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Summary

The Process Description Capture Method (IDEF3) is one of several ICAM (Integrated
Computer-Aided Manufacturing) DEFinition methods developed by the Air Force to
support systems engineering activities, and in particular, to support information systems
development. These methods have evolved as a distillation of "good practice™ experience
by information system developers and are designed to raise the performaice level of the
novice practitioner to one comparable with that of an expert. IDEF3 is meant to serve as a
knowledge acquisition and requirements definition tool that structures the user's
understanding of how a given process, event, or system works around process
descriptions. A special purpose graphical language accompanying the method serves to
highlight temporal precedence and causality relationships relative to the process or event
being described.

The purpose of this paper is to present a rigorous formalization of the IDEF3 method.
Formalization of a method is accomplished to:

(1) Identify the informal intuitions that motivate the method.

(2) Provide a technical basis for integration with other methods.

(3) Provide an objective basis for the comparison of methods.

(4) Provide a technical basis and an engineering technique for the design of new
methods.

(5) Provide accurate specifications for the design of automated method support tools.

Included within this formalization is a definition of the basic concepts employed by the
IDEF3 method and the logic for how those concepts work together to represent a particular
view of reality. Also included is a description of the symbols and presentation rules for
the graphical component of the method. Together, these provide both a formal and
informal description of the Process Description Capture method and the basic guidelines
needed for practical application.




Introduction

The central way of describing what happens in the world around us, and in
particular for describing how a given or prospective system works, is to relate
a story in the form of an ordered sequence of events or activities. We call this
process description. This report is concerned with motivating and formalizing
IDEF3, a rigorous method for capturing process descriptions. In particular,
IDEF3 is designed (i) to be used by engineering and manufacturing domain
experts to express the normal content of a common sense process description,
and (ii) to be structured enough to allow for computerized representation,
automated interpretation, and intelligent support for uses of the language
in capturing process descriptions. The chief motivation for such a method
is that, befcze one can provide any sort of information based application
for a user within a particular domain (manufacturing and engineering in
particular), one must have an accurate description of the user’s understanding
of the structure of the domain.

Section 1 of the paper sets the stage for the reporting of our current
results. In Section 1.1 we characterize the difference between a model and
a description of a part of the world. In Section 1.2 we present some of the
phenomena present in typical process descriptions, and briefly discuss the
notion of process we will be working with. In Section 1.3 we briefly compare
IDEF3 with other process formalisms. Following these three sections we
develop IDEF3 formally; that is, we develop IDEF3 as a formal theory, with
a syntax and corresponding semantics designed to capture what we consider
to be the essential components of process description.

1 Background and Motivation

1.1 Descriptions vs. Models

It is important first to distinguish between models and descriptions (Mayer,
1988). We emphasize that, although models may well be constructed from
descriptions, our task here is not the construction of models but the formal
representation of descriptions and the information they convey.

To get at the distinction, a model can be characterized as an idealized
system of objects, properties, and relations that is designed to imitate in




certain relevant respects the character of a given real world system. The
power of a model comes from its ability to simplify the real world system
it represents, and to predict certain facts about that system in virtue of
corresponding facts within the model.! A model is thus in a certain sense
a complete system. For in order to be an acceptable model of a given or
imagined real world situation, it must satisfy certain “axioms” or conditions
derived from the real world system.

A description on the other hand is a recording of facts or beliefs about the
world around us. As such descriptions are in general partial; a person giving
a description may omit facts that do not strike her as relevant, or which she
has forgotten in the course of describing the system, etc. There are thus
no preconditions on an acceptable description, no “axioms” to be satisfied,
short of simple accuracy as far as it goes; descriptions, we might say, are
assumed to be true, but incomplete.? The accumulation of descriptions is
thus prior to and distinct from the construction of models. Indeed, generally,
ihe conditions one puts on acceptable models are derived from descriptions
one receives from domain experts; they are, so to say, the data from which
models are built.

Descriptions are thus essential to the model building process. An accurate
treatment of such descriptions requires two components, one having to do
with the descriptions as linguistic entities (the syntactic component) and the
other having to do with their content, with the information they convey (the
semantic component). There muat be an effective means of representing the
descriptions themselves, a means of capturing their “logical form,” and a
rigorous account of their information content.

On the syntactic side, as we will see, IDEF3 makes use of the standard
language of first order logic as its formal base. This permits a rich and
flexible means of expressing the logical form of most any typical descriptive
statement. Semantically, we use a variant of first-order semantics, enriched
to represent the temporal information so crucial to process descriptions. This
approach, unlike that of typical simulation languages, enables us to interpret
the intended meaning of a given descriptions in terms of a semantic structure
that corresponds in a natural way to the real world situation being described.

1See (Corynen, 1975) for a detailed analysis of this phenomena.
3In fact one very powerful use of models is to fill in the gaps in our descriptions.




1.2 Phenomenological and Linguistic Motivations
1.2.1 What is a Process?

To understand the idea of capturing process descriptions, one must first know
what we mean by a process. We are not using the term in a technical sense,
but in an ordinary-language sense, in keeping with IDEF3’s role as a method-
ology for acquiring the intuitive knowledge of domain experts. Unfortunately,
the term “process” is quite ambiguous in English. We will need to refine our
understanding of process terminology in ordinary language before we can
characterize the intended sense of “process” more clearly.

Since we are interested in capturing a human’s understanding of the the
world around him (and how it works) it is necessary to characterize the con-
cept of a process in view of that understanding. Such a characterization
is bound to be difficult since the notion of change—a notoriously slippery
notion—is basic to the concept of process. Intuitively, the term process is
used to describe an isolable event or occurrence. As such it can be assigned a
more or less definite starting point (typically associated with the satisfaction
of certain antecedent conditions) and continue indefinitely. A process will in
general involve objects with certain (perhaps changing) properties standing
in specified (perhaps changing) relations. A process can also stand in rela-
tions with other processes: e.g., a process can start, suspend and terminate
other processes; objects or information about objects can be shared between
processes; one process can change the properties of such a shared object and
“cause” the exclusion of another process execution; etc.

It is crucially important to distinguish between process types and process
tnstances, or ndividual processes. (Indeed, as we’ll see below, it is important
to distinguish generally between types and instances with regard to many
other kinds of entities as well.) We think of an individual process as a con-
crete occurrence located at a specific time and place. Process types may be
thought of as classes of individual processes or properties that individual
processes may have. It is unfortunate that the English language does not
distinguish between process types and individual processes; the word “pro-
cess” can refer to ether. In this essay, however, we will attempt to maintain
the distinction rigorously whenever it matters. (It does not always matter;
for instance, it does not matter in very general contexts (as above) or where
the term “process” occurs as an integral part of phrases like “process flow




description capture” or “process model.”) Process types may vary from gen-
eral to specific. An individual process p which is among those picked out by
a process type P will be called an tnstance of p. If process types P and Q
are such that any instance of P is also an instance of Q, then P is said to
be a subtype of Q. Similar terminology is used for types and individuals of
other varieties than processes.

One important note about the more general use of the term individual:
not all individuals are concrete entities. Some types, like number, may have
instances which are abstract entities; these instances are nonetheless individ-
uals. In fact, the term “individual” is really more or less synonymous with
“instance”; a thing is called an individual only with a tacit reference to some
type of which it is an instance.

1.2.2 Narrow and Broad Senses of “Process”

Another problem in describing processes in English arises from the language’s
intense focus on the details of temporal succession, characteristic of the Indo-
European languages.

There is one sense of “process” in which the word is distinguished from
“event,” “state of affairs,” “eventuality,” “occurrence,” and any number of
other words of this general cdass. In fact, there are several such senses of
“process,” each stressing a different kind of distinction between processes
and other things of this general kind. For instance, in one sense processes
are supposed to have internal structure, as opposed to events, which are
pointlike. In another sense, each instance of a given process type are supposed
to be divisible into temporal subparts which are process instances of the same
process type, whereas this would not be true for events. The linguist and
philosopher Zeno Vendler (Vendler, 1967; Vendler, 1968), among others, has
gone into great detail in classifying things of this kind, coining individual
terms for concepts represented by variations in meaning in English.

On the other hand, there is another sense of “process” in which it is
synonymous with “event.” In this sense the extensions of any of the other
terms listed in the preceding paragraph would be subsets of the class of
processes; a process is anything of the general kind described in the preceding
paragraph. It is this broadest sense of ‘process’ with which we are concerned
in IDEF3; the Vendlerian dassification is irrelevant to our purposes. (IDEF3
has its own ways of distinguishing one kind of process from another based on




the internal structure of the instances.) The precise technical term we have
invented for processes (in this broad sense) is unit of behavior (UOB), which
simply means a process or event, in the most general senses of those terms.
We continue to write simply “process” where we feel it will be clear that any
UOB is meant, not just a process in some narrower sense.

1.3 IDEF3 vs. Other Process Formalisms

Various disciplines have their own special perspectives on the task of describ-
ing processes. In the world of simulation, for instance, “modeling” a process
means constructing a model which can be used to simulate the process. In
the literature on robot planning in artificial intelligence, a plan is a kind of
process description.

Process modeling and planning, however, are only two ways in which
processes might be described. IDEF3 aims at producing high-level, general-
purpose descriptions of processes. These are IDEF3 models, not to be con-
fused with “process models” in the simulation sense. There are many pur-
poses for which IDEF3’s approach is useful including:

e Determination of the impact of an organization’s information resources
on the major operation scenarios of the business.

¢ Documentation of the decision procedures affecting the states and life
cycles of critical shared data.

e Organization of the user supplied descriptions of user operations to
assist in requirements decision making and system design.

Additionally, an IDEF3 model can be used in the early stages of defin-
ing a knowledge based system, a simulation study, a robot plan, or some
other kind of special-purpose mode! of a process. This use of IDEF3 as an
early, fact-gathering and organi.ction aid can save time and reduce com-
plexity in early design. As in every design activity, it is easier to discover
how to do something once you know what you want to do. Furthermore,
because IDEF3 carries iess of the technical baggage of various entrenched
disciplines than do most other process formalisms, it will be relatively easy
for a domain expert, without extensive training in any process formalism, to
use IDEF3 to communicate with designers of many different kinds of systems




(software, simulation, shop floor machining systems, etc.). IDEF3 will thus
be a powerful tool for knowledge acquisition.

With this background, then, we now move on to a more precise account
of IDEF3. We begin with some formal prerequisites.

2 The Syntax and Semantics of First-order
Logic

IDEF3 diagrams have a definite syntax. Furthermore, diagrams constructed
in accordance with that syntax are intended to represent certain chunks of
the world accurately and informatively; the diagrams, that is, have semantic
content. All too often the syntax of information representations of various
kinds is ill-defined, and the intended semantic content of such representations
(how they are supposed to hook up with the world) is vague and imprecise.
We attempt to avoid these problem in IDEF3 by providing an explicitly
defined syntax to make clear exactly what does and what does not count
as an IDEF3 diagram and corresponding mathematically precise semantics
to make clear exactly what sorts of structures are representable by IDEF3
diagrams.

To help us achieve this goal, we rely heavily upon the syntax and seman-
tics of first-order logic. There are several reasons for this decision. First,
first-order logic is as clearly understood as any extant scientific or mathe-
matical theory. This enables us to proceed in confidence that the most basic
theoretical foundations of our work are sound. Second, although the lan-
guage of first-order logic was originally designed to express propositions of
mathematics with clarity and precision, it soon became clear that much of
natural language could also be clearly represented in this formal language.
This is especially true for constrained fragments of natural language such as
one might find in a manufacturing, engineering, or database setting,® and
hence makes first-order logic a natural and effective choice for capturing the
propositional content of process descriptions in a rigorous and precise way.
Finally, for all its rigor, the theory of first-order logic is intuitive and rela-

3Thete is in particular a very large literature on the uses of logic in database design.
See, for example, (Frost, 1986), ch. 5, for a good introduction to logical database theory,
and (Gallaire and Minker, 1978) or (Jacobs, 1982) for more detailed treatments.




tively simple to understand. The language is a straightforward idealization
of ordinary discourse, and its semantics, or model theory, provides especially
natural mathematical representations of the phenomena to be mcdelled.

Since we are assuming no familiarity with first-order logic, this section of
our paper will cover enough of the basic theory to enable one to follow the
exposition of the foundations of IDEF3 to follow. Some knowledge of basic
set theory will be presupposed.

2.1 First-order Languages

First-order logic is expressed in a first-order language. Such a language £
is a formal language. That is, it is a formal object consisting of a fixed
set of basic symbols, often called the vocabulary of £, and a precise set of
syntactic rules, its grammar, for building up the sentences, or formulas, of
the language, those syntactic objects that are capable ¢f bearing information.

2.1.1 Vocabulary

The basic vocabulary of a first order language conrists of several kinds of
symbols:*

e Constants
e Variables
e Predicates

e Logical symbols.

Constants are symbols that correspond to names in ordinary language.
For many purposes, it is useful to use abbreviations of names straight out of
ordinary language for constants, e.g., j for John, wp for Wright-Patterson,
v for Venus, e for Elevator 1, etc. When we are describing languages in
general and have no specific application in mind, we will simply use the letters
a, b, ¢, and d, perhaps with subscripts; we will assume that we will add no

*We omit furction symbols for purposes here, though they would be present in a com-
plete account of the theory.




more than finitely many subscripted constants to our language.® Constants
are usually lower case letters, with or without subscripts, but this is not
necessary. Indeed, it is often useful to use upper case.

We will often want to say things about an “arbitrary” constant as a way
of talking about all constants, much as one might talk about an arbitrary
triangle ABC in geometry as a way of proving something about all triangles
in general. For this purpose it will not do to talk specifically about a given
constant, a say, since we want what we say to apply to all constants. This
requires that, when we are talking about our language, that we use spedal
metav iriables whose roles are to serve as placeholders for arbitrary constants
of our language, much as ABC above serves as a placeholder for arbitrary
triangles. Thus, metavariables are not themselves part of our first-order
language £, but rather part of the extended English we are using to talk
about the constants that are in the language. We will use lower case sans
serif characters a, b, c for this purpose.

Next on the list are the variables, whose purpose will be clarified in detail
below. The lower case letters z, y, and z, possibly with subscripts, will play
this role, and we will suppose there to be an unlimited store of them. We
will use the characters x, y and z as metavariables over the store of variables
in our language.

The third group of symbols in our language consists of n-place predicates,
n > 1. One-place predicates correspond roughly to verb phrases like “has
insomnia,” “is an employee,” “is activated,” and so forth, all of which express
properties. Two-place predicates correspond roughly to transitive verbs like
“begat,” “is an element of,” “weighs less than,” “enters,” and “lifts,” and
these express two-place relations between things. There are also three-place
relations, such as those expressed by “gives” and “between,” and with a
little work we could come up with relations of more than three places, but
in practice we have little cause to go much beyond this.

When speaking generally, for predicates we will use upper case letters such
as P, Q, and R. Occasionally these may appear with numerical superscripts
to indicate the number of places of the relation they represent, and if neces-
sary with subscripts to distinguish between those with the same superscripts.

5The restriction to a finite number of constants here is not at all essential, but constraint
languages in general will use only finitely many; the same holds for predicates and function
names below.




Once again, though, in practice it is often useful to abbreviate relevant nat-
ural language expressions. Most languages contain a distinguished predicate
for the two-place relation “is identical to.” We will use the symbol = for this
purpose. Once again, the corresponding sans serif characters P, Q, R etc.
will serve as metavariables.

The last group of symbols consists of the basic logical symbols: ~, A, V,
D, and =, about which we shall have more to say shortly. (For ease of
exposition here we will omit quantifiers, though these would be present in
a thorough treatment.) We will also need parentheses and perhaps other
grouping indicators to prevent ambiguity.

2.1.2 Grammar

Now that we have our basic symbols, we need to know how to combine them
into grammatical expressions, or well-formed formulas, which are the formal
correlates of sentences. These will be the expressions that will encode the
propositional content of process descriptions in our theory (and more). This
is done recursively as follows.®

First, we want to group all name-like objects into a single category known
as terms. This group includes the constants of course, and for reasons dis-
cussed below, it includes the variables as well.

Next we define the basic formulas of our language. Just as verb phrases
and transitive verbs in ordinary language combine with names to form sen-
tences, so in our formal language predicates combine with terms to form
formulas. Specifically, if P is any n-place predicate, and t,,...,t, are any
n terms, then Pty ...t, is a formula, and in particular an atomic formula.
To illustrate this, if H abbreviates the verb phrase “is happy,” and a the
name “Annie,” then the formula Ha expresses the proposition that Annie
is happy. Again, if L abbreviates the verb “loves,” b the name “Barbara,”
¢ the name “Charlie,” then the formula Lbc expresses the proposition that
Barbara loves Charlie. We will use the lower case Greek letters ¢, v, and 6
as metavariables over formulas.

Often when one is using more elaborate predicates drawn from natural
language, e.g., if we had used LIFTS instead of L in the previous example, it
is more readable to use parentheses around the terms in atomic formulas that

SWe will say a little more about recursive definitions below.




use the predicate and separate them by commas, e.g., LIFTS(b,z) instead
of LIFTSbz. Thus, more generally, any atomic formula Pt,...t, can be
written also as P(t;,...,t,). Furthermore, atomic formulas involving some
familiar two-place predicates like =, and a few others that will be introduced
below, are more often written using nfiz rather than prefiz notation, i.e.,
with the predicate between the two terms rather than to the left of them.
For example, we usually express that a is identical to b by writing a =~ b
rather than ~ab. Thus, we stipulate that formulas of the form Ptt’ can also
be written as tPt'.

Now we begin introducing the logical symbols that allow us to build up
more complex formulas. The symbol — expresses negation; i.e., it stands
for the phrase ‘It is not the case that’. Since we can negate any declarative
sentence by attaching this phrase onto the front of it, we have the corre-
sponding rule in our formal grammar that if ¢ is any formula, then so is ~p.
The symbols A, V, D, and = stand roughly for “and,” “or,” “f...then,” and
“f and ounly if,” which are also (among other things) operators that form
new sentences out of old in the obvious ways. Unlike negation, though, each
takes two sentences and forms a new sentence from them. Thus, we have
the corresponding rule that if ¢ and ¢ are any two formulas of our language,
then so are (¢ A ¥), (p V¥), (¢ D ¥), and (¢ = ¥). So, to illustrate once
again, using the abbreviations above, (Lcb O (Hb A ~Ha)) expresses that if
Charlie loves Barbara, then Barbara is happy and Annie is not.

Finally, we turn to the quantifiers 3 and V. Recall that we introduced
variables without explanation above. 3 and V stand for “some” and “ev-
ery,” respectively; one central task of the variables is to enable them to play
this role in our formal language. (They shall have another, crucial role to
play in IDEF3, as we will see.) Consider the difference between “Annie is
happy,” “Some individual is happy,” and “Every individual is happy.” In
the first case, a specific individual is picked out by the name “Annie” and
the property of being happy is predicated of her. In the second, all that is
stated is that some unspecified individual or other has this property. And in
the third, it is stated that every individual, whether specifiable or not, has
this property. This lack of specificity in the latter two cases can be made
explicit by rephrasing them like this: for some (resp., every) individual =z,
z is happy. Since the rule for building atomic formulas counted variables
among the terms, we have the means for representing these paraphrases. Let
H abbreviate “is happy” once again; then we can represent the paraphrases
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as JxHz and VzHz respectively.

Accordingly, we add the final rule to our grammar: if p is any formula of
our language and x is any variable, then 3xp and Vxp are formulas as well.
In such a case we say that the variable z is bound by the quantifier 3 (resp.,
V), and we say that the formula ¢ is the scope of the quantifer V in Vxy, and
it is the scope of the quantifier 3 in 3Ixy.

2.2 First-order Semantics: Structures

We have motivated the construction of our grammar by referring to the
intended meanings of the logical symbols and by letting our constants and
variables abbreviate meaningful expressions out of ordinary language. But
from a purely formal point of view, all we have in a language is uninterpreted
syntax; we have not described in any formal way how to assign meaning to
the elements of a first-order language. We will do so now.

A structure for a first-order language £ consists simply of two elements:
a set D called the domain of the structure, and a function V known as an
tnterpretation function for L. D is the set of things one is describing with
the resources of £, e.g., the natural pumbers, major league baseball teams,
objects flowing through a manufacturing system, the people and objects that
make up an air force base, or the records inside a database. The purpose
of V is to fix the meanings of the basic elements of L—in our present case,
constants and predicates—in terms of objects in or constructed from D.

2.2.1 Interpretations for Constants and Predicates

Constants Variables will not receive a specific interpretation, since their
meanings can vary within a structure (they are variables after all). They wll
be treated with their own special, but related, semantic apparatus below.
Constants, being the formal analogues of names with fixed meanings, are
assigned members of D once and for all as their interpretation; in symbols,
for all constants c of £, V(c) € D.

Predicates For any one-place predicate P, we let V(P) be a subset of D—
the set of things that have the property expressed by P. And for any n-place
predicate R, n > 1, we let V(R) be a set of n-tuples of elements of D—
the set of n-tuples of objects in D that stand in the relation expressed by
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R. For example, if we want ‘L’ to abbreviate the verb “loves,” then if our
domain D consists of the population of Texas, then V(L) will be the set of
all pairs (a,b) such that a loves b. Formally, then, for all n-place predicates
P, V(P) C D", where D" is the set of all n-tuples of elements of D.

If one wishes to include the identity predicate = in one’s language, and
have it carry its intended meaning, then one needs an additional, more spe-
cific semantical constraint on the interpretation function V. Identity, of
course, is a relation that holds between any object and itself, but not between
itself and any other object. This additional constraint is easy to express for-
mally: if our language £ contains =, then the interpretation of = is the set of
all pairs (o,0) such that ois an element of the domain D, i.e., more formally,
V(=) = {(0,0) | 0 € D}.

2.2.2 Truth under an Assignment

Our goal now is to define what it is for a formula to be true in a given a
structure M = (D, V). To do so, we will first need the notion of a variable
assignment, or assignment for short. An assignment might be thought of
as a “temporary” interpretation function for variables: like an interpreta-
tion function on constants, it assigns members of the domain to variables;
but within the same structure we make use of many different assignment
functions. This reflects the semantic variability of variables as opposed to
constants and predicates. Now, given our structure M and an assignment q,
we can define interpretations for terms, i.e., constants and variables gener-
ally, relative to a: the interpretation V,(t) of a term t under an assignment
ais just V(t),if t is a term, and a(t)—the object in D assigned to t by a—if
t is a variable.

Atomic Formulas Given a general notion of an interpretation for terms
under an assignment a, we can now define the notion of truth under an
assignment in a structure M. Truth ssmpliciter in M will then be defined
in terms of this notion. For convenience, we will often speak of a formula’s
being “true, in M” instead of being “true in M under a.”

We start by defining truth under an assignment for atomic formulas. So
let ¢ be an atomic formula Pt;...t,. Then ¢ is true, in M just in case
(Va(t1), ..., Fa(ts)) € Va(P). Intuitively, then, where n = 1, Pt is true, in
M just in case the object in D that t denotes is in the set of things that have
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the property expressed by P. And for n > 1, Pt;...t, is true, just in case
the n-tupie of objects (0;,...,0,) denoted by t;,... t, respectively is in the
set of n-tuples whose members stand in the relation expressed by P, i.e., just
in case those objects stand in that relation.

To help fix these ideas, let us actually construct a small language £* and
build a small structure M*. Suppose we have four names a, b, ¢, d, a one-
place predicate H (intuitively, to abbreviate “is happy”), and a three-place
predicate T (intuitively, to abbreviate “is talking to ...about”). Let us also
include the distinguished predicate =, though we will make no real use of it
until later. We will use z, y, and z for our variables.

For our structure M*, we will take our domain D to be a set of three
individuals, {Beth, Charlie, Di}, and our interpretation function G will be
defined as follows. For our constants, G(a) = G(b) = Beth, G(c) = Charlie,
and G(d) = Di. (Beth thus has two names in our language; this is to illustrate
a point to be made several sections hence.) For our predicates H and T,
we let G(H) = {Beth, Di} (so, intuitively, Beth and Di are happy), and
G(T) = {(Beth, Di, Charlie), (Charlie, Charlie, Di)} (so, intuitively, Beth
is talking to Di about Charlie, and Charlie is talking to himself about Di).
Following the rule for =, we let G(~) = {(Beth, Beth), (Charlie, Charlie), (Di,
Di)}. Finally, for our assignment function a, we let a(z) = a(y) = Charlie,
and afz) = Di.

Let us now check that Hd and Tbdz are true in M* under a. In the first
case, by the above, Hd is true, in M* just in case G,(d) € G,(H), i.e., just
in case Di is an element of the set {Beth, Di}, which she is. So Hd is true,
in M*. Similarly, Tbdz is true, in M* just in case (Go(b),Ga(d),Ga(z)) €
Ga(T), i.e., just in case (G(b),G(d),a(z)) € G(T), i.e., just in case (Beth, Di,
Charlie) € {(Beth, Di, Charlie), (Charlie, Charlie, Di)}. Since this obviously
holds, the formula Tbdz is true, in M*.

A formula is false, in a structure M, of course, just in case it is not true,
in M. It is easy to verify that, for example, Hc, Hz, and Tdbc are all false,
in M* under a.

Digression on Variables, Types, and Instances We emphasized above
the disinction between types and instances. It is important to see how this
distinction is captured to a certain extent by the apparatus of variables and
assignments. Though we have no specific semantic object corresponding to
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types, intuitively formulas with unassigned variables can be thought of as
expressing types of situations.” For example, the formula Hz, tndependent
of any assignment, can be thought of as expressing the type of situation in
which someone or other is happy; when that variable is assigned, or anchored,
to a given individual, Charlie say, then we get a determinate instance of that
situation type. Again, Tzcw can be thought to express the type of situation
in which someone is talking to Charlie about someone, an assignment of some
object, Beth say, to z yields the somewhat more determinate situation type
in which Beth is talking to Charlie about someone or other, and a further
assignment of an object to w then yields a determinate instance of the latter
two types.

This reflection of the type/instance distinction in the assigned /unassigned
variable distinction plays a crucial role in representing the process-type/pro-
cess-instance distinction in IDEF3. We will have more to say about this
presently.

Conjunctions, Negations, etc. Now for the more complex cases. Sup-
pose first that ¢ is a formula of the form —). Then ¢ is true, in a structure
M just in case ¥ is not true, in M. In so defining truth for negated formulas
we ensure that the symbol — means what we have intended. Things are much
the same for the other symbols. Thus, suppose ¢ is a formula of the form
¥ A 6. Then o is true, in M just in case both ¢ and 0 are. If p is a formula
of the form ¥ V @, then p is true, in M just in case either ¢ or fis. Hpis a
formula of the form v D 6, then ¢ is true, in M just in case either ¢ is false
in M or 0 is true, in M. And if ¢ is a formula of the form ¢ = 8, then ¢ is
true, in M just in case ¥ and 6 have the same truth value in M.

The reader should test his or her comprehension of these rules by verifying
that ~H(y) and (Tbcz A Tzzc) D Hc are both true in M* under a.

Quantified Formulas Last, we turn to quantified formulas. (This section
can be omitted without impairing the reader’s understanding, since our ex-
amples below do not involve quantified statements.) The intuitive idea is
this. When we introduced the quantifiers above, we noted that “Some in-

"The notion of a situation is at the heart of much recent work in natural language se-
mantics, philosophy, logic, and artifical intelligence, especially around Stanford University.
See esp. (Barwise and Perry, 1983) and (Barwise, 1989) in this regard.
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dividual is happy,” i.e., 3zHz, can be paraphrased as “for some individual
z, z is happy.” This in turn might be parapharased more linguistically as
“for some value of the variable z, the expression ‘z is happy’ is true.” This
is essentially whzi our formal semantics for existentially quantified formulas
will come to. That is, 3xr Hz will be true in a structure M under a just in
case the unquantified formula Hz is true in M under some (in general, new)
assignment o' such that o/(z) is in the interpretation of H. It is easy to
verify that this formula is true in our little structure M* under a, when we
look at a new assignment function o that assigns either Beth or Di to the
variable z. Thus, 3zHz should come out true in M* under a.

But we have to be a little more careful in defining truth in a structure
formally, because some formulas—T'bzz, for example—contain more than one
unquantified, or free, variable. Thus, when we are evaluating a quantification
of such a formula—3zTbzz, say—we have to be sure that the new assignment
function o' doesn’t change the value of any of the free variables—in this case,
the variable z. Otherwise we could change the sense of the unquantified
formula in mid-evaluation. So, intuitively, under the assignment a above,
3zTbzz intuitively says that Beth is talking to Charlie about someone (recall
that a{z) = Charlie), and this should turn out to be false, in M* since Beth
is not talking to Charlie about anyone, i.e., there is no triple in F(T) such
that Beth is the first element and Charlie the second. But suppose all we
require to make an existentially quantified formula true under a is that there
be some new assignment function o’ such that Tbzz is true under o'. Then
it could turn out also that o'(z) is Di and o/(z) is Charlie. But then the
formula Tbzz would be true in M* under o, since Beth is talking to Di about
Charlie, i.e., (Beth, Di, Charlie) € Go(T). And that is clearly not what we
want.

All that is needed to avoid this problem is a simple and obvious restric-
tion: when evaluating the formula 3zTbzz, the new assignment o' that we
use to evaluate Tbzz must not be allowed to differ from a on any variable
except z (and even then it needn’t differ from a). More generally: if  is an
existentially quantified formula 3xy, then ¢ is true in a structure M under
a just in case there is an assignment function a' just like a except perhaps
in what it assigns to x such that the formula ¥ is true in M under a’. And if
@ is a universally quantified formula Vx3, then ¢ is true in M under a just
in case for every assignment function a' just like @ except perhaps in what
it assigns to x the formula 1+ is true in M under o’. That is, in essence, ¢ is
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true in M under a just in case 9 is true in M no matter what value in the
domain we assign to x (while keeping all other variable assignments fixed).

The reader can once again test his or her comprehension by showing in
detail that 3zTzby is false, in M*, and that Vz( Hz Vv Tbdz) is true, in M*.

2.2.3 Truth and Realization

Now, finally, we can define a formula to be true in a structure M simpliciter
just in case it is true, in M for all assignments a, and false in M just in
case it is false, in M for all a. Note that for most any interpretation, there
will be formulas that are neither true nor false in the interpretation. Our
example 3zTbzz above, for instance, is neither true nor false in M*. Such
formulas will of course always have free variables, since it is the semantic in-
determinacy of such variables that is responsible for this fact. However, note
that some formulas with free variables—e.g., Hz A ~H z—will nonetheless be
true or false in certain models, though these will typically be logical truths
(resp., falsehoods), i.e., formulas which are not capable of true (resp., false)
interpretation.

A structure M is said to be a realization of a given set T of formulas just
in case every formula in T is true in M.® So, for example, our structure M* is
a realization of the set {Hd, Hz D Hz, Tbdc A —~ He, Vz(Hz Vv Jy(Tydz))}.
The notions of truth and realization will be central to our semantics for
IDEF3.

2.3 Temporality and Index Semantics
2.3.1 First-order Logic and the Problem of Temporality

Despite its success in numerous domains, there are areas of potential appli-
cation where plain vanilla first-order logic and its semantics comes up short.
Most notable among these are domains involving time. A standard first-
order structure “freezes” the world as it were at a certain moment, and this
seriously hinders the representation of dynamic processes. For our purposes,

%It is more common in logic to say that such a structure is a model of £. But this
term is already so overextended in the area of information modeling (case in point) that
we thought it best to avoid the standard terminology here.
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then, first-order logic needs some supplementation. The answer, or at least
one good answer, is indez semantics.

Roughly speaking, index semantics is simply an expanded first-order se-
mantics. That is, instead of a single interpretation, in an index semantical
structure one finds many plain interpretations, each distinguished from the
other (in addition to internal differences) by a unique index. The idea then,
in the temporal case, is that each index can represent a certain moment, or
a certain interval, of time, and the structure it indexes represents the world
at that moment or during that interval.® In effect, one overcomes the static
representation of a single first-order interpretation by stringing together a se-
ries of related snapshots. The result, though somewhat artificial, nonetheless
adds great expressive power and flexibility to unadorned first-order languages
and their semantics.

2.3.2 Elaborations

We now introduce extensions to our language and our semantics appropriate
to the task at hand. To our language we add a new class of temporal constants
ky,kz,... and temporal variables t,,1,,..., and a distinguished class of n-place
temporal predicates. The temporal constants will serve as names of intervals,
e.g., 12 noon (on a particular day), 9-12 a.m., etc. Temporal variables will
of course take temporal intervals as values, and the predicates intuitively
express properties of, and relations among, intervals, e.g., duration properties
like five minutes in length, and significant temporal relations (precedence and
inclusion in particular).

Temporal terms and predicates will not be allowed in formulas of our
original language. Rather, they are the elements of a separate, and for pur-
poses here, simpler temporal language whose only logical symbols are the
boolean connectives (and hence there are no temporal quantifiers). The re-
sulting formulas will be called temporal formulas, and formulas from our
original lanzjuage standard formulas. Formulas of both sorts will be used

Though there were several precursors to full-blown index semantics, most notably the
work of Prior (Prior, 1957), it reached its maturity in the “possible world” semastics
that Saul Kripke provided for modal languages, ie., languages with such operators as
“necessarily,” “possibly,” ‘it has always been the case that,” ‘it will be the case that,”
etc. See (Kripke, 1963) for a readable overview, (Chellas, 1980) and (Hughes and Cresswell,
1968} for more formal developments.
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in the construction of a new kind of expression that we call an elaboration,
consisting of a temporal interval variable, temporal formulas involving that
variable, and a oollection of nontemporal formulas. More specifically, let i
be a temporal interval variable, ¢y,...,¢¥, (n > 0)!° temporal formulas, and
@15---yPm (m > 0) are standard formulas, fi, {t1,...,¥n}, {P1,---,¥m}] i8
an elaboration.!! i will be called the dominant temporal variable of the elab-
oration.

To anticipate things a bit, the temporal formulas in an elaboration put
conditions on the value of the temporal variable i, e.g., that it be before
noon, or have a duration of twenty minutes. Subject to these conditions,
the elaboration is to be thought of as “asserting” that each of its standard
formulas is true throughout the value of i. An elaboration thus represenis
(at a certain level of detail) what is occurring within a particular temporally
extended situation—type or instance, depending on whether or not there are
free variables occurring in the elaboration. An instance of a process, then,
thought of roughly as a sequence of actual events, can be represented by
a corresponding sequence of “determinate” elaborations—elaborations con-
taining no free variables. A general process description will be represented
by a structured cluster of “indeterminate” elaborations—elaborations with
free variables among the formulas—that can be instantiated in many differ-
ent ways, corresponding to the different possible runs of the general process
captured in the description. The graphical syntax of these clusters will be
described below.

2.3.3 Temporal Structures

To be able to represent these ideas semantically, we add temporal indices
to our plain structures.. Specifically, a temporal structure (D,TI,dom,V)
consists now not only of a domain D and an interpretation function V, but
two other elements as well. First, there is a set of temporal intervals, or
more exactly, a triple TI = (T,<,C), where T is a set, and < and C are

1= =

two binary relations on T—intuitively, < represents the relation of temporal

19S5 in the case where n = 0, the sequence ¥,,...,¥, is the empty sequence.

"' The restriction to tempotal variables i i8 not a genuine resiriction, since for any tem-
poral constant k we can include the condition i = k among the formulas ¥;, thus in effect
diminating the restriction. Using only variables in the definition, however, makes for a
smoother statement of the semantics for mstantiation graphs below.
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precedence (last Tuesday precedes last Thursday), and T the relation of
temporal inclusion (today’s lunch hour is included in the period from 8:00
this morning to 5:00 this evening). Familiar temporal properties and relations
can be defined in terms of these notions. For example, an atomic interval
can be defined as an interval that includes no intervals but itself.

We will impose certain further conditions on the temporal structure of our
intervals. In particular, we will assume that every interval has a beginning
(and ending) point. This can be stated in the above terms as the condition
thet every interval r includes an interval that precedes (is nreceded by) every
other interval included in 7. Under this condition we can say that one interval
T meets another 7’ just in case the ending point of 7 is the beginning point
of .

In most real world settings, not every object exists across every temporal
interval. In life, people die, others are born; in a manufacturing system, new
objects are constructed, others leave the system; in a database, new records
are added, old ones deleted; and so on. Thus, we want to have the flexibility
to have different domains of objects associated with different intervals of time;
more exactly, we want the plain structures indexed by different intervals to
be able to have different domains. That is the job of the second element dom
in temporal structures. Specifically, in a temporal structure (D,TI,dom,V),
D is to be thought of as the set of all the objects that exist in any of the
temporal intervals represented by T (that is, all the objects that exist in
any temporal intervai in the real world setting that the structure is designed
to represent). dom then assigns to each interval in T'J the set of objects that
exist in that interval-—that is, intutively, the objects that exist (at least)
from the beginning of the interval to the end and at every point in betweeen.
The same object, of course, might, and generally will, exist in many different
temporal intervals. Thus, if we were modelling the run of a mauufacturing
system over a twenty-four hour period, D would consist of all the objects that
occur in the system during any interval within that period—parts, employees
on their various shifts, finished jobs from the time of their completion to the
time they leave the system, etc.

Just as we place conditions on < and T to ensure that they capture
the properties of temporal intervals that we wish to represent, we must also
place a similar condition on domn. Specifically, if an object exists throughout a
certain interval of time, then it exists throughout every subinterval. However,
nothing we have said so far about our formal structures proper guarantees
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that dom will represent this fact, i.e., that it will assign all the objects in a
given interval r also to every subinterval of r. We guarantee this with the
following condition, stated explicitly in terms of our semantical apparatus:
for any interval ¥ € T, and for any object o € D, if o € dom(r}, then for
any ' € T, f ¥ C 7, then 0 € dom(r'). We don’t require the converse, of
course, since an object could come to exist during a subinterval 7’ of 7 that
does not exist throughout all of the larger interval r.

The interpretation function V in a temporal structure needs to be revised
slightly also. One of the most salient features of temporal processes is that
things change over time. This has generated a venerable philosophical prob-
lem: how can an object be different at one time than at another and still
be the very same objezt? Greek, medieval, and some contemporary philoso-
phers put things in terms of substance and accident: the same substance
can nonetheless alter those accidental properties that are not essential to its
being that very substance. For example, Quayle’s height is not essential to
him, and hence it can change over time without Quayle ceasing to be Quayle.
The same cannot be said of Quayle’s being a human being. That property
is essential to him; he couldn’t come to be a stone, an alligator, a daisy, or
otherwise come to lack it and still be Quayle.!?

However we want to view the metaphysics of change, though, it is undeni-
able that our ordinary conceptual scheme—as reflected in the sort of ordinary
language reports whose content IDEF3 is intended to capture—permits one
and the same object to have different properties over time. We implement
this in our formal semantics by relativizing the interpretation of predicates
to intervals. Specifically, for a given n-place predicate P, and any interval
v € T, we let V(P,7) be a subset of D. in this way, an object 0 € D
might be in the interpretation of P during one interval 7, i.e., we might have
o € dom(r) and o € V(P,7), and not be in the interpretation of P during
another interval 7', i.e., we might also have o0 € dom(7') and o & V(P,7').

We do not require, analogous to the condition on dom above, that if an
object has a property over a given interval, then it has that property over
every subinterval. For while this is true of many properties, e.g., running, it
is not true of all. Obvious cases are ones that involve some sort of average

12The concepts of substance, essence, and accident have in recent years generated a
voluminous literature, much of it spawned by Kripke's formal work in the semantics of
modal logic. For a good introduction to the issues, see (Schwartz, 1977.)
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measurement, e.g., a manufacturing system over a given twenty-four hour
period might have the (average) property of putting out fifty-two jobs per
hour, while it might be that in no single hour subinterval of that period
were there actually exactly fifty-two jobs put out. It thus has to be added
specifically for each predicate in an IDEF3 representation whether or not its
interpretation at a given interval 7 is to be nested within each subinterval of
T.

We also do not require that the interpretation of a predicate at an interval
contain only objects that “exist” at that interval. This is because there are
many meaningful predicates that seem to contain objects that no longer
exist. For example, Lincoln is in the extension of the predicate ‘FORMER
PRESIDENT". Or suppose that in the course of constructing a given widget
W one needs first to use a certain gadget G that is destroyed in the process
before W is complete. After its construction, however, at a certain time 7
one might want to be able to list which parts played a role in the construction
of W, and hence one inight want some sort of - . ...ate ‘PART USED IN
CONSTRUCTION OF W’ that is true a! r o1 G, even though G no longer
exists at 7, i.e., G &€ dom(r'). Of cuurse, for certain purposes one might for
one reason or another wish to enforce the condition that the interpretation
of a predicate at an interval only take opjects thai >xist during that interval,
and such a condition could of course be added unproblematically, but for
greater generality we omit it.

Interpretations for constants are given just as before: for any constant
¢, V(¢) € D. Assignment functions also work as before, assigning arbitrary
objects in D to free object variables, and arbitrary intervals in TI to free
temporal variables.

2.3.4 Truth and Realization in Temporal Structures

Atomic Formulas and Connectives Truth in temporal structures is now
just a simple extension of truth in ordinary first-order structures. Specifically,
let I be a temporal structure (D,TI,dom,V), and a an assignment for I.
Then we define truth, just as before, only relative to our interval indices:
in the simplest case, an atomic formula Pc is true, in I relative to 7 just
in case the object that c denotes, i.e., V(c), is in the set V(P,7) of things
that have the property expressed by P at the interval r; if instead we have
a variable x instead of ¢, then we look instead at a(x). Similarly for atomic




formulas constructed from n-place predicates. Connectives work as before,
mod»lo the relativization to intervals.

Quantified Formulas Quantifiers present two options. (Again, discussion
of quantifiers can be omitted without impairing the reader’s comprehension
of anything that follows.) On the one hand, given a quantified sentence Ixyp,
we can interpret the quantifier as ranging over all objects in the domain D
independent of the interval v at which we are evaluating the formula, or we
can relativize them to those objects in the domain of r. Since the former
is more general,’® we will restrict our attention to it. Thus, Ixy is true, at
T just in case there is some object 0 € D and assignment function o that
differs from a at most in that it assigns o to x, such that 1 is true,,. That
is, in essence, Ix¢ is true, in M at 7 just in case ¥ is true, in M for some
value in the domain D of all objects that o' assigns to x (while keeping all
other variable assignments fixed). Similarly, Vxvy is true, in M at 7 just in
case 9 is true in M for all values in D that we assign to x (while keeping all
other variable assignments fixed).

2.3.5 Truth and Realization

As before, truth for a formula ¢ at an interval 7 in an interpretation I is just
for ¢ to be true, at T for all assignments a. Otherwise put, for a formula to
be true at an interval in an interpretation is for it to hold during that interval
no matter what values of the domain are assigned to the free variables of the
formula.

Given all this we can define a notion analogous to truth at an interval for
elaborations. Specifically, we say that an assignment a realizes an elaboration
E = [i,{%1,-.,¥m} {®15---y¥n}] in I just in case each 7; and each y; is
true, at afi).™

131n particular, one can achieve the effect of quantification just over the objects that
exist at the index at which one is evaluating the formule in question simply by introducing
a distinguished predicate E' whose extension at r is always just the set of objects that
exist at T, i.e., V(E!,7) = dom(7), for any r.

"In a somewhat fuller development we would add a second type of elaboration that
requires only that the formulas ¢, be true at some subinterval of . This enables one to
capture descriptions that are less than precise about what ezactly goes on during some
period of time.




As it happens, in IDEF3, the notion of an assignment realizing an elabora-
tion will play a much more prominent rcle than the notion of an elaboration
simply being realized, and hence the notion of truth under an assignment
will play a more prominent role than straight truth. The reason for this is
that, first, different variable assignments for the same elaboration provide a
natural representation of the idea of different objects instantiating the same
process across time, and second, assignment of the same object to the same
variable across different elaborations provide a natural representation of the
flow of a given object through a process. These are the chief ideas for which
IDEF3 is intended to be a flexible and powerful representation tool.

3 IDEF3 Graphical Syntax

3.1 Prediagrams and Their Grammar

We now turn to the more explicit development of IDEF3 proper. In addition
to the (supplemented) first-order component already noted, the syntax of
IDEF3 also has a graphical component, used for constructing figures that are
vivid and especially useful for real world applications. There are several types
of basic elements of the graphical syntax for IDEF3: bozes, labels, arrows,
and junction symbols. With the exception of junction symbols, of which there
are two, & and X, there is an inexhaustible (i.e., countably infinite) supply of
elements of each type. Boxes and labels join to form labeled bozes, or Lbozes,
and boxes and junction symbols join to form juncttons—&-junctions and X-
junctions respectively.’® The preferred two dimensional (2-d) representations
of these constructs are depicted in Figure 1.

Both labeled boxes and junctions are called nodes. Nodes are joined with
other nodes to form what we call prediagrams. The joining of one node a
to another ¢’ by an arrow r can be represented as a triple (a,r,a’). r is
called an outgoing arrow of a, and an #mcoming arrow of a’. The natural
way to represent (a,r,a’) two dimensionally is to simply to draw the 2-d
representation of r from the 2-d representation of a to the 2-d representation
a’. Henceforth, we will often not distinguish between graphical elements of

5In practice, labels serve as concise abbreviations or descriptions of the state of affairs
described by an elaboration associated with the box in a graphical diagram. For formal
purposes we simply ne= lower case letters with subscripts; much more on this below.
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ai, az, ...

Box

, an Labels

Labeled box
(A stands for any label)

Arrow

&-junction

X-junction

Figure 1: 2-d Graphical Lexicon
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IDEF3 syntax and their 2-d representations, and we will often speak infor-
mally, e.g., of “drawing” an arrow from one node to another, of two nodes
being “connected” by an arrow, of “connecting” an arrow to a node, etc. In
particular, our rules below for constructing diagrams—mathematically, these
are graphs of a certain sort—will be stated in these more informal (but no
less rigorous) terms.

Not all ways of drawing arrows between nodes are legitimate prediagrams.
Indeed, most ways of doing so are not. Most yield diagrams which are seman-
tically unwieldy at best, and incoherent at worst. We impose order on the
construction box and arrow figures out of our graphical syntactic elements
by means of the following recursive definition of notion of a prediagram, ie.,
a definition that begins with basic instances of the notion, and then proceeds
to define more complex instances in terms of less complex. We will state the
syntactic rules first; detailed explanation of each rule follows.

1. For n > 2, the result of drawing n arrows from an &-junction (resp.,
X-junction) to n distinct l-boxes is called an basic open &-split (resp.,
basic open X-split. (See Figure 2.)

2. The result of drawing an arrow from all the l-boxes in a basic open &-
split (resp., basic open X-split) to a single &-junction is a closed &-split
(resp., closed X-split). (See Figure 2.)

3. l-boxes, open and closed splits (basic or not) are prediagrams.

4. The l-boxes and junctions of a prediagram are called its nodes. A node
in a prediagram with no outgoing arrows is called eztensible.

5. A path in a prediagram is a sequence (ai,...,an) of nodes such that
for 1 < n, there is an arrow from a; to a;4;. We say in this case that
(a1,...,ay) is a path from a; to a,. Sequences with a single element
are to be considered limiting cases of paths. A node a’ in a prediagram
7 is accessible from a node a of = iff (i.e., if and only if) there is a path
from a to a'. A path p is said to traverse a node a iff a is an element
of p. a and a’ are basically incomparable iff either (i) there is no path
from a to a’ or from @' to g, or (i) there is a junction j such that both
a and o' are accessible from j but every path from one to the other
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traverses 7.!® a is essentially accesstble from a' iff a is accessible from
a' and a and ' are not basically incomparable.

6. A ncde pin a prediagram x is & lefitmost point, or L-point, of = iff every
node of x is accessible from p. p is a rightmost potnt, or R-potnt, of x
iff p is accessible from every node of ».  is L-potnted if it has a unique
L-point, R-pointed if it has a unique R-point, and closed if it is both
L-pointed and R-pointed.

7. The result of replacing any l-box bin a dosed split (of either sort) with
a closed prediagram = by attaching the arrows coming into b to the
L-point of * and the arrow coming out of b to the R-point of = is a
closed split. It follows from this rule that every closed split is dosed in
the above sense. The area between the L-point and R-point of a closed
split S is called the scope of S. If a is the L-point of S and b the R-point,
then b is said to be a’s R-counterpart, and a b’s L-counterpart.

8. The result of drawing an arrow from an extensible node of a prediagram
F to the L-point of another prediagram is itself a prediagram.

9. The resuit of drawing an arrow from an extensible node a of a predia-
gram = to any node @’ of x is itself a prediagram iff (i) a is essentially
accessible from a’, (ii) no part of the arrow is within the scope of a
closed split, and (iii) a' is neither the L-point of = nor the R-point of a
closed split within =.

Further discussion of these rules will help make their function clear. As
noted, the above definition is recursive in that it begins by introducing the
basic cases of certain notions (prediagram, dosed split) and then uses further
rules to extend the notions once we have the basic cases. (1) and (2) give
us some further initial edlements to help get things started. Open &-splits
represent processes (both types and instances) that diverge into several dis-
tinct subprocesses, and open X-splits represent process types that have a
“conditional branch,” i.e., a8 point where the process can flow one and only

1 The second condition here actually includes the first as a vacuous case, but this way
of putting it makes the idea a bit clearer. Note that paths between basically incomparable
nodes will be made possible only by (9) below, which provides for the construction of
cycles within diagrams.




Al Al
A2 Az
X
A An
Open &-split Open X-split
Al Al
A2 A2
& X
A A

Closed &-split Closed X-split

Figure 2. Open and Closed Splits.
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one of several ways. Such splits are obviously central to the description of
indeterminate cycles within process types. A process instance generally flows
one way rather than another at a branching point depending on whether or
not some condition is met. K it is not, the process instance loops back to
an earlier point in the process type, eventually returning to the branching
point. When the satisfaction of the relevant condition cannot be determined
in advance, the cycle in the process is indeterminate.

The difference between open &-splits and cosed &-splits is that the
branches of a process represented by the former are not conceived ever to
converge at some later point back into a single stream while in dosed &-
splits they are. In and of themselves there is no essential difference between
open X-splits and closed ones, since in both cases there can only be a single
process that emanates from the branching point. However, in the context of
a larger diagram there is a crucial difference. For only closed X-splits can be
used to place conditional branches in the midst of a larger process that is
to be construed as a single stream. An open X-split represents two possible
wholly divergent paths a process can take; a closed X-split represents a mere
option to jog one way or another on the path to a single end.

(3) together with (1) and (2) actually give us our base case for the re-
cursion. (Compare the basic splits with atomic formulas in the grammar for
first-order languages.) Note, however, that the definition is not restricted
only to dasic splits. This allows us to count other, more complex sorts of
splits to be defined in (7) as well. (4)-(6) define some important auxiliary
notions. (4) defines the notion of an extensible node, and (5) some useful
graph theoretic concepts, and the notion of essential accessibility needed in
(9).

Regarding (6), L-points and R-points in a prediagram intuitively repre-
sent definite beginning and ending points of a described process or subpro-
cess. If some event is in fact a beginning point of a process, then everything
that follows in that process can be traced back to that beginning point;
this idea is captured in the requirement that all points in the prediagram—
representing the events that make up the process—be accessible from the
L-point. Analogously, if an event marks a definite end point to a process,
then one should be able to trace back from that point to all preceding events
in the process; thus the requirement that an R-point be accessible from all
other nodes in the prediagram.

(7), (8), and (9) are the constructive parts of the definition; they define
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complex prediagrams in terms of less complex parts. Specifically, given the
notion of a closed prediagram, (7) gives us a recursive rule for generating more
complex closed splits from properly dosed prediagrams and less complex
dosed splits. The rough idea is that if a description represents a process that
splits, then any of the descriptions of the subprocesses that branch off can be
replaced by still more complex descriptions. (7) also defines the important
notion of the scope of a split, to which we’ll return shortly.

(8) and (9) tell how to build more complex prediagrams by drawing new
arrows. (8) allows one to draw an arrow from an extensible node in one
diagram to the L-point of another, a natural way in which one might put
together prediagrams constructed from descriptions of different parts of a
single system. The explicit purpose of (9) is to provide for the construction
of diagrams that represent processes with (determinate or indeterminate)
cycling. As noted above, this can only be done by drawing an arrow from
some extensible node in a prediagram to some “preceding” box. This is
captured by the requirement that the l-box a out of which the arrow is drawn
must be accessible from the l-box a’' to which the arrow is drawn. Consider
for example a process that might be described as follows:

After its construction, a car body enters the painting area where
it aclivates the paint-jets. It moves through the area and receives
a coat of paint. Then it enters the drying area where #f activates
the dryers, and stays there for 20 minutes until it 1s dry. At that
point, sensors check to see if the car body has received enough
paint. If it has i is shunted off down the line; if not, it is put
through the paint-dry cycle again, and continues in the cycle until
it recetves enough paint.

To capture this description using the above syntax, one first draws a box
to represent the construction of a car body. Since (let us suppose) we are not
at present interested in the details of the construction, a single l-box labeled
“Construct Car Body” (CCB for short) is used to represent that process.
A second box labeled “Enter Paint Area” (EPA) is then introduced with
an arrow (using (8)) drawn from the first box to the second. Three more
boxes labeled “Paint Car Body” (PCB). “Enter Drying Area” (EDA), and
“Dry Car Body” (DCB) respectively in the same fashion, each connected
to the previous box by an arrow (by (8) once again). The two possible




outcomes of checking the paint are represented by an open split involving an
XOR junction, with one box of the split labelled “Enough paint” (EP) and
another labeled “Not Enough Paint” (not-EP). This open split can now be
joined to the DCB box by (8) once again. A further box is introduced along
the top branch of the split to represent (or summarize) the process that a
car body enters upon completing the paint/dry cycle. All that remains is to
represent the loop back into the cycle from the not-EP I-box. This is allowed
by (9) since the not-EP box is essentially accessible from the EPA box, and
the desired arrow is not within the scope of a closed split, nor connected to
“llegal” I-boxes.

The condition that arrows cannot be drawn into or out of the scope of
a cdosed split stems from the idea that subprocesses emanating from the L-
point of a closed split should be isolable, i.e., that the only way in or out of a
process represented by a closed split is from its beginning or end, respectively.
If it should happen that a subdiagram within a closed split also accurately
pictures a certain distinct subprocess outside the process represented by the
split, then in constructing a prediagram one should simply copy the relevant
section where it is needed in the prediagram, rather than to cross a split’s
logical boundaries.

The prediagram resulting from the above construction is shown in Fig-
ure 3. (The box labeled “Decomposition of CCB” dangling off the CCB box
serves as a pointer to its more detailed meaning, or decomposition; this will
be discussed below.)

The requirement (9) that a be essentially accessible from a’ is added to
rule out the use of (9) to generate certain pathological cycles that would arise
if we were to allow arrows between l-boxes a, a’ such that a is accessible from
a’ only because of a loop—generated by a previous application of (9)—from
a, say, back to another l-box a” from which both a and @' are accessiule.!”
That @’ cannot be the R-point of a closed split, as required by (iii), stems
from the fact that such nodes mark the end of a split process, and hence
should only have arrows coming into it from within the split. That it cannot
be the L-point of the diagram represents the idea that processes typically
have & unique starting state—represented by the L-point of the prediagrams
that represent them—and hence it should not be possible to loop back to

17 Such pathological c&cles deserve much more discussion, but it would take us too far
from the main point of this paper to do so here.
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Decomposition
of CCB

Fist . 3: Prediagram for Paint/Dry Cycle

such states unce the process has begun.'®

Severu: further remarks are in order. First, except for the “target” node
in the construction of a cycle, no node in a prediagram has more than one
incoming arrow. Initially, this might lead one to believe that IDEF3 is inca-
pable of representing convergent processes, where several processes in parallel
converge to a single event. In IDEF3, however, convergence is to be repre-
sented by the convergence of several arrows to a single &-junction at the end
of a closed split. In representing convergence by a closed split, the presup-
position here is that all parallel convergent processes have a common initial
path, that tracing back down each parallel process will reveal a common ori-
gin from which they all split—perhaps only the signing of a purchase order,
or the system timer striking 8:00 a.m., but a common origin nonetheless. For
otherwise there seems no initial ground that “parallelizes” the processes that
converge in the first place.

Second, a number of constructs that will appear in IDEF3’s more prac-
tical guise have been omitted here. For example, a common junction is
inclusive OR, whereas we have included only ezclusive OR. The reason for

" 1814 should be noted though that this condition is dispensable.




this omission is that inclusive disjunction can be defined in terms of the other
two.!® Thus, for theoretical purposes it is redundant. In practice, of course,
inclusive OR is very convenient, indeed, perhaps essential, since, e.g., it cuts
down greatly on the size of certain prediagrams. It is also the most natural
meaning of many ordinary uses of the word ‘or’ in common process descrip-
tions, and hence is needed to capture such descriptions in the most natural
way.

A second construct that for convenience we are also omitting are “rela-
tional links.” These are links which can «-ode a wide variety of temporal
and other information about events within a given process. These, like in-
clusive disjunction, are easily added to the theory.

Third, along the same lines, we note that further refinements on junctions
can be defined that are useful in practice. For instance, it is possible to dis-
tinguish between synchronous &-junctions, where all the events represented
by a given split must occur simultaneously, and asynchronous &-junctions,
where this is not required. Since these are all definable in terms of our current
apparatus, it will be omitted to avoid needless complexity. (These junctions
and links, and more besides, can be found in the “user-oriented” version of
IDEF3 sketched in the IDEF3 technical report.)

Finally, we note that we have made certain decisions that take form in
corresponding restrictions on the syntax. It should be noted that there is a
great deal of flexibility here, and that, within limits, alternative choices and
views could be embodied in alternative definitions of the syntax.

3.2 Elaboration Tables and Decompositions

In this section we bring together our first-order syntax with our graphical
syntax. As noted above, the label on a box is just an abbreviation for or
terse description of (the content of ) an associated elaboration. Theoretically,
labels are superfluous; we could just as easily attach elaborations to boxes
directly. But in practice, where one actually uses the 2-d graphical syntax,
since there are no limits placed on the complexity of elaborations, there
needs to be a more concise way of identifying the state of affairs a box
represents. This is the role of the labels. The boxes in a prediagram are

®Specifically, an OR-split canwbe—deﬁned in terms of an X-split, with each branch leading
to a possibie conjunction of all the branches of the OR-split that could occur.




associated directly with elaborations via what we call an elaboration table—
essentially, a one-to-one mapping from boxes to elaborations. In practice, an
elaboration table might take any one of a number of forms depending on the
relevant implementation of IDEF3: a pencil and paper implementation might
use an actual written table on a separate sheet, whereas in a graphic-based
computational implementation, boxes might take the form of a data structure
one of whose elements is a pointer to an associated elaboration. However it
is done, the point is that both labels and elaborations will appear in any
implementation of IDEF3. Hence, since the theoretical cost of retaining
labels in the theory is negligible, we thought it best to keep the formal theory
more in step with practice at this point.

Formally then, where = is a prediagram, an elaboration table T for 7w is a
function that maps each l-box of 7 to an associated elaboration.

Let us illustrate these ideas by taking the paint-dry cycle prediagram
above to the next stage in the construction of a complete IDEF3 diagram.
Since we are for the moment suppressing the details of the actual construction
of a car body when our focus is on the paint/dry cycle per se, the elabora-
tion of the CCB box might be no more than [¢;,{},{Constructed(z)}]. (The
empty braces indicate that (as yet) no conditions have been placed on the
temporal intervals during which the car body construction process occurs.)
The EPA box’s elaboration would be something like [¢3,{},On(z, CB-carrier),
Enters(z, paint-area), Activates(z, paint-jets)}], and that of the PCB box
something like [i3, {},{On(z,CB-carrier), Moving(z), Activated(paint-jets),
Being-painted(z)}]. The EDA box’s elaboration, analogous to the EPA’s,
might be [i4,{},On(z, CB-carrier), Enters(z, drying-area), Activates(z, dry-
ers)}], and that of the DCB box might be [i5, {20-minutes(i5)}, {On(z,CB-
carrier), ~Moving(z), Activated(dryers), Drying(z)}]; that of the EP box
might be [ig, {},{On(z,CB-carrier), -Moving(z), Activated(paint-sensors),
Value-of(paint-sensors,1)}], and that of the not-EP box [is, {},{On(z,CB-
carrier), “Moving(z),Activated(paint-sensors), Value-of(paint-sensors, 0)}};
and as with the process prior to the paint/dry cycle, the process that contin-
ues after the paint/dry cycle is suppressed and summarized by a single box.
This possible elaboration is depicted in tabular form in Figure 4.

The notion of suppression of detail in a diagram can be cashed in a
rigorous way in IDEF3. The box noted above attached to the CCB box serves
as a pointer to another prediagram/elaboration table combination (n’',7'),
one which, turns up the power of our descriptive microscope on the CCB
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CCB:
EPA:

PCB:

EDA.:

DCB:

EP:

(41, {}, {Constructed (x)}]

[12, { }, {On(x, CB-carrier), Enters(x, paint-area),
Activates(x, paint-jets) }]

(23, {.}, {On(x, CB-carrier), Moving(x),
Activated(paint-jets), BeingPainted(x,)}]

[ta, {.}, {On (x,CB-carrier), Enters(x, drying-area),
Activates(x, dryers)}]

[ts, f 20-minutes}, {On(x, CB-carrier), ~Moving(x),
Activated(dryers), Drying(x)}]

[t6. { .}, { On(x,'CB-carrier), ~Moving(x),
Activated(paint-sensors), Value-of(paint-sensors, 1)}]

not-EP: [z, {}, {On(x, CB-carrier), ~Moving(x),

Activated(paint-sensors), Value-of(paint-sensors, 0)}]

Figure 4: Elaboration Table for Paint/Dry Cycle Prediagram
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box and represents its contents in greater detail. This is (roughly) what
we refer to as a decomposition of the CCB box. A possible decomposition
prediagram for the CCB box is pictured in Figure 5.

Decompositions, along with prediagrams and elaboration tables, are the
final ingredient of full-blown IDEF3 diagrams. Informally, an IDEF3 diagram
will consist of three elements: a prediagram =, an elaboration table ¢, and
an decomposition function §; the diagram itself can thus be thought of as a
triple (m,£,8) consisting of such elements. A decomposition function for an
IDEF3 diagram is a partial function—i.e., a function that is not necessarily
defined everywhere in its domain—on the l-boxes of n that takes each box
on which it is defined to another IDEF3 diagram.

We do not want the decomposition of any given box in a prediagram §
to contain that very box, or for that matter any other box in §, or any of
the boxes in its decomposition (if it has one). A decomposition, after all,
is a closer look at some event within a larger process; hence it seems quite
reasonable that no smaller part of that event could contain within itself the
original event, or any other part of the larger system. This conception of
processes in fact comports well with the way one would draw decompositions
if one were using a large sheet of paper: each decomposition would consist of
entirely new boxes drawn below the decomposed box of the original diagram.

At the same time, we do want to allow “nested” decompositions. That is,
we always want it to be possible to raise the power of our descriptive micro-
scope even farther than we have at a given point in the course of description
capture. Thus, we want to allow boxes within decompositions themselves to
admit of further decomposition, and boxes within those decompositions to
admit of yet further decomposition, to any desired finite depth.

To achieve all this in a rigorous fashion, we proceed as follows. First,
since the set B of boxes is infinite, we can divide it up into infinitely many
mutually disjoint infinite sets By, B, etc. (Labels, as noted, are theoretically
superfluous, and can be ignored in the present context.) We will use the
first of these sets, B, to define an initial (base) set di-,, ~{ basic IDEF3
diagrams all of whose decomposition functions are everywhere undefined; no
box in a diagram at this stage, that is, has a decomposition. (Recall that
decomposition functions are partial, and hence need not be everywhere, or
even anywhere, defined.) At the next stage we build a new set diag, of
IDEF3 diagrams out of the boxes in B, only now we allow them to contain
decomposition functions that take l-boxes to diagrams in the base set diago.
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This will enable us to satisfy the condition that the decomposition of a given
box b in diag, cannot contain b itself, or any other box ¥ at the same “level”
as b in the diagram.

This is not quite enough, though. For, as we are defining them here,
boxes in IDEF3 diagrams all represent temporally nonoverlapping events,
i.e., events which intuitively could have no common parts. Hence, we also
require that the decompositions of any two distinct boxes b4 of » must
not contain any common box. (In fact, IDEF3 can be generalized to allow
temporal overlap, but even in this case it turns out to be most convenient still
to enforce this condition and represent even the common parts of overlapping
events by distinct boxes in each decomposition.?®)

We must impose one further condition given the distinction between
closed and nonclosed prediagrams. Let « be a prediagram constructed out of
boxes in By;. We cannot allow any given box b of 7 to be mapped to just any
diagram in diage. For if b is nonextensible, i.e., if b has an outgoing arrow,
then it can only be mapped to a closed diagram,?! since the events repre-
sented by such boxes intuitively do not branch at their end but continue in a
single stream. Speaking more syntactically, since a decomposition represents
a closer look at a given event, we should always be able to replace any box
in a diagram with its decomposition. The only way to do so in the case of
a nonextensible box is to attach its incoming arrows to the L-point of its
decomposition, and its outgoing arrow to the R-point of its decomposition.
This can only be done if we impose the above condition.

Diagrams at successive levels diag,, n > 1 are defined in just the same
way. In general, that is, for n > 0, an n**-level diagram, i.e., an element of
diag,, is a triple (w,e,6) such that = is a prediagram whose boxes are in B,,
€ is an elaboration table for v, and § is a partial function from the boxes
of * to the diagrams in diag,_, satisfying the above conditions. The set of
all diagrams is then defined to be the union of the diagm, for m > 0. Our
definition thus allows for the nesting of diagrams within diagrams to any
finite degree.

A few brief remarks are in order. First, note that the condition that the
decomposition function for an n*-level diagram only take values in diag,,_,,

X This condition enables us to streamline the semantics considerably, since, as we
will see, the definition of realization for prediagrams in diagy serves for all prediagrams

generally.
2 Where a diagram (r,¢,8) is closed just in case * is cosed.
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and not diag,, for all m < n is not at all restrictive since each level contains a
“copy” of all previous levels.?? Thus, there is no diagramatic structure avail-
able for decomposition functions at one level that is unavailable at successive
levels.

Second, the reader may have noted similarities between the structure of
IDEF3 diagrams and dynamic record types in high level languages like Pascal.
In addition to a variety of standard fields, such record types can contain one
or more fields whose value for a given record consists of a pointer to a record of
the same type. In the same way, a decomposition function for a given IDEF3
diagram (applied to a box in the diagram) points to yet other diagrams.
Unlike true dynamic record types, though, our hierarchical construction rules
out the possibility of diagrams that point back to themselves.

Let us make our definition entirely formal for good measure. For a given
graph 7 constructed out of the elements of IDEF3 graphical syntax, let
bozes(w) be the set of boxes that occur in =, let PD(r) mean that = is
a prediagram, and let ET(e,7) mean that € is an elaboration table for .
Where a = (m,¢,8), let (a); = 7. Then we have:

diagy = {(m,£,8) | PD(=) and bozes(r) C B, and ET (e, ) and § = 0};
diag,, = {(m,e,68) | PD(~) and bozes(r) C B, and ET (e, ) and domain(8) C
bozes(r) and range(§) C diag,., and Vz € domain(§), if not-EXTENSI-

BLE(z), then CLOSED(§(z)), and Vz,y € domain(8), bozes((é(z));) N
bozes((8(y))1) = O}, for n > 0;

diag = Um_>_0 diagm'

4 JIDEF3 Semantics

We now want to give a semantics for IDEF3 graphs that will enable us to
hook them up with all the more standard first-order apparatus that we de-
veloped above. An l-box in a diagram represents a (part of) process that is
described by the associated elaboration E = [i,{¥1,...,¥m},{®1,--.,¢n}]

# For example, since decomposition functions are partial and each B, is infinite, diag,
contains in particular all the diagrams that can be formed from the boxes of B, that,
like the basic diagrams, have decompositions that are undefined everywhere. There will
thus be an isomorphic copy in diag, of each basic diagram in diag,, and similarly for all
succeeding levels.
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An mstance of that process will exist if during the temporal interval repre-
sented by i (i.e., if at the value of i under some assignment) all the sentences
¥;,p; are true. As noted already, the use of variables is crucial to this idea,
since object variables can have different objects assigned to them as values,
and temporal interval variables different temporal intervals. This enables one
to instantiate the same elaboration in many different ways, thus capturing
the different ways in which a general process might be realized. We make
these ideas more formal in this section.

4.1 Instantiation Graphs

Interpretations provide mathematical models of the general structure of a
described process. Interpretations together with variable assignments enable
one to model, or realize, specific instances of the general process.

Let us fix a given IDEF3 diagram (x,c,8) written in some language L.
For any l-box b € bozes(w), let £(b) be the elaboration associated with b by
the elaboration table €. Given an interpretation I for £, an £-I-assignment
a can be said to realize the l-box b just in case it realizes €(b).

Now, with every prediagram = can be associated a set (generally infinite)
of associated graphs which characterize the possible ways in which the sys-
tem that the prediagram describes can be instantiated. Thus, we call these
associated graphs instantiation graphs for x. If = has no cycles (i.e., no paths
that begin and end at the same node), then its instantiation graph (there is
only one in this case (up to isomorphism)) is especially easy to characterize,
since it will look just like 7 itself except with its junctions removed. That is,
roughly, form the instantiation graph for v by beginning with the L-point of
n and then tracing down from the L-point, add as nodes all the l-box “chil-
dren” of any &-junction one comes to, and only one of the l-box children of
any X-junction one comes to until one cannot continue. The procedure for
generating instantiation graphs from prediagrams = with cycles is similar,
except one must in addition allow an instantiation graphs to “unfold” the
cycles some finite number of times (if possible; some legitimate prediagrams
with unconditional cycles have only infinite instantiation graphs).

(It might be wondered why junctions are removed from instantiation
graphs. The reason is that junctions are needed primarily because of the
two ways in which a process might split that are recognized in IDEF3—
conjunctive splits and exclusive disjunction splits. If there were only one
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sort, then we could just as well have multiple arrows coming straight out of
an l-box. In an actual process instance there is in fact only the first sort of
splitting; where a diagram has an X-split, representing possible continuations
of the process represented by the diagram, any corresponding instairce of the
process goes either one way or the other; there is no actual disjunctive split-
ting at the instance level. The splitting is only at the type level. Thus, in
an instantiation graph, since there is only one kind of splitting—where the
process flow diverges into several streams—junctions are superfluous.??)

Despite the simplicity of these ideas, it takes a little work to give it
formal expression. To begin, let A = (x,e,8) be an IDEF3 diagram, and
let T' = (V,A) be a graph such that all the vertices z € V are of the form
{a,n), where a is a node of 7, and n is a natural number greater than 0. As
usual, A—the set of edges, or arcs, of the graph—is a set of pairs of members
of V (hence a set of pairs of the form ({(a,n),(b,m)); intuitively, each pair
represents an arc from the first member to the second). If a and b are nodes
of 7, then we say that b is a successor of a (in «), and a a predecessor of b,
if there is an arc from a to bin =.

Now, say that T is w-generated iff, first, (a,1) € V iff ¢ is the L-point of
n, and for all nodes a of 7 and all natural numbers n, if (a,n) € V and a has

B Actually, for all we have said there is a further reason for retaining &-junctions.
Our syntactic rules allow nested &-junctions (and X-junctions), i.., junctions that are
successors of other junctions. In these cases &-junctions can serve as grouping delimiters
that might well put constraints on the relations between events that instantiate a diagram.
For example, we might want to distinguish two cases where three events branch off from
a given event: on the one hand, we might want to allow the three to begin at any three
times after the given event; on the other hand, we might want to group two of the events
and constrain matters such that the two must begin either before or after the third, and
hence that they cannot “sandwich” the third temporally. The most natural way to group
the two with our syntax would be to represent them as a small closed split whose L-point
is, along with s box representing the third event, an immediate successor of another &-
junction. But then, if junctions are climinated in instantiation graphs, it seems that this
grouping information would be lost. However, as already noted, the syntax of IDEF3
allows one to put additional constraints on temporal intervals other than the intervals
represented by the dominant temporal interval of an elaboration. The chief reason for
allowing this is to enable one to put constraints on the temporal intervals associated with
the distinct branches of branching processes. Thus, one can simply transfer the grouping
information carried by the nested &-junctions explicitly into the eddaborations in terms
of the appropriate conditions. (Note how this capability i captured in the semantics in
Clause 4 of the definition of realization for instantiation graphs in Section 4.2.)
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any successors, then
1. if a has a unique successor b, then

(a) if bis a box, or the L-point of a split, or the R-point of a closed
X-split, then b € 4., and ((a,n),(b,n + 1)) € 4;

(b) if b is the R-point of a closed &-split, then (i) (b,n + j5) € V,
where j is the least number such that for each of b’s predecessors
¢ (c,1) € V, where m <t < n+ j, where m is the largest number
< n such that (b',m) € V, where V is b’s L-counterpart, and (1)
({a,n), (b,n + 7)) € A;

2. if a does not have a unique successor, then

(a) if a is the L-point of an &-split, then all of a’s successors are in
Any1, and for each such successor b, {(a,n),(b,n + 1)) € A4;

(b) if a is the L-point of an X-split, then exactly one of a’s successors
bisin A,,,, and ((a,n),(b,n + 1)) € A.

If a is not a junction, a vertex (a,n) in a 7-generated graph represents an
occurrence of an instance of the event represented by a in the prediagram =
at a certain stage in a run of the system represented by the entire prediagram.
The need for indexing a with a number n arises from the possibility of cycles
in the system—different indices paired with the same box a represent different
instances of the same event. The rather complex 1(b) in particular ensures
that the R-point of a closed split is assigned the right index relative to its
predecessors for a given possible run of the system.

We illustrate these ideas in Figure 6, where we have a prediagram = and
an associated 7-generated graph. For formal purposes we are ignoring labels
and simply tagging the boxes of the prediagram directly (in a full fledged
prediagram, of course, a;, a, and as would all have to be junctions). Note
that 7 contains a cyclic X-split down one path of an &-split. This allows for
indeterminate cycling from instances of box a; to instances of box as and
back again. The w-generated graph represents a process instance in which
there is just one such cycle before the process flows from (an instance of) as
to a7, and finally to a,,. Note that the two traversals of a3 are distinguished
by two different indices, 3 and 6 respectively.
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Figure 6: Prediagram 7 with r-generated Graph
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The prediagram requires that instances down each path complete before
there can be an instance of a;;,. This means that we need to have arcs
running from the “last” event down each branch to the same instance of ay,,
in this case represented by (a;1,11). So (a,9,4) has to “wait” until the upper
branch is completed before being connected to the close of the split ag; we
cannot, that is to say, index ag with the number 5 and define an arc from
(a10,4) to (as,5), since {(as,5) would indicate different point in time than
does (as,10). This is assured by 1(b). To see this, let (a,n) in the definition
be (a,0,4), and let b be ag (the R-point of the above closed &-split; then
the definition requires that for each of aq’s predecessors c—in this case only
a; is relevant—if (c,t) is a node—in this case (a;,9), then where j is the
least number such that when added to n the sum is greater than any such
i—s0 j is 6 in our example—(aq,4 + 6), i.e., (as,10) must be a vertex of
our w-generated graph, and there must be an arc from (ay0,4) to (as,10).
The number m in the definition—which is the number 2 heie and plays no
significant role—ensures in general that we are dealing with instances within
the same subprocess represented by the entire closed split, since they too can
be traversed more than once in a given large process. Such multiple traversals
would be indicated by different indexed occurrences of a;. The role of m is to
ensure that we always are dealing with instances of events within an instance
of the split that have occurred since the most recent traversal of a,.

A w-generated graph I' = (V, A) is said to be x-admissible iff it has no
proper n-generated subgraph.?* The reason for this definition stems from the
fact that nothing in the idea of a 7-generated graph rules out the possibility of
all sorts of extra “junk” getting thrown into the nodes or arcs of such a graph
over and above what is sanctioned by the definition alone. For instance, the
sorts of graphs we are interested in are simple, i.e., they have at most one
arc between any two given nodes; but, e.g., an extraneous arc can be added
between any two nodes of a wx-generated graph and the result will still be a
n-generated graph. For the definition tells us only what must be present in
such a graph, not what must not be present. Thus, such graphs at a given
stage n do not necessarily represent the state of a given run of the system
being represented by v at that point. We filter such unintended graphs out
of consideration by focussing our gaze on only the “smallest” graphs that

" ¥ Where a graph IV = (V', A') is a subgraph of a graph ' = (V,A4) iff V' C V and
A" C A. I' is o proper subgraph of T if it is a subgraph and either N' £ V or 4’ £ A.
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satisfy the definition, hence those with no extraneous nodes or arcs. The
w-generated graph of Figure 6 is also w-admissible; it could be transformed
simply into an inadmissible graph simply by, say, adding a2 new unconnected
ncde )aj3,17( to the set of vertices.

Given a w-admissible graph (V, A), our final task is to eliminate all the
junctions from V and revise A in the obvious way to obtain the graph
(V*, A*). That is, in the simplest case, where a and c are boxes of = and
b is a junction, if ({a,n), (b,m)}), ((b,m),(c,m + 1)) € A (that is, if there is
an arc from {a,n) to (b,m) and from (b,m) to (¢,m + 1)), then we remove
b and the above arcs from V and A respectively, and define a new arc from
(a,n) to (¢,m + 1), i.e., we add the arc ((a,n), (c,m + 1)) to A*.

More formally, then, let I' = (V, A) be a x-admissible graph. Let V* be
V —{{a,n) € V | ais a junction of v}, and let A' be A—{r € A | r contains
a junction of #}. Now let S be the set of all paths ((8;,7m1),...,{Gm,nm)) of
[, m > 2, such that and @, and a,, are boxes of v, and for all 1 such that
1 < 1 < m, gq; is a junction of 7. So S contains all the paths of I" between two
boxes whose intervening nodes are all junctions. Let S’ be the set of all pairs
(ay1,am) such that (a,,...,a,,) € S, i.e., the set of all pairs consisting of the
first and last elements of some path in S; S” is thus the result of deleting all
the intervening junctions between the first and last boxes in a path in S. Let
A* be A'US’. Then where I'* is (V* A*), we say that I'* is an nstantiation
graph for . The instantiation graph that results from removing the junction
vertices from the n-generated graph of Figure 6 is illustrated in Figure 7.

4.2 Realizing Instantiation Graphs

Now we want to say what it is for an instantiation graph to be realized by
a class of associated assignment functions (in a given interpretation). We
will set up a correlation between each node of an instantiation graph and an
associated assignment function for the elaboration associated with that node.
For the assignment functions as a whole to realize the graph, they have to
interpret it jointly in such a way as to represent a given run of the system;
e.g., they have to map adjacent vertices to adjacent temporal intervals, they
have to interpret identical variables in the corresponding elaboration tables
of adjacent vertices by means of the same objects to capture object flow
through the system, etc.

The apparatus is straightforward, but a bit involved. First we set up the
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Figure 7: Instantiation Graph for =

relevant syntactic apparatus. Let £ be a first-order language used of the
sort defined above and A = (7,¢,8) be an IDEF3 diagram whose language
for its elaborations is £, and let I' = (V,A) be an instantiation graph for
A. For a given box a, of , let 7, be the dominant temporal variable of the
elaboration ¢(a) associated with a. We shall assume for ease of exposition
that e(a) contains no quantified formulas for every box a of =.

Thus, for the corresponding semantic apparatus, let I be an interpretation
for £, and let F be a mapping of the vertices in V to assignment functions
such that, for all (a,n) € V, F((a,n)) is defined on only the variables in
e(a).?® We write ‘a2’ for the assignment F({a,n)). For any such assignments
a,a’, we define ‘a ~ o'’ to mean that a and o' agree on all the variables on
which they are both defined.

Given all this, we say that F' realizes I just in case, for all ((r.n}),(b,m)) €
A1

Bt is not only more convenient to use such “partial” assignments, but it also corre-
sponds more closely to the way in which assignments would be implemented in a compu-
tational tool. In a more detailed treatment the notion of a partial assignment would be
defined more explicitly.
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1. a® realizes £(a) and o, realizes e(b);

2. of ~ ap,;

3. if (b,m) is (a,n)’s only succe:sor and (a,n) is (b,m)’s only predecessor,
then a2 (i,) meets o} (i));*®

4. if (a,n) has more than one successor, then (i) for all its successors
le Y, 11", of ~afi, (ii) there is one successor (c,l) such that o2(i,)
meets of(i.) and (iii) for all remaining successors (c/,!’), a2(i,) meets
or precedes ofi (ic);

5. if {(a,n) has more than one predecessor, then (i) for all its predeces-
sors (c,l),{c',I'), af ~ af, (ii) there is one predecessor (c,!) such
that ofl(i.) meets af(i,) and (iii) for all remaining predecessors (c’,l’),
af, (i) meets or precedes af(i,);

(1) is required because, for F to realize I', the assignment it associates
with each vertex must realize the corresponding elaboration. The reason
behind (2) takes us back to our remarks on object flow. As noted, the same
free variable occurring in the elaborations of connected boxes represent the
flow of a single object from one event to another. Thus, we require that for
F to realize an instantiation graph, assignments for adjacent vertices must
agree on the free variables common to the boxes in those vertices. This is
just what (2) requires.

(3) captures the idea that boxes connected by an arrow represent tem-
porally contiguous events within a larger process. This is a rather stringent
requirement adopted primarily for ease of exposition. In fact, we can gen-
eralize our apparatus and allow virtually any temporal relation to obtain
between any two given boxes. Temporal contiguity serves here only as a
convenient default.

Similar remarks apply to (4). Splitting in an instantiation graph rep-
resents the branching of a process into several parallel subprocesses. We
have chosen as a default semantics that the event represented by the vertex
that splits meet at least one of the branches, and that meet or precede all the

;Wh;re,‘recall, an interval T meets another 7’ ifl the end point of 7 is the beginning
point of 7.
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others. This is captured by 4(ii) and 4(iii). 4(i) places the additional require-
ment that any two of the assignments associated by F' with the successors of
the branching vertex agree on free variables on which they are both defined.
This permits one in particular to place additional temporal constraints on
the intervals occupied by the branches of branching processes, e.g., that one
of the branches precede another, that two begin together and precede a third,
etc.

(5) is essentially the “dual” of (4) for the “back end” of a splitting process
that eventually ccaverges.

We say that I realizes a basic IDEF3 diagram?®’ (m,¢,¢) iff, for any assign-
ment function a on the variables of the elaboration (p) of the L-point p of
n that realizes £(p), there is an instantiation graph I' and a mapping F' from
the vertices of ' onto assignment functions such that (i) F(p,1) = a, and
(t¢) F realizes T. (Intuitively, this captures the idea that any time the initial
process of a system occurs, the entire system will be instantiated in some
way.) Though we will avoid the details here, it should be quite clear that
any nonbasic IDEF3 diagram A can in principle be “expanded” to a basic
diagram A'—called its bastc erpansion—that explicitly includes all of A’s
nested decompositions.?® We can thus say that I realizes an IDEF3 diagram
A generally just in case it realizes its basic expansion.

5 Conclusion

This paper has provided » formal definition of the process description cap-
ture method (IDEF3) uicg an extended first-order logic. We began by dis-
tinguishing between descriptions (recordings of the beliefs about the world
around us) and models (systems of objects and relations that describe a real-
world system). We described the term “process” in its general sense as a
unit of behavior in IDEF3. Next, we reviewed the fundamentals of first-order
logic, and extended it to include temporal and index semantics. Finally,
we described the IDEF3 notion of an elaboration, and formally specified the
graphical syntax for the method.

¥ 1e., recall, a diagram with no decompositions.
¥]e., all the decompositions of the boxes in A’s prediagram, all the decompositions of
the boxes in those decompositions, etc.
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This formalization was necessary for five reasons: (1) to identify the in-
formal intuitions that motivate the method, (2) to provide a technical basis
for integration with other methods, (3) to provide an objective Lastc for com-
parison with other methods, (4) to provide technical basis for the design of
other methods, and (5) to provide accurate specifications for the design of
automated IDEF3 support tools. This formalization, combined with the cor-
responding technical report and supporting documents, should fully describe
the IDEF3 process description capture method.
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