only [K), is found by Gauss elimination. This solution, call it

{gh, is used during the next iteration to compute [N;] and [¥,). Eq (4.53) is then solved
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using (K], [V1] and [Ny) to generate a new solution, call it {q};. This process contin-
ues until the solution for {¢} has converged. The following criterion is used to determine

convergence:
1/2

(Zi(6:2) " - (T4 (@62r)?)
(Zi(a)?)”

where ¢;,, ¢;,_, and ¢;, are the elements of {¢} for the 7 th, (r — 1)th, and first iterations,

x 100% < V (4.57)

respectively, for a given increment. The criterion is satisfied when the left hand side of
Eq (4.57) is less than or equal to V, a user specified percentage tolerance. Values of V

ranging from 0.01 to 0.5 percent were chosen for the problems investigated.
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V. Discussion of Shallow Shell Results with Nonlinear HTSD Theory

Chapters IIT and IV presented the development of eight variations of a nonlinear
higher-order transverse shear deformation (HTSD) theory for a cylindrical shell. This
chapter discusses the results for shallow shell structures using the full nonlinear HTSD
theory developed for this research. Results for deep shell structures are discussed in Chap-
ter VI. The depth criterion chosen was the ratio of the shell height (from the supports to
the crown of the shell) versus one-half the distance between the supports. One objective
of this research was to evaluate the accuracy of the HTSD variations shown in Table 4.3,
another objective was to assess their limitations. The first step in achieving these objec-
tives was verification of the computational tools used to achieve results. This verification
process included verification of the MACSYMA routines used to generate the elemental
codes (this process was discussed in Section 4.6), verification of the finite element program,

and finally verification of numerical results.

Several test problems were solved to verify the MACSYMA generated Fortran codes.
Tliese test problems were classical flat plate and thin shell problems with known solutions.
In all of these test problems, the higher-order elemental codes C020, C100 and C120 should
give results equivalent to the C000 code. This result is expected since the additional terms
of the higher-order thickness expansions include radius in the denominator. Thus, these
terms are zero for the flat plate and should be negligible for the classical thin shell. In
addition, these results should match those produced by Dennis [18]. Investigations of the
limitations of quasi-nonlinear and nonlinear HTSD theories were based on shallow isotropic
shell panel problems and a deep isotropic arch problem. The shallow shell problems were
thin 100-inch-radius hinged-free shell panels with transverse point load. The 20x20-inch

shell panels studied were 0.25-inch and 1-inch thick.

To study the limitations of the quasi-nonlinear and nonlinear HTSD theories with
composite materials, two composite material problems were selected. A thin shallow
axially-loaded 12-inch-radius quasi-isotropic 11x8-inch cylindrical shell panel exhibits
large transverse defiection, large rotation, and large curvature. The 0.05-inch-thick quasi-

isotropic material also has a large ratio of in-plane modulus to shear modulus. This large
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ratio implies transverse shear deformation may be significant for this problem. The second
problem was a deep clamped-free cylindrical shell with transverse point load. This preb-
lem is also discussed in Chapter VI. These composite shell problems required excessive
computational times, because of the small mesh sizes required to achieve converged results.
Therefore, results were calculated for the axiaily-loaded panel using codes C120 and C123

only.

5.1 Flat Quasi-Isotropic Panel with Uniform Transverse Pressure Load

A transversely-loaded flat plate problem was used to test the MACSYMA generated
elemental codes and the modified finite element program. The plate chosen was an §-ply
quasi-isotropic laminated square plate with simple boundary conditions along each of its
16-inch long sides. The plate wasloaded with a uniform transverse pressure load. The plate
thickness was 1.6 inches, which being 1/10 of the edge length, should indicate transverse
shear may be important. The plate was analyzed by discretizing one quadrant into a 4 x 4
mesh of uniform elements. Only one quadrant was analyzed because symmetric response
is known to occur [18:221]. The problem was solved by incrementing load in five equal
increments of 7500 pounds per square inch. Material properties and bouncary conditions

are:

z=0: v=wge= =0 (symmetry)
s=0: u=w;= 1Y =0 (symmetry)
z=2%a/2: v=w=1, =0 (simple)

s=xb/2: w=w=1Y; =0 (simple)

a=b=8in, h=16in

E; = 60 x 108 psi Ey = 1.5 x 108 psi
Ga3 = 0.75 x 10° psi G2 = Gz = 0.9 x 10 psi
Vg = 0.25
Transverse displacements at the center of the plate, as predicted by the CXXX codes

and several other references, are shown in Table 5.1. The results shown on the first line of

the table were those reported by Dennis in 1988 [18:236). The second line of results, labeled
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CDON, was produced using a modified Donnell theory. This theory includes transverse
shear deformation; details of this theory are given in Appendix F. The third line of
Table 5.1, labeled CSTD, was produced using the unmodified SHELL program (the 8JAN
-double precision version which Dennis wrote). The results Dennis previously reported were
slightly stiffer than the CSTD results the author obtained using the same code. The most
likely reason for these differences was the increased precision of the CRAY X-MP used for
the author’s computations versus the VAX 8550 used by Dennis. Line four, labeled CRAS,
was obtained using the author’s modified SHELL program with Dennis’s stiffness routines.
This version tests the modification of the SHELL program. Several changes were required
to calculate the additional higher-order elasticity arrays and call the srbroutines for the
nonlinear HTSD stiffness arrays. The lines labeled C000 through C123 were results of the
eight variations of the theory developed for this research. From Table 5.1, one can see
that the six quasi-nonlinear HTSD codes (CSTD, CRAS, C000, C020, C100, and C120)
produce identical results. This close agreement shows that the author’s theories correctly
degenerate to flat plate solutions when curvature is not a factor in the problem. Similarly,
the four nonlinear HTSD codes (C003, C023, C103, and C123) predict identical results.
The fully-nonlinear codes, however, predict a slightly greater transverse displacement than
the quasi-nonlinear codes. The final line of the table includes the results reported by
Putcha and Reddy [74]. They used a mixed finite element model with parabolic transverse
shear deformation to solve the von Karman plate equations. Graphical results are also

shown in Figure 5.1 for three of the theories given in Table 5.1.

5.2 Hinged-Iiee Isotropic Shell Panel, 0.25-Inch Thick, with Transverse Point load

The second class of problems investigated was thin hinged-free isotropic cylindrical
shells with transverse point load. The first problem was a 1/4-inch-thick shell. The second
problem was a 1-inch-thick shell of the same configuration. The 1/4-inch shell is shown in
Figure 5.2. Geometric and material properties are also given for this prohlem in the same

figure.

Solutions were computed using a 4 X 6 mesh of elements to model one quadrant of the

shell. Convergence studies by Dennis [18:247] showed little difference in results between
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Table 5.1.

Comparison of Flat Plate Displacement Results for Variations of Geometrically
Nonlinear HTSD Theory with Linear and Nonlinear Transverse Shear Strain
Displacement

Total Load (psi) | 7500 | 15000 | 22500 | 30000 | 37500
Ref. [18:236] 0.4414 | 0.7797 | 1.036 | 1.240 | 1.412
CDON (1) 0.4446 | 0.7939 | 1.065 | 1.288 | 1.479
CSTD (2) 0.4454 | 0.7982 | 1.076 | 1.308 | 1.513
CRAS (3) 0.4454 | 0.7982 | 1.076 | 1.308 | 1.513
C000 0.4454 | 0.7982 | 1.076 | 1.308 | 1.513
C020 0.4454 | 0.7982 | 1.076 | 1.308 | 1.513
C100 0.4454 | 0.7982 | 1.076 | 1.308 | 1.513
C120 0.4454 | 0.798Z | 1.076 | 1.308 | 1.513
C003 0.4457 | 0.8001 | 1.081 | 1.317 | 1.527
Co023 0.4457 | 0.8001 | 1.081 | 1.317 | 1.527
C103 0.4457 | 0.8001 | 1.081 | 1.317 | 1.527
C123 0.4457 | 0.8001 | 1.081 | 1.317 | 1.527
Ref. [74:537] 0.45 0.80 1.1 1.3 1.5

(1) CDON refers to results obtained using program SHELL with
stiffness arrays corresponding to a modified Donnell theory
with transverse shear (see Appendix F for details)

(2) CSTD refers to results obtained using prograin SHELL, as
written by Dennis [18], with Dennis’s [Ii’], [1\71], and [Ng]
stiffness array subroutines

(3) CRAS refers to results obtained using program SHELL as
modified to incorporate COOX subroutines, but caliing Den-
nis’s stiffness array subroutines to test the modifications
made to SHELL.
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Figure 5.1. Comparison of Flat Plate Displacement Results for Variations of Geometri-
cally Nonlinear HTSD Theory with Linear and Nonlinear Transverse Shear
Strain Displacement

4 x 6 and 8 x 8 meshes. Significant computational savings result when the 24 element
mesh is used instead of the 64 element mesh. Table 5.2 shows the results of equilibrium
load predictions, for increments of transverse displacement from 0.1 to 1.0 inchcs, for
the eight elemental codes and the modified-Donnell theory with transverse shear included
(CDON). The values of load shown are four times the equilibrium load of the quarter
shell; this load represents the total load on the entire shell panel. Valnes were computed
using 10 increments of center point transverse displacement. One quadrant of the shell was
modeled using a 24 element mesh with 4 elements in the lateral direction and 6 elements
in the circumferential direction. From this table one observes the quasi-nonlinear HTSD
codes (CXXO0) all produce the same results, and the nonlinear IITSD codes (CXX3) all
produce the same results. The results of the CDON, C120, and C123 codes were selected

for more detailed analysis, since they represent the three variations with different results.

Figures 5.3 and 5.4 show the equilibrium paths of transverse load versus center-point
displacement for the 1/4-inch shell predicted by the CDON and C120 codes, and by the

CDON and C123 codes, respectively. As in the flat plate case, the results for the quasi-

nonlinear II'TSD codes are all the same. In contrast, the nonlinear HTSD codes all show




Boundary Conditions:

t=0: u,w1,¥ =0 (symmetry)
s=0: v,w2,¥, =0 (symmetry)
s=%10: u=v=w=1; =0 (hinged)
¢ =:=%10: (free)

Other Data:
E = 4.5 x 10° psi
0 = 0.1 radians

h =0.25in.
R =100 in.
L =20 in.
v=20.3

Y hinged

Figure 5.2. 1/4~Inch Hinged-Free Point-Loaded Isotropic Cylindrical Shell
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Figure 5.3. Equilibrium Path Comparisons for 1/4-inch Hinged-Free Cylindrical Shell —
CDON and C120 Theories
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Table 5.2. Predicted Transverse Point For Center Transverse Displacement of 1/4-inch
Hinged-Free Isotropic Cylindrical Shell Panel

Disp. || CDON | C000 | C020 | C100 | C120 | C003 | C023 | C103 | C123
0.1 50.6 | 50.6| 50.6 | 50.6| 50.6| 50.6 | 50.6| 50.6 | 50.6
0.2 842 84.2| 842 | 84.2| 84.2| 842 | 84.2| 84.2| 84.2
0.3 107.7 { 107.7 | 107.7 | 107.7 | 107.7 | 107.7 | 107.7 | 107.7 { 107.7
0.4 125.0 | 124.6 | 124.6 | 124.6 | 124.6 | 124.9 | 124.9 [ 124.9 | 124.9
0.5 133.0 { 132.4 | 132.4 | 1324 | 132.4 | 133.0 | 133.0 | 133.0 | 133.0
0.6 111.2 | 109.6 | 109.6 | 109.6 | 109.6 | 111.1 | 111.1 | 111.1 | 111.1
0.7 -86.6 | -86.6 | -86.6 | -86.6 | -86.6 | -79.5 [ -79.5 | -79.5 | -79.5

0.8 -72.0 | -71.5 | -71.5 | -71.5 | -71.5 | -66.3 | -66.3 | -66.3 | -66.3
0.9 -40.3 | -39.6 | -39.6 | -39.6 | -39.6 | -33.9 | -33.9 | -33.9| -33.9
1.0 13.9| 147 14.7| 14.7| 14.7| 222 222| 222} 22.2

slightly greater flexibility (a smaller magnitude of load) during the collapse phase (from
w = 0.7-0.9) than the quasi-nonlinear HTSD variants. This trend is shown in Figures 5.5
and 5.6 where the difference between loads predicted by the CDON and C120, and CDON
and C123 theories are plotted versus transverse displacement. Values plotted in these
figures are the relative difference (in percent) between the values of load predicted by the
C120, or C123, and CDON theories. A negative value is given for data points where the
new theory (C120 or C123) codes predict a more flexible structure (less transverse load
required to achieve the same displacement) than the CDON code. Similarly, a positive
value indicates a stiffer prediction for the C120, or C123, code than the CDON code.
From Figure 5.5, one can see the C120 theory predicts a slightly more flexible structure
at points, but this difference is negligible. From Figure 5.6, one can see the C123 theory
predicts a load about 8 percent less in magnitude than the CDON theory in the range
0.7 < w < 0.8 and about 15 percent less at w = 0.9. Once the shell has reached the point
where it is fully snapped though, around w = 1.0, the C123 theory predicts 2 significantly
stiffer structure than either the CDON or C120 theories. This is caused by the increased

coupling of transverse terms with in-plane terms.

This result is interesting, since this phase of the collapse is characterized by the most

extreme displacements and rotations occurring in the problem. The inclusion of nonlinear
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Figu:e 5.5. Percent Relative Load Difference Comparisons for Transversely Loaded 1/4—
inch Shell — CDON and C120 Theories
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Figure 5.6. Percent Relative Load Difference Comparisons for Transversely Loaded 1/4-
inch Shell — CDON and C123 Thcories
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Figure 5.7. Meridian Values of 1, + w for 10 Increments, 0.1-inch each, of Transverse
Displacement of 1/4-inch Hinged-Free Cylindrical Shell — CDON Theory

transverse shear terms for this problem had a noticeable effect upon load-displacement
results. Figures 5.7 and 5.8 show values of the linear X3 transverse shear term, 1), -+
wg, for ten increments for transverse displacement w for the CDON and C123 theories,
respectively. Values plotted are the values of 92 4+ w at nodes along the 2 = 0 line from
the center of the panel (s = 0) out to the hinge line (s = 10). The labels 1,...,10 indicate
the 1st through 10th increments of transverse displacement w. These results are virtually
identical for increments 1-6, before the shell snaps through. After the shell snaps, however,

the values of ¥, + w are about 20-25 percent less in magnitude over the majority of the
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panel, where 1 < s < 8, for the C123 theory as compared to the CDON quasi-nonlinear
theory. In Figure 5.8, the value of 9, + w2 is dramatically more positive at the hinge line

(s = 10) during increments 7-10 for the C123 theory than for the CDON theory.

These figures show the values of.only the linear term of the xJ term of the €53 strain
at the midsurface of the shell. For the nonlinear HTSD theory, the €23 and €13 strain
components include many more nonlinear terms. These terms are shown for the C003,
€323, C103 and C123 theories in Appendices B~E as xj,, and x§,,. The distribution
of shear strain is significantly affected by including the nonlinear trancverse shear terms.
Figure 5.9 shows the largest nonlinear term of the x§ term of the transverse shear strain
component for the C123 theory. This term, —ww,/ Ry, and the linear term, ¥ + w2,
are the predominant terms of the X3 strain component. Table 5.3 shows a comparison

of these terms for the three theories. Irom Table 5.3, for increment 5 when the largest

Table 5.3. Comparison of Maximum Values of Linear and Nonlinear Terms of x3 for the
1/4—inch Cylindrical Shell

Code X3 Increment
Name Term 1 5 7 8 9 10
CDON P+ wpe 0006 .0017 -.0012 -.0009 -.0004 .0002
C123 P2 +wpo 0006 .0017 -.0010 -.0007 -.0003 .0003
C123 ~wipa/ Ry .0000 -.0002 -.0004 -.0005 -.0006 -.0008
C123 | Yo+ wo — wipa/ Ry || .0006 .0015 -.0014 -.0012 -.0009 -.0005

magnitude of 42+ w 2 occurs, the maximum values of ¥, +w 2 and —w,/ Ry are 0.0017 and
-0.0002, respectively. Thus, the largest nonlinear term of C123 is less than 20 percent of
the linear term. With each increment from 7 to 9 (after the shell has snapped through), the
nonlinear term becomes more significant compared with the linear terms. This nonlinear
term, while it is of comparable magnitude with the linear terms, creates a softening effect.
1t effectively increases the magnitude of the transverse shear strain over a large area of the

shell’s midsurface.

Figure 5.10 shows the value of of ¥+ w 2 — w1/ R, for the C123 theory. Comparing
this figure with Figures 5.7 and 5.8 reveals the significant difference in the transverse shear

terms for the nonlinear theory, as compared to the quasi-nonlinear HTSD theories. This
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difference is large enough to affect the strain energy of the shell and subsequently results
in slightly different equilibrium values of the nodal displacements for the C123 theory as
compared to the CDON or C120 theories. At increment 10 when the largest magnitude of
—w/ Ry occurs, the magnitude of this nonlinear term exceeds that of the linear terms
by some 800 percent. Thus, the beneficial eflect of transverse shear has been totally
obliterated by the nonlinear terms of this formulation. Palmerio and Reddy [66] reported
an overstiff response for similar shells when nonlinear transverse shear was included in

their formulation (See Chapter II, page 2-24, for more details on their work).

5.3 Hinged-Free Isotropic Shell Panel, 1.0-Inch Thick, with Transverse Point load

Table 5.4. Predicted Transverse Point Load for Center Transverse Displacement of 1-inch
Hinged-Fr=e Isotropic Cylindrical Shell Panel

Disp. || CDON | C123
0.1 830.3 | 826.5
0.2 1476.4 | 1467.6
0.3 || 1948.1 | 1933.6
0.4 2263.0 | 2242.7
0.5 2454.6 | 2430.0
0.6 2579.7 | 2554.7
0.7 || 2716.1 | 2697.5
0.3 2944.2 | 2940.2
0.9 || 3326.8 | 3345.3
1.0 3902.7 | 3950.4

A 1-inch thick isotropic shell exhibits a significantly different equilibrium path than
the 1/4~inch shell. For this case, the shell never “snaps”; load always increases monoton-
ically for all values of transverse displacement. The effects of nonlinear HTSD should be
different in this case. The data of Figure 5.11 applies for this case. As shown in Figure
5.12, the increase in thickness significantly affects the Juilibrium path of this shell. Data
from the various theories are given in Table 5.4 Although the curvature of the shell, initia'ly
and finally, compares with that of the thin shell, the thicker shell never snaps through to

the concave position. TFigure 5.13 shows the relative differences between the CDON and




Boundary Conditions:

z=0: uw;i,¥ =0 (symmetry)
s=0: v,wgaYP =0 (symmetry)
s=%10: uw=v=w=1; =0 (hinged)
z==%10: (free)

Other Data:
E =4.5x10° psi
8 == 0.1 radians

h=1in.

R =100 in.
L =20in.
v=103

hinged

Figure 5.11. 1-Inch Hinged-I'rce Point-Loaded Isotropic Cylindrical Shell

5-16




4000 7 T T T % C123 ©
CDON +
3500

3000

T
©
1

2500

5
|

T
©
i

(Ibs) 2000
1500

T
©
1

1000

500

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Transverse Displacement W (inches)

Figure 5.12. Equilibrium Path Comparisons for 1-Inch Hinged-Free Cylindrical Shell —
CDON and C123 Theories

C123 theory. In this case there is less than about 1 percent difference over most of the
graph.

Figures 5.14-5.17 show tbe linear ;(2 term 2 4+ w2 and the largest nonlinear term
—wip/ Ry for this shell with tne CDON and C123 theories. Comparing the maximuin
value of Figure 5.17 with that of Figure 5.15, we can clearly see the significantly different
character nf the nonlinear transverse shear terms. Despite this difference, the in-plane ex-
tensional and bending terms in the strain energy expression for this shell are predomirant.

Thus, the equilibrium path is little affected by these changes in transverse shear strain.

5.4 Clamped-Free Quasi-Isotropic Shell Panel with j-Inch Square Cut-Oui and Azial

Compression Load

The earlier quasi-isotropic flat panel results indicated the nonlinear HTSD codes
predicied a slightly more flexible response than their quasi-nonlinear HT'SD variants. Sim-
ilarly, for the collapse phase of the thin isotropic cylindrical shell, the nonlinesr HTSD
codes also predicted a slightly more flexible response than their quasi-nonlinear HTSD

variants. In both cases, the more exact geomctii. approximations predicted responses vir-
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Figure 5.13. Relative Load Difference Comparisons for Transversely Loaded 1-Inch Shell
— CDON and C123 Theories

tually identical to the simplest elemental codes. Problems combining the quasi-isotropic
material and a smaller radius of curvature with large displacements and rotations should

provide more interesting comparisc

The first problem selected was an axially-loaded quasi-isotropic cylindrical s™ell panel
with a centrally-located cut-out. Figure 5.18 shows the shell configuraticn and gives bound-
ary conditions and material data. Panels of this gereral configuration have been the subject
of mery AFIT research projects, conducted in cooperation with the Wright Laboratory
at Wright-Patterson AFB, Ohio. Panels of this material and configuration were recently
tested experimentally, as part of a Master’s thesis by Schimmels [88]. The experimental
procedures used for these experimients were similar to experimental procedures used by
Becker [6], Janisse [33], and Tisler [60, 61, 58, 101} at Wright-Patterson AFB. Results of
Tisler were used by Dennis for his comparisons of the linear HTSD theory he developed
[18, 22]. According to Palazotto and Dennis, Tisler had problems with the experimental
measurements and with the panels not being properly seated in the test fixtures [22:1087].

These particular problems were avoided during the latest series of experiments [88].

Table 5.5 shows results for total-applied compression load versus axial displacement
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Boundary Conditions: z = +11 : v, w, w3, w2,%1,%2 = 0, (clamped, u controlled)
z=0:u, v, W, w1, W2, 1,2 =0, (damped)

s=0: (free)

s=8: (free)

Cut-out: 4 in centered

Other Data: [88:4-2]
Material: AS4-3501 Graphite Epoxy
E; = 20.461 x 10° psi
E = 1.3404 x 10° psi
G12 = 0.8638 x 10° psi
Vi = 0.301

Ply Layup:

[0/-45/4-45/90]s
8 = 0.75 radians
h =0.05in.
R=12in.
A=11in.

B =8 in.

< free

\\ /
s f 3Y
\\__/\— clamped

Figure 5.18. Quasi-Isotropic 12-Inch Radius Cylindrical Composite Shell with Centered
4~Inch Cut-Out and Free Edges Loaded in Axial Compression
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u computed with the C120 and C123 theories. Values of transverse displacement w are
also shown in this table. As shown in the table, the nonlinear HTSD theory gives virtu-
ally identical results to those of the quasi-nonlinear theory. Figure 5.19 shows predicted
transverse displacement of a point, located at the shell’s lateral center line (z = 5.5) and
1.5-inches in from the lateral edge (s = 1.5), versus axial displacement w for the C120
and C123 theories. Figure 5.20 shows the differcnce between the two theories as axial

displacement is increased.

Table 5.5. Axial Displacement vs Transverse Displacement and Load for a 12-inch Ra-
dius 11 x 8-inch Quasi-Isotropic Cylindrical Shell Panel with Centered 4-
inch Cutout under Axial Compressive Load — C120 and C123 Theories and
Experimental

Axial C120 C123

Disp (in) || Wt (in) Load (Ibs) | W7 (in) Load (Ibs)
0.001 002741 133.1 .002741 133.1
0.002 .008689 260.1 .008689 260.1
0.003 .002400 354.1 .002398 354.2
0.004 04472 392.7 04467 393.0
0.005 .06300 411.5 06293 412.3

0.010 1282 430.6 1281 434 .4
0.015 1712 422.4 1716 430.2
0.020 * * 2045 410.8

i W is measured at (z,s) = (5.5,1.5)
% Datum point not computed

Figures 5.21~5.24 show the linear x§ term 9, + w2 and the largest nonlinear term
—uha/ Ry for this shell with the C120 and C123 theories. Comparing the maximum values
of Figure 5.24 with those of Figure 5.22, we can see for this case, the nonlinear 39 terms
of the C123 theory are virtually identical to the linear x§ terms of the C120 theory. This
could be attributed to many characteristics of this problem. The most significant difference
between this panel and panels reported earlier is the ratio of thickness to characteristic
length. The plate was 1.6-inches thick with an edge length of 16 inches. The isotropic

shells had thicknesses of 1/4 and 1 inch with edge lengths of 20 inches. The axial panel
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Figure 5.19. Transverse Displacement vs Axial Displacement at (z,s) = (5.5,1.5) —
C120 and C123 Results for 11 x 8-inch Axially-Compressed Composite Panel
with Centered 4-inch Cutout
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Figure 5.21. Meridian Values of ¢, + w; for Increments of Axial Displacement of 12-inch
Radius Composite Shell with Centered Cutout — C120 Theory

is 0.05-inches thick with radius and minimum edge length of 8 inches, respectively. Based
on Koiter’s work the transverse shear strains for these p-oblems would be of the order h/L
times the in-plane strains. Thus, for the plate the transverse shear strains would be about
1/10th the in-plane strains. For the isotropic shells the transverse shear strains would be
1/80th of the in plane strains. Finally, for the axial panel ~hese strains are about 1/160th
of the in-plane strains. Considering the relative magnitudes of transverse deflection, the
axial panel represents a rather mild test of transverse shear behavior compared to the other

two problems.
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VI. Discussion of Deep Shell Results with quasi-nonlinear HTSD Theory

6.1 Clamped-Free Quasi-Isotropic Shell Panel with Transverse Point Load

The first deep shell problem, chosen for this research, was a deep composite shell
panel with transverse point load. This problem demonstrates a severe test of an HTSD
theory because of the shell’s depth, thickness, und quasi-isotropic properties. A deep 12-
inch-radius quasi-isotropic 11x12-inch cylindrical shell panel was clamped at its lateral
boundaries and free on the circumferential boundaries. The shell configuration is shown
in Figure 6.1; geometric and material properties are also listed in the figure. A transverse
point load was applied at the center of the 0.4-inch-thick panel until the panel center
displaced over 2.5 inches. This distance is significantly greater than the 1.9-inch depth of
the shell. Results for the transversely-loaded panel were compared with the computational
results of Tsai [103]. Palazotto and others investigated shells of this configuration and
compared static and dynamic results for different material properties and ply layups [63,
64, 102, 103]. Their work was typically based on a 96 element model of a quadrant of the
shell. This mesh was chosen based on the results of their convergence studies summarized

in Table 6.1. Tsai et al. concluded the 8 x 12 mesh results were acceptable considering

Table 6.1. Convergence Study for Quasi-Isotropic Shell Panel

Mesh Load at Onset
of Instability (Ibs)

4%x6 116

8x12 56

11 x 16 53
[103:69)

the CPU consumption was about 70 percent less than the 11 X 16 mesh [103:69]. Another
recent study by Silva, however, revealed that the quasi-isotropic panel with transverse load
does not deform in a symmetric manner [93:3-6]). Figures 6.2 and 6.3 show results taken
from Reference (93] for a 24-ply quasi-isotropic {0/ —45/45/90]s panel with & = 0.12 inches

and R = 100 inches. Figure 6.2 shows the unsymmetric transverse displacement of the full
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Boundary Conditions:
s=%6: u,v,w,wy,wa,¥1,P2 =0, (clamped)
r=455: (free)

Other Data:

Material: AS4-3501 Graphite Epoxy
E; = 20.461 x 108 psi

B3 = 1.3404 x 10° psi

G12 = 0.8638 x 10° psi

112 = 0.301

Ply Layup: [0/-45/+45/90]s

0 = 1.0 radians

h =0.04 in.
§=1.9in.
R=12in.
A=11lin.
B=121in.

clamped

T m -
K 1

clamped

Figure 6.1. Clamped-Free Composite Shell with Transverse Point Load
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Figure 6.2. Quarter Panel vs Full Panel End Profile
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Figure 6.3. Load vs Transverse Displacement, Angle Ply Quarter Panel Test
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pangl (labeled as Full) versus the symmetric distribution of a quarter panel model (labeled
as Qtr). TFigure 6.3, however, shows Jittle if any deviation in load versus displacement
predictions for the two models. Thus, since this research was primarily concerned with

load displacement behavior, a quarter shell 8 x 12 mesh was chosen for this problem.

Transverse load values versus displacements were computed for a [0/-45/+45/90]s
ply layup, using the modified-Donnell, all quasi-nonlinear HTSD, and all nonlinear HTSD
thenries. Table 6.2 shows values of transverse load predicted by the various theories.
The quasi-nonlinear HTSD elemental codes all predicted identical results, comparable to
those of Tsai. Figure 6.4 shows the equilibrium values of transverse load for the quasi-
nonlinear CDON and C100 HTSD theories. The fully-nonlinear HTSD theories predicted
a significantly more flexible structure at the onset of loading, as shown in Figure 6.5.
As w increased, however, the nonlinear codes predicted an increasingly stiffer structure.
Figures 6.6 and 6.7 show relative differences in equilibrium loads predicted by these three
theories. The differences are plotted as a percentage difference from the CDON values. A
negative value would indicate a more flexible result for the HTSD theory as compared to
t. CDON theory. The deviation in the CDON results for displacement =qual to 0.625
inc 5 is caused by the use of two fc v elements in the mesh for this theory. The shell at
this point of deflection is very unstaole; its midsurface has severe local bending with large
gradients of curvature. The CDON theory with only transverse nonlincar terms, w and
its derivatives, can not achieve satiofactory equilibrium predictions at this point. If the
number of elements are increas<d, the CDON code performs as expacted. See the next

section on deep arches for a comparison showing the use of more elements.

The quasi-nonlinzar HTSD theory predicted snapping occurs at about w = 0.5.
Palazotto et al. [63, 102] used the quasi-nonlinear HTSD developed by Dennis [18]. Their
results showed snapping for many variations of material and geometric parameters [63:703-
705). The ratio of thickness to characteristic length of this problem is even smaller than any
of the problems analyzed earlier. This ratio ic equal to 1/300. Therefore, we would expect
transverse shear strain to be totally insignificant, yet the results of the nonlinear variants
for this problem deviate considerably from all the previous resulis. Several reasons for this

behavior are apparent. The most obvious reason is the excessive straiu energy caused by
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Table 6.2. Transverse Center Point Load Predicted for Prescribed transverse Displace-
ment of a 0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell Panel

Disp. || CDON | C000 | C020 | C100 | C120 | C003 | C023 | C103 | C123
0.250 35.5| 34.6 34.6| 34.6| 34.6 9.1 9.1 9.1 9.1
0.375 53.7| 56.6| 56.6| 56.6{ 56.6| 16.0| 16.0| 16.0 | 16.0
0.500 533 52.1| 52.0| 52.1| 52.0| 25.2| 25.2| 252 | 25.2
0.625 20.6 | 47.3| 47.2| 473 47.2| 353 | 35.3| 353 | 35.3
0.750 385 36.7| 36.6| 36.7| 36.6| 49.4 | 494 | 494 | 494
1.000 11.0 7.6 7.4 7.6 74| 83.0| 88.0| 88.0 | 88.0
1.250 154 | 12,5 123 12,5 12.3{160.8 ( 160.8 | 160.8 | 160.8
1.500 219 213} 21.0| 21.3| 21.0252.1 | 252.0|252.1 | 252.0
1.750 32.7| 384 38.1| 384 38.1]|361.7|361.6| 361.7 | 361.6
2.000 54.0 | 704 70.1{ 70.4 | 70.1|488.7 | 488.7 | 488.7 *
2.250 || 100.8 | 132.6 | 132.2 | 132.6 | 132.2 | 629.7 | 629.6 | 629.7 *
* Datum point not computed
300 I — T T C100 <—
PCDON —+—
250 -
200 -
P
(lbs) 150 o 1
100 -
4
50 =
0( 1 1 A
0 0.5 1 1.5 2 2.5
Transverse Displacement W (in)
Figure 6.4. Equilibrium Path Comparisons for Transverse Point Loaded 0.04-inch

Clamped-Free Quasi-Isotropic Cylindrical Shell — CDON and C100 Theories
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Figure 6.5. Equilibrium Path Comparisons for Transverse Point Loaded 0.04-inch
Clamped-Free Cylindrical Shell — CDON and 103 Theories
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Figure 6.6. Relative Load Difference Comparisons for Transverse Point Loaded 0.04-inch
Clamped-Free Cylindrical Shell — CDON and C100 Theories
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Figure 6.7. Relative Load Differencc Comparisons for Transverse Point Loaded 0.04-inch
Clamped-TFree Cylindrical Shell — CDON and C103 Theories

the nonlinear terms of transverse shear. Figure 6.8 shows values for the linear terms of x3
for the CDON theory. Values plotted are the values of ¥, +w 2 at nodes along the z = 0 line
from the center of the panel (s = 0) out to the hinge line (s = 6). The labels 1,...,9 indicate
the 1st through ninth increments of transverse displacement w. These can be compared
with the linear terms of X3 for the (100 theory, shown in Figure 6.9, and the linear and
nonlinear terms of xJ for the C103 theory, shown in Figures 6.10-6.12. From these graphs,
we again see a significantly different behavior for the xJ terms of the C100 theory and
the C103 theory. The C103 nonlinear term, shown in Figure 6.11, clearly dominates its
linear counterpart, shown in Figure 6.10. This is caused by increased coupling of transverse
shear and circumferential membrane activity.  This problem is further compounded by
the predominance of relatively weak material in the circumferential direction, compared
to the lateral direction. The quasi-isotropic sheil has a [0/-45/+45/90]s ply layup with
a ratio of E;/FE, = 15 and transverse shear moduli less than E,. The primary cause of
deformation for this problem is bending activity. The outer plies of this laminated panel
are the only plies oriented in the transverse direction. This implies that 75 percent of the
material of tnis shell has a stiffness in the circumferential direction that is significantly

less than the outer plics. This panel is only 0.04-incies thick, thus, the outer plies may
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Figure 6.9. Meridian Values of 1, + w , for 11 Increments of Transverse Displacement of
0.04~inch Clamped-Free Quasi-Isotropic Cylindrical Shell — C100 Theory
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Figure 6.11. Meridian Values of —~w1,/ R, for 11 Increments of Transverse Displacement
of 0.04-inch Clamped-Free Quasi-Isotropic Cylindrical Shell — C103 Theory
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not be very effective in resisting bending, since they are so close to the midsurface of the
shell. With the lateral supporis of this shell clamped the final deformed shape of the shell
exhibits both positive and negative curvatures. Thus, severity of bending is characterized
by the distance between counterilexure points of the final deformed shape; a distance of
about 2 inches. The bending activity of the clamped composite shell is more severe than
that of the hinged isotropic shell. Since transverse shear stress is roughly equal to h/L

times the bending stress, the clamped quasi-isotropic shell is a more severe test of nonlinear
HTSD theory.

6.2 Deep Isotropic Cylindrical Arch with Transverse Point Load

Deep circular arches can be used to demonstrate a theory’s ability to predict large
displacements and rotations. Many variations of transversely-loaded deep arch problems
have been reported in the literature [17, 29, 91, 98]. The problem chosen here is a 100-
inch radius arch with a 1-inch square cross section and an opening angle of 106 degrees.
The arch configuration is shown in Figure 6.13 along with geometric and material data.
Solutions for this problem were computed using all eight elemental codes and a 1 X 16 mesh
of elements to represent one quadrant of the arch. Data from the quasi-nonlinear theories
are shown in Table 6.3. The higher-order quasi-nonlinear transverse shear deformation
theories in this case predict a more dramatic collapse of the arch than the Donnell-type
solution. Dennis explained this difference was due to the “many nonlinear in-plane dis-
placement terms in the strain definitions that are not included in the Donnell equations ”
[18:260). He reasoned that these additional terms become more important as displacements
become large. A more exact representation of these terms, therefore, should produce more
flexible results. Figure 6.14 shows load versus crown displacement values predicted by the
C100 and C120 theories. Both the C000 and C100 theories predicted the same results. The
C100 theory however does not give any more flexible results than the C000 theory despite
the more exact up displacement assumptions. The C020 and C120 theories both predict
a more flexible response after collapse than the C000 and C100 theories. This difference
is shown as a percentage reduction in load versus the transverse displacement in Figure

6.15. Values plotted are the relative difference (in percent) between the values of load
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Boundary Conditions for one Quadrant:
z=0: u,wy,% =0 (symmetry)

s=0: v,wge,9P =0 (symmetry)
§=24925: u=v=w= 1 =0 (hinged)
r=2:205: (free)

Other Data:

E = 4.5 x 10° psi
= .92 radians

width = 1 in.

R =100 in.

h =1.0in.

L =160 in.

6 =40 in.

v=0.0

e

Figure 6.13. Hinged Point-Loaded Isotropic Cylindrical Arch




Table 6.3. Transverse Center Point Load Predicted for Prescribed transverse Displace-

ment of a 100-Inch Radius Hinged-Free Deep Isotropic Cylindrical Arch

Disp. || CDONI | C000 | C020] C100] C120] C120%
4 621.24 | 640.6 | 640.0 | 640.6| 640.0 | 632.5
8 893.66 | 914.8| 911.6| 914.8| 911.6 | 899.1
12 1028.2 | 1018.6 | 1010.2 | 1018.6 | 1010.2 | 993.9
16 1088.3 | 920.5 | 914.0| 929.5| 914.0| 978.7
20 1100.5 | 898.7 | 872.7| 898.7| 872.7| 879.3
24 1078.4 | 775.3 | 728.7| 775.3| 728.7| 705.2
28 1029.5 | 548.5 | 471.9| 548.5| 471.9| 440.3
32 || 958.56 | 52.9-232.3| 52.0] -232.1 *

1 Values taken from Reference [18:259]
1 Computed with a 1 x 48 element mesh
% Datum point not computed

10
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30

35

Figure 6.14. Deep Arch Crown Displacement vs Load — C100 and C120 Treories
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Figure 6.15. Percent Relative Load Difference vs Displacement for Deep Isotropic Arch
— C120-C100 Theories

predicted by the C120 and C100 codes. A negative value is given for data points where
the C120 code predicts a more flexible structure (less load required to achieve the same
displacement) than the C100 code. Similarly, a positive value indicates a stiffer prediction

for the C120 code than for the C100 code.

Comparison for Figure 6.15 with Figure 5.6 (the difference figure of the shallow
1/4~inch-thick isotropic shell panel) reveals that the shapes of these “difference” plots are
similar. Recall, however, the differences for the shallow shell were due to the nonlinear
transverse shear terms of the nonlinear HTSD theories. The differences of Figure 6.15 are

due only to more exact kinematic and geometric approximations.

For the chin shallow cylindrical shell, the nonlinear HTSD variants produced promis-
ing results, an 8-14 percent reduction in loads during the collapse phase of the equilibrium
path. For the deep circular arch, however, the nonlinear HTSD variants predicted stiff
results, as shown in Figure 6.16. This stiff response was very similar to responses obtained
for thin shallow shells when too few elements were used. The deep circular arch has charac-

teristics similar to the cylindrical shells previously analyzed. With appropriate boundary

conditions, one can even consider the arch as a small segment of a cylindrical shell. The
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Figure 6.16. Deep Arch Crown Displacement vs Load — CDON and C123 Theories

arch is, however, very narrow. Because of this, the finite element discretization becomes
more difficult, due to excessive aspect ratios when small numbers of elements are used.
The isotropic shells discussed earlier were discretized with six elements in the meridian di-
rection from the crown to the lateral edge. The lateral dimension was discretized with four
elements. Since both dimensions from the crown to the edges in the 2 and s directions are
10 inches, the aspect ratio of each element is 1.5. Cook [16:558] defines a rough indicator

of relative error caused by discretization as:

1 \9"
er X p1p2 (W) (6.1)
where

p1 = largest element aspect ratio

p2 = ratio of characteristic length of *he largest clement to characteristic length of

the smallest element
N = number of elements in the mesh

n = spatial dimension (n =1, 2, or 3 for line, plane, and solid problems, respectively)




q = one plus the degree of the highest complete polynomial in the element displace-

ment field, r = 0 for displacement error, » = 1 for stress or strain error

For the cylindrical shell with a 4 X 6 mesh of plane elements. the aspect ratio p; = 1.5,
n = 2, and since all elements are of the same size p, = 1. rhe highest order complete
polynomial in the element displacement field is cubic in order, therefore, ¢ = 3+ 1 = 4.

Thus, with 4 x 6 mesh of elements the relative errors estimated by Eq (6.1) are:

3
€rgiy % 1.5 (\/—%> =0.0128 (6.2)
1 2
roe 815 (—=) =0.0625 6.3
ere, <\/24> (6:3)

According to Cook, these values can be used to estimate total errors versus relative errors
by multiplying these values by a factor of 10 [16:358). Thus, we can pessimistically expect
errors in displacements of up to 1.3 percent relative or 13 percent total for the shell panel.
Stress and strain may be in error up to 6.3 percent relative, or about 63 percent total. For
a 100-inch radius arch with 1-inch square cross section and an opening angle of 53 degrees,
Eq (6.1) suggests at least 48 elements are needed to effectively model half the arch. In this

case, the aspect ratio p; = 3.85 and the relative error estimates would be:

3

€rgiay ¥ 3.85 (\/—2_—9 = 0.0116 (6.4)
1 2

er,, % 3.85 <x/—4—_8) = 0.080 (6.5)

Thus, despite the arch being a simple 1-dimensional problem, modeling it with 2-dimensional
shell elements may create discretization errors which should be avoided. Even with twice as
many elements as the cylindrical shell, the stress and strain estimates for the arch may be
in error by up to 80 percent. Cook, however, points out that these estimates are “rough”
and may be very pessimistic [16:559]. Nonetheless, the arch shown in Figure 6.13 was
analyzed with more elements. Figure 6.17 shows results for a 1 x 48 element discretization
using the quasi-nonlinear HTSD variants and the Donnell-type theory. These results show

an even greater reduction in load after collapse with the C020 and C120 theories. Unfor-
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Figure 6.17. Comparison of 16 and 48 Element Meshs — Deep Arch Crown Displacement
vs Load — C120 Theory

tunately, the nonlinear HTSD variants still diverged to overly stiff solutions beyond crown

displacements of about 4 inches as shown in Figure 6.18.

At this point we have examined two “shells” with thickness of 1 inch and radius of
100 inches. The nonlinear HTSD theory predicts a slightly more flexible structure for the
shallow shell panel, but it predicts a grossly overstiff response for the deep shell arch. The
only differences between these problems are the width and the circumferential length. The
arch has a width of one inch and a circumferential length of 185 inches. The shell panel has
a width of 20 inches and a circumferential length of 20 inches. Correction of discretization
errors due to large aspect ratios did not correct the overly stiff behavior of the nonlinear
HTSD codes, therefore, there must be another explanation. Surana investigated similar
100-inch radius arches of varying width [98). He found a 2-inch wide arch behaved like
a beam, where as a 24~inch wide arch behaved more like a shell strip. The 24-inch wide

arch generally was less stiff than the 2-inch arch despite equal valucs of bending stiffness

EI. This implies the membrane activity of the shell panel must cause the shell to be less

stiff.




160000 T
90000 -
80000 -
70000 -
60000 -
P
0bs)50000 B
40000
30000 |-
20000 -
10000

O( ) | | | - . 1

0 5 10 15 20 25 30 35
Transverse Displacement W (inches)

C123e48 ©—
| C123e16 +—

Figure 6.18. Comparison of 16 and 48 Element Meshs — Deep Arch Crown Displacement
vs Load — C123 Theory

Huddleston [29] published a closed form solution for an arch with an extensible
midsurface. Extensibility was characterized by a factor c relating bending stiffness ET to

axial stiffness E A, as given below:
I
AL?

cC=

(6.6)

where

I = area moment of inertia
A = cross sectional area

L = distance from centerline to supports

Inextensible behavior occurs when the bending stiffness EJ is very small compared to the
axial stiffness EA and ¢ approaches zero. For the arch of Figure 6.13, ¢ = 3.3 x 10~% so the
behavior is expected to be inextensible based upon Huddleston’s factor. The shell panel of
Figure 5.2, however, has a value of ¢ = 2 x 10~* which would also indicate an inextensible
behavior. Clearly, the shell panel has significant membrane, or extensional, strain. Thus,
it appears that Huddleston’s factor does not fully explain the behavior of “wide” arches.

Figure 6.19 shows Huddleston’s results for an inextensible (¢ = 0) solution and an extensible

6-20




1400
1200
10600
800
600
400
200

Dennis —
. Donnell —
Hudd.(¢=0) —
7 Hudd.(¢=.01) —

P
(Ibs)

-200
-400 J ! | 1 1 1

0 5 10 15 20 25 30 35
Transverse Displacement w (inches)

[18:261)
Figure 6.19. Deep Arch Results of Others

(e= O.f)l) solution. Interestingly, the two solutions have different behavior from the onset
of deformation. Also shown in Figure 6.19 are results of Dennis’s large displacement
and rotational formulation with linear HTSD [18:258-265]. Dennis’s solution was found
to deviate considerably from the inextensible results of Huddleston for crown transverse
displacement in excess of 5 inches. In fact, Dennis’s formulation predicts a shapping
phenomena where the transverse load must be negative to prevent displacements in excess

of about 32 inches [18:261].

Based upon these observations, it seems feasible that nonlinear terms of the trans-
verse shear strain components may have a more significant effect than expected for these
deep arch problems. As discussed in Chapter IV, the nonlinear HTSD used for this re-
search was not exact. The author has used linear kinematics that exactly satisfied the
zero traction boundary conditions of the linear transverse shear strain of a curved shell.
These kinematics, given in Eq (4.1), do not satisfy this boundary condition when the full
nonlinear €13 and €23 of Eqs (3.38) and (3.39) are used. A parabolic function of thickness
coordinate was included in the nonlinear transverse shear strain definitions of Egs (3.38)

and (3.39) to assure a traction free surface.
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This approximate formulation has nonlinear transverse shear strain terms at the
midsurface of the shell. The presence of these terms explains why the arch, which should
behave in an inextensible fashion, exhibits a stiff response for the nonlinear theories. The
linear and nonlinear midsurface terms for €23 and €13 of the C003 theory are given as X3
and X2 of Appendix B on page B-3 and page B-4, respectively. These terms are shown in

the following two equations; the underlined terms are the linear terms and ¢ = 1/R.

£93=X3 = wa+ o —cvvy+ ctow +uath + vy — cwids (6.7)
-0 0o _ ,
E3=Xs = wat+Pr—cvvytu d +u (6.8)

The values of the linear term 2 + w2 of Eq (6.7) for the C120 and C123 theories are
shown in Figures 6.20 and 6.21, respectively. The largest nonlinear term —wi2/ Ry of X9
is shown in Figure 6.22 for the C123 theory. The C120 theory has only linear terms for
the transverse shear strains. Figure 6.23 shows the sum of the largest linear and nonlinear
terms of Eq (6.7) for the C123 theory.  From these figures, it is clear that the largest
nonlinear term of x93 of the C123 theory deviates significantly from the linear XY terms
of the quasi-nonlinear C120 theory. Similar data for the shell panel was shown earlier
in Figures 5.14 through 5.17. TFor the arch, the nonlinear transverse shear x9 term is
heavily dominated by the last nonlinear term of Eq (6.7). This term effectively cancels
out all positive terms of x3. This causes x? to change sign, and ultimately the negative
transverse shear strain becomes so dominant it causes stiff response instead of the more

flexible response expected.

The deep arch revealed two significant findings. First, a more exact approximation of
the shell’s geometric shape factor functions will predict a more flexible structure during the
collapse phase. Secondly, the linear kinematic assumptions of Eq (4.1) result in coupling of
nonlinear transverse shear terms with transverse displacement w. This coupling can cause
€23 to vanish or dramatically vary from its expected behavior when transverse displacement
increases beyond certain bounds. These bounds are dictated by the assumption that

transverse shear strains should be of the order i/l times the bending or uirect strains.

This was one of the basic assumptions ised to justify the use of a two-dimensional model
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with 33 = 0. This bound implies that the nonlinear terms of €23 must also be of the order
h/L times the in-plane strains. In Figure 6.16, we observe that the nonlinear variants

predict the same behavior until transverse displacement exceeds about 5 inches, or about

5 times the thickness of the shell.




VII. Summary and Conclusions

The goal of this research was to develop a nonlinear higher-order transverse shear
deformation (HTSD) theory with more-exact higher-order thickness expansions than used
by previous researchers. In this case, the term nonlinear refers to using the full nonlinear
Green-Lagrange strain tensor representation for the transverse shear strain components
and for the in-plane strain components. Transverse shear deformation theories that use
nonlinear terms for in-plane strains, but only linear terms for transverse shear strains,
are referred to, in this dissertation, as quasi-nonlinear HTSD theories. In the past, non-
lineur transverse shear deformation theories have been limited to kinematic assumptions
based upon first-order polynomials in terms of the thickness coordinate. Similarly, most
researchers truncated geometric shell shape factor approximations at the first-order terms
of the corresponding thickness expansions. The theory developed for this research incor-
porated polynomial kinematic assumptions, for the u; and uy displacements, that were
complete fourth;order polynomials in the thickness coordinate. These assumed displace-
ments, however, were linear in terms of the unknown degrees of freedom of the system.
These kinematic displacement assumptions assured that the linear parts of the transverse
shear strain components were exactly zero when evaluated at the upper and lower surfaces
of a curved shell. Furthermore, as a result of these kinematic assumptions, the distribution
of transverse shear strain through the thickness of the shell was a complete third-order poly-
nomial in the thickness coordinate. This distribution correctly modeled the nonsymmetric

distribution of transverse shear stress caused by the effect of shell curvature.

7.1 Literature Review

A brief summary of the author’s literature review follows. The complete literature
review is included as Chapter II of the dissertation. For many years, the well-known
Kirchhoff-Love assumptions were used as a starting point for shell theory derivations.
These assumptions included a state of plane stress and inextensible normals that remained

straight and normal during deformation. Koiter (1960) estimated the magnitudes of the

transverse strain components. He indicated transverse shear stresses were generally of the




order h/L times the bending or direct stresses, but transverse norral stresses were of the
order h?/L? or h/R times the bending or direct stresses. (Koiter referred to k as the
thickness, R as the minimum principal radius of curvature, and L as the distance between
counter-flexure points of the deformed shell’s midsurface.) Koiter used simplifications
based upon small strain assumptions for isotropic materials; for problems with large strains
or non-isotropic material behavior, including transverse shear deformation is even more

necessary.

The development of a shell model for large-rotation nonlinear problems is compli-
cated by the introduction of laminated anisotropic materials, changes in curvature of the
surfaces, and geometric nonlinearity. Palazotto and Tisler (1987) compared computational
predictions of buckling response to experimental work on graphite-epoxy cylindrical pan-
els. Their work included the effects of rectangular unreinforced cutouts. They saw large
radial displacements, large curvatures over small regions, and severe' gradients of curvature
for loads less than 10 percent of the critical buckling load. Many investigators have used
finite element shell models to solve practical design-related problems that include these
complications. Material nonlinearity could also be included in a nonlinear HTSD theory,

but this was beyond the scope of this research project.

Dennis (1988) developed a large displacement, moderately large rotation, finite el-
ement formulation for laminated composite shells with a quasi-nc;nlinear HTSD theory.
His theory assumed a state of modified plane stress. Direct normal stress, o33, was as-
sumed negligible and the transverse displacement, w, was assumed constant through the
thickness. Dennis assumed an orthogonal curvilinear coordinate system and an incom-
plete cubic-expansion of midsurface displacement parameters. This displacement field was
similar to the cubic displacement field used for the linear H'SD theory of plates. Due
to the curvature of the shell, however, a cubic displacement field will not exactly sat-
isfy the conditions of zero transverse shear at the top and bottom surfaces of the shell.
Dennis ignored this inconsistency by eliminating linear terms of the order A%/R? in his
assumed displacement field. He also ignored linear terms of the order A/R in his trans-
verse shear strain-displacement equations. Furthermore, Dennis assumed 26 higher-order

nonlinear terms of the in-plane strain-displacement relations were negligible compared to




other terms. Dennis’s quasi-nonlinear HTSD formulation accurately predicted global re-
sponses of thin and moderately thick shells; practical problems, with A/R not greater than

1/25, compared well with known solutions.

Bhimaraddi, Carr, and Moss (1989) presented finite element models for shear de-
formable shells of revolution and laminated curved (constant curvature) beams with HTSD.
For the beam, they used rotations about the element’s axes as nodal parameters. Their
assumed displacement field included these rotation parameters multiplied by a function
whose first derivative vanished at the surfaces of the element and was non zero elsewhere.
This resulted in a parabolic distribution of linear transverse shear strain. The strain dis-
placement relations chosen were the “exact” linear relations which included transverse
normal strain and did not assume the shape function 1 + y3/R was equal to unity. They
indicated that ignoring the y3/R factor would result in neglecting the variation of beam
curvature across the cross-section which would lead to greater errors in predicted response.
Kant and Menon (1989) investigated the effects of h/R for thick shells compared to thin
shells using “higher-order” theories for composite laminawes. Kant and Menon discussed
the use of “functions” of thickness coordinate z, similar to that used by Bhimaraddi, Carr,

and Moss, but did not define them, or discuss how they were used in their paper.

The method of incorporating transverse shear into a shell model is not standard, even
though FTSD and HTSD theories are both well accepted. These two theories are generally
employed with the linearized transverse shear strain components of the Green-Lagrange
strain tensor. They can, however, be used with nonlinear transverse shear strain terms.
Singh, Rao and Iyengar (1989) used a FT'SD theory with selected nonlinear terms included
in the transverse strain components. They found transverse shear to be a significant
factor in determining buckling load. Although this FTSD formulation included nonlinear
transverse shear strains, the authors did not specifically evaluate the effects of the nonlinear

terms.

Palmerio, Reddy, and Schmidt (1990) published two papers on a moderate rotation
nonlinear FTSD theory for laminated anisotropic shells. This theory was proposed by
Schmidt and Reddy in 1984. They indicated that their theory had nonlinear transverse

shear strain terms, due to in-plane displacements, which were not present in a von Karman-
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type theory. Based upon a poor comparison with the results of a continuum model by Liao
and Reddy (1989), Palmerio et al. revised their new theory to include more nonlinear terms
for their in-plane strain components. Their first-order through-the-thickness expansion of
displacements was retained. They noted that the bending components, thus, contained
substantially more terms. With essentially the full Green-Lagrange strain tensor repre-
sentation, the modified FTSD theory of Palmerio, Reddy, and Schmidt gave results that
were in close agreement with the continuum model of Liao and Reddy for a thin shallow
isotropic spherical panel and a thin shallow isotropic arch. They concluded that including
more nonlinear bending terms improved results. Interestingly, they had to eliminate non-
linear transverse shear terms to reduce an over-stiff behavior of the theory for a laminated

composite cylindrical shell with transverse load.

Based upon the author’s review of the published literature on transverse shear de-
formation of composite shell’s, the author proposed the research project reported in this

dissertation.

7.2 Theory

A summary of the theory developed for this research follows. Complete details are
included in Chapters III and IV of the dissertation. The distribution of transverse shear
through the thickness of a curved shell is distorted by the shell shape factors and their
derivatives that appear in the representation of the strain components. (These shape
factors are linear functions with respect to the thickness coordinate.) Thus, the exact dis-
tribution of transverse shear strain through the thickness of a curved shell is not parabolic,
but is at least cubic in terms of the thickness coordinate. The theory of this research
incorporated linear fourth-order u; and uy displacement assumptions. These assumptions
exactly satisfied the linear transverse shear strain boundary conditions at the upper and
lower surfaces of the shell. The exact satisfaction of these boundary conditions was ac-
complished by adding second-order and fourth-order correction terms to the assumed )
and u; displacement functions of the third-order linear HTSD theory. The theory also in-
corporated quadratic approximations of all geomtric shape factor terms appearing in the

strain displacement relations. The nonlinear transverse shear boundary conditions were




approximated by multiplying all nonlinear €23 and €3 terms by a parabolic function of the
thickness coordinate. This assured the nonlinear transverse shear terms did not violate
the zero transverse shear boundary condition at the upper and lower surfaces of the shell.
Other more common assumptions of HTSD shell theories, such as the assumption that
direct normal stress was equal to zero and that direct normal strain was a function of €1,

and &2, were also applied to this theory.

The basic assumptions of a two-dimensional shell theory are tied to the concepts of
a reference surface (the midsurface of the shell) and a local curvilinear coordinate system
associated with this surface. When this curvilinear coordinate system is based upon lines
of principal! curvature, which by definition are orthogonal, then the coordinate system is
also orthogonal. For this research, the theoretical development was restricted to orthogonal
coordinate systems based upon lines of constant curvature. This is one of the most common

coordinate systems used for analysis of shells.

If one uses a Lagrangian description of deformation, all variables are expressed in
terms of conditions prior to deformation. In this system, the displacement vector can
be written in terms of orthonormal base vectors, &, (i = 1,2,3). For the shell, the
Lamé parameters A, (o = 1,2), describe the two-dimensional relationship between the
orthogonal surface base vectors @, and their orthonormal counterparts €,. The chell shape
factors, h;, (i = 1,2,3), describe the three-dimensional relationship between the orthogonal
base vectors g, of the three-dimensional orthogonal curvilinear coordinate system %, and
their orthonormal counterparts &,. For an orthogonal curvilinear coordinate system based

upon the lines of principal curvature of a shell, the shape factors are:

hy = Ai(1-y3/R1), ha=A21-y3/R2), hs=1 (3.40)
where
oF 97 \'/? oF  oF \'/?
= . = - =— . 3.41
A (091 391) » Az <002 392) (341)

Thus, for the convenient case of a cylindrical shell with radius R, and local coordinates
0, = z, 0, = s, z described in an orthogonal space with global coordinates y; = «, y2 = s,

¥3 = z, the position vector 7(yy, 2, ¥3) is given by:
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= 28} + sé2 + 263 (3.42)
1= 4

and the Lamé parameters reduce to A 9 =1

For this research, the macro-mechanical behavior of a composite lamina was assumed
sufficient provided stresses were small enough to assure no materijal failure occurs. Thus,
the material of each lamina was treated as a homogeneous anisotropic material. More
specifically, the material was assumed to be transversely isotropic. .This means the material
has properties which are symmetric about two material axes. For a thin flat structural
member, such as a plate, a state of plane stress is often assumed where 13, 043, and o33
are all assumed to be equal to zero. In this research, however, the effects of transverse
shear deformation were to be considered. Thus, 073 and o253 were not assumed to be zero.
The direct normal stress, o33, however, was still assumed to be zero. This assumption was
necessary to reduce the three-dimensional problem to a two-dimensional problem. The

direct transverse normal strain was assumed to be given by:

C C
€ry = —-5:-3-2-611 - 6%3622 (356)

where the C;; were functions of material properties and ply lay-up.

To form a structural component, the lamina were assumed to be perfectly bonded
together with their fibers oriented at a particular angle with respect to the structure’s
reference axis. The stiffness contribution of each lamina in the laminate was transformed
to a common reference system of axes. The constitutive relations used for this research
were valid for small strains where the material behaved as a linear elastic solid. Eq (3.56)
related the direct normal strain €33 to changes in the direct in-plane strains ¢;; and ez
for the case where o33 is equal to zero. The assumption that Eq (3.56) was valid for
an arbitrary laminated composite shell was important. Without this assumption, the
stress state would be fully three-dimensional and the two-dimensional model’s reduced
computational effort would be lost. With the assumption, however, the two-dimensional
mode] will not accurately predict the stress distribution within the shell, since o33 generally
will not be zero in the real structure and ¢33 may vary considerably from that predicted by

Eq (3.56). Research in the 1960°s and 1970's by many investigators, however, has validated




the acceptability of this assumption.

When a thin body undergoes a small (infinitesimal) deformation, material points
on a line normal to the middle surface of the body move relative to each other. This
movement results in rotation and warping of the normal. The angle between the geometric
normal to the midsurface and the warped normal is maximum at the midsurface and zero
at the the upper and lower surface. For a linear elastic material undergoing infinitesimal
displacement, this angle of deviation is proportional to the transverse shear strain. The
distribution of transverse shear strain in a flat plate, for the infinitesimal linear case, is
parabolic through the thickness of the plate. Under the classical Kirchhoff assumption,
one assumes the cross-section remains normal, straight, and inextensible. This assumption
results in zero transverse shear strain throughout the body. Thick shells and composite
shells generally will show greater transverse deflection for a given load when the effect of

transverse shear is included in the theoretical model.

There are several ways to include transverse shear deformation. Transverse shear
effects can be included using a first-order transverse shear deformation (FTSD) theory. In
this case, material lines originally normal to the midsurface are allowed to deviate from
the normal to the shell midsurface. These lines remain straight and inextensible. Since the
angle of deviation is constant, the displacement field varies linearly through the thickness
of the shell. The constant angle also implies transverse shear strain is constant, and thus, is
not zero at the upper and lower surfaces of the shell. This inconsistent distribution results
in a stiff model of the structure. This stiffening effect, called shear locking, becomes more
pronounced as the shell thickness approaches zero. The higher-order transverse shear
deformation (HTSD) theory allows the normal to rotate and warp. The HTSD theory for
a flat plate produces a parabolic distribution of shear strain. This distribution matches the
exact distribution of shear strain for the linear infinitesimal case. The results for curved

shells, however, are different because of the curvature of the shell. These differences, due

to curvature, were a primary concern of this research.




For a shell, the FTSD theory is given by the following displacement field:

w1 = u(l-y3/Ry)+diys
uz = vl —y3/Ra)+ Yays (3.62)
Uz = w

where the five degrees of freedom, u, v, w, 1, and 5, are functions of the in-plane
curvilinear coordinates (y1,y2). The displacement field of a third-order linear transverse

shear deformation theory is given by the following equations:

4 (Ow
u1(y1,92,93) = u (1 - %3;) + P1y3 — I (-5; + ¢1) Y3
_ _BY .y _i(?ﬂ )3 3.70
u(y1,92,¥3) = v <1 R2> + P2y3 32 \ 3y, + P2} y3 (3.70)
u3(y1, 3/2:1‘/3) = w

This third-order displacement field has two additional degrees of freedom not present in
the first-order theory. These two degrees of freedom are the derivatives of transverse
displacement, w. These derivatives are independent degrees of freedom that represent the
slope of the elastic curve. The third-order theory, thus, allows the slopes of the elastic curve
to deviate from the bending angles. This deviation is directly related to the transverse

shear strains of the structure.

The third-order linear transverse shear deformation theory for a shell is suitable for
many problems of practical interest. Two appreximations of this theory, however, required
further examination to assess their effects upon the accuracy of this theory for certain
problems. Specific problems of interest were ones in which rotations and curvature within
the element become very large. The first approximation, in question, was the neglect of
some higher-order terms in the thickness-expansions of displacement field and the shell
shape factor functions. For a shell, the third-order kinematics of the linear HTSD theory
do not give zero linear transverse shear strains at the upper and lower surface; unless, the
shell is flat or some small terms of the transverse shear strains are ignored. The curvature
of the shell is important, because the shell shape factors distort the distribution of strain
through the thickness of the shell. Thus, the order of approximation of the shell shape

factors affects the accuracy of the strain distributions. The second approximation, in
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question, was the neglect of nonlinear transverse shear strain terms. The quasi-nonlinear
HTSD theory ignores all nonlinear terms of both €23 and ;3. This linear restriction on
€23 and €;3 is not necessary physically, but satisfying the zero strain boundary conditions

of the full nonlinear expressions is not a trivial problem.

The kinematics of Eq (3.70) were modified to yield exactly zero at the top and bottom

surface of a curved shell by adding two correction factors to the last term as shown below:

- (1o LRI W LA
u1(y1,92,98) = v (1 Rl) t¥gs + (¢1 + ayl) [ Ry’ k43 R, %

_ n dw\| 9§ 5 k , (4.1)
U (2/1,3/2,?/3) = ? (1 R2> + 1/’2?/3 + (¢2 + y2) [ _R2 + Ivy3 R2y3
u3(y1,92,93) = w

where k = —4/(3h%) and the underlined terms were the correction terms added to Eq (3.70).
These kinematics gave zero linear transverse shear strains at the upper and lower surface
of a curved shell. The additional terms of Eq (4.1) also vanished for a flat plate, since each
term was divided by radius of curvature. Likewise, for a right circular cylinder, with radius
R2 = R and R; = o0, the first equation of Eq (4.1) reduced to the corresponding flat plate
expression, since R; was infinite. The comparison of results from the incomplete cubic
kinematics of Eq (3.70) and results from the complete quartic kinematics of Eq (4.1) was
a major aspect of this research. As stated earlier, the cubic displacement field of Eq (3.70)
was the same as used by other authors. The complete quartic, however, was a unique
displacement field not derivable from those of other authors. This quartic displacement
field, thus, was an exact solution for the linear traction free boundary conditions of a

quasi-nonlinear HTSD theory for shells.

The nonlinear transverse shear boundary conditions are not as easily solved as the
linear version of these conditions. The general fourth order kinematic assumptions, when
substituted into the full nonlinear Green-Lagrange strain-displacement relations for £;3
and €23, gave two coupied nonlinear partial differential equations that were seventh-order
in the thickness coordinate. In order to solve these two equations for the six unknown

functions of displacement, one must evaluate the equations at y3 = xh/2 aund set cach




resulting equation equal to zero. This is required to satisfy the zero traction boundary
conditicn on the surfaces of the shell. Solving four coupled nonlinear partial differential
cquations with six unknowns was beyond the scope of this research project. Although other
authors have proposed the use of nonlinear transverse shear strain-displacement relations

with linear k': »matics, none have done so within the context of a HTSD theory.

Since no linear kinematic assumption exactly satisfies the zero traction boundary
conditions, several options were available. One could choose to ignore the natural boundary
conditions and use shear correction factors as done with the FTSD theory. Singh, Rao, and
Iyengar (1989) chosc this approach. One could also simply ignore all nonlinear transverse
sii.ar strain terms. Palmerio, Reddy, and Schmidt (1990), although intending to include
nonlinear transverse shear, ultimately chose this approach for their FTSD theory. These
were the only {wo references which referred to nonlinear transverse shear terms in a FTSD

or HTSD theory for shells.

The author's approach to including nonlinear transverse shear terms in the theory
included several assumptions beyord those of the quasi-nonlinear HTSD theory. First,
the author was primarily interested in problems involving large rotations and curvature
changes for laminated shells. Thus, the displacement field of the new theory should reduce
to the displacement field of the linear HTSD theory for problems with smaller rotations
or smaller curvatures. The kinematic assumptions of Eq (4.1) reduce to the kinematics
of the lincar IITSD theories for small curvature problems. Secondly, nonlinear kinematic
assumptions were not used to satisfy the nonlinear boundary conditions for £13 and 3.
The incorporation of nonlinear kinematic terms and the corrective terms of Eq (4.1) was
prohibitive. Thus, the avthor chose to use the linear kinematics of Eq (4.1) with the full
nonlinear transverse shear relations and an approximate approach to the nonlinear bound-
ary conditions. This approximate approach assumed the nonlinear transverse shear strain
should be zero at the upper and Jower surfaces and that the strain energy of the nonlinear
transverse shear strain terms was excessive. The author achieved a slight reduction in
transverse shear strain energy and forced the satisfaction of zero traction, at the shell’s
surfaces, by multiplying the nonlinear transverse strain terms by a parabolic function of

the thickness coordinate. Other 1escarchers have used similar functions to provide the
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parabolic transverse shear distribution of the linear HTSD theory.

Thus, the goal of this research was to evaluate the effects of two theoretical “at-
tributes” not previously investigated for linear-elastic shells with large displacement, rota-
tions, and curvatures using a higher-order transverse shear deformation theory. These two
attributes were the accuracy of the displacement field assumption and the incorporation of
nonlinear strain-displacement terms for the transverse shear strains. A third “attribute”
was also considered, and that was the order of the approximation of functions of the shell
shape factors. These functions appear in the strain displacement relations as functions of
the shape factors and their derivatives. For a cylindrical shell, these geometric functions
depern ' only on the thickness coordinate. For a FTSD or HTSD theory, where displace-
ments are expanded in terms of the thickness coordinate, these geometric functions are
often expanded in terms of the thickness coordinate and arbitrarily truncated at a specific

power of the thickness coordinate.

The previous discussion of theory dealt with the development of the displacement field
assumptions, the strain-displacement relations, and the constitutive relations for laminated
composite shells. The next phase in the research was the development and solution of
the governing differential equations for shell problems. Since the author was specifically
interested in the nonlinear phenomena of large displacements and rotations, no analytical or
linear solutions were desired. The finite element technique was used to obtain numerical
solutions for cylindrical shells. The finite element equations were based upon the total
potentiai energy of the elastic body. Specifically, the principle of stationary potential
energy was used where the first variation of potential energy of the system is set equal
to zero. The potential energy expression was found by first examining the equilibrium
state of the body. For a body with prescribed forces on part of its surface and prescribed
boundary conditions on the remaining part of the surface, the equations of equilibrium for
an infinitesimal virtual displacement were developed in terms of the Second Piola Kirchhoff
stress tensor and the Green strain components expressed in the body’s courdinate system.
Assuming strains were small, then the stresses could be written in terms of the strains. For
a laminated orthotropic material, the stress components could be written in terms of the

reduced structural stiffness of the lamina. These quantities depended only on the thickness




coordinate. Thus, they could be written in terms of an integral over the midsurface of the

shell, with the integration in the thickness direction performed analytically.

The variation of total potential energy gave five coupled nonlinear partial differential
equations which governed the equilibrium of the system. These expressions contained 18
displacement parameters: «, uy, %2, v, V1, V2, W, W31, W2, W11, W22, W12, Y1, Y11,
P1,2, Y2, ¥2,1, and P22. These parameters included the seven displacement parameters of
Eq (4.1) and their derivatives. Since the equilibrium equations were nonlinear in terms of
the displacement parameters, an incremental-iterative approach was used to solve a system
of linearized equations which yields an equivalent solution. For simple theories, such as
Donnell’s theory or a linear FTSD theory where relatively few terms are included, the first
variation of potential energy and its linearization, can be explicitly developed, term by
term. For more complete theories, such as a linear HTSD theory or the fully nonlinear
theory, the potential energy expression has several hundred terms. Its first variation would
include, perhaps, thousands of terms, and the subsequent linear equilibrium equations

would be quite lengthly.

Rajasekaran and Murray (1973) developed a formal procedure for finite elements,
which defined the total potential energy, its first variation, and the linear incremental
equilibrium equations in terms of three stiffness matrices. Specifically, the total potential

energy was given by:

I, = {7 |31+ gV + 5] {63 - {9} {R) (4.17)

where

{q} = a column array of nodal displacement parameters
{R} = a column array of nodal loads
(K] = an array of constant stiffness coefficients

[N1] = an array of nonlinear coefficients with each term dependent on one of the

displacement parameters ([Vy] is linear in terms of displacement)

[N2] = an array of nonlinear coefficients with each term dependent on the product

of two displacement parameters ([N;] is quadratic in terms of displacement)
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The first variation of potential energy, then was given by
1 1
(K14 5[N]+ 5 [V2)| {¢} - {B} = {0} (4.18)
and the linear incremental equilibrium equation was given by:
[(£]+ [N] + [V} {&g} - {AR} = {0} (4.19)
To assure the formalism of Eqs (4.17)-(4.19) held, the stiffness arrays [K], [V], and [N2)

had to be derived in a specific fashion. This derivation is discussed in Chapter IV of the

dissertation.

Rajasekaran and Murray’s formulation was for finite elements in which strains did
not vary through the thickness of the element. This formulation was extended to account
for variation of strain through the thickness of the curved shell. To do this, strain at
a point in the shell, was in terms of a series expansion in the thickness coordinate, and
new definitions of [}, [V], and[NV,] were developed for the theory with transverse shear
deformation. This formulation required literally hundreds of matrix multiplications to
evaluate these equations. A MACSYMA routine was developed to symbolically generate
the assumed displacement field, determine the strain components, determine the shell
shape factor approximations, determine the elements of the strain definition arrays, form
the stiffness arrays, and finally generate the Fortran code for elements of the [f(], [K 5],
[1\71], [1\715], []\72], and [Ngs] stiffness arrays. Development of this routine was a time
consuming, but crucial aspect of this research. The symbolic generation of codes assured
reliability and comparability, not achievable by other means. By using these codes in an
element independent formulation, the accuracy of each version of theory could be compared
using the same finite element model and main program (SHELL). This further assured a

fair comparison of the various theoretical attributes of each version.

The element independent stiffness matrices of this theory depended upon the contin-
uum displacement gradient vector {d}. Using a standard displacement-based finite element
method, the 18 two-dimensional functions of the continuum displacement gradient vector
were approximated by interpolation from discrete values of nodal displacement parame-
ters. These nodal parameters, or degrees of freedom, were defined only at a finite number

of points or nodes. The finite element method required the computation of the stiffness
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matrices for each element independently. These elemental stiffnesses were then assembled

according to their relationship to global nodes of the structure.

Defining the nodal degrees of freedom required definition of the specific element,
since the nodal parameters of {¢} and the associated nodal interpolation array are element
specific. The element chosen was the 36 degree of freedom quadrilateral curved shell
element developed by Dennis (1988). This element has been used for many investigations
of static and dynamic response of plates, arches, and cylindrical shells undergoing large
displacements with linear HTSD theory. The element has eight nodes with seven degrees
of freedom, u, v, w, w;, we, ¥, and s, at each of the four corner nodes and two degrees
of freedom, u and v, at the four midside nodes. The two degrees of freedom at the midside
nodes allow for quadratic interpolation of in-plane displacements u and v. This is important
for shells, due to the curvature-induced coupling of bending and membrane activity in
shells. The continuum values of © and v were interpolated from the nodal values u; and vy,
using quadratic Lagrangian interpolation functions. The continuum displacement gradient
vector {d} included ¥, and 1), and the first derivatives of these parameters. Thus, linear
interpolation could be used for these parameters, since only C° continuity was required.
The interpolations of ¥, and 1, were given by linear Lagrangian interpolation functions.
Nodal parameters associated with transverse displacement included the values w, w,;, and
wyo at each of the four corner nodes. Thus, interpolation of w was accomplished using

quadratic Hermitian shape functions.

The two-dimensional integration of the finite element equations, in the plane of the
finite element, was accomplished by numerical integration using Gaussian quadrature. So-
lution of the resulting equations was accomplished by an incremental-iterative technique
commonly called the Newton-Raphson method. The parameters to be incremented were
the elements of the array {q}, containing global degrees of freedom. A global criterion,
written in terms of the norms of all displacement parameters, was used to determine con-

vergence.




7.8 Shallow Shell Results with Nonlinear HTSD Theory

One objective of this research was to evaluate the accuracy of the new HTSD the-
ories; another objective was to assess their limitations. Shallow shell problems included
a thick flat quasi-isotropic plate with uniform transverse pressure load, two thin isotropic
cylindrical shell panels with a transverse point load, and a thin quasi-isotropic cylindrical

shell panel with a large cut-out and uniform axial compression load.

The transversely-loaded flat plate problem was used to test the MACSYMA gener-
ated codes. The plate chosen was an 8~ply quasi-isotropic laminated square plate with
total length of each side equal to 16 inches. Load was a uniform transverse pressure load.
The plate thickness was 1.6-inches which indicated transverse shear may be important.
For this problem, the eight HTSD theories all gave results that agreed within 1 percent of
each other. Although the difference was negligible, all the nonlinear HTSD codes predicted
a more flexible response than the linear HTSD codes predicted. In addition, the theories
with the highest-order thickness expansions, and most floating point computer operations,
gave identical results to the lower-order theories. This problem validated the computa-
tional algorithms used to develop and solve the linear and nonlinear HTSD finite element

equations for laminated composite shells.

The second class of problems investigated was thin shallow hinged-free isotropic
cylindrical shells with a transverse point load acting at the center of the panel. The first
problem was a 1/4-inch-thick shell. The second problem was a l1-inch-thick shell of the
same configuration. Solutions were computed using a 4 X 6 mesh of elements to model
one quadrant of the shell. For this problem, the linear HITSD codes all produced the same
results, and the nonlinear HTSD codes all produced the same results. In comparison with
the flat plate problem, the nonlinear HI'TSD codes for this problem showed greater flexibility
than the linear HT'SD variants, but only during the collapse phase. The most sophisticated
nonlinear HTSD theory predicted a load about 8 percent less in magnitude than a modified
Donnell theory (with HTSD included) in the range 0.7 < w < 0.8 and about 15 percent
less at w = 0.9. This was due to the increased coupling of membrane, beud g and
transverse shear activity in the full nonlinear HTSD theory. Interestingly, this phase of

the collapse was characterized by the most extreme displacements and rotations occurring
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in the problem. Thus, including nonlinear transverse shear terms had a noticeable effect

upon load-displacement predictions for this problem.

Values of the largest linear ¢93 transverse shear term, 12 + wy , for ten increments
of transverse displacement, were compared for the full nonlinear HTSD theory and the
modified Donnell theory. These results were virtually identical for increments 1-6, (before
the shell snaps through). After the shell snaps, however, the values of ¥, + w2 were about
20-25 percent less in magnitude over the majority of the panel for the full nonlinear theory,
as compared to the modified Donnell theory. The value of 3, + w2, was dramatically more
positive at the hinge line during increments 7-10 for the full nonlinear HTSD theory than
for the modified-Donnell theory. For the nonlinear HTSD theory, the €93 and €33 strain
components included many more nonlinear terms. The distribution of shear strain was sig-
nificantly affected by including the nonlinear transverse shear terms. The largest nonlinear
term of the €93 transverse shear strain component for the full nonlinear HTSD theory was
the term —w1,/Ry. This term and the linear term, 1, + w2, were the predominant terms
of the ¢93 transverse shear strain component. For increment 5, when the largest magnitude
of 1y +w 2 occurs, the maximum values of ¥+ w,» and —w,/Ra were 0.0017 and -0.0003,
respectively. Thus, the largest nonlinear term of the full nonlinear HTSD theory was less
than 20 percent of the linear term. With each increment from 7 to 9, after the shell has
snapped through, the nonlinear term became more significant compared with the linear
terms. This nonlinear term created a softening effect while it was of comparable magnitude
with the linear terms. It effectively reduced the magnitude of the transverse shear strain
over a large area of the shell’s midsurface. This softening effect was large enough to affect
the strain energy of the shell and subsequently resulted in slightly different equilibrium
values of the nodal displacements for the full ronlinear HTSD theory, as compared to the

theories with linear transverse shear sirain-displacement relations.

A 1-inch thick isotropic shell exhibited a significantly different equilibrium path
than the 1/4-inch shell. For this case, the shell never “snaps”; Joad always increased
monotonically for all values of transverse displacement. Comparing results for the full
nonlinecar HTSD theory with results of the modified-Donnell theory revealed there was

virtually no difference in load versus displacement results for this problem. Because of its
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thickness, the in-plane extensional and bending terms in the strain energy expression for
this shell were predominant. Thns, the equilibrium path was little affected by including

nonlinear transverse shear strain terms.

The quasi-isotropic flat panel results indicated the nonlinear HTSD codes predicted
a slightly more flexible response than their quasi-nonlinear HTSD variants. Similarly, for
the collapse phase of the thin isotropic cylindrical shell, the nonlinear HTSD codes also
predicted a more flexible response than the quasi-nonlinear HTSD variants. In both cases,
the more exact geometric approximations predicted responses virtually identical to the

simplest elemental codes for these shallow shell problems.

A problem with quasi-isotropic material and a smaller radius of curvature was chosen
next. This problem was an axially-loaded quasi-isotropic cylindrical shell panel with a cut-
out. This panel had a radius of 12-inches, a thickness of 0.04-inches, and dimensions of
12-inches (lateral) by 8-inches (circumferential). The cut-out was square, with 4-inch
sides, and was centrally located. Due to the possibility of nonsymmetric deformation,
the entire panel was discretized into 360 elements. Only the full nonlinear HTSD theory
and the most sophisticated quasi-nonlinear HTSD theory were evaluated. For this case,
the €93 of the full nonlinear HTSD theory was virtually identical to the €93 of the quasi-
nonlinear HTSD theory. This was attributed to several characteristics of the problem. The
most significant difference, between this panel and panels reported earlier, was the ratio of
thickness to characteristic length. The plate was 1.6-inches thick with an edge length of 16
inches. The isotropic shells had thicknesses of 1/4 inch and 1 inch with edge lengths of 20
inches. The axial panel was 0.04-inches thick with a 12-inch radius and a minimum edge
length of 8 inches. Based on Koiter’s work, the transverse shear strains for these problems
would be of the order h/L times the in-plane strains. Thus, for the plate the transverse
shear strains would be about 1/10th of the in-plane strains. For the isotropic shells the
transverse shear strains would be 1/80th and 1/20th of the in-plane strains. Finally, for
the axial panel these strains were about 1/160th of the in-plane strains. Thus, this axial
panel problem was a mild test of transverse shear behavior compared to the flat plate

problem and the 1/4-inch-thick shell problem.




7.4 Deep Shell Results with Quasi-Nonlinear HI'SD Theory

A deep clamped-free quasi-isotropic cylindrical shell panel, with a transverse point
load at the center, was chosen to study the effects of nonlinear transverse shear for deep
composite shell panels. This panel, like the axially-loaded panel, was a laminated quasi-
isotropic panel with a radius of 12-inches, but the thickness was only 0.04-inches and
the dimensions were 12-inches (lateral) by 12-inches (circumferential). Because of the
larger circumferential dimension, this shell was significantly deeper than the axially-loaded
panel. Tsai and others (1990) investigated shells of this configuration and compared static
and dynamic results for different material properties and ply layups. A one quadrant
96 element mesh wlas chosen for this problem. The quasi-nonlinear HTSD theories all
predicted identical results, comparable to those of Tsai. The nonlinear HTSD theories,
however, predicted a significantly more flexible structure at the onset of loading. As
transverse displacement increased, the nonlinear HTSD theories predicted an increasingly
stiffer structure. This response was much stiffer than the quasi-nonlinear HTSD theories
predicted. The ratio of thickness to characteristic length of this problem was even smaller
than any of the problems analyzed earlier. This ratio was equal to 1/300, thus, nonlinear
transverse shear strain was expected to be insignificant. However, The nonlinear HTSD

results of this problem deviated considerably from the results of previous problems.

Comparing three of the linear and nonlinear terms of ¢,3, as done for other problems,
revealed a significantly different behavior for the 43 of the fullly-nonlinear HTSD theory as
compared to the modified-Donnell theory. This explained the stiff response as w increased,
but did not explain the increased flexibility at the onset of loading. Although the depth
of this shell was an important factor, the magnitude of transverse displacement did not

cause the increased flexibility.

The 1/4~inch-thick isotropic panel had properties that did not vary with orientation
of the material. Shear modulus for the isotropic material was assumed to be one-half
the Young’s Modulus. Since the shell behaved in a flexible manner and snapped through
with relatively low transverse load, the primary cause of deformation was bending aciivity.
Since the panel was hinged, the initial severity of bending was characterized by the distance

between the lateral supports and the depth of the shell. The quasi-isotropic shell had « [0/-
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45/+45/90]s ply layup with a ratio of E;/E; = 15 and transverse shear moduli less than
E;. For the composite shell, the primary cause of deformation was also bending activity.
The outer plies of this laminated panel were the only plies oriented in the transverse
direction. This implied that 75 percent of the material of this shell had a stiffness in the
circumferential direction that was significantly less than the outer plies. This panel was
only 0.04-inches thick, thus, the outer plies may not have been very effective in resisting
bending, since they were so close to the midsurface of the shell. With the lateral supports
of this shell clamped the final deformed shape of the shell exhibited both positive and
negative curvatures. Thus, severity of bending was characterized by the distance between
counterflexure points of the final deformed shape; a distance of about 2 inches. The bending
activity of the clamped composite shell was more severe than that of the hinged isotropic
shell. Since transverse shear stress is roughly equal to h/L times the bending stress, the

clamped quasi-isotropic shell was a more severe test of nonlinear HTSD theory.

This problem demonstrated that nonisotropic material properties could have a signif-
icant effect upon the predicted behavior of shell structures. Because of the reduced stiffness
in the circumferential direction, the increased coupling of transverse shear activity with
in-plane strains, and the significantly lower transverse shear properties of this panel, the
incorporation of nonlinear terms for transverse shear strain significantly affected the strain
energy of the composite shell. This resulted in a more flexible structure at the onset of

loading.

Deep circular arches can be used to demonstrate a theory’s ability to predict large
displacements and rotations. Many variations of transversely-loaded deep arch problems
have been reported in the literature. The problem chosen for this research was a 100-
inch radius isotropic arch with a 1-inch square cross section and an opening angle of 106
degrees. Solutions for this problem were computed using all variations of the HTSD the-
ory. A 1 x 16 mesh of elements was used to represent one quadrant of the arch. The
quasi-nonlinear HTSD theories, in this case, predicted a more dramatic collapse of the
arch than the Donnell-type solution (even though the Donnell theory was modified to in-
clude transverse shear deformation). This difference in predicted response was due to the

many nonlinear in-plane displacement terms in the strain definitions that are not included
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in the Donnell equations. A more exact representation of these terms, therefore, should
produce more flexible results. The quasi-nonlinear HTSD theory with quartic u, displace-
mént assumption, however, did not give a more flexible result than the quasi-nonlinear
HTSD theory with the incomplete cubic u; displacement assumption. In contrast, the two
quasi-nonlinear HTSD theories with quadratic shape function approximations both pre-
dicted a more flexible response after collapse than the theories with linear shape function

approximations. This difference in results was 10-15 percent.

For the thin shallow isotropic cylindrical shell, the nonlinear HTSD variants produced
promising results; the nonlinear HTSD variants predicted an 8-15 percent reduction in
loads during the collapse phase of the equilibrium path. For the deep circular arch, however,
the nonlinear HTSD variants predicted results that were too stiff when 16 elements were
used to model a quadrant of the structure. The stiff response was similar to responses
obtained for thin shallow shells when too few elements were used. A rough analysis of
relative error, caused by discretization, revealed that more elements were needed for this
arch to assure the accuracy of results was comparable with that of the shell panel. Thus,
despite the arch being a simple 1-dimensional problem, modeling it with 2-dimensional
shell elements created discretization errors which should be avoided. Results for a 1 x 48
element discretization, using the quasi-nonlinear HTSD variants and the modified Donnell
theory, showed an even greater reduction in load after collapse with quadratic shape factor
approximations. Unfortunately, the nonlinear HTSD variants still diverged to stiff solutions

beyond crown displacements of about 4-inches.

At this point, two “shells” with thickness of 1 inch and radius of 100 inches had
been analyzed with dramatically different results. For one, a shallow panel, the nonlinear
HTSD theory predicted a more flexible structure. For the other, a deep arch, the same
theory predicted a grossly over-stiff response. The only differences between these problems
were the width, depth, and circumferential length. Correction of discretization errors due
to Jarge aspect ratios did not correct the over-stiff behavior of the nonlinear HTSD codes.
Therefore, there must be another cxplanation. Surana (1986) investigated similar 100-inch
radius arches of verying width. He found a 2-inch wide arch behaved like a beam, but a

24-inch wide arch behaved more like a shell. The 2-inch wide arch was stiffer than the




24-inch arch despite equal values of bending stiffness EI. This implies the membrane

activity of the shell panel must cause it to be less stiff than the arch.

Based upon these observations, it seems feasible that nonlinear terms of the trans-
verse shear strain components may have a more significant effect than expected. The
nonlinear HTSD theory used for this research was not exact. The author used linear kine-
matics based upon exactly satisfying the zero traction boundary conditions of the linear
transverse shear terms of a curved shell. These kinematics, given in Eq (4.1), did not satisfy
this boundary condition when the full nonlinear €13 and €23 strain-displacement relations
were used. A parabolic function of thickness coordinate was included in the nonlinear
transverse shear strain definition to assure a traction free surface. The possibility of non-
linear transverse shear strain terms exceeding the allowable estimates of transverse shear
stress (from Koiter’s shell research), still existed with this approximate nonlinear HTSD
theory. Comparing values for the linear and nonlinear terms of &3 revealed a behavior
very similar to the shell panel, but of much greater magnitude. The largest nonlinear
term, —wy,/ Ry, deviated significantly from the linear terms of transverse shear strain.
The nonlinear term effectively eliminated all positive terms of €,3. This caused the trans-
verse shear strain to change sign, and ultimately, the nonlinear transverse shear strain
terms became so dominant, they caused an over-stiff response instead of the more flexible

response expected.

The deep arch revealed two significant findings. First, a more-exact approximation
of the shell geometric shape factors predicted a more flexible structure during the collapse
phase. Secondly, the linear kinematic assumptions of Eq (4.1) resulted in coupling of
nonlinear transverse shear ¢,3 and transverse displacement, w. This coupling caused ¢33 to
vary, dramatically, from its expected behavior when w increased beyond certain bounds.
These bounds were dictated by the assumption that transverse shear strains be of the
order h/L times the bending or direct strains. This was one of the basic assumptions used
to justify the use of a two-dimensional shell model. Thus, the nonlinear HTSD theory
(with linear kinematics) was suitable only for shallow shell problems which undergo small

rotations.




7.5 Conclusions

This research revealed several unique findings related to the limitations of a nonlin-
ear HTSD shell theory employing higher-order thickness expansions and linear kinematic
assumptions. The ratio of thickness to wave length of curvature (distance between counter-
flexure points of the deformed midsurface) and the ratio of transverse displacement to
depth of the shell were found to be important factors in predicting the applicability of the
nonlinear HTSD theory. If these ratios were negligible, nonlinear transverse shear strain
terms had no impact on predicted response. If these ratios were small ( on the order
of 1073 to 107!), the incorporation of nonlinear HTSD theory produced a more flexible
response. A shallow 1/4-inch-thick hinged-free isotropic shell panel exhibited this more
flexible response with nonlinear strain-displacement terms in the transverse shear strain
formulation. If the ratios were large, the nonlinear terms of the transverse shear strain
components could possibly exceed the magnitudes of the corresponding linear transverse
shear strain terms. This resulted in a stiff response prediction. Both deep shell problems
exhibited stiff response predictions with nonlinear transverse shear strain-displacement

relations.

The additional computational burden of the nonlinear strain-displacement relations
is significant. Table 4.3, on page 4-20, shows the number of lines of Fortran code required
for each variation of theory. The most simple nonlinear HTSD theory is C003. This theory
has 23176 lines of code compared to 13866 lines for the C000 quasi-nonlinear HI'TSD theory.
The resulting computational burden of this additional code was significant in terms of CPU
consumption and memory requirement. The elemental independent formulation of stiffness
arrays, with Gauss integration in the plane of the element, requires execution of all 23176
lines of code at each Guass point of every element (for the 36 degree of freedom element
chosen, 49 Guass points are calculated per element for exact integration) on every iteration
of every load increment of the nonlinear problem. Clearly, this formulation of a higher-order
theory is practical only for specialized research of this nature, not for routine engineering
use. Since the element independent formulation is based upon arrays of strain coefficients,

the possibility of “vectorizing” the formulation exists. In this manner, perhaps, a more

efficient higher-order theory may be of practical use.




Koiter showed that typical shell theory assumptions resulted in transverse shear
strains that were of the order £/ L times the bending or direct strain components. For his
work, strain and stress were directly related by the constitutive relations for linear elastic
isotropic materials. For composite materials, however, the material properties can vary
significantly in different directions. A quasi-isotropic composite shell panel with relatively
few fibers oriented circumferentially exhibited a more flexible response from the onset of
loading when nonlinear transverse shear terms were included. This was a direct result
of the increased coupling of membrane and transverse shear activity with the nonlinear
HTSD formulation. Thus, for composites, one must be careful to apply Koiter’s estimates
to stress instead of strain. Thus, provided one assures the nonlinear transverse shear
terms of the nonlinear HTSD theory do not result in transverse shear stresses exceeding
h/L times the bending or direct stresses, this theory can be used for the prediction of
nonlinear HTSD responses of curved shells. For the six problems the author investigated,
the nonlinear HTSD theory was suitable for the four shallow shell problems, but not for

the deep composite shell problem or the deep isotropic arch.

Another objective of this research was to determine the effect of using higher-order
thickness expansions for the displacement field assumptions and for the geometric shell
shape factor approximations. The use of the complete quartic displacement assumtion
made no noticeable difference in static equilibrium load-displacement results, as compared
to the incomplete third-order HTSD kinematic assumptions. The author believes the
higher-order kinematic assumption would be important fcr shells with larger ratios of
thickness to radii of carvature. The additional terms of the quartic displacement field are
multiplied by factors of y3/ R, thus, large values of h/R will make these additional terms
more significant. For the problems the author investigated, A/ R was not less than 1/25.
The quartic displacement assumption increased the number of lines for the quasi-nonlinear
C100 theory to 29626, compared to 15SC6 lines for the incomplete cubic displacement as-
sumption (C000). Since this additioial co aputational effort had no significant effect upon
results, one could conclude that practical preblems, of the type investigated by the author,

can be accurately and efficiently solved with incomplete cubic kinematic assumptions.
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The use of quadratic approximations for the shell geometric shape factor functions
consistently provided more flexible response predictions for the deep circular arch during
the collapse phase. For the shallow shell panels analyzed, the quadratic shape factor
approximations gave results identizz! to the linear shape factor approximations. The
quadratic shape factor approximations, like the quait : displacement, significantly in-
creased the number of lines of Fortran code required. rrom Table 4.3, the quasi-nonlinear
HTSD theory with quadratic shape factor approximations (C020) had 24254 lines of code.
For the deep shell problems investigated the ratio of 2/R was never less than 1/100, thus,
the effect of the higher-order shape factor approximations was not apparent until the de-
formation was significant. The deep arch required displace: >nts of at least R/ before
the higher-order effect was recognizable. As with the quartic displacement, the higher-
order shape factor approximations required significantly more computational resources.
Thus, the author believes quasi-nonlinear HTSD theories based upon the assumption that

h?/R? < 1 are sufficiently accurate and economical for practical engineering analyses.

Thus, including higher-order thickness expansions in a quasi-nonlinear HTSD theory
resulted in a more flexible response prediction for deep shell problems during th~ collapse
phase. Similarly, the nonlinear HTSD theory provided a more flexible response prediction
for shallow shell problems during the collapse phase. The incorporation of these theoretical
characteristics required a significant increase in the amount of Fortran code with a pro-
portional increase in the computational memory and time required for problem solution.
The simplest nonlinear HTSD theory, developed for this research, incorporated incom-
plete third-order kinematics and a linear approximation of the sheil geometric shape factor
functions. This theory resulted in Fertran code about twice the length of the compaiable
quasi-nonlinear IITSD variant. Further investigations could be accomplished with this
version of the theory, in licu of the most complete nonlinear theory used for this research.
The use of nonlinear kinematics was beyond the scope of this investigation. Their use,
however, may allow nonlinecar H1'SD theories with nonlinear transverse shear strain terms

which will not exceed the Lusic theoretical limitations of two-dimensional shell theory.




Appendix A. Arbitrary Shell Strain Displacement Relations

The arbitrary shell is described in term.s of a curvilinear orthogonal coordinate system
aligned with lines of principal curvature. Displacement within the shell is assumed to be

of the form

—

U = u1€] + g€ + uzé3 (A].)

where the orthonormal vectors &; and &; are aligned with principal lines of curvature.
The direction of €3 is determined by the cross product of & and é&. The components of
displacement in the 1-, 2-, and 3-direction are assumed to be unspecified functions of
the curvilinear coordinates y;, y2 and y3. The shell shape factors iy and he are general

arbitrary functions, specifically: hy = hi(y1,92,¥3) and hg = ha(y1,y2,¥3) and ha = I,

A.1 Midsurface Strain Components for the Arbitrary Shell

The strain equations listed below are the linear and nonlinear parts of the strain
components for the case of an arbitrary shell. The £33 component is assumed to be zero
for this shell formulation. Contracted notation is used, where €; = €11, €2 = €22, £4 = €23,

€5 = €13, and £¢ = €12.

€1, = u1,1/hy +higua/(hihs) +hiauz/hy

€2, = hajur/(hih2) +ug2/hy +hozuz/he

€4, = u3 —hosua/hy +uza/hy

€5, = w13 —hy3ur/hy +uzy/hy

g6, = U12/ha —h1 w1 [(hihg) +uz1/hy —hoguz/(Rih2)

€1y, = h3uf’,/(2h§) +hf,3h3uf/(2h¥) +hf|2h3uf/(2h%h%) —hl,gulug,l/(hfhg)
+hau 1 /(2h3) +hypur1ta/(BEhe) +h3 Jhsud/(2h3R3) —hy guyuz s /h} +hsud,/(2h7)
+h1,3u1,1u3/hf +h1,2hl,3‘u2'lt3/(h¥h2) +h'f,3h3u§/(2h%)
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€2y, = hatd o/ (2h3) +h3 1haud/(2h3h3) +hopurua,z/(hahE) +hauf o/ (2h3)
—hau1,0us/(Rah3) +h3 3 haud/(2h3R3) +h3 shaud/(2h3) —hasusuas/h +hatd o/ (2h7)
t+ha,ho gurus/(h1h3) +hagus2us/h3 +h shaul/(2h3)

Eayy = U12%,3/h2 +houiuga/(hihe) tuz2uz3/hy —hyyuy sua/(hiha) —hy3usuz3/hy

+uzquz z/hy +hozuzsus/h,

€5y = U1,1%1,3/ P —h1guruga/(haha) +ugiuzaf/hy 4hy gty 3ua/(hihe) —hy suuss/hy

+uzusz/h1 +h 3u13us/hy

Eony = W,1u1,2/ (h1he) —hyohou? [(h3R2) +hoyurug,/(RIh2) —hy 2uiug 2/ (h1h3)
+uguz,2/(hihe) —hoaur 1/ (h2hy) +hy2us 2uz/(h1h3) +hy she st uz/(hihs)
—hy ghoud/(R3h2) —hazususa/(hihe) —hyguiuza/(hihs) +us1usa/(hihs)
+h3u12us/(hihe) —hy2he surus/(hahd) +hosug1us/(hahe) —hi shoyusus/(R2hs)

A.2 Midsurface Strain Components for the Arbitrary Shell with a General Quartic Dis-

placement Field Assumption

The expressions listed in the previous section represent strain components for an
arbitrary shell where displacement components are unspecified functions of the coordinates
(%1, Y2, y3). For a shear deformation theory, the displacements are assumed to be functions
of the thickness coordinate. Specifically, for a shell with radius R; in the y;-direction and
radius R, in the y,~direction, we shall assume a quartic series expansion for u; and us as

shown below; the uz component is assumed to be constant through the thickness of the
shell.
u = u(l = y3/R1) + 13 + 193 + 1193 + 6193

uz = u(l = y3/R2) + ¥2ys + $2y2 + 71203 + 0293 (A.2)
u3 = w(Y1,92)
If one substitutes these expressions for the displacements into the previously derived ex-

pressions for strain components, the following expressions are obtained for the strain com-

ponents x¥, where:

n
e, = X0, + x5 (A.3)
p=1
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and

Eins = Xy, + Zn:x?myé’
p=1
X}, = ui/h1 +hogv/{hha)
X1, = Y11/h1 +hioa/(hahe) —u 1 /(Rihy) —h1av/(Rahy ko)
X3, = d1.1/hy +ha 282/ (ko)
X, = N/ +y2ha2/(hahe)
Xi, = 011/h1 4+l 263 /(hiha)
ng = hyyu/(hihs) +va/hy
X3, = h2a¥1/(hah2) +422/hs —hayu/(Rihyha) —v2/(Rahs)
X3, = h2ad1/(hah2) +622/ha
X3, = 122/h2 +mhaa/(haha)
X3, = h2181/(h1he) +822/ho
X3, = us2/hy +92 —v/Ry

Xi, = 202 ~haatha/hs +ha3v/(R2h2)

X‘%L = 372 _h2,3(f’2/h2
X3, = —m2has/he +40;
X:}L = —'112'302/112

X3, = uza/hy +9) ~u/R
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8, =261 —hi3P1 /by i au/(Rahy)
X%, =31 —hi3d1/M
x3, = —mhis/hy +46
X8, = —h1,301/ M
X3, = —h12u/(h1ha) +ua/ha —hayv/(hihs) +v1 /R

Xe, = Y1.2/ha —h12¥1/(haha) +9a1 /by =h2a2/(hahe) +higu/(Rabyhe) —uz/(Rihe)
+h2,1 'U/(Rghl hz) --v,1/(Rgh1)

X2, = 1.2/ha =121/ (hahe) +¢21/h1 ~h2182/(h1h2)
X8, = 121/h +11.2/he —=11ha2/(hrh2) —72hao,1/(h1he)
Xe, = 01,2/ha —h1261/(hahg) +02,1/h1 —ho 102/ (hyR2)

X(l’m = (u3,1)2hg/(2h¥) +hi2h3u2/(2hfh§) +h3u’21/(2hf) +h1,2u,1v/(h%hg)
+h3 3hav?[(2h3h3) —hy2uv s [(h2hy) +hav? /(2R3)

Xiyo = vsh1,3%1,1/h —uzihaas/hE +ushy2hy a2/ (hhe) +usahi an/(Rah?)
+’l§,31/’1“/h% +h3 2¢1?L/(h2h ) —h12%230/(hihe) —hi 3”2/(R1h2) —hx 262 [(Rih3h3)
—ughy zu,1/(R1h3) +9y 101 /hE +hy othou, /(Rha) —u? [(R1A]) —ushy 2l 3v/(Rah3hs)
+ha291,10/(h2hy) +h1'2'1,112v/(hfh2) —hy 210/ (Rih2hy) —hqpu v/ (Roh3hs)

—h3 ,v? [(R2h2R3) —hy p1v,1 [/ (h3ha) +eb2, 1/h2 +hyguvy/(Rih2hy)

+hypuv [(Roh2hy) —v? [(Ro13)

X2y, = ushiaéi1/h? —uzahisdi/h} +ushyohy 3da/(hiho) +hath? 1 /(2h7)

+h2 3hati 2/(2h%) +h? 1&3'4,[12/(2]),2’12 ~h1 20192,/ (h3hs) +h3¢2 1/(2h3)
+hy2911%2/(hEhs) +hf'2h31p2/(2h1h2) +hl’3<f>1u/h1 +h2 ,h1uf/(hEhE) —hy 2210/ (h3h2)
—hf“-,?_lmt/(l?.lhf) —h%,zz,/;lu/(ftlhfh%) +hy 212 1w/ (Rih3hs) +hf'3h3u2/(21£"fhf)
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+12 o hau? [(2RIRINZ) 4+ yuy [ 13 +h12¢0u,1/(h2ha) =1 1wy /(Ryh2)
=h2pous/(Rahihe) +haud J(2R3RT) +h 2¢1,10/(R3hs) +h3 o420/ (h}h3)
—h12%1,10/(Bohihe) —h3pthov/(Rohih3) +hagu,1v/( R Rohdhs) +83 shav? [(2R3RERD)
~h1,2610,1/(h3h2) +¢2,10,0/h2 +h1 2911/ (Rah3he) ~a1v,1 /(Roh2)

~h1,2uv,1 /(R RahZho) +hav? [(2R3R?)

X3y, = wnahia/hf —usimhia/hE +usyaha by a/(h3he) +1,00:,1 /03

+h 26291,/ (hiha) +h3 3191/hF +1F 20191/ (h3hS) —hi2¢a1t1/(h2ho)
—h12$1%2,1/(hiha) +daa21/hF +haobina/(hFha) +12 16002 /(h3RF) +mikd yus bl
1/ (h3h5) —v2,1hs 2/ (hiha) ~if adruf (Rah}) —h3 agr/( R1h3h3)
Hhiadonu/(Ribiha) +y11001 /] +72h12u0 /(hEhe) ~@1at1/(R1h3)

—h12¢ou1 [(Rahiha) +v2hd pv/(R3R3) 4710k 20/ (R3h2) —hy 2dhr 1o/ (Rahihy)

—h} 220/ (Rah2h3) +72,000/h3 —1iha 20,/ (B2ha) +hy 2610 /(Roh3hs) ~gn 101 /( Roh2)

Xy, = ha¢? /(283) +h3 3had}/(203) +h3 5had}/(2h3N5) —hy 2y o1/ (h3ha)
+hadd 1 [(2h3) +haaéia62/(Rihe) +h3 2hagd/(2R203) 4710912/ h3 +2hyathy 1/ (h2hs)
+nhd st /b3 +y1hd 01 /(h2R3) —y2,1h1 21/ (h3ha) 2021 hE ~ nh1aen/(hEhy)
+72h3 y2/(B3h3) 471,11 2%2/(hiho) +ushy 3611 /h3 —ugahy 30, /b2
+ughi 2hi 302/ (h2hy) —71h? Ju/(R1h3) —11h? gu/(Rih2hZ) 49,1k 20/ (1 :3hs)
+h¥.391"/"¥ +h¥,291’“/(h¥h%) —’11,292,17‘/(’L¥h2) ‘71,1“,1/(1*31h¥) —72h1 2?1,1/(131’51')"2)
+01,1u1/h2 +hy200u 1 /(h3hy) ~72h} yv/( R2h2h3) —Y1,1h1 20/ (RahZha) +hy 2010/ (1.3h)
+h3 5020/ (h3h3) — 12001/ (R2hd) +71ha 20,0 /{ Roh3ho) —hy 08y 1/ (h2hy) +0, 10,1/ h?

X = Nad10 /0] 472k 2611 /(R3ha) +1h3 360 /13 41103 2y [ (H2R3)
=721h261/(hiha) 4721621/ 8 =710 2620/ (hih2) +72h3 262/ (R2R3) +71.1ha 262 /(h2hg)
11,1011 /0F +ha 292011/ (Bha) +h3 50103 /B3 412 1101/ (R3RZ) by 2,10, /(Do)
~h1,2%102,1/(hih2) +42,102,1/ 1 +hy 20182/ (hEha) +h3 310202/ (RH3) ~12 0yuf(Ryh?)
—h3 200w/ (Rih3R3) +hy 202 0/ (Rih3ha) =0y guy /(Rik?) =Ry abyu 1 [{ Ryhthy)
~h1,201,19/(Rahiha) —h3 5050/ (Roh2R3) +hy 20, v1/(Roh2hy) —ba10,1 /(Roh3)

X3y = —N72aka2/(h3ha) +91172h1 2/ (R2ha) 781k, [(2hE) 442 ha f{202)
+7ih sha/(203) +v3h] 2ha/(203h3) +93h3 Jha /(2033 +61,10y /02 hysigly 1 J{hhy)
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+h2 310y (B2 +-h% 46101 /(h3h3) —h12¢2101/(R3he) ~h1,261602.1/(h3ho) +2,102,1/h3
+hy 21,102/ (h3ha) B3 4202/ (R3R3)

Xigp = 111003/ B% +72h1961 0/ (R2h2) +7102 361 /B2 +y1h2 61 /(h3h3) ~Y2,1ha201 /(R3hs)
+92,102,1/h} —71h1 2021/ (R3ha) +72h3 202/ (R2ER3) +71,1h1 202/ (R2hy)

X§NL = h30 1/(2’),1) +h 3h392/(2hl) Th’l 2h302/( h2h%) hl 20192 1/(h2h2)
+h30%,1/(2hf) +h1'20}'102/(h1h2) +h1’2h39 /(Zh%h )

X2y, = (1a,2)°ka/(2h3) +h3 1hau?/(2h3R3) +haul/(2h3) —ho1upv/(Pah3)
+h3 1 hav? [(2R3R3) +hayuv 2/ (hah3) +h3vd/(2h3)

M.»u = ugha 1 haa¥s /(1 h2) usho atha o/ h3 —usaho 3t /h3 —ugha ho 3u/(Ryh1h3)
+h21¢v1u/(h%h ) +ha1b22u/(hhE) h2 1u2/(R1h2h ) +¢1,2u,2/h —ha1thau 2/ (M h3)
~ub/(Rih3) +us2ha3v/(Roh3) —hoathr 20/ (hehf) +hE 120/ (h3R3) +h3 svbrv/h}
+ha, w20/ (Rik1h3) +hoya2v/(Rohah3) —h 102/ (Rah2R3) —h3 302 /(Rah3)
—uzha3v2/(Roh) +ho11v2/(hih3) +1b2,202/h3 —hyyuva/(R1hh2)

—ha, uv2/(Rahy h3) —v% /(R2h3)

X3y, = Wsho1ha381/(hah3) +ushasdao/hG —usohasda/h3 +hath? o/ (2h3)

+h3 109}/ (2h3h3) +haatrdan/(hah3) +hatd /(2h3) —hon 292/ (R h3)

3 hati3 f(2h3h5) +h] shat3 [(2R3) +h3 1 d1u/(RER3) +hoadoouf(hehd)

—h3 101w/ (R1hih3) —ho 1o ou/(Rykah3) +h3 1 hau® [ (2RERZRE) +¢1 qu2/h3
—ha1dauaf(hih3) —by o2 /(R1A3) +hoythow s/ (Rahih3) +h3u2 J(2R2R2)

—ha, 191,20/ (Ah3) +h3  Gav/(hh3) +hE 3dov/h3 hoth1,2v/(Rohyh2)

=13 1920/ (Rah3h3) —h3 3900 /(Rah3) ~hoyuon/(Ry Rohyh3) +h3 1 hav?[(2R3RZHE)
+h3 3hav? [(2R3K3) +ha1 19,2/ (Rih3) -+ 2202/ BE —ho 19102/ (Roh1h3) =12 20/ (Rah3)
+houvy /(2 Rabiy hE) +i3v%, /(2R2h3)

Xay,, = UnYozhas/hG —vagzmhaafhd +usyihonhas/(hh3) +é1,091,2/h3
=la g b2t 2f (MA3) +h3 1 by /(RIR2) + ha 1 Gopthi /(M h3) +hoadya /(R h3)
+o 2 iba 2/} 2 '"hz 16 m/('uhz) H?" ;¢2 l’"'/(h?hz) !—h2 302%0/ ’12 +72.2h2 1"/(’11’12)
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+mh3 u/(hih3) —h} 51010/ (R1h3RE) —hoadaou/(Rahah3) +712u2/h ~v2ho 1t 2/ (h1h3)
~¢1202/(Rah3) +hopdava/(Rihih3) —m2haav/(hah3) +72h3 v/ (h3h3) +y2h3 gu/h3
+ho1¢1,20/(RohyhE) —h3 1¢2'U/(R2h1hz) —h2,3¢2'v/(R2h%) +7y2,2v2/h3 +71h21v2/(h1h3)
—ha,1610,2/(Reh1h3) — 22,2/ (R2h3)

Xany, = hal2/(2h3) +h31had?/(2h3h3) +ho 12,2/ (Rah3) +hadd o/ (2h3)
~ho,1¢1,202/(h1h3) +h3 1 hadh/(2h3R3) +h3 3hadd/(2h3) +712%1,2/h3 —T2ha 11,2/ (heh3)
+722h2191/(Mh3) +1h5 91/ (R3R3) +72,2%2,0/ B +71ha 12,2/ (hih3)

~T1,2h21%2/ (h1h3) +72h3 s b2/ (RERG) +72h3 32/ hG +usho1hoa81 /(hah3) +ushos0s2/h3
—u3,2hs 302/ h3 —722h0 1u/(R1h1hE) ~71h} ju/(R1h3h3) +h3 101u/(h3h3)
+ho1022u/(h1h3) —112ua/(Rahd) +y2ho us/(Rihih2) +6, 2u2/h3 —ha 10,u2/(h1h3)
+71,2h2,10/(Raha h3) =203 0/ (Roh2h3) —72h3 3v/(Rah3) —ho 10y 20/ (hih3)

+13 1020/ (h3h3) +h3 3020/ ] —72,2v,2/(Roh3) —71h2,1v.2/(Rohih3) +ho 10102/ (hyh2)
+02,0v,/ h3

By = N2b12/05 —12h21612/(MB3) +722k2181/(hah3) +71h3,161/(R3h3) +72.26.2/h3
tmh2aé2,2/(Mh3) —71,0h2,162/(h1h3) +72h% b2/ (W3R3) +72h3 32/ 3 +4n 2012/ B3

—ho 10012/ (h1h3) +h5 191601 /(h2h3) +hotho 201/ (h1h3) +ho 11022/ (hih3)

42,202 2/ h2 —hg 11,202/ (h1h3) +h%'11,/)202/(h¥h%) +h%,3¢202/h% —h%,l()lu/(R]I’I,%h%)
—ho102,0u/(Rah1h3) —03 2u 2 [(R1h3) +ho 102wz /( Rikih3) +ha 10, 2v/( Rohyh3)
—h%llegv/(Rgh;zh%) —113'302’0/(132/&%) —hg'lelv,g/(thlhg) —022v,2/(R2h2)

X3wp = N1122h21/(R1h3) =y1,272h2,1/(R13) +78 203/ (2h3) +73 2ha/(203)

+72h% 1ha/(2R23R3) + v3h3 1 haf(2h2R3) + 72h3 sh3/(2h3) +é1,2002/h% —ho 18201 2/ (hy h3)
+h3 16101 /(hh3) +ha162,201/(h1h3) +ho 161022/ (hih3) +2,2002/ k3 ~ha 161282 /(heh2)
+h3 16202/ (h1h3) +h3 326,/ 13

Xy = 112012/ 05 —72h2,101 2/ (hih3) +72,2h0,101 ) (hh3) 1113101/ (h3h3) +72.202.2/ 13
+71h2,102,2/(h1h3) ~T1,202,102/(hyh3) +72h2|102/(h;h2) +7glz§_302/112

X3y, = hab?,/(2h3) +h3 ha62/(2h303) +ho 101022/ (M h3) +h303 2/ (2h3)
~h2,101,202/(h1h3) +h3 1 ha03 [ (2R303) +h3 3hy03/(203)
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ngL = hg’l’l[)gu/(hlhg) +¢1u,2/h2 —’lmlg/(thg) —h2,1¢1v/(h11l2) +]1,2,1’(L1)/(th1112)
-hg'luv/(RQhIhg) +¢2v,2/h2 —?)1),2/(122’22)

Xiny = 2ushaadz/he +91291/ha —uszhagtha/hay +a2%2/ha +2he1douf(hiksy)
=Pr2u/(Rih2) +2¢1u2/hy =10z /(Raha) +uno/(R3hs) +ussho 3v/(Roha)
~2h2,1619/(h1h2) —1h2,20/(Roha) 4+2¢2v,2/ ko ~2v,2/(Raha) +vv/(R3h2)

Xiy, = Susrehaa/ha —usshoada/ha +2¢1912/ ko +129%1/ ks +ho1 ot [(hahs)
+2¢29n,2/ha —ha 18192/ (hah2) +é2,292/ha +372h2 10/ (hiha) —1 20/ (Ryh2)
—haaé2u/(Rihiho) +37102/he 24102 /(Rika) =3miha1v/(Rih2) +hopdyiv/(Rohahs)
~$2,2v/(R2h2) +372v,2/ha —26202/(R2hs)

X3y, = —u3372h23/ha +2¢1201/ha +202202/ha +311%12/h2 71,291 ha
+2y2h0,1%1/(haha) +372%2,2/ha 492210 ha —271h2 192/ (h1ha) +uzdho 302/ hy
—n2t/(Rahe) =272h21u/( Bahyho) +4ho100uf/(hihe) ~3mius/(Rihe) 461w 2/ hs
=72,2v/(Roha) +271h2 10/ (Rahyho) —4hoy01v/(Raha) =372v2/(Rah2) +40204/ by

Xin, = 3nd12/ha +271201/h2 +72h2181/(hha) +37202,2/ha +272,282/ha
~Mho¢2/(hh2) +1101 2/ ha +4%1 201/ ha —3ho 201 [ (Fiha) +92822/hs —uz 3ho 20s/hs
+3hg,1?_.’)102/(h1]l,2) +4¢2,202/h2 —01’2‘&/(}21]1,2) —3}1,2,10211/(131111’12) —40111_2/(R1]L2)

+3}lg’101 ’U/(Rghl hz) —92,20/(R2h2) —492 9,2/(R2/L2)

Xiys = 371.2m/ b2 +372272/ha +261012/hy Fdhy 204 [hy —2ha 1320y [ (haha) 4262022/ ha
+2h219102/(hyha) +4¢2202/ ks

Xy = 3nbi2/he +471201/ha =712k2301 [ (hihe) 372022/ he 472,282/
+71h2,102/(h1h2)

sz = 401 201 /hy +402202/ 12

XgNL = —111'21/)2‘&/(]&1,&2) +1!)1u'1/h, —UTL',/I(RII),)) +h;'2l,".’1‘!.’/(h]/l,2) —'lll';llU/(thlhg)
-5-]1.1’2“2)/(1?,2]!,1/12) -{-drzv.l/hl —U‘U';/(Rglll)
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Xsy, = 2ushi3di/hy —uaahy gty /by +911%1/ ke +o1a/h +uazhy zu/(Riky)
—2h12$2u/(hahy) —130/(Riky) +2¢1u1/hy —tprun/(Rihy) 4wy /(RERy)
+2h1 2619/ (hah2) ~219/(Rahr) +2¢2v3/hy —tov 1 [(Rohy) +vv,1/(R3h:)

Xiy, = Susnhi /b1 —us3hy 361 /by +2¢1911/hy +11%1/h1 —hy 22t/ (hihs)
+2¢292,1/ha +ha 26192/ (hah2) +¢2,1%2/ b1 —372h1 20/ (h1he) —é1 10/ (Ryky)
Hhiadou/(Bahahs) +3n1u1/h =2¢1u/(Rah) 4371k 20/ (hah2) —hy 210/ (Rohyhs)
~$2,1v/(Roh1) +3720,1/hy ~2¢2v,1 /(Rohy)

Xy, = ~uaamihia/h 261,00 [hy +260182/hy +3 11011 hy +71.0%1 /B
—2%2h1 291 /(haha) +372%2,., u +721%2/ P +271h1 2902/ (haha) +usdhy 20, /1y
—711%/(Rih) +272h1 20/ (Rihihy) —4hy 2820 /(hiho) —3710,1 /(Rahy) +46,u )y
—721v/(Reh1) =271hy 20/ (Rahyha) +4hy 2010/ (hihs) =3720.1/(Rzh1) +462v,1 /7y

Xans = 3Mb11/h +211161/h1 —72ha 261/ (Raha) 4372021 /By +272162/ha
+11hiada/(hiha) +4101,1 /by —uzahy 361 /by +4391,101 /by +8h12%201 /(hahz) +102621/hy
=3h1 20102/ (h1h2) +4v02182/h1 —01,1u/(Rahy) +3h1 2820/ (Rahaha) —4631y /(Ryhy)
~3h1201v/( Rohahyz) —023v/(Rahy) =480 1 /(Rahy)

Xwr = 3101/ h1 4372072/ M1 261010/ b1 +461,101 /by +2h1 26201 [ (haha) +22021 /by
=2h1,26102/(hiho) +42102/hy

Xy, = 3N0a /by 471,100 /hy +72h1261 [ (haha) +37202.1 /by +472102/ by
~Y1h1,202/(h1h2)

X;Nb = 40,10,/ +402,102 /1y

,ng = uzu32/(h1h2) —-hl,ghz_lu2/(h¥h§) +uu2/(hiha) —hoyuv/(h3h,)

Hhigu20/(h3) —hy 2ha 1v?[(R3R3) +hyuvs /(R2hs) —hy2uv2/(h1h3) +v10.2/(hyhy)

X6y = UshizhrofUnha) —ushy oho gty /(hah3) —uzphs 391/ (hiha) +ughosiba, /(hyha)
P '-l.'3ht“3llgﬁ‘(;12/(h%h2) —U3, Ilg;;‘l/)Q/(hlhg) +‘ll3ll1,2h2v3‘(l/(1l|h|h%) +113‘2h,_31l/(]i1h]hg)




=21 2ha 1w/ (R3h3) +hapaau/(h2ha) —hiatheauf(hih3) +hy sho stban/(hyhs)

+2h; pha 10 /(R12AZ) 12w, [{hy hs) —hg1pu [(hihe) —ushy guz/(Rihyhs)
+¥1,1u2/(hihe) +ha 29202/ (h1h3) —2u yu/(Rikha) +uzhy shy 1v/(Roh2he)
+us1ho3v/(Rohyhe) ~ho 1,10/ (h2ha) +hy 29y 20/ (R h3) +hy 3ho 310 /(hahs)

—2hy 2hg 1920/ (h2R2) ~h1,3ho3uv/(Ryh1ha) —hy shezuv/(Rah1ha) +hyjuqv/(Rah2hy)
+ha v/ (Bahihs) —hypusv/(Rahyhg) ~hyaugv/(Rohah3) +2hy oho 102 [(Roh2R2)
—u3h2,3v,1 [(Rahiha) +hon¥19,1/(h3ha) +92,291/(haha) ~houvs [(Ryh3h,)
—hawv,1 [(RehTha) —hy ot1v,2/(hah3) +4b21v,2/ (hiha) +hy 2uv2/(Rhyh2)

+h2wv 2/ (Rehyh) —2v 102/ (Rohyha)

Xén, = ushiad 2/ (hahe) —ushy2haady/(mrh3) —usahs 3d1/(haha) +ushosday/(hahs)
~ushigha1d2/(hihe) —us,iho3da/(h1ha) +1,1%1.2/(haha) —hy 2ho 192 /(R2R2)
+haaPrte,/(Rfha) —ha 2192,/ (hah3) +20%2,2/(hiha) —ha 1ty 192/ (h2hs)

+ha 291282/ (h3) +hasho 39102/ (haha) —haaho 2/ (h3R3) —2hy 2k 1dyu/(R2R2)
thondaau/(hiha) —haaéa2w/(h1h3) +hyshaadou/(hiha) +2hy 2ho1tbyu/(Rih2A2)
—ho2,1u/(Rih3hy) +hy 292,00/ (Ryhyh3) —hy3hoathou/(Rihiha) —hy 2he 1u? [(R2W2H2)
+é12u1/(hh2) ~hodawn [(R3ha) —thypw [(Rabaha) +hotbou [(Rih2hy)
+o11%2/(hha) +hipdoun/(hih3) —thy1ua/(Rikiha) —hy 22w 2/ (Rihy h3)
tuyu/(Rihahe) —hoi¢1,09/(h}ha) +h1261 20/ (hih3) +hy 3hy 3d1v/(hyhy)

~2hy 2h2,1620/(h3h3) +hoytb1,10/(Rah3ha) —hy 2ty 20/ (Rohyh3) —hy ko 3910/ (Rohyho)
+2h 2o 1 9Pov /(Roh3 h3) +hi3ha zuv/(RyRahyhy) —hoqu, v/ (R Roh3hs)
+h1,2u,00/(Ry Ry h3) —hy 2ho 1 v? [(RER2 D) +ho101v.1/(h2h2) +é2,20,1/(hih2)

~ho 1,1 [(Rohiha) =220,/ (Rohaha) +hoguva /(RiRah2ha) —hy 20,2/ (hih2)
+¢219,2/(hiha) +hi2$1v,2/(Rahy h3) —4b2102/(Rahiha) ~hy2uva/(Ry RohyhE)
+v,1v,2/(R3hy )

Xowy = —usvihizhoz/(hi1h3) +uz 2l 3/ (hyha) —uz 271k 3/ (hihg)
—uz2hiaha, /(hiha) +usyaahas/(hiha) —usiv2ha 3/ (hyha) +1,291,1/(h1ha)
~haad2i1 [(I3h2) +é11%12/ (ko) +hiadoth 2/ (hyh2) —2hy 2ha 1131 [(H3h3)
+ha1d2a%1/(ih2) = 262291 /(R1h3) +hy3ha 3ot [(hika) +ha g diiba 1/ (h2he)
22921/ (hihe) —hy 26122/ (Mh3) +p1tf2,2/(hihe) —hyydy 112/ (hEha)

A-10




+hy 261 2%/ (h1hE) +h13ho 3192/ (Raha) —2h12h2,162%2/(R3R3) —122h120/(h1h3)
—2'/11L1,2112,1u/(hfh§) +99,1h2,u/ (R2h2) +72h1,3h2,3u/(h1hs) +2hy 2ho 1 d1u/(Rah3R3)
—hg1¢21u/(R1h2he) +hi 2¢20u/(Rahah3) —hy she3d2u/(Rihiha) +71,0u,1/ (hiha)
—ahg a1/ (R3ha) —d12u/(Rihiha) +hoidou /(RihGhs) 4201 2w 2 /(R h3)
+11102/(hihg) =112/ (Rihaha) kot 2/ (Rah1h3) +71 .2k ,20/ (h1h3)
—272hy 2ha v/ (R2R3) = 1haav/(B3h2) +7hasha,sv/(hahe) +hoaé1,00/(Rohihe)
—hy 201 20/ (Rah1h3) —hi 3ha3d1v/(Rahih2) +2hy 2ha 1620/ (R2h2hE) 472,201/ (h1h2)
+11ho1v1/(B3h3) ~ho 16101/ (Rah3ha) —d22v1/(Rehaha) —viha 202/ (hah3)
+72,122/(h1ha) +h1 26102/ (Rahah3) —¢2,10,2/(R2hah2)

Xey, = $1161.2/(h1ha) —hy2ha 8% /(RFR3) +ho 12,/ (hEhe) —hy 28162,/ (h113)
+é2102,2/(hih2) —ho161,162/(h2ha) +ha 261 202/ (Mh3) +hishabr2/(ho)
~ha2ho 183/ (h2R3) +91.291,1/ (hah2) —v2hoa 1/ (WEha) +72ha %12/ (hah3)
711912/ (hah2) ~722h1 291/ (mh3) =2v1hy 2ho 191/ (B2R3) +120h21%1/(hihe)
+72hy.aha 31 /(hiha) 4722021/ (h1h2) +71h21%2,1/(h3h2) =1l 2,2/ (h1h3)
Y2102/ (h1ha) +712k1 2902/ (h1h3) —272h1 2ha 102/ (R2R3) —71,1h2,1%02/ (REhe)
71k shoathe[(hiha) +ush 3012/ (hiha) —ughy2ho301/(R1h3) —us2h1 361/ (hih2)
+ugho3b2,1/(h1h2) —ughy 3ho 102/ (h3h2) —ug 1l 362/ (hiha) +72_2h1.2u/(121hlh%)
+271h phow/ (Rah2R3) —v21ho1uf/(Rikihe) —y2li shozu/(Riha k)

—2hy 2ho 101w (h3h3) +ho102.1uf(hEhe) =Dy 20220/ (hih3) +hy 3ho302u/(hihs)
— 211/ (Rihah2) +72h21u,1/(Rih3ha) 40y 2wy /(hih2) —hg 102w/ (h3hs)
—Yohy 22/ (Rihih2) =11 0w 2/ (Ryhihe) +01 12/ (hiha) +hy 202w 2/ (hih3)
—1.21 20/ (Rali h3) +292h 2ha 10/ (R2h23) +71,1h2,10/(Rohih2)

~y1hy aho3v/(Rohyha) —ho 101,10/ (h3h2) 4hy 20y 29/ (h1h3) +h 3he 3019/ (hih2)
—2hy 2l 1020/ (R3h3) ~v2.20,1/(Rahih2) —=y1h2av1[(Rahiha) +ho 10y, /(h2hs)
+05 22,1 /(hih2) +71h1 202/ (R2h1 h3) =72,1v,2/(R2hi ha) —hy 20102/ (hyh3)
+02,1v2/(h1h2)

X3y, = N2/ (hha) —72h2,161,1/(hihe) +y2h1 2012/ (hih3) +1,0812/ (hiha)
—Y2,2h1 261 /(h1h3) =271h1 202,161/ (h3h3) +r2.0h2a0y [(Rh2) +72h1 3h2,361/(R1h2)
722021/ (hih2) +71ha1d2.1/(h3h2) —1ihy 2622/ (B3) 4124622/ (hih2)
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71,201,282/ (hah3) ~272h1,2h2,162/(h3RE) —y1,1h2,162/(R3h2) +71hn 3ha 32/ (hih2)
+1,201,1/(haha) ~ho19201,1/(hGha) +1,161,2/(hiha) +ha 2126012/ (hyh3)
—2h1,2h219161 /(R3R3) +ho,1t2,101 [ (R2h2) —ha 292,201 /(hah3) +hy 3ho 31201 /(hehs)
+ho9102,1/(h3ho) +42,0021/(hah2) —hy 21022/ (Ph3) +42,1822/(hiha)
—ha1t1,182/(R3he) +hy2%1,202/ (hah) +ha shasti02/(haha) —2hy 2hy 19202/ (h2H2)
+2h1,2hg1 6, u/(R1RER) —h2,102,1u/(R1R2hs) +h1,202 24/ Rih1h3)
~h1,3h2,302u/(Ryhyhy) —0; 2wy /(Ryhyho) +ho100uy /(Rih2hg) 01302/ (Raly hy)
—h1 20202/ (R1h1h3) +ho161 10/ (Roh3hs) —h1,201 20/ (Roh1h3) —hq3he 3610/ (Rohyhy)
+2h1,2h2,1050/(Roh3h3) ~ho161v,1/(Rah2ha) 0220, /(Rahaha) +hy 2612/ (Rohy h3)
—02,1v2/(Rahy h2)

Xowy = ~NY22h12/(mah3) +m27aha 2/ (hah]) ~y2ha2ho 1/ (h3h3) —73hy 2hoy [(h2R3)
11,1712/ (hhe) 4721722/ (k) 411202,/ (REh2) =172k /(B3h2)
+7172h1,3h2,3/(Rah2) +1,201,1/(hrh2) —ha 192611/ (R3hs) +61,1601,2/(haha)
Hh1,262012/(m1h3) —2h1,0h216101/(R3H3) +ho1 2,161/ (h2ho) —hy 262,201/ (h1h3)
+h1,3h2,36:0) [(hihe) +ho, 161021/ (hiha) +¢2,202,1/(Raha) —h1 261822/ (hyh3)
+621022/(h1h2) ~h2161,102/(h3ha) +ha261,202/(h1h3) +hazhosdrba/(hahs)

—2hy 2h2,16202/(h2R3)

Xeny = 1,201/ (haha) —72h2101,1/(h3h2) +72h1.201 2/ (hih3) +71.101.2/(hy h2)

— 72,201,201/ (R h3) =271 h1,202,101 /(R3R3) +72,1h2101/(h2ha) 12k 3ha 301 [(Rehs)
+712,202,1/(h1h2) +71h2102,1/(R3ha) —v1h1 2022/ (h1h3) +72,102,2/(hihs)
+71,2h1,202/ (h1i:3) 27201 202102 /(R3R3) —11,0h2,102/(h3ha) +71h1 3k 302/ (e ha)

XGNL = 01 101 2/(11,1]1.2) "hl 2h2 10 /(h%hq) +h2 10100 1/(1),%11.2) —h] 20100 2/(11.1]12)
+02'102 2/(’),1 hg) --hg,l 01'1 02/(/&?’12) +h1'201 ,202/(hlhz) +,L1'3122';,0| 02/(hlhz)
"'hl 2[&0 10 /(h?hz)

A.3  Approzimation of 60 Shell Shape Factor Functions with Second Order Taylor’s Series

Ezpansions

Most of the expressions listed in the previous section contain the shape functions k)

and hz or their derivatives. If one factors out all of these functions, there are 60 different




combinations possible. For a shell with radius R; in the y; direction and radius By in the

y2 direction, the shape factors iy and hy arz as shown below:
hl = A] (1 - y3/R1) h2 = A2 (1 - ?/3/Rz) (A5)

where A; = /a1, and A, = /a3, are the Lamé parameters of the surface. The 60 possible
combinations of the functions are listed below along with their quadratic Taylor’s series

approximation.

Hi=hp/h 2 [ A1p/Ar ]+ Ri2/RE s + [ Rao/ B3 )93

H2= hagfhy 2 [ Aig/Ar =1/ Ry | + [ —1/R} +Roa/ R Jys +( =1/R} +Raa/RY )93
Ha=1/h} = [1/A}] +(2/(A}R:) ) us +(3/(A2RY) ] 43

Hy= h}o/h} = [ Afo/A} ] +(2412R02/(A1RD) 1ys +[ 2412R1 2/ (M1 RT) +RE o/ RY ) 43

Hs = B} [0} = [ A22/A3 ] + [ —243 o/ (A3Ry) +241 241 R 2/ (ARD) +243 ,/(A3R2) |93
+[ A7 2/(ASRT) —2A1241 Ra 2/ (ASRY) +AZRE ,/(ASRY) —4A% ,/(ASR Ry)
+4A1,241 R 2/(ASR} Ry) +3A3 ,/(AZR3) | v3

He = h}a/h} = [ Al5/A} —2A13/(A1Ry) +1/R2 | + [ —24, 3/(ALR)
+2A1'3R1‘3/(.41R%) +2/R? —2R1,3/R? ]y;; +[ —2/1;,3/(.41]2?) +2/11'3R1'3/(A]R?)
+3/RY ~4R 3/ R} +RE 5/ RY )43

f[‘,’ = h%,S = [ A%,:} —2A1,3A1/R1 +A%/R% ] + [ —2/1%_3/R| +2/11'3.‘11/R¥
+2A1'3A1R1'3/R¥ —2A¥R1,3/R:1’ ] U3 + [ /1%'3/1{? -'2/11'3/11 R]v;;/R:,; +‘l¥R‘l""3/Rl‘ ] y§

Hg = hyghya/h 2 [ A1 pAy3/A% =R 2/ (MR ]+ = A2/ (A RE) + A 3Ry 2/ (A RD)
+ A2 R/ (ALRE) = Raaf B s +( = Ar2l (A R3) + Ay 3R af (A RY) +As 2R 5 (A )
—2Ry 2/ R} +Ry 2Ry 3/ RY |43

.f[g = ll2‘3/112 = [ /12'3/.42 -I/Rg] +[ -l/R% +1f,2'3/]l§ ].7/3 +[ "I/Rg 5'122_3/]?% ]y';’




Hio = hop/ho 2 [ Aga/A2) +[ Ro/RE ys +| Ra1/R3 )3

Hyp=1/h3 2 [1/A3] +[ 2/(A3Rz) 195 +[ 3/(A3R3) ] 43

Hyp = h3,/h% 2 [ A},/A3) +[ 2421 R01/(A2RE) )93 + [ 2421 Ran /(A2 R3) +R2 1/ B3 193
Hyg = h} /b3 2 [ 43,/A3) +(243,1/(A3R1) —243 /(A3 Ry) +2A0,1 A2 Roy [(AZRE) | vs
+[3A43,/(AIR?) —4A%, [(AZRyRy) +A%1/(ASR3) +4A20 A2 Ro 1 [(AZR1 RE)

~24A2,1A2R23 [(AIR3) +ARS | J(AZRS) |42

fIM = h% 3/h2 = [ A2 3//12 ~24, 3/(A2R2) +1/R2 ] +[ —24, 3/(A2R2)
+242,3R,3/(A2R3) +2/ R} —2Ro3/ R} | y3 + [ ~2A23/(A2R3) +242 3Rz 3/(A2R3)
+3/ R} —4R3/ R} + R} 5/ RS 193

ﬁls = h%a = [ A2 —24, 3A2/R2 +4 /R2] +[ —-2.4 3/R2 +24, 3A2/R2
+2A2 342 3/R2 —2A2R2 3/R3 ]y3 +[ A 3/R2 —2.42 342Rs 3/R +A§R2,3/R% ]y§

o = haphoa/h] = [ As1Ass/A3 — A2y /(A2R2) ] +[ —A2a/(A2R3) +AgsRan/(A2RE)
+ Az Rag/(A2B) =Ry | B3 195 + [ ~Aoa/(A2RY) +Asa R /(AsBS) + Az, Ro/ (A2 B3)
~2Ry1/ R} +Ro 1 Ry3/ RY )43

Hiz = 1/hy 2 [1/42 ) +[1/(A2R2) Jys +[ 1/(A2R3) 193
His = 1/m 2 [1/Ay ] +[ 1/(A1R)) )93 +[ 1/(A1R2) 193

Mo = hop/hy = [ Aoy /A1 ) +[ Ao /(ArRa) ~A21/(A1Rs) +A2Ro1/(A112) ]9
+ [ A2a /(A RY) — A2 /(A1RaRe) +AsRa1 /(AL Ry RE) |

fIgo = hl‘g/hg =] [ /11,2/.42 ] +[ —/11,2/(A2R1) +A1R1,2/(A2R§) +/11,2/(A2R2) ]y3
+[ = Ar2/(A2 By Ra) +A1 Ry 2/(A2RTR2) +Ar2/(A2R3) )43

1121 = l/(hlhz) = [ 1/(A1A2) } +[ 1/(A1A2R1) +1/(A Asz) ]J3 +[ 1/(/11/12R )
+1/(A1/12131R2) +1/(A1/12R )]?j3
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Hop = hyafhy = [ A13/As ~A1[(A2Ry) ] +[ —Av3/(A22) +A1R1 3/ (A2 R?)
+A13/(42R2) —A1/(A2R1Ry) Jys + [ —A1,3/(A2RaRy) +A1Ry,3/(A2R2Ry)
+A41,3/(A2R3) —A1/(A2R1 R) ) v}

Has = hoafhy 2 [ Asa/Ar —As/(A1Rs) ] + [ Aza/(A1Ry) —Ans/(ALRs) — Az /(A Ry Rs)
+AsRo3/(A1RE) Jys +[ A2/ (A1R]) — A2/ (A1 Ry Ry) — Az /(A1 RERy)
+A2Ry3/(A1 1 RE) 143

Hat = hiphoy /13 = [ Ay Asa /A2 ] +[ A1 aAoy [(AZRy) +42,1 R0/ (AL RY)
—A1,2421/(ATRs) +A12A2 R0, [(ATRE) 1y +( Av2Aan/(AZR3) 42421 Ry 2/ (A1 R2)
~A12421/(A3R\Ry) —Ag1 Ry 2/ (A1R2R;) + A1 242 Ro 1 /(AZR R2)

+42R12R0,0 /(A1 RERS) | 92

Hys = haghoy /13 2 [ AvpAan/AS) +[ —Av2dos/(AZR:) +4; A, 1B2/(AZRE)
+A12421/(43R2) +A12R2,/{A2RE) Vys + [ ~A12421/(AS Ry Ry)

+A142,1 R,/ (AR} Ro) +A1,242,1/(ABR3) ~A1,2R21 /(A2R1 RE) +A1 Ry 2Ro 1 /(A2 R2R2)
+241,2R2,1/(A2R3) 193

It = mghag = [ A13Asg —ArAos/ Ry —A1342/ Ry +A1Ag/(RaRs) | +[ —A13Aas/ Ra
+A142,3R1 3/ RE —A1342,3/ Re +A1 A3/ (RaRe) +A1342/(RiRy) —A1 Ao Ry 3/(R3Ry)
+A1,342R23/ RS — A1 AsRo 3/ (RaRE) | ys +[ A13d23/(RiRa) — A1 Az 3Ry 3/ (R2R,)
~A1342R2 3/ (R1R3) +A1 A2 Ry 3R 3/ (R3RE) | 92

Hyr = haghy /03 = [ Ay3Agy /A2 —A21 /(A1) ] + [ Ar3A20 /(AT R1) —242,:1/(A1RE)
+A21 B3/ (A1 R]) —A1,342,1/(AZR2) +A2,1 /(A1 Ry Ra) +A1 342 Ry 1/(AZR2)

—A2Ron /(AR RE) Jys +[ A1,aA2,/(AFRE) =342, /(ALR}) +2A21 R 3/(A1R3)
—A1,342,/ (AR 1 Ro) +242,1/(A1R}R) — Az Ry 3/(ALR3R,) +A41342R,,1 /(AF R R3)
—242Ry1/(A1RIRE) + A2 Ry 3R 1 /(A R2RE) | 42

Mg = haphop/h3 = [ Ay 2Ass/A2 =A12/(A2R2) ] +[ - A12423/(A3R))
+A142,3R1,2/(A3R3) + A1 2423/ (A3 R2) +A12/(AsRiRy) — A1 Ry 2/ (A2 R2R,)
—241,2/(A2R3) +A10R23/(A2R3) Jya + [ —A1,2423/(A3R1 Re) +A1 Ag 3Ry 2/ (AZR2Ry)
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+A1,242,3/(A3R3) +241,0/ (A2 Ry RE) 241 Ra o/ (A2 RERS) — A12Ra3/ (A2 Ry )
+ALRy 2R3/ (A2 RIRE) ~3 412/ (A2R3) +241,2Re3/ (A213) 193

Hao = hyp/(haho) 2 [ A12/(A142) ] + [ Ra2/(A2RE) +A12/(A1A2Ry) ya
+[ R12/(A2R}) +R12/(A2RER2) +A1,2/(A1A2R3) 193

Hao = h3,/(h3ha) 2 [ A2,/ (A3A2) ] +[2A12R12/(A1A2R]) +AF 5/ (AT A2 R2) ]y
+[ 241212/ (A1 A2 BS) +R3,5/(AoRY) +2410R1 2/ (A1 A2 RIR:) +A3 /(A3 A2 RE) |95

Hz = b3 o[/(nh3) = [ A}/ (A1AD) ] +1 —AF 2/ (A1ASRy) +2A12R1 5/ (ASRY)
+242,/(A1A3R2) Vys + [ AL RS o/ (ARRY) —243 5/(A1AG Ry Ro) +4A10R12/(ASRE R:)
+34% ,/(A143R3) 143

Hzp = h35/hy 2 [ A g/A1 =213/ Ry +A1/ R} ) +[ A5/ (A1R1) +2413 803/ R
+A1/R} —2A1R13/ RS 1ys + [ A1/RY 241 R1,3/ R +A1RE 5/ R 193

Has = hyo/h2 & [ A1p/AT ) +[ Ars/(AR1) +R2/(ALRS) 1y +[ A12/(AR))
+2R12/(A1R3) 193

Hay = hya/h3 = [ A13/A3 =1/(A1R1)] +[ A13/(AZRy) —2/(A1RY) +Ra3/(A1RE) ) ys
+[ A1,3/(A2R3) =3/(A1R}) +2Ry3/(A1R}) | 93

Has = hyahya/(R3ha) = [ A1241,3/(A2A2) —A12/(A1A2Ry) ] + ([ —A12/(A1A2RY)
+A1,3R1 2/ (A1 A2 RY) +A12R13/(A142RE) =Ry 2/(AaR3) +A1,241,3/(ATA2R2)
—Ar2/(A142 Ry Ry) 93 + [ —A1,2/(A1A2R3) +A1,3R1 2/ (A1 A2 R3) +A12R 3/ (A1 A2 R3)
—2R12/(A2RY) +R12R13/(A2RY) —A12/(A1A2RERy) + A1 3R1,0/(A1A2 RT Ry)

+A12R 3/(A1A2RIRs) Ry 2 /(A2 Ro) +A1241,3/(ATA2RE) — A1p/ (A1 A2 Ry R3) 1973

f]ss = hg,l/(hlhg) = [ /12,1/(/‘11/12) ] + [ Ag,l/(AlAzR]) +R2_1/(A]R%) ]y3
+[ A21/(A1A2R}) +Rop1 /(A1 Ry RE) + R, /(A1 RS) | 93

Har = h31/(mh3) = [ 43,/(A143) ] +( A3,/ (A1ARRy) +242, Raa /(A1 A2RE) |33
+ [ A%’l/(/llz‘l%R%) +2/12,1R2,1/(A1/12R1R%) +2A2,1R2,[/(/11A2Rg) +R§,1/(/11R;§) ]?/%
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Hyg = 131/ (h3ho) 2 [ A3, /(A2A2) ] +[ 243, /(A3 A2Ry) — A3, /(A2 A2 Ry)
+2421R2,1/(AIRE) Jys +{ 343 ,/(A}A2R}) —2A3 /(A4 Ry Ry) +4A53 Ra, 1 /(A Ry RS)
+A2R%, [(AIRS) |43

Hao = h}3/h, 2 [ A} /A2 2423/ Ra + A2/ RE ] +( —A} 5/ (A2R2) +2A23 R0 3/ RS
+A2/ R} ~2A2R2 3/ R3 1ys +[ A2/ R —2A2Ry 3/ R} +A2RE 3/ R3] 3

Hyo = hoa/h} 2 [ Asa/A3 ] +[ A2 /(A3Rs) +Ro/(A2R3) y3 +[ Az /(ASR3)
+2R2,1/(42R3) 193

Hp = hayhaa/(hih3) 2 [ AsaAzs/(A1A3) — A2y /(A1A2R:) ] +( A2p Ao s/ (A1 ARy)
—A21 /(A1 A2 Ry Ry) — g [(A1A2R]) +A23R21/(A142RS) + A2 Ro 3/ (A1 A2RS)

=Ry /(A1R3) 1ys +[ A2y A23/(A1ASRY) —As 1 /(A1A2 RER:) — Az, /(A1 A2 Ry RY)
+As3R1/(A1A2 Ry R3) + A2 1 Ro3 /(A1 A2 R RE) — A2 /(A1 A2R3) +A23R21/(A1A2RE)
—Ro1/(ArRaR3) + A2 1Ry 3/(A142R3) —2R21/(A1RS) +R21Ro3/(ALRS) ] 43

Hip = hy3/h3 2 [ Ava/A} ~1/(A2R2) ]| + [ Az/(A3R2) —2/(A2RE) +Ro3/(A2R3) | v
+[ A2,3/(A3RE) —3/(A2R3) +2R23/(A2R3) | 2

Hiz = hyo/h3 = [ A12/A2 ) +] —A12/(A3Ry) +A1 Ry 2/ (AZRE) 424, 2/(A3R2) s
+[-24; 2/(A2R1R2) +241 R, 2/(A2R2R2) +34,; 2/(14%12 ) ]y3

Hyg = hoa/h2 2 [ Ag1 /A2 ) +[ 2421 /(AIRy) — A2 [(AZRy) +A2R2 1 /(ARRE) 1 va
+i [ 342 1/(A2R2) —~24, 1/(A2R1R2) +2A5R, 1/(A2R1R ) ] y3

Hys = hyg/(hiha) [ Ay3/(A142) =1/(AsR1)] +[ =1/(A2R}) +Ra3/(A2RE)
+A1,3/(A1A2Ry) —1/(A2 Ry Ra) Jys + [ —1/(A2R3) + Ry 3/(A2RY) —1/(A2 R} Ry)
+R13/(A2RERy) +A1,3/(A1A2R3) —1/(A2R1 R3) 192

]{46 hg 3/(h1h2) e [ Ag 3/(A1A2) 1/(A1R2)] +[ Ag 3/(A1/12R1) 1/(/11R1R2)
—1/(/11R ) +R2 3/(/11 RZ) ]ya + [ /12 3/(/11A2R2) —'1/(/11R¥R2) —1/(A1R1R2)

+Roa/(A1 1 R3) ~1/(ALRS) +Ra3/(A1R3) )43
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e 2h21/(hiha) 2 [ A12A21/(A2A2) ] +( A1,2421/(A}A2Ry) + Az 1Ry 2/ (A1 AL R)
+A1,2R21/(AFRE) Jys +[ Av2Az1/(A2A2R2) 42491 R1 2/ (A1 A2 RS)
+41,2R2,1/(ASR1 RE) +R12R21 /(A1 RERE) +A10R01/(AZRE) )42

His = hypho1/(hh3) & [ A12A21/(A142) ] + Aa 1R o/(AIR2) + 41 ,242,1/(A143R,)
+A1,2R2,1/(A142R3) 1y + [ Az R 2/ (ASR3) +A2,1 B2/ (ABRER) +A41 2421 /(A1 AZRE)
+Ry 2Ry 1 /(AL RERE) +2412R01/(A142R3) ) 43

Ay = h1ghan/(R3he) & [ Ay 3A21/(A2A2) — A2 /(A142R1) ) + [ A1342,1/(A2AsRy)
—242,1/(A1A2R]) +A21 Ry 3/(A1A2RE) +A1 3101/ (ARR3) =Ry /(A1 R1RE) | us

+[ A1,342,/(ATA2RE) —3A21/(4142R3) +2421R13/(A1A2R3) + 41 3R /(AR RE)
~2R21/(A1RER3) + Ry 3Ro1 /(ALRERS) +A1,3R0,1 /(AIR3) —Ry1/(A1R1R3) ) 2

H50 = hyohy 3/(h1h.2) = [ A1242 3/(A1A ) —A12/(A142R2) ] + [ A2 31 2/(A2R2)
+A41,242,3/(A1ASRy) <Ry 2/(A2RIRs) —2A1,2/(A1A2R3) +41,2R23/(A142R2) us
+[ A2,3R1,0/(A3RS) +A2,3R12/(ASRIR,) —Ry2/(A2R3R2) +A10A23/(A1 AZRS)
~2Ry /(A2 R2RE) 2R s/ (A2 B2 RE) ~3A1 2/ (A1 AsRE) 42412 R00/(AyAs F3) ] 2

s = highaafhe 2 [ A13423/A2 —A1As3/(A2Ry) —A13/Re +41/(RaR2) ]

t (= ArpAsp/(Aale) +ArAaaraf (AoRE) + 41/ (Raa) = Ar R g/ (RER:) = A/ B3
+41/(B1RS) +A13R 5/ RS — A1 Roa/(R1R3) Vs + [ Ava/(R1RS) — A1 Ry 3/ (RIRS)
—A13 R0 3/ (Ra R3) +A1 R 3Ro3/ (RERE) ~Ava/ B} +A1/(RaR3) +AraRa 3/ RS
AR/ (RaB3) |1

Hsy = highoa/hy = [ ArgAas/d, —~A23/ Ry —A1342/(A1R2) +42/ (13 Ry) ]

+[ = A23/ R} +A23R: 3/ R} ~A13423/(A1Ra) +A23/(RiRs) +A2/(R3R,)

— Aol 3/(RER2) +A13A2R03/(A1RE) — AaRo 3/ (R1R3) Jys + [ ~ A2/ R} +A23Ry 3/ 3
+A23/(RIR2) —AaRaa/(R3R2) +A2/(R3R,) —AaRy 3/ (R3R2) —A2R23/(R3R3)

+ A2 Ry 3Ro 3/ (RERZ) )3

1?53 = h% 2/(/1,?/2,%) ] [ A2 2/(/12,42‘ ] + [ 24, 2R1 o/(AlAsz) +2/12 2/(.‘12/1%122) ]y;;
+ [ 2412002/ (M ARRS) +R3o/(ARRY) +4 A1 2R 2/ (AL AZRER) +3 A2 ,/(ARAZRE) |43
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Hsa = hyp/(h3hs) 2 [ A12/(A3A2) ] +( Av2/(A2A2Ry) +Ry 5/ (A A2 R2)
+A1,2/(A¥A2R2) ]ya +[ Al,g/(A:fAzR%) +2R1,2/(A1/12R:13) +A1,2/(A%AzR1R2)
+R1,2/(A1A2 RERs) +A12/(A2A2RE) o2

Hss = b3, /(h3h3) = [ A%, /(A2A3)) +[ 243, /(A2ARR,) +2401 Ry 1 /(A2A2R2) 193
+[3431/(AJALRY) +4A2,1 Ro,1[(AF A R RE) +240,1 R0 /(A2 A2 RS) +R3 1 /(AZRS) 193

Hse = hon/(hih3) = [ A2a/(A1A3) ] +[ A2,1/(A143R)) +A422 /(A1 AZR,)
+Ro1/(A142R3) ys +[ A21/(A143RE) +A21/(A1ASR Ry) + A2, /(A1 AZRE)
+Ra1/(A1As R1RE) +2R21/(A142R3) ] 93

A5z = hyo/(hah3) 2 [ A12/(A143) ] + [ Ra2/(AZRZ) +241,2/(A1A2Rs) ) us
+[ R1,2/(A3R3) +2R1,2/(AJRERy) +341,2/(A1AZR3) | 93

Hss = ho,1/(h3ha) 2 [ A2 [(A3A2) ] +[242,1/(A3A2Ry) +Ro 1 f(AZR2) |1
+[842,1/(A3A2RE) +2Ro 3 /(AR RE) +Ro 1 [(ARS) 143

Hso = highoa /(B3h3) 2 [ A12401/(A3A3) ) +[ A12A23/(AFAZRY) + A0 Ra o/ (A1 ARRY)
+A1242:1/(AFARR:) +A15R21 /(A3 A2 RE) )y + [ Av2Ana/(A3ARRY)
+242,1 R12/ (A1 AZRS) +A12401 /(A AS R1 Ra) + A2 Ra o/ (A1 AZRER,)
+A1,242,1/(AFASRS) +A1,2R21 /(A3 A2 R RE) + Ry 2 Ro 1 /(A1 AL RIRS)
+241,2R2, /(A A2R3) )93

Heo = h13has/(haha) & [ AraAas/(A1Az) —Aza/(AsRy) —Araf(A1Ry) +1/(RiR2) ]
+{ —Azs/(A2R}) +A23R13/(A2R}) +1/(RIR2) —Ra3/(RER:) — Ay 3/ (AL RD)
+1/(R1R3) +A13R2,3/ (A1 R3) —Roa/(R1R3) )y +[ ~ Ao/ (A2R) +A2,3R1 5/(A2RY)
+1/(R3R2) —Ra3/(R3R2) +1/(RIRZ) =Ry 3/(R3R3) ~Roa/(RIR3) +RysRas/(RERD)
~A13/(A1R) +1/(RaR3) +A13Ro3/ (A1 R3) —Raa/(RaR3) 143
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Appendix B. Strain Displacement Relations for C000/C008 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular
cylindrical shell with its longitudinal axis in the y; direction and a radius of 3. The 2
coordinate is the circumferential distance dy, = R,df. The kinematic displacement within

the shell is assumed to be of the form:
U = wé& + wé + uzés (B.1)

where
(Y1, ¥2,¥3) = v+ yathy + k(1 + w)y3

u2(y1, 92, 93) = (1 = cy3) + Pays + k(P2 + w,2)93 (B.2)
u3(y1, Y2, ¥3) = w
The seven degrees of freedom, u, v, w, w3, w2,%1 and 3, are functions of midsurface coor-
dinates (1, y2) only. The 9; are rotations of the normals and ¢ = 1/R; and k = —4/(3h2).
For this case, the 60 shell geometric functions H, are simplified, because hy = hs = 1 and
the quadratic terms of the expansions are neglected. The simplified nonzero functions of

Appendix A are listed in Eq (B.3)

I, =1 Hy = —c-cys

Iy = 142 Iy = 428

s = ¢ e = 14cys

Iy = 14cp s = 1 (B.3)
flzl = l+4cp fIgg = ~c

Iy = 24y Hp = —c=2c%y;

I 46 = —C- 023/3

The strain equations listed below are the parts of the linear and nonlinear strain compo-
nents for the C000 and C003 elemental codes. Contracted notation is used, where ¢; = €11,

€2 = £22, €3 = €33, &4 = 723, €5 = €13, and &g = €12. The strain components ¢, are given by
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the series-expansion shown in Eq-(B.4).

n

g=Y X' (B.4)

p=0

The nonzero x? are listed below for each component of the C003 nonlinear HTSD theory
code. The C000 quasi-nonlinear HTSD theory is given by neglecting the nonlinear terms

of xj and xE.

X2 =g +u /2 +05/2 +w? /2

X} = —cvd +¥11 +uatin +vad2

Xi = 02”,21/2 +¢%,1/ 2 —cva92 +¢%,l/2

X3 = kway Hhugway Hhvawpe FRda Hewat Hevat,

Xi = —ckvywya Hhw i Hhd; —ckvtey Fhw ey +EY3,

xS = kzw?u/ 2 +k2w:"12/2 +I.:2w,11‘qb1,1 +k21,1)12,,/2 +k2'w,121/12,1 +k2'§b§’1/2
X3 = uh/ 2+t 2 4oy +v%/ 2 —cw —cvow +cPw?/ 2 Fevw) +wh/2

— 2 Y
X3 = cv}y —~cPw —cPvpw +3w? fPvwy +ewh Fuathie +aa Fvate2 —cwihe s v

+cw 21

X5 = =3c'?/ 2 —c*uy ~3c*v5/ 2 +2cPvpw ~2c3vw )y +2cu 2t 0 +97 5/ 2+t

+evathaa —2c2wihay +93 5/ 2 +c3vhs +2cPw oty +c?Y3/ 2

X3 = c50? +¢%0% Hhupw 12 +hw oz +kvawan —ckww s +cPkvwy +ckw? +huad 2
+efy +hho 2 ~2¢%v o022 +Hhv e —chwibag +epd , —2ctvihy +cPhupy kw2,
+c32

X3 = 2cku w2 +ckw +ckvow s —2c2kww e +ckvw, +2c2kw} +2cku 2ty 2
+law,12¢1,2 +k 12'2 +CI:1/J2,2 +ckv,zz,!;2,g —262]:101,02,2 -{*I'J‘wlzzi,f)g'z +k'l‘[/‘%,2 +c3kv1,’12

+32kw a1y 422
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stz = —262131),210,22 -2c“kv’w,2 +2clcw,12¢1,2 +26k’l[)i2 -—2c2kv,21,b2,2 +2ckw,221[12,2

F2ckip3 o —2ckvihy +2c3 kwa1hs +2¢3kep2

X3 = K2wl,y/ 2 +h2wh,/ 2 +P R wh ] 2 +ERw a0t 2 +5202 5/ 2 +hPw g0ta 2 +EMPE 5/ 2
+c2kPw oty +cPRAp2) 2

X5 = ck®w?y +ekwhy +EPwh +2ckPw 1012 ekl , +2ck w2002 +ek?2,

+2c3k2'w,21,/12 +03k2¢%

X3 = —cvvg +cPvw +wy +ugth Hih +v2Ue —cwids

Xi = Svw +ewy Feugy H12U ~cvhan ety —cPwiy oty

,\fﬁ = c%v,g =3ckvv s +3c2kvw +3kuw +3kwy +3kvowa —3ckww 2 +6ku 29,

+erath —ctothap +3kths —cv oty +6kvathy —6ckwips et athe

X3 = 3ckvw +3ckuw; —ckvw gy +ekwy =3c*kwwy +3kw 19,2 +6cku 2y +hw 10t

+Thhy 2% —dckvdag +3kwathay +ckihy —6e?kwips +hw g2t2 +Tki 202

Xi = 3c3kvvy +98%uow,) —Phvw oy —2c2kw s ~3ckvowy +9k2v 0w s —9ckPww ,
+3ckwatr 2 +952u 20 +ckw oty +Tckiy 21 —dcPkvids s +3ckw 2100 —2c2kihy
—6c2kv 2ty +9k7v 2y —9ckPwiby +ckwanty +Tekiy 2ty

X5 = 9ckPu w1 +3kwaw —3ck vw e —~9c* kP ww,y 352w 20w 5 +12k2w 9y 5
+9ck?u 2t +6k%w 1281 +15k%0 2% —3ck?vibon +12k%w 210 —9c kP wiby +6k2w g0tn

+15k%s 212

X§ = 3ek?w 10w,y ~3c?kPvw 22 —9¢? kv w2 +3ckPw a0w o +12¢k2w 19 2 +6ckPw 191

+15Ck21,/)1,2’l/)1 —362]:2?)1/12,2 +126k2w,21,/)2,2 —9621521),21,[)2 +6ck2w,221,bg -!—15C/.:21‘[/'2,21/12

Xi = Ok%ws2wy +953w 20w 2 +9k3w 11y 5 +9KPw 1081 +9K3 Py 23y +0K3w 2t 2

4913w 2090 +9k34P 2002




X§ = 9ckPw10w1 +9ckPw 20w 2 +9ckPw 191 2 +9ck3w 1291 +9ck3hy 29 +9ck3w 21y o

+9ckPw 201y +9ck3 by 01h,

. X(s) = —cvvy +w, +9P1 tuad Fva9

X5 = Bovy 191 —cviha 1 —cv e a1t
x% = =3ckvvy +3kw, +3ku w, +3kv w2 +3ky +6ku 9P +6kv 19,

X3 = 3ctkvvy —chvwa ~3ckvawe +3kw 9y Fhw it +Thy 9 —dckvids )
+3kw oty —6ckv s +hwaos +Tk 192

X4 = OPuywy +9k%v w2 +95k2u 9y +9k%u 14

X8 = —=3ck?vwsz +3Kwnwy —9ck?v we +3k2w w2 +12k%w 11y 1 +6k2w 119

+15k21/)1,11[)1 —36’62‘0'{02'1 +12k2w'2¢2,1 —96’52?),]'4[)2 +6k2w,121,b2 +15kz¢2.1¢2

X5 = 9Pwwy +95%w 12w, +9k3w 19hy 1 +9kPw 119y +9K3 191 +9KPw 2oy
93w g0ty +9Kk31o 190,

0 _
X6 = w2 tu1u2 +v,1 +v)10,2 —CVjw +cvw,y +w, w2

X6 = cup teuaup —evg ~cvav2 Fewawy oty +i2 +uath 2+ v

—cwibay +v,1%2,2 +cw, ¥

s o - 2
Xe = —c*vive +vyw —cPvw, Feuathy Fedy o +euyPre a2 —cCwids,

+2,1%2,2 +c*w,1%2

X8 = Bvjva thuswyy +2kw ), +hugwiz +hvow o —ckww, g +kt jw s Fekww,,

thupthy +hP1z Hhuyhre Febiadig ey —uatay Hhvaty —ckwin, —c2vu g

+hv 12 et 1922 +ckw 19,




i X6 = chugw g +ekwyz +ekuywig —chww e +etkw ws Fckuaty +hw ot 1
ek +ekuyhe Fhwnt e +2k 12 —cPhwipay Hhw e Lhw 2t
42kt 12,0 +c2kw 19s

X8 = —chvow1z ~cPkvw g, +ekw oy +ekw itz +2cki e —cBkv gt

+ekwaathsy —chvatha 2 +ekwiote s +2ckir 1920

X6 = FPw w2 +k2w10w00 +E2w 9t 1 82w 119010 +E2 19 2 +E2w 201021

+R2w 19922 2 4by, 1122

7. 2 . : . 2
X6 = ck®w 1w,z +ckPw 0w s ek w sy kw12 Fek P11, FekPw 00t

+ekw 99 s +ckPPa 10




Appendix C. Strain Displacement Relations for C020/C023 Elemental Codes

The strain displacement relations of tuis appendix are for the case of a circular
cylindrical shell with its longitudinal axis in the y; direction and a radius of R, . The 3>
coordinate is the circumferential distance dy, = Radf. The kinematic displacement within

the shell is assumed to be of the form:
U= U1€] + U2y + U363 (Cl)

where
(Y1, Y2, 93) = w+ yathy + k(W + 0,)83
ua(y1,92,93) = v(1 = cys) + Yoy + k(Y2 + w2)43 (C2)
w(y1,92,¥3) = w
The seven degrees of freedom u, v, w,w,1, w2, % and 32, are functions of midsurface coor-
dinates (y1,2) only. The ; are rotations of the normals and ¢ = 1/Rz and k = —-4/(3h?).
For this case, the 60 shell geometric functions JI, are quadratic in order and are simplified

because k; = hz = 1. The simplified nonzero functions of Appendix A are listed in Eq

(C.3)

I, =1 My = —c—chys -yl

My = 14 2cy; +3c%32 My = 4 2683y3 + 3c'y3

s = ¢ M = 14+cys+ 3

Iy = l4cys+ 3 hs = 1 (C.3)
Iy = 14 cys+ 2y} Iy = -c

e = 43y + c'y3 My = —c=2%; - 3¢}

I = —c—ctys -3y

The strain equations listed below are the parts of the linear and nonlinear strain compo-
nents for the C020 and C023 elemental codes. Contracted notation is used, where gy = £;y,
€2 = €22, €3 = £33, €4 = €23, €5 = €13, and £ = £12. The strain components ¢, are given by

the series expansion shown in Eq (C.4).

n
TR DI (C4)

p=0
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The nonzero ! arelisted below for each component of the nonlinear C023 elemental code.
The C020 quasi-nonlinear HTSD theory is given by neglecting the nonlinear terms of x4

and xE.
X = up +ui/2 403/ 2 +ud /2

X% = —C’U?I +th Fuitdg +va90,

|
- |

X3 =i/ 2 4931/ 2 —cvathon +43,/2 |
|
|
|

X3 = kwa Hhuyway Hhviwae kg huaty v,

X = —ckvywag +hwnta +hvd; ~ckvaty +hwioey +hy3,

X§ = Fwly/ 2 +k7wh,/ 2 +k2w 1191, FE2E 1/ 2 HRPw gty R,/ 2

X3 = uh/2 +¢%? /2 +ug +0%/ 2 —cw —cvow +cPw?/ 2 +evw,y +wh/ 2

x3 = cu}y —c*w —c?

+cwv2¢2

vow +cw? +Fvwy +ewh fuara +an Fvathy —cwides +ctvi,

X3 = 3%/ 2 —Pw —vgw +3ctw?/ 2 +cdvwy +3cPwh/ 2 +2¢u gy +9Ea/ 2 +eds
+evatnn —2ctwia g +42 5/ 2 +cSvihy +2cPw01hs +c2F/ 2

X3
+ckvw,s +ekwd +3cPunthre Hhuptys el +cPPhpg +hthsa Hctvathn 2 +hv s,
=3c%wih2 —ckwipy 2 +cp 5 +cvhy +cPkuhy +3c3w gty +ckw 21y +c3R

= —2c%% —c%u, =2c%v% +3ctvw +hupw 12 +hw oy +hvow g —chww gy —3ctvw,

X5 = 3¢%?/ 2 43¢}/ 2 +2cku yw 1z +ckw g +ckvpw gy —2¢2kww g0 +ctkowp 422 kw
+2cku gtz +hwaod 2 +3¢29% 5/ 2 +EkYZ, +ckibnz —3¢3v o2 +ckv2thy 2 ~2c%kwih
+hwaathe +3c3 5/ 2 +k3 , —3c5vihy +cBhvrhy +3cPhw othy +3cihE/ 2 +c2hepd




Xg = 362ku,QW,12 +c2kw,22 +02k'l),2w‘22 —303k’w’£U,22 +c“kvw,2 +3c3kw?2 +3c2ku,2¢1,2
+2ckw,121,/11,2 +2ck‘<[)f,2 +62k¢2,2 +c2kv,21,b2,2 —3c3kw1/)2'2 +2ckw,22¢2,2 +20k¢%'2
+ctkvidy +5¢3kw 29y +2c3kp2

X3 = Kwly/ 2 =3c%kvaw g +h2why/ 2 =3cSkvwy +c2kPwh/ 2 +3c kw1091
+hPw1at,2 +3¢2k9], +hP9F 0/ 2 —3cPkuathy s +3cPhw a2 +EPw aate 2 +3cPkYE,
+k292 5/ 2 —3cPkvihy +3ckw oty +c2k2w oty +3ctkYR +c2hkPp2/ 2

X5 = ck2?w'212 +clc2w’222 +c3k2w?2 +2ck?w 1291 2 +ck2¢i2 +2ck?w 2292 2 +ckpd,

+2¢3k2w a9y +c3k7]

X3 = 3¢%kPwly/ 2 +3c?k why/ 2 +3c kP wh/ 2 +3c2kPw 129 +3c2k2y2 ./ 2
+3c2k2w,22¢2,2 +3C2k2¢%'2/ 2 +3C'1k?"w,21/)2 +3c4k21[1§/ 2

X3 = —cvvg +cPow +wp +ust +r +v2t; —cwhy
Xi = Gvw +ewy Feugy +1 2t —cvtbyg +ethy ~cPwi, 412292

Xi = =3ckvug +clow +3cPkvw +3kugwy +cPwy +3kw,y +3kvaw,s —3ckww y +c?u yih

+6ku2%1 +c 2t —cPuhag +cPhy +3key +6kv a1 —cPwihy —Bckwiby +cthy 21

X3 = covp +3c%kvw +3ckuw —ckvw gy +chw, —3ctkww y +3kw 1,2 +6cku 21
+kw,121,b1 +62’(/)1,21/)1 +7k'l/)1,9_'g[)1 —031)1[)2,2 —4Ck’l)‘l/)2,2 +3kw,21,b2,2 +cki, —031)'2’1,/12
—6ckwihy +hkw vy +c2tho 2ty +Thiby 9ths

X4 = 3ctkvw +3c%kuw;y +9k%uw ) —cPhvw g +ctkwg +9k2vw o ~3c%kww 2
—9ck2w'w,2 +3ckw 191 2 +6c2ku 2 +9k2u o1y +ckw 19ty +Tckdy 29 —4cPkvihay
+3ckw,21,/;2,2 +C?’k'¢)2 +9k2’0,21,/72 —GcskW‘l/}g —96[32’U)¢2 +ckw,221/12 +7ck1,/12,21/)2

X; = 3ctkvvg +9ck?uwy +3k%w 10w —cBkvw 2y ~3ck?vw gy ~2¢%kw —-3c3kvow
~9¢’kPww,y +3k%w 20w, +3ckw 1t 2 +12k2w 1912 +9cku 2Py +chw 1ot +6k2w 120
+7c%kthy oty +15k% 201 —4cPkuihy 2 —3ck?uihy +3c%kw ot n +12k%w 2302 2 —2¢3 ke,
—6¢%kv 9t —9c2 k2 wipy +c%hw 202 +6k2w 991, +7¢2ktpa 2y +15k%4P2 29b,
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X8 = 9c%k%upw, +3ck¥w 19w 4 =3¢ k2vw 99 ~9c®k?ww 2 +3ck®w 20w +12¢k%w 19 o
+9¢?k2u 29y +6ck®w 1091 +15ck?ihy 201 ~3cZkvihyn +12¢k W atho 2 —9c3 kP weps
+6ck®w 2082 +15ckho 20he

X4 = 3¢2kPw 1wy +9kw 10w —3cPk vw 22 ~9¢3 kv w2 +3¢P R w 0w 2 +IKPw oW
+12¢k2w 191 2 +9K3w 11,2 +6c%k2w 1210y +9KPw 1001 +15¢%k%4by 211 +9K3 91 29
=33 k2vihyp +122 k2w atha 0 +9KPw 2120 —9c3kPv 0%y +6c2 k2w 20ty +9kPw 2292
+15¢%k24by 01 +9k312 22

X§ = 9ck3w 911 +9ck3w 20w 2 +9ck3w 19 5 +9ck3w 19t +9ek3hy 21 +9ck3w 91ha o
+9¢kBw g9ty +9ck3by 21y

X3 = 9c2k3w 0w,y +9c2 k2w 20w 2 +9¢2k3w 191 2 +9¢%k3w 1291 +9c2 k39 09

+9c? k310 91 2 +9c2 k3w 209y +9c2i31h2 200,

X9 = —covy +wy +P1 +u1vy +v19
Xt = cPvvg +1,1%1 —cvay —cv s F21%2

x: = =3ckvv; +3kwy +3kuywy +3kvws +3kP; +6ku 1 +6kv 1,

X3 = 3ckvvy —ckvw —3ckvyw o +3kw 1 +hw 1y +Thkeby 19 —dckvidy
+3kw otha 1 —~6ckv e +hw 1292 +Tkpo 192

X8 = Ok2u wy +9k%v w e +5k2u 19y +9k%0 14,

X3 = —3ck?vwaz 435w 1w, ~9ck?v w o +3k%w 0w e +12k%w 190y 1 +6k2w 13

+18K%9P1 19y —3ckPvihe g +12k2w 91ha 1 ~9ck?u 1y +6k2w 101 +15k%h2 190 }

X5 = 9k%w 1wy +9K%w 12w +9KPw a1 +9KPw a1t +9KPy 19y +9KEPw the i
953w 1292 +9k34h2 1902

X =u2 +ugug v v —cvw +evw, +w w s
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Xs = Cug +euatr —cvy —cv,10,2 +ew 1w +u P + P12 Fuidi2 F¥21 +v2%2,

—C’w'{/)z_l +'v,1'¢2,2 +Cw,l'¢’2

2 _ 2 2
Xg = c*up +cPu1un HePwawy teupPiy +eth 2 Feui e+t —cPwibsy +9oP2
2
+cw 112
X& = —=cPv1v2 +etvyw +hugwy +2kwas +Hhuw g, +hvawg —ckww p —clow

+hviwas +ekwiwe +ugpry Hhugtry +Edra Hh g Fcluaty Hhugde
+edratre Fhvan Hhvaten —Pwer —ckwier +hvithas +etdaith +ctw v,
+ckw 19,

X§ = cho1vy Fekugwar +ekwg +ekuiwaz —cPkwwg +ekwwy, Feku gty
kw211 Fekiro +ekuat e Fhwathe +cEhte 2k 190~
—cPkwiby,) +Hhw g2tha1 —cPvathaa Fhw1oWe +c P 1ta 2Kkt 100,0 +cPhw 13y

X3 = hugwn +ethwz +ehu w1z ~hww g +kwaw s +etkupy +ekw s
+el ke +ePkuatye +ekwtre +2ckiath e —hwiny +ekwarthy +ekw ot
+2ckiy 122 +cPkw 19,

X§ = —hvpwz +hwpwaz —ckv w0 HRPWw2 +ePkw oy +hPw 1ot
+ekw ity +R w0012 +262kY1 1912 Hh21 110 —cBkv a1 +c2hw antha s
+hPwgathan —hv e +cPhwate s HhPw 10002 4262 ke 102 2 +h2bs 1920

7 A 3 : e : ¢

X6 = ek wnws +ek?w 10w +ek wazt +ek waidi Fek?iitie kP00,
,2 .2

+ekfw 10422 +ck*4Pg 192 2

8

N 2 : : :
Xg = k2w 11wz +e2hPw 19w 2y +eP k2w 12911 +c2kPw 11,2 +c2 k2D 1912

k2w potha 1 +PhPw 10t0,2 +2k2 b2 12 2




Appendix D. Strain Displacement Relations for C100/C103 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular
cylindrical shell with its longitudinal axis in the y; direction and a radius of Ry . The 3
coordinate is the circumferential distance dy, = R2df. The kinematic displacement within

the shell is assumed to be of the form:

—

U = 418 + 1269 + uzfs (Dl)

where
u1(y1, 92, ¥3) = v+ yathr + k(¥ + w1)93

u2(91, Y2, 93) = 0(1 = cya) + Paya(a + wy2) [~c + kys — cky3] 43 (D.2)
uz(y1,92,93) = w
The seven degrees of freedom u, v, w, w1, w3, ¥ and 17, are functions of midsurface coor-
dinates (y1,72) only. The 9; are rotations of the normals and ¢ = 1/R, and k = —4/(3A?).
For this case, the 60 shell geometric functions H; are simplified because h; = h3 = 1 and

the quadratic terms of the expansions are neglected. The simplified nonzero functions of

Appendix A are listed in Eq (D.3)

=1 Iy = —c-c%ys

Hy = 142 Hy = & +283y;

]?15 = c? f]n = l4cys

I = 1+4cys g = 1 (D.3)
H 21 = 14 cys fIg;:, = —C

s = ¢4ty Hig = —c—2%y;

Mg = —c—c*ys

The strain equations listed below are the parts of the linear and nonlinear strain compo-
nents for the C100 and C103 elemental codes. Contracted notation is used, where £; = €13,

E9 = €22, €3 = £33, £4 = €23, €5 = €13, and &g = €12. The strain components ¢, are given by
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the series expansion shown in Eq (D.4).

n
&= X9} (D.4)
p=0

The nonzero x? are listed below for each component of the nonlinear C103 code. The C100
quasi-nonlinear theory components are the same except for neglect of all nonlinear terms

of the x% and x% strain components.

x] = uy +ud/2 +05/2 +wh/2

xi = —ev} +1a Fuatdi Fvatea

X3 =M/ 2 —cvywag +97 1/ 2 —2cv,392,1 +pZ /2

X3 = kwyy Fhugwan Fcviwae +kvawae FEP Hhuydn Hetvatan Hevita

~cw9t2,1 —cP3

X1 = —2ckviwye +cPwhy/ 2 thwathy Hhp], —2ckvava, +cw 12921 +hw 12921
4'02“1’%,1/ 2 +k¢’§,1

5 _ 2 2y 2], . .
X3 = Ekvgwaz —ckw?iy +ckvaten —3ckw otz —2ck3

X = B2’/ 2 +chw?, +82why/ 2 HRPw g HE2E ] 2 +2c kw109 +E2w 12%2 1
+c2kyd +k2'¢%,1/2

X; = —ckzw?n —2ck2'w,12¢2,l —Ck2¢%,1
X3 = PR2why/ 2 +PkPw pathey +PRPPE,/ 2
X§ = wh/ 2 62/ 2 40 405/ 2 —cw —cvgw +ePu?/ 2 kevwy w2

X3 = e}y —c®w —cvpw +3w? +ctvwyz +ewd Fugdye +22 +v2¥ —cwih2 +Pu

+cw 212
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\ . 9
X5 = =3c'?/2 —cPuy —3c®0%/ 2 +2c%vw —cw 2 —cv w22 +cPww oy ~3ctvw —ctw?)

+2cu 22 +97 0/ 2 —Fwihy g +93 5/ 2 +cPw s +c2pF/ 2

X3

—ctowy +etkvwy —2cwh +ekwh Fhuaty s +eply —choz +hez ~3ctv o,

+kvathy g +2c3 Wy —ckwibsy —cw 20thn2 —3ctuihy +cPkvihs —3cPw oty Fckw pihy

= %2 +c30% +hugw 2 —ctw gy +hw —c?vow e Hhvow s +2c3Ww 20 —ckww

X3 = 2cku 2wz +2v w90 —cPhww gy +cPwhy/ 2 +2cSvw s +ctwh/ 2 +clkwd
+2cku e +hw a2 +EYE o +2c30 2900 —cPhwibsy —cPwaathy s Hhw 2ot
—3c¥Pg o/ 2 +hvE, +2c5 vy —clw oty +2¢%kw athy —3ctpE ) 2 +c2kyps

X5 = —ctkw gz ~3c2kvpw 0n +2¢3kww 20 +ctwh,y —chwhy —3ctkow sy +cSwh ~3c3kw?
+2ckwaspre +2ckpfy —cFkha 2 —3cPkvathe +2c3kwihs, ) +2¢3w 20thrn —chw 2092
+c3p2 5, —3ctkvipy +2¢%wathe —3ckw 290 +c52

X3 = kw3, 2 +23kv 2w —cPhud, +EMwh,y/ 2 420k wy —cthwd +ckPwh /2
+k2w,'12'¢)1,2 +k2’§[)f,2/2 +2c3kv,2¢2,2 —4c2kw,221,b2,g +k%u 22922 —3c2k1,/1%,2 +k21[)%,2/2
+2c%kvpy —dcthw othy +cPhPw oty —3cikdbd +c?kPE) 2

X5 = ck*wly +23kwh, +2c7kwhy +2ek?w 10912 +ck* Y2, +4Pkw gy +23kY3,

+4cPkw g1hy +2¢5kep?
X3 = —=3c2 kP why/ 2 —3c kP wh/ 2 - 32 k2w aaihan —3ck2pE 5/ 2 =3¢ kP w oty —3ct kP2 /2
X3 = R2why +P kMY +2¢3k W aatha 2 +3RMYE , +2cP kP, 1 SkR03

X3 = —cvvp +cPvw fwo Fuaty Fh +vathy —cwid

x4 = Svw —cwy ~2cvows +2cPww o Feuahy +y 2t —cviha 2 —cthe —2cv 2t +cPwih,

12,212

3

X5 = Bvvy =3ckvvy +3c2bvw +3kugu, +cPvw e —ctw s +3kwy +3kvow,y +2cww ,

=3ckwwa +6kv 2ty +cthy athy —2cwatha 2 —c2hy +3kvhy —cPugis +6kv 2ty +2c3wiky

—Gekwipy —cw 22ty =2t 2902




X3 = 3c3kvw +3ckuw,y +cPvw 2 —ckvw gy +c3wy —3ckw, +2c3v w5 —10ckv w2
+7ctkwws +2c%w 0wy +3kw P2 +6cku gt +hw gt +Thy 291 +cPvidon —dckvipy s
+3kw 21han +c3hy —3ckihy +2¢Pv 91k —10ckv %y  Zkwidy +ctw 02 +Ew 921s

—ctho oty +Tkt2 29s

Xi = 3c%kvvy +9k%uw; +3c%kvw o ~3cthwy - 3 - sow2 +9h2v w0 +10c3kww o
—9ck®ww g +2c3w 0w 2 ~5ckw 22w 2 +3ckw 11y 2 4 et oty +ekw 12t +Tckiy 29
+2c%w by n —12ckw 2ppa2 —3¢%kihy —6c%kv 2ty +95 5 gty +10c bwehy ~9ck2wib,
+2¢%w 5200 ~8ckw 209y +2c34hp 292 —12¢kthr 21hy

X§ = 9ckuw +3k2w 10w, +4cckowgy -5 APvw g0 +3c%kw2 +10¢*kv qw o
~12ck?vow2 +3c2k2wwy +Tckw 2wy +352w 20w, +12k%w 39, 5 +9ck?u 23y
+6k2w 1291 15871 001 +4c%kvids s —3ck®oihy o —8chw gty s +125%w 41by o +3c3kify
+10c%kv2t2 —12ck?v %y +3c2kPwibs +3c2kw 203y +6k%w 900, ~ 72l o3hn
+15k2ehg 21ho

X§ = 3ck?w 10w, —9¢%k2vw, +12c3k2ww s +12¢3kw 0w o —19¢k?w g9 o
+126k2‘w,11,’)1'2 +6ck2w,121,b1 +15Cl~77\"1,27p1 +1263k’w,2’l/)2,2 —22615210,2‘([12,2 —9621\721),2'(/12
+1203132wz,/;2 +12c3lcw,221[)2 —196]6210,221112 +12€3k‘§.’)2,21/)2 —2261\‘,21,’}2,27,’12

X1 = 9w 12w, +3c3ktvw e +12¢%k% 0w +9k3w ppw 5 +953w 199 2 +9k3w 10,
931291 +3c3kPvtha,y ~12¢2k2watha 2 +9KPw 2120 +12634%0 91y ~3c2k2w 21y
+9k3w_221,’)2 —1562k2¢2,2'§b2 +9k3"!"2,2¢2

X5 = 9ck3w 2w, +22¢3k%w 20w o =12¢k3w 20wz +9ck3w 19y 2 +9ck3w 19 +9ck3y 29
+22¢%k2w g1 5 ~12¢k3w 21h2 2 +22¢3 k2w 291by — 12¢k3w 2292 +22¢3k24ha 2100
—12ck4p2 2,

X3 = =9¢*k3w 20w, —9¢*k3w 21b2 2 —9¢Ph3w 9917 ~9¢2k34pp 21b

x1° = 1283w p0w 5 +1263k3w 0120 +12¢3k3w 500y +12¢3139; 2,
0
5

X5 = —cvvug +wy 9 P FvgPe
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X} = cPvvy —2cv w2 +Pr 1y —cudoy —3cv 1Py +a e

X3 = =3ckvvy +cPvwy, +3kwy +3kujwy +2¢%v we +3kvw e +3k; +6ru g1
FcPohay —Scwathay +2¢70,19y +6kv 192 ~cw 129s —3ctr 192

—Xg = 362]6’01),1 —ckvw,lg —136[31),1’(1),2 +2c2w,12w,2 +3kw,11,b1,1 +kwl11¢1 +7k‘§[)1,1¢1
—dckvhyy 4272w ath01 +3kw atpay —2%ckv vy +2c2w 010 +hw 1292 +2¢% 10
+7kiby 92

Xs = 4ckvw o +95%u ;w1 +10c2kv w,, +9k%v w o ~5ckw,1aw g +9k%u 19y +4ct kv,

7 =15ckw 212 +10c2kv,l¢2 +9k2'v,11/)2 =9ckw 1212 —19ckip2 192

X2 = =3ckPvw 1y +3k wy1wy =21ck?nwy +12¢%kw 10wy +3k%w 10wy +12k2w 19hy 1
+6kéw,11¢1 +15k2¢1,1’g{11 —3ck2m/13,1 +12c2kw,21[12,1 +12k2w,21/;2,1 —216/621),1'1,&2
+12¢2 kw1992 +6k%w 1092 +12¢%kio 190 +15k%h 190

X3 = 3ck?vw s +12¢2k%v,1ws —22ck2w 10w +3¢%k20ih2 —3dckPw oty +1262k% 11

~25ck2w 12%; —3Tck?9e 192

X& = 0w 1w, +22¢% kP w 1w +9K3w 10w +9E3w 1911 +9K3w 1191 +9k7 Yy 19
+22¢2 2w 0 1 +9K3w 91 3 +22¢% 12w 1290 +9K3w 129 +22¢2k%Ps 192 +OK3 1o 112

X8 = =21k w w2 —21ck3w athay —21ckPw 12tp —21ckPehs 190
X2 = 12¢2k3w 10w 2 +12c2 k3w ot 1 +1262k3% 5 39by +12¢2k3ehg 19,
X3 = ug Fugug +vg +102 —cvw 4cvw) +w w2

X§ = cup Feuug —cvy —ev1v2 Few we FuoPy +i2 Fute Foa Fvate

~cwiz,1 +v122 +cw 192

2 2 3 2 2
Xg = —C'V1V,2 4c VW —CW, 12 —CV2W, 12 “4c ww 32 -—031)11)'1 —CV,1W,22 —C W, W2

Feupiy ey Fewtre FiP2 —ctha —cvothe —cv 1P Fi 190
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xg = 631),17),2 +ku,2w,11 +2kw,12 +ku,1w,12 +kv‘2w,12 +c3ww,12 —ckww,lg +kv,1w,22

—cGwawy +ekwawy Hhuatyy ke Fhutr s 4+t 1912 Hhan —ctvathag +kv ot
+wipey —ckwiby1 —cwaatpa1 ~c2v 1o +hv a2 —cwa2tn 2 —ctr %2 —cPw 19,

+ckw 197

. . . 2
xé = C]»u,'z’w,u +Fckujwqg +c3v,2w,12 —ckvaw 19 +g3'v,1w,22 —ckvjw o2 +c W,12W 22
tekuptyy +hwagtrn +ekre Fekuyd s Fhw ity +2kY 1012 —ckidey +c3v2t0,
—ckvatny Hhwastos +vathng —ckvatag Hhw e —cPihrathan +2kYn 19

X§ = =c2kvowo +Bkww 2 —c2kvawge +3W 19w 00 —2ckw 39w 02 —cPhw W,
+ekwaoi,1 Fekwnte +2ckPi s —PEogthyy Fkwibs; +waathay —2¢kw 22802,

~ckvatha +cw ot 2 ~2ckw 1othan +C Wy Pns —~2ckih 120 — kw1

XS
FiPP11%1,2 +Pkvatn —cthwaathan HE2waathe +kvata g —c2hw 1ot +E2w 1082

—2¢ ki3 +E2 Py 1Y 2

— 3L .2 31. , .2 .2
= kw2 +E w w12 +¢kviw o +E2w 10w ,20 +EPw 120011 +E2w 11912

xg B ckzw,uw,lg +2c3kw‘12w,22 —ck2w,12w,gz +Ck2‘w,12¢1,1 +Ck2‘w_111,b1,2 +Ck2'§[)1,1‘§[)1,2

+2c3kw,221/)2,1 —Ckz;(l)’zg’{[lzll -i-2c3l.:w,121[)2,2 --ck2w’121!)2,2 +2c3k1/’2,1'€b2.‘2 _61321!’2,111[12,2

27, 27, . 20120 .
xg = =2 kPw 10w .00 —C*k2w a0ty —cPhPw at2, —CPhRifo 102
9 _ 3.2 2 3. 2
Xo = CEw0w,20 +3E2w 00121 +BkPw 0122 +c3kP Do 1902
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Appendix E. Strain Displacement Relations for C120/C123 Elemental Codes

The strain displacement relations of this appendix are for the case of a circular
cylindfical shell with its longitudinal axis in the y; direction and a radius of Ry . The ¥;
coordinate is the circumferential distance dy, = Rdf. The kinematic displacement within

the shell is assumed to be of the form:

-

U = w161 + 1287 + u3és (El)

where
(1, ¥2,¥3) = u + y3¥y + k(1 + w)y3

u2(y1, 92, ¥s) = v(1 = cyz) + haya(2 + wy2) [~ + kys — cky3) 93 (E-2)
u3(y1,92,¥3) = w
The seven degrees of freedom u,v, w, w1, w2,1" and ¥, are functions of midsurface coor-
dinates (y1,¥2) only. The 1; are rotations of the normals and ¢ = 1/R; and k = —4/(3h?).
For this case, the 60 shell geometric functions H, are only simplified because hy = hz = 1.

The quadratic terms of the expansions are retained. The simplified nonzero functions of

Appendix A are listed in Eq (E.3)

Ay =1 Hy = —c—clys—c3y

Iy = 1423+ 3c2y2 e = 2428y + 3cty?

I = ¢ 7 = 14cys+c%y?

Ay = 14cys+cy? s = 1 (E.3)
In = 1+cys+c3 Ay = —c

39 = ¢+ Sys+cly? O = —c-2cy; - 3c%2

Hig = —c—clyz— Ayl

The strain equations listed below are the parts of the linear and nonlinear strain compo
nents for the C120 and C123 elemental codes. Contracted notation is used, where ¢; = ¢;5,

€2 = €22, €3 = £33, €4 = £23, €5 = €13, and £ = £32. The strain components ¢, are given by




‘the series expansion shown in Eq (E.4).
g = foyg (E.4)

The nonzero x?, are listed below for each component of the C123 elemental code. The
C120 quasi-nonlinear HTSD theory is given by neglecting the nonlinear terms of x4 and

X5
X§ = wy +ui/2 03/ 2 +wh/2

X} = —evd +1 Fuaty Fvathea

]

X2 = ¢ /2 —cvgwaz +93 /2 —2c01%,0 +931/2

33 = kw gy Hheugway +cviw e Hhvawas i Fhuavs FEvatay kvt

—cw,12%21 ~c¥3

xi = —2ckviwaa +cPwhy/ 2 Fhwnth HhYF; ~2ckvatha FPwazen Hhw izt
+62¢%,1/ 2 +k¢§,l

5 _ 27 2y 2], . .
X5 = Phvawia —ckwhy +c2kvite ~3ckw 121 —2cky3

X§ = 2w,/ 2 +cPhwh, +R2why/ 2 HiPwanthy P93,/ 2 +2c2kw 12%2,1 +E2w 122,10
+c2kypsy k23, /2

X1 = —ck?wly —2ckPw 1092, —ck*3,
X3 = kPwh, [ 2 +¢PKPw 0ty +e2kP3 /2
X3 = 1%/ 2 +¢%07/ 2 vy 405/ 2 —cw —cvaw +cPw?/ 2 tovwz +wh/2

1 o2 _ 2 2 3,2 12 2
Xz = CUy —C*w —c v 2w +ctw’ Fctvwy Fews +uth 2 +in2 Fv2id2 —cwihs +cvipy

+cw 212
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2,2
- x5 =32}/ 2 —cPw —cBvpw +3cw?/ 2 —cwy ~cvpw e FcPww,ey +Fwh/ 2 +2cu 0 2

+7/)12,2/2 ~ctuhy +¢%,2/2 +cPw s +cPP3/ 2

X3 = —-2¢%0% ~c%v, —2c3v?2 +3¢tv 2w +hugwas —ctw 22 Fhw 22 —cPv 2w 25 +kv 2w 22
+2c%ww g9 —ckww gy —4ctvwy +cPhvwy —2c%wh Fekwh +3cPuty e +Hhug g e,

thipan +hvath s —cPwng —ckwiby —cwaathaa +CPkvY2 +ckw o,

x‘% = 3661)2/ 2 +3c4v?2/ 2 +2cxu w32 —c3w,22 —03‘1)’210,22 +3c4‘ww‘22 —czkww,n
+ctwhy[ 2 —cPvwy —5ctwh [ 2 +cPkw?, +2cku 2ty 2 Hhw a2t +3c2'¢)¥,2/ 2 +ky?
—c3ehna —4c3vp¢ha s +3c Wby s ~Phwihye —cPw oathen Hhwaotra +EY3, —4cvih

—4(;‘411),2‘1,02 +262kil),-;, 1!)2 +c2k2[)§

X3 = 3cPhupw 2 +3cMvaw 00 —cPhww 00 +cPwh, —ckwhy +3cPvw e +cPwh +3cku e
+2ckw'121b1,2 +2€k’l[)i2 +3c‘lv,21,{)2'2 —c3kw¢2,2 —c3w,221/12,2 —Ck‘w,n'(,bg,g —263¢%'2
+3cvhy —cPwathy —2c%P3

x5 = kzw,zu/ 2 —c3kwps ~4cikvw 2 +3ctkww 5y +3ctwh,/ 2 "Czkw?gg +E2wh,/ 2
—4cSkvwy +3cfw’/ 2 —4ctkwh +c2k?wh [ 2 +3c kw292 +E2w 19912 +3c2kY? ,
+E22 5/ 2 ~Phhy gy ~4c3kvathes +3c kwibag +3c w2002 2 —cPhw 20t2 +RPW 2202
+3ch3 o/ 2 +k293 o/ 2 —4cS ks +3cCw iy —dcthw iy +c2k2w g1py +3c%92/ 2

+c2 kY2 /2

X3 = ck?why +3c kv w20 —cPkwh, +3cSkvw, —cPhw?h +2ck w1291 2 +ck*YP,

+3ct kvt —5c3kw 20v2 2 —4cPkugq +3cPhuhy —BcPkw by —de k]

X3 = 32 kP whyf 2 +3ctkwh, +3c8kwd +3c*h2w 10912 +3cPh? ] o/ 2 +6c w2292,

+3ct k12 5 +6cCkw 29h2 +3cCkep3

X3 = ~2c3kPwhy —265k2wh —4cPk w0t 2 —2¢3K203 5 —4cShPw g1y —2¢%K2]

X3° = 3chiPwhy/ 2 43¢5k wh ) 2 43¢ K2 w 023 p +3¢M 3 5/ 2 +3c5kPwaths +3c0k2 2/ 2
0

X3 = —cvvy +cPvw +wo Fugdy Fiby Fvoth —cwi
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Xi = Svw —cwz ~2cvpw s +22ww s +cugy +h 2% —cvth2 —cthr —2cv 21 +cFwih

+1b2,272

x3 = =3ckvvyp +clvw +3cikvw +3kusw; +cPvw oy +3kw o +3kvawy +2cww
—3ckww +cu v +6kuopy +e 2t —2cwathee +3ky +6kv 2, +cCwipy ~Gckwip,
—cw 22ths —2c1P22%2

X3 = ctovy +3c%kvw +3ckuw; +c3vw ar —ckvw gy —cPw s —3ckwy —10ckv 2w,
+2ctww s +7cPkwwe +2¢%w 20w 2 +3kw a1y 2 +6ckut +Ewi2¥y +2 20 +TEY 2
‘—4ckv1[)2,2 +3kw,21,b2,2 —63‘{[)2 —3ck1,’12 —cav,21/12 —10(.‘]-71)'2'(,/12 +2c"w1,/)2 +4c2kw1,!)2

+cPwaaths +hw oty +Tha o,

X3 = 3ctkvw +3ckuwy +9k2u w1 +ctvw 20 +3ckvw gy +ctwy +2ctuw

+9k%v w5 +7c3kww s ~9ck?ww 2 +2c%wawy —5ckwowe +3ckw 11,2 +6cku 2t
+9R?u oty +ckw 109y +Tckdy oy +ctvibog —12ckwathe 2 +cMPs +2¢M 028 +9k%v 210
+4ckwipy ~9ckwiy +cPwa0the —8ckw g2ty —c3ba 2ty —12ckiba 2t

X; = 3ctkvvp +9ck?u w1 +3k*w 0w, +3c3kvw 20 —3ck®vw 22 —3c%kw2 —3¢%kvwa
—12ck?vpw s +10cthwwy +3c?k?ww 2 +2ctw 2wy +7c2kw 22w 2 +3k2w 0w 2

+3c%w 19,2 +1262w 19y 2 +9ckPu oty +c2hw oty +6k2w 32ty +TcPkidy 2t
+15K2 4y 09y —3ckPuihap +2¢Mwatho 2 +12k2w a2 2 —3c3kths —6c3kv 2t —12¢k?u a1,
+10c kwihs +3c2 k2 wiy +2c w hs +acPhwaots +6k2w 20s +2¢M P2 2ts +15k2 o 2100

X§ = 92k uwy +3ck?w 1pw; +4cthvw g0 +3ctkws +10cM v aw 2 +3¢3k ww 5
+7c%kw pawp —19ck®w sow 2 +12ck?w 1912 +962E U2y +6ck w128y +15ck>hy 29
+4c"l:m,b2_2 —3c3kw,21_1)2,2 —2261:210,21,[100 +3c“k1,’;2 +1OCdkv,'.’1!J'2 +3c3k"’wt,’:2 +363kw'227,’12

oy

—19ck?w 2012 —Tc3 ki atp2 —22¢% P 232

Xi = 3¢k wwy +9k3w 12w,y ~9c3k v w, +12¢7 P ww 2 +12c kw 20w 2 +3¢2 k2w 20w 2
+952w 20w 2 +12¢2 k2w 1912 +9E3w 190y 2 +6¢?k2w 121 +9K3w 128 +15c2h2 4 2ty
+934; 2ty +12¢ kw 2n 2 +OR3w 2122 —9c3k2v 2100 +12¢M Wik +12¢Mkw 201,

+3c?k2w 200, +9K3w 208 +12¢ it 210 +K3 a2t
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X§ = 9ckBw 10w, +3ctkPvw e +12¢2vow o —12¢k3w 20w 9 +9ck3w 1991 2 +9ck3w 109
+96k3¢1‘2'l,b1 +3C4k2‘0¢2,2 —1263]»‘211),2'1,[12,2 —126133'(0,21,[12,2 +12c“k2v,2¢2 —3c3k2w_22¢2
—12ck3w 222 —~15¢3k24hy 21hy —12¢k%ehp 93h

X3 = 92 k3w 1owy +22¢ k2w 0w s +9c2kPw 19y 2 +9¢2k3w 191y +9c2hPeby 21y
+22c4 12w 2322 +22¢%k%w 9090 +22¢1k24hy 290,

X130 = ~9¢%k3w 20w, ~9c3 k3w o1h2 2 —9CP k3w agthy —9c3kPeho 21y
xXi! = 12¢'%Pw ppw 2 +12¢ k3w o1ho 2 +12¢ k3w 9099y +12¢M31hy 215,
X8 = —cvvy +wy +9r +uar +v1%

X5 = ctovy —2ev 1w +911%1 —cvihe —3cvaty +p 1t

Xi= =3ckvv) +c2vw,12 +3kwy +3kuw, +2c2'u,1w,2 +3kvw2 +3kYy +6ku 19,
P —2cwaten +2¢%0ate +6kvthy —cw s —3etin i

X3 = 3c2kvvy —ckvw,1z —13ckvwz +2¢2w 10w,p +3kw 111 1 +kw 19 +Tk11t
—dckvthy; +2¢%wotha 1 +3kw s —2ickv 11y +2cw 120y Fhw 1912 +2¢20hp 190
+Tkp2192

X3 = 4ctkvw 12 +9k2u 1wy +10c2kv w2 +9k%0 3w =5ckw 1wz +9k%u 19 +4c2kvha,

—15ckw,2¢2,1, +1062kv,1¢2 +9k2'0,1¢2 -—9ckw_121,b2 —19616'4[)2,11[)2

x§ = —3ck?vw 1z +3k%w 11w, —21ck®v 1w,y +12¢2kw 10w, +3k%w 10w 5 +12k%w 19
+6k2’w,11’(,[)1 +15k2’§[11,1’§[)1 —301021)1,/)2,1 +1262kw,2’(,/)2,1 +12k2w,21/)2,1 —216/:21),11,%
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Appendix F. Strain Displacement Relations for the Modified Donnell Theory with
Higher-Order Transverse Shear Deformation (CDON)

The strain displacement relations of this appendix are for the case of a circular
cylindrical shell with its longitudinal axis in the y; direction and a radius of Ry . The y2
-coordinate is the circumferential distance dy, = Rodf. The kinematic displacement within

the shell is assumed to be of the form:

e

U = 1181 + 126y + uz€s (Fl)

where
w1 (y1,¥2,¥3) = u+ Y3ty + k(1 + w1)93

us(91,92,98) = v(1 — cys) + Yoys + k(s + w,2)33 (F.2)
u3(y1,Y2,¥3) = W
The seven degrees of freedom u, v, w, w1, w,2,%; and ¥, are functions of midsurface coor-
dinates (1, y2) only. The 9; are rotations of the normals and ¢ = 1/R; and k = —4/(342).
For this case, the 60 shell geometric functions H, are simplified because hy = hy = hg = 1.

The simplified nonzero functions of Appendix A are listed in Eq (F.3)

~

H =1 Iy =1
e o= 1 Ay = 1 (F.3)
I.:Ils = 1 ]}21 = 1

The strain equations listed below are the parts of the linear strain components for the
modified Donnell theory. Contracted notation is used, where €1 = €11, €2 = €22, €3 = €33,
€4 = €23, €5 = €13, and £¢ = €12. The strain components ¢, are given by the series expansion

shown in Eq (1".4).

n

ei=y x4 (F.4)
p=0
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The nonzero ! are listed below for each component of the CDON code.

Xy =g+ wi/2 X1 =111 X3 = kway + kv
X3=va—cw+wy/2 x}=—-cvp+h X3 = kwae + ko
X3 =2+ wo X5 = ko + wp
X =t +wy X8 =kt +w,

X =up+vgtwiws xE=—-cvgt ot o X§ = 2kwao+ ko + ko,
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Appendix G. MACSYMA Routine for Elemental Codes Feneration

[ Fksoksok ok ok kkokkokok ok sk ko ok kR okl okl stk ok skok ook sk ko skok e okok ok ok sk okok bk ok ok /
/* MACSYMA ROUTINE FOR ELEMENTAL CODES GENERATION BY R. A. SMITH */
/*  CREATED AS PART OF AIR FORCE INSTITUTE OF TECHNOLOGY (AFIT) x/

/*  PHD PROGRAM IN AERONAUTICAL ENGINEERING --- JULY 1991 */
/% MACSYHMA IS A REGISTERED TRADEMARK OF */
/% THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY. */

/*********************************************************************/

/¢ INITIALIZE MACSYMA PARAMETERS AND DECLARE VARIABLE PROPERTIES  */
[DYNAMALLOC : TRUE,DISKGC: TRUE,DERIVABBREV : TRUE, POWERDISP: TRUE]$

DEPENDS( [U1D,U41R,U2D,U2R,U3,P1,P2,H1,H2],[Y1,Y2,Y3])$
DEPENDS({R1,R2,M1,M2,PSI1,PSI2,PHI1,PHI2], [Y1,Y2,Y3])$

DEPENDS ([GAMKA1,GAMMA2, THETAL, THETA2,U,V, W], [Y1,Y2])$
DECLARE([R,C,AR1,AR2,AR3,AR4,H3] ,CONSTANT)$

/*  SET THEORETICAL ATTRIBUTES FOR SPECIFIC ELEMENTAL CODE x/
‘H3:1$ /* H3=1 FOR A SHELL */
AR1:1% /¥ AR1=0 FOR INCOMPLETE CUBIC KINEMATICS */
/% AR1=1 FOR COMPLETE QUARTIC KINEMATICS */
AR2:1$ /% AR2=0 FOR LINEAR Hi/H2 APPROXIMATIONS */
/* AR2=1 FOR QUADRATIC APPROXIMATIONS */
AR3:13 /* AR3=0 FOR LINEAR TRANSVERSE STRAIN */
/* AR3=1 FOR NONLINEAR TRANSVERSE STRA1N */

/*********************************************************************/
/* SUBLIST IS A VARIABLE CONTAINING THE DEFINITIONS OF DISPLACEMENT */
/* PARAMETERS Q(1) THROUGH Q(18). ALL SYMBOLIC MANIPULATION OF */
/* STRAIN COMPONENTS IS DONE WITH THE NAMES TO THE LEFT OF THE EQUAL*/
/* SIGNS IN SUBLIST. THE Q(XX) DEFINITIONS ARE REQUIRED ONLY FOR  */
/* GENEKATION OF ELEMENT INDEPENDENT STRAIN DEFINITION ARRAYS LO  */
/* THROUGH SS12, ETC. %/
/*********************************************************************/
SUBLIST: [ DIFF(U,Y1)=Q(2), DIFF(U,¥2)=Q(3), U=Q(1), DIFF(V,Y1)=Q(5),
DIFF(V,Y2)=Q(6), V=Q(4), DIFF(W,Y¥1,2)=Q(10), DIFF(W,¥2,2)=Q(11),
DIFF(W,Y1,1,Y2,1)=Q(12), DIFF(W,¥1)=Q(8), DIFF(W,¥2)=Q(9), W=Q(7),
DIFF(PSI1,Y1)=Q(14), DIFF(PSI1,Y¥2)=Q(15), PSI1=Q(13),
DIFF(PSI2,Y1)=Q(17), DIFF(PSI2,Y¥2)=Q(18), PSI2=0(16)1$

[ FE R A AR KRR AR AR AK R A AR R R KRR Ak Kok ok ok ok ook Kok ok ek ok R Aok Kok
/* BEGIN GENERATING THE DISPLACEMENT FIELD COMPONENTS Ui, U2, U3 */
/* THESE MEXT STEPS HAVE BEEN SPECIALIZED FOR A CYLINDRICAL SHELL */
/* R2=1/C, R1=INFINITY, K=-4/(3*H~2). THE VALUES OF C AND K WILL BE */
/* INPUT AS PART OF THE FORTRAN PROGRAM. THEY ARE UNSPECIFIED */
/* CONSTANTS AS FAR AS MACSYMA IS CONCERNED . */
J ARk AOR R A Ak KR KRR ROk ok ok ok KA KRk ok ok ok KRk Kk ok
P1:U$ P2:V*(1-Y3%C)$ P11:DIFF(U,Y1)$ P12:DIFF(U,Y2)$
P21:DIFF(V,Y1)*(1-Y3*C)$ P22:DIFF(V,Y2)*(1-Y3xC)$
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" L11:DIFF(PSI1,Y1)$ L22:DIFF(PSI2,Y2)$ L12:DIFF(PSI1,¥2)$
L21:DIFF(PSI2,Y1)$ M1:K*(DIFF(W,Y1)+PSI1)$ M2:K+(DIFF(W,Y2)+PSI2)$

-U1D:P1+Y3*PSI1+Y3**3*M1; /* INCOMPLETE CUBIC Ui DISPLACEMENT OF DENNIS */
‘U2D:P2+Y3%PSI2+Y3+*+34M2; /+ INCOMPLETE CUBIC U2 DISPLACEMENT OF DENNIS */

/AR ok Ak ok ok ok ko ko ko ok ok ok kol okakok ok ok sk sk ok ok ok ok ko ks ok ok ok ok ok ok ok ek ok kb kok ok /
/* COMPLETE QUARTIC U2 OF SMITH = U2D+U2R WHERE U2R ARE THE CURVATURE */
/* CORRECTION TERMS. NOTE: UiR=0, SINCE R1=INFINITY. */
/***********************************************************************/
U2R: (~M2* (1+K*Y3%%2) ¥Y3**2/(K/C)); U2:U2D+U2R*AR1;

U1:U1D; U3:¥$

/* SYMBOLICALLY COMPUTE TEE DERIVATIVES OF Ui AND U2 */
'DU11:P11+L11%Y3+DIFF (M1, Y1)*Y3+*3+DIFF(U1R,¥1);
DU21:P21+L21*Y3+DIFF(M2,Y1)*Y3+*3+DIFF(U2R,Y1);
DU12:P12+L12+Y3+DIFF (M1, Y2)*Y3%*3+DIFF(U1R,Y2);
‘DU22:P22+L22%Y3+DIFF (M2, Y2)*Y3+*3+DIFF (U2R, Y2);

/*********************i**************************************************

/

/* SYMBOLICALLY GENERATE THE GREEN-LAGARANGE. STRAIN COMPONENTS DIVIDED */

/*BY THE‘APPROPRIATE SHELL LAME PARAMETERS H1, H2, TO GIVE THE PHYSICAL*
/* STRAINS EPSILON11,EPSILON22,EPSILON12,EPSILON23,EPSILON13,EPSILON33
[k kokskdok ook koo ok Aok ok ok ko ok kR koo ok Rk ok kbR Kok Ak Aok

./* EPSILON11 COMPONENT OF STRAIN. LINE i IS LINEAR TERMS. LINES 2-4 N.L.
‘ER[1] : (H1*DU11+H1*U2/H2+DIFF (H1,Y2) +H1%xU3/H3+DIFF (H1,Y3)+
1/2#(DU11+U2/H2+DIFF (H1,Y2)+U3/H3*DIFF(H1,Y3)) 2+
1/2*(DU21~U1/H2+DIFF (H1,Y2)) 2+
1/2%(DIFF(U3,Y1)-U1/H3*DIFF(H1,Y3))"2) /H1"2;

/% EPSILON22 COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. LINES 2-4 N.L.
ER[2] : (H2#DU22+H2*U3/H3*DIFF (H2,Y3) +H2*U1/H1*DIFF (H2, Y1)+
1/2#%(DU22+U3/H3*DIFF (H2,Y3)+U1/H1*DIFF(H2,Y1)) 2+
1/2%(DIFF(U3,Y2)-U2/H3+DIFF(H2,Y3)) "2+
1/2%(DU12-U2/H1*DIFF(H2,Y1)) 2)/H2"2;

/* EPSILON12 COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. LINES 2-4 N.L.
‘ER[6] : ((H1*DU12+H2#DU21-U2*DIFF (H2,Y1)-U1+DIFF(H1,Y2))+
(DU12-U2/H1+DIFF(HZ,Y1))*(DU11+U2/H2+DIFF(H1,Y2)+U3/43+DIFF(H1,Y3))+
(DU21-U1/H2+DIFF(H1,Y2))*(DU22+U1/H1+DIFF(H2,Y1)+U3/H3+DIFF(H2,Y3)) +
(DIFF(U3,Y1)-U1/H3*DIFF(H1,Y3))*(DIFF(U3,Y2)-U2/H3*DIFF(H2,Y3)))/(H1xH2);

/* EPSILON23 COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. LINE 2-8 N.L.

/* F(Z)=1+3+K+Y3~2 PARABOLIC FORCING FUNCTION APPLIED ONLY TO N.L. TERMS

ER[4]: (DIFF(U3,Y2)+(1-C¥Y3)*DIFF(U2,Y3)-U2%(-C) )/ (H2*H3);

ERKL [4] : (1+3%K#Y32)*(

(DIFF(U2,Y3)-U3/H2*DIFF (H3,Y2))*
(DIFF(U2,Y2)+U3/H3+DIFF(H2,Y3)+U1/H1+DIFF(H2,Y1))+

(DIFF(U3,Y2)-U2/H3*DIFF(H2,Y3))*
(DIFF(U3,Y3)+U2/H2+DIFF(H3,Y2)+U1/H1+DIFF(H3,Y1))+
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‘(DIFF(U1,Y2)-U2/H1+DIFF (H2,Y1))*
_(DIFF(U1,Y3)-U3/H1*DIFF(H3,Y1)))/ (H2*H3);
‘ER[4] :ER[4]+ERNL[4] %AR3;

-/* ‘EPSILON13 COMPONENT OF STRAIN. LINE 1 IS LINEAR TERMS. _INE 2-8 N.L. */
7* F(Z)=1+3%K*Y3~2 PARABOLIC FORCING FUNCTION APPLIED ONLY TO N.L. TERMS */
ER[5] : (H3+DIFF(U3,Y1)+H1#DIFF(U1,Y3)-U1%(0))/(H1*H3);
ERNLL5] : (1+3%K*Y3~2)%(
(DIFF(U1,Y3)-U3/H1*DIFF(H3,Y1))*
(DIFF(U1,Y1)+U3/H3*DIFF (K1,Y3)+U2/H2*DIFF(H1,Y2) )+
(LIFF(U3,Y1)-U1/H3+DIFF (H1,Y3))*
(DIFF(U3,Y3)+U1/H1*DIFF(H3,Y1)+U2/H2+DIFF (H3,Y2))+
-(DIFF(U2,Y1)-U1/H2+*DIFF(H1,Y2))*
(DIFF(U2,Y3)~U3/H2*DIFF(H3,Y2)))/ (H1*H3);
ER[5] :ER[5]+ERNL[5]*AR3;

/* EPSILON33 COMPONENT OF STRAIN IS ZERO. IT IS HOWEVER INCLUDED IN THE

* CONSTITUTIVE RELATIONS THROUGH THE ELASTICITY SUBROUTINE OF THE CODE

* WRITTEN BY DENNIS. */
ER[3]:0;

/* SUBSTITUTE THE Q(1) THROUGH Q(18) DEFINITIONS OF SUBLIST AND DISPLAY

- STRAIN- COMPONENTS INDIVIDUALLY ) */
FOR I THRU 6 DO (ER[I]:EXPAND(ER[I]),

‘ER[I]:EXPAND (SUBST(SUBLIST,ER[I])),DISPLAY(ER[I]) )$

/************************************************************************/

/% THE NEXT -60 EXPRESSIONS ARE THE POSSIBLE COMBINATIONS OF LAME */
/*  PARAMETERS APPEARING IN THE STRAIN EXPRESSIONS FOR A ANY SHELL, */
/* WHERE, H3=1 AND H1,H2 DEPEND UPON Y1,Y2, AND Y3. x/

/************************************************************************/
HREXP[1]: (DIFF(H1,Y2)/H1)$
HREXP[2] : (DIFF(H1,Y3)/H1)$

HREXP[3]: (1/(H1*+2))$

HREXP[4]: (DIFF(H1,Y2)*x2/(H1%*2))$

HREXP[S] : (DIFF(H1,Y2)**2/(i2**2))$
HREXP[6]: (DIFF(H1,Y3)**2/(H1*x2))$
HREXP[7]: (DIFF(H1,Y3)*%2)$

HREXP[8] : (DIFF(H1,Y2)+DIFF(H1,Y3)/(H1*%2))$
HREXP[9]: (DIFF(H2,Y3)/H2)$
HREXP[10] : (DIFF(H2,Y1)/H2)$

HREXP{11]: (1/(H2%x2))$

HREXP[12] : (DIFF(H2,Y1)**2/(H2%*2))$
HREXP[13] : (DIFF(H2,Y1)**2/(Hi**2))$
HREXP[14] : (DIFF(H2,Y3)**2/(H2%%2))$
HREXP[15] :DIFF(H2,Y3)**2$

HREXP[16] : (DIFF(H2,Y3)*DIFF(H2,Y1)/(H2*x2))$
HREXP[17]:(1/H2)$

HREXP[18]:(1/H1)$
HREXP[19] : (DIFF(H2,Y1)/H1)$
HREXP[20] : (DIFF(H1,Y2)/H2)$




-HREXP[21]

HREXP[24]

"HREXP[25] :
HREXP[26] :

-HREXP[27]
“HREXP [28]

-HREXP [32]
‘HREXP.[33]
:HREXP[34]

-HREXP[36]
‘HREXP[37]

HREXP[39]

“HREXP[42]

‘HREXP[43]:

-HREXP[44]
‘HREXP[45]

HREXP([50]
‘HREXP.[51]
HREXP([52]
sHREXP[53]
‘HREXP[54]

,]************************************************************************/
/*  THIS MACRO HRTAY(X,I)::= GENERATES THE COEFFICIENTS F, G, AND H OF »/
/* THE TAYLOR’S SERIES EXPANSION OF THE EXPRESSION X ABOUT THE POINT */
/*  Y3=0 FOR A CYLINDRICAL SHELL WITH Hi=1 AND H2=1-Y3/R2
/************************************************************************/

+(1/(H1%H2))$
‘HREXP[22]:
‘HREXP[23]:

(DIFF(H1,Y3)/H2)$
(DIFF(H2,Y3)/H1)$

+(DIFF(H2,Y1)*DIFF(H1,Y2)/(H1%%2))$
‘(DIFF(H2,Y1)*DIFF(H1,Y2)/(H2**2))$

(DIFF(H1,Y3)*DIFF(H2,Y3))$

: (DIFF(H1,Y3)*DIFF(H2,Y1)/(H1*%2))$
+(DIFF(H2,Y3)*DIFF(H1,Y2)/(H2%%2))$
HREXP[29]:
HREXP [30]-
“HREXP[31]:

(DIFF(H1,Y2)/(H1xH2))$

: (DIFF(H1,Y2)**2/ (H1**2%H2))$

(DIFF(H1,Y2)**2/(H2%*24H1)}$

: (DIFF(H1,Y3)**2/H1)$

+(DIFF(H1,Y2)/(H1%%2))$
: (DIFF(H1,Y3)/(H1%+2))$
‘HREXP[35]"

(DIFF(H1,Y2)+DIFF(H1,Y3)/(H1**+2%H2))$

:(DIFF(H2,Y1)/(H1*H2))$
: 2 (DIFF(H2,Y1)#+2/ (HixH2#*2))$
HREXP[38] :

(DIFF(H2,Y1)**2/(H2*H1%%2))$

+(DIFF(H2,Y3)*%2/H2)$
. "'HREXP.[40] :
‘HREXP[41]:

(DIFF(H2,Y1)/(H2#%2))$
(DIFF(H2,Y3)*DIFF(H2,Y1)/(H1¥H2%%2))$

: (DIFF(H2,Y3)/ (H2¥%2))$
(DIFF(H1,Y2)/(H2%%2))$
:(DIFF(H2,Y1)/(E1#x2))$
: (DIFF(H1,Y3)/(H1*H2))$
HREXP[46] :
‘HREXP[47]:
‘BREXP[48]:
“HREXP[49]:

(DIFF(H2,Y3)/(H1*H2))$-

(DIFF(H2,Y1)*DIFF(H1,Y2)/(Hi**2+H2))$
(DIFF(H1,Y2)*DIFF(H2,Y1)/(H2**2%H1))$
(DIFF(H1,Y3)*#DIFF(H2,Y1)/(Hi**Z «H2))$

=(DIFF(H2,Y3)*DIFF(H1,Y2)/(H2*¥2xH1))$
: (DIFF(H1,Y3)*DIFF(H2,Y3)/H2)$

: (DIFF(H1,Y3)*DIFF(H2,Y3)/H1)$

: (DIFF(H1,Y2)**2/ (H1*+2%H2#%2) ) $

: (DIFF(H1,Y2)/(H1**2¢H2))$

-HREXP[S5]:
-HREXP.[56] :
‘HREXP[57]:
HREXP[58]:
HREXP[59]:
HREXP[60]:

(DIFF(H2,Y1)**2/ (H1%*2%H2%%2))$
(DIFF(H2,Y1)/(H2**2%H1))$
(DIFF(H1,Y2)/(Hi*H2%%2))$
(DIFF(H2,Y1)/(H2*H1*+2))$

(DIFF(H2,Y1)*DIFF(H1,Y2)/ (K1%*2%H2**2) ) $

(DIFF(H1,Y3)*DIFF(H2,Y3)/(H1*H2))$

‘HBRTAY(X,I)::= BUILDQ([X,1],(

PRINT(" THE TAYLOR SERIES SCALE FACTOR EXPANSION OF

"),DISPLAY(X),

PRINT("

IS EQUAL TO F + G#Y3 + H*Y3*%2 + H.0.T., WHERE "),
(X:TAYLOR(FACTOROUT(EXPAND(RAT(EV(X,H1=1,H2=(1-Y3%C) ,DIFF))),C),¥3,0,3)),
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F[I] :EXPAND(COEFF(X,Y3,0)),DISPLAY(F[I]),
G[3]:EXPAND(COEFF(X,Y¥3,1)),DISPLAY(G[I]),
HLIJ:EXPAND(COEFF(X,Y3,2}),DISPLAY(H{L])))$

/%  COMPUTE THE COEFFICIENTS F, G, H, FOR ALL 60 HREXP EXPRESSIONS */
FOR I THRU-60 DO HRTAY(HREXP[I],I)$

Stk ok sk ok ok H R AR IR KK AR ks Rk Ak ok kR kb Rk 4k

/*  MACRO- HRSUB(X) IAKES ANY ONE-TERM EXPRESSION X, (PRODUCTS ARE OK, */
#/% BUT [+~] OPERATORS ARE NOT) AND SUBSTITUTES THE APPROXIMATE SERIES */

/%  EXPANSION F+G*Y3+AR2*#H*Y3°2" FOR THE FUNCTION OF LAME PARAMETERS  */

JHrkkoskdoiok bk ok ok kok ok kb kakokk okk ok koo ok ok kAR ok kKRR kK [

““HRSUB(X) : :=BUILDQ([X],(

X0:X,

:NUM(X)/sUBST(D[1],H1,DENOM(X)),
:NUM{%)/sUBST(D[2] ,H2,DENOM(X)),
:NUM(X)/RATSUBST(D[3],D[1]*D[1],DENOM(X)),
:NUM(X) /RATSUBST(D[4],D[2]*D[2] ,DENOH(X)),
' NUM(X) /RATSUBST(D[5],D[1]*D[2] ,DENOM(X)),
:NUM(X)/RATSUBST(D[6],D[1]*D[4],DENOM(X)),
< NUM(X)/RATSUBST(D[7],D[2]+D[3],DENOM(X)),
X:NUM(X)/RATSUBST(D[8],D[3)+D[4] ,DENOM(X)),
XD:X,

:NUM(X)/RATSUBST(1/D[1],D[1] ,DENOK(X)),
:NUM(X)/RLTSUBST(1/D2],D[2] ,DENOM(X)),
:NUM(X) /RATSUBST(1/D[3],D[3],DENON(X)),

:N i 7X) /RATSUBST(1/D 4] ,D[4],DENON(X)),
:NW»  /RATSUBST(1/D{5],D[5],DENGM(})),
:NUt-  )/RATSUBST(1/p[6],D[6],DENUK(L}),
:NUM(X)/RATSUBST(1/D(7],D(7],DENON:Y)),
:NUM(X)/RATSUBST(1/D[8],D[8],DENOM(X)),

5 < DeI/Dd, b2 B¢ ¢
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AN: X,

:RATSUBST(F[69] +Y3+G[59] rY2**2: A7 2%H[59] , *DIFF(H2,Y1) = DIFF(H1,Y2)*D[8],X),
:RATSUBST(FL55]+Y3*G{E5]+Y3s+2+AR2+H[55] , 'DIFF(H2,Y1)**2xD[8],X),

:RATSUBST (F[53]+Y3*G[53] +Y3 +*24;R2*H[53] , ’DIFF(H1,Y2)**2+D[8] ,X),
{RATSUBST(F[50]+Y3*G[50]+Y3**2*AR2+H[50] , *DIFF(H2,Y3)*’DIFF(H1,¥2)*D[6],X),
:RATSUBST(F[49]+Y3+G[49] +Y3**2+#AR2%H[49] , 'DIFF (H1,Y3)*’DIFF(H2,Y1)2D7]1,X),
:RATSUBST(F[48]+Y3*G [48]+Y3**x2+AR2%H [48] , 'DIFF(H1,Y2)*’DIFF(H2,Y1)*D[6],X),
+RATSUBST(F[471+Y3+G[47]+Y3*+2#AR2+H[47], 'DIFF(H2,Y1)* DIFF(H1,Y2)*D[7],X),
:RATSUBST(F[41]+Y3+G[41]+Y3+%x2+AR2%H[41] , *DIFF(H2,Y3)* DIFF(H2,Y1)*D[6],X),
:RATSUBST(F[38]+Y3*G[38]+Y3%*2#AR2*H[38] , *DIFF (H2,Y1)**24D[7],X),

:RATSUBST (F[371+Y3%G[37]+Y3#%2%AR2%H[37] , *DIFF (K2,Y1)*+2xD[6] ,X),
:RATSUBST(F[35]+Y3*G[35]+Y3*#2*AR2+H([35] , ’DIFF(H1,Y2)*'DIFF(H1,Y3)*D[7],X),
:RATSUBST(F(31]+Y3+G[31]+Y3+*2*AR2+K [31], 'DIFF(HZ,Y2)#*2+D[6] ,X),

- RATSUBST(F[30]+Y3%G[30]+Y3**x2+AR2*H[30] , *DIFF (H1,Y2)**2+D[7],X),

:RATSUBST (F[58] +Y3*G [58]) +Y3**2*AR2*H [58] , DIFF(H2,Y1)*D[7],X),
:RATSUBST(FI57)+Y3%G[57]+Y3*+2%AR2%H [57] , 'DIFF(H1,Y2)*D[61,X),
:RATSUBST(F[56]+Y3*G[56] +Y3#*2*AR2*H [56] , ’DIFF(H2,Y1)#D[6],X),
:RATSUBST(F[541+Y3+G[54]+Y3*+2+AR2%H [54] , *DIFF(H1,Y2)*D(71,Y),
:RATSUBST(F[60]+Y3xG[60]+Y3*+2#AR2xH[60] , ’DIFF(H1,Y3)*’DIFF(H2,Y3)*D[5],X),
:RATSUBST (F[28]+Y3+G[28] +Y3*+2+¢AR2#H [28] , *DIFF(H2,Y3)*’DIFF(H1,Y2)+D[4],X),




X:RATSUBST(F[27]+Y3%G[27]+Y3**2«xAR2*xH[27], *DIFF(H1,¥3)*’DIFF(H2,Y1)*D[3],X),
X:RATSUBST(F [25] +Y3#G [26]+Y3*+*2xAR2*H [25] , "DIFF(H2,Y1)*’DIFF(H1,Y2)*D[4],X),
X:RATSUBST(F[24]+Y3%G[24] +Y3%x2«xAR2+H [24] , *DIFF(H2,Y1)*DIFF(H1,¥2)*D[3],X),
X:RATSUBST(F[16]+Y3+G[16]+Y3++2+AR2+H{[16], *DIFF(H2,Y3)*DIFF(H2,Y1)*D[4] ,X),
X:RATSUBST(F [8]+Y3*G[8] +Y3*+2«AR2*H[8] , ’DIFF (H1,Y2)*’DIFF(H1,Y3)*D(3],X),
X:RATSUBST(F[14]+Y3%G[141+Y3**2%xAR2+H[14], ’DIFF(H2,Y3)**2*D[4],X),
X:RATSUBST(F[13]+Y3*G[13]+Y3#*2*AR2*H [13] , ’DIFF(H2,Y1)**x24D[3],X),
X:RATSUBST(F[12]+Y3+G[12]+Y3%*2%AR2xH [12] , ’DIFF(H2,Y1)**2+D[4] ,X),
X:RATSUBST(F[6]+Y3*G[6]+Y3*x2%AR2*H[6] , ’DIFF (H1,Y3)**24D[3],X),

X :RATSUBST(F[5]+Y3*G[5]+Y3+x2«AR2*H[5], ’DIFF(H1,Y2)**2xD[4] ,X),
X:RATSUBST(F[4]+Y3%G[4]+Y3#+2xAR2*H [4], ' DIFF (H1,Y2)**2+D[3],X),

X :RATSUBST(F[46]+Y3*G [46] +Y3+*2xAR2+H [46] , ' DIFF (H2,Y3)*D[5],X),

X :RATSUBST(F[45]+Y3%G[45)+Y3**2+xAR2xH[45] , *DIFF (H1,Y3)*D[5],X),
X:RATSUBST(F [44]+Y3%G[44) +Y3*x2xAR2+H [44] , *DIFF(B2,Y1)*D[3],X),

X :RATSUBST(F[43] +Y3%G[43) +Y3*x2xAR2*K [43] , *DIFF(H1,Y2)*D[4],X),

X :RATSUBST(F [42] +Y3%G [42] +Y3**2«xAR2*H [42] , *DIFF (H2,Y3)*D[4],X),

X :RATSUBST(F [40] +Y3*G[40]+Y3**2+AR2xH [40] , ’DIFF(H2,Y1)*D[4],X),
X:RATSUBST(F[36]+Y3%G[36]+Y3**x2«AR2*H[36], 'DIFF(H2,Y1)*D[5],X),
X:RATSUBST(F[34]+Y3+G[34] +Y3**2+«AR2*H [34], 'DIFF(}1,Y3)*D[3],X),

X :RATSUBST (F[33]+Y3*G[33] +Y3**2*%AR2%H [33] , 'DIFF (H1,Y2)*D[3],X),
X:RATSUBST(F[29] +Y3+G[29] +Y3**2+¢AR2+H [29] , 'DIFF(H1,Y2)*D[5],X),
X:RATSUBST(F[3]+Y3+G[3]+Y3%*2%AR2+H[3], 12D [3],X),

X:RATSUBST(F[21] +Y3#G[21]+Y3#x2#¢AR2¢H[21] ,1*D[5] ,X),
X:RATSUBST(FL11]+Y3%G[11]+Y3**x2%xAR2xH[11],1*D[4],X),

X :RATSUBST(F[52] +Y3*G[52] +Y3**2xAR2+H [52] , 'DIFF(H1,Y3)* ’DIFF(H2,Y3)*D[1],X),
X:RATSUBST(F[51]+Y3+G[51]+Y3+x2#AR2%H[51] , *DIFF(H1,Y3)* DIFF(H2,Y3)*D[2],X),
X:RATSUBST(F[39]+Y3*G[39]+V3**2+AR2*H [39] , DIFF (H2,Y3)**2xD[2] ,X),
X:RATSUBST(F[32] +Y3+G[32]+Y3**x2%AR2xH [32] , ’DIFF(H1,Y3)**2*D[1],X),

X :RATSUBST(F[23]+Y3+G[23]+Y3*x2xAR2%H [23] , *DIFF(H2,¥3)*D[1],X),

_ X:RATSUBST(F[22]+Y3*G[22] +Y3**2+AR2%H [22] , "DIFF (H1,Y3)*D[2],X),

X :RATSUBST(F[20]+Y3+G[20]+Y3*x2+AR2%H [20] , 'DIFF(H1,Y2)*D[2],X),
X:RATSUBST(F[19]+Y3*G[19]+Y3**2+AR2*H[19], *DIFF(H2,Y1)*D[1],X),
X:RATSUBST(F[10]+Y3%G[10]+Y3**2%AR2+H [10], 'DIFF(H2,Y1)*D[2],X),

X :RATSUBST(F[9]+Y3+G[9] +Y3**2xAR2%H[9] , ’DIFF(H2,Y3)*D[2],X),
X:RATSUBST(F[1]1+Y3+xG[1]+Y3**2xAR2*H[1], ’DIFF(H1,¥2)*D[1],X),

X :RATSUBST(F[2]1+Y3%G[2] +Y3#+2%xAR2+H [2] , *DIFF (H1,Y3)*D[1],X),
X:RATSUBST(FL[17]+Y3*G[17]+Y3+x2+AR2*H[17],1%D[2],X),
X:RATSUBST(F[18]+Y3+G[18]+Y3*+2+AR2xH [18],1+D[1],X),

X:RATSUBST(F[15] +Y3%G[15]+Y3**x2xAR2%H [15] , *DIFF (H2,Y3)**2,X),
X:RATSUBST(FL[7]+Y3%G[7]+Y3%*2%xAR2*H[7] , *DIFF (H1,Y3)*%2,X),

X :RATSUBST(F[26] +Y3%G[26]+Y3*x2#AR2+H [26] , 'DIFF (H1,Y3)* DIFF(H2,Y3),X)))$

/************************************************************************/
/*  MACRO PICK(XXX) TAKES ANY EXPRESSION XXX (PREVIOUSLY EXPANDED) */
/*  AND SEPARATES IT INTO SINGLE EXPRESSIONS LABELED E(I). 1IT THEN  */
/*  CALLS MACRO HRSUB(X) TO FIND THE APPROPRIATE LAME PARAMETER */
/*  APPROXIMATION FOR EACH EXPRESSION AND THEN SUMS ALL THE EXPRES-  */
/* SIONS TO YIELD THE EXPRESSION XXX WITH ALL TERMS FULLY APPROXIMATED*/
/*******************#****************************************************/
E(I):=CONCAT(E,I)$

PICK(XXX)::=BUILDQ([XxX],(
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I1:LINENUM,

NT:NTERMS(XXX),

I2:I1+NT~1,

PRINT(" THIS EXPRESSION HAS",NT,"TERMS TO. BE RESOLVED"),
PICKAPART(XXX,1),

FOR.K:It THRU I2 DO EXH[K]:EV(E(K),EVAL),

FOR K:I1 THRU I2 DO BRSUB(EXH[K]),

XXX :SUM(EXHIK] ,K,I1,I2),

DISPLAY (XXX) ))$

T sk ko s ok Kok o ok sk sk slok sk o Aok sk ok sk sk ke ko ok s koo kst ok ok sk sk ok ok ok ok sk ok sk sk sk ok sk ok sk ok ok /
/*  USE MACRO PICK(XXX) TO APPROXIMATE LAME PARAMETER FUNCTIONS OF */
/% THE STRAIN COMPONENTS */
/Rt R Rk ok ok R ek sk A ok sk okok sk Kok ko kol s ok sk ok sk Aok ok ok ks ok ok ok ok ok ok ok ok /
‘ERR4:ER[4]$°ERRS:ER[5]$

PICK(ERR4).; PICK(ERRS);

‘ER[4]:ERR4$ ER[5]:ERRS$

ERR1:ER[1]$ ERR2:ER[2]$ ERR6:ER[61$

"PICK(ERR1):; PICK(ERR2); PICK(ERRS);

‘ER[1]:ERR1$ ER[2] :ERR2$ ER[6]:ERR6$

- 'SAVE("ER123.SV",ER);

/AR Aok koo ok skok ok ok sk e o ook ok skl ke ks i okl sk ok sk sk sk sk ok ok ke ok s skl ok ke koK ok ok ok ok ok ok ok /
/*  THIS MACRO, CHIFORM(XX,YY,K)::= EXPANDS A 6X1 VECTOR CALLED XX, */
/*  THEN- 'DETERMINES AND.DISPLAYS THE COEFFICIENTS OF Y3 UPTO THE */
/*  KTH-POWER. THESE ARE CALLED YY[I,K]. */
/************************************************************************/
:CHIFORM(XX,YY,K) : : =BUILDQ( [XX,YY,K],

“(FOR I THRU'6 DO FOR JJ THRU K+1 DO

(XY [1] : FACTOROUT(EXPAND(RAT(XX[I])), [H1,H2]),

YY[X,JJ-1] :COEFF(XY[I],Y3,13-1),

DISPLAY(YY[I,JJ-11))))$

POWERDISP:TRUE$ CHIFORM(ER,XR,12); KILL(ER); SAVE("XR123.SV",XR);

/R F AR Ak Ak kKoK kR Kok kR ok dokokokkok kbl ok dokok Ak ek ok ok ok sk ok ok kR kool Rk kK ok ok
/*  THIS MACRO, DECOMPOSE(XR)::= DETERMINES AND DISPLAYS THE COEFFIC- */
~/*  IENTS OF DISPLACEMENT VARIABLES Q(1) THROUGH Q(18) AND CREATES A */
/*  6X13X18 ARRAY CALLED LMAT OF THE CONSTANT COEFFICIENTS OF LINEAR */
/*  DISPLACEMENT TERMS, AND A 6X13X18X18 ARRAV CALLED HMAT OF THE */
/*  CONSTANT COEFFICIENTS OF THE QUADRATIC DISPLACEMENT TERMS. */
[ RRE R AR Aok Rk Rk ok ok ok ok ko sookook ok sk ok sk ok ki ok ok kokok ok ok sk ok K koK ok ok Kok k /
DECOMPOSE(XR) : : =BUILDQ([XR],

(FOR I THRU 6 DO (PRINT("DECOMPOSING STRAIN COMPONENT",I),

(FOR J:0 THRU 12 DO

(FOR K THRU 18 DO

(IF HIPOW(XRII,J],G(K))=2 THEN

XQUADLI, J,K] .RATCOEFF(XR[I,3],Q(K),2)*Q(K)*2+RATCOEFF(XR[I, J1,Q(K),1) ELSE
XQUAD(X,J,K] :RATCOEFF(XR[I,J],Q(K),1),

FOR L THRU 18 DO HMATLI,J,K,L]:RATCOEFF(XQUADII,J,K],q(L),1),

LMATLI, J, K] :EXPAND(XQUAD(I,J,K]-SUM(HMAT[I,J,K,LI*Q(L),L,1,18))))))))$
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-DECOMPOSE(XR) ;
" KILL(XR);
“SAVE("LHMAT.SV-123",LMAT,HMAT) ;

:/*********:ﬁ**************************************************************/
/*- GENERATE ELEMENT-INDEPENDENT STRAIN DEFINITION ARRAYS LX AND HXX %/
/* FOR INPLANE STRAINS AND SX AND SSXX FOR TRANSVERSE SHEAR STRAINS. */
/* X AND XX REPRESENT THE POWER OF Y3 FOR WHICH THE COEFFICIENTS */
/*  APPLY. NOTE LX HAS 3 COLUMNS. COLUMN 1 CONTAINS COEFFICIENTS OF */
/* THE EPSILON11 TERMS WHICH ARE LINEAR IN DISPLACEMENTS Q(1)-Q(18). */
/*  COLUMN 2 CONTAINS EPSILON22 TERMS AND COLUMN 3 CONTAINS EPSILON12 */
/* TERMS. LIKEWISE HXX HAS 3 PARTITIONS. COLUMNS 1-18 CONTAINS */
/*  COEFFICIENTS OF EPSILON11 TERMS WHICH ARE QUADRATIC IN DISPLACE- */
/* MENT. COLUMNS 19-36 CONTAIN THE EPSILON22 TERMS AND COLUMNS 37-54 */
/*  CONTAIN THE .EPSILON12 TERMS. SIMILARLY, SX CONTAINS 2 COLUMNS */
/* PERTAINING TO THE COEFFICIENTS OF LINEAR TERMS OF EPSILON23 AND */
/* EPSILON13, RESPECTIVELY. SSXX HAS 2 PARTITIONS. COLUMNS 1-18 */
-/* PERTAIN TO. THE COEFFICIENTS OF THE QUADRATIC TERMS OF EPSILON23  */
/* “AND EPSILON13, RESPECTIVELY. */
/***f*i******************************************************************/
"FOR' NN THRU-18 DO (

LO[NN,1):LMAT[1,0,NN],LO[NN,2] : LMAT[2,0,NN],LG[NN, 3] :LMAT[6,0,NN],
L1[NN,1]:LMAT[1,1,NN],L1[NN,2] :LMAT[2,1,NN],L1[NN, 3] :LMAT[6,1,N0],
L2[NN,1] :LMAT[1,2,NN],L2[NN,2] :LMAT[2,2,NN],L2[NN, 3] : LMAT[6,2,NN],
L3[NN,1]:LMAT[1,3,NN],L3[NN,2] :L¥AT[2,3,NN],L3[NN,3] :LMAT[6,3,NN],

L4 [NN-,1] :LMAT[1,4,8N] L4 [NN, 2] :LMAT[2,4,NN],L4[NN,3] :LMAT[6,4,NN],
LS[NN,1] :LMAT[1,5,NN],L5[NN,2] :LMAT[2,5,NN] ,L5[NN,3] : LMAT[6,5,NN],
L6[NN,1] :LMAT[1,6,NN],L6[NN,2] :LMAT[2,6,NN] L6 [NN, 3] :LMAT[6,6,NN],

‘L7.(NN5 1] :LMAT[1,7,NN] ,L7[NN, 2] :LMAT[2,7 ,NN],L7[NN,3] :LMAT[6,7,NN],
SO[NN,1]:LMAT[4,0,NN],SO[NN,2] : LMAT[5,0,NN],
S1[NN;,1]:LMAT(4,1,NN],S1[NN,2] :LMAT[5,1,NN],

S2[NN,, 1] :LMAT[4,2,NN],S2[NN, 2] :LMAT[5,2,NN],

-S3[NN, 1] :LMAT[4;3,NN],S3(NN,2] :LMAT[S,3,NN],

S4[NN,1] :LMAT[4,4,NN],S4[NN,2] : LMAT[S5,4,NN],

S5[NN, 1] :LMAT[4,5,NN],S5[NN,2] : LMAT(5,5,NN],

:S6[NN,1] :LMAT[4,6,NN],56 NN, 2] : LMAT(5,6,NN],
STINN,1]:LMAT[4,7,NN],STINN,2] :LHAT(S,7,NN],

FOR MM THRU 18 DO (

HO [NN ,MM] : HMAT(1,0,NN,MM] ,HO[NN ,MM+18] : HMAT[2,0,NN,MM],

HO [NN ,MM+36] : HMAT[6,0,NN ,MM],

H1 [NN-, MM] :HMAT[1,1,NN,HM]  H1 [NN,MM+18] :HMATI2,1,NN,MM],

H1[NN,MM+36] :HMAT[6,1,NN,MM],

H2[NN,MM] :HMAT[1,2,NN,MM] B2 (NN ,MM+18] : UMAT[2,2, NN, MM] ,

H2[NN,MM+36] :HMATL6,2,NN,MM],

H3[NN,MM] :HMAT(1,3,NN,MM] , H3[NN,MM+18] : HMAT(2,3, NN ,MM],

H3[NN,MM+36] :HMAT(6,3,NN,MM],

H4 [NN,MM] :HMAT(1,4,NN,MM] ,H4 (NN, MM+18] : HMAT[2,4, K, MM],

H4 [NN ,MM+36] :HMAT[6,4,HN ,MM],

HS[NN,MN] :HMAT[1,5,NN,MM] , HS [NN ,MM+18] : HMAT[2,5, NN, HM],

HS (NN ,MM+36] : HMAT[6,5,NN,MM] ,
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‘H6 [NN,MM] :HMAT[1,6,NN,MM] ,H6 [NN ,MM+18] : HMAT[2,6,NN,MM],

H6[NN,MM%36J:HHAT[G,G,NN,MM],
H7[NNJHMJ;ﬁMAT[1,7,NN,MM],H7[NN,MM+18J:HHAT[2,7,NN,MM],

"H7 [NN, MM+36] : HMATL6,7, NN, MM]
H8 [NN, MM]::HMAT[1,8, NN, MM] , HB[NN,MM+18] :HMAT [2,8, NN, MH]

H8 [NN ,MM+36] : HMA1 [6,8,NN,MM],

HO [NN,MM] :HMAT[1,9,NN,MM] ,HO[NN ,MM+18] :HMAT[2,9, NN, MM],

HO [N, MM+36] : HMAT[6,9,NN,MM],

H1O[NN,MM] :HMAT[1,10,NN,MM] ,H10 (NN ,MM+18] : HMAT[2, 10, NN, MM] ,

‘H10[NN,MM+36] :HMATL6,10, NN, MM],
‘H11[NN,MM] :HMAT[1,11,NN,MM] ,H14 [NN,MM+18] :HMAT[2, 11, NN, MM],

H11[NN,MM+36] :HMAT[6,11,NN,MM],

H12[NN,MM] :HMAT[1,12,NN,MM] ,H12 [N, MM+18] :HMAT[2, 12, NN, MM],
H12[NN,MM+36] :HMAT[6,12,NN,MM],
SSO[NN,MM]--HMAT[4,0,NN,MM] ,SSO [NN,MN+18] :HMAT[S,0 NN, HM],

'SST[NN,MM] :HMAT[4,1,NN,MM],S51 [NN,MM+18] :HMAT[S,1,NN, MM] ,
:SS2[NN-, MM] :HMAT[4,2,NN,MN] , SS2 [NN, MM+18] :HMAT[S, 2, NN, MH]

SS3[NN,MM] :HMAT[4,3,NN,MM] ,SS3[NN,MM+18] :HMAT[S,3 NN, MM],

-SS4[NN,MM] :HMAT[4,4,NN,MN] ,SS4 [NN, MM+18] :HMAT[5,4, NN, M],

SSS NN, MM] :HMAT[4,5,NN,MM] ,SS5 [NN, MM+18] :HMAT[5,5 NN, MM] ,
SS6 [NN, MM] :HMAT[4,6,NN,MH] ,SS6 [NN, MM+18] :HKAT[S,6 NN, HM] ,
SSTINN,MM] :HMAT[4,7,NN,MM],SS7[NN,MM+18] : HMAT[S,7 NN, MM],
SS8INN,MM] :HMAT[4,8,NN,MM] ,SS8 (NN, MM+18] : HMAT[S,8 NN, MM],

'SSQENNlHM]:HHAT[4;9,NN,HH],SSQ[NN,HH+18]:HHAT[S,Q,NN,HH],
"5S11[NN,MM] :HMAT[4,11,NN,MM],SS11[NN,MM+18] : EMAT5,11, NN, MM],

sSiztﬁn,HM]:HMA:[4,12,NN,MMJ,5512[NN,MH+181:HHAT[s,iz,NN,MMJ,
SS10[NN,MM] :HMAT[4,10,NN,¥M],SS10[NN,MM+18] : HMAT[S, 10, NN, MM]))$

/*
Lo
L3

H3

H9

FORM MACSYMA MATRICES 'FROM THE ABOVE DEFINED ARRAYS. */

:GENMATRIX(LO,18,3)$ L1:GENMATRIX(L1,18,3)$ L2:GENMATRIX(L2,18,3)$
:GENMATRIX(L3,18,3)$ L4:GENMATRIX(L4,18,3)$ L5:GENMATRIX(LS,18,3)$
L6:
.S0:
53:
S6:
HO:

GENMATRIX(L6,18,3)$ L7:GENMATRIX(L7,18,3)$

GENMATRIX(S0,18,2)$ S1:GENMATRIX(S1,18,2)$ S2:GENMATRIX(S2,18,2)$
GENMATRIX(S3,18,2)$ S4:GENMATRIX(S4,18,2)$ S5:GENMATRIX(S5,18,2)$
GENMATRIX(SS6,18,2)$ ST:GENMATRIX(S7,18,2)$

GENMATRIX(HO,18,54)$ H1:GENMATRIX(H1,18,54)$ H2:GENMATRIX(H2,18,54)$

:GENMATRIX(H3,18,54)$ H4:GENMATRIX(H4,18,54)$ H5:GENMATRIX(HS,18,54)$%
H6:

GENMATRIX(H6,18,54)$ H7:GENMATRIX(H7,18,54)$ H8:GENMATRIX(HS,18,54)$

:GENMATRIX(HS,18,54)$ H10:GENMATRIX(H10,18,54)$

H11:GENMATRIX(H11,18,54)$ H12:GENMATRIX(H12,18,54)%
$S0:GENMATRIX(SS0,18,36)$ SS1:GENMATRIX(SS1,18,36)$
SS2:GENMATRIX(SS2,18,36)$ SS3:GENMATRIX(SS3,18,36)$

5S4 :GENMATRIX(SS4,18,36)$ SS5:GENMATRIX(SS5,18,36)%
S56:GENMATRIX(SS6,18,36)$ SS7:GENMATRIX(SS7,18,36)$
SS8:GENMATRIX(SS8,18,36)$ SS9:GENMATRIX(SS9,18,36)$
$S10:GENMATRIX(SS10,18,36)$ SS11:GENMATRIX(SS11,18,36)$
5S12:GENMATRIX(SS12,18,36)$
SAVE("LSMAT123.sv",L0,L1,L2,L3,L4,LS,L6,L7,50,51,52,53,54,55,56,57);
SAVE("HMAT123.Sv",Ho,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11 ,H12);
SAVE("SSMAT123.5V",S50,551,552,553,554,555,556,557,558,559,5510,5511,5512) ;
KILL(ALL)$




JFRAE AR AR AR A AR A AR o Aok sk ok K Kok AR AR RK Kk kKoK sk ok ok ok ok /

/*  GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY K. */
/R R ok kKR Kok ok sk sk Rk sk ok sk ko ok Aok ko ok Kok ok ok ok ok kR kR Ao R sk sk ok ok ok ok /

/* ASSEMBLE MATRIX KO */

LOADFILE("LSMAT123.SV")$

LO:SUBST( [K=K1,C=P1],L0)$ L1:SUBST([K=K1,C=P1],L1)$
L2:SUBST([K=K1,C=P1],L2)$ L3:SUBST([K=K1,C=P1],L3)$
L4:SUBST([K=K1,C=P1],L4)$ L5:SUBST([K=K1,C=P1],L5)$
L6:SUBST([K=K1,C=P1],L6)$ L7:SUBST([K=K1,C=P1],L7)$
LOT:TRANSPOSE(LO); L1T:TRANSPOSE(L1); L2T:TRANSPOSE(L2);
L3T:TRANSPOSE(L3); LAT:TRANSPOSE(L4); L5T:TRANSPOSE(LS);
L6T:TRANSPOSE(L6); L7T:TRANSPOSE(L7); KM:ZEROMATRIX(18,18)%

FOR II THRU 3 DO FOR JJ THRU 3 DO (PRINT(II,JJ),
KM:KM+A[TI,J3)*(COL(LO,II).ROW(LOT,3J) )
DPD[II,J3])*(COL(L1,II).ROW(LIT,JI)+
COL(LO0,II).ROW(L2T,JI)+
COL(L2,II).ROW(LOT,J3))+
FLII,JJ]1*(COL(L2,II).ROW(L2T,JI)+
COL(L1,II).ROW(L3T,JJ)+ COL(L3,II).ROW(L1T,JJ)+
COL(LO,II).ROW(LAT,JJ)+ COL(L4,II).ROW(LOT,JI))+
H[II,J33]*(COL(L3,II).ROW(L3T,JI)+
COL(L2,II).ROW(L4T,JJ)+COL(L4,II) .ROW(L2T,JI)+
COL(L1,II).ROW(LST,JJ)+COL(LS,II) . ROW(LIT,JI)+
COL(LO,II).ROW(L6T,JJ)+COL(L6,II).ROW(LOT,JI))+
JEIT,J33*(COL(L4,II) .ROW(LAT,JJ)+
COL(L3,II).ROW(LST,3J)+COL(LS,II) . ROW(L3T,JI)+
COL(L2,II).ROW(L6T,JJ)+COL(L6,II).ROW(L2T,JI)+
COL(L1,II).ROW(LYT,JJ)+COL(L7,II).ROW(LLT,II))+
L[IT,JJ)*(COL(L5,II).ROW(LST,JJ)+
COL(L4,II).ROW(L6T,JJ)+COL(L6,II).ROW(LAT,JI)+
COL(L3,II).ROW(LTT,JJ)+COL(L7,II).ROW(L3T,JJ) )+
R[II,JJ)*(COL(L6,II).ROW(LET,JI)+
COL(L5,II).ROW(LTT,JJ)+COL(L7,II).ROW(LST,JI)));

/AR Rk ko ok kR ok ok ok ek sk ok ok ok Sk sk ks ok sk ke ok koo sk sk o ok ok o koK ok o kK ok ok ok ok /
/* THE FOLLOWING STATEMENTS GENERATE A FORTRAN STATEMENT FOR EACH */
/* NONZERO ELEMENT OF STK(I,J). THESE STATEMENTS ARE OF THE FORM */

/* STK(2,2)=A(1,1) */
/*  EACH STATEMENT IS WRITTEN TO A SEPARATE FILE CALLED TT2XXX, */
/%  WHERE XXX STARTS AT 001 FOR THE FIRST NONZERO ENTRY AND CON- */
/*  TINUES SEQUENTIALLY UNTIL ALL NONZERO ENTRIES THROUGH STK(18,18) =/
/*  ARE GENERATED. THE MACSYMA FUNCTION GENTRAN WILL ALSO BREAK */

/*  STATEMENTS EXCEELING 800 CHARACTERS INTO SHORTER EXPRESSIONS TO */
/* AVOID TOD MANY CONTINUATION LINES., MACSYMA AUTOMATICALLY MAKES */
/*  CONTINUATION LINES COMPLETE WITH A LEGAL CHARACTER IN COLUMN 6. */
[ Rk ks ok kol ook R Kokok ok Aok ok ok ok ok sk Rk ok doR ok okl ok sk ok Aok ok sk okt ok ok o ok /

KO:ZEROMATRIX(18,18)$
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FOR III THRU 18 DO FOR JJJ:III THRU i8 DO -
KO[IIX,JJ3]:KM[I1Z,J3J]$

FRAME(I,J) :=CONCAT(TT,EV(18*(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18& DO

(IF Ko[I,J1#0 THEN (PT:1,GENTRAN(STKLEVAL(I),EVAL(J)]:EVAL(K0[I,J1),
[EVAL(FRAME(I,I))1)))$

iF PT#1 THEN GENTRAN(PT:EVAL(PT),[TT2000])$

/************************************************************************/

/* GENERATE THE LINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY KS. */
[ Rk kR sk ok Rk ok ok ok ok okok koK ok Rk Rk ok sk ko ook Aokok kR ok /

/* ASSEMBLE MATRIX KS */

LOADFILE("LSMAT123.5V'")$

‘50:SUBST( [K=K1,C=P1],50)$ S1:SUBST([K=K1,C=P1],S1)$ S2:SUBST( [K=K1,C=P1],52)$
$3:SUBST([K=K1,C=P1],53)$ S4:SUBST([K=K1,C=P1],54)$ S5:SUBST([K=K1,C=P1],S5)$
$6:SUBST([K=Ki,C=P1],56)$ S7:SUBST([K=K1,C=P1]},S7)$

SOT: TRANSPOSE(S0); S1T:TRANSPOSE(S1); S2T:TRANSPOSE(S2);

S3T:TRANSPOSE(S3); S4T:TRANSPOSE(S4); S5T:TRANSPOSE(SS);

S6T:TRANSPOSE(S6); S7T:TRANSPOSE(ST); KS:ZEROMATRIX(18,18)%

FOR II THRU 2 DO FOR JJ THRU 2 DO (PRINT(II,JJ),
KS:KS+AS[IT,JJ]*(COL(S0,II).ROW(SOT,JI))+
DS[II,JJ]*(COL(S1,II).ROW(S1T,II)+
COL(S0,II).ROW(S2T,JJ)+COL(S2,II) .ROW(SOT,JI))+
FS[II,JJ]*(COL(S2,II).ROW(S2T,JI)+
COL(S1,II).ROW(S3T,JI)+COL(S3,II).ROW(SIT,JI)+
COL(S0,II).ROW(S4T, JJ)+COL(S4,II).ROW(SOT,JJ))4
HS[II,JJI1*(COL(S3,II).ROW(S3T,JI)+
COL(S2,II).ROW(S4T,JJ)+COL(S4,II).ROW(S2T,JI)+
COL(S$1,II).ROW(SET,JJ)+COL(S5,I1).ROW(S1T,JI)+
COL(S0,I1).ROW(S6T,JI)+COL(S6,II).ROW(SOT,JI))+
JS({II,JI1*(COL(S4,II).ROW(SAT,II)+
COL(S3,II).ROW(S5T,JJ)+COL(S5,I1).ROW(S3T,II)+
COL(S2,II).ROW(S6T,JJ)+COL(S6,II).ROW(S2T,II)+
COL(S1,II).ROW(STT,JJ)+COL(ST,II).ROW(S1IT,JI))+
LS[II,JJ3)*(COL(S5,II) . ROW(SST,II)+
COL(S4,II).ROW(S6T,JJ)+COL(S6,II).ROW(SAT,II)+
COL{(S3,II).ROW(S7T,JJ)+COL(S7,I1).ROW(S3T,JI))+
RS[II,JJ3]*(COL(S6,II).ROW(SET,JI)+
COL(S5,II).ROW(STT,JJ)+COL(ST,I1).ROW(S5T,JI)));

KO:ZEROMATRIX(18,18)¢$

FOR III THRU 18 DO FOR JJJ:III THRU 18 DG

KO[III,J33):KS[111,333]$

FRAME(I,J) :=CONCAT(TT,EV(18%(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF Ko[I,JJ#0 THEN (PT:1,GENTRAN(STKS[EVAL(I),EVAL(J)]:EVAL(KO[I,J]),
[EVAL(FRAME(Z,I))1)))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])$
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[k kR ko ok ok okt ok otk kel sk ek ok ok dokok sk sk okok ko sk sk skok ok sk ok ok ok ok ok ok Kok ok ok /

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY Ni. x/
[ RAR ARk ko Ak ok ok ko ok ok ok ok ok e sk ok okl sk okl ok sk ok sk ok Aok R ok ok koK sk ok ok ok ok o /

/* ASSEMBLE MATRIX N1 */
TQ:MATRIX([Q(1),Q(2),Q(3),Q(4),q(5),q(6),q(7),Q(8),Q(9),Q(10),
Q(11),Q(12),0(13),0(14),Q(15),0(16),0(17),Q(18)1)$
Q: TRANSPOSE(TQ)$
LOADFILE("LSMAT123.SV")$ LOADFILE("HMAT123.SV")$
LO:SUBST([K=K1,C=P1]},L0)$ L1:SUBST([K=K1,C=P1],L1)$
L2:SUBST([K=K1,C=P1],L2)$ L3:SUBST([K=K1,C=P1],L3)$
L4:SUBST([K=K1,¢=P1],L4)$ L5:SUBST([K=K1,C=P1],L5)$
L6:SUBST([K=K1,C=P1],L6)$ L7:SUBST([K=K1,C=P1],L7)$
LOT:TRANSPOSE(LO)$ LiT:TRANSPOSE(L1)$ L2T:TRANSPOSE(L2)$
L3T:TRANSPOSE(L3)$ L4T:TRANSPOSE(L4)$ L5T:TRANSPOSE(L5)$
L6T:TRANSPOSE(L6)$ L7T:TRANSPOSE(L7)$
HO:SUBST([K=K1,C=P1] ,H0)$ H1:SUBST([K=K1,C=P1],H1)$
H2:SUBST([K=K1,C=P1],H2)$ H3:SUBST([K=K1,C=P1],H3)$
H4:SUBST([K=K1,C=P1] ,H4)$ H5:SUBST([K=K1,C=P1],H5)$
H6:SUBST([K=K1,C=P1],H6)$ H7:SUBST([K=K1,C=P11,HT)$
HB8:SUBST([K=K1,C=P1] ,H8)$ H9:SUBST([K=K1,C=P1],H9)$
H10:SUBST([K=K1,C=P1],H10)$ H11:SUBST([K=K1,C=P1],H11)$
H12:SUBST([K=K1,C=P1],H12)$ N1:ZEROMATRIX(18,18)$

FOR II THRU 3 DO FOR JJ THRU 3 DO (PRINT(II,JJ),
(T1:3%(-9%II1"2+33%II-12), J2:3%( 9%JJ~2-39%JJ+48),
J1:3%(-9%JJ"2+33%JJ-12), I2:3%( 9+II~2-39+I1I+48),
SUBIO:SUBMATRIX(HO,I1,I1~1,11~2,11-3,11-4,11~5,11-6,11~-7,11-8,11~-9,
I1-10,11-11,I1-12,71-13,I1-14,11~15,11-16,I1-17,
I12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12~16,12-17),
SUBJO:SUBMATRIX(HO,J1,J1~1,J1-2,31-3,J1-4,J1-5, J1-6,31-7,31-8,31-9,
J1-10,J1-14,J1-12,71-13,J1-14,J1-15,J1~16,J1-17,
J2,J2-1,32-2,32-3,J2-4,J2-5,32-6,J2-7,32-8,32-9,
J2-10,J2-11,J2-12,J2-13,J2~14,32~15,J2~16,32-17),
SUBI1:SUBMATRIX(H1,11,I1-1,11~-2,11-3,¥1-4,11-5,11-6,11~7,11-8,1I1-9,
I1-10,71-11,71-12,71-13,11-14,11-15,11~16,11~17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12~17),
SUBJ1:SUBMATRIX(H1,J1,J1-1,J1~-2,31-3,J1~4,71-5,J1-6,31-7,J1-8,J1-9,
J1-10,J1-11,31-12,31-13,J1-14,J1~15,31-16,J1~17,
J2,32-1,32-2,32-3,32-4,J2-5, J2-6,32-7,J2-8,J2-9,
J2-10,J2-11,32-12,32-13,J2-14,J2-15,32~16,J2-17),
SUBI2:SUBMATRIX(H2,I1,I1-1,11-2,11-3,11-4,11-5,11~-6,11-7,11~-8,11-9,
I1-10,71-11,11-12,71-13,11-14,11~15,11-16,11~17,
I2,12-1,12~2,12-3,12-4,12~5,12-6,12-7,12-8,12-9,
12-10,12~11,12-12,12-13,12-14,12-15,12~16,I2-17),
SUBJ2:SUBMATRIX(K2,J1,J1~1,J1-2,J1-3,31-4,J1~5,J1~6,J1-7,71-8,31-9,
J1-10,31-11,31-12,31-13, J1-14,31-15,J1-16,J1-17,
J2,32-1,32-2,32-3,32-4,J2-5,J)2-6,J2-7,32-8,32-9,
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SUBI3:

SUBJ3:

‘SUBI4:

SUBJ4:

SUBIS:

SUBJ5:

SUBI6:

J2-10,J2~11,32-12,32~13,J2~14,J2-15,J2~16,J2~17),

SUBMATRIX(H3,I1,I11-1,I1-2,11-3,11~4,14~5,11-6,11-7,11-8,11-9,

I1-10,11-11,T1-12,11-13,11-14,3i-15,11-16,T1~-17,
I12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2~11,12-12,12-13,12-14,12-15,12-16,12~17),

SUBMATRIX(H3,J1,J1-1,31-2,31~-3,J1-4,31~5,31-6,31-7,J1-8,31-9,

Ji-10,J1-11,31-12,31-13,J1-14, J1-15,31-16,J1-17,
J2,32-1,32-2,7J2-3,32-4,J2-5,32-6,32-7,J2-8,32-9,
J2-10,J2~11,J2-12,J2-13, J2-14, J2-15, 32-16,J2-17),

SUBMATRIX(H4,I1,11-1,I1-2,11-3,I1-4,71-5,11-6,11-7,11-8,11-9,

I1-10,I1-11,71-12,11-13,11-14,11-15,11-16,11~17,
I2,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,I2-12,12~13,I12-14,12-15,12~16,12~17),

SUBMATRIX(H4,J31,J1-1,J1-2,J1-3,J1-4,J1-5,J4-6,J1-7,J1~-8,J1-9,

Ji-10,J31-11,J1-12,31-13,J1-14,31-15,J1-16,J1~-17,
J2,32-1,J2-2,32-3,32-4,J2-5,J2-6,J2-7,J2~-8,J2-9,
J2-10,J2~11,32-12,32-13,J2-14,32-15,J2-16,32-17),

SUBMATRIX(HS,I1,I1-1,I1-2,11-3,11-4,11~5,11-6,11-7,11-8,11-9,

I1-10,I1-114,711-12,71-13,11-14,71-15,11~16,11~17,
12,12-1,12-2,12-3,12-4,12-5,12-6,I2-7,12-8,12-9,
12-10,12-11,1I2-12,12-13,12-14,12-15,12-16,12~17),

SUBMATRIX(HS,J31,J1-1,J1~-2,J1-3,J1~4,31-5,J1-6,31-7,J1~8,31-9,

J1-10,J1-11,J1-12,J1-13,31-14,J1-15, J1~16,31-17,
J2,32-1,32-2,32-3,32-4, 32-5,32-6,32~7, 12-8, J2-9,
J2-10,J2-11,32-12,J2-13, J2-14, J2-15, J2-16,J2-17)

SUBMATRIX(H6,11,11--1,I11-2,11-3,11~4,11-5,11-6,11~7,11~8,11-9,

I{-10,I1-11,11-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12~-8,12-9,
I12-10,I2~11,12-12,12-13,12-14,12~15,12-16,12~17),

SUBJ6:SUBMATRIX(H6,J1,J1-1,J1-2,J1-3,31~4,J1-5,J1~6,31-7,J1-8,31-9,

Ji-10,J1-11,31-12,J1-13,J1-14,31-15,J1~16,J1-17,
J2,J2-1,32-2,J2-3,32-4,J)2-5,32-6,J2-7,)2~8,J2-9,
J2-10,J2-11,32-12,32-13, J2~14,32-15,J2-16,J2-17),

SUBI7:SUBMATRIX(H7,I1,I1-1,I1-2,11-3,I1~4,11-5,11~6,11~7,1§-8,1I1~9,

11-10,11-11,11-12,11-13,I1-14,11~15,11-16,11-17,
I2,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I12-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ7:SUBMATRIX(H7,31,J1-1,31-2,J1-3,J1-4,J1-5,31-6,31-7,31-8,31-9,

J1-10,31-11,31-12,J1-13,J1-14, J1-15,J1-16, 3117,
32,32-1,32-2,32~-3,12~4,32-5,32-6,32-7, J2-8, 32~9,
J2-10,J2-11,J2-12,J2-13,J2-14, 32-15, J2-16,J2-17) ,

SUBI8:SUBMATRIX(H8,I1,I1~1,I1-2,11-3,11-4,11-5,11-6,11-7,11~8,11-9,

I1-10,I1-11,11-12,71-13,11-14,71~15,11-16,11-17,
I12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12~-14,12-15,12-16,12-17),

SUBJ8:SUBMATRIX(48,J1,J1-1,J1-2,J1-3,31-4,J1~5,31~-6,J1-7,J1-8,31-9,

J1-10,31-11,J1~12,31-13,J1-14,J1~156,J1-16,J1-17,
J2,J2-1,32-2,J2-3,)2-4,32-5,32-6,J2-7,J2-8,32-9,
J2~10,32-11,3J2-12,32-13,J2-14,32-15,32~16,32-17) ,

SUBI9:SUBMATRIX(H9,I1,I11-1,11-2,14-3,11-4,11-5,11-6,11~7,11-8,11-9,

I1-10,11-11,71-12,11-13,11-14,11-15,11-16,11-17,
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12,12-1,12-2,12-3,12-4,12-5,12~-6,12-7,12-8,12>9,
12-10,12-11,I2-12,12-13,12-14,12-15,12-16,12-17),
SUBJ9:SUBMATRIX(H9,J1,J1~1,J1~-2,31-3,31-4,J1-5,31~6,J1-7,J1-8,31-9,
J1-10,J1-11,J1~12,31~-13,J1-14,31-15,31-16,J1-17,
J2,J2-1,32-2,J2-3,32-4,)2-5,32-6,]2~7,12-8,32-9,
J2-10,J2-11,J2-12,32-13, 52-14,J2-15,J2-16,J2-17),
SUBiiO:SUBMATRIX(HiO,11,11-1,11-2,11-3,11-4,11-5,11—6,I1-7,Il-8,11-9,
I1-10,11-14,11-12,11~-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12~8,12~9,
I12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJ10:SUBMATRIX(H10,J1,31-1,J1-2,J1~3,J1-4,J1-5,J1-6,J1-7,J1-8,J1-9,
J1-10,J1-11,J1-12,J1-13,J1-14,J1-15,J1-16,J1-17,
J2,32-1,32-2,J2-3,J2-4,J2-5,32-6,32-7,J2-8,J2~9,
J2-10,32-11,J2-12,J2-13,J2-14,J2-15,32~16,J2-17),
SUBI11:SUBMATRIX(H11,I1,I1~1,11~2,T11-3,11-4,11-5,11-6,11~7,11-8,I1-9,
I1--10,71-11,11-12,711-13,11-14,11~-15,11-16,11-17,
I12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I2-10,12-11,12-12,12-13,12-14,12-15,12~16,12-17),
SUBJ11:SUBMATRIX.(H11,J1,J1-1,31-2,31~3,J1-4,31-5,31-6,J1-7,J1-8,J1-9,
J1-10,J1~11,31-12,J1-13,J1-14,J1-15,J1-16,J1-17,
J2,32-1,32-2,32~3,32-4,32-5,32-6,J2-7,32-8,J2-9,
J2~-10,J2-11,J2-12,J2-13,J2-14,32-15, J2-16,J2-17),
SUBI12:SUBMATRIX(H12,11,I1~1,11-2,11-3,11-4,11-5,11-6,11-7,11-8,I1-9,
I1-10,11-11,71-12,11-13,11-14,11-15,11-16,11-17,
I2,12-1,12-2,12-3,12-4,12-5,12-6,12~7,12-8,12~9,
I12-10,12-11,12-12,12-13,12~14,12-15,12-16,12-17),
SUBJ12:SUBMATRIX(H12,J1,J1-1,J1~2,31-3,31-4,J1-5,J1-6,J1~7,J1-8,J1-9,
J1-10,31-11,J1-12,31-13,31-14,J1-15,J1-16,J1-17,
J2,32-1,32-2,32-3,J2~4,J2-5,12-6,J2-7,J2-8,]2-9,
J2-10,J2-11,J2-12,32-13,32-14,32~-15,32-16,J2-17),

N1:N1+A[II,33]%(
COL(LO,II).TQ.SUBJO+(TQ.COL(LO,II))*SUBJO+SUBIO.Q.ROW(LOT,JJ)),
N1:N1+DD[IT, JIT*(
COL(L0,II).TQ.SUBJ2+(TQ.COL(LO,II))*SUBJ2+SUBI2.Q.ROW(LOT, I3 )+
COL(L2,II).TQ.SUBJO+(TQ.COL(L2,1II))*SUBJO+SUBIO.Q.ROW(L2T, 3J)+
COL(L1,II).TQ.SUBJ1+(TQ.COL(L1,II))*SUBJ1+SUBI1.Q.ROW(LIT,JJI)),
N1:N1+ F[IT, J3]#(
COL(LO,II).TQ.SUBJ4+(TQ.COL(LO,II))#*SUBJ4+SUBI4.Q.ROW(LOT,JJ)+
COL(L1,II).TQ.SUBJ3+(TQ.COL(L1,II))*SUBJ3+SUBI3.Q.ROW(LIT,JJ)+
COL(L2,II).TQ.SUBJ2+(TQ.COL(L2,II))*SUBJ2+SUBI2.Q.ROW(L2T,JJ)+
COL(L3,II).TQ.SUBJ1+(TQ.COL(L3,II))*SUBJ1+SUBI1.Q.ROW(L3T,JJ)+
COL(L4,II).TQ.SUBJ0+(TQ.COL(L4,II))*SUBJO+SUBIO.Q.ROW(L4T,]])),
Ni:N1+ HLIX,J3]%(
COL(LO,II).TQ.SUBJ6+(TQ.COL(LO,II))*SUBJ6+SUBI6.Q.ROW(LOT,II)+
COL(L1,II).TQ.SUBJ5+(TQ.COL(L1,II))*SUBIS+SUBI5.Q.ROW(L1T,II)+
COL(L2,II).TQ.SUBJ4+(TQ.COL(L2,II))*SUBJ4+SUBI4.q.ROW(L2T,JI)+
COL(L3,II).TQ.SUBJ3+(TG.COL(L3,1I))*SUBI3+SUBI3.Q.ROW(L3T,JI)+
COL(L4,II).TQ.SUBJ2+(TQ.COL(L4,II))*SUBJ2+SUBI2.Q.ROW(LAT, )+
COL(L5,II).TQ.SUBJ1+(TQ.COL(L5,II))*SUBJ1+SUBI1.Q.ROW(LST,JJ)+
COL(L6,1II).TQ.SUBJO+(TQ.COL(L6,II))*SUBJO+SUBIO.Q.ROW(LET,IJ)),
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Ni:Ni+ J[II,JJ3+*(
COL(LO,II).TQ.SUBJI8+(TQ.COL(LO,II))*SUBI8+SUBI8.Q.ROW(LOT,IJ )+
COL(L1,II).TQ.SUBJ7+(TQ.COL(L1,II))*SUBJ7+SUBI7.Q.ROW(L1T,JJ)+
COL(L2,II).TQ.SUBJ6+(TQ.COL(L2,II))*SUBJ6+SUBI6.Q.ROW(L2T,IJ)+
COL(L3,II).TQ.SUBJ5+(TQ.COL(L3,II))*SUBI5+SUBI5.Q.ROW(L3T,JJ)+
COL(L4,II).TQ.SUBJ4+(TQ.COL(L4,II))*SUBJ4+SUBI4.Q.ROW(LAT,JJ)+
COL(LS5,II).TQ.SUBJ3+(TQ.COL(L5,II))*SUBJI3+SUBI3.Q.ROW(LST,JJ)+
COL(L6,II).TQ.SUBJ2+(TQ.COL(L6,II))*SUBJ2+SUBI2.G.ROW(LET,JJ)+
COL(L7,II).Tq.SUBJ1+(TQ.COL(L7,II))*SUBJ1+SUBI1.Q.ROW(LTT,3T)),
Ni:Ni+ L{II,J3]*(
COL(LO,II).TQ.SUBJ10+(TQ.COL(LO,II))*SUBJ10+SUBI10.Q.ROW(LOT,JI)+
COL(L1,II).TQ.SUBJ9+(TQ.COL(L1,II))*SUBJ9+SUBIS.Q.ROW(LIT,JJ)+
COL(L2,II).TQ.SUBJ8+(TQ.COL(L2,II))*SUBJ8+SUBIS8.Q.ROW(L2T,JI)+
COL(L.3,II).TQ.SUBJ7+(TQ.COL(L3, I))*SUBJ7+SUBI7.Q.ROW(L3T,JJ)+
COL(L4,II).TQ.SUBJ6+(TQ.COL(L4,II))*SUBJ6+SUBI6.Q.ROW(LAT,JI)+
COL(LS,II).Tq.SUBJ5+(TQ.COL(LS,II))*SUBJ5+SUBIS.Q.ROW(LST, JJ)+
COL(L6,II).TQ.SUBJ4+(TQ.COL(L6,II))*SUBJ4+SUBI4.Q.ROW(LET,II)+
COL(L7,II).TQ.SUBJ3+(TQ.COL(L7,II))*SUBJ3+SUBI3.Q.ROW(L7T,JI)),
N1:N1+ R[IT,JJ]%(
COL(L0,II).TQ.SUBJ12+(TQ.COL(LO,II))#SUBJ12+SUBI12.Q.ROW(LOT,II)+
COL(L1,II).TQ.SUBJ11+(TQ.COL(L1,I1))*SUBJ11+SUBI11.Q.ROW(LIT,II)+
COL(L2,II).TQ.SUBJ10+(TQ.COL(L2,II))*SUBJ10+SUBI10.Q.ROW(L2T,3I)+
COL(L3,II).TQ.SUBJ9+(TQ.COL(L3,II))*SUBJO+SUBIS.Q.ROW(L3T,JI)+
COL(L4,II).TQ.SUBJ8+(TQ.COL(L4,II))+*SUBJS+SURIS.Q.ROW(LAT,II)+
COL(L5,II).TQ.SUBJ7+(TQ.COL(LS,II))*SUBJ7+SUBI7.Q.ROW(LST,3I)+
COL(L6,II).Tq.SUBJ6+(TQ.COL(L6,II))*SUBJ6+SUBI6.0Q.ROW(LET,II)+
COL(L7,II).TQ.SUBJ5+(TQ.COL(L7,II))*SUBJ5+SUBI5.Q.ROW(LTT,J)),
N1:Ni+ TLIT,JJ3]*(
COL(L2,II).TQ.SUBJ12+(TQ.COL(L2,II))*SUBJ12+SUBI12.Q.ROW(L2T,JI)+
COL(L3,II).TQ.SUBJ11+(Tq.COL(L3,II))*SUBJ11+SUBI11.Q.ROW(L3T,3I)+
COL(L4,II).TQ.SUBJ10+(Tq.COL(L4,II))*SUBJ10+SUBI10.Q.ROW(LAT,JI)+
COL(LS,II).TQ.SUBJ9+(TQ.COL(LS,II))*SUBJO+SUBIS.Q.ROW(LET,JI)+
COL(L6,II).TQ.SUBJ8+(TQ.COL(L6,II))*SUBJ8+SUBI8.Q.ROW(LET,II)+
COL(L7,II).TQ.SUBJ7+(TQ.COL(L7,II))*SUBJ7+SUBIT.Q.ROW(L7T,1T)),
Ni:N1+XE[II, JJ]*(
COL(L4,II).TQ.SUBJ12+(TQ.COL(L4,II))*SUBJ12+S0BI12.Q.ROW(LAT,JI)+
COL(L5,II).TQ.SUBJ11+(TQ.COL(LS,II))*SUBJ11+SUBI11.Q.ROW(LST,JI)+
COL(L6,II).TQ.SUBJ10+(TQ.COL(L6,II))*SUBJ10+SUBI10.Q.ROW(LET,JI)+
COL(L7,II).TQ.SUBJ9+(TQ.COL(L7,II))*SUBJO+SUBIS.Q.ROW(LTT,IJI)),
N1:N1+XJ[IT,J33%(
COL(L6,II).TQ.SUBJ12+(TQ.COL(L6,II))*SUBJ12+SUBI12.Q.ROW(LET,33)+
COL(L7,II).TQ.SUBJ11+(TQ.COL(L7,II)}*SUBJ11+SUBI11.Q.ROW(LTT,JI)),

KILL(SUBJ12,SUBI12,SUBJ11,SUBI11),
KILL(SUBJO,SUBJ1,SUPJ2,SUBJ3,SUBJ4,SUBJS,SUBI6,SUBIT,SUBJS,SUBJ9,SUBJ10),
KILL(SUb.0,SUBI1,SUBI2,SUBI3,SUBI4,SUBIS,SUBI6,SUBI7,SUBI8,SUBI9,SUBI10)))$

KI1iL(vo,L1,L2,L3,L4,L5,L6,L7,L0T,L1T,L2T,L3T,L4T,LST,L6T,L7T)$
KILL(HO,H1,H2,H3,H4,H5,H6,H7 ,H8,H9,H10,H11,H12)$
N1SYM:ZEROMATRIX(18,18)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N1SYM[XI,J3]:N1[II,3J]$
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_ PRINT("SYMMETRIC N1 FORMED")$

KILL(N1)$

N1:ZEROMATRIX(18,18)¢

-KILL(Q,TQ)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO
N1[II,JJ]:FACTOROUT(N1SYM[IT,J3],Q(1),0(2),Q(3),Q(4),Q(5),Q(6),
Q(7);0(8),0(9),0q(10),0(11),Q(12),Q(13),Q(14),0(15),Q(16),Q(17) ,0(18))$
FRAME(I,J) :=CONCAT(TT,EV(18%(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO
(IF -N1[I,J]#0 THEN (PT:1,GENTRAN(SN1[{EVAL(I),EVAL(J)]:EVAL(N1[I,J]),
[EVAL(FRAME(I,J))1)))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])$

J ARk sk ok ok ok sk kKR Kok Aok ko ok o K sk ok sk sk ok ok oK ko ok Aok Sk sk ok Kook ok

. /*  GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N1S. */
i . [ FARAAARAAAAAAAA KK o AR KA A o o KooK oK oK ok Aok Ao ok ko ko ok ek ok Kok sk kR ok /

; /* ASSEMBLE MATRIX N1AS */

~0(11),0(12),0Q(13),0Q(14),0(15) ,Q(16),Q(17),Q(18)1)$
Q: TRANSPGSE(TQ)$ LOADFILE("LSMAT123.SV")$
'S0:SUBST( [K=K1,C=P1],S0)$ S1:SUBST([K=K1,C=P1],S1)$
S2:SUBST( [K=K1,C=P1],52)$ S3:SUBST([K=K1,C=P1],53)$
S4:SUBST( [K=K1,C=P1],54)$ S5:SUBST([K=K1,C=P1],55)$
S6:SUBST( [K=K1i,C=P1],S6)$ S7:SUBST([K=K1,C=P1],S7)$"
SOT: TRANSPOSE(S0)$ S1T:TRANSPOSE(S1)$ S2T:TRANSPUSE(S2)$
S3T:TRANSPOSE(S3)$ S4T:TRANSPOSE(S4)$ SST:TRANSPOSE(SS5)$
S6T:TRANSPOSE(S6)$ S7T:TRANSPOSE(ST7)$
LOADFILE("SSMAT123.SV")$
SS0:SUBST([K=K1,C=P1],550)$ SS1:SUBST([K=K1,C=P1],551)$
SS2:SUBST([K=K1,C=P1],5S2)$ SS3:SUBST([K=K1,C=P1],5S3)$
SS4:SUBST([K=K1,C=P1],554)$ SS5:SUBST([K=K1,C=P1],SS5)$
SS6:SUBST( [K=K1,C=P1],556)$ SS7:SUBST([K=K1,C=P1],SS7)$
$S8:SUBST( [K=K1,C=P1],558)$ SS9:SUBST([K=K1,C=P1],559)$
SS10:SUBST([K=K1,C=P1],SS10)$ SS11:SUBST([K=K1,C=P1],SS11)$
SS12:SUBST([K=K1,C=P1],SS12)$ N1S:ZEROMATRIX(18,18)$

FOR II THRU 2 DO FOR JJ THRU 2 DO (PRINT(II,JJ),
J2:3%( 9%(JJ+1)"2-39%(JJ+1)+48), I2:3+( 9*(II+1)"2~39+(II+1)+48),

SUBISO:SUBMATRIX(SSO, I2,I2~1,12-2,12~3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,12-12,72-13,12-14,12--15,12~16,12-17),

SUBJS0:SUBKATRIX(SSO, J2,J2-1,32-2,J2-3,J2-4,32~5,J2-6,32-7,J2-8,32~9,
J2-10,J2-11,32-12,32-13,32-14,3J2~15,J2-16,12-17),

SUBIS1:SUBMATRIX(SS1, I2,12-1,12-2,12~3,12-4,12~5,12-6,12-7,12-8,12-9,
12-10,I2~11,12~12,12-13,12-14,12-15,12~16,12-17),

SUBJS1:SUBMATRIX(SS1, J2,J2-1,32-2,J32-3,32-4,J2-5,J2-6,32-7,J2~8,32-9,
J2-10,J2~11,32-12,32-13,]2-14, J2~15,J2-16,J2~17),

: SUBIS2:SUBMATRIX(SS2, 12,I2~-1,12-2,12-3,12-4,12~5,12-6,12~7,12-8,12-9,
12-10,12~-11,12-12,12-13,12-14,12-15,12-16,12~-17),

SUBJS2:SUBMATRIX(SS2, J2,J2-1,32-2,32-3,32-4,32~5,]2-6,J2-7,J2~8,J2-9,
J2-10,J2~-11,32-12,32-13,]2-14,32-15,J2-16,J2~17),
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SUBIS3:SUBMATRIX(SS3, 12,I12-1,I2-2,I2-3,12-4,12-5,12-6,12-7,12-8,1I2-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS3:SUBMATRIX(SS3, J2,J2-1,J2-2,J2-3,J2-4,J2-5,32-6,32-7,J2-8,32-9,
J2-10,J2-11,32-12,J2-13, J2-14, J2-15,32-16,32-17),
SUBIS4:SUBMATRIX(SS4, I2,I2-1,I12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
. 12-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS4:SUBMATRIX(SS4, J2,J2-1,J2-2,J2-3,J2-4,]2-5,J2-6,32-7,32-8,32-9,
J2-10,32-11,32-12,J2-13,J2-14,J2-15,J2-16,J2-17) ,
SUBISS:SUBMATRIX(SSS, 12,I2-1,I2-2,12~3,12-4,12-5,I2-6,12-7,12-8,12-9,
12-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJSS:SUBMATRIX(SSS, J2,J2-1,J2-2,12-3,J12-4,32-6,J2-6,32-7,J2-8,32-9,
J2-10,32+11,32-12,12-13,J2-14, J2~-15,32-16,32-17),
SUBIS6:SUBMATRIX(SS6, I2,I2-1,I2-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS6:SUBMATRIX(SS6, J2,32-1,J2-2,J2-3,J2-4,J2-5,32-6,J2~7,J2-8,32-9,
. J2-10,J2-11,32-12,3J2-13,J2~14,J2~15,J2-16,32-17),
SUBIST:SUBMATRIX(SS7, 12,I2-1,12-2,I2-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
~ SUBJS7:SUBMATRIX(SS7, J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2-6,)2-7,32-8,J2-9,
J2-10,32-11,J2-12,3J2~13,J2-14,J2~15,J2-16,3J2-17),
-SUBIS8:SUBMATRIX(SS8, I2,12-1,I2-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,I2-12,12-13,12-14,12-15,12-16,12-17),
SUB1S8:SUBMATRIX(SSS, J2,J2-1,J2-2,J2-3,J2-4,32-5,J2-6,J2-7,32-8,32-9,
J2-10,32-11,J2-12,32-13, J2-14,J2-15,J2-16,32-17),
SUBIS9:SUBMATRIX(SS9, 12,I2-1,I2-2,12-3,I2-4,12-5,I2-6,I2-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS9:SUBMATRIX(SSS, J2,J2-1,32-2,32-3,J2-4,32-5,32-6,J2-7,12-8,]2-9,
J2-10,J2-11,32-12,32-13,J2-14,J2~15,J2-16,J2~17) ,
SUBIS10:SUBMATRIX(SS10, I2,I2-1,12-2,12-3,12~4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12~-15,12-16,12-17),
SUBJS10:SUBMATRIX(SS10, J2,J2-1,32-2,32-3,32-4,J2-5,)2-6,J2-7,J2-8,12-9,
J2-10,J2-11,32-12,J2-13,J2~14,J2~15,32-16,J2-17) ,
SUBIS11:SUBMATRIX(SSi1, I2,I2-1,12-2,12~3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS11:SUBMATRIX(SS11, J2,J2-1,32-2,J2-3,}2-4,32-5,32-6,J2-7,12-8,J2-9,
J2-10,32-11,32-12,J2~13,J2-14,J2-15,32-16,J2-17),
SUBIS12:SUBMATRIX(SS12, I2,I2-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS12:SUBMATRIX(SS12, J2,J2-1,32-2,]2-3,32-4,]12-5,32-6,32-7,32-8,J2-9,
J2-10,J2-11,J2-12,J2-13, 32~14,12-15,32-16,J2-17),
N1S:N1S+AS[II,JJ3]*(
COL(S0,II).TQ.SUBJISO+(TQ.COL(S0,II))*SUBISO+SUBISO.Q.ROW(SOT,1T)),
N1S:N1S+DS[II,J3]*(
COL(S0,1I).TQ.SUBJS2+(TQ.COL(S0,II))*SUBIS2+SUBIS2.Q.ROW(SOT,JJ)+
COL(S2,II).TQ.SUBJSO0+(TQ.COL(S2,II))*SUBJSO+SUBISO.Q.ROW(S2T,JJ)+
COL(S1,11).TQ.SUBJS1+(TQ.COL(S1,II))*SUBJS1+SUBIS1.Q.ROW(S1T,33)),
N1S:N1S+FS[II,JJI*(
COL(S0,II).TQ.SUBJS4+(TQ.COL(S0,II))*SUBJS4+SUBIS4.Q.ROW(SOT,JI)+
COL(S1,II).TQ.SUBJS3+(TQ.COL(S1,I1))*SUBIS3+SUBIS3.Q.ROW(S1T,JI)+
COL(S2,11).TQ.SUBIS2+(TQ.COL(S2,I1))*SU3JS2+SUBIS2.Q.ROW(S2T,JI)+
COL($3,I1).TQ.SUBJS1+(TQ.COL(S3,I1))*SUBJS1+SUBISL.Q.ROW(S3T,JI)+
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L - ‘€OL(S4,1I).TQ.SUBISO+(TQ.COL(S4,1I))*SUBISO+SUBISO.Q.ROW(S4T, ),
; : WIS:NIS+HSLIT, JI]*(
:COL(S0,II).TQ.SUBJS6+(TQ.COL(S0,1I))*SUBJS6+SUBIS6.Q.ROW(SOT,II)+
:COL(S1,1I).TQ.SYBJS5+(TQ.COL(S1,II))*SUBIS5+SUBISS.Q.ROW(SIT, )+
: :COL(S2,I1)-TQ.SUBJS4+(TQ.COL(S2,II))*SUBIS4+SUBIS4.Q.ROW(S2T,JI)+
“ ) -COL(S3,1I).TQ.SUBIS3+(TQ.COL(S3,II))*SUBJS3+SUBIS3.Q.ROW(S3T,JJ)+
- :COL(S4,11).TQ.SUBJS2+(TQ.COL(S4,1I))*SUBJS2+SUBIS2.Q.ROW(S4T, JJ)+
" COL(S5,II).TQ.SUBIS1+(TQ.COL(S5,I1))*SUBIS1+SUBISL.Q. ROW(SST, JJ)+
COL(S6,II).TQ.SUBJS0+(TQ.COL(S6,II))*SUBISO+SUBISO.Q.ROW(S6T,II)),
N1iS:N1S+IS[II,JJT*(
‘COL(S0,1I).7Q.SUBJS8+(TQ.COL(S0,II))*SUBIS8+SUBISS.Q.ROW(SOT,JJ)+
COL(S1,IT).TQ.SUBJIST+(TQ.COL(S1,II))*SUBJIST+SUBIS7.Q.ROW(SIT,JI)+
COL(S2,II).TQ.SUBJS6+(TQ.COL(S2,1I))*SUBIS6+SUBIS6.Q.ROW(S2T, )+
COL(S3,II).TQ.SUBISS+(TQ.COL(S3,1I))*SUBIS5+SUBISS.Q. ROW(S3T, JJ)+ i
. COL(S4,T1).TQ.SUBJS4+(TQ.COL(S4,II))*SUBJS4+SUBIS4.Q.ROW(SAT,JI)+
"COL(S5,II;.TQ.SUBJS3+(TQ.COL(S5,II))*SUBJS3+SUBIS3.Q.ROW(SST,JJ)+
COL(S6,1I).TQ.SUBIS2+(TQ.COL(S6,11))*SUBIS2+SUBIS2.Q.ROW(S6T,JI)+

: “COL(S7,1II).TQ.SUBJS1+(TQ.COL(S7,II))*SUBIS1+SUBIS1.qQ.ROW(STT,3J)),
« NiS:N1S+LS[II,J3]*(

" COL(S0,II).TQ.SUBJS10+(TQ.COL(SO0,II))*SUBJS10+SUBIS10.Q.ROW(SOT, )+
COL(S1,II).TQ.SUBJIS9+(TQ.COL(S1,1II))*SUBIS9+SUBIS9.Q.ROW(SIT,JT)+
COL(S2,II).TQ.SUBJIS8+(TQ.COL(S2,1I,)*SUBIS8+SUBISS.Q.ROW(S2T,II)+
:COL(S3,II),TQ.SUBJS7+(TQ.COL(S3,II))*SUBIST+SUBTS7.qQ.ROW(S3T,JJ)+

.~COL(S4,1I).TQ.SUBJS6+(TQ.COL(S4,1I))*SUBIS6+SUBIS6.0.ROW(S4T, )+
COL(S5,II).TQ.SUBIS5+(TQ.COL(SS,I1))*SUBIS5+SUBISS.Q.ROW(S5T, )+
COL(S6,II).TQ.SUBJS4+(TQ.COL(S6,1I))*SUBJS4+SUBIS4.Q.ROWN(S6T,II)+
COE(S7,1I).TQ.SUBJIS3+(TQ.COL(S7,1II))*SUBIS3+SUBIS3.Q.ROW(STT,JJ)),
N1S:N1S+RS[II, JJ]*(
COL(S0,1II).TQ.SUBJS12+(TQ.COL(SO,IT))*SUBJS12+SUBIS12.Q.ROW(SOT, J3)+
COL(S1,IT).TQ.SUBJIS11+(TQ.COL(S1,II))*SUBJS11+SUBIS11.Q.ROW(SIT,JI)+
COL(S2,II).TQ.SUBJIS10+(TQ.COL(S2,II))*SUBIS10+SUBIS10.Q.ROW(S2T,1I)+
COL(S3,1I).TQ.SUBJS9+(TQ.COL(S3,1II))*SUBJS9+SUBISS.Q.ROW(S3T,J3)+
COL(S4,11).TQ.SUB3S8+(TQ.COL(S4,1I))*SUBJS8+SUBISS.Q.ROW(S4AT,JJ)+
COL(S5,1I).TQ.SUBJIS7+(TQ.COL(S5,1I))*SUBJS7+SUBIST.Q.ROW(SST,JI)+
COL(S6,II).TQ.SUBJIS6+(TQ.COL(S6,1I))*SUBIS6+SUBIS6.Q.ROW(SET,JJ)+
COL(S7,1I).TQ.SUBJIS5+(TQ.COL(S7,1I))*SUBIS5+SUBISS.q.ROW(STT, ),
N1S:N1S+TSLII, JII*(
COL(S2,II).TQ.SUBJS12+(TQ.COL(S2,1I))*SUBIS12+SUBIS12.q.ROW(S2T,3I)+
COL(S3,II).TQ.SUBJS11+(TQ.COL(S3,II))*SUBIS11+SUBIS11.Q.ROW(S3T,JI)+
COL(S4,II).TQ.SUBIS10+(TQ.COL(S4,1I))*SUBJS10+SUBIS10.Q.ROW(S4T,JI)+

- COL(SS,II).TQ.SUBJS9+(TQ.COL(SS5,II))*SUBISO+SUBISY. . KUW(SST,3J)+

;o COL(S6,II).TQ.SUBJIS8+(TQ.COL(S6,II))*SUBIS8+SUBISS.Q.ROW(SET,IT)+

COL(S7,II).TQ.SUBJIS7+(TQ.COL(S7,II))*SUBIST+SUBIS7.Q.ROW(STT,IJ)),
N1S:N1S+XHS[II, J3]*(
COL(S4,II).TQ.SUBJS12+(TQ.COL(S4,1I))*SUBIS12:SUBIS12.0Q.ROW(S4T,II)+
COL(SS5,II).TQ.SUBJIS11+(TQ.COL(S5,11))*SUBIS11+SUBIS11.0Q.ROW(SST,JI)+
COL(S6,II).TQ.SUBIS10+(TQ.COL(S6,1I))*SUBIS10+SUBIS10.Q.ROW(SET,II)+
COL(S7,1II).TQ.SUBJIS9+(TQ.COL(S7,II))*SUBJS9+SUBISS.Q.ROW(STT,JJ)),
N1S:N1S+XIS[IT,J3]*(
COL(S6,II).TQ.SUBJS12+(TQ.COL(S6,1I))*SUBIS12+SUBIS12.Q.ROW(S6T,IT)+
COL(S7,II).TQ.SUBJS11+(TQ.COL(S7,II))*SUBIS11+SUBIS11.Q.ROK(STT,JI)),
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KILL(SUBJSO,SUBJS1,SUBJS2,SUBJS3,SUBJS4,SUBISS,
SUBJS6,SUBJST,SUBJS8,SUBJISY,SUBJS10,SUBJS11,SUBJS12),

KILL(SUBIS0,SUBIS1,SUBIS2,SUBIS3,SUBIS4,SUBISS,
SUBIS6,SUBIS7,3UBIS8,SUBISY,SUBIS10,SUBIS11,SUBIS12))$

KILL(SS0,SS1,552,583,554,555,556,557,558,559,5510,5511,5512; $

‘KILL(s0,S1,52,53,54,565,56,S7,5S0T,S1T,S2T,S3T, S4T, S5T,S6T,STT)$

N1SYM:ZEROMATRIX(18,18)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N1SYM[II,J1J]:N1S[II,JJ]I$

PRINT("SYMMETRIC N1 FORMED")$

KILL(N1,N1S)$

N1:ZEROMATRIX(18,18)$

KILL(Q,TQ)$

FOR II THRU 18 DO FOR 1J:II THRU 18 DO

N1[II,JJ] :FACTOROUT{N15YM[II,JJ],Q(1),Q(2),0(3),Q(4),qQ(5),q(6),
Q(7),q(8),9(9),7(10),0(11),8(12),Q(13),Q(14),Q(15), 0(16) Q(17),Q(18))%

FRAME(I,J):=CONCAT(TT,EV(18*(I~-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

‘(IF N1[T,J]#0 THEN (PT:1,GENTRAN(SNiS[EVAL(I),EVAL(J)]:EVAL(N1[I,J]),

[EVAL(FRAME(I,J))1)))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])$

[ FEF kA Aok Aok Aok Rk ok Rk ok Rk kR ok R kolok R Rk k ook ok Kok ok kb ok ok ok kb ok [

/*  GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2. */
[ Rk kok ok kR kR ok Rk Rk Rk ook otk sk ok skok ok ok ok ok koo R okok Rk Rk okdokk ok [

/* ASSEMBLE MATRIX N2A */
TQ:MATRIX([Q(1),Q(2),Q(3),q(4),Q(5),q(6),0(7),Q(8),Q(9),Q(10),
Q(11),0(12),0(13),0(14),q(15),Q(16),Q(17),Q(18)1)$
Q:TRANSPOSE(TQ)$ LOADFILE("HMAT123.SV")$
HO:SUBST( [K=K1,C=P1]},H0)$ H1:SUBST([K=K1,C=P1],H1)$
H2:SUBST([K=K1,C=P1] ,H2)$ H3:SUBST([K=K1,C=P1],H3)$
H4:SUBST([K=K1,C=P1] ,H4)$ H5:SUBST([K=K1,C=P1],H5)$
H6:SUBST([K=K1,C=P1] ,H6)$ H7:SUBST([K=K1,C=P1],H7)$
H8:SUBST([K=K1,C=P1] ,H8)$ H9:SUBST([X=K1,C=P1],H9)$
H10:SUBST([K=K1,C=P1],H10)$ H11:SUBST([K=K1,C=P1],H11)$
H12:SUBST([K=K1,C=P1] ,H12)$ N2:ZEROMATR1iX(18,18)%

FOR II THRU 3 DO FOR JJ THRU 3 DO (PRINT(II,])),
(11:3%(~9%I1"2+33+xII-12), J2:3%( 9%JJ"2-39%JJ+48),
J1:3%(-9%JJ"2+33%JJ-12), I2:3%( 9*II"2-39%II+48),
SUBIO:SUBMATRIX(HO,I1,11-1,I1-2,11-3,11-4,11-5,I1-6,11-7,11-8,11-9,
I1-10,71-11,31-12,11-13,11~-14,11-15,11-16,11-17,
12,I2-1,12~2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I2-10,12~11,1I2-12,12~13,12~14,12-15,12-16,12-17),
SUBJO:SUBMATRIX(HO,J1,J1-1,J1~2,31-3,J1-4,J1-5,J1-6,31~7,J1-8,31-9,
J1-10,J1-11,31-12,J1~-13,J1-14,31-15,31~-16,J1-17,
J2,32-1,32~2,32-3,J2-4,32-5,J2-6,32-7,32-8,32-9,
J2-10,32~11,32-12,32~13,32-14,12-15,J2-16,32-17),
SUBI1:SUBMATRIX(H1,I1,I1-1,I1-2,11-3,11~4,11-5,11-6,11~7,11-8,11-9,
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‘SUBJ1:

SUBI2:

.SUBJ2:

56813:
SUBJ3:
SUBI4:
SUBJ4:
SUBIS5:
SUBJS:
SUBI6:
SUBJ6:

SUBI7:

I1-10,I1-11,11-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I2-10,I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBMATRIX(H1,J1,J1-1,J1-2,31-3,J1-4,J1-5,J1-6,J1~7,J1-8,31-9,
J1-10,31-11,31-12,J1-13, J1-14, J1~15, J1-16,J1~17,
J2,32-1,32-2,32-3,12-4,32-5, J2-6,32-7,J2-8,32-9,
J2-10,32-11,J2-12, J2-13, J2-14, J2-15, J2-16,J2-17) ,
SUBMATRIX(H2,T11,I1~1,11-2,11-3,11-4,11-5,11-6,11~7,11-8,11-9,
I1-10,11-11,11-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12~8,12-9,
12-10,12-11,12-12,12-13,12~-14,12-15,12-16,12-17),
SUBMATRIX(H2,J1,J1-1,J1-2,31-3,J1~4,J1-5,J1-6,J1-7,J1-8,J1-9,
J1-10,31-11,J1-12,J1-13, J1~-14, J1-15, J1~16,J1-17,
J2,32-1,32-2,32-3,32~4,J2-5, J2-6,J2-7,J2-8,32-9,
J2-10,J2-11,32-12,12-13, J2-14, J2-15, J2-16,J2-17),
SUBMATRIX(H3,71,I1-1,I11-2,11-3,11-4,11-5,T11-6,11-7,11-8,11-9,
I1-10,I1-11,T1-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,1I2-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBMATRIX(H3,J1,J1-1,J1-2,31-3,J1-4,31~5,J1-6,J1-7,J1-8,31-9,
J1-10,J1-11,31-12,31-13, J1-14, J1-15, J1~16,J1-17,
12,32-1,32-2,32-3, 12-4,32-5, J2-6, J2-7,J2-8,32-9,
J2-10,32-11,J2-12, J2-13, J2-14, J2-15, J2-16,J2-17),
SUBMATRIX(H4,I1,I1~1,11-2,11~3,11-4,11-5,11-6,11-7,11-8,11-9,
I1-10,I1-11,11-12,11-13,11-14,11-15,11-16,11~17,
12,12-1,12-2,12-3,12~4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBMATRIX (H4,J1,J1-1,J1-2,31-3,J1-4,J1-5, J1-6,J1-7,J1-8,J1-9,
J1-10,J1~11,31-12,31~13,J1-14, J1-15, J1-16, J1-17,
J2,32-1,32-2,32-3,32-4, J2-5, 32-6, J2~7,J2-8,J2-9,
J2-10,32-11,32-12,J2-13, J2-14, J2-15, J2-16, J2-17) ,
SUBMATRIX(HS,I1,I1-1,I1~2,I1-3,11~4,11-5,11-6,11-7,11-8,11-9,
11-10,I1-11,11-12,11-13,I1~14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I2-10,12-11,12-12,12-13,12~-14,12-15,12-16,12-17),
SUBMATRIX (HS,J1,J1-1,J1-2,31-3,J1-4,J1-5,31-6,J1-7,31-8,J1~-9,
J1-10,31-11,J1-12,J1-13,J1-14, J1-15,31~16, J1-17,
J2,32-1,32-2,32-3,J2-4,12-5, J2-6,J2-7,32-8,12-9,
J2-10,32-11,J2-12,J2-13, J2-14, J2-15, J2-16, J2-17) ,
SUBMATRIX (H6,I1,11-1,11-2,11-3,I11-4,11-5,11-6,11-7,11-8,11-9,
11-10,I1-11,11-12,11-13,11-14,11-15,11~16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBMATRIX(H6,J1,J1-1,J1-2,31-3,J1-4,J1-5,31-6,J1-7,J1-8,J1-9,
J1-10,31-11,J1-12,J1-13,J1~14, J1-15,31-16,J1-17,
J2,32-1,32-2,32-3,12~4,J2-5, 12-6, 327, 32-8,12-9,
J2-10,32-11,J2-12,12-13, 3214, J2-15, 32-16,J2-17) ,
SUBMATRIX(H7,I1,TI1-1,I1-2,11-3,11-4,11-5,11-6,11-7,11-8,11-9,
11-10,I1~11,11-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,1I2-11,12-12,12~13,12-14,12-15,12-16,12-17),
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SUBJ7:SUBMATRIX(H7,31,J1-1,31-2,31-3,J1-4,J1-5,31-6,31-7,J1-8,J1-9,
Ji-10,J1-11,J1-12,J1-13,31-14,J1-15,J1-16,31-17,
J2,32-1,32-2,32-3,J2-4,J)2-5,32~6,32-7,32-8,]2-9,
J2-10,32-11,J2-12,32-13,J2-14,J2-15,32-16,32-17),

SUBI8:SUBMATRIX(H8,I1,I1~1,11-2,11-3,11-4,11-6,11~6,11~-7,11-8,11-9,
Ii-10,I1-11,11-12,71-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12~-3,12-4,12~-5,12-6,12-7,12~8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ8:SUBMATRIX(H8,J1,J1~1,31-2,31-3,J1-4,J1-5,J1-6,J1-7,J1-8,J1-9,
J1-10,31-14,J1-12,31-13,J1-14,J1-15,J1-16,J1-17,
J2,32~-1,32-2,32-3,32-4,32-5,32-6,J2-7,J2-8,32-9,
J2-10,32-11,32-12,J2-13,J2-14, J2-156,J2-16,J2-17),

SUBI9:SUBMATRIX(H9,I1,I1-1,11-2,11~3,11-4,11i~5,11~6,11-7,11-8,I1-9,
I1-10,11-11,11-12,11-13,I1-14,11-15,11~16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
I2-10,12-11,12~12,12-13,12-14,12-15,12~16,12-17),

SUBJ9:SUBMATRIX(}9,J1,J1~1,31-2,31-3,J1-4,J1~-5,J1-6,J1-7,31-8,J1-9,
J1-10,J1-11,31-12,31-13,J1-14,J1-15,31~16,31-17,
J2,32-1,32-2,32-3,32-4,32-5,J2-6,32-7,32-8,32-9,
J2-10,J2~11,32-12,32-13, J2-14,J2-15,J2~i6,J2-17),

SUBI10:SUBMATRIX(H10,I1,T1-1,I1-2,11~3,11-4,11-5,11-6,11-7,11~8,11-9,
I11-10,I1-11,71-12,11-13,11-14,11-15,11-16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12~9,
I12-10,12-11,12-12,12~-13,12-14,12-15,12-16,12-17),

SUBJ10:SUBMATRIX(H10,J1,31~1,J1-2,J1~3,31-4,J1-5,J1-6,J1-7,J1~-8,J1-9,
J1-10,J1-11,J1-12,71~13,J1-14,J1-15,J1~16,J1-17,
J2,32-1,32-2,32-3,32-4,32~5,32-6,32~7,32-8,32~9,
J2-10,32-11,32-12,32-13,J2-14,J2-15,J2-16,J2-17),

SUBI11:SUBMATRIX(H11,¥1,71-1,11-2,11-3,11-4,11-5,11-6,11-7,11-8,11-9,
I1-10,11-11,11-12,71~13,71-14,11-15,11~16,11-17,
12,12-1,12-2,12-3,12-4,I2~5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJli:SUBMATRIX(HII,JI,Ji-i,j1-2,J1-3,31-4,J1-5,31-6,J1-7,Ji-8,J1—9,
J1~10,J31-11,31-12,J1~13,J1-14,J1-15,31~16,J1-17,
J2,32-1,32-2,32-3,32-4,J2-5,32-6,32-7,32-8,J2-9,
J2-10,32-11,32-12,32~-13,J2-14, 52-15,J)2-16,J2-17),

SUBI12:SUBMATRIX(H12,I1,T11-1,11-2,71-3,11-4,I11-5,11-6,11-7,11-8,11-9,
I1-10,71-11,11-12,11~13,11-14,1I1-15,11~16,11-17,
12,12-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),

SUBJ12:SUBMATRIX(H12,J1,J1~-1,J1~-2,31-3,71-4,31-5,31-6,31-7,J1-8,J1-9,
J1-10,J1-11,31-12,31-13,J1-14,31-15,J1-16,31-17,
J2,J2-1,32-2,32~3,32-4,J2-5,12-6,32~7,32-8,32-9,
J2-10,32-11,32-12,J2-13,J2~14,J2-15,32-16,32-17),

CA:0.5% CB:1./3.$ CC:2./3.%
N2:N2+ A(IX,J3]=( SUBIO0.Q.TQ.SUBJO+CA*(TQ.SUBJO.Q)*SUBIO ),
N2:H2+DD{II,J3]*( CB*(SUBIO.Q.TQ.SUB32+CA*{TQ.SUBIO.Q)*SUBJ2+

SUBI2.Q.TQ.SUBJO+CA+(T0.SUBI2.Q)*SUBJO)+
SUBI1.G.TQ.SURJI1+CA*(TQ.SUBJ1.Q)»SUBIL ),
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N2:N2+ FIII,J31%( CB%(SUBIO.Q.TQ.SUBJ4+CA*(TQ.SUBIO.Q)*SUBJ4+
SUBI4.Q.TQ.SUBJO+CA*{TQ.SUBI4.Q)*SUBJO)+
CC*(SUBI1.Q.TQ.SUBJ3+CA*(TQ.SUBI1.Q)*SUBJ3+
SUBI3.Q.TQ.SUBJ1+CA*(TQ.SUBI3.Q)*SUBJ1)+
SUBI2.Q.TQ.SUBJ2+CA*(TQ.SUBJ2.Q)*SUBI2 ),
N2:N2+ H[II,JJ)*( CB*(SUBIO.Q.TQ.SUBJ6+CA*(TQ.SUBIO.Q)*SUBJ6+
SUBI6.Q.TQ.SUBJO+CA*(TQ.SI'B16.Q)*SUBJO)+
CC*{SUBI1.Q.TQ.SUBJS+CA*(TQ.SUBI1.Q)*SUBJ5S+
SUBIS.(.TQ.SUBJ1+CA*(TQ.SUBI5.Q)*SUBJ1)+
CC*(SUBI2.Q.TQ.SUBJ4+CA*(TR.SUBI2.Q)*SUBJ4+
SUBI4.Q.TQ.SUBJ2+CA*(TQ.SUBI4.Q)*SUBJ2)+
< SUBI3.Q.TQ.SUBJI3+CA*(TQ.SUBJ3.Q)*SUBI3 ),
N2:N2+ J[II,JJ]*( CB*(SUBI0.Q.TQ.SUBJ8+CA*(TQ.SUBIV.Q)*SUBJ8+
SUBI8.Q.T(.SUBJO+CA*(T(.SUBIS.Q)*SUBJO)+
CC4+(SUBI1.0Q.TQ.SUBJ7+CA*(TQ.SUBI1.Q)*SUBJ7+
SUBI7.Q.TQ.SUBJ1+CA*(TQ.SUBIT.G)*SUBJ1)+
CC*(SUBI2.Q.TQ.SUBJ6+CA*(TQ.SUBI2.Q)*SUBJ6+
SUBI6.N.TQH.SUBJ2+CA*(TQ.SUBI6.Q)*SUBJ2)+
CC+(SUBI3.Q.TQ.SUBJS+CA*(TQ.SUBI3.Q)=SUBI5S+
SUBXS5.Q.TQ.SUBJ3+CA*(TQ.SUBI5.Q)*SUBJI3) +
SUBI4.Q.TQ.SUBJ4+CA*(TQ.SUBJ4.Q)*SUBI4 ),
N2:N2+ L[IX,J33*{ CB*(SUBI0.Q.TQ.SUBJ10+CA+(TQ.SUBI0.Q)*SUBJ10+
SUBI10.Q.TQ.SUBJO+CA*(TG.SUBI10.Q)4+SUBJO)+
CC*(SUBI1.Q.TQ.SUBJ9+CA*(TQ.SUBI1.Q)*SUBJ9+
SUBI9.Q.TQ.SUBJ1+CA*(TQ.SUBI9.Q)*SUBJ1)+
CCx(SUBIZ.Q.TQ.SUBJ8+CA*(TQ.SUBI2.Q)*SUBIg+
SUBI8.Q.TQ.SUBJ2+CA*(TQ.SUBI8.Q)*SUBJ2)+
CC*(SUBI3.Q.TQ.SUBJ7+CA*(TQ.SUBI3.Q)*SUBIT+
SUBI7.Q.TQ.SUBJ3+CA*(TQ.SUBI7.Q)*SUBJ3)+
CC+(SUBI4.Q.TQ.SUBJG+CA*(TQ.SUBT4.Q)*SUBJ6+
SUBI6.Q.TG.SUBJ4+CA*(TQ.SUBI6.Q)*SUBJ4)+
SUBIS5.Q.TQ.SUBJS+CA*(TQ.SUBJS.Q)*SUBIS ),
N2:N2+ R[IX,JJ]*( CB*(SUBX0.Q.TQ.SUBJ12+CA*(TQ.SUBIO.Q)*SUBJ12+
SUBI12.Q.TQ.SUBJO+CA*(TQ.SUBI12.Q)*SUBJO)+
CC#+(SUBI1.Q.TQ.SUBJ11+CA*(TQ.SUBI1.Q)*SUBJ11+
SUBI11.Q.TQ.SUBJ1+CA*(TQ.SUBI11.Q)*SUBJ1)+
CC+(SUBI2.Q.TQ.SUBJ10+CA*(TQ.SUBI2.Q)*SUBJ10+
5UBI10.3G.T0.SUBJ2+CA*(TQ.SUBI106.Q)*SUBJ2)+
CC*(SUBI3.Q.TQ.SUBJ9+CA*(TQ.SUBI3.Q)*SUBJIg+
SUBIS.Q.TN.SUBJ3+CA*(TQ.SUBI9.Q)*SUBJI3)+
CC*(SUBI4.0Q.TQ.SUBJ8+CA*(TQ.SUBI4.Q)*SUBJS+
5UBIE.Q.TQ.SUBJ4+CA*(TQ.SUBIS.Q)*SUBJ4)+
CC*(SUBI5.Q.TQ.SUBJ7+CA*(TQ.SUBIS.R)*SUBJT+
SUBI7.Q).TQ.SUBJS+CA*(TQ.SUBI7.Q)*SUBJS)+
SUBI6.Q.TQ.SUBJ6+CA*(TQ.SUBJ6.Q)*SUBI6 ),
N2:N2+ T[IX,JJ]*( CC*(SUBI2.Q.TQ.SUBJ12+CA*(T().SUBI2.Q)*SUBJ12+
SUBI12.Q.7Q.SUBJ2+CA*(TQ.SUBI12.Q)*SUBI2)+
CC*(SUBI3.Q.TQ.SUBJ11+CA*(TQ.SUBI3.Q)*SUBJ11+
SUBI11.Q.TQ.SUBJ3+CA*(TQ.SUBI11.Q)*SUBJ3)+
CCx(SUBI4.0Q.TQ.SUBJ10+CA*(TQ.SUBI4.Q)*SUBJ10+
SUBI10.Q.TQ.SUBJ4+CA*(TQ.SUBI10.Q *SUBJ4)+




CC*(SUBIS.Q.TQ.SUBJ9+CA*(TQ.SUBIS.Q)*SUBJ9+
SUBI9.Q.TQ.SUBJI5+CA*(TQ.SUBI9.G)*SUBJI5S)+
CC*(SUBI6.Q.TQ.SUBJ8+CA*(TQ.SUBI6.Q)*SUBJIS+
SUBI8.Q.TQ.SUBJ6+CA*(TQ.SUBI8.Q)*SUBJ6)+
SUBI7.Q.TQ.SUBJ7+CA*(TQ.SUBJ7.Q)*SUBI7 ),
N2:N2+ XH[II,JJ)*(CC*(SUBI4.Q.TQ.SUBJ12+CA*(TQ.SUBI4.Q)*SUBJ12+
SUBT12.0.TQ.SUBJ4+CA*(TQ.SUBI12.Q)*SUBJ4)+
CC*(SUBI5.Q.TQ.SUBJ11+CA*(TQ.SUBIS.Q)*SUBJ11+
SUBI11.0.TQ.SUBJ5+CA*(TQ.SUBI11.Q)*SUBI5)+
CC#(SUBI6.Q.TQ.SUBJ10+CA*(TQ.SUBI6.Q)*SUBJ10+
SUBI10.Q.TQ.SUBJ6+CA*(TQ.SUBI10.Q)*SUBJ6)+
CC*(SUBIT.Q.TQ.SUBJ9+CA*(TQ.SUBI7.Q)*SUBJ9+
SUBIS.Q.TQ.SUBJT+CA*(TQ.SUBI9.Q)*SUBJI7)+
SUBI8.Q.TQ.SUBJ8+CA*(TQ.SUBJ8.Q)*SUBI8 ),
N2:N2+ XJ[II,JI]*( CC+(SUBI6.Q.TQ.SUBI12+CA*(TQ.SUBI6.Q)*SUBI12+
"SUBI12.Q.TQ.SUBJ6+CA*(TQ.SUBI12.Q)*SUBI6)+
CC*(SUBI7.Q.TQ.SUBJ114+CA*(TQ.SUBI7.Q)*SUBJ11+
SUBI11.Q.TQ.SUBJ7+CA*(TQ.SUBI11.Q)*SUBJI7)+
CC*(SUBIS.Q.TQ.SUBJ10+CA*(TQ.SUBIS.Q)*SUBJ10+
SUBY10.Q.TQ.SUBJ8+CA*(TQ.SUBI10.Q)*SUBJI8)+
SUBI9.Q.TQ.SUBJ9+CA*(TQ.SUBJS.Q)*SUBI9 ),
N2:N2+ XL[II,J331#*( CC*(SUBI8.Q.TQ.SUBJ12+CA*(TQ.SUBI8.Q)*SUBJ12+
SUBI12.Q.TQ.SUBJ8+CA*(TQ.SUBI12.Q)*SUBI8)+
CC*(SUBI9.Q.TQ.SUBJ11+CA*(TQ.SUBI9.Q)*SUBJ11+
SUBI11.Q.TQ.SUBJ9+CA*(TQ.SUBI11.Q)*SUBI9)+
SUBI10.Q.TQ.SUBJ10+CA*(TQ.SUBJ10.Q)*SUBI10 ),
N2:N2+ XREII,JJ1*( CC*(SUBI10.Q.TQ.SUBJ12+CA*(TQ.SUBI10.Q)*SUBJ12+
SUBI12.0Q.TG.SUBJ10+CA*(TQ.SUBI12.GQ)*SUBJ10)+
SUBI11.Q.TQ.SUBJ11+CA+(TQ.SUBJ11.Q)*SUBI11 ),
N2:N2+ XTLII,JJ)#( SUBI12.Q.TQ.SUBJ12+CA*(TQ.SUBJ12.Q)*SUBI12 ),

KILL(SUBJ12,SUBI12,SUBJ11,SUBJ11),
KILL(SUBJO,SUBJ1,SUBJ2,SUBJ3,SUBJ4,SUBJS,SUBJ6,SUBI7,SUBJI8,SUBJ9,SUBJT10),
KILL(SUBIO,SUBI1,SUBI2,SUBI3,SUBI4,SUBIS,SUBI6,SUBI7,SUBI8,SUBIS,SUBI10)))$

KILL(HO,H1,H2,H3,H44,H5,H6,H7,H8,H9,H10,H11,H12)$
N2SYM:ZEROMATRIX(18,18)$

FOR II THRU 18 DO FOR 3J:II THRU 18 DO N2SYM[II,JJ]:N2(II,33]$
FRINT(*"SYMMETRIC N2 FORMED")$

KILL(N2)$

N2:ZEROMATRIX(18,18)$

KILL(Q,TQ)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO
N2[II,JJ]:FACTOROUT(N2SYM[II,33],Q(1),q(2),Q(3),q(4),q(5),0(6),
Q(7),q(8),q(9),Q(10),Q(11),Qq(12),9(13),q(14),Q(15),0(16),0(17),q(18))$
FRAME(T,J) :=CONCAT(TT,EV(18*(I-1)+3+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF N2[1,33#0 THEN (PT:1,GENTRAN(SN2(EVAL(I),EVAL(J)J:EVAL(N2(I,3]),
(EVAL(FRAME(I,J3))1)))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])%




/************************************************************************/

/* GENERATE THE NONLINEAR ELEMENT-INDEPENDENT STIFFNESS ARRAY N2S. */
/AR sk Sk ok ok sk ko o s sk ok ks ol okt o ok ok ok sk ok oo o ok KR KR ok vk sk sk Rk /

/* ASSEMBLE MATRIX N24S */
TQ:MATRIX([Q(1),Q(2),Q(3),Q(4),Q(5),Q(6),Q(7),Q(8),Q(9),q(10),
Q(11),0q(12),0(13),0(14),Q(15),0(16),Q(17),Q(18)1)$
Q: TRANSPOSE(TQ)$ LOADFILE("SSMAT123.5V")$
$30:SUBST( [K=K1,C=P1],550)$ SS1:SUBST([¥=Ki,C=P1],SS1)$
$52:SUBST([K=K1,C=P1],S52)$ SS3:SUBST([K=K1,C=P1],S53)$
$S4:SUBST([K=K1,C=P1],554)$ SS5:SUBST( [K=K1,C=P1],SS5)$
$S6:SUBST( [K=K1,C=P1],556)$ SS7:SUBST([K=K1,C=P1],SS7)$
$58:SUBST( [K=K1,C=P1],558)$ $59:SUBST({K=K1,C=P1],559)$
$S10:SUBST([K=K1,C=P1],5510)$ SS11:SUBST([K=K1,C=P1],SS11)$
$512:SUBST([K=K1,C=P1],5512)$ N2S:ZEROMATRIX(:i8,18)%

FOR II THRU 2 DO FOR J3 THRU 2 DO (PRINT(IIL,JJ),
( 32:3%( 9%(JJ+1)"2-39%(JJ+1)+48), I2:3%( 9% (II+1)"2-39%(II+1)+48),
SUBISO:SUBMATRIX(SSO, I2,I2-1,I2-2,12-3,12-4,12-5,I.~6,12-7,12-8,12-9,
12-10,12~11,12-12,12-13,12~14,12-15,12-16,12-17),
SUBJS0:SUBMATRIX(SS0, J2,32-1,J2-2,32-3,J2-4,J)2-5,J2-6,J2-7,J2-8,]2-9,
J2-10,J2-11,32~12,12-13,J2-14,32-15,J2-16,J2-17),
SUBIS1:SUBMATRIX(SS1, 12,I12-1,I2-2,12-3,I2-4,12-5,12-6,12-7,12~8,12-9,
12-10,I12-11,12~-12,12-13,12-14,12-15,12-16,12-17),
SUBJS1:SUBMATRIX(SS1, J2,J2-1,J2-2,J2-3,J2~4,J2-5,J2-6,32-7,]2-8,]2-9,
J2-10,J2-11,J2-12,32-13,32-14,J2-15, J2-16,J2-1T7),
SUBIS2:SUBMATRIX(SS2, I2,I2-1,12-2,I2-3,I2-4,12~5,12~6,12-7,12-8,12-9,
12-10,12-11,I2~12,12-13,12-14,12-15,12-16,12-17),
SUBJS2:SUBMATRIX(SS2, J2,J2-1,32~-2,J2-3,]2-4,J2~5,J2-6,J2-7,J2-8,]2-9,
J2-10,32-11,32~12,32-13,J2-14,J2-15,J2-16,J2-17),
SUBIS3:SUBMATRIX(SS3, 12,I2-1,I2-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,12~11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS3:SUBMATRIX(SS3, J2,J2-1,J2-2,J2-3,J2-4,]2-5,J2-6,J2-7,J2-8,J2-9,
J2-10,J2~11,32-12,32-13, J2-14,J2-15, J2-16,J2-17),
SUBIS4:SUBMATRIX(SS4, 12,I2-1,12-2,I2-3,I2-4,12-5,12-6,12-7,12-8,12-9,
I12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS4:SUBMATRIX(SS4, J2,J32-1,32-2,32-3,J2-4,J2-5,J2-6,J2-7,J2-8,J2-9,
J2-10,J2~11,J2-12,J2~13,J2-14,J2-15,J2-16,J2-17),
SUBISS:SUBMATRIX(SSS, I2,12-1,12-2,I2-3,1I2-4,12-5,12-6,12-7,12-8,12-9,
I12-10,I2~11,I2-12,12-13,12-14,12-15,12~16,12-17),
SUBJS5:SUBMATRIX(SSS, J2,J2-1,J32-2,J2-3,J2-4,J2~5,32-6,J2-7,J2-8,J2-9,
J2-10,J2-11,J2-12,32~13, J2-14,]2-15,J2-16 ,J2-17),
SUBIS6:SUBMATRIX(SS6, 12,I2-1,I2-2,12-3,12-4,12-5,12-6,12-7,12-8,12-9,
12-10,I2~11,12-12,12~13,12-14,12-15,72-16,12-17),
SUBJS6:SURKATRIX(SS6, J2,J2-1,)2-2,32-3,J2-4,J2-5,]2-6,32-7,J2-8,J2-9,
J2-10,J2-11,J2-12,32-13,J2-14,]2-15,J2~16,J2-17),
SUBIST7:SUBMATRIX(SS7, 12,I2~-1,12-2,12-3,12-4,12-5,12-6,12-7,12-8,12~9,
12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJST :SUBMATRIX(SS7, J2,32-1,32-2,J2~3,32~4,32-5,32~6,]2-7,J2-8,]12-9,
J2-10,32~11,J2-12,J2-13,32-14,J2-15, J2-16,12-17),
SUBIS8:SUBMATRIX(SS8, I2,12-1,12-2,I2-3,12-4,12-5,12-6,12-7,12~8,12-9,
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I12-10,12-11,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS8:SUBMATRIX(SS8, J2,J2-1,32-2,J2-3,J2-4,32-5,J2-6,J2-7,J2-8,J2-9,
J2-10,32-11,J2-12,J2-13,J)2-14,J2-15,J2-16,J2-17),
SUBIS9:SUBMATRIX(SS9, I2,I2-1,I2-2,12-3,12-4,12-5,12-6,12-7,I2-8,I2-9,
I12-10,12-11,12-12,12-13,12~14,12-15,12-16,I2-17),
SUBJS9:SUBMATRIX(SS9, J2,J2-1,J2-2,J2-3,32-4,J2-5,J2-6,32-7,J2-8,32~9,
J2-10,J2-11,32-12,J2-13,J2-14, J2-15,32-16,J2-17),
SUBIS10:SUBMATRIX(SS10, I2,I12-1,I2-2,12-3,12-4,I2-5,12-6,12-7,12~8,12-9,
12-10,12-11,12-12,12-13,12-14,12~15,12-16,12-17),
SUBJS10:SUBMATRIX(SS10, J2,32-1,J2-2,J2-3,]2-4,J2-5,J2-6,J2-7,32~8,J2-9,
J2-10,J2-11,32-12,J2-13,J2~14,J2-15,J2~16,J2~17),
SUBIS11:SUBMATRIX(SS11, I12,I2-1,12-2,I12-3,12-4,12~5,12-6,12-7,12~8,12-9,
12-10,I2-14,12-12,12-13,12-14,12-15,12-16,12-17),
SUBJS11:SUBMATRIX(SS11, J2,J32-1,32-2,J2-3,J2-4,J2-5,32-6,J2-7,32-8,J2-9,
J2-10,J2-11,J2-12,72-13,J2-14,J2-15,J2-16,32-17),
SUBIS12:SUBMATRIX(SS12, I12,12-1,I2-2,12-3,12-4,12-5,12~6,12-7,12-8,12-9,
12-10,I2-11,12-12,12-13,12-14,12~-15,12-16,12-17),
SUBJS12:SUBMATRIX(SS12, J2,J2-1,J2-2,J2-3,J2-4,J2-5,J2~6,72-7,32-8,J2-9,
J2-10,J2-11,J2-12,32-13,J2-14,J2-15,J2~16,J2-17),

CA:0.5¢ CB:1./3.$ CC:2./3.%

N2S:N2S+AS[II,J3]*( SUBISO0.Q.TQ.SUBJSO+CA*(TQ.SUBJS0.Q)*SUBISO ),
N2S:N2S+DS[II,JJ]*( CB*(SUBIS0.Q.TQ.SUBJIS2+CA*(TQ.SUBISO.Q)*SUBJS2+
SUBIS2.Q.TQ.SUBJSO+CA*(TQ.SUBIS2.Q)*SUBJISO)+
SUBIS1.Q.TQ.SUBJS1+CA*(TQ.SUBJS1.Q)*SUBIS1 ),
N2S:N2S+FS[II,JJ]*( CB*(SUBIS0.Q.TQ.SUBJS4+CA%(TQ.SUBIS0O.Q)*SUBJIS4+
SUBIS4.Q.TQ.SUBJSO+CA*(TQ.SUBIS4.Q)*SUBJSO)+
CC*(SUBIS1.Q.TQ.SUBJS3+CA*(TQ.SUBIS1.Q)*SUBJS3+
SUBIS3.Q.TQ.SUBJS1+CA*(TQ.SUBIS3.Q)*SUBJIS1)+
SUBIS2.Q.TQ.SUBJS2+CA*(TQ.SUBJS2.Q)*SUBIS2 ),
N25:N2S+HS[II, J3)*( CB*(SUBIS0.Q.TQ.SUBJS6+CA*(TQ.SUBISO.Q)*SUBJS6+
SUBIS6.Q.TQ.SUBJSO+CA*(TQ.SUBIS6.Q)*SUBJSO)+
CC*(SUBIS1.Q.TQ.SUBJS5+CA*(TQ.SUBIS1.Q)*SUBJSS+
SUBIS5.Q.TQ.SUBJS1+CA*(TQ.SUBIS5.Q)*SUBJS1)+
CC*(SUBIS2.Q.TQ.SUBJS4+CA*(TqQ.SUBIS2.Q) *SUBJS4+
SUBIS4.Q.TQ.SUBJS2+CA*(TQ.SUBIS4.Q)*SUBJS2)+
SUBIS3.Q.TQ.SUBJS3+CA*(TQ.SUBJS3.Q)*SUBIS3 ),
N2S:N25+JS{II,331*( CB*(SUBIS0.Q.TQ.SUBJS8+CA*(TQ.SUBISO.Q)*SUBIS8+
SUBIS8.Q.TQ.SUBJSO+CA*(TQ.SUBISS.Q)*SUBJSO)+
CC*(SUBIS1.Q.TQ.SUBJST+CA*(TQ.SUBIS1.Q)*SUBJST7+
SUBIS7.Q.TQ.SUBJS1+CA*(TQ.SUBIS7.Q)*SUBJS1)+
CC*(SUBIS2.Q.TQ.SUBJS6+CA*(TQ.SUBIS2.Q)*SUBJS6+
SUBIS6.Q.TQ.SUBJS2+CA* (TQ.SUBIS6.Q)*SUBJIS2)+
CC*(SUBIS3.Q.TQ.SUBJIS5+CA*(TQ.SUBIS3.Q)*SUBJSS+
SUBISS.Q.TQ.SUBJS3+CA*(TQ.SUBIS5.Q)*SUBJS3)+
SUBIS4.0Q.TQ.SUBJS4+CA*(TQ.SUBJS4.Q)*SUBISE ),
N2S:N2S+LS[II,JJI*(CB*(SUBIS0.Q.TQ.SUBJS10+CA*(TQ.SUBISO.Q)*SUBIS10+
SUBIS10.0Q.TQ.SUBJSO0+CA* (TQ.SUBIS10.Q)*SUBJSO)+
CC*{SUBIS1.Q.TQ.SUBJS9+CA*(TQ.SUBIS1.Q)*SUBIS9+
SUBIS9.Q.TQ.SUBJS1+CA*(TG.SUBISY.Q)*SUBJS1)+
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CC*(SUBIS2.0.TQ.SUBJS8+CA* (TQ.SUBIS2.Q)*SUBIS8+
SUBIS8.Q.TQ.SUBJS2+CA*(TQ.SUBIS8.Q)*SUBJS2)+
CC*(SUBIS3.Q.TQ.SUBJIS7+CA*(TQ.SUBIS3.Q)*SUBJST+
SUBIS7.7.TQ.SUBJS3+CA*(TQ.SUBIS7.Q)*SUBJS3)+
CC*(SUBIS4.Q.TQ.SUBJS6+CA*(TQ.SUBIS4.Q)*SUBJS6+
SUBIS6.GQ.TQ.SUBJS4+CA*(TQ.SUBIS6.Q)*SUBJS4)+
SUBIS5.Q.TQ.SUBJS5+CA*(TQ.SUBJS5.Q)*SUBISS ),
‘N2S:N2S+RS[II,JJI*(CB*(SUBIS0.Q.TQ.SUBJS12+CA*(TQ.SUBIS0.Q)*SUBJS12+
SUBIS12.Q.TQ.SUBJSO+CA*(TQ.SUBIS12.Q)*SUBJSO)+
CC+(SUBIS1.Q.TQ.SUBJS11+CA*(TQ.SUBIS1.Q)*SUBJS11+
SUBIS11.0Q.TQ.SUBJS1+CA*(TQ.SUBIS11.Q)*SUBIS1)+
CC+(SUBIS2.Q.TQ.SUBJS10+CA*(TQ.SUBIS2.Q)*SUBJS10+
SUBIS10.Q.TQ.SUBJS2+CA*(TQ.SUBIS10.Q)*SUBJS2)+
CC*(SUBIS3.Q.TQ.SUBJS9+CA*(TQ.SUBIS3.Q)*SUBJS9+
SUBIS9.Q.TQ.SUBJS3+CA*(TQ.SUBISS.Q)*SUBJIS3)+
CC*(SUBIS4.Q.TQ.SUBJS8+CA*(TQ.SUBIS4.Q)*SUB3IS8+
SUBISS8.Q.TQ.SUBJS4+CA*(TQ.SUBIS8.Q)*SUBJIS4)+
CC*(SUBIS5.Q.TQ.SUBJST+CA*(TQ.SUBIS5.Q)*SUBJST+
SUBIS7.Q.TQ.SUBJS5+CA*(TQ.SUBIS7.Q)*SUBJSE)+
SUB1S6.Q.TQ.SUBJS6+CA*(TQ.SUBJS6.Q)*SUBISE ),
N2S:N2S+TS[II,JJ]*(CC*(SUBIS2.Q.TQ.SUBJIS12+CA*(TQ.SUBIS2.Q)*SUBIS12+
SUBIS12.Q.TQ.SUBJS2+CA*(TQ.SUBIS12.Q)*SUBJS2)+
CC*(SUBIS3.Q.TQ.SUBJS11+CA*(TQ.SUBIS3.Q)*SUBJS11+
SUBIS11.Q.TQ.SUBJS3+CA*(TQ.SUBIS11.Q)*SUBJS3)+
CC*(SUBIS4.(.TQ.SUBJS10+CA*(TQ.SUBIS4.Q)*SUBIS10+
SUBIS10.Q.TQ.SUBJS4+CA*(TQ.SUBIS10.Q)*SUBIS4)+
CC*(SUBISS5.Q.TQ.SUBJS9+CA*(TQ.SUBISS.Q)*SUBJS9+
SUBIS9.Q.TQ.UBJS5+CA*(TQ.SUBIS9.Q)*SUBJS5)+
CC*(SUBIS6.Q.TQ.SUBJS8+CA*(TQ.SUBIS6.Q)*SUBIS8+
SUBIS8.Q.TQ.SUBJIS6+CA*(TQ.SUBIS8.Q)*SUBJS6)+
SUBIS7.Q.TQ.SUBIST+CA*(TQ.SUBJST.Q)*SUBIST ),
N2S:N2S+XHS[IT, 331 *(CC*(SUBIS4.Q.TQ.SUBIS12+CA*(TQ.SUBIS4.Q)*SUBJS12+
SUBIS12.Q.TQ.SUBJS4+CA*(TQ.SUBIS12.Q)*SUBJS4)+
CC*(SUBIS5.Q.TQ.SUBJS11+CA*(TQ.SUBISS.Q)*SUBJS11+
SUBIS11.Q.TQ.SUBJIS5+CA*(TQ.SUBIS11.Q)*SUBJSS)+
CC*(SUBIS6.Q.TQ.SUBIS10+CA*(TQ.SUBIS6.Q)*SUBIS10+
SUBIS10.Q.TQ.SUBJS6+CA*(TQ.SUBIS10.0Q)*SUBIS6)+
CC*(SUBIS7.Q.TQ.SUBJS9+CA*(TQ.SUBIST7.Q)*SUBIS9+
SUBIS9.Q.TQ.SUBJS7+CA*(TQ.SUBIS9.Q)*SUBJIST)+
SUBIS8.Q.TQ.SUBJS8+CA*(TQ.SUBJS8.Q)*SUBISS ),
N2S:N2S+XJS[II, I3} *(CC*(SUBIS6.Q.TQ.SUBIS12+CA*(T(.SUBIS6.Q)*SUBJS12+
SUBIS12.Q.TQ.SUBJS6+CA*(TQ.SUBIS12.Q)*SUBJIS6)+
CC*(SUBIS7.Q.TQ.SUBJS11+CA*(TQ.SUBIST.Q)*SUBJS11+
SUBIS11.Q.TQ.SUBJST+CA*(TQ.SUBIS11.Q)*SUBJST)+
CC+(SUBIS8.Q.TQ.-SUBJS10+CA*(TJ.SUBISS.Q)*SUBIS10+
SUBIS10.(.TQ.SUBJS8+CA*(TQ.SUBIS10.Q)*SUBJIS8)+
SUBIS9.Q.TQ.SUBISO+CA*(TQ.SUBJS9.Q)*SUBISS ),
N2S:N2S+XLS[II,JJ]*(CC*(SUBIS8.Q.TQ.SUBIS12+CA*(TQ.SUBISS.Q)*SUBJIS12+
SUBIS12.Q.TQ.SUBJS8+CA*(TQ.SUBIS12.Q)*SUBIS8)+
CC*(SUBIS9.Q.TQ.SUBJIS11+CA*(TQ.SUBISS.Q)*SUBJS11+
SUBIS11.Q.TQ.SUBIS9+CA*(TQ.SUBIS11.Q)*SUBIS9)+
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SUBIS10.Q.TQ.SUBJS10+CA*(TQ.SUBJS10.Q)*SUBIS10 ),
N2S:N2S+XRS[II,JJ]*(CC*(SUBIS10.Q.TQ.SUBIS12+CA%(TQ.SUBIS10.Q)*SUBIS12+
SUBIS12.Q.TQ.SUBJS10+CA*(TQ.SUBIS12.Q)*SUBJS10)+
SUBIS11.Q.TQ.SUBJS11+CA%*(TQ.SUBJS11.Q)*SUBIS11 ),
N2S:N2S+XTS[II, JJ)*( SUBIS12.Q.TQ.SUBJS12+CA%*(TQ.SUBJS12.Q)*SUBIS12 ),

KILL(SUBJS12,SUBIS12,SUBJS11,SUBISi1),
KILL(SUBJSO,SUBJS1,SUBJS2,SUBJS3,SUBJIS4,SUBJSS,
SuBJS6,SUBJST,SUBJS8,SUBJIS9, SUBIS10),
KILL(SUBISO,SUBIS1,SUBIS2,SUBIS3,SUBIS4,SUBISS,

SUBIS6,SUBIS7,SUBIS8,SUBIS9,SUBIS10)))$

KILL(SS0,5S51,5S2,553,5584,5S5,556,5S7,558,559,5510,5511,5512)$
N2SYM:ZEROMATRIX(18,18)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO N2SYM[II,JJ]:N2S{II,JJ1$
PRINT("SYMMETRIC N2 FORMED")$

KILL(N2S)$

N2:ZEROMATRIX(18,18)$

KILL(Q,TQ)$

FOR II THRU 18 DO FOR JJ:II THRU 18 DO
N2[II,JJ]:FACTOROUT(N2SYM[II,JJ1,Q(1),0(2),Q(3),Q(4),Q(5),q(s),
0(7),Q(8),0(9),q(10),9(11),Q(12),0(13),Q0(14),Q(15) ,Q(16),Q(17),Q(18))$
FRAME(I,J) :=CONCAT(TT,EV(18%(I-1)+J+1000))$

FOR I THRU 18 DO FOR J:I THRU 18 DO

(IF N2[I,JJ#0 THEN (PT:1,GENTRAN(SN2S[EVAL(I),EVAL(J)]:EVAL(N2[I,J]),
[EVAL(FRAME(I,J))I)))$

IF PT#1 THEN GENTRAN(PT:EVAL(PT), [TT2000])$
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